WO2023015693A1 - 一种超吸冲高回弹发泡材料、其制备方法及应用 - Google Patents

一种超吸冲高回弹发泡材料、其制备方法及应用 Download PDF

Info

Publication number
WO2023015693A1
WO2023015693A1 PCT/CN2021/121597 CN2021121597W WO2023015693A1 WO 2023015693 A1 WO2023015693 A1 WO 2023015693A1 CN 2021121597 W CN2021121597 W CN 2021121597W WO 2023015693 A1 WO2023015693 A1 WO 2023015693A1
Authority
WO
WIPO (PCT)
Prior art keywords
foaming
styrene
parts
foam
weight
Prior art date
Application number
PCT/CN2021/121597
Other languages
English (en)
French (fr)
Inventor
朱小平
李忠德
林宗隆
周剑锋
欧阳继承
雷世源
Original Assignee
安踏(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安踏(中国)有限公司 filed Critical 安踏(中国)有限公司
Publication of WO2023015693A1 publication Critical patent/WO2023015693A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/187Resiliency achieved by the features of the material, e.g. foam, non liquid materials
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B5/00Footwear for sporting purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2323/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2423/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides

Definitions

  • the invention belongs to the technical field of foaming materials, and in particular relates to a superabsorbent and high-impact rebounding foaming material, its preparation method and application.
  • the Chinese patent application number 201210170635.7 discloses an EVA foam shock-absorbing material and its preparation method, which is made of the following components in parts by weight: 10-30 parts of EVA; 10-30 parts of NBR; 30-50 parts of PVC; 10-20 parts of epoxy soybean oil; 10-20 parts of calcium carbonate; 1-3 parts of foaming agent; 0.5-1 part of cross-linking agent; 0.5-1 part of barium stearate; 1-3 parts of zinc oxide; plasticizer 10-15 parts of agent; 0.5-1 part of accelerator, but the rebound rate of the final foam material is only 14%.
  • the Chinese patent application number 201611170471.2 discloses an EVA foam damping and shock absorbing material, which contains the following components in parts by weight: 40-80 parts of styrene-butadiene rubber, 5-10 parts of EVA, azobisisobutyronitrile 2-5 parts, 0.1-0.5 parts of dibenzoyl peroxide, 1-3 parts of polyethylene glycol 400, 20-40 parts of PVC and 0.1-0.5 parts of 2-mercaptobenzothiazole. But the rebound rate of the final foamed material is only 11% to 15%.
  • the Chinese patent application number 201811288316.X discloses an EVA-based cushioning and shock-absorbing material and its preparation method.
  • the raw materials of the material include: 60-100 parts of EVA, 1-0 parts of silicon boron shear thickening gel, 2-40 parts of filler, 1-10 parts of foaming agent, 0.2-2 parts of bridging agent, 0.6-6 parts of accelerator, 0.5-2 parts of lubricant.
  • the rebound rate of the foaming material in the final embodiment is only 40%-52%
  • the tensile strength is 0.89-1.22MPa
  • the falling ball impact force is 468-827kg.
  • the degradation rate of molecular chain breakage is greater than the cross-linking speed of molecular chains, so PVC cannot be cross-linked in the formulation, resulting in a decrease in the mechanical properties of the final foamed material.
  • the addition of silicon boron shear thickening gel improves the cushioning and shock absorption performance, although the rebound performance is maintained, from the falling ball impact test data of the embodiment and the comparative example, the reduction after adding the silicon boron shear thickening gel The shock effect is not obvious, and the silicon-boron shear thickening gel in the system cannot produce foaming and crosslinking like EVA, and it only acts as a filler in the formula, resulting in a great decrease in the mechanical properties of the final foaming material.
  • the tensile strength is only about 1.0 MPa, which cannot meet the basic requirements of the mechanical properties of sports shoes.
  • the technical problem to be solved by the present invention is to provide a superabsorbent high impact rebound foaming material, its preparation method and application.
  • the invention provides a super-absorbent and high-impact rebound foaming material, which is formed from a foaming composition
  • the foaming composition comprises:
  • the number of carbon atoms of the isoolefin is 5-8; the number of carbon atoms of the straight-chain terminal olefin is 2-4.
  • the number of carbon atoms of the isoolefin is 5-6; the number of carbon atoms of the straight-chain terminal olefin is 3;
  • the molar content of vinyl acetate in the ethylene-vinyl acetate copolymer is 18% to 40%;
  • the crystallinity of the polyolefin elastomer is less than or equal to 20%;
  • the crystallinity of the EPDM rubber is less than or equal to 4%;
  • the styrenic polymer is selected from styrene-ethylene-butylene-styrene copolymer, hydrogenated styrene-ethylene-butylene-styrene copolymer, styrene-butylene-styrene copolymer and hydrogenated One or more of styrene-butylene-styrene copolymers.
  • the isoolefin is 1-isohexene and ⁇ or 4-methyl-2-pentene;
  • the straight-chain terminal olefin is propylene;
  • the molar content of styrene in the styrene-ethylene-butylene-styrene copolymer is lower than 33%;
  • the molar content of styrene in the styrene-butylene-styrene copolymer is less than or equal to 20%.
  • the glass transition temperature of the copolymer of isoolefin and linear terminal olefin is 25°C to 35°C;
  • the ethylene-vinyl acetate copolymer comprises EVA with a hardness of 82-90A and EVA with a hardness of 60-65A;
  • the hardness of the polyolefin elastomer is 52-70A;
  • the hardness of the styrene polymer is 40-60A.
  • the mass ratio of the EVA with a hardness of 82-90A to the EVA with a hardness of 60-65A is (3-5):1.
  • the copolymer of said isoolefin and linear terminal olefin is selected from Absortomer EP-1001;
  • the ethylene-vinyl acetate copolymer is selected from one or more of EVA7350M, EVA7470M and EVA33121;
  • the polyolefin elastomer is selected from one or more of POE 8180, POE8150 and POE7467;
  • the EPDM rubber is selected from EODM 5565;
  • the styrenic polymer is selected from SEBS YH688 and/or SBBS P1083.
  • the peroxide crosslinking agent is selected from dicumyl peroxide and/or 1,4-bis-tert-butylperoxycumene;
  • the blowing agent is selected from one or more of azodicarbonamide, expanded microspheres and 4,4'-oxobisbenzenesulfonyl hydrazide;
  • the foaming aid is selected from zinc oxide, stearic acid and zinc stearate;
  • the mass ratio of the zinc oxide, stearic acid and zinc stearate is (1-1.5):(0.8-1.2):0.8.
  • the present invention also provides a preparation method of the above-mentioned superabsorbent high impact rebound foaming material, comprising:
  • Copolymers of isoolefins and linear terminal olefins, ethylene-vinyl acetate copolymers, polyolefin elastomers, EPDM rubber, styrene polymers, peroxide crosslinking agents, foaming agents and foaming aids After the agent is mixed, granulated and foamed, a super-absorbent high-strength rebound foam material is obtained.
  • the mixing specifically includes mixing the peroxide crosslinking agent and the foaming agent, adding foaming aids and mixing when the temperature rises to 80°C to 85°C, and mixing when the temperature rises to 90°C to 90°C.
  • adding copolymers of isoolefins and linear terminal olefins, ethylene-vinyl acetate copolymers, polyolefin elastomers, EPDM rubber and styrene polymers and mix until the temperature rises to 100°C ⁇ 110°C to obtain the mixed material;
  • the granulation specifically includes: granulating the mixed materials to obtain pellets; the heating temperature of the granulation is 75°C-90°C; the speed of the screw during granulation is 40-50 rpm; The speed is 15-20 rpm;
  • the foaming is injection foaming molding or secondary compression molding foaming
  • the injection foam molding specifically includes: injecting pellets into a molding mold, heating and foaming to obtain a foam-molded material; baking the foam-molded material to obtain a super-absorbent high-rebound foam material; the injection temperature is 80°C to 95°C; the heating and foaming molding temperature is 160°C to 180°C; the heating and foaming molding time is 500 to 700s; the baking temperature is 80 °C ⁇ 100°C; the baking speed is 60 ⁇ 70 rpm; the baking time is 30 ⁇ 40min;
  • the secondary molding and foaming is specifically: adding pellets into a mold for molding and foaming to obtain a molded and foamed semi-finished product; performing flat plate foaming on the molded and foamed semi-finished product to obtain a super-absorbent high-strength rebound foam.
  • Foaming material the temperature of the molded foam is 170 °C ⁇ 180 °C; the time of the molded foam is 600 ⁇ 700s; the temperature of the flat foam is 170 °C ⁇ 180 °C; the time of the flat foam is 350 ⁇ 500s .
  • the present invention also provides the application of the above-mentioned superabsorbent high-impact rebounding foam material as the midsole material of sports shoes.
  • the invention provides a super-absorbent high-impact rebounding foaming material, which is formed from a foaming composition: the foaming composition includes: 10-35 parts by weight of a copolymer of isoolefin and linear terminal olefin; ethylene-acetic acid 40-60 parts by weight of ethylene copolymer; 5-20 parts by weight of polyolefin elastomer; 5-10 parts by weight of EPDM rubber; 5-15 parts by weight of styrene polymer; Parts by weight; 1-5 parts by weight of foaming agent; 1-5 parts by weight of foaming aid; the number of carbon atoms of the isoolefin is 5-8; the number of carbon atoms of the straight-chain terminal olefin is 2-4.
