WO2023017748A1 - 水素センサ - Google Patents

水素センサ Download PDF

Info

Publication number
WO2023017748A1
WO2023017748A1 PCT/JP2022/029406 JP2022029406W WO2023017748A1 WO 2023017748 A1 WO2023017748 A1 WO 2023017748A1 JP 2022029406 W JP2022029406 W JP 2022029406W WO 2023017748 A1 WO2023017748 A1 WO 2023017748A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
terminal
vias
hydrogen sensor
hydrogen
Prior art date
Application number
PCT/JP2022/029406
Other languages
English (en)
French (fr)
Inventor
運也 本間
理 伊藤
幸治 片山
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Priority to CN202280055434.4A priority Critical patent/CN117795326A/zh
Priority to JP2023541408A priority patent/JPWO2023017748A1/ja
Publication of WO2023017748A1 publication Critical patent/WO2023017748A1/ja
Priority to US18/409,599 priority patent/US20240175837A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/122Circuits particularly adapted therefor, e.g. linearising circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present disclosure relates to hydrogen sensors.
  • Patent Document 1 discloses a thermal conductivity gas sensor that detects a target gas.
  • Patent Document 1 the heat conduction type gas sensor disclosed in Patent Document 1 is heated to about several hundred degrees Celsius for gas detection, and requires a very large power consumption of about 100 mW. Moreover, there is a problem that the detection accuracy for hydrogen is low.
  • the present disclosure provides a hydrogen sensor with low power consumption and high hydrogen detection accuracy.
  • a hydrogen sensor includes a planar first electrode, a planar second electrode provided facing the first electrode and having an exposed portion exposed to a hydrogen-containing gas, a metal oxide layer sandwiched between two opposing surfaces of the first electrode and the second electrode, the exposed portion of which changes in resistance when it comes into contact with the gas; a first terminal, a second terminal and a heat sink; one or more first vias electrically connected to the first terminal and the second electrode and provided above the second electrode; one or more second vias electrically connected to the second electrode and provided above the second electrode; and one or more third vias in contact with the heat dissipation portion and provided above the second electrode. and a via.
  • a hydrogen sensor includes a planar first electrode, and a planar second electrode provided facing the first electrode and having an exposed portion exposed to a gas containing hydrogen. and a metal oxide layer sandwiched between two opposing surfaces of the first electrode and the second electrode, the resistance value of which changes when the exposed portion comes into contact with the gas, and are provided separately from each other.
  • a first terminal, a third terminal and a heat radiating portion one or more first vias electrically connected to the first terminal and the second electrode and provided above the second electrode; one or more fourth vias electrically connected to the terminal and the first electrode and provided below the first electrode; and one or more fourth vias provided above the second electrode in contact with the heat dissipation portion and a third via.
  • a hydrogen sensor includes a planar first electrode, and a planar second electrode provided facing the first electrode and having an exposed portion exposed to a gas containing hydrogen. and a metal oxide layer sandwiched between two opposing surfaces of the first electrode and the second electrode, the resistance value of which changes when the exposed portion comes into contact with the gas, and are provided separately from each other.
  • a first terminal, a second terminal, a third terminal and a heat radiating portion and one or more first vias electrically connected to the first terminal and the second electrode and provided above the second electrode.
  • one or more second vias electrically connected to the second terminal and the second electrode and provided above the second electrode
  • One or more third vias, and one or more fourth vias electrically connected to the third terminal and the first electrode and provided below the first electrode.
  • the hydrogen sensor of the present disclosure has low power consumption and high hydrogen detection accuracy.
  • FIG. 1 is a cross-sectional view showing a configuration example of a hydrogen sensor according to Embodiment 1.
  • FIG. FIG. 2 is a plan view showing a configuration example of the hydrogen sensor according to Embodiment 1.
  • FIG. 3 is a cross-sectional view showing a configuration example of a hydrogen sensor according to a comparative example.
  • FIG. 4 is a diagram showing a table of temperature simulation results for the hydrogen sensor according to the example and the hydrogen sensor according to the comparative example.
  • FIG. 5 is a diagram showing changes in current values when a predetermined voltage is applied to the hydrogen sensor according to the example and the hydrogen sensor according to the comparative example.
  • FIG. 6 is a diagram showing changes in current values during hydrogen detection in the hydrogen sensor according to the example and the hydrogen sensor according to the comparative example.
  • FIG. 7 is a cross-sectional view showing a configuration example of a hydrogen sensor according to Embodiment 2.
  • FIG. FIG. 8 is a plan view showing a configuration example of a hydrogen sensor according to
  • each figure is a schematic diagram and is not necessarily strictly illustrated.
  • substantially the same configurations are denoted by the same reference numerals, and overlapping descriptions are omitted or simplified.
  • the terms “upper” and “lower” in the configuration of the hydrogen sensor do not refer to the upper (vertically upward) and downward (vertically downward) directions in terms of absolute spatial recognition, but rather the laminated structure. It is a term defined by a relative positional relationship based on the stacking order in . Also, the terms “above” and “below” are used only when two components are spaced apart from each other and there is another component between the two components, as well as when two components are spaced apart from each other. It also applies when two components are in contact with each other and are placed in close contact with each other.
  • the x-axis, y-axis and z-axis indicate three axes of a three-dimensional orthogonal coordinate system.
  • the x-axis and y-axis are two axes parallel to the planar first electrode of the hydrogen sensor, and the z-axis direction is perpendicular to the first electrode.
  • planar view refers to when the first electrode of the hydrogen sensor is viewed from the positive direction of the z-axis.
  • FIG. 1 is a cross-sectional view showing a configuration example of a hydrogen sensor 100 according to this embodiment.
  • FIG. 2 is a plan view showing a configuration example of the hydrogen sensor 100 according to this embodiment. 1 shows a cross-sectional view at a position corresponding to line II in FIG.
  • the hydrogen sensor 100 is a hydrogen sensor that detects hydrogen.
  • the hydrogen sensor 100 includes a first electrode 103, a metal oxide layer 104, a second electrode 106, a metal layer 106s, a first via 121, a second via 122, two third vias 123, a fourth via 124 and a fifth via. 125 , a first terminal 111 , a second terminal 112 , a third terminal 113 , two heat dissipation parts 130 and wiring 114 .
  • the hydrogen sensor 100 also includes an insulating layer 102 covering the above components, insulating layers 107a, 107b and 107c, and insulating layers 109a and 109b. These insulating layers are provided with an opening 106a, an opening 111a, an opening 112a, an opening 113a and two openings 130a. For simplicity, insulating layers other than the insulating layer 102 are not shown in FIG.
  • the first electrode 103 is a planar electrode, and has two surfaces, an upper surface (surface on the z-axis positive side) and a lower surface (surface on the z-axis negative side).
  • the top surface of the first electrode 103 contacts the metal oxide layer 104
  • the bottom surface of the first electrode 103 contacts the insulating layer 107 a and the fourth via 124 .
  • the shape of the first electrode 103 is rectangular with the same size as the second electrode 106 in plan view.
  • the first electrode 103 may be made of materials such as tungsten, nickel, tantalum, titanium, aluminum, tantalum nitride, and titanium nitride, for example. These materials are preferably materials having a lower standard electrode potential than the metal in the metal oxide layer 104 . The higher the standard electrode potential, the more difficult it is to oxidize.
  • the first electrode 103 is formed of, for example, tantalum nitride, titanium nitride, or a laminate thereof.
  • the first electrode 103 is provided above the insulating layer 107a.
  • a metal oxide layer 104 and a second electrode 106 are provided above the first electrode 103 .
  • the second electrode 106 is a planar electrode provided facing the first electrode 103 .
  • the second electrode 106 has two surfaces, an upper surface (surface on the z-axis positive side) and a lower surface (surface on the z-axis negative side).
  • the bottom surface of the second electrode 106 is in contact with the metal oxide layer 104, and the top surface of the second electrode 106 is in contact with the metal layer 106s and the outside air.
  • the second electrode 106 has an exposed portion 106e exposed to the outside air inside the opening 106a. That is, the opening 106a is an opening that exposes the upper surface of the second electrode 106 between the first terminal 111 and the second terminal 112 in plan view without being covered with the insulating layer 107b.
  • the exposed portion 106e is a flat area exposed to gas containing hydrogen.
  • the second electrode 106 is an electrode having hydrogen dissociation properties.
  • the second electrode 106 extracts hydrogen atoms from a gas containing hydrogen (more specifically, hydrogen atoms) such as platinum, iridium, palladium, nickel, or an alloy containing at least one of these. It is composed of a material that has catalytic action to dissociate.
  • the second electrode 106 shall be platinum.
  • a metal layer 106s is formed on the upper surface of the second electrode 106 other than the opening 106a.
  • the metal layer 106 s is made of TiAlN, for example, and is formed as an etching stopper for forming the first via 121 , the second via 122 and the two third vias 123 .
  • metal layer 106s is not an essential component.
  • the metal oxide layer 104 is a layer sandwiched between two opposing surfaces of the first electrode 103 and the second electrode 106 . That is, the metal oxide layer 104 is sandwiched between the top surface of the first electrode 103 and the bottom surface of the second electrode 106 .
  • the metal oxide layer 104 is composed of an oxygen-deficient metal oxide.
  • the metal oxide layer 104 is preferably an oxide of the following metals.
  • the metal at least one may be selected from transition metals such as tantalum, hafnium, titanium, zirconium, niobium, tungsten, nickel and iron, and aluminum. Since transition metals can assume multiple oxidation states, different resistance states can be realized by oxidation-reduction reactions.
  • the “degree of oxygen deficiency” of a metal oxide refers to the amount of oxygen deficiency in the metal oxide relative to the amount of oxygen in an oxide having a stoichiometric composition composed of the same elements as the metal oxide. Percentage.
  • the amount of oxygen deficiency is a value obtained by subtracting the amount of oxygen in the metal oxide from the amount of oxygen in the metal oxide having a stoichiometric composition.
  • the degree of oxygen deficiency of the metal oxide is defined based on the one with the highest resistance of Metal oxides of stoichiometric composition are more stable and have higher resistance values than metal oxides of other compositions.
  • the metal oxide layer 104 is tantalum oxide, it can be expressed as TaO 2.5 , since the stoichiometric oxide by the above definition is Ta 2 O 5 .
  • a metal oxide with excess oxygen has a negative value of oxygen deficiency.
  • the degree of oxygen deficiency can take a positive value, 0, or a negative value.
  • An oxide with a small degree of oxygen deficiency has a high resistance value because it is closer to an oxide having a stoichiometric composition, and an oxide with a large degree of oxygen deficiency has a lower resistance value because it is closer to a metal that constitutes the oxide.
  • the metal oxide layer 104 includes a first layer 104a in contact with the first electrode 103, a second layer 104b provided above the first layer 104a and in contact with the first layer 104a and the second electrode 106, and an insulating separation layer 104i.
  • the degree of oxygen deficiency of the second layer 104b is smaller than that of the first layer 104a.
  • the first layer 104a is TaO x (0 ⁇ x ⁇ 2.5)
  • the second layer 104b is Ta 2 O 5 with a smaller degree of oxygen deficiency than the first layer 104a.
  • the metal oxide layer 104 has an insulating separation layer 104i on the outer circumference of the first electrode 103 in plan view.
  • the metal oxide forming the metal oxide layer 104 functions as a gas-sensitive resistance film. Therefore, the resistance value of the metal oxide layer 104 changes when the exposed portion 106e of the second electrode 106 comes into contact with gas containing hydrogen.
  • the resistance value of the metal oxide layer 104 decreases when hydrogen is present in the gas with which the exposed portion 106e is in contact. More specifically, the greater the amount of hydrogen, the lower the resistance value. Moreover, the resistance value of the metal oxide layer 104 reversibly changes depending on the presence or absence of hydrogen in the gas with which the exposed portion 106e is in contact.
  • This change in resistance value is explained as follows.
  • hydrogen atoms are dissociated.
  • the dissociated hydrogen atoms penetrate into the metal oxide layer 104 .
  • an impurity level is formed in the metal oxide layer 104, and the resistance value of the metal oxide layer 104 is lowered.
  • first electrode 103, the metal oxide layer 104, the second electrode 106, and the metal layer 106s are surrounded by an insulating layer 107b. Furthermore, an insulating layer 109a is provided above the insulating layer 107b.
  • a first via 121 , a second via 122 and two third vias 123 are provided above the second electrode 106 . Also, the first via 121, the second via 122, and the two third vias 123 are vias penetrating the insulating layer 107b and the insulating layer 109a and erected in the metal layer 106s.
  • An insulating layer 107c and an insulating layer 109b are provided above the insulating layer 109a. Furthermore, above the first via 121, above the second via 122, and above each of the two third vias 123, the first terminal 111, the second terminal 112, and the two heat dissipation portions 130 are provided. Each and every. The first terminal 111, the second terminal 112, and the two heat dissipation portions 130 are provided separately from each other.
  • the first terminal 111 is electrically connected to the second electrode 106 through the first via 121 and the metal layer 106s. That is, the first via 121 is electrically connected to the first terminal 111 and the second electrode 106 .
  • hydrogen sensor 100 includes one first via 121 , it is not limited to this and may include one or more first vias 121 .
  • the second terminal 112 is electrically connected to the second electrode 106 via the second via 122 and the metal layer 106s. That is, the second via 122 is electrically connected to the second terminal 112 and the second electrode 106 .
  • hydrogen sensor 100 includes one second via 122 , it is not limited to this and may include one or more second vias 122 .
  • Openings 111a and 112a are provided above the first terminal 111 and the second terminal 112, respectively, through the insulating layers 107c and 109b.
  • the first terminal 111 and the second terminal 112 are connected to an external driving circuit for driving the hydrogen sensor 100 through openings 111a and 112a.
