CN109902854B - 电-气互联系统最优潮流全线性模型的构建方法 - Google Patents

电-气互联系统最优潮流全线性模型的构建方法 Download PDF

Info

Publication number
CN109902854B
CN109902854B CN201910027181.XA CN201910027181A CN109902854B CN 109902854 B CN109902854 B CN 109902854B CN 201910027181 A CN201910027181 A CN 201910027181A CN 109902854 B CN109902854 B CN 109902854B
Authority
CN
China
Prior art keywords
gas
natural gas
formula
constraints
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910027181.XA
Other languages
English (en)
Other versions
CN109902854A (zh
Inventor
杨知方
郭林
余娟
代伟
杨燕
向明旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201910027181.XA priority Critical patent/CN109902854B/zh
Priority to US16/442,462 priority patent/US20200257971A1/en
Publication of CN109902854A publication Critical patent/CN109902854A/zh
Application granted granted Critical
Publication of CN109902854B publication Critical patent/CN109902854B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/14Pipes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Pipeline Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了电‑气互联系统最优潮流全线性模型的构建方法,主要步骤为:1)建立电‑气互联系统,并获取所述电‑气互联系统的基础数据。2)建立基于深度学习的天然气线性模型。3)基于所述天然气线性模型,建立电‑气互联系统最优潮流全线性模型。本发明提供了一种基于深度学习方法的电‑气互联系统最优潮流全线性模型,对天然气管道模型进行了一段线性化,相比于传统的分段线性模型,本发明所提方法可以极大地提高计算效率。