  • the present invention adopts a copolymer of stress-absorbing polymer isoolefin and straight-chain terminal olefin with relatively large steric hindrance generated by controlling the molecular structure with nanotechnology. It has an ultra-high damping factor, and after it is blended and foamed with high-elastic polymers such as EVA, POE, EPDM, and styrene-butadiene elastomers, it has not only excellent stress absorption at room temperature , stress relaxation and damping effect, and maintain a foaming material with a rebound rate >50%; at the same time, it is matched with a polymer with low crystallinity or high flexibility to improve the resilience of the foaming material, making the foaming material At the same time, it has super shock absorption and high resilience, so that when the foam material is subjected to impact or vibration, the material will automatically convert the impact energy into heat energy absorption. It can be used as the midsole material of sports shoes to make the foot The counter-impact
  • Fig. 1 is the schematic flow chart of injection foam molding process
  • Figure 2 is a schematic flow chart of the secondary compression molding foaming process.
  • the invention provides a super-absorbent and high-impact rebound foaming material, which is formed from a foaming composition
  • the foaming composition comprises:
  • the number of carbon atoms of the isoolefin is 5-8; the number of carbon atoms of the straight-chain terminal olefin is 2-4.
  • the most important thing for a material to obtain excellent impact-absorbing ability is strong shock-absorbing ability, and the shock-absorbing performance of polymer materials is closely related to the dynamic viscoelasticity of polymers.
  • the deformation of the polymer under alternating stress is produced by the movement of the chain segment. When the chain segment moves, it is affected by internal friction resistance. When the external force changes, the movement of the chain segment cannot keep up with the change of the external force, so the deformation lags behind the stress, resulting in a phase difference ⁇ , the larger the ⁇ , the more difficult the movement of the chain segment, and the less the deformation can keep up with the change of the force, which is called the hysteresis phenomenon.
  • each cyclic change will consume active work (heat energy), which is called mechanical loss or internal friction.
  • heat energy active work
  • This ability to generate hysteresis loss by friction and then convert mechanical energy into heat energy is called the damping and shock absorption capacity of the material.
  • the hysteresis and internal friction characteristics of polymers are usually expressed by loss factor tan ⁇ . The larger the loss factor tan ⁇ , the greater the hysteresis and internal friction of the polymer, and the more obvious the shock absorption effect.
  • the loss factor tan ⁇ of polymer materials is related to the structure of the material itself.
  • the present invention selects a stress-absorbing polymer with larger steric hindrance generated by controlling the molecular structure with nanotechnology, a copolymer of isoolefin and linear terminal olefin, and the polymer can make the polymer at room temperature
  • the viscous property is maximized and has a high damping factor at room temperature. Therefore, when subjected to impact or vibration at room temperature, the material will automatically convert the impact energy into heat energy absorption. Macroscopically, it shows excellent stress absorption, stress Easing and damping shock absorption effect.
  • the number of carbon atoms of the isoolefin is 5-8, preferably 5-7, more preferably 5-6; the number of carbon atoms of the straight-chain terminal olefin is 2-4, preferably 3-4 , more preferably 3; further preferably, the isoolefin is 1-isohexene and ⁇ or 4-methyl-2-pentene; the straight-chain terminal olefin is propylene; the isoolefin and straight-chain terminal olefin
  • the glass transition temperature of the copolymer is preferably 25° C. to 35° C., more preferably 30° C.; the glass transition temperature of the polymer is in the range of room temperature, so it can have good stress absorption at room temperature.
  • the copolymer of the isoolefin and the linear terminal olefin is Absorbomer EP-1001; in the examples provided by the present invention, the content of the copolymer of the isoolefin and the linear terminal olefin Specifically, it is 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight or 35 parts by weight.
  • the molar content of vinyl acetate in the ethylene-vinyl acetate copolymer is preferably 18% to 40%, more preferably 18% to 35%, and more preferably 18% to 33%.
  • the ethylene-vinyl acetate copolymer preferably includes EVA with a hardness of 82-90A and EVA with a hardness of 60-65A, more preferably EVA with a hardness of 82-90A and EVA with a hardness of 62-63A;
  • the VA content is low, which can provide mechanics and good formability in the formula; while the VA content in the low-hardness EVA is high, the higher the content, the better the elasticity, and the higher the polarity, which is conducive to improving the adhesion of the material.
  • the mass ratio of the EVA whose hardness is 82 ⁇ 90A to the EVA whose hardness is 60 ⁇ 65A is preferably (3 ⁇ 5):1; in the embodiment provided by the present invention, the EVA whose hardness is 82 ⁇ 90A and the hardness
  • the EVA mass ratio of 60-65A is specifically 5:1, 4.5:1, 4:1, 3.5:1 or 3:1; in the present invention, most preferably, the ethylene-vinyl acetate copolymer is EVA7350M , one or more of EVA7470M and EVA33121, more preferably two or more of them;
  • the content is specifically 60 parts by weight, 55 parts by weight, 50 parts by weight, 45 parts by weight or 40 parts by weight.
  • the present invention scientifically mixes low crystallinity or high flexibility polymer polyolefin elastomer and EPDM rubber in the composition. with styrenic polymers.
  • the crystallinity of the polyolefin elastomer is preferably less than or equal to 20%; the hardness of the polyolefin elastomer is preferably 52-70A; in the present invention, the most preferably, the polyolefin elastomer is POE8180, POE8150 One or more of POE7467; in the embodiments provided by the present invention, the content of the polyolefin elastomer in the foaming composition is specifically 10 parts by weight, 20 parts by weight, 5 parts by weight or 15 parts by weight.
  • the crystallinity of the EPDM is preferably less than or equal to 4%, more preferably 1% to 4%; in the present invention, most preferably, the EPDM is EODM 5565; provided in the present invention
  • the content of the EPDM rubber in the foaming composition is specifically 10 parts by weight or 5 parts by weight.
  • the hardness of the styrene polymer is preferably 40-60A, more preferably 43-56A; the styrene polymer is preferably styrene-ethylene-butylene-styrene copolymer, hydrogenated styrene-ethylene - one or more of butylene-styrene copolymer, styrene-butylene-styrene copolymer and hydrogenated styrene-butylene-styrene copolymer; wherein, the styrene-ethylene-butylene
  • the molar content of styrene in the vinyl-styrene copolymer is preferably lower than 33%, more preferably lower than or equal to 30%, more preferably lower than or equal to 20%; The molar content is preferably less than or equal to 20%; in the present invention, most preferably, the styrenic polymer is SEBS YH688 and/or SBBS
  • the peroxide crosslinking agent is used as the vulcanizing agent;
  • the peroxide crosslinking agent is preferably dicumyl peroxide and/or 1,4-bis-tert-butylperoxyiso Propylbenzene, more preferably DCP PERKADOX BC-FF and/or BIBP PERKADOX 14S-FL;
  • the content of the peroxide crosslinking agent is preferably 0.4 to 0.8 parts by weight, more preferably 0.6 to 0.7 parts by weight; in this paper
  • the content of the peroxide crosslinking agent in the foaming composition is specifically 0.65 parts by weight.
  • the foaming agent is preferably one or more of azodicarbonamide, expanded microspheres and 4,4'-oxobisbenzenesulfonyl hydrazide; in the examples provided by the present invention, the foaming The agent is specifically foaming agent AC6000H; the content of the foaming agent is preferably 1-4 parts by weight, more preferably 2-3 parts by weight, and more preferably 2.5 parts by weight.
  • the foaming aid is preferably zinc oxide, stearic acid and zinc stearate; the mass ratio of zinc oxide, stearic acid and zinc stearate is preferably (1-1.5): (0.8-1.2): 0.8, more preferably (1 ⁇ 1.4): (0.9 ⁇ 1.1): 0.8, more preferably 1.2: 1: 0.8; the content of the foaming aid in the foaming composition provided by the present invention is preferably 1 ⁇ 4 parts by weight , More preferably 2 to 3 parts by weight.
  • the present invention adopts a copolymer of a stress-absorbing polymer isoolefin and linear terminal olefin with relatively large steric hindrance produced by controlling the molecular structure with nanotechnology, and the polymer has an ultra-high damping factor at room temperature
  • high-elastic polymers such as EVA, POE, EPDM, and styrene-butadiene elastomers