  • the first terminal 111, the second terminal 112, the first via 121, and the second via 122 are made of a material having electrical conductivity, such as a metal having high electrical conductivity such as aluminum, copper, silver, or gold. It is good to be comprised by the material.
  • the first terminal 111 and the second terminal 112 are arranged at positions sandwiching the exposed portion 106e in plan view.
  • the exposed portion 106e of the second electrode 106 is energized, that is, current flows through the exposed portion 106e. It is considered that the energization of the exposed portion 106e activates the hydrogen dissociation action of the exposed portion 106e.
  • the predetermined voltages may be voltages having polarities opposite to each other.
  • the resistance value between the first terminal 111 and the second terminal 112 changes when the exposed portion 106e comes into contact with gas containing hydrogen while the exposed portion 106e is energized.
  • a gas containing hydrogen is detected by the above drive circuit detecting the change in the resistance value.
  • the third terminal 113 is electrically connected to the first electrode 103 through the fifth via 125, the wiring 114 and the fourth via 124.
  • the fourth via 124 is a via provided below the second electrode 106 through the insulating layer 107 a and the insulating layer 102 .
  • a fourth via 124 is electrically connected to the third terminal 113 and the first electrode 103 . Further, as shown in FIG. 2, in a plan view of the first electrode 103, the fourth via 124 and the exposed portion 106e overlap.
  • hydrogen sensor 100 according to the present embodiment includes one fourth via 124 , it is not limited to this and may include one or more fourth vias 124 .
  • the fifth via 125 is a via provided above the wiring 114 and below the third terminal 113 through the insulating layers 102, 107a, 107b and 109a.
  • the opening 113a is provided above the third terminal 113 through the insulating layers 107c and 109b.
  • the third terminal 113 is connected to an external drive circuit that drives the hydrogen sensor 100 through an opening 113a.
  • the resistance value between the first electrode 103 and the second electrode 106 changes when the exposed portion 106e comes into contact with gas containing hydrogen while the exposed portion 106e is energized.
  • the hydrogen sensor 100 changes the resistance value between the first terminal 111 or the second terminal 112 and the third terminal 113 by contacting the exposed portion 106e with the gas containing hydrogen while the exposed portion 106e is energized. change.
  • the hydrogen-containing gas is also detected by the above drive circuit detecting the change in the resistance value.
  • the insulating layer 102, the insulating layers 107a, 107b and 107c, and the insulating layers 109a and 109b, which cover the main parts of the hydrogen sensor 100, are formed of a silicon oxide film, a silicon nitride film, or the like.
  • the laminate of the first electrode 103, the metal oxide layer 104, and the second electrode 106 has a configuration that can be used as a memory element of a resistance change memory (ReRAM).
  • ReRAM resistance change memory
  • the resistance change memory among the states that the metal oxide layer 104 can take, two states, a high resistance state and a low resistance state, are used as a digital memory element.
  • the hydrogen sensor 100 of the present disclosure utilizes the high resistance state among possible states of the metal oxide layer 104 .
  • the metal oxide layer 104 has a two-layer structure composed of a first layer 104a made of TaOx and a second layer 104b made of Ta2O5 having a low degree of oxygen deficiency. Although an example has been shown, a one-layer structure made of Ta 2 O 5 or TaO x having a small degree of oxygen deficiency may also be used.
  • the two third vias 123 are provided between the first terminal 111 and the second terminal 112 in plan view.
  • the first via 121, one third via 123, the fourth via 124, another third via 123 and the second via 122 are arranged linearly in this order.
  • the two third vias 123 are provided on the path of current flowing from the first terminal 111 to the second terminal 112 via the first via 121, the second electrode 106, and the second via 122.
  • the two third vias 123 extend from the first terminal 111 to the third terminal via the first via 121, the second electrode 106, the metal oxide layer 104, the first electrode 103, and the fourth via 124. 113 is provided on the current path.
  • the two third vias 123 are in contact with the heat dissipation part 130 respectively.
  • the hydrogen sensor 100 according to the present embodiment has two third vias 123, the present invention is not limited to this, and one or more third vias 123 may be provided.
  • the two heat dissipation parts 130 are electrically isolated from each other. Also, each of the two heat dissipation parts 130 is electrically isolated from the first terminal 111 , the second terminal 112 and the third terminal 113 . In the present embodiment, the first terminal 111, one heat dissipation portion 130, the exposed portion 106e, the other heat dissipation portion 130, and the second terminal 112 are arranged linearly in this order.
  • a part of the two heat radiating portions 130 (that is, one heat radiating portion 130) is provided between the first terminal 111 and the exposed portion 106e in plan view, and the other portion of the two heat radiating portions 130 is provided between the first terminal 111 and the exposed portion 106e.
  • a part (that is, another one heat dissipation part 130) is provided between the second terminal 112 and the exposed part 106e.
  • the other heat radiation portion 130 is provided between the third terminal 113 and the exposed portion 106e.
  • the two heat dissipation parts 130 dissipate the heat in the second electrode 106 (more specifically, the exposed part 106e), the first via 121, the second via 122 and the fourth via 124.
  • Heat in the second electrode 106 , the first via 121 and the second via 122 is radiated from the two heat dissipation parts 130 via the metal layer 106 s and the two third vias 123 .
  • the heat in the fourth via 124 is radiated from the two heat dissipation parts 130 via the first electrode 103 , the metal oxide layer 104 , the second electrode 106 , the metal layer 106 s and the two third vias 123 .
  • the two heat dissipation parts 130 dissipate heat in the exposed part 106e, the first via 121 and the second via 122.
  • FIG. Also, for example, when a voltage is applied to the first terminal 111 and/or the third terminal 113, the two heat dissipation parts 130 dissipate the heat in the exposed part 106e, the first via 121 and the fourth via 124. .
  • the two openings 130a are provided above the two heat radiating portions 130 through the insulating layers 107c and 109b. Heat is radiated out of the hydrogen sensor 100 through these two openings 130a.
  • the two heat radiating parts 130 and the two third vias 123 are made of a material having thermal conductivity, for example, metal material having high thermal conductivity such as aluminum, copper, silver, or gold. good. Moreover, the two heat radiating portions 130 and the two third vias 123 may be made of a material having low electrical conductivity and high thermal conductivity, such as a ceramic material.
  • the first via 121, the second via 122 and the two third vias 123 are preferably made of the same material, such as copper. This allows the first via 121, the second via 122 and the two third vias 123 to be formed simultaneously when the hydrogen sensor 100 according to the present embodiment is manufactured.
  • the exposed portion 106e is provided between the first terminal 111 and the second terminal 112 in plan view.
  • the exposed portion 106 e is provided on the path of current flowing from the first terminal 111 to the second terminal 112 via the first via 121 , the second electrode 106 and the second via 122 .
  • the exposed portion 106e flows from the first terminal 111 to the third terminal 113 through the first via 121, the second electrode 106, the metal oxide layer 104, the first electrode 103, and the fourth via 124. It is provided on the current path.
  • a voltage is applied between the first terminal 111 and the second terminal 112 .
  • a potential of 0.75 V is applied to the first terminal 111
  • a potential of 1.25 V is applied to the second terminal 112
  • a potential of 0 V is applied to the third terminal 113.
  • the value of current flowing through the ammeter is output from the ammeter. be.
  • a resistance value between the first terminal 111 and the second terminal 112 is calculated from the output current value and the voltage value applied to the hydrogen sensor 100 .
  • the resistance value between the first terminal 111 and the second terminal 112 changes when the exposed portion 106e contacts gas containing hydrogen while the exposed portion 106e is energized. More specifically, the resistance value changes due to the dissociated hydrogen atoms. The gas containing hydrogen is detected by the drive circuit detecting this change in resistance value.
  • a voltage is applied between the first terminal 111 and the third terminal 113 .
  • a potential of 0.75 V is applied to the first terminal 111
  • a potential of 1.25 V is applied to the second terminal 112
  • a potential of 0 V is applied to the third terminal 113.
  • the value of current flowing through the ammeter is output from the ammeter.
  • a resistance value between at least one of the first terminal 111 and the second terminal 112 and the third terminal 113 is calculated from the output current value and the voltage value applied to the hydrogen sensor 100 . More specifically, the resistance value between the first electrode 103 and the second electrode 106 is calculated.
  • the resistance value between the first electrode 103 and the second electrode 106 changes when the exposed portion 106e contacts gas containing hydrogen while the exposed portion 106e is energized.
  • the gas containing hydrogen is detected by the drive circuit detecting this change in resistance value.
  • the applied voltage shown above is an example, and is not limited to such a value.
  • FIG. 3 is a cross-sectional view showing a configuration example of a hydrogen sensor 100x according to a comparative example.
  • the hydrogen sensors 100 according to the example and the present embodiment have the same configuration. Further, the hydrogen sensor 100x according to the comparative example has the same configuration as the hydrogen sensor 100 according to the present embodiment except that it does not include the two third vias 123 and the two heat radiating portions 130. FIG.
  • FIG. 4 is a diagram showing a table of temperature simulation results for the hydrogen sensor 100 according to the example and the hydrogen sensor 100x according to the comparative example. More specifically, FIG. 4 shows simulation results of the temperatures of the exposed portion 106e and the first via 121 when a voltage is applied between the first terminal 111 and the second terminal 112. there is
  • the heat generated in the hydrogen sensor 100 (more specifically, the exposed portion 106e and the first via 121) is dissipated by providing the hydrogen sensor 100 with the two third vias 123 and the two heat dissipation portions 130. is shown.
  • FIG. 5 is a diagram showing changes in current values when a predetermined voltage is applied to the hydrogen sensor 100 according to the example and the hydrogen sensor 100x according to the comparative example. More specifically, FIG. 5 is a diagram showing changes in current values when a potential of 0 V is applied to the first terminal 111, a potential of 0.5 V is applied to the second terminal 112, and a potential of 0 V is applied to the third terminal 113. is.
  • the change over time of the current value is large.
  • the current value gradually decreases from the initial current (current at 0 sec) over time.
  • vias such as the first via 121 made of a metal material increase in resistance as the temperature rises.
  • the temperature of the first via 121 in the hydrogen sensor 100x tends to rise, so the resistance value tends to increase. For this reason, the change in the current value over time increases.
  • the change in current value over time is small, and a constant current is maintained.
  • the heat of the first via 121 is easily radiated by the two third vias 123 and the two heat radiating portions 130, and the increase in the resistance value of the first via 121 is suppressed. Therefore, the current is easily kept constant.
  • FIG. 6 is a diagram showing changes in current values during hydrogen detection in the hydrogen sensor 100 according to the example and the hydrogen sensor 100x according to the comparative example.
  • the current flowing between the first terminal 111 and the second terminal 112 is illustrated.
  • the hydrogen sensor 100 and the hydrogen sensor 100x are exposed to the hydrogen-containing gas during the periods T1, T3 and T5, and are not exposed to the hydrogen-containing gas during the periods T0, T2, T4 and T6.
  • the gas is a gas containing hydrogen molecules, and the concentration of the hydrogen molecules is 500 ppm.
  • the current value In the hydrogen sensor 100, a constant current value is maintained during periods T1, T3, and T5, and the current value does not change significantly and is stable even when repeatedly exposed to gas containing hydrogen. On the other hand, in the hydrogen sensor 100x, the current value decreases in order during periods T1, T3, and T5, and is unstable.
  • the heat of the first via 121 is easily dissipated by the two third vias 123 and the two heat radiating portions 130, and an increase in the resistance value of the first via 121 is suppressed. Therefore, while the hydrogen sensor 100 is detecting hydrogen, the current value tends to be kept constant.
  • the resistance between the first terminal 111 and the second terminal 112 is determined from the output current value and the voltage value applied to the hydrogen sensor 100. value is calculated. Furthermore, gas containing hydrogen is detected based on this resistance value.
  • the hydrogen sensor 100 including the two third vias 123 and the two heat radiating portions 130 the value of current flowing between the first terminal 111 and the second terminal 112 is kept constant even while hydrogen is being detected. Cheap. Therefore, the resistance value between the first terminal 111 and the second terminal 112 can be calculated with higher accuracy, and hydrogen can be detected based on the resistance value calculated with higher accuracy. Therefore, the hydrogen sensor 100 according to the present embodiment is a sensor with high detection accuracy for hydrogen.
  • the hydrogen sensor 100 uses a voltage of several volts and a current of several mA to several tens of mA. Hydrogen can be detected by power consumption. Therefore, the hydrogen sensor 100 according to the present embodiment is a sensor with low power consumption.
  • the hydrogen sensor 100 includes a first planar electrode 103 and a second planar electrode provided facing the first electrode 103 and having an exposed portion 106e exposed to a hydrogen-containing gas. 106, and a metal oxide layer 104 which is sandwiched between two opposing surfaces of the first electrode 103 and the second electrode 106 and whose resistance value changes when the exposed portion 106e comes into contact with gas, and which are provided separately from each other. and one or more first vias 121 electrically connected to the first terminal 111, the second terminal 112 and the heat dissipation part 130 and the first terminal 111 and the second electrode 106 and provided above the second electrode 106.
  • one or more second vias 122 electrically connected to the second terminal 112 and the second electrode 106 and provided above the second electrode 106, and one or more second vias 122 in contact with the heat dissipation part 130 and above the second electrode 106. and one or more third vias 123 provided.