Description

电-气互联系统最优潮流全线性模型的构建方法
技术领域
本发明涉及电力系统经济优化计算领域,具体是基于深度学习方法的电-气互联系统最优潮流全线性模型的构建方法。
背景技术
随着电力系统与天然气系统之间的耦合关系日益增强,多能源系统的经济优化运行已成为一个主要研究问题。最优潮流(OPF)计算对于促进多能源系统的安全和经济运行至关重要,同时OPF在可靠性分析、能源管理和定价方面发挥着重要作用,OPF求解器的改进每年可为多能源系统节省数十亿美元。但由于能量流模型的非线性决定了OPF模型的非凸性,致使多能源系统的OPF问题难以求解,当前的非线性求解器不能保证OPF问题的收敛性或全局最优性。
在实际电力系统中,比如日前和实时调度,OPF模型必须是凸模型才能保证收敛性和计算效率的问题。通常有两种基本方法可以保证OPF问题的收敛:1)凸松弛方法;2)能量流模型线性化。凸松弛方法能将能量流模型的某些部分从等式转换为不等式,在一定条件下,凸松弛具有可证明的紧密最优性间隙,并且在某些情况下,可以找到全局最优解。但是,如果前提条件不成立,凸松弛方法很难重新构建新的可行域。相比之下,能量流模型线性化广泛用于工业,尤其是电力系统,线性OPF模型可确保收敛并且定价方便。直流潮流的OPF方法作为潮流模型的理想近似,验证了P-θ之间的准线性关系,广泛用于大多数电力行业领域。而在天然气系统中,与具有“单段”线性近似的电力系统潮流模型不同,通常采用分段线性技术来构建线性流量模型。电力系统潮流模型线性化与天然气流量模型线性化的关键区别在于状态变量的范围差异:电力系统中支路两端的电压角差异相对较小(通常小于0.5弧度或30度),而天然气管道两端之间的气压差
Figure GDA0002729792870000011
可能要大得多(高达530000psi2),因此,在传统的天然气线性化方法中必须将状态变量分成许多段来控制线性化误差。然而,线性化分段数的增加导致OPF模型中整数变量的数量增加,这将增加相当大的计算负担。
发明内容
本发明的目的是解决现有技术中存在的问题。
为实现本发明目的而采用的技术方案是这样的,基于深度学习方法的电-气互联系统最优潮流全线性模型的构建方法,主要包括以下步骤:
1)建立电-气互联系统,并获取所述电-气互联系统的基础数据。
所述电-气互联系统的基础数据为电-气互联系统的电负荷和气负荷。
2)建立基于深度学习的天然气线性模型。
建立基于深度学习的天然气线性模型的主要步骤如下:
2.1)建立天然气非线性流量模型,即:
Figure GDA0002729792870000021
式中,Fmn为节点m到节点n的天然气管道流量。Kmn为稳态条件下的管道威茅斯系数。πm和πn分别为节点m和节点n的气压。smn为符号函数。t为天然气管道两端之间的气压差。
其中,符号函数smn取值如下所示:
Figure GDA0002729792870000022
天然气管道两端之间的气压差t如下所示:
Figure GDA0002729792870000023
2.2)建立深度神经网络,即堆栈降噪自动编码器SDAE。
所述堆栈降噪自动编码器SDAE由n个降噪自动编码器DAE逐层堆栈而成。
其中,第l个降噪自动编码器DAE的输入层记为Yl-1,中间层记为Yl,输出层记为Zl
中间层Yl如下所示:
Figure GDA0002729792870000026
式中,
Figure GDA0002729792870000024
表示编码函数。R为激活函数。θ为编码参数,θ={Wl,bl}。Wl为编码函数的权重。bl为编码函数的偏置。
其中,激活函数R如下所示:
Figure GDA0002729792870000025
式中,x为神经元的输入,即电-气互联系统的负荷数据。
输出层Zl如下所示:
Figure GDA0002729792870000031
式中,
Figure GDA0002729792870000032
表示解码函数。θ'为解码参数。θ'={Wl',bl'}。Wl'为解码函数的权重。b'l为解码函数的偏置。
2.3)将负荷输入到堆栈降噪自动编码器SDAE中,从而得到输出t。
2.4)利用无监督预训练和有监督微调对输出t进行调整,得到深度学习的预测结果t*
2.5)基于预测结果t*,选取线性区间[tmin,tmax]。
选取线性区间[tmin,tmax]的主要步骤如下:
2.5.1)计算线性区间的下限tmin,即:
tmin=c1t*。 (7)
式中,c1为常数。c1<1。
tmax=c2t*。 (8)
2.5.2)计算线性区间的上限tmax,即:
式中,c2为常数。c2>1。
2.6)基于深度学习的天然气线性模型如下所示:
Figure GDA0002729792870000033
式中,
Figure GDA0002729792870000034
是节点m到节点n的天然气管道流量。tmin和tmax是线性区间的上下限。kmn是斜率。bmn是截距。
其中,斜率kmn如下所示:
Figure GDA0002729792870000035
式中,tmin为线性区间的下限。tmax为线性区间的上限。
截距bmn如下所示:
Figure GDA0002729792870000036
3)基于所述天然气线性模型,建立电-气互联系统最优潮流全线性模型。
建立电-气互联系统最优潮流全线性模型的主要步骤如下:
3.1)建立目标函数,即:
Figure GDA0002729792870000037
式中,Cep,i是电的单价。Cgp,i是天然气的单价。M是惩罚因子。
Figure GDA0002729792870000041
Figure GDA0002729792870000042
是平衡变量。下标r代表了网络中的天然气管道数量。min f为最小总能源成本。总能源成本包括电力成本和天然气成本。PG,i是非燃气机组的有功输出。FG,m是气源注入量。