  • the foam material Shock effect, and maintain the foam material with a rebound rate of >50%; at the same time, it is matched with a polymer with low crystallinity or high flexibility to improve the resilience of the foam material, making the foam material both super absorbent and high Rebound, so that when the foam material is impacted or vibrated, the material will automatically convert the impact energy into heat energy absorption, and it can be used as the midsole material of sports shoes to reduce the impact force received by the foot during exercise by 32 % to 57%, thereby reducing sports damage and benefiting the health of consumers.
  • the present invention also provides a method for preparing the above-mentioned superabsorbent high-impact rebounding foaming material, which includes: a copolymer of isoolefin and linear terminal olefin, ethylene-vinyl acetate copolymer, polyolefin elastomer, terpolymer After the propylene rubber, styrene polymer, peroxide crosslinking agent, foaming agent and foaming aid are mixed, granulated and foamed, a superabsorbent and high-impact rebound foaming material is obtained.
  • the present invention has no special limitation on the sources of all raw materials, which can be commercially available.
  • the copolymer of isoolefin and straight-chain terminal olefin, ethylene-vinyl acetate copolymer, polyolefin elastomer, EPDM rubber, styrene polymer, peroxide crosslinking agent, foaming agent and foaming agent The contents and types of auxiliary agents are the same as those described above, and will not be repeated here.
  • this step is preferably specifically: mixing the peroxide crosslinking agent and foaming agent, adding foaming aids to mix when the temperature rises to 80 ° C ⁇ 85 ° C, and mixing the foaming agent when the temperature rises When the temperature reaches 90°C to 95°C, add the copolymer of isoolefin and linear terminal olefin, ethylene-vinyl acetate copolymer, polyolefin elastomer, EPDM rubber and styrene polymer and mix until the temperature rises When the temperature reaches 100° C. to 110° C., a mixed material is obtained; the mixing is preferably carried out in an internal mixer.
  • the mixed material is granulated to obtain pellets; the granulation is preferably carried out in a granulator; the heating temperature of the granulation is preferably 75°C to 90°C; in the present invention, it is preferably divided into four heating zone; the temperature of the first heating zone is preferably 75°C, the temperature of the second heating zone is preferably 80°C, the temperature of the third heating zone is preferably 85°C, and the temperature of the fourth heating zone is preferably 95°C; during granulation, the screw
  • the rotation speed of the pelletizer is preferably 40-50 rpm; the cutting speed is preferably 15-20 rpm; cooling is required during the granulation process. If water cooling is used, the prepared pellets need to be added to the dryer for drying and dehydration. , if air cooling is used, it can be used directly.
  • IP process injection foaming
  • MD process secondary molding foaming
  • the foaming is injection foam molding, it is preferably specifically as follows: injecting the pellets into a molding mold, heating and foaming to obtain a foam-molded material; baking the foam-molded material to obtain a super Suction and high resilience foaming material; the molding die and the injection amount can be set according to the expansion ratio.
  • the expansion ratio is preferably 1.2 to 2, more preferably 1.4 to 1.8, and more preferably 1.5;
  • the injection temperature is preferably 80°C to 95°C; in the present invention, the injection heating zone is preferably divided into four; the temperature of the first zone is preferably 80°C, and the temperature of the second zone is preferably 85°C, The temperature of the third zone is preferably 90°C, and the temperature of the fourth zone is preferably 95°C; the temperature of the heating and foaming molding is preferably 160°C to 180°C, more preferably 165°C to 175°C, and more preferably 170°C
  • the heating and foaming time is preferably 500-700s;
  • the baking temperature is preferably 80°C-100°C; in the present invention, the baking is preferably divided into four temperature zones, the first zone The temperature is preferably 80°C in the first zone, 90°C in the second zone, 95°C in the third zone, and 100°C in the fourth zone; the baking speed is preferably 60-70 rpm;
  • the foaming is secondary molding and foaming, it is preferably specifically: adding the pellets into the mold for molding and foaming to obtain a molded and foamed semi-finished product; performing flat plate foaming on the molded and foamed semi-finished product, Obtain a super-absorbent and high-strength rebound foaming material;
  • the temperature of the molded foam is preferably 170°C to 180°C, more preferably 175°C;
  • the time of the molded foam is preferably 600 to 700s, more preferably 640 to 680s, It is more preferably 660s;
  • the temperature of the foaming of the flat plate is preferably 170°C to 180°C, more preferably 175°C;
  • the time of foaming of the flat plate is preferably 350 to 500s, more preferably 400 to 450s, and more preferably 420 to 430s
  • cooling is preferably carried out after the flat panel is foamed; the cooling is preferably carried out with cooling water; the temperature of the cooling water is
  • the present invention also provides the application of the above-mentioned superabsorbent high-impact rebounding foam material as the midsole material of sports shoes.
  • DCP and foaming agent are weighed as the first group of materials; stearic acid, zinc stearate and zinc oxide are weighed as the second group of materials; The remaining materials are weighed for the third group of materials.
  • Material making Pour the mixed material into the material making machine, and adjust the temperature of the first, second, third, and fourth zones to 75°C, 80°C, 85°C, and 90°C respectively. And the screw speed is adjusted to 40-50 rpm, and the cutting speed is adjusted to 15-20 rpm.
  • Foaming Pour the prepared pellets into the injection foam molding machine, adjust the temperature of the first, second, third, and fourth feeding zones to 80°C, 85°C, 90°C, and 95°C respectively, and the temperature of the forming mold is up and down
  • the templates were respectively adjusted to: 170°C and 170°C.
  • the amount of material is set according to the amount of the mold (the mold size is 18cm*10cm*1cm, according to the expansion ratio of 1.5, the amount of material can be set to 120g), and the vulcanization time is 600 seconds.
  • Baking Adjust the temperature of the first, second, third, and fourth zones of warm baking to 80°C, 90°C, 95°C, 100°C, and the speed is 60 rpm; send the foamed foamed material into the oven The length of the oven is 30 meters; the baking time from the beginning to the end is 40 minutes.
  • ZnO 997 Baishi brand zinc oxide, relative density is 4.42-4.45.
  • Zinc stearate Huzhou Linghu Xinwang Chemical Co., Ltd.
  • Foaming agent AC6000H Hangzhou Haihong Fine Chemical Co., Ltd.
  • Example 10 Example 11 1 Density g/cm 3 DIN 53479 0.172 0.170 0.179 0.167 2 Hardness C DIN 55305 48 47 49 49 3 bounce % DIN 53512 59 60 59 56 4 Falling ball impact force KN EN1621-1:2012 2.9 2.7 3.2 3.0 5 Falling ball impact force kg EN1621-1:2012 295.9 275.5 326.5 306.1 6 Shock absorption G value ASTM F1614-99 11.4 11.3 11.5 11.1 7 Layer tear N/CM DIN 53507-B twenty four 25 26 twenty four 8 Tensile strength MPa DIN 53543 2.5 2.4 2.9 2.8 9 Compression deformation% ASTM-D.395-B 35 34 32 30
  • the addition amount of EP-1001 is 40 parts, the rebound rate is 39%, which does not meet the rebound requirement of the middle bottom of sports shoes; while embodiment 1 ⁇ 11 is EP-1001 added in different proportions of 10 ⁇ 35 parts.
  • the test shows that adding 10, 15, 20, 25, 30, 35 parts of EP-1001 compared with 0 parts, the impact force of the falling ball has decreased respectively 32.8%, 37.7%, 45.9%, 52.5%, 55.8%, 57.3%, although the rebound rate decreased by 7.4%, 10.3%, 11.8%, 14.7%, 19.2%, 25%, but basically remained above 50%, It can meet the rebound demand of the midsole of sports shoes.
  • the addition amount of the large steric hindrance polymer of the patent of the present invention is preferably 15-30 parts.
  • the shock-absorbing shock-absorbing foaming material prepared by the present invention has excellent stress resistance at room temperature due to the use of a large steric hindrance polymer with a high damping factor.
  • Absorbing and shock-absorbing foaming material the falling ball impact test of the foaming material is ⁇ 4.1KN (or ⁇ 418kg), compared with the non-added comparative foaming material, the impact force has dropped by 32% to 57% ;
  • the magnitude of impact reduction is more obvious.
  • the shock-absorbing and shock-absorbing foaming material prepared by the present invention has obtained A foam material with super-absorbent impact and rebound is adopted, and the rebound rate of the foam material is >50%. Compared with the existing shock-absorbing material whose rebound rate is lower than 16%, the rebound rate has been increased by more than 34%, which fully meets the consumer's requirements for the rebound performance of sports shoes and excellent sports experience.
  • the super-absorbing and high-rebounding foaming material prepared by the present invention not only has excellent impact-absorbing effect and good rebound performance, but also the various polymers adopted in the formula All have foamability and can be cross-linked with peroxide, so the physical properties of the final foamed material fully meet the mechanical requirements of the midsole of sports shoes.