  • the heat generated in the hydrogen sensor 100 (for example, the first via 121) is radiated by the two third vias 123 and the two heat radiating portions 130. Therefore, it is possible to prevent the resistance value of vias such as the first via 121 from increasing due to heat. Therefore, while the hydrogen sensor 100 is detecting hydrogen, the current value tends to be kept constant.
  • the hydrogen sensor 100 according to the present embodiment as described in ⁇ Usage Example 1>, from the output current value and the voltage value applied to the hydrogen sensor 100, the first terminal 111 and the second terminal 112 A resistance value between is calculated. Furthermore, gas containing hydrogen is detected based on this resistance value.
  • the hydrogen sensor 100 including the two third vias 123 and the two heat radiating portions 130, the value of current flowing between the first terminal 111 and the second terminal 112 is kept constant even while hydrogen is being detected. Cheap. Therefore, the resistance value between the first terminal 111 and the second terminal 112 can be calculated with higher accuracy, and hydrogen can be detected based on the resistance value calculated with higher accuracy. Therefore, the hydrogen sensor 100 according to the present embodiment is a sensor with high detection accuracy for hydrogen.
  • the hydrogen sensor 100 can detect hydrogen with power consumption of several tens of mW. Therefore, the hydrogen sensor 100 according to the present embodiment is a sensor that consumes less power than the gas sensor disclosed in Patent Document 1, for example.
  • the heat dissipation portion 130 includes the exposed portion 106e caused by applying a voltage to the first terminal 111 or the second terminal 112, one or more first vias 121, and one or more second vias 122. dissipate the heat in
  • the exposed portion 106e extends from the first terminal 111 to the second terminal 112 via one or more first vias 121, the second electrode 106, and one or more second vias 122. It is provided on the path of the flowing current.
  • one or more third vias 123 are provided from the first terminal 111 via one or more first vias 121, second electrodes 106, and one or more second vias 122, It is provided on the path of current flowing to the second terminal 112 .
  • the resistance value between the first terminal 111 and the second terminal 112 increases due to the contact of the exposed portion 106e with gas. Change.
  • gas containing hydrogen can be detected based on the change in this resistance value.
  • a plurality of heat radiating portions 130 are provided, and in plan view of the first electrode 103, some of the plurality of heat radiating portions 130 are provided between the first terminal 111 and the exposed portion 106e. Another part of the heat radiating portion 130 is provided between the second terminal 112 and the exposed portion 106e.
  • the hydrogen sensor 100 includes a first planar electrode 103 and a second planar electrode provided facing the first electrode 103 and having an exposed portion 106e exposed to a hydrogen-containing gas. 106, and a metal oxide layer 104 which is sandwiched between two opposing surfaces of the first electrode 103 and the second electrode 106 and whose resistance value changes when the exposed portion 106e comes into contact with gas, and which are provided separately from each other. and one or more first vias 121 electrically connected to the first terminal 111 , the third terminal 113 and the heat dissipation part 130 and the first terminal 111 and the second electrode 106 and provided above the second electrode 106 .
  • one or more fourth vias 124 electrically connected to the third terminal 113 and the first electrode 103 and provided below the first electrode 103, and one or more fourth vias 124 in contact with the heat dissipation part 130 and above the second electrode 106. and one or more third vias 123 provided.
  • the heat generated in the hydrogen sensor 100 (for example, the first via 121) is radiated by the two third vias 123 and the two heat radiating portions 130. Therefore, it is possible to prevent the resistance value of vias such as the first via 121 from increasing due to heat. Therefore, while the hydrogen sensor 100 is detecting hydrogen, the current value tends to be kept constant.
  • the hydrogen sensor 100 according to the present embodiment as described in ⁇ Usage Example 2>, from the output current value and the voltage value applied to the hydrogen sensor 100, the first electrode 103 and the second electrode 106 A resistance value between is calculated. Furthermore, gas containing hydrogen is detected based on this resistance value.
  • the hydrogen sensor 100 including the two third vias 123 and the two heat sinks 130, the current value flowing between the first electrode 103 and the second electrode 106 tends to be kept constant even while hydrogen is being detected. Therefore, the resistance value between the first electrode 103 and the second electrode 106 can be calculated more accurately, and hydrogen can be detected based on the accurately calculated resistance value. Therefore, the hydrogen sensor 100 according to the present embodiment is a sensor with high detection accuracy for hydrogen.
  • the hydrogen sensor 100 can detect hydrogen with power consumption of several tens of mW. Therefore, the hydrogen sensor 100 according to the present embodiment is a sensor that consumes less power than the gas sensor disclosed in Patent Document 1, for example.
  • the heat dissipation part 130 includes the exposed part 106 e due to the application of voltage to the first terminal 111 or the third terminal 113 , one or more first vias 121 and one or more fourth vias 124 . dissipate the heat in
  • the exposed portion 106e includes one or more first vias 121, the second electrode 106, the metal oxide layer 104, the first electrode 103, and one or more fourth vias from the first terminal 111. 124 to the third terminal 113 .
  • the one or more third vias 123 are connected from the first terminal 111 to the one or more first vias 121, the second electrode 106, the metal oxide layer 104, the first electrode 103, and one It is provided on the path of current flowing to the third terminal 113 via the fourth via 124 described above.
  • the resistance value between the first electrode 103 and the second electrode 106 increases due to the contact of the exposed portion 106e with the gas. Change.
  • gas containing hydrogen can be detected based on the change in this resistance value.
  • one or more fourth vias 124 and the exposed portion 106e overlap in plan view of the first electrode 103 .
  • the fourth via 124 and the two heat radiating portions 130 tend to be close to each other. Therefore, the heat of the fourth via 124 is more easily dissipated from the two heat dissipating portions 130 . Therefore, the value of current flowing between the first electrode 103 and the second electrode 106 can be more easily kept constant. In other words, the hydrogen sensor 100 with higher detection accuracy for hydrogen is realized.
  • Hydrogen sensor 100 includes a plurality of heat radiating portions 130, and when viewed from the top of first electrode 103, some of the plurality of heat radiating portions 130 are located between first terminal 111 and exposed portion 106e. Another part of the plurality of heat radiating portions 130 is provided between the third terminal 113 and the exposed portion 106e.
  • the hydrogen sensor 100 includes a first planar electrode 103 and a second planar electrode provided facing the first electrode 103 and having an exposed portion 106e exposed to a hydrogen-containing gas. 106, and a metal oxide layer 104 which is sandwiched between two opposing surfaces of the first electrode 103 and the second electrode 106 and whose resistance value changes when the exposed portion 106e comes into contact with gas, and which are provided separately from each other.
  • the hydrogen sensor 100 according to the present embodiment can be used in both ⁇ Usage Example 1> and ⁇ Usage Example 2>. Therefore, as described above, the hydrogen sensor 100 according to the present embodiment is a sensor with high detection accuracy for hydrogen.
  • the hydrogen sensor 100 can detect hydrogen with power consumption of several tens of mW. Therefore, the hydrogen sensor 100 according to the present embodiment is a sensor that consumes less power than the gas sensor disclosed in Patent Document 1, for example.
  • FIG. 7 is a cross-sectional view showing a configuration example of the hydrogen sensor 200 according to this embodiment.
  • the hydrogen sensor 200 has the same configuration as the hydrogen sensor 100 according to Embodiment 1, except that it includes a metal oxide layer 204 .
  • the hydrogen sensor 200 includes a first electrode 103, a metal oxide layer 204, a second electrode 106, a metal layer 106s, a first via 121, a second via 122, two third vias 123, a fourth via 124 and a fifth via. 125 , a first terminal 111 , a second terminal 112 , a third terminal 113 , two heat dissipation parts 130 and wiring 114 .
  • the hydrogen sensor 200 also includes an insulating layer 102 covering the above components, insulating layers 107a, 107b and 107c, and insulating layers 109a and 109b.
  • the metal oxide layer 204 has the same configuration as the metal oxide layer 104 except that it has a bulk region and a local region 105 . That is, the metal oxide layer 204 has a first layer 104a, a second layer 104b, an isolation layer 104i, a bulk region, and a local region 105.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • the second layer 104b included in the metal oxide layer 204 includes a bulk region and a local region 105 surrounded by this bulk region.
  • the bulk region is a region other than the local region 105 in the second layer 104b shown in FIG.
  • the local region 105 is also a region in contact with the second electrode 106 and not in contact with the first electrode 103 .
  • the local region 105 is a region with a higher degree of oxygen deficiency than the bulk region.
  • the degree of oxygen deficiency in the metal oxide contained in the local region 105 depends on the application of an electrical signal applied between the first electrode 103 and the second electrode 106 and the presence or absence of hydrogen in the gas with which the exposed portion 106e is in contact. changes reversibly.
  • the local region 105 is a minute region containing filaments composed of oxygen defect sites. The filament acts as a conductive path.
  • a localized region 105 is formed in the metal oxide layer 204 by applying an initial break voltage between the first electrode 103 and the second electrode 106 .
  • the initial break voltage is the normal write voltage applied between the first electrode 103 and the second electrode 106 to reversibly transition the metal oxide layer 204 between the high resistance state and the low resistance state.
  • the voltage may have a larger absolute value than the voltage.
  • the initial break voltage may be a voltage whose absolute value is smaller than the above write voltage. In this case, the initial break voltage may be applied repeatedly or continuously for a predetermined period of time. The application of the initial break voltage forms a local region 105 in the metal oxide layer 204 that is in contact with the second electrode 106 and not in contact with the first electrode 103, as shown in FIG.
  • the local region 105 may be formed at only one location in the metal oxide layer 204 of the hydrogen sensor 200.
  • the number of local regions 105 in the metal oxide layer 204 can be confirmed by, for example, EBAC (Electron Beam Absorbed Current) analysis.
  • the local region 105 is a region in which current flows more easily than in the bulk region.
  • the local region 105 Due to its small size, the local region 105 generates heat due to a current of several tens of ⁇ A (that is, a power consumption of less than 0.1 mW) when a voltage of about 1 V is applied to read out the resistance value. A temperature rise occurs.
  • the second electrode 106 is made of a catalytic metal such as Pt, and the portion of the second electrode 106 in contact with the local region 105 is heated by the heat generated in the local region 105 to generate hydrogen (more specifically, In other words, the efficiency of dissociating hydrogen atoms from a gas containing hydrogen atoms is increased.
  • the hydrogen sensor 200 has the characteristic that the resistance value of the metal oxide layer 204 decreases when the exposed portion 106e comes into contact with gas containing hydrogen. Due to this characteristic, hydrogen contained in the gas can be detected when the gas to be inspected is brought into contact with the exposed portion 106e and the resistance value between the first electrode 103 and the second electrode 106 decreases.
  • the gas containing hydrogen contacts the exposed portion 106e, thereby further reducing the resistance value. Therefore, hydrogen can be detected by the hydrogen sensor 200 in which the local region 105 is in either a high resistance state or a low resistance state.
  • a hydrogen sensor 200 in which the local region 105 is electrically set to a high resistance state in advance may be used so that a decrease in resistance value can be detected more clearly.
  • the metal oxide layer 204 has a bulk region and a local region 105 surrounded by the bulk region, and the local region 105 is more susceptible to current flow than the bulk region.
  • the hydrogen sensor 200 can detect hydrogen with higher accuracy. Also, as described above, hydrogen can be detected with a power consumption of less than 0.1 mW. Therefore, hydrogen sensor 200 according to the present embodiment is a sensor with low power consumption.
  • the metal oxide layer 204 is made of an oxygen-deficient metal oxide, and the local region 105 has a higher degree of oxygen deficiency than the bulk region.
  • FIG. 8 is a plan view showing a configuration example of the hydrogen sensor 300 according to this embodiment. 8 is a plan view corresponding to FIG. 2. FIG.
  • the hydrogen sensor 300 is similar to the hydrogen sensor according to Embodiment 1, except that it mainly includes a plurality of first vias 121, a plurality of second vias 122, a plurality of third vias 123, and a plurality of fourth vias 124. It has the same configuration as 100.
  • the hydrogen sensor 300 includes the first electrode 103, the metal oxide layer 104, the second electrode 106, the metal layer 106s, the plurality of first vias 121, the plurality of second vias 122, the plurality of third vias 123, the plurality of A fourth via 124 , a fifth via 125 , a first terminal 111 , a second terminal 112 , a third terminal 113 , two heat dissipation parts 130 and wiring 114 are provided.
  • the hydrogen sensor 300 also includes an insulating layer 102 covering the above components, insulating layers 107a, 107b and 107c, and insulating layers 109a and 109b.
  • each of the plurality of first vias 121 is hatched with the same type of hatching for identification. The same applies to the plurality of second vias 122 , the plurality of third vias 123 and the plurality of fourth vias 124 .
  • All of the plurality of first vias 121 are electrically connected to the first terminal 111 and the second electrode 106 and provided above the second electrode 106 .
  • All of the plurality of second vias 122 are electrically connected to the second terminal 112 and the second electrode 106 and provided above the second electrode 106 .
  • All of the plurality of third vias 123 are in contact with one of the two heat dissipation parts 130 and provided above the second electrode 106 .
  • All of the plurality of fourth vias 124 are electrically connected to the third terminal 113 and the first electrode 103 and provided below the first electrode 103 . Further, in a plan view of the first electrode 103, all of the plurality of fourth vias 124 and the exposed portion 106e overlap.
  • planar view shape of the first electrode 103, the metal oxide layer 104, and the second electrode 106 is the same and is H-shaped.
  • the hydrogen sensor 300 having such a configuration is also a sensor with high hydrogen detection accuracy and low power consumption.
  • the hydrogen sensor according to the present disclosure can be widely used, for example, to detect leakage of gas containing hydrogen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