3.2)设置约束条件,主要步骤如下:
3.2.1)设置电力系统约束,主要包括电功率平衡约束、燃气机组的有功功率约束、非燃气机组的有功功率约束和输电线路约束。
电功率平衡约束如下所示:
PG,i+PGAS,i-PD,i-(θij)/xij=0,i=1,2,...,Ne。 (13)
式中,PGAS,i是燃气机组的有功输出。PD,i是有功负荷。θi是节点i的电压相角。θj是节点j的电压相角。xij是支路电抗。Ne是电力系统节点个数。
燃气机组的有功功率约束如下所示:
Figure GDA0002729792870000043
式中,
Figure GDA0002729792870000044
是燃气机组的有功输出下限。
Figure GDA0002729792870000045
是燃气机组的有功输出上限。
非燃气机组的有功功率约束如下所示:
Figure GDA0002729792870000046
式中,
Figure GDA0002729792870000047
是非燃气机组的有功功率下限。
Figure GDA0002729792870000048
是非燃气机组的有功功率上限。
输电线路约束如下所示:
Figure GDA0002729792870000049
式中,Bf是用来计算支路传输功率向量的矩阵。
Figure GDA00027297928700000410
Figure GDA00027297928700000411
分别是支路传输功率的下限和上限。Nr是支路数量。
3.2.2)设置天然气系统约束,主要包括天然气流量平衡约束、天然气管道两端之间的气压差t约束、气源约束、节点气压约束和压缩机约束。
天然气流量平衡约束如下所示:
Figure GDA0002729792870000051
式中,FGAS,m是燃气机组的天然气消耗量。FD,m是气负荷。Nm是天然气节点数量。
天然气管道两端之间的气压差t约束如下所示:
Figure GDA0002729792870000052
气源约束如下所示:
Figure GDA0002729792870000053
式中,
Figure GDA0002729792870000054
是气源注入量下限。
Figure GDA0002729792870000055
是气源注入量上限。
节点气压约束如下所示:
Figure GDA0002729792870000056
式中,
Figure GDA0002729792870000057
是节点m气压下限。
Figure GDA0002729792870000058
是节点m气压上限。
压缩机约束如下所示:
πn≤Γc·πm,m=1,2,...,Nm。 (21)
式中,Γc是压缩机的压缩比。
3.2.3)设置耦合元件约束,即:
FGAS,h=PGAS,h/(ηGAS,hGHV),h=1,2,...,Nb。 (22)
式中,ηGAS,h是燃气机组的转换效率。GHV是高热值。Nb是燃气机组的数量。
本发明的技术效果是毋庸置疑的。本发明提供了一种基于深度学习方法的电-气互联系统最优潮流全线性模型,对天然气管道模型进行了一段线性化,相比于传统的分段线性模型,本发明所提方法可以极大地提高计算效率。
附图说明
图1为传统天然气分段线性模型图;
图2为基于深度学习方法的电-气互联系统最优潮流全线性模型的天然气管道一段线性模型;
图3为SDAE的逻辑结构图;
图4为天然气网络中的典型环状网络;
图5为天然气网络中的典型树状网络;
图6为NGS 14节点网络图;
图7为NGS 10节点网络图;
图8为传统天然气分段线性与基于电-气互联系统最优潮流全线性模型的一段线性模型的t值比较;
图9为M1和M2模型的归一化天然气管道流量。
具体实施方式
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。
实施例1:
基于深度学习方法的电-气互联系统最优潮流全线性模型的构建方法,主要包括以下步骤:
1)建立电-气互联系统,并获取所述电-气互联系统的基础数据。
所述电-气互联系统的基础数据为电-气互联系统的电负荷和气负荷。
2)建立基于深度学习的天然气线性模型。
建立基于深度学习的天然气线性模型的主要步骤如下:
2.1)建立天然气非线性流量模型,即:
Figure GDA0002729792870000061
式中,Fmn为节点m到节点n的天然气管道流量。Kmn为稳态条件下的管道威茅斯系数。πm和πn分别为节点m和节点n的气压。smn为符号函数。t为天然气管道两端之间的气压差。
其中,符号函数smn取值如下所示:
Figure GDA0002729792870000071
天然气管道两端之间的气压差t如下所示:
Figure GDA0002729792870000072
2.2)建立深度神经网络,即堆栈降噪自动编码器SDAE,如图3所示。
所述堆栈降噪自动编码器SDAE由n个降噪自动编码器DAE逐层堆栈而成。
其中,第l个降噪自动编码器DAE的输入层记为Yl-1,中间层记为Yl,输出层记为Zl
中间层Yl如下所示:
Figure GDA0002729792870000073
式中,
Figure GDA0002729792870000074
表示编码函数。R为激活函数。θ为编码参数,θ={Wl,bl}。Wl为编码函数的权重。bl为编码函数的偏置。
其中,激活函数R如下所示:
Figure GDA0002729792870000075
式中,x为神经元的输入,即电-气互联系统的负荷数据。
输出层Zl如下所示:
Figure GDA0002729792870000076
式中,
Figure GDA0002729792870000077
表示解码函数。θ'为解码参数。θ'={Wl',bl'}。Wl'为解码函数的权重。b'l为解码函数的偏置。