Abstract

本发明提供了一种超吸冲高回弹发泡材料,由发泡组合物形成:所述发泡组合物包括:异烯烃与直链端烯烃的共聚物10~35重量份;乙烯-乙酸乙烯共聚物40~60重量份;聚烯烃弹性体5~20重量份;三元乙丙橡胶5~10重量份;苯乙烯类聚合物5~15重量份;过氧化物交联剂0.1~1重量份;发泡剂1~5重量份;发泡助剂1~5重量份;所述异烯烃的碳原子数为5~8;所述直链端烯烃的碳原子数为2~4。与现有技术相比,本发明采用了具有较大空间位阻的应力吸收聚合物异烯烃与直链端烯烃的共聚物与高弹聚合物共混发泡后得到了一种在室温条件下不仅具有优异的应力吸收性、应力缓和性和阻尼减震效果,而且保持回弹率>50%的发泡材料。

Description

一种超吸冲高回弹发泡材料、其制备方法及应用
本申请要求于2021年08月09日提交中国专利局、申请号为202110907782.7、发明名称为“一种超吸冲高回弹发泡材料、其制备方法及应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于发泡材料技术领域,尤其涉及一种超吸冲高回弹发泡材料、其制备方法及应用。
背景技术
牛顿第三定律指出,当对某物施加一个力的同时,必定会得到一个大小相同、方向相反的力,称之为反作用力。相对于跑步来说,在落地的时候由于重力的关系,会给地面一个垂直向下的冲击力,而地面会给我们一个向上的反作用力。这个反作用力会通过肌肉和关节的缓冲而消弭。但如果冲击力过大或者缓冲不当,这个反作用力就可能就会给骨骼、关节带来损伤。在运动过程中,随着运动速度的不同,足部会受到1.3~3倍重力大小的反冲击力,运动速度越快,跑步者体重越大,缓冲能力能差,当然所受到的力的加载速率越大,受到的反冲击力越大。因此开发一种具有超高吸冲能力的中底材料势在必行。
但吸冲减震性能优异的聚合物其回弹性能差,而不管是跑鞋还是篮球鞋,越来越追求发泡中底的回弹性能,消费者在穿着回弹差的运动鞋时不管是跑步还是弹跳,因为没有充足的能量回馈而容易产生泄力感,不仅影响运动成绩而且容易疲劳,影响了运动体验。
申请号为201210170635.7的中国专利公开了一种EVA发泡减震材料及其制备方法,由如下重量份数的组分制成:EVA 10-30份;NBR10~30份;PVC 30~50份;环氧大豆油10~20份;碳酸钙10~20份;发泡剂1~3份;交联剂0.5~1份;硬脂酸钡0.5~1份;氧化锌1~3份;增塑剂10~15份;促进剂0.5~1份,但最终的发泡材料的回弹率只有14%。
申请号为201611170471.2的中国专利公开了一种EVA发泡阻尼减震材料,其包含以重量份数计的下列组分:丁苯橡胶40~80份、EVA5~10份、偶氮二异丁腈2~5份、过氧化二苯甲酰0.1~0.5份、聚乙二醇400 1~3份、PVC 20~40份和2-巯基苯并噻唑0.1~0.5份。但最终的发泡材料的回弹率只有11%~15%。
申请号为201811288316.X的中国专利公开了一种EVA基缓冲减震材料及其制备方法,所述材料的原料包括:60~100份EVA、1~0份硅硼剪切增稠凝胶、2~40份填料、1~10份发泡剂、0.2~2份架桥剂、0.6-6份促进剂、0.5-2份润滑剂。但最终实施例的发泡材料的回弹率仅为40%~52%,拉伸强度0.89~1.22MPa,落球冲击力468~827kg。
可见,在已公布的专利或者文献中,现有EVA发泡减震材料,若添加NBR/PVC提升发泡材料的减震性能,或添加SBR/PVC提升发泡材料的减震性能,都会导致发泡材料的回弹性能大大降低,回弹率低于16%,不符合目前消费者对运动鞋的高回弹性能要求,而且PVC的分子结构中的碳属于叔碳基,在过氧化物交联体系中,其分子链断裂降解速度大于分子链的交联速度,因此PVC在配方中无法交联,导致最终发泡材料的力学性能下降。若添加硅硼剪切增稠凝胶提升缓冲减震性能,虽然保持了回弹性能,但从实施例和对照例的落球冲击测试数据来看,添加硅硼剪切增稠凝胶后的减震效果不明显,而且体系中的硅硼剪切增稠凝胶无法和EVA一样产生发泡和交联,在配方中仅仅起到了填充剂的作用,导致最终发泡材料的力学性能大大降低,拉伸强度仅1.0MPa左右,不能够满足运动鞋的力学性能基本要求。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种超吸冲高回弹发泡材料、其制备方法及应用。
本发明提供了一种超吸冲高回弹发泡材料,由发泡组合物形成;
所述发泡组合物包括:
Figure PCTCN2021121597-appb-000001
所述异烯烃的碳原子数为5~8;所述直链端烯烃的碳原子数为2~4。
优选的,所述异烯烃的碳原子数为5~6;所述直链端烯烃的碳原子数为3;
所述乙烯-乙酸乙烯共聚物中乙酸乙烯的摩尔含量为18%~40%;
所述聚烯烃弹性体的结晶度小于等于20%;
所述三元乙丙橡胶的结晶度小于等于4%;
所述苯乙烯类聚合物选自苯乙烯-乙烯-丁烯-苯乙烯共聚物、氢化的苯乙烯-乙烯-丁烯-苯乙烯共聚物、苯乙烯-丁烯-苯乙烯共聚物与氢化的苯乙烯-丁烯-苯乙烯共聚物中的一种或多种。
优选的,所述异烯烃为1-异己稀和\或4-甲基-2-戊烯;所述直链端烯烃为丙烯;
所述苯乙烯-乙烯-丁烯-苯乙烯共聚物中苯乙烯的摩尔含量低于33%;
所述苯乙烯-丁烯-苯乙烯共聚物中苯乙烯的摩尔含量低于等于20%。
优选的,所述异烯烃与直链端烯烃的共聚物的玻璃化转变温度为25℃~35℃;
所述乙烯-乙酸乙烯共聚物包含硬度为82~90A的EVA与硬度为60~65A的EVA;
所述聚烯烃弹性体的硬度为52~70A;
所述苯乙烯类聚合物的硬度为40~60A。
优选的,所述硬度为82~90A的EVA与硬度为60~65A的EVA的质量比为(3~5):1。
优选的,所述异烯烃与直链端烯烃的共聚物选自Absortomer EP-1001;
所述乙烯-乙酸乙烯共聚物选自EVA7350M、EVA7470M与EVA33121中的一种或多种;
所述聚烯烃弹性体选自POE 8180、POE8150与POE7467中的一种或多种;
所述三元乙丙橡胶选自EODM 5565;
所述苯乙烯类聚合物选自SEBS YH688和/或SBBS P1083。
优选的,所述过氧化物交联剂选自过氧化二异丙苯和/或1,4-双叔丁基过氧异丙基苯;
所述发泡剂选自偶氮二甲酰胺、膨胀微球与4,4'-氧代双苯磺酰肼中的一种 或多种;
所述发泡助剂选自氧化锌、硬脂酸与硬脂酸锌;
所述氧化锌、硬脂酸与硬脂酸锌的质量比为(1~1.5):(0.8~1.2):0.8。
本发明还提供了一种上述超吸冲高回弹发泡材料的制备方法,包括:
将异烯烃与直链端烯烃的共聚物、乙烯-乙酸乙烯共聚物、聚烯烃弹性体、三元乙丙橡胶、苯乙烯类聚合物、过氧化物交联剂、发泡剂与发泡助剂混炼、造粒、发泡后,得到超吸冲高回弹发泡材料。
优选的,所述混炼具体为:将过氧化物交联剂与发泡剂混炼,待温度升高到80℃~85℃加入发泡助剂混炼,待温度升高到90℃~95℃时,加入异烯烃与直链端烯烃的共聚物、乙烯-乙酸乙烯共聚物、聚烯烃弹性体、三元乙丙橡胶与苯乙烯类聚合物混炼,待温度升高到100℃~110℃,得到混炼的物料;
所述造粒具体为:将混炼的物料进行造粒,得到粒料;所述造粒的加热温度为75℃~90℃;造粒时螺杆的转速为40~50转/min;切料转速为15~20转/min;
所述发泡为注射发泡成型或二次模压成型发泡;
所述注射发泡成型具体为:将粒料注入成型模具中,加热发泡成型,得到发泡成型的材料;将所述发泡成型的材料进行烘烤,得到超吸冲高回弹发泡材料;所述注入的温度为80℃~95℃;所述加热发泡成型的温度为160℃~180℃;所述加热发泡成型的时间为500~700s;所述烘烤的温度为80℃~100℃;烘烤的转速为60~70转/min;烘烤的时间为30~40min;
所述二次模压成型发泡具体为:将粒料加入模具中进行模压发泡,得到模压发泡的半成品;将所述模压发泡的半成品进行平板发泡,得到超吸冲高回弹发泡材料;所述模压发泡的温度为170℃~180℃;模压发泡的时间为600~700s;所述平板发泡的温度为170℃~180℃;平板发泡的时间为350~500s。
本发明还提供了上述超吸冲高回弹发泡材料作为运动鞋中底材料的应用。
本发明提供了一种超吸冲高回弹发泡材料,由发泡组合物形成:所述发泡组合物包括:异烯烃与直链端烯烃的共聚物10~35重量份;乙烯-乙酸乙烯共聚物40~60重量份;聚烯烃弹性体5~20重量份;三元乙丙橡胶5~10重量份;苯乙烯类聚合物5~15重量份;过氧化物交联剂0.1~1重量份;发泡剂1~5重量份;发泡助剂1~5重量份;所述异烯烃的碳原子数为5~8;所述直链端烯烃 的碳原子数为2~4。与现有技术相比,本发明采用了一种以纳米技术控制分子结构而生成的具有较大空间位阻的应力吸收聚合物异烯烃与直链端烯烃的共聚物,该聚合物在室温条件下具有超高的阻尼因子,其与EVA、POE、EPDM、苯乙烯-丁二烯类弹性体等高弹聚合物共混发泡后得到了一种在室温条件下不仅具有优异的应力吸收性、应力缓和性和阻尼减震效果,而且保持回弹率>50%的发泡材料;同时搭配低结晶度或者高柔顺性的聚合物,从而提升发泡材料的回弹性,使得该发泡材料同时具有超吸冲与高回弹,进而使该发泡材料在受到冲击力或者振动时,材料会自动地将冲击能转化为热能吸收,用作运动鞋中底材料可以使运动过程中足部受到的反冲击力降低32%~57%,从而降低运动损害,有利于消费者身体健康。