水素センサ(100)は、面状の第1電極(103)と、第1電極(103)に対向して設けられ水素を含む気体に露出される露出部(106e)を有する面状の第2電極(106)と、第1電極(103)及び第2電極(106)の対向する2つの面に挟まれ露出部(106e)が気体と接触することにより抵抗値が変化する金属酸化物層(104)と、それぞれが離隔して設けられる、第1端子(111)、第2端子(112)及び放熱部(130)と、第1端子(111)及び第2電極(106)に電気的に接続され第2電極(106)の上方に設けられる1つ以上の第1ビア(121)と、第2端子(112)及び第2電極(106)に電気的に接続され第2電極(106)の上方に設けられる1つ以上の第2ビア(122)と、放熱部(130)に接し第2電極(106)の上方に設けられる1つ以上の第3ビア(123)とを備える。

Description

水素センサ
 本開示は、水素センサに関する。
 特許文献1は、対象となる気体を検知する熱伝導式の気体センサを開示している。
特開2018―119846号公報
 しかしながら、特許文献1に開示される熱伝導式の気体センサは、気体の検知のために、数百℃程度に加熱されており、100mW程度の非常に大きな消費電力が必要である。また、水素に対する検知精度が低いという課題がある。
 そこで、本開示は、消費電力が低く、かつ、水素に対する検知精度が高い水素センサを提供する。
 本開示の一態様に係る水素センサは、面状の第1電極と、前記第1電極に対向して設けられ、水素を含む気体に露出される露出部を有する面状の第2電極と、前記第1電極及び前記第2電極の対向する2つの面に挟まれ、前記露出部が前記気体と接触することにより抵抗値が変化する金属酸化物層と、それぞれが離隔して設けられる、第1端子、第2端子及び放熱部と、前記第1端子及び前記第2電極に電気的に接続され、前記第2電極の上方に設けられる1つ以上の第1ビアと、前記第2端子及び前記第2電極に電気的に接続され、前記第2電極の上方に設けられる1つ以上の第2ビアと、前記放熱部に接し、前記第2電極の上方に設けられる1つ以上の第3ビアと、を備える。
 また、本開示の一態様に係る水素センサは、面状の第1電極と、前記第1電極に対向して設けられ、水素を含む気体に露出される露出部を有する面状の第2電極と、前記第1電極及び前記第2電極の対向する2つの面に挟まれ、前記露出部が前記気体と接触することにより抵抗値が変化する金属酸化物層と、それぞれが離隔して設けられる、第1端子、第3端子及び放熱部と、前記第1端子及び前記第2電極に電気的に接続され、前記第2電極の上方に設けられる1つ以上の第1ビアと、前記第3端子及び前記第1電極に電気的に接続され、前記第1電極の下方に設けられる1つ以上の第4ビアと、前記放熱部に接し、前記第2電極の上方に設けられる1つ以上の第3ビアと、を備える。
 また、本開示の一態様に係る水素センサは、面状の第1電極と、前記第1電極に対向して設けられ、水素を含む気体に露出される露出部を有する面状の第2電極と、前記第1電極及び前記第2電極の対向する2つの面に挟まれ、前記露出部が前記気体と接触することにより抵抗値が変化する金属酸化物層と、それぞれが離隔して設けられる、第1端子、第2端子、第3端子及び放熱部と、前記第1端子及び前記第2電極に電気的に接続され、前記第2電極の上方に設けられる1つ以上の第1ビアと、前記第2端子及び前記第2電極に電気的に接続され、前記第2電極の上方に設けられる1つ以上の第2ビアと、前記放熱部に接し、前記第2電極の上方に設けられる1つ以上の第3ビアと、前記第3端子及び前記第1電極に電気的に接続され、前記第1電極の下方に設けられる1つ以上の第4ビアと、を備える。
 本開示の水素センサは、消費電力が低く、かつ、水素に対する検知精度が高い。
図1は、実施の形態1に係る水素センサの構成例を示す断面図である。 図2は、実施の形態1に係る水素センサの構成例を示す平面図である。 図3は、比較例に係る水素センサの構成例を示す断面図である。 図4は、実施例に係る水素センサ、及び、比較例に係る水素センサにおける温度シミュレーションの結果の表を示す図である。 図5は、実施例に係る水素センサ、及び、比較例に係る水素センサにおける所定電圧印加時の電流値の推移を示す図である。 図6は、実施例に係る水素センサ、及び、比較例に係る水素センサにおける水素検知中の電流値の推移を示す図である。 図7は、実施の形態2に係る水素センサの構成例を示す断面図である。 図8は、実施の形態3に係る水素センサの構成例を示す平面図である。
 以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は模式図であり、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化される。
 また、本明細書において、水素センサの構成における「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではなく、積層構造における積層順を基に相対的な位置関係により規定される用語である。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔を空けて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。
 また、本明細書及び図面において、x軸、y軸及びz軸は、三次元直交座標系の三軸を示している。各実施の形態では、水素センサが備える面状の第1電極に平行な二軸をx軸及びy軸とし、この第1電極に直交する方向をz軸方向としている。
 また、本明細書において「平面視」とは、水素センサが備える第1電極をz軸正方向から見たときのことをいう。
 (実施の形態1)
 [構成]
 図1は、本実施の形態に係る水素センサ100の構成例を示す断面図である。図2は、本実施の形態に係る水素センサ100の構成例を示す平面図である。なお、図1は、図2のI-I線に対応する位置での断面図を示す。
 本実施の形態に係る水素センサ100は、水素を検知する水素センサである。水素センサ100は、第1電極103、金属酸化物層104、第2電極106、金属層106s、第1ビア121、第2ビア122、2つの第3ビア123、第4ビア124、第5ビア125、第1端子111、第2端子112、第3端子113、2つの放熱部130及び配線114を備える。また、水素センサ100は、上記構成要素を覆う絶縁層102と、絶縁層107a、107b及び107cと、絶縁層109a及び109bとを備えている。これらの絶縁層には、開口106a、開口111a、開口112a、開口113a及び2つの開口130aが設けられている。なお、図2においては、簡単のため、絶縁層102を除く他の絶縁層は図示されていない。
 第1電極103は、面状の電極であり、2つの面として上面(z軸正側の面)及び下面(z軸負側の面)を有する。第1電極103の上面は金属酸化物層104に接し、第1電極103の下面は絶縁層107a及び第4ビア124に接する。
 第1電極103の形状は、平面視で、第2電極106と同じ大きさの矩形状である。第1電極103は、例えば、タングステン、ニッケル、タンタル、チタン、アルミニウム、窒化タンタル、窒化チタンなどの材料で構成されてもよい。これらの材料は、金属酸化物層104における金属と比べて標準電極電位が、より低い材料であるとよい。標準電極電位は、その値が高いほど酸化しにくい特性を表す。第1電極103は、例えば、窒化タンタル若しくは窒化チタン又はそれらの積層で形成される。
 第1電極103は、絶縁層107aの上方に設けられている。また、第1電極103の上方には、金属酸化物層104及び第2電極106が設けられている。
 第2電極106は、第1電極103に対向して設けられる面状の電極である。第2電極106は、2つの面として上面(z軸正側の面)及び下面(z軸負側の面)を有する。第2電極106の下面は金属酸化物層104に接し、第2電極106の上面は金属層106s及び外気に接する。第2電極106は、開口106a内に外気に露出された露出部106eを有する。つまり、開口106aは、平面視における第1端子111と第2端子112との間において第2電極106の上面を絶縁層107bに覆われることなく露出させる開口であり、第2電極106の上方に絶縁層107b、109a、107c及び109bを貫通して設けられている。また、ここでは、第2電極106が有する上面の一部が露出部106eである。露出部106eは、水素を含む気体に露出される平面領域である。
 また、第2電極106は、水素解離性を有する電極である。第2電極106は、例えば、白金、イリジウム、パラジウム、又は、ニッケル、若しくは、これらのうちの少なくとも1つを含む合金など、水素(より具体的には、水素原子)を含む気体から水素原子を解離する触媒作用を有する材料で構成される。第2電極106は、白金であるものとする。
 また、開口106a以外の第2電極106の上面には、金属層106sが形成されている。金属層106sは、例えばTiAlNを材料とし、第1ビア121、第2ビア122及び2つの第3ビア123形成用のエッチングストッパとして形成される。しかし、金属層106sは、必須の構成要素ではない。
 金属酸化物層104は、第1電極103及び第2電極106の対向する2つの面に挟まれる層である。つまり、金属酸化物層104は、第1電極103の上面及び第2電極106の下面に挟まれている。金属酸化物層104は、酸素欠損型の金属酸化物によって構成される。
 金属酸化物層104は、以下の金属の酸化物であるとよい。金属の一例として、タンタル、ハフニウム、チタン、ジルコニウム、ニオブ、タングステン、ニッケル及び鉄等の遷移金属と、アルミニウムとから少なくとも1つ選択されてもよい。遷移金属は複数の酸化状態をとることができるため、異なる抵抗状態を酸化還元反応により実現することが可能である。
 ここで、金属酸化物の「酸素欠損度」とは、当該金属酸化物と同じ元素から構成される化学量論的組成の酸化物における酸素の量に対する、当該金属酸化物における酸素の欠損量の割合をいう。ここで、酸素の欠損量とは、化学量論的組成の金属酸化物における酸素の量から当該金属酸化物における酸素の量を引いた値である。もし、当該金属酸化物と同じ元素から構成される化学量論的組成の金属酸化物が複数存在しうる場合、当該金属酸化物の酸素欠損度は、それらの化学量論的組成の金属酸化物のうち最も高い抵抗値を有する1つに基づいて定義される。化学量論的組成の金属酸化物は、他の組成の金属酸化物と比べて、より安定でありかつより高い抵抗値を有している。例えば、金属酸化物層104が酸化タンタルである場合、上述の定義による化学量論的組成の酸化物はTaであるので、TaO2.5と表現できる。TaO2.5の酸素欠損度は0%であり、TaO1.5の酸素欠損度は(2.5-1.5)/2.5=40%となる。また、酸素過剰の金属酸化物は、酸素欠損度が負の値となる。なお、本開示では、特に断りのない限り、酸素欠損度は正の値、0、又は負の値をとり得る。酸素欠損度の小さい酸化物は化学量論的組成の酸化物により近いため抵抗値が高く、酸素欠損度の大きい酸化物は酸化物を構成する金属により近いため抵抗値が低い。
 金属酸化物層104は、第1電極103に接する第1層104aと、第1層104aの上方に設けられ第1層104a及び第2電極106に接する第2層104bと、絶縁分離層104iとを有する。
 第2層104bの酸素欠損度は、第1層104aに比べて小さい。例えば、第1層104aはTaO(0<x<2.5)であり、第2層104bは第1層104aよりも酸素欠損度の小さいTaである。また、金属酸化物層104は、第1電極103の平面視における外周に絶縁分離層104iを有する。
 金属酸化物層104を構成する金属酸化物は、気体感応性を有する抵抗膜として機能する。このため、金属酸化物層104は、第2電極106の露出部106eが水素を含む気体と接触することにより抵抗値が変化する。
 ここでは、金属酸化物層104は、露出部106eが接触する気体に水素が存在すると抵抗値が小さくなり、より具体的には、水素が多いほど抵抗値が小さくなる。また、金属酸化物層104の抵抗値は、露出部106eが接触する気体における水素の有無に応じて可逆的に変化する。
 この抵抗値の変化は以下のように説明される。露出部106eが水素を含む気体と接触すると、水素原子が解離される。解離された水素原子は、金属酸化物層104内に侵入する。これにより、金属酸化物層104に不純物準位が形成されることで、金属酸化物層104の抵抗値が低下する。
 さらに、第1電極103、金属酸化物層104、第2電極106及び金属層106sの周囲は、絶縁層107bによって囲まれている。さらに、この絶縁層107bの上方には、絶縁層109aが設けられている。