2.3)将负荷输入到堆栈降噪自动编码器SDAE中,从而得到输出t。
2.4)利用无监督预训练和有监督微调对输出t进行调整,得到深度学习的预测结果t*
1)对堆栈降噪自动编码器SDAE进行无监督预训练,选择一组编码参数θ和解码参数θ′,使计算参数M达到最小;
计算参数M如下所示:
Figure GDA0002729792870000081
2)对堆栈降噪自动编码器SDAE进行有监督微调,即对编码参数θ进行进一步的优化选择。
2.5)基于预测结果t*,选取线性区间[tmin,tmax]。
选取线性区间[tmin,tmax]的主要步骤如下:
2.5.1)计算线性区间的下限tmin,即:
tmin=c1t*。 (8)
式中,c1为常数。c1<1。
tmax=c2t*。 (9)
2.5.2)计算线性区间的上限tmax,即:
式中,c2为常数。c2>1。
2.6)基于深度学习的天然气线性模型如下所示:
Figure GDA0002729792870000084
式中,
Figure GDA0002729792870000085
是节点m到节点n的天然气管道流量。tmin和tmax是线性区间的上下限。kmn是斜率。bmn是截距。
其中,斜率kmn如下所示:
Figure GDA0002729792870000082
式中,tmin为线性区间的下限。tmax为线性区间的上限。
截距bmn如下所示:
Figure GDA0002729792870000083
传统天然气线性化思路是采用如图1所示的分段线性方法,但是由于状态变量t的范围非常大,通常需要分很多段才能达到期望的线性化精度,若事先知道最优解处于分段线性模型中的哪一段,那么分段线性模型就可以用一段线性模型来表示,如图2所示。本发明的线性化思路就是将天然气的非线性模型用一段线性模型来替代,构建一段线性模型的关键有两个:1)找到最优解的近似位置;2)选择合适的区间。
3)基于所述天然气线性模型,建立电-气互联系统最优潮流全线性模型。
建立电-气互联系统最优潮流全线性模型的主要步骤如下:
3.1)建立目标函数,即:
Figure GDA0002729792870000091
式中,Cep,i是电的单价。Cgp,i是天然气的单价。M是惩罚因子。
Figure GDA0002729792870000098
Figure GDA0002729792870000099
是平衡变量。下标r代表了网络中的天然气管道数量。min f为最小总能源成本。总能源成本包括电力成本和天然气成本。PG,i是非燃气机组的有功输出。FG,m是气源注入量。
3.2)设置约束条件,主要步骤如下:
3.2.1)设置电力系统约束,主要包括电功率平衡约束、燃气机组的有功功率约束、非燃气机组的有功功率约束和输电线路约束。
电功率平衡约束如下所示:
PG,i+PGAS,i-PD,i-(θij)/xij=0,i=1,2,...,Ne。 (14)
式中,PGAS,i是燃气机组的有功输出。PD,i是有功负荷。θi是节点i的电压相角。θj是节点j的电压相角。xij是支路电抗。Ne是电力系统节点个数。
燃气机组的有功功率约束如下所示:
Figure GDA0002729792870000092
式中,
Figure GDA0002729792870000093
是燃气机组的有功输出下限。
Figure GDA0002729792870000094
是燃气机组的有功输出上限。
非燃气机组的有功功率约束如下所示:
Figure GDA0002729792870000095
式中,
Figure GDA0002729792870000096
是非燃气机组的有功功率下限。
Figure GDA0002729792870000097
是非燃气机组的有功功率上限。
输电线路约束如下所示:
Figure GDA0002729792870000101
式中,Bf是用来计算支路传输功率向量的矩阵。
Figure GDA0002729792870000102
Figure GDA0002729792870000103
分别是支路传输功率的下限和上限。Nr是支路数量。
3.2.2)设置天然气系统约束,主要包括天然气流量平衡约束、天然气管道两端之间的气压差t约束、气源约束、节点气压约束和压缩机约束。
天然气流量平衡约束如下所示:
Figure GDA0002729792870000104
式中,FGAS,m是燃气机组的天然气消耗量。FD,m是气负荷。Nm是天然气节点数量。
天然气管道两端之间的气压差t约束如下所示:
Figure GDA0002729792870000105
气源约束如下所示:
Figure GDA0002729792870000106
式中,
Figure GDA0002729792870000107
是气源注入量下限。
Figure GDA0002729792870000108
是气源注入量上限。
节点气压约束如下所示:
Figure GDA0002729792870000109
式中,
Figure GDA00027297928700001010
是节点m气压下限。
Figure GDA00027297928700001011
是节点m气压上限。
压缩机约束如下所示:
πn≤Γc·πm,m=1,2,...,Nm。 (22)
式中,Γc是压缩机的压缩比。
3.2.3)设置耦合元件约束,即:
FGAS,h=PGAS,h/(ηGAS,hGHV),h=1,2,...,Nb。 (23)
式中,ηGAS,h是燃气机组的转换效率。GHV是高热值。Nb是燃气机组的数量。
实施例2:
一种验证线性区间[tmin,tmax]有效性的实验,主要包括以下步骤:
1)以环状天然气网络对线性区间[tmin,tmax]有效性进行验证,环状天然气网络如图4所示。
基于公式(3)可以得到如下三个式子:
Figure GDA0002729792870000111
Figure GDA0002729792870000112
Figure GDA0002729792870000113
天然气管道气压差tij,天然气管道气压差tik和天然气管道气压差tjk三者之间的关系可以用公式(27)来表示:
tjk=tik-tij (27)
将公式(7)带入公式(27)可得:
Figure GDA0002729792870000114
由于线性区间是由公式(11)和(12)所构建,因此kmn和bmn可以写成如下形式:
Figure GDA0002729792870000115
Figure GDA0002729792870000116
将公式(29)和(30)带入公式(28),同时令
Figure GDA0002729792870000117
可以得到公式(31):
Figure GDA0002729792870000121
假设网络中所有天然气管道的s>0,当深度学习得到的t*和非线性模型中的t完全一样时,可以得到如下式子:
Figure GDA0002729792870000122
同时,深度学习得到的t*也满足如下关系:
Figure GDA0002729792870000123
将公式(32)带入公式(31)可得:
Figure GDA0002729792870000124
由于公式(33)和公式(34)适用于环状天然气网络中的所有环路,可以推断,当t*不等于0的时候,一段线性模型的可行域包含两个子可行域,如下所示:
Figure GDA0002729792870000125
式中,c是与非线性和线性天然气流量相关的一个常数。
可以容易地推断出公式(35)所描绘的可行域是电-气互联系统中原始非线性OPF问题的子区域。因此,当c=1时,可行域(35)中出现最优解,这表明电-气互联系统中非线性模型OPF问题的最优解位于具有一段线性模型OPF问题的可行域,即在子可行域(35)中,非线性模型OPF问题的优化结果和具有一段线性模型OPF问题的最优解结果相同。
因此,使用本发明所提出的的一段线性模型的OPF问题通常与非线性OPF问题具有相同的优化结果。
2)以树状天然气网络对线性区间[tmin,tmax]有效性进行验证,树状天然气网络如图5所示。
图5是一个典型的天然气树状网络,满足如下三个等式:
Figure GDA0002729792870000131
Figure GDA0002729792870000132
Figure GDA0002729792870000133
不同于环状网络,树状网络中的tij,tjk和tjl没有一个强耦合关系。因此,在求解优化问题时,每条管道的流量可以独立优化,不受其他管道的影响。故当气压约束不具约束力时,线性模型会得到与非线性模型相同的优化结果。
实施例3:
一种基于深度学习方法的电-气互联系统最优潮流全线性模型有效性的实验,主要包括以下步骤:
1)建立测试系统
Case 1:由IEEE 14节点和NGS 14节点网络组成(NGS 14节点网络包含两个天然气环路),NGS 14节点的网络图如图6所示。
Case2:由IEEE14节点和NGS 10节点网络组成(NGS 10节点网络为辐射型树状网络),NGS 10节点的网络图如图7所示。
2)不同比较模型
为验证本发明所提一段线性模型的有效性,采用如下3种模型进行比较:
M0:原始非线性电-气互联系统OPF模型。
M1:采用本发明所提一段线性模型的电-气互联系统全线性OPF模型。
M2:采用多段线性方法的电-气互联系统OPF模型
3)Case 1算例仿真分析
图8给出了原始非线性OPF问题的t值与深度学习预测得到的t*值之间的对比图。可以观察到,通过深度学习方法获得的t*接近于非线性OPF模型的t值,但仍然存在误差。公式(34)的耦合关系适用于天然气网络中的两个环路。
表1给出了M0和M1方法下优化结果的对比。从表1可以看出,本发明所提方法得到的最优解接近非线性模型的优化结果,表中的相对误差源自于t*的预测误差。同时,当线性区间的大小改变时,一段线性模型得到的最优解依然是相同的。此外,当非线性模型中的t值带入所提出的一段线性模型时,所提方法的最优解与非线性模型优化结果相同。证明了上述理论推导。
表1 M0和M1的最小能源成本对比
Figure GDA0002729792870000141
图9给出了M1和M2模型下归一化的天然气管道流量,纵坐标为天然气流量,横坐标表示管道。以M0模型得到的天然气流量为基准,将M1和M2的流量做了对比。对于模型M2,图9表明分段线性使用的分段数越多,结果越接近非线性模型。分段线性模型需要大量分段才能实现所提一段线性模型的类似建模精度。
表2给出了M2模型在不同分段数下的计算时间和优化结果。可以观察到,随着分段数的增加,OPF问题的优化结果精度得到提高,但是计算效率也随之降低。当分段线性模型分到399段(399segments)时,分段线性方法与所提出的一段线性方法相比实现了类似的精度。但是由于一段线性方法没有整数变量,因此大大提高了OPF问题的计算效率。当c1=0.8,c2=1.1时,所提的一段线性方法仅需0.23秒,与具有399个分段的分段线性模型相比,速度提高了5倍。
表2 M2模型在不同分段数下的计算时间和优化结果
Figure GDA0002729792870000151
4)Case 2算例仿真分析
表3给出了M0-M2模型下的运行成本。结果表明,在树状天然气网络中,由于管道间的流量不耦合,因此线性模型的建模不会影响电-气互联系统OPF问题的优化结果,即一段线性模型的优化结果和非线性模型相同,且区间越小,均方误差越小。结果证明了上述理论证明。
表3 M0-M2的优化结果和线性误差
Figure GDA0002729792870000152
注:e是M0模型与M1/M2模型的线性误差,即均方误差。