附图说明
图1为注射发泡成型工艺的流程示意图;
图2为二次模压成型发泡工艺的流程示意图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种超吸冲高回弹发泡材料,由发泡组合物形成;
所述发泡组合物包括:
Figure PCTCN2021121597-appb-000002
所述异烯烃的碳原子数为5~8;所述直链端烯烃的碳原子数为2~4。
众所周知,一种材料要获得优异的吸冲能力最重要的是减震能力强,而高分子材料的减震性能与聚合物的动态粘弹性息息相关。聚合物在交变应力下形变由链段运动产生,链段运动时受内摩擦阻力作用,外力变化时,链段的运动还跟不上外力的变化,所以形变落后于应力,产生一个位相差δ,δ越大说明链段运动越困难,形变越跟不上力的变化,称为滞后现象。如果形变的变化跟不上应力的变化,发生了滞后现象,则每一次循环变化就会有功的消耗(热能),称为力学损耗,也叫内耗。这种由摩擦产生滞后损耗进而将机械能转变为热能的能力称为材料的阻尼减震能力。聚合物的滞后和内耗特性通常用损耗因子tanδ表示,损耗因子tanδ越大,聚合物的滞后和内耗越大,减震效果越明显。高分子材料的损耗因子tanδ的大小与材料的本身结构有关,由基团贡献理论可知,分子链上侧基体积大、数量多、极性大以及分子间氢键多、作用强的高分子材料,其内旋转活化能和分子间的作用力大,链段运动的内摩擦阻力大,因而滞后大,内耗大,减震性能好。
因此,本发明选择一种以纳米技术控制分子结构而生成的具有较大空间位阻的应力吸收聚合物,异烯烃与直链端烯烃的共聚物,该聚合物在室温条件下使聚合物的粘性性质最大化,并在室温条件下具有较高的阻尼因子,因此在室温受到冲击力或者振动时,材料会自动地将冲击能转化为热能吸收,宏观上表现为优异的应力吸收性、应力缓和性和阻尼减震效果。其中,所述所述异烯烃的碳原子数为5~8,优选为5~7,更优选为5~6;所述直链端烯烃的碳原子数为2~4,优选为3~4,更优选为3;进一步优选地,所述异烯烃为1-异己稀和\或4-甲基-2-戊烯;所述直链端烯烃为丙烯;所述异烯烃与直链端烯烃的共聚物的玻璃化转变温度优选为25℃~35℃,更优选为30℃;该聚合物的玻璃化温度在室温范围内,因此能在室温下具有很好的应力吸收性。在本发明中,最优选地,所述异烯烃与直链端烯烃的共聚物为Absortomer EP-1001;在本发明提供的实施例中,所述异烯烃与直链端烯烃的共聚物的含量具体为10重量份、15重量份、20重量份、25重量份、30重量份或35重量份。
本发明提供发泡组合物中,所述乙烯-乙酸乙烯共聚物中乙酸乙烯的摩尔含量优选为18%~40%,更优选为18%~35%,再优选为18%~33%;所述乙烯-乙酸乙烯共聚物优选包含硬度为82~90A的EVA与硬度为60~65A的EVA, 更优选包含硬度为82~90A的EVA与硬度为62~63A的EVA;高硬度的EVA中的VA含量低,在配方中可提供力学和良好的成型性;而低硬度的EVA中的VA含量高,含量越高,弹性越好,而且极性越高,有利于提升材料的贴合性。所述硬度为82~90A的EVA与硬度为60~65A的EVA的质量比优选为(3~5):1;在本发明提供的实施例中,所述硬度为82~90A的EVA与硬度为60~65A的EVA的质量比具体为5:1、4.5:1、4:1、3.5:1或3:1;在本发明中,最优选地,所述乙烯-乙酸乙烯共聚物为EVA7350M、EVA7470M与EVA33121中的一种或多种,更优选为其中的两种或两种以上;在本发明提供的实施例中,发泡组合物中所述乙烯-乙酸乙烯共聚物中乙酸乙烯的含量具体为60重量份、55重量份、50重量份、45重量份或40重量份。
为了使发泡材料同时具有较好的吸冲减震性能与较好的会弹性,本发明在组合物中科学搭配低结晶度或者高柔顺性的聚合物聚烯烃弹性体、三元乙丙橡胶与苯乙烯类聚合物。
其中,所述聚烯烃弹性体的结晶度优选小于等于20%;所述聚烯烃弹性体的硬度优选为52~70A;在本发明中,最优选地,所述聚烯烃弹性体为POE8180、POE8150与POE7467中的一种或多种;在本发明提供的实施例中,发泡组合物中所述聚烯烃弹性体的含量具体为10重量份、20重量份、5重量份或15重量份。
所述三元乙丙橡胶的结晶度优选小于等于4%,更优选为1%~4%;在本发明中,最优选地,所述三元乙丙橡胶为EODM 5565;在本发明提供的实施例中,发泡组合物中所述三元乙丙橡胶的含量具体为10重量份或5重量份。
所述苯乙烯类聚合物的硬度优选为40~60A,更优选为43~56A;所述苯乙烯类聚合物优选为苯乙烯-乙烯-丁烯-苯乙烯共聚物、氢化的苯乙烯-乙烯-丁烯-苯乙烯共聚物、苯乙烯-丁烯-苯乙烯共聚物与氢化的苯乙烯-丁烯-苯乙烯共聚物中的一种或多种;其中,所述苯乙烯-乙烯-丁烯-苯乙烯共聚物中苯乙烯的摩尔含量优选低于33%,更优选低于等于30%,再优选低于等于20%;所述苯乙烯-丁烯-苯乙烯共聚物中苯乙烯的摩尔含量优选低于等于20%;在本发明中,最优选地,所述苯乙烯类聚合物为SEBS YH688和/或SBBS P1083;在本发明提供的实施例中,发泡组合物中所述苯乙烯类聚合物具体为10重量份、 5重量份或15重量份。
本发明提供的发泡组合物中以过氧化物交联剂为硫化剂;所述过氧化物交联剂优选为过氧化二异丙苯和/或1,4-双叔丁基过氧异丙基苯,更优选为DCP PERKADOX BC-FF和/或BIBP PERKADOX 14S-FL;所述过氧化物交联剂的含量优选为0.4~0.8重量份,更优选为0.6~0.7重量份;在本发明提供的实施例中,发泡组合物中所述过氧化物交联剂的含量具体为0.65重量份。
所述发泡剂优选为偶氮二甲酰胺、膨胀微球与4,4'-氧代双苯磺酰肼中的一种或多种;在本发明提供的实施例中,所述发泡剂具体为发泡剂AC6000H;所述发泡剂的含量优选为1~4重量份,更优选为2~3重量份,再优选为2.5重量份。
所述发泡助剂优选为氧化锌、硬脂酸与硬脂酸锌;所述氧化锌、硬脂酸与硬脂酸锌的质量比优选为(1~1.5):(0.8~1.2):0.8,更优选为(1~1.4):(0.9~1.1):0.8,再优选为1.2:1:0.8;本发明提供的发泡组合物中发泡助剂的含量优选为1~4重量份,更优选为2~3重量份。
本发明采用了一种以纳米技术控制分子结构而生成的具有较大空间位阻的应力吸收聚合物异烯烃与直链端烯烃的共聚物,该聚合物在室温条件下具有超高的阻尼因子,其与EVA、POE、EPDM、苯乙烯-丁二烯类弹性体等高弹聚合物共混发泡后得到了一种在室温条件下不仅具有优异的应力吸收性、应力缓和性和阻尼减震效果,而且保持回弹率>50%的发泡材料;同时搭配低结晶度或者高柔顺性的聚合物,从而提升发泡材料的回弹性,使得该发泡材料同时具有超吸冲与高回弹,进而使该发泡材料在受到冲击力或者振动时,材料会自动地将冲击能转化为热能吸收,用作运动鞋中底材料可以使运动过程中足部受到的反冲击力降低32%~57%,从而降低运动损害,有利于消费者身体健康。
本发明还提供了一种上述超吸冲高回弹发泡材料的制备方法,包括:将异烯烃与直链端烯烃的共聚物、乙烯-乙酸乙烯共聚物、聚烯烃弹性体、三元乙丙橡胶、苯乙烯类聚合物、过氧化物交联剂、发泡剂与发泡助剂混炼、造粒、发泡后,得到超吸冲高回弹发泡材料。
其中,本发明对所有原料的来源并没有特殊的限制,为市售即可。所述异烯烃与直链端烯烃的共聚物、乙烯-乙酸乙烯共聚物、聚烯烃弹性体、三元乙 丙橡胶、苯乙烯类聚合物、过氧化物交联剂、发泡剂与发泡助剂的含量及种类均同上所述,在此不再赘述。
将异烯烃与直链端烯烃的共聚物、乙烯-乙酸乙烯共聚物、聚烯烃弹性体、三元乙丙橡胶、苯乙烯类聚合物、过氧化物交联剂、发泡剂与发泡助剂混炼;在本发明中此步骤优选具体为:将过氧化物交联剂与发泡剂混炼,待温度升高到80℃~85℃加入发泡助剂混炼,待温度升高到90℃~95℃时,加入异烯烃与直链端烯烃的共聚物、乙烯-乙酸乙烯共聚物、聚烯烃弹性体、三元乙丙橡胶与苯乙烯类聚合物混炼,待温度升高到100℃~110℃,得到混炼的物料;所述混炼优选在密炼机中进行。
将混炼的物料造粒,得到粒料;所述造粒优选在造粒机中进行;所述造粒的加热温度优选为75℃~90℃;在本发明中,优选分为四个加热区;第一加热区的温度优选为75℃,第二加热区的温度优选为80℃,第三加热区的温度优选为85℃,第四加热区的温度优选为95℃;造粒时螺杆的转速优选为40~50转/min;切料转速优选为15~20转/min;在造粒的过程中需要冷却,如采用水冷,造好的粒料需加入烘干机中烘干脱水,如采用风冷则可直接使用。
将造粒得到的粒料进行发泡,得到超吸冲高回弹发泡材料;在本发明中可采用注射发泡成型(IP工艺),也可采用二次模压成型发泡(MD工艺);参见图1与图2,图1为注射发泡成型工艺的流程示意图,图2为二次模压成型发泡工艺的流程示意图。