 第2電極106の上方には、第1ビア121と、第2ビア122と、2つの第3ビア123とが設けられている。また、第1ビア121と、第2ビア122と、2つの第3ビア123とは、絶縁層107b及び絶縁層109aを貫通して、金属層106sに立設しているビアである。
 この絶縁層109aの上方には、絶縁層107c及び絶縁層109bが設けられている。さらに、第1ビア121の上方と、第2ビア122の上方と、2つの第3ビア123のそれぞれの上方とには、第1端子111と、第2端子112と、2つの放熱部130のそれぞれとが設けられている。第1端子111と、第2端子112と、2つの放熱部130とは、それぞれが離隔して設けられている。
 第1端子111は、第1ビア121及び金属層106sを介して第2電極106に電気的に接続される。つまり、第1ビア121は、第1端子111及び第2電極106に電気的に接続されている。なお、本実施の形態に係る水素センサ100は、1つの第1ビア121を備えるが、これに限られず、1以上の第1ビア121を備えていてもよい。
 第2端子112は、第2ビア122及び金属層106sを介して第2電極106に電気的に接続される。つまり、第2ビア122は、第2端子112及び第2電極106に電気的に接続されている。なお、本実施の形態に係る水素センサ100は、1つの第2ビア122を備えるが、これに限られず、1以上の第2ビア122を備えていてもよい。
 また、開口111a及び112aは、それぞれ第1端子111及び第2端子112の上方に絶縁層107c及び109bを貫通して設けられる。第1端子111及び第2端子112は、開口111a及び112aを介して、水素センサ100を駆動する外部の駆動回路に接続される。
 第1端子111、第2端子112、第1ビア121及び第2ビア122は、電気伝導性を有する材料によって構成されており、例えばアルミニウム、銅、銀又は金などの高い電気伝導性を有する金属材料によって構成されているとよい。
 第1端子111と第2端子112とは、図2に示すように、平面視において露出部106eを挟む位置に配置される。この配置により、第1端子111と第2端子112との間に、所定の電圧が印加されることによって、第2電極106の露出部106eが通電され、つまり、露出部106eに電流が流れる。この露出部106eの通電は、露出部106eの水素解離作用を活性化するものと考えられる。なお、所定の電圧は、互いに逆の極性を有する電圧であってもよい。
 水素センサ100は、露出部106eの通電中に、露出部106eが水素を含む気体と接触することによって、第1端子111と第2端子112との間の抵抗値が変化する。この抵抗値の変化を上記の駆動回路が検知することにより、水素を含む気体が検知される。
 第3端子113は、第5ビア125、配線114及び第4ビア124を介して第1電極103に電気的に接続される。第4ビア124は、絶縁層107a及び絶縁層102を貫通して第2電極106の下方に設けられるビアである。第4ビア124は、第3端子113及び第1電極103に電気的に接続されている。また、図2が示すように、第1電極103の平面視において、第4ビア124と露出部106eとは、重なる。なお、本実施の形態に係る水素センサ100は、1つの第4ビア124を備えるが、これに限られず、1以上の第4ビア124を備えていてもよい。
 第5ビア125は、絶縁層102、107a、107b及び109aを貫通して、配線114の上方かつ第3端子113の下方に設けられているビアである。
 また、開口113aは、第3端子113の上方に絶縁層107c及び109bを貫通して設けられる。第3端子113は、開口113aを介して、水素センサ100を駆動する外部の駆動回路に接続される。
 水素センサ100は、露出部106eの通電中に、露出部106eが水素を含む気体と接触することによって、第1電極103及び第2電極106間の抵抗値が変化する。換言すると、水素センサ100は、露出部106eの通電中に、露出部106eが水素を含む気体と接触することによって、第1端子111又は第2端子112と第3端子113との間の抵抗値を変化させる。この抵抗値の変化を上記の駆動回路が検知することによっても、水素を含む気体が検知される。
 なお、水素センサ100の主要な部分を覆う、絶縁層102と、絶縁層107a、107b及び107cと、絶縁層109a及び109bは、シリコン酸化膜又はシリコン窒化膜等により形成される。
 また、第1電極103、金属酸化物層104及び第2電極106の積層体は、抵抗変化メモリ(ReRAM)の記憶素子として利用可能な構成である。抵抗変化メモリでは、金属酸化物層104が取りうる状態のうち、高抵抗状態と低抵抗状態との2状態を利用してデジタル記憶素子としている。本開示の水素センサ100では、金属酸化物層104の取りうる状態のうち高抵抗状態を利用している。
 なお、図1において金属酸化物層104は、TaOを材料とする第1層104aと、酸素欠損度の小さいTaを材料とする第2層104bとから構成される2層構成の例を示したが、酸素欠損度の小さいTa又はTaOを材料とする1層構成でもよい。
 図2が示すように、2つの第3ビア123は、平面視で、第1端子111と第2端子112との間に設けられている。なお、本実施の形態においては、第1ビア121、1つの第3ビア123、第4ビア124、他の1つの第3ビア123及び第2ビア122が、順に直線状に並んで配置されている。
 つまりは、2つの第3ビア123は、第1端子111から、第1ビア121と第2電極106と第2ビア122とを介して、第2端子112まで流れる電流の経路上に設けられる。換言すると、2つの第3ビア123は、第1端子111から、第1ビア121と第2電極106と金属酸化物層104と第1電極103と第4ビア124とを介して、第3端子113まで流れる電流の経路上に設けられる。
 また、2つの第3ビア123は、それぞれ放熱部130に接している。なお、本実施の形態に係る水素センサ100は、2つの第3ビア123を備えるが、これに限られず、1以上の第3ビア123を備えていてもよい。
 2つの放熱部130は、互いに電気的に孤立している。また、2つの放熱部130のそれぞれは、第1端子111、第2端子112及び第3端子113と電気的に孤立している。なお、本実施の形態においては、第1端子111、1つの放熱部130、露出部106e、他の1つの放熱部130及び第2端子112が、順に直線状に並んで配置されている。
 図2が示すように、平面視で2つの放熱部130の一部(つまり1つの放熱部130)は第1端子111と露出部106eとの間に設けられ、2つの放熱部130の他の一部(つまり他の1つの放熱部130)は第2端子112と露出部106eとの間に設けられる。つまり、他の1つの放熱部130は、第3端子113と露出部106eとの間に設けられるとも言える。
 2つの放熱部130は、第2電極106(より具体的には、露出部106e)、第1ビア121、第2ビア122及び第4ビア124における熱を放熱する。第2電極106、第1ビア121及び第2ビア122における熱は、金属層106s及び2つの第3ビア123を介して、2つの放熱部130から放熱される。第4ビア124における熱は、第1電極103、金属酸化物層104、第2電極106、金属層106s及び2つの第3ビア123を介して、2つの放熱部130から放熱される。例えば、2つの放熱部130は、第1端子111及び/又は第2端子112に電圧が印加された場合には、露出部106e、第1ビア121及び第2ビア122における熱を放熱する。また、例えば、2つの放熱部130は、第1端子111及び/又は第3端子113に電圧が印加された場合には、露出部106e、第1ビア121及び第4ビア124における熱を放熱する。
 また、2つの開口130aは、それぞれ2つの放熱部130の上方に絶縁層107c及び109bを貫通して設けられる。この2つの開口130aを介して、熱が水素センサ100の外へ放熱される。
 2つの放熱部130及び2つの第3ビア123は、熱伝導性を有する材料によって構成されており、例えばアルミニウム、銅、銀又は金などの高い熱伝導性を有する金属材料によって構成されているとよい。また、これに限られず、2つの放熱部130及び2つの第3ビア123は、セラミックス材料などの低い電気伝導性かつ高い熱伝導性を有する材料によって構成されていてもよい。
 第1ビア121、第2ビア122及び2つの第3ビア123は、同一の材料によって構成されているとよく、例えば、銅によって構成されているとよい。これにより、本実施の形態に係る水素センサ100が製造される場合に、第1ビア121、第2ビア122及び2つの第3ビア123が同時に形成されることが可能となる。
 また、ここで再度露出部106eの配置について説明する。
 図2が示すように、露出部106eは、平面視で、第1端子111と第2端子112との間に設けられている。
 つまり、露出部106eは、第1端子111から、第1ビア121と第2電極106と第2ビア122とを介して、第2端子112まで流れる電流の経路上に設けられる。換言すると、露出部106eは、第1端子111から、第1ビア121と第2電極106と金属酸化物層104と第1電極103と第4ビア124とを介して、第3端子113まで流れる電流の経路上に設けられる。
 [使用例]
 ここでは、本実施の形態に係る水素センサ100が水素を検知する方法について、使用例1及び2を用いて説明する。
 <使用例1>
 使用例1においては、第1端子111と第2端子112との間の抵抗値の変化に基づいて、水素の検知が行われる。この場合、水素センサ100の第1端子111と第2端子112との間に流れる電流を測定する電流計が設けられる。
 使用例1では、第1端子111及び第2端子112間に電圧が印加される。例えば、第1端子111には0.75V、第2端子112には1.25V、第3端子113には0Vの電位が印加され、このときに電流計に流れる電流値が電流計から出力される。出力された電流値と水素センサ100に印加した電圧値とから、第1端子111と第2端子112との間の抵抗値が算出される。
 また、第1端子111と第2端子112との間に電流が流れることで、この電流の経路に熱が生じる。この電流の経路の一部である露出部106eに熱が生じることで、水素原子が解離する効率が高くなる。
 水素センサ100は、露出部106eの通電中に、露出部106eが水素を含む気体に接触することによって、第1端子111及び第2端子112間の抵抗値が変化する。より具体的には、解離された水素原子によって当該抵抗値が変化する。この抵抗値の変化を上記の駆動回路が検知することにより、水素を含む気体を検知する。
 <使用例2>
 使用例2においては、第1端子111及び第2端子112の少なくとも一方と第3端子113との間の抵抗値の変化に基づいて、水素の検知が行われる。この場合、水素センサ100の第1端子111及び第2端子112の少なくとも一方と第3端子113との間に流れる電流を測定する電流計が設けられる。
 使用例2では、第1端子111及び第3端子113間に電圧が印加される。例えば、第1端子111には0.75V、第2端子112には1.25V、第3端子113には0Vの電位が印加され、このときに電流計に流れる電流値が電流計から出力される。出力された電流値と水素センサ100に印加した電圧値とから、第1端子111及び第2端子112の少なくとも一方と第3端子113との間の抵抗値が算出される。より具体的には、第1電極103及び第2電極106間の抵抗値が算出される。
 水素センサ100は、露出部106eの通電中に、露出部106eが水素を含む気体に接触することによって、第1電極103及び第2電極106間の抵抗値が変化する。この抵抗値の変化を上記の駆動回路が検知することにより、水素を含む気体を検知する。なお、上記に示される印加電圧は、一例であり、このような値に限定されるものではない。
 [実施例及び比較例]
 さらに、ここで、実施例及び比較例を用いて、本実施の形態に係る水素センサ100についてより詳細に説明する。
 図3は、比較例に係る水素センサ100xの構成例を示す断面図である。
 まず、実施例と本実施の形態とに係る水素センサ100は、同じ構成を備える。また、比較例に係る水素センサ100xは、2つの第3ビア123及び2つの放熱部130を備えない点を除いて、本実施の形態に係る水素センサ100を同じ構成を備える。
 <温度シミュレーション>
 まずは、温度シミュレーションについて説明する。
 図4は、実施例に係る水素センサ100、及び、比較例に係る水素センサ100xにおける温度シミュレーションの結果の表を示す図である。より具体的には、図4には、第1端子111と第2端子112との間に電圧が印加された場合の、露出部106eと第1ビア121との温度のシミュレーション結果が示されている。