Claims (4)

1.电-气互联系统最优潮流全线性模型的构建方法,其特征在于,主要包括以下步骤:
1)建立所述电-气互联系统,并获取所述电-气互联系统的基础数据;
2)建立基于深度学习的天然气线性模型;
建立基于深度学习的天然气线性模型的主要步骤如下:
2.1)建立天然气非线性流量模型,即:
Figure FDA0002729792860000011
式中,Fmn为节点m到节点n的天然气管道流量;Kmn为稳态条件下的管道韦茅斯系数;smn为符号函数;t为天然气管道两端之间的气压差;
其中,符号函数smn取值如下所示:
Figure FDA0002729792860000012
式中,πm和πn分别为节点m和节点n的气压;
天然气管道两端之间的气压差t如下所示:
Figure FDA0002729792860000013
2.2)建立深度神经网络,即堆栈降噪自动编码器SDAE;
所述堆栈降噪自动编码器SDAE由n个降噪自动编码器DAE逐层堆栈而成;
其中,第l个降噪自动编码器DAE的输入层记为Yl-1,中间层记为Yl,输出层记为Zl
中间层Yl如下所示:
Figure FDA0002729792860000014
式中,
Figure FDA0002729792860000015
表示编码函数;R为激活函数;θ为编码参数,θ={Wl,bl};Wl为编码函数的权重;bl为编码函数的偏置;
其中,激活函数R如下所示:
Figure FDA0002729792860000016
式中,x为神经元的输入,即电-气互联系统的负荷数据;
输出层Zl如下所示:
Figure FDA0002729792860000021
式中,
Figure FDA0002729792860000022
表示解码函数;θ′为解码参数;θ′={Wl′,b′l};Wl′为解码函数的权重;b′l为解码函数的偏置;
2.3)将电负荷和气负荷输入到堆栈降噪自动编码器SDAE中,从而得到输出t;
2.4)利用无监督预训练和有监督微调对输出t进行调整,得到深度学习的预测结果t*
2.5)基于预测结果t*,选取线性区间[tmin,tmax];
2.6)基于深度学习的天然气线性模型如下所示:
Figure FDA0002729792860000023
式中,
Figure FDA0002729792860000024
是节点m到节点n的天然气管道流量;tmin和tmax是线性区间的上下限;kmn是斜率;bmn是截距;
其中,斜率kmn如下所示:
Figure FDA0002729792860000025
式中,tmin为线性区间的下限;tmax为线性区间的上限;
截距bmn如下所示:
Figure FDA0002729792860000026
3)基于所述天然气线性模型,建立电-气互联系统最优潮流全线性模型。
2.根据权利要求1所述的电-气互联系统最优潮流全线性模型的构建方法,其特征在于:所述电-气互联系统的基础数据为电-气互联系统的电负荷和气负荷。
3.根据权利要求1所述的电-气互联系统最优潮流全线性模型的构建方法,其特征在于,选取线性区间[tmin,tmax]的主要步骤如下:
1)计算线性区间的下限tmin,即:
tmin=c1t*; (10)
式中,c1为常数;c1<1;
2)计算线性区间的的上限tmax,即:
tmax=c2t*; (11)
式中,c2为常数;c2>1。
4.根据权利要求1所述的电-气互联系统最优潮流全线性模型的构建方法,其特征在于,建立电-气互联系统最优潮流全线性模型的主要步骤如下:
1)建立目标函数,即:
Figure FDA0002729792860000031
式中,Cep,i是电的单价;Cgp,i是天然气的单价;M是惩罚因子;
Figure FDA0002729792860000036
Figure FDA0002729792860000037
是平衡变量;下标r代表了网络中的天然气管道数量;min f为最小总能源成本;总能源成本包括电力成本和天然气成本;PG,i是非燃气机组的有功输出;FG,m是气源注入量;
2)设置约束条件,主要步骤如下:
2.1)设置电力系统约束,主要包括电功率平衡约束、燃气机组的有功功率约束、非燃气机组的有功功率约束和输电线路约束;
电功率平衡约束如下所示:
PG,i+PGAS,i-PD,i-(θij)/xij=0,i=1,2,...,Ne; (13)
式中,PGAS,i是燃气机组的有功输出;PD,i是有功负荷;θi是节点i的电压相角;θj是节点j的电压相角;xij是支路电抗;Ne是电力系统节点个数;
燃气机组的有功功率约束如下所示:
Figure FDA0002729792860000032
式中,
Figure FDA0002729792860000033
是燃气机组的有功输出下限;
Figure FDA0002729792860000034
是燃气机组的有功输出上限;
非燃气机组的有功功率约束如下所示:
Figure FDA0002729792860000035
式中,
Figure FDA0002729792860000041
是非燃气机组的有功功率下限;
Figure FDA0002729792860000042
是非燃气机组的有功功率上限;
输电线路约束如下所示:
-Tl min≤Bfij)≤Tl max,l=1,2,...,Nr; (16)
式中,Bf是用来计算支路传输功率向量的矩阵;
Figure FDA0002729792860000043
Figure FDA0002729792860000044
分别是支路传输功率的下限和上限;Nr是支路数量;
2.2)设置天然气系统约束,主要包括天然气流量平衡约束、天然气管道两端之间的气压差t约束、气源约束、节点气压约束和压缩机约束;
天然气流量平衡约束如下所示:
Figure FDA0002729792860000045
式中,FGAS,m是燃气机组的天然气消耗量;FD,m是气负荷;Nm是天然气节点数量;
天然气管道两端之间的气压差t约束如下所示:
Figure FDA0002729792860000046
气源约束如下所示:
Figure FDA0002729792860000047
式中,
Figure FDA0002729792860000048
是气源注入量下限;
Figure FDA0002729792860000049
是气源注入量上限;
节点气压约束如下所示:
Figure FDA00027297928600000410
式中,
Figure FDA00027297928600000411
是节点m气压下限;
Figure FDA00027297928600000412
是节点m气压上限;
压缩机约束如下所示:
πn≤Γc·πm,m=1,2,...,Nm; (21)
式中,Γc是压缩机的压缩比;
2.3)设置耦合元件约束,即:
FGAS,h=PGAS,h/(ηGAS,hGHV),h=1,2,...,Nb; (22)
式中,ηGAS,h是燃气机组的转换效率;GHV是高热值;Nb是燃气机组的数量。
CN201910027181.XA 2019-01-11 2019-01-11 电-气互联系统最优潮流全线性模型的构建方法 Active CN109902854B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910027181.XA CN109902854B (zh) 2019-01-11 2019-01-11 电-气互联系统最优潮流全线性模型的构建方法
US16/442,462 US20200257971A1 (en) 2019-01-11 2019-06-15 Full-linear model for optimal power flow of integrated power and natural-gas system based on deep learning methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910027181.XA CN109902854B (zh) 2019-01-11 2019-01-11 电-气互联系统最优潮流全线性模型的构建方法