当所述发泡为注射发泡成型时,优选具体为:将粒料注入成型模具中,加热发泡成型,得到发泡成型的材料;将所述发泡成型的材料进行烘烤,得到超吸冲高回弹发泡材料;所述成型模具及注入的量可根据发泡倍率进行设定,在本发明中,发泡倍率优选为1.2~2,更优选为1.4~1.8,再优选为1.5;所述注入的温度优选为80℃~95℃;在本发明中,注入的加热区优选分为四个;第一区的温度优选为80℃,第二区的温度优选为85℃,第三区的温度优选为90℃,第四区的温度优选为95℃;所述加热发泡成型的温度优选为160℃~180℃,更优选为165℃~175℃,再优选为170℃;所述加热发泡成型的时间优选为500~700s;所述烘烤的温度优选为80℃~100℃;在本发明中,所述烘烤优选分为四个温区,第一区的温度优选为第一区的温度优选为80℃,第二区的温 度优选为90℃,第三区的温度优选为95℃,第四区的温度优选为100℃;所述烘烤的转速优选为60~70转/min;烘烤的时间优选为30~40min;所述烘烤优选在烘箱中进行;所述烘箱的长度优选为30~40米。
当所述发泡为二次模压成型发泡时,其优选具体为:将粒料加入模具中进行模压发泡,得到模压发泡的半成品;将所述模压发泡的半成品进行平板发泡,得到超吸冲高回弹发泡材料;所述模压发泡的温度优选为170℃~180℃,更优选为175℃;模压发泡的时间优选为600~700s,更优选为640~680s,再优选为660s;所述平板发泡的温度优选为170℃~180℃,更优选为175℃;平板发泡的时间优选为350~500s,更优选为400~450s,再优选为420~430s;在本发明中,平板发泡后优选还进行冷却;所述冷却优选采用冷却水进行;所述冷却水的温度优选为20℃~30℃,更优选为25℃;所述冷却的时间优选为350~500s,更优选为400~450s,再优选为420~430s。
本发明还提供了上述超吸冲高回弹发泡材料作为运动鞋中底材料的应用。
为了进一步说明本发明,以下结合实施例对本发明提供一种超吸冲高回弹发泡材料、其制备方法及应用进行详细描述。
以下实施例中所用的试剂均为市售。
实施例1~11及对比例1~7
称料:依据表1与表2中配方的种类及用量,将DCP和发泡剂为第一组料称好;将硬脂酸、硬脂酸锌与氧化锌为第二组料称好;剩下的料为第三组料称好。
混炼:首先将第三组料倒入密炼机内,并打开机器,待温度升到80℃~85℃之间;倒入第二组料;待温度升到90℃~95℃时倒入第三组料;待温度升至100℃~110℃时,将混好的料倒出。
造料:将混好的料;倒入造料机中,第一、二、三、四区温度分别调为:75℃、80℃、85℃、90℃。并将螺杆转速调至40~50转/分钟,将切料转速调至15~20转/每分钟。
发泡:将造好的粒料倒入注塑发泡成型机内,喂料第一、二、三、四区温度分别调为:80℃、85℃、90℃、95℃,成型模具温度上下模板分别调为:170℃、170℃。将料量依据模具用量设定好(模具尺寸18cm*10cm*1cm,根据发泡倍 率1.5,料量可以设定为120g)、硫化时间为600秒。
烘烤:将温烘第一、二、三、四区温度分别调为:80℃、90℃,95℃,100℃,转速为60转每分钟;将发泡成型的发泡材料送入烘箱口,烘箱长度30米;从头至尾烘烤时间为40min。
表1对比例及实施例的配方的种类及用量(重量份)
Figure PCTCN2021121597-appb-000003
表2对比例及实施例的配方的种类及用量(重量份)
Figure PCTCN2021121597-appb-000004
Figure PCTCN2021121597-appb-000005
其中,EP-1001:硬度92A,Tg=30℃,30℃峰值tanδ=2.7,三井化学公司。
EVA7350M:硬度90A,VA含量为18%,结晶度36.5%,Tg=-18℃,30℃时tanδ=0.23,台塑公司。
EVA33121:硬度63A,VA含量为33%,结晶度14.5%,Tg=-22℃,30℃时tanδ=0.21,台塑公司。
POE 8180:硬度63A,结晶度16%,Tg=-55℃,30℃时tanδ=0.12,陶氏公司。
POE 8150:硬度70A,结晶度16%,Tg=-52℃,30℃时tanδ=0.14,陶氏公司。
EPDM 5565:结晶度1%,Tg=-35℃,30℃时tanδ=0.16,陶氏公司。
SEBS YH688:硬度43A,S含量13%,Tg=-65℃,30℃时tanδ=0.10,巴陵石化。
SBBS J1083:硬度56A,S含量20%,Tg=-60℃,30℃时tanδ=0.11,旭化成公司。
SOE L609:硬度76A,S含量33%,Tg=19℃,30℃时tanδ=0.8,旭化成公司。
ZnO 997:白石牌氧化锌,相对密度为4.42~4.45。
DCP:中国石化。
硬脂酸1801:印尼杜库达。
硬脂酸锌:湖州市菱湖新望化学有限公司。
发泡剂AC6000H:杭州海虹精细化工有限公司。
对实施例1~11及对比例1~7得到的发泡材料进行性能检测,得到结果见3~表5。
表3发泡材料性能检测结果
Figure PCTCN2021121597-appb-000006
表4发泡材料性能检测结果
Figure PCTCN2021121597-appb-000007
Figure PCTCN2021121597-appb-000008
表5发泡材料性能检测结果
序号 检测项目 试验方法 实施例8 实施例9 实施例10 实施例11
1 密度g/cm 3 DIN 53479 0.172 0.170 0.179 0.167
2 硬度C DIN 55305 48 47 49 49
3 反弹% DIN 53512 59 60 59 56
4 落球冲击力KN EN1621-1:2012 2.9 2.7 3.2 3.0
5 落球冲击力kg EN1621-1:2012 295.9 275.5 326.5 306.1
6 减震G值 ASTM F1614-99 11.4 11.3 11.5 11.1
7 分层撕裂N/CM DIN 53507-B 24 25 26 24
8 拉伸强度MPa DIN 53543 2.5 2.4 2.9 2.8
9 压缩变形% ASTM-D.395-B 35 34 32 30
结论:
(1)从比较例1的测试结果看出:纯的EVA发泡其反弹差,落球冲击力大,说明减震吸冲效果差。
(2)从比较例1、2的测试数据对比看出:在配方中加入低结晶度或者高柔顺性的聚合物,可以提升发泡材料的回弹性。
(3)从比较例1、3、4、5的测试结果可以看出:配方中加入大空间位阻聚合物EP-1001后落球冲击力和减震G值下降,且随添加量的增大下降越明显,说明大空间位阻聚合物EP-1001能够起到很好的吸冲减震性能;但同样的加入EP-1001后发泡材料的回弹率大大降低,在加入30份时回弹只有20%,综合结论(2),故需要添加低结晶度或者高柔顺性的聚合物来提升发泡材料的回弹性。
(4)从比较例6、7的测试结果可以看出:大空间位阻聚合物EP-1001与现用的减震聚合物SOE L609相比,同等添加量下EP-1001对落球冲击力和减震G值的降低效果比SOE L609更明显,而且对回弹的下降影响低于SOE L609,说明本发明专利选用的大空间位阻聚合物EP-1001更有优势。
(5)从实施例1、2、3、4、5、6的测试结果同样获得以下结论:配方中随着EP-1001后的添加量的增加,落球冲击力和减震G值下降幅度增加;EP-1001同等添加量时,配方中搭配低结晶度或者高柔顺性的聚合物后的回弹率远远高于比较例3、4、5未添加低结晶度或者高柔顺性的聚合物的回弹率。
(5)从比较例6和实施1~11的测试数据可以看出,EP-1001的添加量40份时,回弹率39%,不满足运动鞋中底的回弹要求;而实施例1~11的为EP-1001添加量为10~35份的不同比例搭配,测试表明添加10、15、20、25、30、35份EP-1001与0份的相比,落球冲击力分别下降了32.8%,37.7%,45.9%,52.5%、55.8%、57.3%,回弹率虽下降了7.4%、10.3%、11.8%、14.7%、19.2%、25%,但是基本保持在50%以上,可以满足运动鞋中底的回弹需求。为综合吸冲和回弹的双重效果,因此本发明专利的大空间位阻聚合物的添加量优选15~30份。
由此说明:
1)与现有的EVA减震发泡材料相比,本发明制备的吸冲减震发泡材料因采用了高阻尼因子的大空间位阻聚合物,而获得了在室温下具有优异的应力吸收性和阻尼减震性的发泡材料,发泡材料的落球冲击力测试<4.1KN(或<418kg),与未添加的对比例发泡材料相比,冲击力下降了32%~57%;与已有的EVA减震材料相比,冲击力下降的幅度更明显。
2)与现有的EVA减震发泡材料相比,本发明制备的吸冲减震发泡材料因采用了低结晶度或者高柔顺性的聚合物来提升发泡材料的回弹性,而获得了超吸冲高回弹的发泡材料,发泡材料的回弹率>50%。与现有的减震材料的回弹率低于16%的技术相比,回弹率提升了34%以上,完全满足消费者对运动鞋的回弹性能要求及极佳的运动体验。
3)与现有的EVA减震发泡材料相比,本发明制备的超吸冲高回弹的发泡材料,不仅吸冲效果优异,回弹性能良好,而且配方中采用的各类聚合物均具有可发泡性,且能够用过氧化物进行交联,因此最终的发泡材料的各项物理性 能完全满足运动鞋中底的力学要求。