 図4が示すように、第1端子111と第2端子112との間に流れる電流が1、5、10.2、15、20、25及び30mAとなるように、電圧が印加されている。いずれの電流が与えられた場合でも、比較例に係る水素センサ100xに比べて、実施例に係る水素センサ100では、露出部106e及び第1ビア121の温度がより低いことが示されている。また、比較例に係る水素センサ100xに比べて、実施例に係る水素センサ100では、露出部106eと第1ビア121との温度差が同じかより大きく、第1ビア121が十分に冷却されていることが示されている。
 つまり、水素センサ100が2つの第3ビア123及び2つの放熱部130を備えることで、水素センサ100(より具体的には、露出部106e及び第1ビア121)に発生した熱が放熱されることが示されている。
 <電流値推移>
 次に、電流値の推移について説明する。
 図5は、実施例に係る水素センサ100、及び、比較例に係る水素センサ100xにおける所定電圧印加時の電流値の推移を示す図である。より具体的には、図5は、第1端子111には0V、第2端子112には0.5V、第3端子113には0Vの電位が印加された場合の電流値の推移を示す図である。
 なお、それぞれの水素センサ100及び100xにおける0sec時点での電流値が1となるように、電流値が規格化されている。
 図5が示すように、比較例に係る水素センサ100xにおいては、電流値の経時変化が大きい。つまり、水素センサ100xでは、時間の経過に伴って、電流値が初期電流(0secにおける電流)から徐々に低下している。一般に、金属材料によって構成されている第1ビア121などのビアは、温度が高くなると抵抗値が増加する。図4で示したように、水素センサ100xにおける第1ビア121は、温度が高くなりやすいため抵抗値が上昇しやすい。このため、電流値の経時変化が大きくなる。
 一方で、図5が示すように、実施例に係る水素センサ100においては、電流値の経時変化が小さく、一定電流が保たれている。2つの第3ビア123及び2つの放熱部130によって第1ビア121の熱が放熱されやすく、第1ビア121の抵抗値が上昇することが抑制される。このため、電流が一定に保たれやすい。
 <水素検知>
 さらに、水素の検知について説明する。
 図6は、実施例に係る水素センサ100、及び、比較例に係る水素センサ100xにおける水素検知中の電流値の推移を示す図である。ここでは、第1端子111と第2端子112との間に流れる電流が図示されている。水素センサ100及び水素センサ100xは、期間T1、T3及びT5においては水素を含む気体に露出されており、期間T0、T2、T4及びT6においては水素を含む気体に露出されていない。なお、ここでは、当該気体は水素分子を含む気体であり、水素分子の濃度は500ppmである。
 水素センサ100では、期間T1、T3及びT5においては一定の電流値が保たれており、水素を含む気体に繰り返し露出されても電流値が大きく変化せず安定している。一方で、水素センサ100xでは、期間T1、T3及びT5においては順に電流値が低下しており、不安定である。
 上述の通り、2つの第3ビア123及び2つの放熱部130によって第1ビア121の熱が放熱されやすく、第1ビア121の抵抗値が上昇することが抑制される。このため、水素センサ100が水素を検知している間は、電流値が一定に保たれやすい。
 [使用例]で説明したとおり、本実施の形態に係る水素センサ100においては、出力された電流値と水素センサ100に印加した電圧値とから、第1端子111及び第2端子112間の抵抗値が算出される。さらに、この抵抗値に基づいて、水素を含む気体が検知される。2つの第3ビア123及び2つの放熱部130を備える水素センサ100では、水素が検知されている間においても、第1端子111と第2端子112との間に流れる電流値が一定に保たれやすい。このため、第1端子111及び第2端子112間の抵抗値がより精度よく算出されることができ、さらに、精度よく算出された抵抗値に基づいて水素が検知される。よって、本実施の形態に係る水素センサ100は、水素に対する検知精度が高いセンサである。なお、第1端子111及び第2端子112の少なくとも一方と第3端子113との間に電圧が印加され、第1電極103及び第2電極106間の抵抗値が算出される場合においても、第1電極103及び第2電極106間に流れる電流値が一定に保たれやすい。このため、同様の効果が期待される。
 また、<温度シミュレーション>及び<電流値推移>で説明されたように、水素センサ100においては、数Vの電圧と数mA~数十mAの電流とが用いられ、つまりは、数十mWの消費電力で水素を検知することができる。よって、本実施の形態に係る水素センサ100は、消費電力が低いセンサである。
 また、水素センサ100では、期間T2、T4及びT6においても一定の電流値が保たれており、水素を含む気体に露出された直後の電流値が大きく変化せず安定している。一方で、水素センサ100xでは、期間T2、T4及びT6においては電流値が低下しており、不安定である。
 [効果など]
 本実施の形態に係る水素センサ100は、面状の第1電極103と、第1電極103に対向して設けられ、水素を含む気体に露出される露出部106eを有する面状の第2電極106と、第1電極103及び第2電極106の対向する2つの面に挟まれ、露出部106eが気体と接触することにより抵抗値が変化する金属酸化物層104と、それぞれが離隔して設けられる、第1端子111、第2端子112及び放熱部130と、第1端子111及び第2電極106に電気的に接続され、第2電極106の上方に設けられる1つ以上の第1ビア121と、第2端子112及び第2電極106に電気的に接続され、第2電極106の上方に設けられる1つ以上の第2ビア122と、放熱部130に接し、第2電極106の上方に設けられる1つ以上の第3ビア123と、を備える。
 このような構成により、2つの第3ビア123及び2つの放熱部130によって水素センサ100(例えば、第1ビア121)に発生した熱が放熱される。従って、熱によって第1ビア121などのビアの抵抗値が上昇してしまうことが抑制される。このため、水素センサ100が水素を検知している間は、電流値が一定に保たれやすい。本実施の形態に係る水素センサ100においては、<使用例1>で説明されたように、出力された電流値と水素センサ100に印加した電圧値とから、第1端子111及び第2端子112間の抵抗値が算出される。さらに、この抵抗値に基づいて、水素を含む気体が検知される。2つの第3ビア123及び2つの放熱部130を備える水素センサ100では、水素が検知されている間においても、第1端子111と第2端子112との間に流れる電流値が一定に保たれやすい。このため、第1端子111及び第2端子112間の抵抗値がより精度よく算出されることができ、さらに、精度よく算出された抵抗値に基づいて水素が検知される。よって、本実施の形態に係る水素センサ100は、水素に対する検知精度が高いセンサである。
 水素センサ100においては、数十mWの消費電力で水素を検知することができる。よって、本実施の形態に係る水素センサ100は、例えば特許文献1に開示される気体センサと比べて、消費電力が低いセンサである。
 本実施の形態においては、放熱部130は、第1端子111又は第2端子112に電圧が印加されたことによる露出部106e、1つ以上の第1ビア121及び1つ以上の第2ビア122における熱を放熱する。
 これにより、第1端子111又は第2端子112に電圧が印加された場合に、露出部106e、第1ビア121及び第2ビア122における熱がより放熱されやすくなり、第1ビア121及び第2ビア122における温度上昇が抑制される。よって、第1端子111と第2端子112との間に流れる電流値がより一定に保たれやすい。つまりは、水素に対する検知精度がより高い水素センサ100が実現される。
 本実施の形態においては、露出部106eは、第1端子111から、1つ以上の第1ビア121と第2電極106と1つ以上の第2ビア122とを介して、第2端子112まで流れる電流の経路上に設けられる。
 これにより、第1端子111と第2端子112との間に電流が流れることで、この電流の経路に熱が生じる。この電流の経路の一部である露出部106eに熱が生じることで、水素原子が解離する効率が高くなる。水素原子が解離されやすくなることで、第1端子111及び第2端子112間の抵抗値が感度よく変化しやすくなり、つまりは、本実施の形態に係る水素センサ100の水素に対する検知精度がより高くなる。
 本実施の形態においては、1つ以上の第3ビア123は、第1端子111から、1つ以上の第1ビア121と第2電極106と1つ以上の第2ビア122とを介して、第2端子112まで流れる電流の経路上に設けられる。
 これにより、2つの放熱部130から、熱がより放熱されやすくなる。よって、第1端子111と第2端子112との間に流れる電流値がより一定に保たれやすい。つまりは、水素に対する検知精度がより高い水素センサ100が実現される。
 本実施の形態においては、第1端子111及び第2端子112間に電圧が印加された場合に、露出部106eが気体に接触することにより第1端子111及び第2端子112間の抵抗値が変化する。
 これにより、この抵抗値が変化することに基づいて、水素を含む気体が検知されることができる。
 本実施の形態においては、複数の放熱部130を備え、第1電極103の平面視で、複数の放熱部130の一部は、第1端子111と露出部106eとの間に設けられ、複数の放熱部130の他の一部は、第2端子112と露出部106eとの間に設けられる。
 これにより、2つの放熱部130から、熱がより放熱されやすくなる。よって、第1端子111と第2端子112との間に流れる電流値がより一定に保たれやすい。つまりは、水素に対する検知精度がより高い水素センサ100が実現される。
 本実施の形態に係る水素センサ100は、面状の第1電極103と、第1電極103に対向して設けられ、水素を含む気体に露出される露出部106eを有する面状の第2電極106と、第1電極103及び第2電極106の対向する2つの面に挟まれ、露出部106eが気体と接触することにより抵抗値が変化する金属酸化物層104と、それぞれが離隔して設けられる、第1端子111、第3端子113及び放熱部130と、第1端子111及び第2電極106に電気的に接続され、第2電極106の上方に設けられる1つ以上の第1ビア121と、第3端子113及び第1電極103に電気的に接続され、第1電極103の下方に設けられる1つ以上の第4ビア124と、放熱部130に接し、第2電極106の上方に設けられる1つ以上の第3ビア123と、を備える。
 このような構成により、2つの第3ビア123及び2つの放熱部130によって水素センサ100(例えば、第1ビア121)に発生した熱が放熱される。従って、熱によって第1ビア121などのビアの抵抗値が上昇してしまうことが抑制される。このため、水素センサ100が水素を検知している間は、電流値が一定に保たれやすい。本実施の形態に係る水素センサ100においては、<使用例2>で説明されたように、出力された電流値と水素センサ100に印加した電圧値とから、第1電極103及び第2電極106間の抵抗値が算出される。さらに、この抵抗値に基づいて、水素を含む気体が検知される。2つの第3ビア123及び2つの放熱部130を備える水素センサ100では、水素が検知されている間においても、第1電極103及び第2電極106間に流れる電流値が一定に保たれやすい。このため、第1電極103及び第2電極106間の抵抗値がより精度よく算出されることができ、さらに、精度よく算出された抵抗値に基づいて水素が検知される。よって、本実施の形態に係る水素センサ100は、水素に対する検知精度が高いセンサである。
 水素センサ100においては、数十mWの消費電力で水素を検知することができる。よって、本実施の形態に係る水素センサ100は、例えば特許文献1に開示される気体センサと比べて、消費電力が低いセンサである。
 本実施の形態においては、放熱部130は、第1端子111又は第3端子113に電圧が印加されたことによる露出部106e、1つ以上の第1ビア121及び1つ以上の第4ビア124における熱を放熱する。
 これにより、第1端子111又は第3端子113に電圧が印加された場合に、露出部106e、第1ビア121及び第4ビア124における熱がより放熱されやすくなり、第1ビア121及び第4ビア124における温度上昇が抑制される。よって、第1電極103及び第2電極106間に流れる電流値がより一定に保たれやすい。つまりは、水素に対する検知精度がより高い水素センサ100が実現される。
 本実施の形態においては、露出部106eは、第1端子111から、1つ以上の第1ビア121と第2電極106と金属酸化物層104と第1電極103と1つ以上の第4ビア124とを介して、第3端子113まで流れる電流の経路上に設けられる。
 これにより、第1電極103及び第2電極106間に電流が流れることで、この電流の経路に熱が生じる。この電流の経路の一部である露出部106eに熱が生じることで、水素原子が解離する効率が高くなる。水素原子が解離されやすくなることで、第1電極103及び第2電極106間の抵抗値が感度よく変化しやすくなり、つまりは、本実施の形態に係る水素センサ100の水素に対する検知精度がより高くなる。
 本実施の形態においては、1つ以上の第3ビア123は、第1端子111から、1つ以上の第1ビア121と第2電極106と金属酸化物層104と第1電極103と1つ以上の第4ビア124とを介して、第3端子113まで流れる電流の経路上に設けられる。
 これにより、2つの放熱部130から、熱がより放熱されやすくなる。よって、第1電極103及び第2電極106間に流れる電流値がより一定に保たれやすい。つまりは、水素に対する検知精度がより高い水素センサ100が実現される。
 本実施の形態においては、第1端子111及び第3端子113間に電圧が印加された場合に、露出部106eが気体に接触することにより第1電極103及び第2電極106間の抵抗値が変化する。
 これにより、この抵抗値が変化することに基づいて、水素を含む気体が検知されることができる。
 本実施の形態においては、第1電極103の平面視において、1つ以上の第4ビア124と露出部106eとは、重なる。
 これにより、例えば本実施の形態が示すように、平面視で露出部106eが2つの放熱部130の間に挟まれるように配置される場合には、第4ビア124と2つの放熱部130との距離が近くなりやすい。このため、第4ビア124の熱が、2つの放熱部130からより放熱されやすくなる。よって、第1電極103及び第2電極106間に流れる電流値がより一定に保たれやすい。つまりは、水素に対する検知精度がより高い水素センサ100が実現される。
 本実施の形態に係る水素センサ100は、複数の放熱部130を備え、第1電極103の平面視で、複数の放熱部130の一部は、第1端子111と露出部106eとの間に設けられ、複数の放熱部130の他の一部は、第3端子113と露出部106eとの間に設けられる。
 これにより、2つの放熱部130から、熱がより放熱されやすくなる。よって、第1電極103及び第2電極106間に流れる電流値がより一定に保たれやすい。つまりは、水素に対する検知精度がより高い水素センサ100が実現される。
 本実施の形態に係る水素センサ100は、面状の第1電極103と、第1電極103に対向して設けられ、水素を含む気体に露出される露出部106eを有する面状の第2電極106と、第1電極103及び第2電極106の対向する2つの面に挟まれ、露出部106eが気体と接触することにより抵抗値が変化する金属酸化物層104と、それぞれが離隔して設けられる、第1端子111、第2端子112、第3端子113及び放熱部130と、第1端子111及び第2電極106に電気的に接続され、第2電極106の上方に設けられる1つ以上の第1ビア121と、第2端子112及び第2電極106に電気的に接続され、第2電極106の上方に設けられる1つ以上の第2ビア122と、放熱部130に接し、第2電極106の上方に設けられる1つ以上の第3ビア123と、第3端子113及び第1電極103に電気的に接続され、第1電極103の下方に設けられる1つ以上の第4ビア124と、を備える。
 このような構成により、本実施の形態に係る水素センサ100においては、<使用例1>及び<使用例2>の双方の使用方法が適用される。このため、上記説明されたように、本実施の形態に係る水素センサ100は、水素に対する検知精度が高いセンサである。
 水素センサ100においては、数十mWの消費電力で水素を検知することができる。よって、本実施の形態に係る水素センサ100は、例えば特許文献1に開示される気体センサと比べて、消費電力が低いセンサである。
 (実施の形態2)
 [構成]
 以下、実施の形態2に係る水素センサ200の構成について説明する。図7は、本実施の形態に係る水素センサ200の構成例を示す断面図である。
 水素センサ200は、金属酸化物層204を備える点を除いて、実施の形態1に係る水素センサ100と同じ構成である。水素センサ200は、第1電極103、金属酸化物層204、第2電極106、金属層106s、第1ビア121、第2ビア122、2つの第3ビア123、第4ビア124、第5ビア125、第1端子111、第2端子112、第3端子113、2つの放熱部130及び配線114を備える。また、水素センサ200は、上記構成要素を覆う絶縁層102と、絶縁層107a、107b及び107cと、絶縁層109a及び109bとを備えている。
 さらに、金属酸化物層204は、バルク領域と局所領域105とを有する点を除いて、金属酸化物層104と同じ構成である。つまり、金属酸化物層204は、第1層104aと、第2層104bと、絶縁分離層104iと、バルク領域と、局所領域105とを有する。
 より具体的には、金属酸化物層204が有する第2層104bは、バルク領域と、このバルク領域に囲まれた局所領域105とを含む。なお、バルク領域とは、図7に示される第2層104bのうち、局所領域105でない領域である。
 局所領域105は、第2電極106と接し、第1電極103に接していない領域でもある。局所領域105は、バルク領域よりも酸素欠損度が高い領域である。局所領域105に含まれる金属酸化物の酸素欠損度は、第1電極103と第2電極106との間に与えられる電気的信号の印加及び露出部106eが接触する気体中の水素の有無に応じて可逆的に変化する。局所領域105は、酸素欠陥サイトから構成されるフィラメントを含む微小な領域である。フィラメントは導電パスとして機能する。
 局所領域105は、第1電極103と第2電極106との間に初期ブレイク電圧を印加することによって、金属酸化物層204内に形成される。ここで、初期ブレイク電圧は、金属酸化物層204を高抵抗状態と低抵抗状態との間を可逆的に遷移させるために第1電極103と第2電極106との間に印加する通常の書き込み電圧より絶対値が大きい電圧であってもよい。初期ブレイク電圧は、上記の書き込み電圧より絶対値が小さい電圧であってもよい。この場合は、初期ブレイク電圧が繰り返し印加されるか、又は所定時間連続して印加されるとよい。初期ブレイク電圧の印加により、図7に示すように、金属酸化物層204内に、第2電極106と接し、第1電極103と接していない局所領域105が形成される。
 局所領域105は、水素センサ200の金属酸化物層204に1ケ所のみ形成されてもよい。金属酸化物層204における局所領域105の数は、例えば、EBAC(Electron Beam Absorbed Current)解析によって確認することができる。
 金属酸化物層204に局所領域105が形成されることによって、第1電極103と第2電極106との間に電圧を印加した際、金属酸化物層204内の電流は局所領域105に集中的に流れる。つまり、局所領域105は、バルク領域よりも電流が流れやすい領域である。
 局所領域105は、その小ささのために、例えば、抵抗値を読み出すための1V程度の電圧印加時の数十μA程度の電流(つまり、0.1mW未満の消費電力)による発熱で、かなりの温度上昇が生じる。
 そこで、第2電極106を触媒作用のある金属、例えばPtで構成し、第2電極106の局所領域105と接した部分が局所領域105での発熱により加熱されることで、水素(より具体的には、水素原子)を含む気体から、水素原子が解離する効率を高くする。
 その結果、検査対象である気体中に水素があると、第2電極106において解離された水素原子が局所領域105内の酸素原子と結合して、局所領域105の抵抗値が低下する。
 このようにして、水素センサ200は、露出部106eが水素を含む気体に接触すると金属酸化物層204の抵抗値が低下する特性を有する。この特性により、露出部106eに検査対象である気体を接触させ、第1電極103と第2電極106との間の抵抗値が低下することをもって気体に含まれる水素を検知することができる。
 なお、局所領域105が高抵抗状態及び低抵抗状態の何れの状態であっても、水素を含む気体が露出部106eに接触することで抵抗値のさらなる低下が生じる。そのため、水素の検知は、局所領域105が高抵抗状態及び低抵抗状態の何れの状態にある水素センサ200によっても可能である。ただし、抵抗値の低下をより明確に検知できるように、局所領域105をあらかじめ電気的に高抵抗状態に設定した水素センサ200を用いてもよい。
 [効果など]
 本実施の形態においては、金属酸化物層204は、バルク領域と、バルク領域に囲まれた局所領域105とを有し、局所領域105は、バルク領域よりも電流が流れやすい。
 これにより、抵抗値を読み出すための1V程度の電圧印加時の数十μA程度の電流(つまり、0.1mW未満の消費電力)による発熱で、局所領域105においては、かなりの温度上昇が生じる。第2電極106の局所領域105と接した部分が局所領域105での発熱により加熱されることで、水素原子が解離する効率を高くする。水素原子が解離されやすくなることで、第1端子111及び第2端子112間の抵抗値、又は、第1電極103及び第2電極106間の抵抗値が感度よく変化しやすくなる。つまりは、本実施の形態に係る水素センサ200の水素に対する検知精度がより高くなる。また、上記の通り、0.1mW未満の消費電力で水素を検知することができる。よって、本実施の形態に係る水素センサ200は、消費電力が低いセンサである。
 本実施の形態においては、金属酸化物層204は、酸素欠損型の金属酸化物によって構成され、局所領域105は、バルク領域よりも酸素欠損度が高い。
 これにより、局所領域105は、バルク領域よりも電流が流れやすくなる。
 (実施の形態3)
 以下、実施の形態3に係る水素センサ300の構成について説明する。図8は、本実施の形態に係る水素センサ300の構成例を示す平面図である。また、図8は、図2に相当する平面図である。
 水素センサ300は、主に、複数の第1ビア121、複数の第2ビア122、複数の第3ビア123及び複数の第4ビア124を備える点を除いて、実施の形態1に係る水素センサ100と同じ構成である。つまり、水素センサ300は、第1電極103、金属酸化物層104、第2電極106、金属層106s、複数の第1ビア121、複数の第2ビア122、複数の第3ビア123、複数の第4ビア124、第5ビア125、第1端子111、第2端子112、第3端子113、2つの放熱部130及び配線114を備える。また、水素センサ300は、上記構成要素を覆う絶縁層102と、絶縁層107a、107b及び107cと、絶縁層109a及び109bとを備えている。
 なお、図8においては、複数の第1ビア121のそれぞれには、識別のため、同一種類のハッチングが付されている。また、複数の第2ビア122、複数の第3ビア123及び複数の第4ビア124においても同様である。
 複数の第1ビア121の全ては、第1端子111及び第2電極106に電気的に接続され、第2電極106の上方に設けられている。複数の第2ビア122の全ては、第2端子112及び第2電極106に電気的に接続され、第2電極106の上方に設けられている。
 複数の第3ビア123の全ては、2つの放熱部130のいずれか一方に接し、第2電極106の上方に設けられている。
 複数の第4ビア124の全ては、第3端子113及び第1電極103に電気的に接続され、第1電極103の下方に設けられている。また、第1電極103の平面視において、複数の第4ビア124の全てと露出部106eとは、重なる。
 また、第1電極103、金属酸化物層104及び第2電極106の平面視形状は、同じであり、H字形状である。
 このような構成を備える水素センサ300も、水素に対する検知精度が高く、消費電力が低いセンサである。
 (その他の実施の形態)
 以上、本開示に係る水素センサについて、各実施の形態に基づいて説明したが、本開示は、上記各実施の形態に限定されるものではない。
 例えば、本開示の主旨を逸脱しない限り、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 また、上記の実施の形態は、請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示に係る水素センサは、例えば、水素を含む気体の漏洩の検知に広く利用できる。
100、100x、200、300 水素センサ
102、107a、107b、107c、109a、109b 絶縁層
103 第1電極
104、204 金属酸化物層
104a 第1層
104b 第2層
104i 絶縁分離層
105 局所領域
106 第2電極
106a、111a、112a、113a、130a 開口
106e 露出部
106s 金属層
111 第1端子
112 第2端子
113 第3端子
114 配線
121 第1ビア
122 第2ビア
123 第3ビア
124 第4ビア
125 第5ビア
130 放熱部

Claims (16)

  1.  面状の第1電極と、
     前記第1電極に対向して設けられ、水素を含む気体に露出される露出部を有する面状の第2電極と、
     前記第1電極及び前記第2電極の対向する2つの面に挟まれ、前記露出部が前記気体と接触することにより抵抗値が変化する金属酸化物層と、
     それぞれが離隔して設けられる、第1端子、第2端子及び放熱部と、
     前記第1端子及び前記第2電極に電気的に接続され、前記第2電極の上方に設けられる1つ以上の第1ビアと、
     前記第2端子及び前記第2電極に電気的に接続され、前記第2電極の上方に設けられる1つ以上の第2ビアと、
     前記放熱部に接し、前記第2電極の上方に設けられる1つ以上の第3ビアと、を備える
     水素センサ。
  2.  前記放熱部は、前記第1端子又は前記第2端子に電圧が印加されたことによる前記露出部、前記1つ以上の第1ビア及び前記1つ以上の第2ビアにおける熱を放熱する
     請求項1に記載の水素センサ。
  3.  前記露出部は、前記第1端子から、前記1つ以上の第1ビアと前記第2電極と前記1つ以上の第2ビアとを介して、前記第2端子まで流れる電流の経路上に設けられる
     請求項1又は2に記載の水素センサ。
  4.  前記1つ以上の第3ビアは、前記第1端子から、前記1つ以上の第1ビアと前記第2電極と前記1つ以上の第2ビアとを介して、前記第2端子まで流れる電流の経路上に設けられる
     請求項1~3のいずれか1項に記載の水素センサ。
  5.  前記第1端子及び前記第2端子間に電圧が印加された場合に、前記露出部が前記気体に接触することにより前記第1端子及び前記第2端子間の抵抗値が変化する
     請求項1~4のいずれか1項に記載の水素センサ。
  6.  複数の前記放熱部を備え、
     前記第1電極の平面視で、
      前記複数の放熱部の一部は、前記第1端子と前記露出部との間に設けられ、
      前記複数の放熱部の他の一部は、前記第2端子と前記露出部との間に設けられる
     請求項1~5のいずれか1項に記載の水素センサ。
  7.  面状の第1電極と、
     前記第1電極に対向して設けられ、水素を含む気体に露出される露出部を有する面状の第2電極と、
     前記第1電極及び前記第2電極の対向する2つの面に挟まれ、前記露出部が前記気体と接触することにより抵抗値が変化する金属酸化物層と、
     それぞれが離隔して設けられる、第1端子、第3端子及び放熱部と、
     前記第1端子及び前記第2電極に電気的に接続され、前記第2電極の上方に設けられる1つ以上の第1ビアと、
     前記第3端子及び前記第1電極に電気的に接続され、前記第1電極の下方に設けられる1つ以上の第4ビアと、
     前記放熱部に接し、前記第2電極の上方に設けられる1つ以上の第3ビアと、を備える
     水素センサ。
  8.  前記放熱部は、前記第1端子又は前記第3端子に電圧が印加されたことによる前記露出部、前記1つ以上の第1ビア及び前記1つ以上の第4ビアにおける熱を放熱する
     請求項7に記載の水素センサ。
  9.  前記露出部は、前記第1端子から、前記1つ以上の第1ビアと前記第2電極と前記金属酸化物層と前記第1電極と前記1つ以上の第4ビアとを介して、前記第3端子まで流れる電流の経路上に設けられる
     請求項7又は8に記載の水素センサ。
  10.  前記1つ以上の第3ビアは、前記第1端子から、前記1つ以上の第1ビアと前記第2電極と前記金属酸化物層と前記第1電極と前記1つ以上の第4ビアとを介して、前記第3端子まで流れる電流の経路上に設けられる
     請求項7~9のいずれか1項に記載の水素センサ。
  11.  前記第1端子及び前記第3端子間に電圧が印加された場合に、前記露出部が前記気体に接触することにより前記第1電極及び前記第2電極間の抵抗値が変化する
     請求項7~10のいずれか1項に記載の水素センサ。
  12.  前記第1電極の平面視において、前記1つ以上の第4ビアと前記露出部とは、重なる
     請求項7~11のいずれか1項に記載の水素センサ。
  13.  複数の前記放熱部を備え、
     前記第1電極の平面視で、
      前記複数の放熱部の一部は、前記第1端子と前記露出部との間に設けられ、
      前記複数の放熱部の他の一部は、前記第3端子と前記露出部との間に設けられる
     請求項7~12のいずれか1項に記載の水素センサ。
  14.  前記金属酸化物層は、バルク領域と、前記バルク領域に囲まれた局所領域とを有し、
     前記局所領域は、前記バルク領域よりも電流が流れやすい
     請求項1~13のいずれか1項に記載の水素センサ。
  15.  前記金属酸化物層は、酸素欠損型の金属酸化物によって構成され、
     前記局所領域は、前記バルク領域よりも酸素欠損度が高い
     請求項14に記載の水素センサ。
  16.  面状の第1電極と、
     前記第1電極に対向して設けられ、水素を含む気体に露出される露出部を有する面状の第2電極と、
     前記第1電極及び前記第2電極の対向する2つの面に挟まれ、前記露出部が前記気体と接触することにより抵抗値が変化する金属酸化物層と、
     それぞれが離隔して設けられる、第1端子、第2端子、第3端子及び放熱部と、
     前記第1端子及び前記第2電極に電気的に接続され、前記第2電極の上方に設けられる1つ以上の第1ビアと、
     前記第2端子及び前記第2電極に電気的に接続され、前記第2電極の上方に設けられる1つ以上の第2ビアと、
     前記放熱部に接し、前記第2電極の上方に設けられる1つ以上の第3ビアと、
     前記第3端子及び前記第1電極に電気的に接続され、前記第1電極の下方に設けられる1つ以上の第4ビアと、を備える
     水素センサ。
PCT/JP2022/029406 2021-08-11 2022-07-29 水素センサ WO2023017748A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280055434.4A CN117795326A (zh) 2021-08-11 2022-07-29 氢传感器
JP2023541408A JPWO2023017748A1 (ja) 2021-08-11 2022-07-29
US18/409,599 US20240175837A1 (en) 2021-08-11 2024-01-10 Hydrogen sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-130998 2021-08-11
JP2021130998 2021-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/409,599 Continuation US20240175837A1 (en) 2021-08-11 2024-01-10 Hydrogen sensor

Publications (1)

Publication Number Publication Date
WO2023017748A1 true WO2023017748A1 (ja) 2023-02-16

Family

ID=85200503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029406 WO2023017748A1 (ja) 2021-08-11 2022-07-29 水素センサ

Country Status (4)

Country Link
US (1) US20240175837A1 (ja)
JP (1) JPWO2023017748A1 (ja)
CN (1) CN117795326A (ja)
WO (1) WO2023017748A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958348A (ja) * 1982-09-29 1984-04-04 Hitachi Ltd 水素ガス検知素子
JP2017173307A (ja) * 2016-03-18 2017-09-28 パナソニックIpマネジメント株式会社 水素センサ及び燃料電池自動車、並びに水素検出方法。
JP2017181494A (ja) * 2016-03-25 2017-10-05 パナソニックIpマネジメント株式会社 気体センサ、水素検出方法、及び燃料電池自動車
JP2017198660A (ja) * 2016-04-26 2017-11-02 パナソニックIpマネジメント株式会社 気体検出装置及び気体検出方法
JP2017215312A (ja) * 2016-05-25 2017-12-07 パナソニックIpマネジメント株式会社 気体センサ装置、気体センサモジュール、及び気体検知方法
WO2019044256A1 (ja) * 2017-09-04 2019-03-07 パナソニックIpマネジメント株式会社 気体センサ、気体検知装置、燃料電池自動車および気体センサの製造方法
WO2020179226A1 (ja) * 2019-03-07 2020-09-10 パナソニックセミコンダクターソリューションズ株式会社 気体センサとその製造方法、および燃料電池自動車
WO2020213223A1 (ja) * 2019-04-16 2020-10-22 パナソニックセミコンダクターソリューションズ株式会社 気体センサの駆動方法及び気体検出装置
WO2021210453A1 (ja) * 2020-04-16 2021-10-21 ヌヴォトンテクノロジージャパン株式会社 水素センサ、水素検知方法および水素検知装置
JP2022012739A (ja) * 2020-07-02 2022-01-17 パナソニックIpマネジメント株式会社 ガスセンサ装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958348A (ja) * 1982-09-29 1984-04-04 Hitachi Ltd 水素ガス検知素子
JP2017173307A (ja) * 2016-03-18 2017-09-28 パナソニックIpマネジメント株式会社 水素センサ及び燃料電池自動車、並びに水素検出方法。
JP2017181494A (ja) * 2016-03-25 2017-10-05 パナソニックIpマネジメント株式会社 気体センサ、水素検出方法、及び燃料電池自動車
JP2017198660A (ja) * 2016-04-26 2017-11-02 パナソニックIpマネジメント株式会社 気体検出装置及び気体検出方法
JP2017215312A (ja) * 2016-05-25 2017-12-07 パナソニックIpマネジメント株式会社 気体センサ装置、気体センサモジュール、及び気体検知方法
WO2019044256A1 (ja) * 2017-09-04 2019-03-07 パナソニックIpマネジメント株式会社 気体センサ、気体検知装置、燃料電池自動車および気体センサの製造方法
WO2020179226A1 (ja) * 2019-03-07 2020-09-10 パナソニックセミコンダクターソリューションズ株式会社 気体センサとその製造方法、および燃料電池自動車
WO2020213223A1 (ja) * 2019-04-16 2020-10-22 パナソニックセミコンダクターソリューションズ株式会社 気体センサの駆動方法及び気体検出装置
WO2021210453A1 (ja) * 2020-04-16 2021-10-21 ヌヴォトンテクノロジージャパン株式会社 水素センサ、水素検知方法および水素検知装置
JP2022012739A (ja) * 2020-07-02 2022-01-17 パナソニックIpマネジメント株式会社 ガスセンサ装置

Also Published As

Publication number Publication date
CN117795326A (zh) 2024-03-29
JPWO2023017748A1 (ja) 2023-02-16
US20240175837A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
CN107315034B (zh) 气体检测装置以及氢检测方法
JP6145762B1 (ja) 気体センサ、及び燃料電池自動車
JP6782642B2 (ja) 気体センサ及び水素濃度判定方法
WO2021210453A1 (ja) 水素センサ、水素検知方法および水素検知装置
JP6738749B2 (ja) 気体センサ、水素検出方法、及び燃料電池自動車
CN107315033B (zh) 气体检测装置以及氢检测方法
US20210389264A1 (en) Gas sensor, method of manufacturing gas sensor, and fuel cell vehicle
JP2009505045A (ja) 半導体センサ
CN1882830A (zh) 具有多个电位测量传感器的传感器布置
JP2017215312A (ja) 気体センサ装置、気体センサモジュール、及び気体検知方法
JP7138240B2 (ja) 気体センサの駆動方法及び気体検出装置
EP2006912B1 (en) Memory element array comprising a switching element with a nanogap and a tunnel element
US20240272106A1 (en) Hydrogen detection device and control method for hydrogen detection device
WO2023017748A1 (ja) 水素センサ
US20090188316A1 (en) Resistive Hydrogen Sensor
TWI478258B (zh) Insulation film evaluation method and determination circuit
TWI506274B (zh) 氣體感測器
US20190064094A1 (en) Gas sensor and gas sensor package having the same
WO2024009891A1 (ja) 水素検知装置及びその製造方法
JPS61275648A (ja) マイクロガスセンサ
JPS63101740A (ja) 縦型電界効果トランジスタ型ガスセンサ
US20210109056A1 (en) Electrochemical Gas Sensor
JP6134463B2 (ja) ガスセンサ
KR20120023461A (ko) 질소산화물 가스센서
JPWO2023017748A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541408

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280055434.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22855811

Country of ref document: EP

Kind code of ref document: A1