WO2023015923A1 - 一种基于序列凸规划的电气互联系统最优能流计算方法 - Google Patents
一种基于序列凸规划的电气互联系统最优能流计算方法 Download PDFInfo
- Publication number
- WO2023015923A1 WO2023015923A1 PCT/CN2022/085985 CN2022085985W WO2023015923A1 WO 2023015923 A1 WO2023015923 A1 WO 2023015923A1 CN 2022085985 W CN2022085985 W CN 2022085985W WO 2023015923 A1 WO2023015923 A1 WO 2023015923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- represent
- gas
- convex
- electrical interconnection
- node
- Prior art date
Links
- 238000004364 calculation method Methods 0.000 title abstract description 16
- 239000007789 gas Substances 0.000 claims abstract description 99
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 95
- 239000003345 natural gas Substances 0.000 claims abstract description 48
- 238000005457 optimization Methods 0.000 claims abstract description 12
- 239000000446 fuel Substances 0.000 claims abstract description 6
- 230000005540 biological transmission Effects 0.000 claims description 22
- 239000011159 matrix material Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 15
- 230000006835 compression Effects 0.000 claims description 9
- 238000007906 compression Methods 0.000 claims description 9
- 238000010248 power generation Methods 0.000 claims description 3
- 238000011161 development Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 101001062093 Homo sapiens RNA-binding protein 15 Proteins 0.000 description 1
- 102100029244 RNA-binding protein 15 Human genes 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/04—Constraint-based CAD
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/14—Pipes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
Definitions
- the invention belongs to the technical field of optimal energy flow of electrical interconnection systems, and in particular relates to a calculation method for optimal energy flow of electrical interconnection systems based on sequential convex programming.
- the multi-energy interconnected integrated energy system breaks the operational barriers of traditional energy systems, realizes the mutual coupling, substitution and supplementation of multi-energy forms, and promotes the diversified utilization of energy.
- the calculation of the optimal energy flow of the electrical interconnection system is one of the important theoretical foundations for studying the planning and operation of the system.
- the non-convex constraint in the optimal energy flow model of electrical interconnection system is the biggest difficulty in solving this problem.
- the traditional optimal energy flow calculation method based on convex relaxation strategy has a high calculation speed, it often cannot meet the calculation accuracy requirements, and the obtained solution cannot guarantee its feasibility requirements for non-convex constraints. Therefore, proposing an algorithm that can efficiently solve the non-convex optimization problem of optimal energy flow in electrical interconnection systems is crucial for the development of this system.
- the purpose of the present invention is to provide a method for calculating the optimal energy flow of an electrical interconnection system based on sequential convex programming.
- the present invention is a method for calculating the optimal energy flow of an electrical interconnection system based on sequential convex programming, including the following steps:
- the convex relaxation form of the quadratic constraints of the optimal energy flow model is constructed, and the first-order Taylor expansion of the convex function is performed at the relaxed solution to form an expansion;
- the expansion is iterated into the solution model of the electrical interconnection integrated energy system until the unbalance is not greater than the threshold, and the relaxation solution in the model is obtained.
- solution model for the expansion iteration into the electrical interconnection comprehensive energy system includes:
- the imbalance is greater than the accuracy requirement threshold of the non-convex constraint, the first-order Taylor expansion of the convex function at the relaxed solution is brought into the model as a penalty item, and the model relaxation solution with the penalty item is recalculated;
- the optimal energy flow model is constructed in the electrical interconnection integrated energy system according to the fuel cost of each fire point unit node and the gas supply cost of the natural gas source node
- the constraints in the electrical interconnection integrated energy system include the power flow constraints of the power system, the gas flow constraints and: the power flow models of the power system and the gas system are both quadratic nonlinear models.
- the sets ⁇ c and ⁇ s represent the thermal power unit node and the natural gas source node set respectively; the variable Indicates the active power of the thermal power unit, the variable Indicates the gas supply rate of the natural gas source; parameter and respectively represent the coefficients of the quadratic term, the first term and the zero term of the fuel cost of the thermal power unit, Indicates the gas supply cost coefficient of the natural gas source.
- linear part of the gas system power flow constraint is as follows:
- the sets ⁇ b , ⁇ l and ⁇ g respectively represent the sets of power grid nodes, transmission lines and gas generator nodes, and the sets ⁇ i and ⁇ i represent the sets of transmission lines with node i as the head node and terminal node respectively;
- the variable p ij , p ji and p ik represent active power flowing on lines ij, ji and ik, q ij , q ji and q ik represent reactive power flowing on lines ij, ji and ik, l ij and l ji represent line
- the square of the current flowing through ij and ji and Respectively represent the active and reactive power output by the thermal power unit, and respectively represent the active and reactive power output by the gas generator,
- v i and v j represent the squares of the voltage amplitudes of nodes i and j;
- parameters R ij and R ji represent the resistances on lines
- linear part of the power flow constraint of the gas system is as follows;
- the sets ⁇ n , ⁇ p , and ⁇ k represent the sets of gas nodes, gas pipelines, and natural gas compressors, respectively;
- the collection of natural gas compressors with node m as the intake node; e lm and e mn represent the gas volume flowing on natural gas compressors im and mn, ⁇ i m and ⁇ mn represent the gas consumption of natural gas compressors im and mn respectively amount, f mn represents the amount of gas flowing through the gas pipeline mn, Indicates the amount of natural gas injected into node m by the natural gas source per unit time, Indicates the gas consumption of the gas generator connected to node m per unit time, ⁇ m and ⁇ n represent the squares of the gas pressure values of nodes m and n respectively;
- W mn represents the Weymouth coefficient of the gas pipeline mn
- K mn represents the proportional coefficient of the gas compression
- the matrices Q, c, and d respectively represent the quadratic term coefficient, the first term coefficient and the constant term matrix in the objective function, the matrix A represents the coefficient matrix in the linear constraint, and b represents the constant term coefficient matrix in the linear constraint.