Claims (10)

  1. 一种超吸冲高回弹发泡材料,其特征在于,由发泡组合物形成;
    所述发泡组合物包括:
    Figure PCTCN2021121597-appb-100001
    所述异烯烃的碳原子数为5~8;所述直链端烯烃的碳原子数为2~4。
  2. 根据权利要求1所述的超吸冲高回弹发泡材料,其特征在于,所述异烯烃的碳原子数为5~6;所述直链端烯烃的碳原子数为3;
    所述乙烯-乙酸乙烯共聚物中乙酸乙烯的摩尔含量为18%~40%;
    所述聚烯烃弹性体的结晶度小于等于20%;
    所述三元乙丙橡胶的结晶度小于等于4%;
    所述苯乙烯类聚合物选自苯乙烯-乙烯-丁烯-苯乙烯共聚物、氢化的苯乙烯-乙烯-丁烯-苯乙烯共聚物、苯乙烯-丁烯-苯乙烯共聚物与氢化的苯乙烯-丁烯-苯乙烯共聚物中的一种或多种。
  3. 根据权利要求2所述的超吸冲高回弹发泡材料,其特征在于,所述异烯烃为1-异己稀和\或4-甲基-2-戊烯;所述直链端烯烃为丙烯;
    所述苯乙烯-乙烯-丁烯-苯乙烯共聚物中苯乙烯的摩尔含量低于33%;
    所述苯乙烯-丁烯-苯乙烯共聚物中苯乙烯的摩尔含量低于等于20%。
  4. 根据权利要求2所述的超吸冲高回弹发泡材料,其特征在于,所述异烯烃与直链端烯烃的共聚物的玻璃化转变温度为25℃~35℃;
    所述乙烯-乙酸乙烯共聚物包含硬度为82~90A的EVA与硬度为60~65A的EVA;
    所述聚烯烃弹性体的硬度为52~70A;
    所述苯乙烯类聚合物的硬度为40~60A。
  5. 根据权利要求4所述的超吸冲高回弹发泡材料,其特征在于,所述硬度为82~90A的EVA与硬度为60~65A的EVA的质量比为(3~5):1。
  6. 根据权利要求1所述的超吸冲高回弹发泡材料,其特征在于,所述异烯烃与直链端烯烃的共聚物选自Absortomer EP-1001;
    所述乙烯-乙酸乙烯共聚物选自EVA7350M、EVA7470M与EVA33121中的一种或多种;
    所述聚烯烃弹性体选自POE 8180、POE8150与POE7467中的一种或多种;
    所述三元乙丙橡胶选自EODM 5565;
    所述苯乙烯类聚合物选自SEBS YH688和/或SBBS P1083。
  7. 根据权利要求1所述的超吸冲高回弹发泡材料,其特征在于,所述过氧化物交联剂选自过氧化二异丙苯和/或1,4-双叔丁基过氧异丙基苯;
    所述发泡剂选自偶氮二甲酰胺、膨胀微球与4,4'-氧代双苯磺酰肼中的一种或多种;
    所述发泡助剂选自氧化锌、硬脂酸与硬脂酸锌;
    所述氧化锌、硬脂酸与硬脂酸锌的质量比为(1~1.5):(0.8~1.2):0.8。
  8. 一种权利要求1所述的超吸冲高回弹发泡材料的制备方法,其特征在于,包括:
    将异烯烃与直链端烯烃的共聚物、乙烯-乙酸乙烯共聚物、聚烯烃弹性体、三元乙丙橡胶、苯乙烯类聚合物、过氧化物交联剂、发泡剂与发泡助剂混炼、造粒、发泡后,得到超吸冲高回弹发泡材料。
  9. 根据权利要求8所述的制备方法,其特征在于,所述混炼具体为:将过氧化物交联剂与发泡剂混炼,待温度升高到80℃~85℃加入发泡助剂混炼,待温度升高到90℃~95℃时,加入异烯烃与直链端烯烃的共聚物、乙烯-乙酸乙烯共聚物、聚烯烃弹性体、三元乙丙橡胶与苯乙烯类聚合物混炼,待温度升高到100℃~110℃,得到混炼的物料;
    所述造粒具体为:将混炼的物料进行造粒,得到粒料;所述造粒的加热温度为75℃~90℃;造粒时螺杆的转速为40~50转/min;切料转速为15~20转/min;
    所述发泡为注射发泡成型或二次模压成型发泡;
    所述注射发泡成型具体为:将粒料注入成型模具中,加热发泡成型,得到发泡成型的材料;将所述发泡成型的材料进行烘烤,得到超吸冲高回弹发泡材料;所述注入的温度为80℃~95℃;所述加热发泡成型的温度为160℃~180℃;所述加热发泡成型的时间为500~700s;所述烘烤的温度为80℃~100℃;烘烤的转速为60~70转/min;烘烤的时间为30~40min;
    所述二次模压成型发泡具体为:将粒料加入模具中进行模压发泡,得到模压发泡的半成品;将所述模压发泡的半成品进行平板发泡,得到超吸冲高回弹发泡材料;所述模压发泡的温度为170℃~180℃;模压发泡的时间为600~700s;所述平板发泡的温度为170℃~180℃;平板发泡的时间为350~500s。
  10. 权利要求1~7任意一项所述的超吸冲高回弹发泡材料或权利要求8或9所述制备方法制备的超吸冲高回弹发泡材料作为运动鞋中底材料的应用。
PCT/CN2021/121597 2021-08-09 2021-09-29 一种超吸冲高回弹发泡材料、其制备方法及应用 WO2023015693A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110907782.7A CN113462070B (zh) 2021-08-09 2021-08-09 一种超吸冲高回弹发泡材料、其制备方法及应用
CN202110907782.7 2021-08-09