Publications (2)

Publication Number Publication Date
CN109902854A CN109902854A (zh) 2019-06-18
CN109902854B true CN109902854B (zh) 2020-11-27

Family

ID=66943641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910027181.XA Active CN109902854B (zh) 2019-01-11 2019-01-11 电-气互联系统最优潮流全线性模型的构建方法

Country Status (2)

Country Link
US (1) US20200257971A1 (zh)
CN (1) CN109902854B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114424196A (zh) * 2019-09-30 2022-04-29 西门子股份公司 非线性模型的线性化处理方法、装置及存储介质
CN110829434B (zh) * 2019-09-30 2021-04-06 重庆大学 一种提高深度神经网络潮流模型扩展性的方法
CN110929989B (zh) * 2019-10-29 2023-04-18 重庆大学 基于深度学习的含不确定性n-1安全校核方法
CN112069634B (zh) * 2020-08-14 2022-08-09 广东工业大学 一种基于放宽约束的气网扩容规划系统和方法
CN112287500B (zh) * 2020-10-28 2023-04-07 国网新疆电力有限公司昌吉供电公司 一种基于割最优的网格内配电网网架规划方法
CN112751368B (zh) * 2020-12-28 2022-12-23 南方电网科学研究院有限责任公司 基于人工神经网络的电气耦合系统多场景优化调度方法
CN112699564A (zh) * 2021-01-05 2021-04-23 中国海洋石油集团有限公司 海上微能系统多目标优化调度方法、装置及计算机存储介质
CN112861315B (zh) * 2021-01-11 2022-11-01 广西大学 一种电力系统非凸单目标最优潮流全局解的一维下降搜索法
CN112787331B (zh) * 2021-01-27 2022-06-14 中国电力科学研究院有限公司 基于深度强化学习的潮流收敛自动调整方法及系统
CN113268698B (zh) * 2021-04-08 2022-09-20 国网河北省电力有限公司营销服务中心 综合能源系统新能源消纳能力优化方法、装置及终端设备
CN113283194B (zh) * 2021-05-31 2022-08-02 深圳大学 获取天然气系统最小状态气流量的节点级分散方法
CN113761788B (zh) * 2021-07-19 2024-07-05 清华大学 基于深度学习的scopf快速计算方法及装置
CN113553768B (zh) * 2021-07-27 2022-04-01 天津大学 模型数据混合驱动的电网可靠性快速计算方法及装置
CN113627021A (zh) * 2021-08-11 2021-11-09 东南大学 一种基于序列凸规划的电气互联系统最优能流计算方法
CN114118803B (zh) * 2021-11-26 2024-04-26 国网江苏省电力有限公司电力科学研究院 一种多区域综合能源系统集成与协同优化方法及装置
EP4235481A1 (de) * 2022-02-25 2023-08-30 Siemens Aktiengesellschaft Verfahren zum erstellen eines lastprofils
CN115099063A (zh) * 2022-07-22 2022-09-23 东南大学 一种电-混氢天然气耦合综合能源系统运行优化方法
CN114996829A (zh) * 2022-08-01 2022-09-02 华中科技大学 近接隧道施工条件下新建隧道设计优化方法及设备
CN115355447B (zh) * 2022-10-20 2023-01-06 成都秦川物联网科技股份有限公司 一种基于物联网的智慧燃气门站调压优化方法和系统
CN116256971A (zh) * 2022-11-25 2023-06-13 云南电网有限责任公司电力科学研究院 一种电气综合能源系统运行优化方法及相关设备
CN115713438A (zh) * 2022-11-25 2023-02-24 国网江苏省电力有限公司常州供电分公司 综合能源系统的优化调度方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130238148A1 (en) * 2012-03-06 2013-09-12 Siemens Corporation Interior point method for reformulated optimal power flow model
CN105005940A (zh) * 2015-07-09 2015-10-28 河海大学 计及相关性的电-气互联系统概率最优潮流计算方法
CN107579525A (zh) * 2017-08-18 2018-01-12 河海大学 一种可计算完备潮流信息的冷启动线性化最优潮流计算方法
CN107947245A (zh) * 2017-11-20 2018-04-20 重庆大学 考虑天然气系统约束的等值最优潮流模型构建方法
CN108734391A (zh) * 2018-05-08 2018-11-02 重庆大学 基于堆栈降噪自动编码器的电-气综合能源系统概率能流量计算方法
CN109066695A (zh) * 2018-09-29 2018-12-21 广东电网有限责任公司 一种两阶段线性化电气最优能流计算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130238148A1 (en) * 2012-03-06 2013-09-12 Siemens Corporation Interior point method for reformulated optimal power flow model
CN105005940A (zh) * 2015-07-09 2015-10-28 河海大学 计及相关性的电-气互联系统概率最优潮流计算方法
CN107579525A (zh) * 2017-08-18 2018-01-12 河海大学 一种可计算完备潮流信息的冷启动线性化最优潮流计算方法
CN107947245A (zh) * 2017-11-20 2018-04-20 重庆大学 考虑天然气系统约束的等值最优潮流模型构建方法
CN108734391A (zh) * 2018-05-08 2018-11-02 重庆大学 基于堆栈降噪自动编码器的电-气综合能源系统概率能流量计算方法
CN109066695A (zh) * 2018-09-29 2018-12-21 广东电网有限责任公司 一种两阶段线性化电气最优能流计算方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Equivalent Optimal Power Flow Method Considering Natural Gas Network Constraints";Wei Dai et al.;《IEEE》;20180531;全文 *
"一种考虑天然气系统动态过程的气电联合系统优化运行模型";艾小猛等;《电网技术》;20180228;第42卷;全文 *
"基于深度学习的概率能量流快速计算方法";余娟等;《中国电机工程学报》;20190105;第39卷;全文 *
"计及相关性的电—气互联系统概率最优潮流";孙国强等;《电力系统自动化》;20151010;第39卷;全文 *