- the first-order Taylor expansion is:
- the existing research on the calculation method of optimal energy flow in electrical interconnection system lacks effective methods for dealing with non-convex constraints.
- Traditional convex relaxation techniques are usually difficult to guarantee the compactness of the relaxation, which leads to infeasible solutions.
- the invention adopts the solving idea of sequential convex programming, and adds the unbalance amount of the non-convex constraint into the optimization target as a penalty factor, so as to ensure the feasibility and compactness of the solution.
- the power flow calculation method based on sequential convex programming proposed by the present invention solves the convex optimization problem in each iteration, so while ensuring the feasibility of the solution, it also takes into account the efficiency of the solution.
- Fig. 1 is the solution flowchart of calculating the model relaxation solution
- the present invention is a method for calculating the optimal energy flow of an electrical interconnection system based on sequential convex programming, which is realized through the following steps:
- Step 1 construct the convex optimization part of the optimal power flow model of the electrical interconnection system:
- Step 101 the objective function is:
- the sets ⁇ c and ⁇ s represent the thermal power unit node and the natural gas source node set respectively; the variable Indicates the active power of the thermal power unit, the variable Indicates the gas supply rate of the natural gas source; parameter and respectively represent the coefficients of the quadratic term, the first term and the zero term of the fuel cost of the thermal power unit, Indicates the gas supply cost coefficient of the natural gas source.
- Step 102 the linear part of the power system power flow constraint is as follows:
- the sets ⁇ b , ⁇ l and ⁇ g respectively represent the sets of power grid nodes, transmission lines and gas generator nodes, and the sets ⁇ i and ⁇ i represent the sets of transmission lines with node i as the head node and terminal node respectively;
- the variable p ij , p ji and p ik represent active power flowing on lines ij, ji and ik, q ij , q ji and q ik represent reactive power flowing on lines ij, ji and ik, l ij and l ji represent line
- the square of the current flowing through ij and ji and Respectively represent the active and reactive power output by the thermal power unit, and respectively represent the active and reactive power output by the gas generator,
- v i and v j represent the squares of the voltage amplitudes of nodes i and j;
- parameters R ij and R ji represent the resistances on lines
- Step 103 the linear part of the gas system power flow constraint is as follows:
- the sets ⁇ n , ⁇ p , and ⁇ k represent the sets of gas nodes, gas pipelines, and natural gas compressors, respectively;
- the collection of natural gas compressors with node m as the intake node; e lm and e mn represent the gas volume flowing on natural gas compressors im and mn, ⁇ i m and ⁇ mn represent the gas consumption of natural gas compressors im and mn respectively amount, f mn represents the amount of gas flowing through the gas pipeline mn, Indicates the amount of natural gas injected into node m by the natural gas source per unit time, Indicates the gas consumption of the gas generator connected to node m per unit time, ⁇ m and ⁇ n represent the squares of the gas pressure values of nodes m and n respectively;
- W mn represents the Weymouth coefficient of the gas pipeline mn
- K mn represents the proportional coefficient of the gas compression
- Step 104 express the above model in matrix form as follows.
- the matrices Q, c, and d respectively represent the quadratic term coefficient, the first term coefficient and the constant term matrix in the objective function, the matrix A represents the coefficient matrix in the linear constraint, and b represents the constant term coefficient matrix in the linear constraint.
- Step 2 Construct the convex relaxation form of the quadratic constraint of the optimal energy flow model and its first-order Taylor expansion
- the accuracy requirement threshold of the non-convex constraint is given, and then the set threshold and the unbalance of the non-convex constraint in the expansion are compared to determine whether to solve the model;
- the expansion is iterated into the solution model of the electrical interconnection integrated energy system until the unbalance is not greater than the threshold, and the relaxation solution in the model is obtained.
- the unbalanced quantity mentioned above the above approximate solution may not satisfy the original quadratic constraints, and the shortest distance between the above approximate solution and the feasible region is the unbalanced quantity.
- the solution model that incorporates the expansion iteration into the electrical interconnection comprehensive energy system includes:
- the imbalance is greater than the accuracy requirement threshold of the non-convex constraint, the first-order Taylor expansion of the convex function at the relaxed solution is brought into the model as a penalty item, and the model relaxation solution with the penalty item is recalculated;
- Step 201 the convex relaxation form of the quadratic constraint of the electrical interconnection integrated energy system is:
- Step 202 the first-order Taylor expansion of the above constraint is:
- Step 3 using sequential convex programming strategy to iteratively solve the optimal energy flow model:
- Step 302 solving the model.
- Step 303 judging whether the imbalance of the non-convex constraint is satisfied
- step 304 is performed;
- Step 304 solving the model
- Step 305 judging whether the imbalance of the non-convex constraint is satisfied
- the optimal energy flow calculation of a single time section is carried out, the time scale is set to 1 hour, and the threshold of non-convex constraint unbalance is set to 0.1%.
- the main technical indicators of the algorithm are shown in Table 10.
- the results show that the optimal energy flow calculation method of the electrical interconnection system based on sequential convex programming proposed by the present invention can effectively obtain the objective function value of the problem.
- the calculation time is only 0.194 seconds, taking into account the feasibility and efficiency of the optimal energy flow algorithm.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Power Engineering (AREA)
- Economics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Human Resources & Organizations (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明公开了一种基于序列凸规划的电气互联系统最优能流计算方法,涉及电气互联综合能源系统最优能技术领域。本发明包括构建最优能流模型的二次约束的凸松弛形式前,于电气互联综合能源系统中根据每一火点机组节点的燃料成本、天然气源节点供气成本构建最优能流模型的凸优化部分,在电气互联综合能源系统中构建最优能流模型的二次约束的凸松弛形式,并将凸函数在松弛解处进行一阶泰勒展开形成展开式;给定非凸约束的精度要求阈值,比较阈值和展开式中非凸约束的不平衡量大小;若不平衡量大于阈值,则将展开式迭代入电气互联综合能源系统的求解模型中,直至不平衡量不大于阈值,求出模型中的松弛解。
Description
本发明属于电气互联系统最优能流技术领域,特别是涉及一种基于序列凸规划的电气互联系统最优能流计算方法。
随着能源革命的快速发展,电力系统与天然气系统耦合构建的综合能源系统已经成为我国能源结构优化的重要发展方向。多能互联综合能源系统打破了传统能源系统的运行壁垒,实现了多能源形式的相互耦合、替代及补充,促进了能源的多元化利用。其中,电气互联系统最优能流计算是研究该系统规划与运行的重要理论基础之一。
目前,电气互联系统最优能流模型中的非凸约束是求解该问题的最大难点。传统基于凸松弛策略的最优能流计算方法虽然具有较高的计算速度,但是往往无法满足计算精度的要求,并且所得到的解无法保证其针对非凸约束的可行性要求。因此,提出一种能够高效求解电气互联系统最优能流这一非凸优化问题的算法对于该系统的发展至关重要。
发明内容
本发明的目的在于提供一种基于序列凸规划的电气互联系统最优能流计算方法,通过将非凸约束的不平衡量作为惩罚因子加入优化目标中,保证了解的可行性和紧致性,保证针对非凸约束的可行性。
为解决上述技术问题,本发明是通过以下技术方案实现的:
本发明为一种基于序列凸规划的电气互联系统最优能流计算方法,包括包括如下步骤:
在电气互联综合能源系统中构建最优能流模型的二次约束的凸松弛形式,并将凸函数在松弛解处进行一阶泰勒展开形成展开式;
给定非凸约束的精度要求阈值,比较阈值和展开式中非凸约束的不平衡量大小;
若不平衡量大于阈值,则将展开式迭代入电气互联综合能源系统的求解模型中,直至不平衡量不大于阈值,求出模型中的松弛解。
进一步地,将展开式迭代入电气互联综合能源系统的求解模型包括:
给定非凸约束的精度要求阈值,二次约束的凸松弛式的作差得到的不平衡量和阈值比较:
若不平衡量不大于设定非凸约束的精度要求阈值,根据能流模型进行求解;
若不平衡量大于设定非凸约束的精度要求阈值,将凸函数在松弛解处的一阶泰勒展开式作为惩罚项带入模型,重新计算具有惩罚项的模型松弛解;
在计算具有惩罚项的模型松弛解之前,判断加入惩罚项的松弛式的答展开式不平衡量和阈值比较,若不平衡量大于设定非凸约束的精度要求阈值,迭代惩罚项直至不平衡量不大于设定非凸约束的精度要求阈值。
进一步地,在构建最优能流模型的二次约束的凸松弛形式前,于电气互联综合能源系统中根据每一火点机组节点的燃料成本、天然气源节点供气成本构建最优能流模型的凸优化部分;
其中,电气互联综合能源系统中的约束包括电力系统潮流约束、燃气系统潮流约束和:电力系统和燃气系统的潮流模型均为二次非线性模型都模型。
进一步地,构建电气互联系统最优能流模型的凸优化部分的目标函数:
其中,集合Ω
c和Ω
s分别表示火电机组节点和天然气源节点集;变量
表示火电机组的有功功率,变量
表示天然气源的供气速率;参数
和
分别表示火电机组燃料成本的二次项、一次项、零次项系数,
表示天然气气源的供气成本系数。
进一步地,燃气系统潮流约束的线性部分如下:
其中,集合Ω
b、Ω
l和Ω
g分别表示电网节点、输电线路和燃气发电机节点的集合,集合α
i和β
i分别表示以节点i为首端节点和末端节点的输电线路的集合;变量p
ij、p
ji和p
ik表示线路ij、ji和ik上流过的有功功率,q
ij、q
ji和q
ik表示线路ij、ji和ik上流过的无功功率,l
ij和l
ji表示线路ij和ji上流过的电流的平方,
和
分别表示火电机组输出的有功和无功功率,
和
分别表示燃气发电机输出的有功和无功功率,v
i和v
j表示节点i和节点j的电压幅值的平方;参数R
ij和R
ji分别表示线路ij和ji上的电阻,X
ij 和X
ji分别表示线路ij和ji上的电抗,
和
分别表示节点i的有功和无功负荷,V
i
min和V
i
max分别表示节点i的电压幅值的下限和上限,
和
分别表示火电机组i输出的有功功率的下限和上限,
和
分别表示火电机组i输出的无功功率的下限和上限,
和
分别表示燃气发电机i输出的有功功率的下限和上限,
和
分别表示燃气发电机i输出的无功功率的下限和上限,
和
分别表示输电线路ij上有功功率的传输下限和上限,
和
分别表示输电线路ij上无功功率的传输下限和上限,
表示线路ij的热稳定电流值。
进一步地,燃气系统潮流约束的线性部分如下;
其中,集合Ω
n、Ω
p和Ω
k分别表示燃气节点、燃气管道和天然气压缩机的集合,δ
m和γ
m分别表示以节点m为首端节点和末端节点的燃气管道的集合,Ξ
m表示以节点m为进气节点的天然气压缩机的集合;e
lm和e
mn表示天然气压缩机im和mn上流过的燃气量,τ
i
m和τ
mn分别表示天然气压缩机im和mn消耗的燃气的量,f
mn表示燃气管道mn上流过的燃气的量,
表示单位 时间内天然气气源注入节点m的天然气量,
表示单位时间内与节点m相连的燃气发电机的耗气量,π
m和π
n分别表示节点m和n的燃气压力值的平方;参数
表示节点m的燃气负荷,W
mn表示输气管道mn的Weymouth系数,K
mn表示单位时间天然气压缩机燃气压缩量与压缩机耗气量的比例系数,
和
分别表示天然气压缩机的压缩比的下限和上限,T
m表示燃气发电机的燃气消耗量与发电量的比例系数,
和
分别表示节点气压的下限和上限,
和
分别表示单位时间内燃气管道mn的输气量的下限和上限,
表示天然气压缩机的压缩速率的上限,
表示燃气发电机耗气速率的上限,
和
表示天然气气源单位时间内供气量的下限和上限。
进一步地,矩阵形式表示上述模型:
min x
TQx+cx+d
s.t. Ax≤b
其中,矩阵Q、c、d分别表示目标函数中的的二次项系数、一次项系数和常数项矩阵,矩阵A表示线性约束中的系数矩阵,b表示线性约束中的常数项系数矩阵。
进一步地,电气互联综合能源系统的二次约束的凸松弛形式为:
一阶泰勒展开式为:
其中,
和
分别表示对应变量的给定值,即上一次迭代中优化得到的线路有功功率、线路无功功率、线路电流的平方、节点电压的平方、管道天然气流量的值;变量
和
分别表示对应线路ij和输气管道mn的非凸约束的不平衡量。
本发明具有以下有益效果:
现有针对电气互联系统最优能流计算方法的研究缺乏对于其中非凸约束的有效处理手段。传统的凸松弛技术通常难以保证松弛的紧致性,进而导致得到不可行解。本发明采用序列凸规划的求解思路,将非凸约束的不平衡量作为惩罚因子加入优化目标中,保证了解的可行性和紧致性。
2、现有针对电气互联系统最优能流计算方法的研究如需保证解的可行性,往往需要采用较为复杂的全局优化算法进行求解,导致求解效率较低,无法适用于超大规模能源系统的潮流计算。本发明提出的基于序列凸规划的潮流计算方法在每次迭代中均基于凸优化问题进行求解,因此在保证解的可行性的基础上,兼顾了求解的高效性。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为计算模型松弛解的求解流程图;
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1所示,本发明为一种基于序列凸规划的电气互联系统最优能流计算方法,是通过一下步骤实现的:
步骤1,构建电气互联系统最优能流模型的凸优化部分:
步骤101,目标函数为:
其中,集合Ω
c和Ω
s分别表示火电机组节点和天然气源节点集;变量
表示火电机组的有功功率,变量
表示天然气源的供气速率;参数
和
分别表示火电机组燃料成本的二次项、一次项、零次项系数,
表示天然气气源的供气成本系数。
步骤102,电力系统潮流约束的线性部分如下:
其中,集合Ω
b、Ω
l和Ω
g分别表示电网节点、输电线路和燃气发电机节点的集合,集合α
i和β
i分别表示以节点i为首端节点和末端节点的输电线路的集合;变量p
ij、p
ji和p
ik表示线路ij、ji和ik上流过的有功功率,q
ij、q
ji和q
ik表示线路ij、ji和ik上流过的无功功率,l
ij和l
ji表示线路ij和ji上流过的电流的平方,
和
分别表示火电机组输出的有功和无功功率,
和
分别表示燃气发电机输出的有功和无功功率,v
i和v
j表示节点i和节点j的电压幅值的平方;参数R
ij和R
ji分别表示线路ij和ji上的电阻,X
ij和X
ji分别表示线路ij和ji上的电抗,
和
分别表示节点i的有功和无功负荷,V
i
min和V
i
max分别表示节点i的电压幅值的下限和上限,
和
分别表示火电机组i输出的有功功率的下限和上限,
和
分别表示火电机组i输出的无功功率的下限和上限,
和
分别表示燃气发电机i输出的有功功率的下限和上限,
和
分别表示燃气发电机i输出的无功功率的下限和上限,
和
分别表示输电线路ij上有功功率的传输下限和上限,
和
分别表示输电线路ij上无功功率的传输下限和上限,
表示线路ij的热稳定电流值。
步骤103,燃气系统潮流约束的线性部分如下:
其中,集合Ω
n、Ω
p和Ω
k分别表示燃气节点、燃气管道和天然气压缩机的集合,δ
m和γ
m分别表示以节点m为首端节点和末端节点的燃气管道的集合,Ξ
m表示以节点m为进气节点的天然气压缩机的集合;e
lm和e
mn表示天然气压缩机im和mn上流过的燃气量,τ
i
m和τ
mn分别表示天然气压缩机im和mn消耗的燃气的量,f
mn表示燃气管道mn上流过的燃气的量,
表示单位时间内天然气气源注入节点m的天然气量,
表示单位时间内与节点m相连的燃气发电机的耗气量,π
m和π
n分别表示节点m和n的燃气压力值的平方;参数
表示节点m的燃气负荷,W
mn表示输气管道mn的Weymouth系数,K
mn表示单位时间天然气压缩机燃气压缩量与压缩机耗气量的比例系数,
和
分别表示天然气压缩机的压缩比的下限和上限,T
m表示燃气发电机的燃气消耗量与发电量的比例系数,
和
分别表示节点气压的下限和上限,
和
分别表示单位时间内燃气管道mn的输气量的下限和上限,
表示天然气压缩机的压缩速率的上限,
表示燃气发电机耗气速率的上限,
和
表示天然气气源单位时间内供气量的下限和上限。
步骤104,以矩阵形式表示上述模型如下所示。
min x
TQx+cx+d
s.t. Ax≤b
其中,矩阵Q、c、d分别表示目标函数中的的二次项系数、一次项系数和常数项矩阵,矩阵A表示线性约束中的系数矩阵,b表示线性约束中的常数项系数矩阵。
步骤2,构建最优能流模型二次约束的凸松弛形式及其一阶泰勒展开式
具体的:在电气互联综合能源系统中构建最优能流模型的二次约束的凸松弛形式,并将凸函数在松弛解处进行一阶泰勒展开形成展开式,以下所记载的展开式均为泰勒展开式;即,最优能流模型基于一阶泰勒展开来构建线性约束,而非二次约束,此时模型的解为近似解。
给定非凸约束的精度要求阈值,让后将所设定的阈值和展开式中非凸约束的不平衡量大小,根据比较确定是否进行求解模型;
若不平衡量大于阈值,则将展开式迭代入电气互联综合能源系统的求解模型中,直至不平衡量不大于阈值,求出模型中的松弛解。
其中上述中所说的不平衡量,上述近似解可能并不满足原始二次约束,上述近似解与可行域的最短距离为不平衡量。
具体的,将展开式迭代入电气互联综合能源系统的求解模型包括:
给定非凸约束的精度要求阈值,二次约束的凸松弛式的作差得到的不平衡量和阈值比较:
若不平衡量不大于设定非凸约束的精度要求阈值,根据能流模型进行求解;
若不平衡量大于设定非凸约束的精度要求阈值,将凸函数在松弛解处的一阶泰勒展开式作为惩罚项带入模型,重新计算具有惩罚项的模型松弛解;
在计算具有惩罚项的模型松弛解之前,判断加入惩罚项的松弛式的答展开式不平衡量和阈值比较,若不平衡量大于设定非凸约束的精度要求阈值,迭代惩罚项直至不平衡量不大于设定非凸约束的精度要求阈值。
在实际的运算过程中:
步骤201,电气互联综合能源系统的二次约束的凸松弛形式为:
步骤202,上述约束的一阶泰勒展开式为:
其中,
和
分别表示对应变量的给定值,即上一次迭代中优化得到的线路有功功率、线路无功功率、线路电流的平方、节点电压的平方、管道天然气流量的值;通过变量
和
对应线路ij和输气管道mn的非凸约束的不平衡量。
步骤3,采用序列凸规划策略对最优能流模型进行迭代求解:
步骤301,设置非凸约束的精度要求阈值ε,计数器k=0。
步骤302,求解模型。
min x
TQx+cx+d
s.t. Ax≤b
步骤303,判断非凸约束的不平衡量是否满足
如果满足精度要求,输出计算结果;否则,执行步骤304;
步骤304,求解模型
s.t. Ax≤b
步骤305,判断非凸约束的不平衡量是否满足
下面以一测试电气互联综合能源系统为例,其系统参数表1至表9所示。
表1 电力系统节点参数
表2 燃气系统节点参数
序号 | 燃气负荷(1000m3/h) | 压强下限(bar) | 压强上限(bar) | 甩负荷成本($/1000m3) |
0 | 0 | 40 | 70 | 1000 |
1 | 0 | 40 | 70 | 1000 |
2 | 0 | 40 | 70 | 1000 |
3 | 100 | 40 | 70 | 1000 |
4 | 120 | 40 | 60 | 1000 |
5 | 80 | 40 | 60 | 1000 |
6 | 0 | 40 | 70 | 1000 |
7 | 0 | 40 | 70 | 1000 |
8 | 0 | 40 | 70 | 1000 |
9 | 0 | 40 | 70 | 1000 |
10 | 0 | 40 | 70 | 1000 |
表3 电力系统线路参数
序号 | 首节点 | 末节点 | 电阻(p.u.) | 电抗(p.u.) | 电纳(p.u.) | 传输功率(MVA) |
0 | 0 | 1 | 0.0035 | 0.0411 | 0.6987 | 600 |
1 | 0 | 38 | 0.001 | 0.025 | 0.75 | 1000 |
2 | 1 | 2 | 0.0013 | 0.0151 | 0.2572 | 500 |
3 | 1 | 24 | 0.007 | 0.0086 | 0.146 | 500 |
4 | 1 | 29 | 0 | 0.0181 | 0 | 900 |
5 | 2 | 3 | 0.0013 | 0.0213 | 0.2214 | 500 |
6 | 2 | 17 | 0.0011 | 0.0133 | 0.2138 | 500 |
7 | 3 | 4 | 0.0008 | 0.0128 | 0.1342 | 600 |
8 | 3 | 13 | 0.0008 | 0.0129 | 0.1382 | 500 |
9 | 4 | 5 | 0.0002 | 0.0026 | 0.0434 | 1200 |
10 | 4 | 7 | 0.0008 | 0.0112 | 0.1476 | 900 |
11 | 5 | 6 | 0.0006 | 0.0092 | 0.113 | 900 |
12 | 5 | 10 | 0.0007 | 0.0082 | 0.1389 | 480 |
13 | 5 | 30 | 0 | 0.025 | 0 | 1800 |
14 | 6 | 7 | 0.0004 | 0.0046 | 0.078 | 900 |
15 | 7 | 8 | 0.0023 | 0.0363 | 0.3804 | 900 |
16 | 8 | 38 | 0.001 | 0.025 | 1.2 | 900 |
17 | 9 | 10 | 0.0004 | 0.0043 | 0.0729 | 600 |
18 | 9 | 12 | 0.0004 | 0.0043 | 0.0729 | 600 |
19 | 9 | 31 | 0 | 0.02 | 0 | 900 |
20 | 11 | 10 | 0.0016 | 0.0435 | 0 | 500 |
21 | 11 | 12 | 0.0016 | 0.0435 | 0 | 500 |
22 | 12 | 13 | 0.0009 | 0.0101 | 0.1723 | 600 |
23 | 13 | 14 | 0.0018 | 0.0217 | 0.366 | 600 |
24 | 14 | 15 | 0.0009 | 0.0094 | 0.171 | 600 |
25 | 15 | 16 | 0.0007 | 0.0089 | 0.1342 | 600 |
26 | 15 | 18 | 0.0016 | 0.0195 | 0.304 | 600 |
27 | 15 | 20 | 0.0008 | 0.0135 | 0.2548 | 600 |
28 | 15 | 23 | 0.0003 | 0.0059 | 0.068 | 600 |
29 | 16 | 17 | 0.0007 | 0.0082 | 0.1319 | 600 |
30 | 16 | 26 | 0.0013 | 0.0173 | 0.3216 | 600 |
31 | 18 | 19 | 0.0007 | 0.0138 | 0 | 900 |
32 | 18 | 32 | 0.0007 | 0.0142 | 0 | 900 |
33 | 19 | 33 | 0.0009 | 0.018 | 0 | 900 |
34 | 20 | 21 | 0.0008 | 0.014 | 0.2565 | 900 |
35 | 21 | 22 | 0.0006 | 0.0096 | 0.1846 | 600 |
36 | 21 | 34 | 0 | 0.0143 | 0 | 900 |
37 | 22 | 23 | 0.0022 | 0.035 | 0.361 | 600 |
38 | 22 | 35 | 0.0005 | 0.0272 | 0 | 900 |
39 | 24 | 25 | 0.0032 | 0.0323 | 0.531 | 600 |
40 | 24 | 36 | 0.0006 | 0.0232 | 0 | 900 |
41 | 25 | 26 | 0.0014 | 0.0147 | 0.2396 | 600 |
42 | 25 | 27 | 0.0043 | 0.0474 | 0.7802 | 600 |
43 | 25 | 28 | 0.0057 | 0.0625 | 1.029 | 600 |
44 | 27 | 28 | 0.0014 | 0.0151 | 0.249 | 600 |
45 | 28 | 37 | 0.0008 | 0.0156 | 0 | 1200 |
表4 燃气系统管道参数
表5 燃气阀门参数
表6 天然气压缩机参数
表7 火电机组参数
表8 天然气气源参数
序号 | 节点 | 最小供气速率(1000m3/h) | 最大供气速率(1000m3/h) | 供气成本($/1000m3) |
0 | 0 | 50 | 750 | 88.80555 |
1 | 1 | 0 | 500 | 88.80555 |
2 | 2 | 100 | 500 | 88.80555 |
表9 燃气发电机参数
以上述电气互联综合能源系统为例,开展单时间断面的最优能流计算,时间尺度设置为1小时,非凸约束不平衡量的阈值设置为0.1%。算法的主要技术指标如表10所示。
表10 主要技术指标
目标函数值 | 不平衡量 | 计算时间 |
17647.89元 | 0.06945% | 0.194031秒 |
结果表明,本发明所提基于序列凸规划的电气互联系统最优能流计算方法能够有效得到问题的目标函数值,在确保非凸约束不平衡量的最大值不超过0.1%的阈值的前提下,计算时间仅耗时0.194秒,兼顾了最优能流算法的可行性和高效性。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。
Claims (8)
- 一种基于序列凸规划的电气互联系统最优能流计算方法,其特征在于,包括如下步骤:在电气互联综合能源系统中构建最优能流模型的二次约束的凸松弛形式,并将凸函数在松弛解处进行一阶泰勒展开形成展开式;给定非凸约束的精度要求阈值,比较阈值和展开式中非凸约束的不平衡量大小;若不平衡量大于阈值,则将展开式迭代入电气互联综合能源系统的求解模型中,直至不平衡量不大于阈值,求出模型中的松弛解。
- 根据权利要求1所述的一种基于序列凸规划的电气互联系统最优能流计算方法,其特征在于,将展开式迭代入电气互联综合能源系统的求解模型包括:给定非凸约束的精度要求阈值,二次约束的凸松弛式的作差得到的不平衡量和阈值比较:若不平衡量不大于设定非凸约束的精度要求阈值,根据能流模型进行求解;若不平衡量大于设定非凸约束的精度要求阈值,将凸函数在松弛解处的一阶泰勒展开式作为惩罚项带入模型,重新计算具有惩罚项的模型松弛解;在计算具有惩罚项的模型松弛解之前,判断加入惩罚项的松弛式的答展开式不平衡量和阈值比较,若不平衡量大于设定非凸约束的精度要求阈值,迭代惩罚项直至不平衡量不大于设定非凸约束的精度要求阈值。
- 根据权利要求1或2所述的一种基于序列凸规划的电气互联系统最 优能流计算方法,在构建最优能流模型的二次约束的凸松弛形式前,于电气互联综合能源系统中根据每一火点机组节点的燃料成本、天然气源节点供气成本构建最优能流模型的凸优化部分;其中,电气互联综合能源系统中的约束包括电力系统潮流约束、燃气系统潮流约束和:电力系统和燃气系统的潮流模型均为二次非线性模型都模型。
- 根据权利要求4所述的一种基于序列凸规划的电气互联系统最优能流计算方法,其特征在于;电力系统潮流约束的线性部分如下:其中,集合Ω b、Ω l和Ω g分别表示电网节点、输电线路和燃气发电机节点的集合,集合α i和β i分别表示以节点i为首端节点和末端节点的输电线路的集合;变量p ij、p ji和p ik表示线路ij、ji和ik上流过的有功功率,q ij、q ji和q ik表示线路ij、ji和ik上流过的无功功率,l ij和l ji表示线路ij和ji上流过的电流的平方, 和 分别表示火电机组输出的有功和无功功率, 和 分别表示燃气发电机输出的有功和无功功率,v i和v j表示节点i和节点j的电压幅值的平方;参数R ij和R ji分别表示线路ij和ji上的电阻,X ij和X ji分别表示线路ij和ji上的电抗, 和 分别表示节点i的有功和无功负荷,V i min和V i max分别表示节点i的电压幅值的下限和上限, 和 分别表示火电机组i输出的有功功率的下限和上限, 和 分别表示火电机组i输出的无功功率的下限和上限, 和 分别表示燃气发电机i输出的有功功率的下限和上限, 和 分别表示燃气发电机i输出的无功功率的下限和上限, 和 分别表示输电线路ij上有功功率的传输下限和上限, 和 分别表示输电线路ij上无功功率的传输下限和上限, 表示线路ij的热稳定电流值。
- 根据权利要求5所述的一种基于序列凸规划的电气互联系统最优能流计算方法,其特征在于,燃气系统潮流约束的线性部分如下;其中,集合Ω n、Ω p和Ω k分别表示燃气节点、燃气管道和天然气压缩机的集合,δ m和γ m分别表示以节点m为首端节点和末端节点的燃气管道的集合,Ξ m表示以节点m为进气节点的天然气压缩机的集合;e lm和e mn表示天然气压缩机im和mn上流过的燃气量,τ im和τ mn分别表示天然气压缩机im和mn消耗的燃气的量,f mn表示燃气管道mn上流过的燃气的量, 表示单位时间内天然气气源注入节点m的天然气量, 表示单位时间内与节点m相连的燃气发电机的耗气量,π m和π n分别表示节点m和n的燃气压力值的平方;参数 表示节点m的燃气负荷,W mn表示输气管道mn的Weymouth系数,K mn表示单位时间天然气压缩机燃气压缩量与压缩机耗气量的比例系数, 和 分别表示天然气压缩机的压缩比的下限和上限,T m表示燃气发电机的燃气消耗量与发电量的比例系数, 和 分别表示节点气压的下限和上限, 和 分别表示单位时间内燃气管道mn的输气量的下限和上限, 表示天然气压缩机的压缩速率的上限, 表示燃气发电机耗气速率的上限, 和 表示天然气气源单位时间内供气量的下限和上限。
- 根据权利要求6所述的一种基于序列凸规划的电气互联系统最优能流计算方法,其特征在于,矩阵形式表示上述模型:min x TQx+cx+ds.t. Ax≤b其中,矩阵Q、c、d分别表示目标函数中的的二次项系数、一次项系 数和常数项矩阵,矩阵A表示线性约束中的系数矩阵,b表示线性约束中的常数项系数矩阵。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/029,973 US20230369852A1 (en) | 2021-08-11 | 2022-04-09 | Method for calculating optimal energy flow of integrated electricity-gas system based on sequential convex programming |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110927842.1A CN113627021A (zh) | 2021-08-11 | 2021-08-11 | 一种基于序列凸规划的电气互联系统最优能流计算方法 |
CN202110927842.1 | 2021-08-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023015923A1 true WO2023015923A1 (zh) | 2023-02-16 |
Family
ID=78385130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/085985 WO2023015923A1 (zh) | 2021-08-11 | 2022-04-09 | 一种基于序列凸规划的电气互联系统最优能流计算方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230369852A1 (zh) |
CN (1) | CN113627021A (zh) |
WO (1) | WO2023015923A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115982916A (zh) * | 2023-03-20 | 2023-04-18 | 山东理工大学 | 基于综合能源系统静态安全评估的燃气轮机接入方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113627021A (zh) * | 2021-08-11 | 2021-11-09 | 东南大学 | 一种基于序列凸规划的电气互联系统最优能流计算方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170184640A1 (en) * | 2014-09-12 | 2017-06-29 | Carnegie Mellon University | Systems, Methods, and Software for Planning, Simulating, and Operating Electrical Power Systems |
CN108846507A (zh) * | 2018-05-29 | 2018-11-20 | 西安交通大学 | 基于混合整数二阶锥规划的电-气耦合系统日前经济调度方法 |
CN110729766A (zh) * | 2019-09-27 | 2020-01-24 | 国网河北省电力有限公司 | 一种多区域电-气综合能源系统分布式鲁棒优化方法 |
CN113627021A (zh) * | 2021-08-11 | 2021-11-09 | 东南大学 | 一种基于序列凸规划的电气互联系统最优能流计算方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015042654A1 (en) * | 2013-09-30 | 2015-04-02 | National Ict Australia Limited | Alternating current (ac) power flow analysis in an electrical power network |
CN107565566B (zh) * | 2017-08-15 | 2019-08-16 | 清华大学 | 一种电力系统最优潮流的凸优化求解方法 |
CN108054789B (zh) * | 2017-12-22 | 2019-08-16 | 清华大学 | 一种内嵌无功和电压的安全约束经济调度方法 |
CN108494021B (zh) * | 2018-04-20 | 2021-06-01 | 东北大学 | 电-热-气综合能源系统的稳定评估与静态控制方法 |
CN109066695A (zh) * | 2018-09-29 | 2018-12-21 | 广东电网有限责任公司 | 一种两阶段线性化电气最优能流计算方法 |
CN109242365B (zh) * | 2018-11-06 | 2022-01-14 | 国电南瑞科技股份有限公司 | 一种电-热互联综合能源系统的区间潮流计算方法 |
CN109902854B (zh) * | 2019-01-11 | 2020-11-27 | 重庆大学 | 电-气互联系统最优潮流全线性模型的构建方法 |
CN110210104B (zh) * | 2019-05-28 | 2020-11-06 | 国电南瑞科技股份有限公司 | 一种多能源系统运行调度方法 |
CN110866627B (zh) * | 2019-08-16 | 2022-06-24 | 东南大学 | 一种考虑阶梯气价的多区域电-气耦合综合能源系统优化调度方法 |
CN111222257B (zh) * | 2020-02-27 | 2023-05-02 | 东南大学 | 基于凸优化的电热水多能流协同调度方法 |
CN111539599A (zh) * | 2020-04-03 | 2020-08-14 | 国网浙江省电力有限公司经济技术研究院 | 区域综合能源系统协调规划方法 |
CN111652441B (zh) * | 2020-06-04 | 2021-02-12 | 四川大学 | 考虑气电联合需求响应的气电综合能源系统配网优化方法 |
CN111969609B (zh) * | 2020-07-06 | 2021-12-14 | 南方电网科学研究院有限责任公司 | 交直流输电网的二阶锥最优潮流模型构建方法和装置 |
CN112398132B (zh) * | 2020-10-27 | 2022-07-19 | 国网江苏省电力有限公司经济技术研究院 | 一种基于misocp的含ipfc电力系统潮流优化方法 |
CN112883658A (zh) * | 2021-01-14 | 2021-06-01 | 华南理工大学 | 一种复杂天然气潮流加速凸化调度方法 |
-
2021
- 2021-08-11 CN CN202110927842.1A patent/CN113627021A/zh active Pending
-
2022
- 2022-04-09 US US18/029,973 patent/US20230369852A1/en active Pending
- 2022-04-09 WO PCT/CN2022/085985 patent/WO2023015923A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170184640A1 (en) * | 2014-09-12 | 2017-06-29 | Carnegie Mellon University | Systems, Methods, and Software for Planning, Simulating, and Operating Electrical Power Systems |
CN108846507A (zh) * | 2018-05-29 | 2018-11-20 | 西安交通大学 | 基于混合整数二阶锥规划的电-气耦合系统日前经济调度方法 |
CN110729766A (zh) * | 2019-09-27 | 2020-01-24 | 国网河北省电力有限公司 | 一种多区域电-气综合能源系统分布式鲁棒优化方法 |
CN113627021A (zh) * | 2021-08-11 | 2021-11-09 | 东南大学 | 一种基于序列凸规划的电气互联系统最优能流计算方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115982916A (zh) * | 2023-03-20 | 2023-04-18 | 山东理工大学 | 基于综合能源系统静态安全评估的燃气轮机接入方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113627021A (zh) | 2021-11-09 |
US20230369852A1 (en) | 2023-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023015923A1 (zh) | 一种基于序列凸规划的电气互联系统最优能流计算方法 | |
CN108667007B (zh) | 计及电-气耦合系统约束的电压稳定裕度计算方法 | |
CN108846507B (zh) | 基于混合整数二阶锥规划的电-气耦合系统日前经济调度方法 | |
CN107291990B (zh) | 基于电-气互联综合能源系统暂态模型的能量流仿真方法 | |
CN104734155B (zh) | 一种获取电‑气互联能源系统可用输电能力的方法 | |
CN107194055B (zh) | 考虑电转气装置的电-气互联系统可靠性建模及其评估方法 | |
CN107451680A (zh) | 一种电‑气互联系统随机最优潮流启发式计算方法 | |
Li et al. | Solving natural gas loadflow problems using electric loadflow techniques | |
CN108875269A (zh) | 一种考虑电力系统多平衡机与天然气系统慢动态特性的电-气互联系统多时段能流计算方法 | |
CN110851960B (zh) | 一种计及天然气网络影响的配电网运行可靠性评估方法 | |
CN109830955B (zh) | 考虑柔性约束与全周期成本的电-气配网柔性规划方法 | |
CN109636052B (zh) | 一种气电联合系统的协同规划方法 | |
CN104734147A (zh) | 一种综合能源系统概率能量流分析方法 | |
CN111563315B (zh) | 一种基于拓扑分析的电-气综合能源系统稳态能量流计算方法 | |
CN106096269A (zh) | 一种电‑气耦合系统中天然气网的区间潮流计算方法 | |
Li et al. | Gradient descent iterative method for energy flow of integrated energy system considering multiple modes of compressors | |
Sheng et al. | Two-stage state estimation approach for combined heat and electric networks considering the dynamic property of pipelines | |
CN107947245A (zh) | 考虑天然气系统约束的等值最优潮流模型构建方法 | |
CN108062599A (zh) | 一种电力系统和天然气系统协同运行的建模方法 | |
CN104143161A (zh) | 一种基于广度优先搜索配电网回路的搜索方法 | |
CN112531716A (zh) | 电-水互联系统混合能流的统一标幺计算方法 | |
CN111523247A (zh) | 基于分立求解的综合能源系统多能流联合计算方法及装置 | |
Gao et al. | Sequence iterative method-based steady-state analysis of integrated electricity, gas and heating networks | |
Zhang et al. | Towards Fast and Robust Simulation in Integrated Electricity and Gas System: A Sequential United Method | |
CN109066695A (zh) | 一种两阶段线性化电气最优能流计算方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22854928 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22854928 Country of ref document: EP Kind code of ref document: A1 |