Publications (1)

Publication Number Publication Date
WO2023015693A1 true WO2023015693A1 (zh) 2023-02-16

Family

ID=77867656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121597 WO2023015693A1 (zh) 2021-08-09 2021-09-29 一种超吸冲高回弹发泡材料、其制备方法及应用

Country Status (2)

Country Link
CN (1) CN113462070B (zh)
WO (1) WO2023015693A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015149B (zh) * 2021-11-30 2023-07-25 安踏(中国)有限公司 一种海岛立体结构的多功能发泡鞋底材料及其制备方法
CN115260643B (zh) * 2022-08-16 2023-07-04 安踏(中国)有限公司 一种耐疲劳的中底发泡材料及制备方法、运动鞋

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805475A (zh) * 2010-04-26 2010-08-18 泰亚鞋业股份有限公司 射出仿pu发泡运动鞋鞋底配方及制造方法
US20180094129A1 (en) * 2016-03-15 2018-04-05 Nike, Inc. Foam compositions and uses thereof
CN110483879A (zh) * 2019-09-04 2019-11-22 安踏(中国)有限公司 一种高缓震大孔发泡中底材料、其制备方法及运动鞋
CN111286110A (zh) * 2020-02-18 2020-06-16 安踏(中国)有限公司 一种高舒适缓震发泡中底材料、其制备方法及运动鞋
CN112662043A (zh) * 2020-12-21 2021-04-16 郑忠利 一种冲击力防护发泡鞋材制备及实现方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100025211A (ko) * 2008-08-27 2010-03-09 엘에스전선 주식회사 기계적 특성이 우수한 폴리프로필렌 기반 난연성 수지 조성물과 이를 이용한 전선
JP2013515102A (ja) * 2009-12-29 2013-05-02 サン−ゴバン パフォーマンス プラスティックス コーポレイション フレキシブルチューブ材料およびその材料を製造する方法
CN109251511B (zh) * 2018-09-20 2021-08-24 安踏(中国)有限公司 一种运动鞋用吸震发泡材料、其制备方法及其应用
CN111393736A (zh) * 2020-02-03 2020-07-10 安踏(中国)有限公司 一种珠光白高透光发泡中底材料、其制备方法及运动鞋

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805475A (zh) * 2010-04-26 2010-08-18 泰亚鞋业股份有限公司 射出仿pu发泡运动鞋鞋底配方及制造方法
US20180094129A1 (en) * 2016-03-15 2018-04-05 Nike, Inc. Foam compositions and uses thereof
CN110483879A (zh) * 2019-09-04 2019-11-22 安踏(中国)有限公司 一种高缓震大孔发泡中底材料、其制备方法及运动鞋
CN111286110A (zh) * 2020-02-18 2020-06-16 安踏(中国)有限公司 一种高舒适缓震发泡中底材料、其制备方法及运动鞋
CN112662043A (zh) * 2020-12-21 2021-04-16 郑忠利 一种冲击力防护发泡鞋材制备及实现方法

Also Published As

Publication number Publication date
CN113462070A (zh) 2021-10-01
CN113462070B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023015693A1 (zh) 一种超吸冲高回弹发泡材料、其制备方法及应用
CN101824184B (zh) 运动鞋底用发泡塑胶
CN104231419B (zh) 高减震乙烯‑醋酸乙烯酯橡胶发泡鞋用材料及其制备方法
CN107151373A (zh) 一种具有高回弹性的发泡材料用组合物及其制备方法
CN108485143B (zh) 鞋用发泡材料及其制备方法
CN107245183B (zh) 一种用于制备运动鞋底用复合发泡材料的组合物及制备方法
CN110256837A (zh) 一种用于制备耐磨防水高弹性发泡材料的组合物及其制备方法
CN105801998A (zh) 一种热塑性聚氨酯复合发泡材料及其制备方法
CN107082943A (zh) 一种丁腈橡胶改性的eva发泡材料及其制造方法
CN107698860A (zh) 一种鞋底用高回弹组合物发泡材料及其制备方法
CN111286110B (zh) 一种高舒适缓震发泡中底材料、其制备方法及运动鞋
CN102030941A (zh) 运动鞋底用发泡材料及其制备方法
CN111675847B (zh) 一种轻质极弹耐疲劳发泡材料及其制备方法
CN109880225B (zh) 一种抗变形高支撑eva发泡材料及其制备方法和应用
CN109897385B (zh) 一种宽温域的减震发泡中底材料及其制备方法
CN108997661B (zh) 一种运动鞋用高反弹发泡材料、其制备方法及其应用
CN107936360A (zh) 一种耐磨型超轻eva注射交联发泡材料及其制备方法
CN110982166A (zh) 一种高弹性耐磨eva发泡鞋材及其制备方法
CN112920501B (zh) 尼龙弹性体复合材料泡沫及其制备方法
CN111154170B (zh) 一种eva鞋底及其制备方法
CN114773658A (zh) 一种耐磨、轻质、止滑的高软弹缓震eva发泡鞋底材料及其制备方法和应用
CN110204822B (zh) 一种eva发泡材料及其制备方法
CN104610563A (zh) 一种烯烃嵌段共聚物材料发泡体的制备方法与应用
CN113845716A (zh) 一种改性eva及其制备方法和宽温域高性能eva复合发泡材料
CN106349633A (zh) 一种高服帖tpe发泡材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE