WO2021210453A1 - 水素センサ、水素検知方法および水素検知装置 - Google Patents

水素センサ、水素検知方法および水素検知装置 Download PDF

Info

Publication number
WO2021210453A1
WO2021210453A1 PCT/JP2021/014645 JP2021014645W WO2021210453A1 WO 2021210453 A1 WO2021210453 A1 WO 2021210453A1 JP 2021014645 W JP2021014645 W JP 2021014645W WO 2021210453 A1 WO2021210453 A1 WO 2021210453A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
hydrogen
layer
exposed portion
metal oxide
Prior art date
Application number
PCT/JP2021/014645
Other languages
English (en)
French (fr)
Inventor
本間 運也
幸治 片山
賢 河合
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Priority to JP2022515322A priority Critical patent/JPWO2021210453A1/ja
Priority to CN202180024260.0A priority patent/CN115335689A/zh
Priority to EP21788844.5A priority patent/EP4137806A4/en
Publication of WO2021210453A1 publication Critical patent/WO2021210453A1/ja
Priority to US17/957,686 priority patent/US20230022428A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/128Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2

Definitions

  • This disclosure relates to a hydrogen sensor, a hydrogen detection method, and a hydrogen detection device.
  • Patent Documents 1 and 2 disclose gas sensors that detect gas molecules containing hydrogen atoms.
  • the present disclosure provides a hydrogen sensor, a hydrogen detection method, and a hydrogen detection device having improved detection performance for low-concentration hydrogen.
  • the hydrogen sensor includes a planar first electrode, a planar second electrode formed facing the first electrode and having an exposed portion, the first electrode, and the second electrode.
  • the exposed metal oxide layer sandwiched between two opposing surfaces of the electrodes and whose resistance changes due to hydrogen, the two terminals connected to the second electrode, and the exposure by applying a voltage between the two terminals.
  • Hydrogen by detecting a decrease in the resistance value between the first electrode and the second electrode or by detecting a decrease in the resistance value between the two terminals while a current is flowing through the portion. It is provided with a drive circuit for detecting a gas containing an atom.
  • the hydrogen detection method includes a planar first electrode, a planar second electrode formed facing the first electrode and having an exposed portion, the first electrode, and the first electrode.
  • a metal oxide layer sandwiched between two opposing surfaces of the second electrode and whose resistance is changed by hydrogen, and two terminals connected to the second electrode are provided, and the two terminals are the first.
  • a gas containing a hydrogen atom is detected by detecting a decrease in the resistance value between the first electrode and the second electrode, or by detecting a decrease in the resistance value between the two terminals. ..
  • the hydrogen detection device includes a planar first electrode, a planar second electrode formed facing the first electrode and having an exposed portion, the first electrode, and the first electrode. Applying a voltage between a metal oxide layer sandwiched between two opposing surfaces of the second electrode and whose resistance changes due to hydrogen, two terminals connected to the second electrode, and the two terminals. By detecting a decrease in the resistance value between the first electrode and the second electrode in a state where a current is passed through the exposed portion, or by detecting a decrease in the resistance value between the two terminals.
  • the hydrogen sensor, hydrogen detection method, and hydrogen detection device of the present disclosure can improve the detection performance for low-concentration hydrogen.
  • FIG. 1A is a cross-sectional view showing a configuration example of a hydrogen sensor according to the first embodiment.
  • FIG. 1B is a top view showing a configuration example of the hydrogen sensor according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration example of a hydrogen detection device including a drive circuit and a hydrogen sensor that implement the hydrogen detection method according to the first embodiment.
  • FIG. 3 is a flowchart showing a hydrogen detection method using a hydrogen sensor by a drive circuit according to the first embodiment.
  • FIG. 4 is a diagram showing the experimental results of the hydrogen sensor of the comparative example.
  • FIG. 5 is a diagram showing the experimental results of the hydrogen sensor according to the first embodiment.
  • FIG. 6 is a diagram showing the experimental results of the hydrogen sensor according to the first embodiment.
  • FIG. 7 is a cross-sectional view showing a configuration example of the hydrogen sensor according to the second embodiment.
  • FIG. 8 is a diagram showing the experimental results of the hydrogen sensor of the comparative example.
  • FIG. 9 is a diagram showing the experimental results of the hydrogen sensor according to the second embodiment.
  • FIG. 10 is a cross-sectional view showing a configuration example of the hydrogen sensor according to the third embodiment.
  • FIG. 11 is a diagram showing the experimental results of the hydrogen sensor of the comparative example.
  • FIG. 12 is a diagram showing the experimental results of the hydrogen sensor according to the third embodiment.
  • FIG. 1A is a cross-sectional view showing a configuration example of the hydrogen sensor 1 according to the first embodiment.
  • FIG. 1B is a top view showing a configuration example of the hydrogen sensor 1 according to the first embodiment. Note that FIG. 1A shows a schematic cross section of the IA-IA cutting line of FIG. 1B as viewed in the direction of the arrow.
  • the main parts of the hydrogen sensor 1 are the first electrode 103, the metal oxide layer 104, the second electrode 106 and the first terminal 111, the second terminal 112, and the third terminal 113. including. Further, the main portion of the hydrogen sensor 1 is covered with the insulating film 102, the insulating films 107a to 107c, and the insulating films 109a and 109b. However, these insulating films are provided with an opening 106a, an opening 111a, an opening 112a, and an opening 113a.
  • the first electrode 103 is a planar electrode and has two surfaces. One of the two surfaces of the first electrode 103 (that is, the upper surface of FIG. 1A) is in contact with the metal oxide layer 104, and the other surface (that is, the lower surface of FIG. 1A) is attached to the insulating film 107b and the via 108. Get in touch.
  • the first electrode 103 has a rectangular shape having the same size as the second electrode 106.
  • the first electrode 103 may be made of a material having a lower standard electrode potential than a metal constituting a metal oxide, such as tungsten, nickel, tantalum, titanium, aluminum, tantalum nitride, and titanium nitride.
  • the first electrode 103 of FIG. 1A is formed of, for example, tantalum nitride (TaN) or titanium nitride (TiN) or a laminate thereof.
  • the metal oxide layer 104 is sandwiched between two opposing surfaces of the first electrode 103 and the second electrode 106, is composed of a metal oxide as a gas-sensitive resistance film, and is a gas with which the second electrode 106 is in contact. It has a resistance value that changes reversibly depending on the presence or absence of hydrogen-containing gas inside.
  • the metal oxide layer 104 may have a property that the resistance is changed by hydrogen.
  • the metal oxide layer 104 is composed of an oxygen-deficient metal oxide.
  • the base metal of the metal oxide layer 104 includes tantalum (Ta), hafnium (Hf), titanium (Ti), zirconium (Zr), niobium (Nb), tungsten (W), nickel (Ni), iron (Fe) and the like.
  • At least one of the transition metals of and aluminum (Al) may be selected. Since the transition metal can take a plurality of oxidation states, it is possible to realize different resistance states by a redox reaction.
  • the "oxygen deficiency" of a metal oxide is the amount of oxygen deficiency in the metal oxide with respect to the amount of oxygen in the oxide having a chemical quantitative composition composed of the same elements as the metal oxide. Refers to the ratio.
  • the amount of oxygen deficiency is a value obtained by subtracting the amount of oxygen in the metal oxide from the amount of oxygen in the metal oxide having a chemical quantitative composition.
  • the oxygen deficiency of the metal oxide is the metal oxide with those chemical composition. It is defined based on the one with the highest resistance value. Metal oxides of stoichiometric composition are more stable and have higher resistance values than metal oxides of other compositions.
  • the oxide having a stoichiometric composition according to the above definition is Ta2O5, so that it can be expressed as TaO2.5.
  • the oxygen deficiency of the metal oxide having excess oxygen has a negative value.
  • the degree of oxygen deficiency can take a positive value, 0, or a negative value unless otherwise specified. Oxides with a small degree of oxygen deficiency have a high resistance value because they are closer to oxides with a stoichiometric composition, and oxides with a large degree of oxygen deficiency have a lower resistance value because they are closer to the metals that make up the oxide.
  • the metal oxide layer 104 shown in FIG. 1A has a first layer 104a in contact with the first electrode 103, a second layer 104b in contact with the first layer 104a and the second electrode 106, and an insulation separation layer 104i. ..
  • the oxygen deficiency of the second layer 104b is smaller than that of the first layer 104a.
  • the first layer 104a is TaOX.
  • the second layer 104b is Ta2O5 having a smaller degree of oxygen deficiency than the first layer 104a.
  • the metal oxide layer 104 has an insulating separation layer 104i on the outer periphery of the first electrode 103 in a plan view.
  • plan view means that the hydrogen sensor 1 according to the present invention is viewed from a viewpoint in the stacking direction of FIG. 1A, in other words, any one of a planar first electrode 103, a planar second electrode 106, and the like. It means to see from a viewpoint in the normal direction of the surface, for example, to see the upper surface of the hydrogen sensor 1 shown in FIG. 1B.
  • the resistance value becomes smaller depending on the hydrogen-containing gas in contact with the second electrode 106.
  • hydrogen atoms are dissociated from the hydrogen-containing gas at the second electrode 106.
  • the dissociated hydrogen atoms penetrate into the metal oxide layer 104 and form impurity levels. In particular, it is concentrated in the vicinity of the interface with the second electrode, and the thickness of the second layer 104b is apparently reduced. As a result, the resistance value of the metal oxide layer 104 decreases.
  • the second electrode 106 is a planar electrode having hydrogen dissociation property and has two surfaces. One of the two surfaces of the second electrode 106 (that is, the lower surface of FIG. 1A) is in contact with the metal oxide layer 104, and the other surface (that is, the upper surface of FIG. 1A) is in contact with the metal layer 106s and the outside air. ..
  • the second electrode 106 has an exposed portion 106e exposed to the outside air in the opening 106a.
  • the second electrode 106 is a gas molecule having a hydrogen atom, for example, platinum (Pt), iridium (Ir), palladium (Pd), nickel (Ni), or an alloy containing at least one of these.
  • the second electrode 106 in FIG. 1A is platinum (Pt).
  • Two terminals, that is, the first terminal 111 and the second terminal 112, are connected to the second electrode 106.
  • the first terminal 111 is connected to the second electrode 106 via the via 108.
  • the second terminal 112 is connected to the second electrode 106 via the via 108.
  • the first terminal 111 and the second terminal 112 are connected to an external drive circuit for driving the hydrogen sensor 1 via openings 111a and 112a.
  • the first terminal 111 and the second terminal 112 are arranged at positions sandwiching the exposed portion 106e in the plan view of the second electrode 106.
  • a predetermined voltage is applied between the first terminal 111 and the second terminal 112 to energize the exposed portion 106e of the second electrode 106, that is, to pass a current through the exposed portion 106e. It is considered that the energization of the exposed portion 106e of the second electrode 106 activates the hydrogen dissociation action of the exposed portion 106e.
  • the predetermined voltage may be a voltage having opposite polarities.
  • the hydrogen sensor 1 changes the resistance value between the first terminal 111 and the second terminal 112 when a gas molecule containing a hydrogen atom touches the exposed portion 106e while the exposed portion 106e is energized. By detecting the change in the resistance value by the above-mentioned drive circuit, gas molecules containing hydrogen atoms are detected.
  • the third terminal 113 is connected to the first electrode 103 via the opening 113a, the via 108, the wiring 114, and the via 108.
  • the third terminal 113 is connected to an external drive circuit that drives the hydrogen sensor 1 via the opening 113a.
  • the hydrogen sensor 1 changes the resistance between the first electrode 103 and the second electrode 106 when a gas molecule containing a hydrogen atom touches the exposed portion 106e while the exposed portion 106e is energized.
  • the hydrogen sensor 1 has a resistance value between the first terminal 111 or the second terminal 112 and the third terminal 113 when a gas molecule containing a hydrogen atom touches the exposed portion 106e while the exposed portion 106e is energized.
  • Gas molecules containing hydrogen atoms are also detected by the above-mentioned drive circuit detecting the change in the resistance value.
  • the insulating film 102, the insulating films 107a to 107c, and the insulating films 109a and 109b that cover the main portion of the hydrogen sensor 1 are formed of a silicon oxide film, a silicon nitride film, or the like.
  • a metal layer 106s is formed on the upper surface of the second electrode 106 other than the opening 106a.
  • the metal layer 106s is formed of, for example, TiAlN as an etching stopper for forming the via 108, but it is not essential.
  • the laminated body of the first electrode 103, the metal oxide layer 104, and the second electrode 106 has a configuration that can be used as a storage element of the resistance change memory (ReRAM).
  • ReRAM resistance change memory
  • the resistance change memory of the states that the metal oxide layer 104 can take, two states, a high resistance state and a low resistance state, are used as the digital storage element.
  • the hydrogen sensor 1 of the present disclosure utilizes the high resistance state among the possible states of the metal oxide layer 104.
  • the metal oxide layer 104 is an example of a two-layer structure composed of a first layer 104a made of TaOx and a second layer 104b made of Ta2O5 having a small degree of oxygen deficiency. As shown, a one-layer structure using Ta2O5 or TaOx having a small degree of oxygen deficiency as a material may be used.
  • FIG. 2 is a block diagram showing a configuration example of a hydrogen detection device 2 including a drive circuit 200 and a hydrogen sensor 1 that implement the hydrogen detection method according to the first embodiment.
  • the hydrogen detection device 2 includes a drive circuit 200 and a hydrogen sensor 1.
  • the drive circuit 200 is connected to the hydrogen sensor 1 by at least three wires connected to the first terminal 111, the second terminal 112, and the third terminal 113 of the hydrogen sensor 1.
  • the drive circuit 200 is composed of, for example, a microcomputer having a CPU, a ROM, and a RAM. At least three wires are connected to the port of the microcomputer.
  • FIG. 3 is a flowchart showing a hydrogen detection method using the hydrogen sensor 1 by the drive circuit 200.
  • the drive circuit 200 starts energization between the first terminal 111 and the second terminal 112 (S1). That is, the drive circuit 200 applies a predetermined voltage between the first terminal 111 and the second terminal 112. For example, voltages of opposite polarities + V1 and ⁇ V1 are applied to the first terminal 111 and the second terminal 112.
  • the current that energizes the exposed portion 106e of the second electrode 106 may be, for example, several mA to several tens of mA.
  • the drive circuit 200 measures the resistance value Rh between the first terminal 111 and the second terminal 112 (S2), and further, between the first terminal 111 or the second terminal 112 and the third terminal 113.
  • the resistance value Rv of is measured (S3).
  • the drive circuit 200 determines whether or not the measured resistance value Rh is smaller than the threshold value th1 and determines whether or not the measured resistance value Rv is smaller than the threshold value th2 (S4). As a result of the determination, when it is determined that at least one of the resistance value Rh and the resistance value Rv is small, it is determined that "with hydrogen” (S5), and if not, it is determined as "without hydrogen” (S6).
  • the drive circuit 200 may repeat steps S2 to S6 in a fixed cycle of, for example, several hundred ms to several seconds.
  • FIG. 3 shows an example in which the first terminal 111 and the second terminal 112 are always energized, the energization may be performed only during the processing of steps S2 and S3.
  • step S5 when it is determined that both the resistance value Rh and the resistance value Rv are smaller than the respective threshold values, it may be determined that there is hydrogen.
  • steps S2 and S3 may be omitted, and only one of the resistance value Rh and the resistance value Rv may be used for the determination.
  • FIG. 4 is a diagram showing experimental data of a hydrogen sensor of a comparative example.
  • the hydrogen sensor of the comparative example has a configuration that does not include the second terminal 112 as compared with the hydrogen sensor 1 of the first embodiment, or the hydrogen sensor 1 of the first embodiment has the first terminal 111 and the second terminal 112. It is a short-circuited configuration.
  • the horizontal axis represents time.
  • the vertical axis indicates the current i3 between the third terminal 113 and the first terminal 111, that is, the current i3 flowing between the first electrode 103 and the second electrode 106.
  • a voltage of 1.2 V is usually applied between the third terminal 113 and the first terminal 111, and a voltage of -2.2 V is applied every second for 50 msec.
  • the exposed portion 106e of the second electrode 106 is in contact with a gas containing 0% hydrogen.
  • the exposed portion 106e of the second electrode 106 is in contact with a gas containing 1.2% hydrogen.
  • the exposed portion 106e of the second electrode 106 is in contact with a gas containing 0% hydrogen.
  • the hydrogen sensor of the comparative example had a constant current i3 regardless of the presence or absence of hydrogen, as shown in FIG. That is, the hydrogen sensor of the comparative example did not react with the gas containing 1.2% hydrogen and could not detect hydrogen.
  • FIG. 5 is a diagram showing the experimental results of the hydrogen sensor 1 in the first embodiment.
  • the horizontal axis of FIG. 5 shows the same time axis as that of FIG.
  • the vertical axis indicates the current i3 between the third terminal 113 and the first terminal 111, that is, the current i3 flowing between the first electrode 103 and the second electrode 106.
  • a measurement condition as compared with FIG. 4, it is added that energization is performed between the first terminal 111 and the second terminal 112. That is, in FIG. 5, a current of about 11 mA is passed between the first terminal 111 and the second terminal 112.
  • the current i3 is increased in the section from 300 seconds to 600 seconds of the time as compared with the other sections. That is, in the section from 300 seconds to 600 seconds, the hydrogen atom is dissociated from the gas touching the exposed portion 106e of the second electrode 106, and the dissociated hydrogen atom penetrates into the metal oxide layer 104 and the impurity level. Is formed, and the resistance value of the metal oxide layer 104 is lowered. As a result, the current i3 increases in the section from the time of 300 seconds to 600 seconds. Further, in the section from 600 seconds to 900 seconds, the current i3 in the immediately preceding section is reduced. According to FIG. 5, the current between the first terminal 111 and the third terminal 113 increases or decreases in response to the presence or absence of hydrogen. It can be seen that the hydrogen sensor 1 has improved hydrogen detection performance as compared with the hydrogen sensor of FIG.
  • FIG. 6 is a diagram showing the experimental results of the hydrogen sensor 1 in the first embodiment.
  • the horizontal axis of FIG. 6 shows the same time axis as that of FIG. Unlike FIG. 5, the vertical axis shows the current i1 between the first terminal 111 and the second terminal 112.
  • the measurement conditions are the same as in FIG. However, it is assumed that voltages of opposite polarities such as + 0.1 V and ⁇ 0.1 V are applied to the first terminal 111 and the second terminal 112, and a current of about 11 mA is energized.
  • the value of the energizing current is determined by the resistance value of the second electrode 106.
  • the hydrogen sensor 1 of the first embodiment has a current i1 increased in the section from 300 seconds to 600 seconds of time as compared with the other sections. Further, in the section from the time of 600 seconds to 900 seconds, the current i1 is reduced as compared with the section immediately before. According to FIG. 6, the current between the first terminal 111 and the second terminal 112 increases or decreases in response to the presence or absence of hydrogen.
  • the hydrogen sensor 1 has a planar first electrode 103 and a planar second electrode 106 formed so as to face the first electrode 103 and having an exposed portion 106e.
  • the metal oxide layer 104 which is sandwiched between two opposing surfaces of the first electrode 103 and the second electrode 106 and whose resistance changes due to hydrogen, and the first terminal 111 as two terminals connected to the second electrode 106.
  • the hydrogen detection performance can be improved by energizing.
  • the two terminals that is, the first terminal 111 and the second terminal 112 may be positioned so as to sandwich the exposed portion 106e in the plan view of the planar second electrode.
  • a current can be passed through the exposed portion 106e that comes into contact with the gas, and the hydrogen detection performance can be efficiently improved.
  • the two terminals 111 and 112 may energize the exposed portion 106e by applying a predetermined voltage.
  • voltages having opposite polarities may be applied to the two terminals.
  • the voltage applied to the central portion of the exposed portion 106e can be made substantially 0V, and the hydrogen detection performance can be efficiently improved.
  • the resistance between the first electrode 103 and the second electrode 106 may change when a gas molecule containing a hydrogen atom touches the exposed portion 106e while the exposed portion is energized.
  • hydrogen can be detected as a resistance change between the first electrode 103 and the second electrode 106.
  • the resistance between the two terminals may change when a gas molecule containing a hydrogen atom touches the exposed portion 106e while the exposed portion 106e is energized.
  • hydrogen can be detected as a resistance change between the two terminals of the first terminal 111 and the second terminal 112.
  • the first via which is connected to the main surface of the main surface of the first electrode 103 on the side opposite to the metal oxide layer 104 and overlaps with the exposed portion 106e in the plan view of the planar second electrode 106.
  • a connection terminal that is, a third terminal 113 connected to the first via may be provided.
  • the two terminals are connected to the second electrode 106 via the two second vias connected to the second electrode 106, even if the first via is located in the central portion of the two second vias. good.
  • the main current path between the first electrode 103 and the second electrode 106 is provided. Can be formed in the central portion of the exposed portion 106e. In this way, the hydrogen detection performance can be improved.
  • the metal oxide layer 104 has a first layer 104a in contact with the first electrode, a second layer 104a in contact with the first layer 104a and the second electrode, and oxygen in the second layer.
  • the degree of deficiency may be smaller than that of the first layer 104a.
  • the gas sensitivity of the second layer 104b to the hydrogen atoms dissociated in the second electrode 106 can be further enhanced.
  • the planar first electrode 103, the planar second electrode 106 formed facing the first electrode 103 and having the exposed portion 106e, and the first electrode The metal oxide layer 104, which is sandwiched between two opposing surfaces of 103 and the second electrode 106 and whose resistance changes due to hydrogen, and two terminals connected to the second electrode (that is, the first terminal 111 and the second terminal 112). ), And the two terminals are a hydrogen detection method in a hydrogen sensor connected to the second electrode 106 at a position sandwiching the exposed portion 106e in a plan view of the planar second electrode 106, and the two terminals are provided.
  • a current is passed through the exposed portion by applying a voltage between them to detect a decrease in the resistance value between the first electrode 103 and the second electrode 106, or between the first terminal 111 and the second terminal 112.
  • a gas containing a hydrogen atom is detected by detecting a decrease in the resistance value of.
  • the hydrogen detection performance can be improved by energizing between the two terminals, that is, the first terminal 111 and the second terminal 112.
  • the hydrogen detection device 2 has a planar first electrode 103, a planar second electrode 106 formed facing the first electrode 103 and having an exposed portion 106e, and a first electrode.
  • the metal oxide layer 104 which is sandwiched between the two surfaces of the electrode 103 and the second electrode 106 and whose resistance changes due to hydrogen, and the two terminals connected to the second electrode (that is, the first terminal 111 and the second terminal 112).
  • a drive circuit 200 for detecting a gas containing a hydrogen atom by detecting a decrease in a resistance value between the two terminals is provided.
  • the hydrogen detection performance can be improved by energizing between the two terminals, that is, the first terminal 111 and the second terminal 112.
  • FIG. 7 is a cross-sectional view showing a configuration example of the hydrogen sensor 1 according to the second embodiment.
  • the hydrogen sensor 1 in the figure is different from FIG. 1A in that a local region 105 is added.
  • different points will be mainly described while avoiding duplicate explanations of the same points.
  • the local region 105 is a region that is in contact with the second electrode 106 without being in contact with the first electrode 103 and has a larger degree of oxygen deficiency than the surrounding metal oxide layer 104.
  • the local region 105 refers to a region in which an electric current is more likely to flow than the metal oxide layer 104. That is, the local region 105 is a minute region including a filament (conductive path) composed of oxygen defects. Further, the local region 105 is formed in a substantially central portion of the exposed portion 106e in the plan view of the second electrode 106.
  • the local region 105 or filament is formed by a process called forming. In the forming step, a pulse that causes electrical stress is applied between the second electrode 106 and the first electrode 103.
  • the local region 105 can be formed depending on the magnitude and time of the pulse.
  • the metal oxide layer 104 is an example of a two-layer structure composed of a first layer 104a made of TaOx and a second layer 104b made of Ta2O5 having a small degree of oxygen deficiency. As shown, a one-layer structure using Ta2O5 or TaOx having a small degree of oxygen deficiency as a material may be used.
  • FIG. 8 is a diagram showing experimental data of a hydrogen sensor of a comparative example.
  • the hydrogen sensor of this comparative example has a configuration that does not include the second terminal 112 as compared with the hydrogen sensor 1 of the second embodiment, or the hydrogen sensor 1 of the second embodiment has the first terminal 111 and the second terminal 112. Is short-circuited.
  • the measurement conditions in FIG. 8 are the same as those in FIG.
  • the hydrogen sensor of the comparative example reacts with hydrogen as shown in FIG. 8, but the time increase of the current i3 is gradual.
  • FIG. 9 is a diagram showing the experimental results of the hydrogen sensor 1 in the second embodiment.
  • the measurement conditions in FIG. 9 are the same as those in FIG.
  • the current i3 increased in the section from 300 seconds to 600 seconds of the time as compared with the other sections, and the time increase was steep. That is, in the section from 300 seconds to 600 seconds, hydrogen atoms are dissociated faster from the gas touching the exposed portion 106e of the second electrode 106, and the dissociated hydrogen atoms invade the metal oxide layer 104 and become impurities. By forming the level, the resistance value of the metal oxide layer 104 is lowered. As a result, the current i3 sharply increases in the section from 300 seconds to 600 seconds. Further, in the section from 600 seconds to 900 seconds, the current i3 in the immediately preceding section is reduced. According to FIG. 9, the current between the first terminal 111 and the third terminal 113 increases or decreases in response to the presence or absence of hydrogen. Further, in FIG. 9, the amount of change is larger than that in FIG.
  • the hydrogen sensor 1 according to the second embodiment has a local region inside the metal oxide layer 104 that is in contact with the second electrode 106 and has a larger degree of oxygen deficiency than the metal oxide layer 104. Be prepared.
  • the hydrogen detection performance can be improved, and in addition, the response speed of hydrogen detection can be increased.
  • the hydrogen sensor 1 is provided with a local region inside the metal oxide layer 104, which is in contact with the second electrode 106 and in which a current is more likely to flow than the metal oxide layer 104.
  • FIG. 10 is a cross-sectional view showing a configuration example of the hydrogen sensor 1 according to the third embodiment.
  • the hydrogen sensor 1 in the figure is different from FIG. 1A in that a third layer 104c is added in the metal oxide layer 104.
  • a third layer 104c is added in the metal oxide layer 104.
  • the third layer 104c is in contact with the second layer 104b and the second electrode 106.
  • the oxygen deficiency of the third layer 104c is larger than that of the second layer 104b.
  • the third layer 104c is made of Ta2O5 or TaOx, which has a larger degree of oxygen deficiency than the second layer 104b made of Ta2O5. Further, the oxygen deficiency of the third layer 104c is smaller than that of the first layer 104a.
  • the metal oxide layer 104 has oxygen as compared with the first layer 104a made of TaOx, the second layer 104b made of Ta2O5 having a small degree of oxygen deficiency, and the second layer 104b.
  • An example of a three-layer structure composed of a third layer 104c made of Ta2O5 having a large degree of deficiency has been shown, but it is composed of Ta2O5 having a small degree of oxygen deficiency and Ta2O5 or TaOx having a larger degree of oxygen deficiency. It may have a two-layer structure.
  • FIG. 11 is a diagram showing experimental data of a hydrogen sensor of a comparative example.
  • the hydrogen sensor of this comparative example has a configuration that does not include the second terminal 112 as compared with the hydrogen sensor 1 of the third embodiment, or the hydrogen sensor 1 of the third embodiment has the first terminal 111 and the second terminal 112. Is short-circuited.
  • the measurement conditions in FIG. 11 are the same as those in FIG.
  • the hydrogen sensor of the comparative example had a constant current i3 regardless of the presence or absence of hydrogen as shown in FIG. That is, the hydrogen sensor of the comparative example did not react with the gas containing 1.2% hydrogen and could not detect hydrogen.
  • FIG. 12 is a diagram showing the experimental results of the hydrogen sensor 1 in the third embodiment.
  • the measurement conditions in FIG. 12 are the same as those in FIG.
  • the current i3 is increased in the section from the time of 300 seconds to 600 seconds as compared with the other sections. Further, in the section from 600 seconds to 900 seconds, the current i3 in the immediately preceding section is reduced. According to FIG. 12, the current i3 between the first terminal 111 and the third terminal 113 increases or decreases in response to the presence or absence of hydrogen. Further, in FIG. 12, the response speed of hydrogen detection is faster than that in FIG.
  • the metal oxide layer 104 includes a first layer 104a in contact with the first electrode, a second layer 104b in contact with the first layer 104a, and a second layer 104b. It has a third layer 104c in contact with the layer 104b and the second electrode 106, and the degree of oxygen deficiency of the third layer 104c is larger than that of the second layer 104b.
  • the gas sensitivity of the third layer 104c to the hydrogen atoms dissociated in the second electrode 106 can be further enhanced.
  • the degree of oxygen deficiency of the third layer 104c may be smaller than that of the first layer 104a.
  • the hydrogen detection device and the hydrogen detection method shown in FIGS. 2 and 3 can be similarly implemented using the hydrogen sensors 1 of the second and third embodiments.
  • the second electrode 106 is connected to two terminals, that is, the first terminal 111 and the second terminal 112, but the number of terminals connected to the second electrode 106 is two. It is not limited to, and may be three or more. When the second electrode 106 includes three or more terminals, at least one of the three or more terminals may be equivalent to the first terminal 111, and at least one of the three or more terminals is the second terminal 112. It suffices if they are equivalent.
  • the hydrogen sensor, hydrogen detection method, and hydrogen detection device according to the present disclosure can be widely used, for example, for detecting leakage of hydrogen-containing gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

水素センサ(1)は、面状の第1電極(103)と、第1電極と対向して形成され、露出部分(106e)を有する面状の第2電極(106)と、第1電極(103)および第2電極(106)の2つの面に挟まれ、水素により抵抗が変化する金属酸化物層(104)と、第2電極(106)に接続された2つの第1端子(111)および第2端子(112)とを備える。

Description

水素センサ、水素検知方法および水素検知装置
 本開示は、水素センサ、水素検知方法および水素検知装置に関する。
 特許文献1および2は、水素原子を含む気体分子を検出する気体センサを開示している。
国際公開第2017/037984号 特開2017-22938号公報
 しかしながら、従来技術によれば、特に低濃度の水素に対する検知性能が劣るという問題がある。
 そこで、本開示は、低濃度の水素に対する検知性能を向上させた水素センサ、水素検知方法および水素検知装置を提供する。
 本開示の一態様に係る水素センサは、面状の第1電極と、前記第1電極に対向して形成され、露出部分を有する面状の第2電極と、前記第1電極および前記第2電極の対向する2つの面に挟まれ、水素により抵抗が変化する金属酸化物層と、前記第2電極に接続された2つの端子と、前記2つの端子間に電圧を印加することにより前記露出部分に電流を流した状態で、前記第1電極と前記第2電極との間の抵抗値の低下を検知することにより、または、前記2つの端子間の抵抗値の低下を検知することにより水素原子を含有する気体を検知する駆動回路と、を備える。
 また、本開示の一態様に係る水素検知方法は、面状の第1電極と、前記第1電極に対向して形成され、露出部分を有する面状の第2電極と、前記第1電極および前記第2電極の対向する2つの面に挟まれ、水素により抵抗が変化する金属酸化物層と、前記第2電極に接続された2つの端子と、を備え、前記2つの端子は、前記第2電極の平面視において前記露出部分を挟む位置で前記第2電極に接続される水素センサにおける水素検知方法であって、前記2つの端子間に電圧を印加することにより前記露出部分に電流を流し、前記第1電極と前記第2電極との間の抵抗値の低下を検知することにより、または、前記2つの端子間の抵抗値の低下を検知することにより水素原子を含有する気体を検知する。
 また、本開示の一態様に係る水素検知装置は、面状の第1電極と、前記第1電極に対向して形成され、露出部分を有する面状の第2電極と、前記第1電極および前記第2電極の対向する2つの面に挟まれ、水素により抵抗が変化する金属酸化物層と、前記第2電極に接続された2つの端子と、前記2つの端子間に電圧を印加することにより前記露出部分に電流を流した状態で、前記第1電極と前記第2電極との間の抵抗値の低下を検知することにより、または、前記2つの端子間の抵抗値の低下を検知することにより水素原子を含有する気体を検知する駆動回路と、を備える。
 本開示の水素センサ、水素検知方法および水素検知装置は、低濃度の水素に対する検知性能を向上させることができる。
図1Aは、実施の形態1における水素センサの構成例を示す断面図である。 図1Bは、実施の形態1における水素センサの構成例を示す上面図である。 図2は、実施の形態1における水素検知方法を実施する駆動回路および水素センサを含む水素検知装置の構成例を示すブロック図である。 図3は、実施の形態1における駆動回路による水素センサを用いた水素検知方法を示すフローチャートである。 図4は、比較例の水素センサの実験結果を示す図である。 図5は、実施の形態1における水素センサの実験結果を示す図である。 図6は、実施の形態1における水素センサの実験結果を示す図である。 図7は、実施の形態2における水素センサの構成例を示す断面図である。 図8は、比較例の水素センサの実験結果を示す図である。 図9は、実施の形態2における水素センサの実験結果を示す図である。 図10は、実施の形態3における水素センサの構成例を示す断面図である。 図11は、比較例の水素センサの実験結果を示す図である。 図12は、実施の形態3における水素センサの実験結果を示す図である。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。
 (実施の形態1)
 [1.1 水素センサ1の構成]
 図1Aは、実施形態1に係る水素センサ1の構成例を示す断面図である。図1Bは、実施の形態1における水素センサ1の構成例を示す上面図である。なお、図1Aは、図1BのIA-IA切断線の矢印方向を見た模式的な断面を示す。
 図1Aおよび図1Bに示すように、水素センサ1の主要な部分は、第1電極103、金属酸化物層104、第2電極106および第1端子111、第2端子112、および第3端子113を含む。また、水素センサ1の主要な部分は、絶縁膜102、絶縁膜107a~107c、絶縁膜109a、109bによって覆われている。ただし、これらの絶縁膜には、開口106a、開口111a、開口112a、開口113aが設けられている。
 第1電極103は、面状の電極であり、2つの面を有する。第1電極103の2つの面のうち1つの面(つまり図1Aの上面)は、金属酸化物層104に接し、もう1つの面(つまり図1Aの下面)は、絶縁膜107bおよびビア108に接する。第1電極103は、図1Bでは、第2電極106と同じ大きさの矩形状である。第1電極103は、例えば、タングステン、ニッケル、タンタル、チタン、アルミニウム、窒化タンタル、窒化チタンなど、金属酸化物を構成する金属と比べて標準電極電位が、より低い材料で構成してもよい。標準電極電位は、その値が高いほど酸化しにくい特性を表す。図1Aの第1電極103は、例えば、窒化タンタル(TaN)または窒化チタン(TiN)またはそれらの積層で形成される。
 金属酸化物層104は、第1電極103および第2電極106の対向する2つの面に挟まれ、気体感応性を有する抵抗膜としての金属酸化物で構成され、第2電極106が接触する気体中の水素含有ガスの有無に応じて可逆的に変化する抵抗値を有する。金属酸化物層104は、水素により抵抗が変化する性質を有していればよい。金属酸化物層104は、酸素不足型の金属酸化物から構成される。金属酸化物層104の母体金属は、タンタル(Ta)、ハフニウム(Hf)、チタン(Ti)、ジルコニウム(Zr)、ニオブ(Nb)、タングステン(W)、ニッケル(Ni)、鉄(Fe)等の遷移金属と、アルミニウム(Al)とから少なくとも1つ選択されてもよい。遷移金属は複数の酸化状態をとることができるため、異なる抵抗状態を酸化還元反応により実現することが可能である。ここで、金属酸化物の「酸素不足度」とは、当該金属酸化物と同じ元素から構成される化学量論的組成の酸化物における酸素の量に対する、当該金属酸化物における酸素の不足量の割合をいう。ここで、酸素の不足量とは、化学量論的組成の金属酸化物における酸素の量から当該金属酸化物における酸素の量を引いた値である。もし、当該金属酸化物と同じ元素から構成される化学量論的組成の金属酸化物が複数存在しうる場合、当該金属酸化物の酸素不足度は、それらの化学量論的組成の金属酸化物のうち最も高い抵抗値を有する1つに基づいて定義される。化学量論的組成の金属酸化物は、他の組成の金属酸化物と比べて、より安定でありかつより高い抵抗値を有している。例えば、金属酸化物層104の母体金属がタンタル(Ta)である場合、上述の定義による化学量論的組成の酸化物はTa2O5であるので、TaO2.5と表現できる。TaO2.5の酸素不足度は0%であり、TaO1.5の酸素不足度は(2.5-1.5)/2.5=40%となる。また、酸素過剰の金属酸化物は、酸素不足度が負の値となる。なお、本開示では、特に断りのない限り、酸素不足度は正の値、0、又は負の値をとり得る。酸素不足度の小さい酸化物は化学量論的組成の酸化物により近いため抵抗値が高く、酸素不足度の大きい酸化物は酸化物を構成する金属により近いため抵抗値が低い。
 図1Aに示す金属酸化物層104は、第1電極103に接する第1の層104aと、第1の層104aと第2電極106とに接する第2の層104b、絶縁分離層104iとを有する。第2の層104bの酸素不足度は、第1の層104aに比べて小さい。例えば、第1の層104aは、TaOXである。第2の層104bは、第1の層104aよりも酸素不足度の小さいTa2O5である。また、金属酸化物層104は、第1電極103の平面視における外周に絶縁分離層104iを有する。
 ここで平面視とは、本発明に係る水素センサ1を図1Aの積層方向にある視点から見ること、言い換えれば、面状の第1電極103、面状の第2電極106等の何れかの面の法線方向にある視点から見ることをいい、例えば、図1Bに示す水素センサ1の上面を見た場合をいう。
 このような金属酸化物層104の抵抗状態は、第2電極106に接触した水素含有ガスに応じて、抵抗値が小さくなる。詳しくは、検知対象である気体中に水素含有ガスが存在するとき、第2電極106において、水素含有ガスから水素原子が解離される。解離された水素原子は金属酸化物層104内に侵入し、不純物準位を形成する。特に、第2電極との界面近傍に集中し、見かけ上、第2の層104bの厚さを薄くしている。その結果、金属酸化物層104の抵抗値が低下する。
 第2電極106は、水素解離性を有する面状の電極であり、2つの面を有する。第2電極106の2つの面のうち1つの面(つまり図1Aの下面)は、金属酸化物層104に接し、もう1つの面(つまり図1Aの上面)は、金属層106sおよび外気に接する。第2電極106は、開口106a内に外気に露出された露出部分106eを有する。第2電極106は、例えば、白金(Pt)、イリジウム(Ir)、パラジウム(Pd)、または、ニッケル(Ni)、若しくは、これらのうちの少なくとも1つを含む合金など、水素原子を有する気体分子から水素原子を解離する触媒作用を有する材料で構成される。図1Aの第2電極106は白金(Pt)であるものとする。第2電極106には、2つの端子、すなわち、第1端子111と第2端子112とが接続される。
 第1端子111は、ビア108を介して第2電極106に接続される。
 第2端子112は、ビア108を介して第2電極106に接続される。第1端子111および第2端子112は、開口111a、112aを介して、水素センサ1を駆動する外部の駆動回路に接続される。
 第1端子111と第2端子112とは、図1Bに示すように、第2電極106の平面視において露出部分106eを挟む位置に配置される。この配置により、第1端子111と第2端子112との間に、所定の電圧が印加されることによって、第2電極106の露出部分106eを通電する、つまり、露出部分106eに電流を流す。この第2電極106の露出部分106eの通電は、露出部分106eの水素解離作用を活性化するものと考えられる。なお、所定の電圧は、互いに逆の極性を有する電圧であってもよい。
 水素センサ1は、露出部分106eの通電中に水素原子を含む気体分子が露出部分106eに触れることによって、第1端子111と第2端子112との間の抵抗値を変化させる。この抵抗値の変化を上記の駆動回路が検知することにより、水素原子を含む気体分子を検知する。
 第3端子113は、開口113a、ビア108、配線114およびビア108を介して第1電極103に接続される。第3端子113は、開口113aを介して、水素センサ1を駆動する外部の駆動回路に接続される。水素センサ1は、露出部分106eの通電中に水素原子を含む気体分子が露出部分106eに触れることによって、第1電極103および前記第2電極106間の抵抗を変化させる。言い換えれば、水素センサ1は、露出部分106eの通電中に水素原子を含む気体分子が露出部分106eに触れることによって、第1端子111または第2端子112と第3端子113との間の抵抗値を変化させる。この抵抗値の変化を上記の駆動回路が検知することによっても、水素原子を含む気体分子を検知する。
 なお、水素センサ1の主要な部分を覆う、絶縁膜102、絶縁膜107a~107c、絶縁膜109a、109bは、シリコン酸化膜、シリコン窒化膜等により形成される。
 また、開口106a以外の第2電極106の上面には、金属層106sが形成されている。金属層106sは、例えばTiAlNを材料とし、ビア108形成用のエッチングストッパとて形成されるが、必須ではない。
 また、第1電極103、金属酸化物層104および第2電極106の積層体は、抵抗変化メモリ(ReRAM)の記憶素子として利用可能な構成である。抵抗変化メモリでは、金属酸化物層104が取りうる状態のうち、高抵抗状態と低抵抗状態の2状態を利用してデジタル記憶素子としている。本開示の水素センサ1では、金属酸化物層104の取りうる状態のうち高抵抗状態を利用している。
 なお、図1Aにおいて金属酸化物層104は、TaOxを材料とする第1の層104aと、酸素不足度の小さいTa2O5を材料とする第2の層104bとから構成される2層構成の例を示したが、酸素不足度の小さいTa2O5またはTaOxを材料とする1層構成でもよい。
 [1.2 水素検知方法および水素検知装置]
 次に、水素センサ1を用いた水素検知方法および水素検知装置について説明する。
 図2は、実施の形態1における水素検知方法を実施する駆動回路200および水素センサ1を含む水素検知装置2の構成例を示すブロック図である。図2において、水素検知装置2は、駆動回路200と水素センサ1とを備える。駆動回路200は、水素センサ1の第1端子111、第2端子112、第3端子113に接続される少なくとも3本の配線により水素センサ1に接続される。駆動回路200は、例えばCPU、ROM、RAMを有するマイコンで構成される。少なくとも3本の配線は、マイコンのポートに接続される。
 図3は、駆動回路200による水素センサ1を用いた水素検知方法を示すフローチャートである。同図において、まず、駆動回路200は、第1端子111と第2端子112との間の通電を開始する(S1)。つまり、駆動回路200は、第1端子111と第2端子112間に所定の電圧を印加する。例えば、第1端子111と第2端子112には逆極性の電圧+V1と-V1とが印加される。これにより第2電極106の露出部分106eに通電する電流は、例えば、数mAから数10mAでよい。
 次に、駆動回路200は、第1端子111と第2端子112との間の抵抗値Rhを測定し(S2)、さらに、第1端子111または第2端子112と第3端子113との間の抵抗値Rvを測定する(S3)。さらに、駆動回路200は、測定した抵抗値Rhがしきい値th1より小さいか否かを判定し、また、測定した抵抗値Rvがしきい値th2より小さいが否かを判定する(S4)。判定の結果、抵抗値Rhと抵抗値Rvの少なくとも一方が小さいと判定されたとき、「水素あり」と判定し(S5)、そうでないとき「水素なし」と判定する(S6)。
 駆動回路200は、ステップS2からステップS6を、例えば、数100m秒から数秒の一定周期で繰り返してもよい。
 なお、図3では、第1端子111と第2端子112との間を常時通電する例を示したが、ステップS2およびステップS3の処理中にのみ通電するようにしてもよい。
 また、ステップS5では、抵抗値Rhと抵抗値Rvの両方がそれぞれの閾値よりも小さいと判定されたときに「水素あり」と判定してもよい。
 また、ステップS2とステップS3の一方を省略して、抵抗値Rhと抵抗値Rvのいずれか一方のみ判定に用いてもよい。
 [1.3 実験データ]
 次に、実施の形態1に係る水素センサ1の動作について実験データを用いて説明する。
 図4は、比較例の水素センサの実験データを示す図である。比較例の水素センサは、実施の形態1の水素センサ1と比べて、第2端子112を備えない構成、または、実施の形態1の水素センサ1において第1端子111と第2端子112とを短絡した構成である。図4において横軸は、時間を示す。縦軸は、第3端子113と第1端子111との間の電流i3、つまり、第1電極103と第2電極106との間を流れる電流i3を示す。測定条件は、第3端子113と第1端子111の間に、通常1.2Vの電圧が印加され、1秒毎に50m秒の間-2.2Vの電圧が印加される。また、時刻0秒から300秒までは第2電極106の露出部分106eには水素を0%含む気体が触れている。時刻300秒から600秒までは、第2電極106の露出部分106eには水素を1.2%含む気体が触れている。時刻600秒から900秒までは、第2電極106の露出部分106eには水素を0%含む気体が触れている。
 この測定条件の下で、比較例の水素センサは図4に示すように、水素の有無に関わらず電流i3は一定であった。つまり、比較例の水素センサは、水素を1.2%含む気体に反応せず、水素を検知できなかった。
 図5は、実施の形態1における水素センサ1の実験結果を示す図である。図5の横軸は、図4と同じ時間軸を示す。縦軸は、第3端子113と第1端子111との間の電流i3、つまり、第1電極103と第2電極106との間を流れる電流i3を示す。測定条件は、図4と比べて、第1端子111と第2端子112との間に通電することが追加されている。つまり、図5では、第1端子111と第2端子112との間に約11mAの電流を流している。
 この測定条件の下での実施の形態1の水素センサ1は、時刻300秒から600秒の区間では、他の区間よりも電流i3が増加している。つまり、時刻300秒から600秒の区間では、第2電極106の露出部分106eに触れた気体から水素原子が解離され、解離された水素原子は金属酸化物層104内に侵入し、不純物準位を形成し、金属酸化物層104の抵抗値が低下させる。その結果、時刻300秒から600秒の区間では、電流i3が増加している。さらに、時刻600秒から900秒の区間では、直前の区間の電流i3が減少している。図5によれば、水素の有無に反応して第1端子111と第3端子113の間の電流が増減している。水素センサ1は、図4の水素センサよりも水素検知性能が向上していることがわかる。
 図6は、実施の形態1における水素センサ1の実験結果を示す図である。図6の横軸は、図4と同じ時間軸を示す。縦軸は、図5と異なり、第1端子111と第2端子112との間の電流i1を示す。測定条件は、図5と同じである。ただし、第1端子111と第2端子112とには、例えば、+0.1Vと-0.1V等の逆極性の電圧が印加され、約11mAの電流を通電しているものとする。なお、通電電流の値は、第2電極106の抵抗値により定まる。
 この測定条件の下で、実施の形態1の水素センサ1は、時刻300秒から600秒の区間では、他の区間よりも電流i1が増加している。さらに、時刻600秒から900秒の区間では、直前の区間よりも電流i1が減少している。図6によれば、水素の有無に反応して第1端子111と第2端子112の間の電流が増減している。
 図4と、図5および図6とを比較すると、第1端子111と第2端子112との間を通電することにより、水素検知能力が向上していることがわかる。しかも、露出部分106eに水素が触れることにより、第1端子111と第3端子113との間の抵抗が減少することに加えて、第1端子111と第2端子112との間の抵抗も減少する。言い換えれば、2通りの水素検知が可能である。すなわち、第1端子111と第2端子112との間の抵抗変化による水素検知と、第1端子111と第3端子113との間の抵抗変化による水素検知の2通りである。
 以上説明してきたように、実施の形態1に係る水素センサ1は、面状の第1電極103と、第1電極103に対向して形成され、露出部分106eを有する面状の第2電極106と、第1電極103および第2電極106の対向する2つの面に挟まれ、水素により抵抗が変化する金属酸化物層104と、第2電極106に接続された2つの端子として第1端子111および第2端子112と、を備える。
 これによれば、第2電極106自体を通電するための2つの端子を備えるので、通電により水素検知性能を向上させることができる。
 ここで、2つの端子つまり第1端子111および第2端子112は、面状の第2電極の平面視において露出部分106eを挟む位置にあってもよい。
 これによれば、気体に触れる露出部分106eに電流を流すことができ、効率よく水素検知性能の向上させることができる。
 ここで、2つの端子111、112は、所定の電圧が印加されることによって、露出部分106eを通電してもよい。
 ここで、2つの端子には、所定の電圧として、互いに逆の極性を有する電圧が印加されてもよい。
 これによれば、露出部分106eの中央部分に印加される電圧を実質0Vにすることができ、効率よく水素検知性能の向上させることができる。
 ここで、水素センサ1は、露出部分の通電中に水素原子を含む気体分子が露出部分106eに触れることによって、第1電極103および第2電極106間の抵抗が変化してもよい。
 これによれば、第1電極103および第2電極106間の抵抗変化として水素を検知することができる。
 ここで、水素センサ1は、露出部分106eの通電中に水素原子を含む気体分子が露出部分106eに触れることによって、2つの端子間の抵抗が変化してもよい。
 これによれば、第1端子111と第2端子112の2つの端子間の抵抗変化として水素を検知することができる。
 ここで、第1電極103の主面のうち金属酸化物層104と反対側の主面に接続され、面状の第2電極106の平面視において露出部分106eと重なりをもつ第1ビアと、第1ビアに接続された接続端子(つまり第3端子113)とを備えてもよい。
 ここで、2つの端子は、第2電極106に接続された2つの第2ビアを介して第2電極106に接続され、第1ビアは、2つの第2ビアの中央部分に位置してもよい。
 この構成によれば、通電される露出部分106eの周りにほぼ対称に第1端子111および第2端子112を配置されるので、第1電極103と第2電極106との間の主要な電流経路を露出部分106eの中央部分に形成することができる。こうして、水素検知性能を向上させることができる。
 ここで、金属酸化物層104は、第1電極に接する第1の層104aと、第1の層104aと第2電極とに接する第2の層104bとを有し、第2の層の酸素不足度は、第1の層104aに比べて小さくてもよい。
 これによれば、第2電極106に解離された水素原子に対する、第2の層104bの気体感応性をより高めることができる。
 また、実施の形態1に係る水素検知方法は、面状の第1電極103と、第1電極103に対向して形成され、露出部分106eを有する面状の第2電極106と、第1電極103および第2電極106の対向する2つの面に挟まれ、水素により抵抗が変化する金属酸化物層104と、第2電極に接続された2つの端子(つまり第1端子111と第2端子112)と、を備え、2つの端子は、面状の第2電極106の平面視において露出部分106eを挟む位置で第2電極106に接続される水素センサにおける水素検知方法であって、2つの端子間に電圧を印加することにより露出部分に電流を流し、第1電極103と第2電極106との間の抵抗値の低下を検知する、または、第1端子111と第2端子112との間の抵抗値の低下を検知することにより水素原子を含有する気体を検知する。
 これによれば、2つの端子つまり第1端子111および第2端子112間の通電により水素検知性能を向上させることができる。
 また、実施の形態1に係る水素検知装置2は、面状の第1電極103と、第1電極103に対向して形成され、露出部分106eを有する面状の第2電極106と、第1電極103および第2電極106の2つの面に挟まれ、水素により抵抗が変化する金属酸化物層104と、第2電極に接続された2つの端子(つまり第1端子111および第2端子112)と、2つの端子間に電圧を印加することにより露出部分106eに電流を流した状態で、第1電極103と第2電極106との間の抵抗値の低下を検知することにより、または、2つの端子間の抵抗値の低下を検知することにより水素原子を含有する気体を検知する駆動回路200と、を備える。
 これによれば、2つの端子つまり第1端子111および第2端子112間の通電により水素検知性能を向上させることができる。
 (実施の形態2)
 実施の形態2では、実施の形態1の水素センサ1に対して、さらに、金属酸化物層104の内部にフィラメントと呼ばれる局所領域を有する水素センサ1の構成例について説明する。水素センサ1は、局所領域を備えることにより、水素検知性能をより高め、水素検知の反応速度をより早くすることができる。
 [2.1 水素センサ1の構成]
 図7は、実施の形態2における水素センサ1の構成例を示す断面図である。同図の水素センサ1は、図1Aと比べて、局所領域105が追加されている点が異なる。以下、同じ点の重複説明を避けて、異なる点を中心に説明する。
 局所領域105は、第1電極103と接しないで第2電極106と接し、かつ、その周囲の金属酸化物層104と比べて酸素不足度が大きい領域である。局所領域105は、金属酸化物層104に比べて電流が流れやすい領域をいう。つまり、局所領域105は、酸素欠陥から構成されるフィラメント(導電パス)を含む微小な領域である。また、局所領域105は、第2電極106の平面視において露出部分106eのほぼ中央部分に形成される。局所領域105またはフィラメントは、フォーミングと呼ばれる工程により形成される。フォーミング工程では、第2電極106と第1電極103との間に電気的ストレスとなるパルスが印加される。パルスの大きさおよび時間に依存して局所領域105を形成することができる。
 なお、図7において金属酸化物層104は、TaOxを材料とする第1の層104aと、酸素不足度の小さいTa2O5を材料とする第2の層104bとから構成される2層構成の例を示したが、酸素不足度の小さいTa2O5またはTaOxを材料とする1層構成でもよい。
 [2.2 実験データ]
 次に、実施の形態2に係る水素センサ1の動作について実験データを用いて説明する。
 図8は、比較例の水素センサの実験データを示す図である。この比較例の水素センサは、実施の形態2の水素センサ1と比べて、第2端子112を備えない構成、または、実施の形態2の水素センサ1において第1端子111と第2端子112とを短絡した構成である。図8の測定条件は図4と同じである。
 図4と同じ測定条件の下で、比較例の水素センサは、図8に示すように水素に反応はするものの電流i3の時間的増加は緩やかであった。
 図9は、実施の形態2における水素センサ1の実験結果を示す図である。図9の測定条件は、図5と同じである。
 実施の形態2の水素センサ1では、図9に示すように、時刻300秒から600秒の区間では、他の区間よりも電流i3が増加し、かつ時間的増加は急峻であった。つまり、時刻300秒から600秒の区間では、第2電極106の露出部分106eに触れた気体から水素原子がより速く解離され、解離された水素原子は金属酸化物層104内に侵入し、不純物準位を形成することで、金属酸化物層104の抵抗値を低下させる。その結果、時刻300秒から600秒の区間では、電流i3が急峻に増加している。さらに、時刻600秒から900秒の区間では、直前の区間の電流i3が減少している。図9によれば、水素の有無に反応して第1端子111と第3端子113の間の電流が増減している。また、図9は、図5と比べて、変化量が大きくなっている。
 以上説明してきたように、実施の形態2に係る水素センサ1は、金属酸化物層104の内部に、第2電極106と接しかつ金属酸化物層104に比べて酸素不足度が大きい局所領域を備える。
 これによれば、水素検知性能を向上させることができ、加えて、水素検知の応答速度を速くすることができる。
 また、水素センサ1は、金属酸化物層104の内部に、第2電極106と接しかつ金属酸化物層104に比べて電流が流れやすい局所領域を備える。
 これによっても、水素検知性能を向上させることができ、加えて、水素検知の応答速度を速くすることができる。
 (実施の形態3)
 実施の形態3では、実施の形態1の水素センサ1に対して、さらに、金属酸化物層104が3層構成である構成例について説明する。この構成例では、水素検知性能をより高め、水素検知の反応速度をより早くすることができる。
 [3.1 水素センサ1の構成]
 図10は、実施の形態3における水素センサ1の構成例を示す断面図である。同図の水素センサ1は、図1Aと比べて、金属酸化物層104内に第3の層104cが追加されている点が異なる。以下、同じ点の重複説明を避けて、異なる点を中心に説明する。
 第3の層104cは、第2の層104bと第2電極106とに接する。第3の層104cの酸素不足度は、第2の層104bに比べて大きくなっている。例えば、第3の層104cは、Ta2O5を材料とする第2の層104bよりも、酸素不足度の大きいTa2O5またはTaOxを材料とする。また、第3の層104cの酸素不足度は、第1の層104aより小さい。
 なお、図10において金属酸化物層104は、TaOxを材料とする第1の層104aと、酸素不足度の小さいTa2O5を材料とする第2の層104bと、第2の層104bに比べて酸素不足度が大きいTa2O5を材料とする第3の層104cから構成される3層構成の例を示したが、酸素不足度の小さいTa2O5と、それに比べて酸素不足度が大きいTa2O5またはTaOxから構成される2層構成でもよい。
 [3.2 実験データ]
 次に、実施の形態3に係る水素センサ1の動作について実験データを用いて説明する。
 図11は、比較例の水素センサの実験データを示す図である。この比較例の水素センサは、実施の形態3の水素センサ1と比べて、第2端子112を備えない構成、または、実施の形態3の水素センサ1において第1端子111と第2端子112とを短絡した構成である。図11の測定条件は図4と同じである。
 図4と同じ測定条件の下で、比較例の水素センサは、図11に示すように水素の有無に関わらず電流i3は一定であった。つまり、比較例の水素センサは、水素を1.2%含む気体に反応せず、水素を検知できなかった。
 図12は、実施の形態3における水素センサ1の実験結果を示す図である。図12の測定条件は、図5と同じである。
 実施の形態3の水素センサ1では、図12に示すように、時刻300秒から600秒の区間では、他の区間よりも電流i3が増加している。さらに、時刻600秒から900秒の区間では、直前の区間の電流i3が減少している。図12によれば、水素の有無に反応して第1端子111と第3端子113の間の電流i3が増減している。また、図12は、図5と比べて、水素検知の応答速度が速くなっている。
 以上説明してきたように、実施の形態3に係る、金属酸化物層104は、第1電極に接する第1の層104aと、第1の層104aに接する第2の層104bと、第2の層104bと第2電極106とに接する第3の層104cとを有し、第3の層104cの酸素不足度は、第2の層104bに比べて大きい。
 これによれば、第2電極106に解離された水素原子に対する、第3の層104cの気体感応性をより高めることができる。
 また、第3の層104cの酸素不足度は、第1の層104aに比べて小さくてもよい。
 なお、図2および図3に示した水素検知装置および水素検知方法は、実施の形態2および3の水素センサ1を用いて同様に実施可能であることは言うまでもない。
 なお、各実施の形態において第2電極106は、2つの端子,つまり第1端子111および第2端子112に接続される例を示したが、第2電極106に接続される端子数は2つに限らず、3つ以上でもよい。第2電極106が3つ以上の端子を備える場合は、3つ以上の端子のうちの少なくとも1つが第1端子111と同等でよく、3つ以上の端子のうち少なくとも1つが第2端子112と同等であればよい。
 以上、一つまたは複数の態様に係る水素センサ、水素検知方法および水素検知装置について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
 本開示に係る水素センサ、水素検知方法および水素検知装置は、例えば、水素含有ガスの漏洩の検知に広く利用できる。
1 水素センサ
102 絶縁膜
103 第1電極
104 金属酸化物層
104a 第1の層
104b 第2の層
104c 第3の層
105 局所領域
106 第2電極
106a、111a、112a 開口
106e 露出部分
106s 金属層
107a、107b、107c、109a、109b 絶縁膜
108 ビア
111 第1端子
112 第2端子
113 第3端子(接続端子)
200 駆動回路

Claims (13)

  1.  面状の第1電極と、
     前記第1電極に対向して形成され、露出部分を有する面状の第2電極と、
     前記第1電極および前記第2電極の対向する2つの面に挟まれ、水素により抵抗が変化する金属酸化物層と、
     前記第2電極に接続された2つの端子と、を備える
    水素センサ。
  2.  前記2つの端子は、面状の前記第2電極の平面視において前記露出部分を挟む位置にある
    請求項1に記載の水素センサ。
  3.  前記2つの端子には、所定の電圧として、互いに逆の極性を有する電圧が印加される
    請求項2に記載の水素センサ。
  4.  前記露出部分の通電中に水素原子を含む気体分子が前記露出部分に触れることによって、前記第1電極および前記第2電極間の抵抗が変化する
    請求項2または3に記載の水素センサ。
  5.  前記露出部分の通電中に水素原子を含む気体分子が前記露出部分に触れることによって、前記2つの端子間の抵抗が変化する
    請求項2~4のいずれか1項に記載の水素センサ。
  6.  前記金属酸化物層の内部に、前記第2電極と接しかつ前記金属酸化物層に比べて酸素不足度が大きい局所領域を備える
    請求項1~5のいずれか1項に記載の水素センサ。
  7.  前記金属酸化物層の内部に、前記第2電極と接しかつ前記金属酸化物層に比べて電流が流れやすい局所領域を備える
    請求項1~5のいずれか1項に記載の水素センサ。
  8.  前記第1電極の2つの面のうち前記金属酸化物層と反対側の面に接続され、平面視において前記露出部分と重なりをもつ第1ビアと、
     前記第1ビアに接続された接続端子と、を備える
    請求項1~7のいずれか1項に記載の水素センサ。
  9.  前記2つの端子は、前記第2電極に接続された2つの第2ビアを介して前記第2電極に接続され、
     前記第1ビアは、前記平面視において、2つの前記第2ビアの中央部に位置する
    請求項8に記載の水素センサ。
  10.  前記金属酸化物層は、前記第1電極に接する第1の層と、前記第1の層と前記第2電極とに接する第2の層とを有し、
     前記第2の層の酸素不足度は、前記第1の層に比べて小さい
    請求項1~9のいずれか1項に記載の水素センサ。
  11.  前記金属酸化物層は、前記第1電極に接する第1の層と、前記第1の層に接する第2の層と、前記第2の層と前記第2電極とに接する第3の層とを有し、
     前記第3の層の酸素不足度は、第2の層に比べて大きい
    請求項1~10のいずれか1項に記載の水素センサ。
  12.  面状の第1電極と、前記第1電極に対向して形成され、露出部分を有する面状の第2電極と、前記第1電極および前記第2電極の対向する2つの面に挟まれ、水素により抵抗が変化する金属酸化物層と、前記第2電極に接続された2つの端子と、を備え、前記2つの端子は、面状の前記第2電極の平面視において前記露出部分を挟む位置で前記第2電極に接続される水素センサにおける水素検知方法であって、
     前記2つの端子間に電圧を印加することにより前記露出部分に電流を流し、
     前記第1電極と前記第2電極との間の抵抗値の低下を検知することにより、または、前記2つの端子間の抵抗値の低下を検知することにより水素原子を含有する気体を検知する
    水素検知方法。
  13.  面状の第1電極と、
     前記第1電極に対向して形成され、露出部分を有する面状の第2電極と、
     前記第1電極および前記第2電極の対向する2つの面に挟まれ、水素により抵抗が変化する金属酸化物層と、
     前記第2電極に接続された2つの端子と、
     前記2つの端子間に電圧を印加することにより前記露出部分に電流を流した状態で、前記第1電極と前記第2電極との間の抵抗値の低下を検知することにより、または、前記2つの端子間の抵抗値の低下を検知することにより水素原子を含有する気体を検知する駆動回路と、を備える
    水素検知装置。
PCT/JP2021/014645 2020-04-16 2021-04-06 水素センサ、水素検知方法および水素検知装置 WO2021210453A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022515322A JPWO2021210453A1 (ja) 2020-04-16 2021-04-06
CN202180024260.0A CN115335689A (zh) 2020-04-16 2021-04-06 氢传感器、氢检测方法以及氢检测装置
EP21788844.5A EP4137806A4 (en) 2020-04-16 2021-04-06 HYDROGEN DETECTOR, HYDROGEN DETECTION METHOD, AND HYDROGEN DETECTION DEVICE
US17/957,686 US20230022428A1 (en) 2020-04-16 2022-09-30 Hydrogen sensor, hydrogen detection method, and hydrogen detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020073461 2020-04-16
JP2020-073461 2020-04-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/957,686 Continuation US20230022428A1 (en) 2020-04-16 2022-09-30 Hydrogen sensor, hydrogen detection method, and hydrogen detection device

Publications (1)

Publication Number Publication Date
WO2021210453A1 true WO2021210453A1 (ja) 2021-10-21

Family

ID=78084850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014645 WO2021210453A1 (ja) 2020-04-16 2021-04-06 水素センサ、水素検知方法および水素検知装置

Country Status (5)

Country Link
US (1) US20230022428A1 (ja)
EP (1) EP4137806A4 (ja)
JP (1) JPWO2021210453A1 (ja)
CN (1) CN115335689A (ja)
WO (1) WO2021210453A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017748A1 (ja) * 2021-08-11 2023-02-16 ヌヴォトンテクノロジージャパン株式会社 水素センサ
WO2023047759A1 (ja) * 2021-09-22 2023-03-30 ヌヴォトンテクノロジージャパン株式会社 水素検知装置及び水素検知装置の制御方法
WO2023136083A1 (ja) * 2022-01-17 2023-07-20 ヌヴォトンテクノロジージャパン株式会社 水素検知方法、駆動回路および水素検知装置
WO2024009891A1 (ja) * 2022-07-04 2024-01-11 ヌヴォトンテクノロジージャパン株式会社 水素検知装置及びその製造方法
WO2024053537A1 (ja) * 2022-09-06 2024-03-14 ヌヴォトンテクノロジージャパン株式会社 水素検知素子及びその製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958348A (ja) * 1982-09-29 1984-04-04 Hitachi Ltd 水素ガス検知素子
JPS6040945A (ja) * 1983-08-16 1985-03-04 Hochiki Corp 半導体ガスセンサ
JP2017022938A (ja) 2015-07-14 2017-01-26 キヤノン株式会社 振動型アクチュエータの制御装置及び制御方法
WO2017037984A1 (ja) 2015-08-28 2017-03-09 パナソニックIpマネジメント株式会社 気体センサ、及び燃料電池自動車
JP2017173307A (ja) * 2016-03-18 2017-09-28 パナソニックIpマネジメント株式会社 水素センサ及び燃料電池自動車、並びに水素検出方法。
JP2017181494A (ja) * 2016-03-25 2017-10-05 パナソニックIpマネジメント株式会社 気体センサ、水素検出方法、及び燃料電池自動車
JP2017198660A (ja) * 2016-04-26 2017-11-02 パナソニックIpマネジメント株式会社 気体検出装置及び気体検出方法
JP2017215312A (ja) * 2016-05-25 2017-12-07 パナソニックIpマネジメント株式会社 気体センサ装置、気体センサモジュール、及び気体検知方法
WO2018143016A1 (ja) * 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 気体センサ
WO2019044256A1 (ja) * 2017-09-04 2019-03-07 パナソニックIpマネジメント株式会社 気体センサ、気体検知装置、燃料電池自動車および気体センサの製造方法
WO2020179226A1 (ja) * 2019-03-07 2020-09-10 パナソニックセミコンダクターソリューションズ株式会社 気体センサとその製造方法、および燃料電池自動車
WO2020213223A1 (ja) * 2019-04-16 2020-10-22 パナソニックセミコンダクターソリューションズ株式会社 気体センサの駆動方法及び気体検出装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009054435A1 (de) * 2009-11-25 2011-05-26 Kechter, Andreas, Dipl.-Ing. Heizbarer Gassensor und Verfahren zu dessen Herstellung

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958348A (ja) * 1982-09-29 1984-04-04 Hitachi Ltd 水素ガス検知素子
JPS6040945A (ja) * 1983-08-16 1985-03-04 Hochiki Corp 半導体ガスセンサ
JP2017022938A (ja) 2015-07-14 2017-01-26 キヤノン株式会社 振動型アクチュエータの制御装置及び制御方法
WO2017037984A1 (ja) 2015-08-28 2017-03-09 パナソニックIpマネジメント株式会社 気体センサ、及び燃料電池自動車
JP2017173307A (ja) * 2016-03-18 2017-09-28 パナソニックIpマネジメント株式会社 水素センサ及び燃料電池自動車、並びに水素検出方法。
JP2017181494A (ja) * 2016-03-25 2017-10-05 パナソニックIpマネジメント株式会社 気体センサ、水素検出方法、及び燃料電池自動車
JP2017198660A (ja) * 2016-04-26 2017-11-02 パナソニックIpマネジメント株式会社 気体検出装置及び気体検出方法
JP2017215312A (ja) * 2016-05-25 2017-12-07 パナソニックIpマネジメント株式会社 気体センサ装置、気体センサモジュール、及び気体検知方法
WO2018143016A1 (ja) * 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 気体センサ
WO2019044256A1 (ja) * 2017-09-04 2019-03-07 パナソニックIpマネジメント株式会社 気体センサ、気体検知装置、燃料電池自動車および気体センサの製造方法
WO2020179226A1 (ja) * 2019-03-07 2020-09-10 パナソニックセミコンダクターソリューションズ株式会社 気体センサとその製造方法、および燃料電池自動車
WO2020213223A1 (ja) * 2019-04-16 2020-10-22 パナソニックセミコンダクターソリューションズ株式会社 気体センサの駆動方法及び気体検出装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017748A1 (ja) * 2021-08-11 2023-02-16 ヌヴォトンテクノロジージャパン株式会社 水素センサ
WO2023047759A1 (ja) * 2021-09-22 2023-03-30 ヌヴォトンテクノロジージャパン株式会社 水素検知装置及び水素検知装置の制御方法
WO2023136083A1 (ja) * 2022-01-17 2023-07-20 ヌヴォトンテクノロジージャパン株式会社 水素検知方法、駆動回路および水素検知装置
WO2024009891A1 (ja) * 2022-07-04 2024-01-11 ヌヴォトンテクノロジージャパン株式会社 水素検知装置及びその製造方法
WO2024053537A1 (ja) * 2022-09-06 2024-03-14 ヌヴォトンテクノロジージャパン株式会社 水素検知素子及びその製造方法

Also Published As

Publication number Publication date
CN115335689A (zh) 2022-11-11
EP4137806A4 (en) 2023-10-04
US20230022428A1 (en) 2023-01-26
JPWO2021210453A1 (ja) 2021-10-21
EP4137806A1 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
WO2021210453A1 (ja) 水素センサ、水素検知方法および水素検知装置
CN107315034B (zh) 气体检测装置以及氢检测方法
US10591432B2 (en) Hydrogen detection method using gas sensor having a metal oxide layer
CN107102032B (zh) 气体传感器及氢浓度判定方法
WO2017037984A1 (ja) 気体センサ、及び燃料電池自動車
US11541737B2 (en) Gas detection device, gas detection system, fuel cell vehicle, and gas detection method
CN107315033B (zh) 气体检测装置以及氢检测方法
JP6761764B2 (ja) 水素センサ及び燃料電池自動車、並びに水素検出方法
JP5241962B2 (ja) 不揮発性記憶素子およびその製造方法
US20210389264A1 (en) Gas sensor, method of manufacturing gas sensor, and fuel cell vehicle
JP7027340B2 (ja) 気体センサ、気体検知装置、燃料電池自動車および気体センサの製造方法
WO2020213223A1 (ja) 気体センサの駆動方法及び気体検出装置
US11536677B2 (en) Gas detection device, gas sensor system, fuel cell vehicle, and hydrogen detection method
WO2023047759A1 (ja) 水素検知装置及び水素検知装置の制御方法
WO2024009891A1 (ja) 水素検知装置及びその製造方法
CN113884547A (zh) 气体传感器装置
WO2023017748A1 (ja) 水素センサ
WO2023136083A1 (ja) 水素検知方法、駆動回路および水素検知装置
US12007348B2 (en) Method for driving gas sensor, and gas detection device
JPH04106467A (ja) 電気化学式ガスセンサおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515322

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021788844

Country of ref document: EP

Effective date: 20221116