Also Published As

Publication number Publication date
CN109902854A (zh) 2019-06-18
US20200257971A1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
CN109902854B (zh) 电-气互联系统最优潮流全线性模型的构建方法
Guo Application of full order sliding mode control based on different areas power system with load frequency control
Mosaad et al. LFC based adaptive PID controller using ANN and ANFIS techniques
CN110110496B (zh) 一种基于非线性系统建模的城市供水的可靠控制方法
Yao et al. Stochastic day-ahead scheduling of integrated energy distribution network with identifying redundant gas network constraints
CN106684857B (zh) 一种含统一潮流控制器的线性化最优潮流模型
WO2023000807A1 (zh) 一种快速灵活全纯嵌入式电力系统最优潮流评估方法
Teng et al. Efficient robust fuzzy model predictive control of discrete nonlinear time-delay systems via Razumikhin approach
CN108427288A (zh) 一类具有时变时延的网络化线性参数变化系统的h∞容错控制方法
Kalabić et al. Reduced order reference governor
Jeong et al. Locally recoverable coded matrix multiplication
Chen et al. Research on wind power prediction method based on convolutional neural network and genetic algorithm
Cai et al. Modeling for evaluation of safety instrumented systems with heterogeneous components
Liu et al. An improved spatial branch-and-bound algorithm for non-convex optimal electricity-gas flow
Ren et al. Static output feedback negative imaginary controller synthesis with an H∞ norm bound
Parastegari et al. AC constrained hydro-thermal generation scheduling problem: Application of Benders decomposition method improved by BFPSO
CN109066695A (zh) 一种两阶段线性化电气最优能流计算方法
Chiu et al. Robust output regulation of T--S fuzzy systems with multiple time-varying state and input delays
Chiacchiarini et al. Variable structure control with a second-order sliding condition: Application to a steam generator
Tahersima et al. Design of stable model reference adaptive system via Lyapunov rule for control of a chemical reactor
CN116565830A (zh) 一种基于电力场景概率驱动的软开关分布鲁棒优化方法
CN112925204B (zh) 基于加强学习的非仿射系统最优容错控制方法
Niu et al. Min-max linear programming model for multireservoir system operation with power deficit aspect
Zhu et al. ADP‐based decentralised algorithm for the optimal energy flow of the electricity–natural gas system
CN110969355A (zh) 增量风险事件的筛选方法、装置及计算机可读介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant