WO2023008479A1 - 塗工膜の製造方法 - Google Patents

塗工膜の製造方法 Download PDF

Info

Publication number
WO2023008479A1
WO2023008479A1 PCT/JP2022/028937 JP2022028937W WO2023008479A1 WO 2023008479 A1 WO2023008479 A1 WO 2023008479A1 JP 2022028937 W JP2022028937 W JP 2022028937W WO 2023008479 A1 WO2023008479 A1 WO 2023008479A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating liquid
film
coating
liquid film
substrate
Prior art date
Application number
PCT/JP2022/028937
Other languages
English (en)
French (fr)
Inventor
直道 引地
卓弘 林
諭司 國安
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202280046755.8A priority Critical patent/CN117651616A/zh
Priority to KR1020237042173A priority patent/KR20240005051A/ko
Priority to JP2023538594A priority patent/JPWO2023008479A1/ja
Publication of WO2023008479A1 publication Critical patent/WO2023008479A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a method for manufacturing a coating film.
  • the following method is known as a method for efficiently producing a coating film having a narrow width (for example, a width of 200 mm or less) in a roll-to-roll continuous process. That is, after coating the coating liquid in multiple lines on a wide base material that is continuously conveyed and drying the resulting coating liquid film, the uncoated portion between the adjacent coating films (that is, the base material)
  • This is a method for producing a coating film, in which a plurality of strips of the coating film are obtained by cutting the exposed portion) along the coating film.
  • Japanese Patent Laid-Open No. 2001-223012 discloses that an electrode coating material is applied onto a long conductive electrode substrate, and the length of the substrate is In the method of manufacturing an electrode in which multiple lines are applied so as to form an uncoated portion in the direction, as the base material, a material having a deflection moment m defined by a specific method of 0.08 g cm or more is used. method is described.
  • Fold wrinkles in the uncoated portion of the base material are caused by part of the base material being creased or part of the base material being folded over in the uncoated part of the base material. (which is also the conveying direction). It should be noted that while attention is focused here on creases in the uncoated portion, creases are also a phenomenon that occurs in the coated portion as well.
  • Another object of the present invention is to provide a method for producing a coating film capable of suppressing folding wrinkles in uncoated portions that occur in the process of producing a plurality of coating films on a substrate.
  • Means for solving the above problems include the following embodiments. ⁇ 1> A first step of applying a coating liquid to a substrate being continuously conveyed to form a plurality of coating liquid films on the substrate; In each of the plurality of strips of the coating liquid film, the drying points Te at both ends in the width direction of the coating liquid film are positioned downstream of the drying point Tc at the central portion in the width direction of the coating liquid film in the conveying direction of the substrate. , a second step of drying the coating liquid film; A method for producing a coating film.
  • ⁇ 2> The method for producing a coating film according to ⁇ 1>, wherein k shown in the following formula 1 satisfies the relationship of 0 ⁇ k ⁇ 6000.
  • tc represents the film thickness of the coating liquid film in units of ⁇ m
  • E represents the Young's modulus of the substrate in units of GPa
  • p represents the solid content of the coating liquid
  • tB represents the thickness of the substrate in ⁇ m
  • d represents the distance in m between the dry points Te and Tc.
  • ⁇ 3> The method for producing a coating film according to ⁇ 1> or ⁇ 2>, wherein the width of the uncoated portion between the coating liquid films is 5% to 40% of the width of the single coating liquid film. .
  • ⁇ 4> The method for producing a coating film according to any one of ⁇ 1> to ⁇ 3>, wherein in the second step, hot air is applied to each of the plurality of coating liquid films.
  • ⁇ 5> In each of the plurality of coating liquid films, the wind speed of the hot air hitting the widthwise central portion of the coating liquid film is greater than the wind speed of the hot air hitting both widthwise ends of the coating liquid film, ⁇ 4> The method for producing the coating film according to 1.
  • ⁇ 6> In each of the plurality of coating liquid films, the dew point of the hot air hitting the widthwise central portion of the coating liquid film is lower than the dew point of the hot air hitting both widthwise ends of the coating liquid film, ⁇ 4> The method for producing the coating film according to 1.
  • ⁇ 7> In each of the plurality of coating liquid films, the temperature of the hot air hitting the central portion in the width direction of the coating liquid film is higher than the temperature of the hot air hitting both ends in the width direction of the coating liquid film, ⁇ 4> The method for producing the coating film according to 1.
  • ⁇ 8> In the second step, hot air is applied to each of the plurality of coating liquid films, and the laminated body of the coating liquid film and the substrate is continuously conveyed while being curved in the thickness direction by the wind pressure of the hot air.
  • ⁇ 9> The method for producing a coating film according to any one of ⁇ 1> to ⁇ 8>, wherein the substrate has a thermal conductivity of 200 W/m ⁇ K or more.
  • a method for producing a coating film capable of suppressing folding wrinkles in an uncoated portion in the process of forming a plurality of coating liquid films on a substrate and drying the coating liquid films to produce a plurality of coating films on the substrate.
  • FIG. 1 is a schematic diagram showing an example of each step of a method for producing a coating film according to one embodiment.
  • FIG. 2 is a graph for explaining the drying point of a coating liquid film formed on a substrate.
  • FIG. 3 is a schematic top view for explaining a plurality of coating liquid films formed on a substrate.
  • FIG. 4 is a schematic cross-sectional view of the substrate and the coating liquid film in the second step in the width direction.
  • FIG. 5 is a schematic cross-sectional view for explaining drying using a means for continuously conveying the layered body of the coating liquid film and the substrate while curving it in the thickness direction by the air pressure of hot air.
  • a numerical range indicated using “to” means a range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step.
  • upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
  • the elements in the figures shown in this disclosure are not necessarily to scale, and emphasis is placed on clearly illustrating the principles of the disclosure, and some emphasis is placed on them.
  • symbol is attached
  • process includes not only an independent process but also a process that cannot be clearly distinguished from other processes, as long as the intended purpose of the process is achieved.
  • coating liquid film refers to the film before drying in the second step and during drying in the second step
  • coating film refers to the film after drying is completed.
  • the membrane refers to the membrane.
  • the “width direction” refers to a direction perpendicular to the longitudinal direction of any one of the long substrate, coating liquid film, and coating film.
  • the “both ends in the width direction” refer to both ends in the width direction of the coating liquid film or the coating film, and the width direction edges (specifically, the following coated area and uncoated area It refers to the inner area up to 5 mm from the boundary line between
  • the “width-direction center portion” refers to a width-direction center portion of the coating liquid film or the coating film, and refers to a region inside the above-mentioned “width-direction both ends”.
  • the “width direction edge” refers to the width direction edge of the coating liquid film or coating film, and when the coating liquid film or coating film surface is viewed from above, the coating area It is visually recognized as a boundary line between (that is, the coating liquid film or coating film forming portion) and the uncoated region (that is, the exposed portion of the base material).
  • ⁇ Method for producing coating film ⁇ As described above, in a method for producing a coating film having a step of applying a coating liquid in multiple lines and a step of drying the coated coating liquid film, between adjacent coating films Folding wrinkles may occur in the uncoated part of.
  • the present inventors have made extensive studies on how to suppress folding wrinkles in the uncoated portion. The inventors have found that the deformation of the base material in the uncoated portion that occurs when the working liquid film dries can be suppressed, and have completed the present invention. From the viewpoint of suppressing creases in the uncoated portion, it is preferable that the base material does not deform in the uncoated portion. It is sufficient that the deformation immediately returns to the original state during transportation (for example, before contact with the transportation roll that reaches after deformation).
  • a method for producing a coating film according to the present embodiment includes a first step of applying a coating liquid to a continuously conveyed base material to form a plurality of coating liquid films on the base material; In each of the plurality of strips of the coating liquid film, the drying points Te at both ends in the width direction of the coating liquid film are positioned downstream of the drying point Tc at the central portion in the width direction of the coating liquid film in the conveying direction of the substrate. and a second step of drying the coating liquid film. According to the method for producing a coating film according to the present embodiment, creases in the uncoated portion between the coating films can be suppressed.
  • Equation 1 k shown in Equation 1 below satisfies the relationship 0 ⁇ k ⁇ 6000.
  • tc represents the film thickness of the coating liquid film in units of ⁇ m
  • E represents the Young's modulus of the substrate in units of GPa
  • p represents the solid content of the coating liquid
  • tB represents the thickness of the substrate in ⁇ m
  • d represents the distance in m between the dry points Te and Tc.
  • Formula 1 is a formula derived based on the factors affecting the deformation of the base material and the return of the base material deformation.
  • the film thickness of the coating liquid film represented by tc contributes to the amount of shrinkage of the coating liquid film upon drying.
  • the greater the value of tc that is, the greater the film thickness of the coating liquid film, the greater the amount of shrinkage of the coating liquid film upon drying, which tends to deform the substrate in the uncoated portion.
  • the Young's modulus of the substrate represented by E contributes to the ease with which the deformation of the substrate remains. The larger the value of E, that is, the larger the Young's modulus of the base material, the smaller the elastic limit, and the more easily the deformation of the base material remains in the uncoated portion.
  • the solid content of the coating liquid represented by p contributes to the shrinkage stress of the coating liquid film during drying.
  • the substrate thickness, represented by tB contributes to the flexibility of the substrate. The greater the value of tB , that is, the greater the thickness of the base material, the more difficult it is for the base material to bend and the less likely it is for the uncoated portion to deform.
  • the distance between the dry point Te and the dry point Tc indicates the difference in the dry state between both ends in the width direction and the central portion in the width direction of the coating liquid film.
  • k shown in the above formula 1 satisfies the relationship 0 ⁇ k ⁇ 5000 from the viewpoint of further effectively suppressing creases in the uncoated portion. More preferably, it satisfies the relationship 0 ⁇ k ⁇ 4000.
  • FIG. 1 is a schematic diagram showing an example of each step of a method for producing a coating film according to one embodiment.
  • the long base material 10 is sent out from the roll R1 wound in a roll shape, and continuous conveyance is started.
  • the coating liquid is applied onto the base material 10 by the coating means 20 in a plurality of strips.
  • a plurality of coating liquid films are formed on the long base material 10 by the coating liquid (first step).
  • the substrate 10 having the plurality of coating liquid films formed in the first step is continuously conveyed in the drying zone 30 to form the plurality of coating liquid films on the substrate 10. is dried (second step). Specifically, in the second step, in each of the plurality of strips of the coating liquid film, the drying point Te at both ends in the width direction of the coating liquid film is shifted from the drying point Tc at the central portion in the width direction of the coating liquid film. Also, the coating liquid film is dried with the downstream side of the substrate 10 in the conveying direction. By this second step, the plurality of strips of the coating liquid film on the elongated substrate 10 are dried to form a plurality of strips of the coating film. Subsequently, the substrate 10 on which a plurality of coating films are formed is wound into a roll, and a roll R2 is obtained as a laminate of the plurality of coating films and the substrate 10 .
  • a coating liquid is applied to a continuously conveyed base material to form a plurality of coating liquid films on the base material.
  • the substrate used in this step may be selected according to the application of the coating film, and may be selected in consideration of applicability to continuous conveyance (preferably, applicability to roll-to-roll system). .
  • Substrates with high thermal conductivity, such as metal substrates, are likely to affect shrinkage of the coating liquid film during drying.
  • creases in the uncoated portion can be suppressed even when a substrate having high thermal conductivity is used.
  • substrates with high thermal conductivity examples include substrates with a thermal conductivity of 200 W/m ⁇ K or more.
  • the thermal conductivity of the substrate as a whole is 200 W / m K or more. is 200 W/m ⁇ K or more.
  • the upper limit of the thermal conductivity of the substrate is not particularly limited, and is, for example, 500 W/m ⁇ K.
  • Examples of substrates exhibiting the above thermal conductivity include metal substrates. More specifically, examples of substrates exhibiting the above thermal conductivity include metal substrates made of copper, aluminum, silver, gold, and alloys thereof. In addition, the metal substrate may be a substrate made of stainless steel, nickel, titanium, or an invar alloy. Among them, a copper base material and an aluminum base material are preferably used in terms of shape stability as a base material, track record of use, and the like.
  • the thermal conductivity of the substrate is measured as follows. First, a base material is cut into a size suitable for the apparatus described later to obtain a measurement sample. The thermal diffusivity in the thickness direction of the obtained measurement sample is measured by a laser flash method. For example, it can be measured using "LFA467” manufactured by NETZSCH. Next, the specific gravity of the measurement sample is measured using a balance. For example, it can be measured using a balance “XS204” (using a “solid specific gravity measurement kit”) manufactured by Mettler Toledo, Inc. Further, using "DSC320/6200” manufactured by Seiko Instruments Inc., the specific heat of the measurement sample at 25°C is determined under the condition of temperature increase of 10°C/min. By multiplying the obtained thermal diffusivity by the specific gravity and the specific heat, the thermal conductivity of the measurement sample (that is, the substrate) is calculated.
  • the Young's modulus of the substrate (corresponding to "E" in the above formula 1) is from the viewpoint of applicability to continuous conveyance (preferably applicability to roll-to-roll system) and from the viewpoint of satisfying the relationship 0 ⁇ k ⁇ 6000 , preferably 1 GPa to 200 GPa, more preferably 50 GPa to 150 GPa.
  • the Young's modulus of the substrate indicates the Young's modulus at 25°C.
  • the Young's modulus of the base material can be measured by the free resonance type natural vibration method. Specifically, the Young's modulus of the base material is measured using, for example, a free resonance Young's modulus measuring device (product name: JE-RT) manufactured by Nippon Technoplus Co., Ltd., which employs a free resonance natural vibration method. be done.
  • a free resonance Young's modulus measuring device product name: JE-RT
  • JE-RT free resonance Young's modulus measuring device manufactured by Nippon Technoplus Co., Ltd.
  • the thickness of the substrate (corresponding to “t B ” in the above formula 1) is determined from the viewpoint of applicability to continuous transport (preferably applicability to roll-to-roll system), and the relationship of 0 ⁇ k ⁇ 6000. From the viewpoint of satisfying the requirements, it may be set as appropriate.
  • the thickness of the substrate is, for example, preferably 5 ⁇ m to 100 ⁇ m, more preferably 8 ⁇ m to 30 ⁇ m, even more preferably 10 ⁇ m to 20 ⁇ m.
  • the width and length of the substrate may be appropriately set from the viewpoint of application to the roll-to-roll method and the width and length of the desired coating film.
  • the thickness of the substrate is measured as follows. That is, using a contact-type thickness measuring machine, the thickness of the substrate at three locations in the width direction (that is, the position 5 mm from both edges in the width direction and the central portion in the width direction) is measured at intervals of 500 mm in the longitudinal direction. Measure at 3 points. An arithmetic mean value of the total nine measured values is determined and taken as the thickness of the base material.
  • a contact-type thickness measuring machine for example, S-2270 manufactured by Fuji Work Co., Ltd. is used.
  • the transport speed of the substrate there is no particular limitation as to the transport speed of the substrate that is continuously transported.
  • the transport speed of the substrate for example, 0.1 m/min to 100 m/min can be selected, and 0.2 m/min to 20 m/min can be selected.
  • a coating liquid capable of forming the intended coating film may be used.
  • Coating liquids in which the solvent (or dispersion medium) contained in the coating liquid is substantially water are likely to affect the shrinkage of the coating liquid film during drying. is.
  • water-based coating liquids are likely to affect the shrinkage of the coating liquid film during drying.
  • the solvent (or dispersion medium) is substantially water
  • the proportion of water in the total solvent (or the total dispersion medium) is 90% by mass or more, and the proportion of water in the total solvent (or the total dispersion medium) is preferably 95% by mass or more, and the total solvent (or or the entire dispersion medium) is particularly preferably water.
  • the solid content refers to components excluding the solvent (or dispersion medium).
  • the water-based coating liquid used in this step is not particularly limited as long as it is a liquid containing water as a solvent (or dispersion medium) and a solid content.
  • the solid content contained in the water-based coating liquid includes, in addition to components for obtaining the intended coating film, components for improving coating suitability and the like.
  • water contained in the water-based coating liquid examples include natural water, purified water, distilled water, ion-exchanged water, pure water, and ultrapure water (eg, Milli-Q water).
  • the Milli-Q water is ultrapure water obtained by Merck's Milli-Q water production equipment.
  • the content of water in the water-based coating liquid is not particularly limited. For example, it is preferably 20% by mass or more, more preferably 30% by mass or more, relative to the total mass of the water-based coating liquid.
  • the upper limit of the water content may be less than 100% by mass. For example, from the viewpoint of coating suitability, it is preferably 90% by mass, preferably 80% by mass, based on the total mass of the water-based coating liquid. is more preferable.
  • the water-based coating liquid may contain particles as one of the solid components. That is, the water-based coating liquid may be a coating liquid containing particles.
  • the coating liquid film tends to shrink more due to the evaporation of the solvent water and the volume change due to the aggregation of the particles during the constant drying stage. .
  • creases in the uncoated portion can be suppressed.
  • the particles are not particularly limited as long as they are particulate, and may be inorganic particles, organic particles, or composite particles of inorganic and organic substances.
  • inorganic particles known inorganic particles that can be applied to the intended coating film can be used.
  • inorganic particles include particles of metals (alkali metals, alkaline earth metals, transition metals, or alloys of these metals), particles of semimetals (such as silicon), or compounds of metals or semimetals (oxides, particles of hydroxides, nitrides, etc.), particles of inorganic pigments including carbon black and the like, and the like.
  • inorganic particles also include particles of minerals such as mica.
  • organic particles known organic particles that can be applied to the intended coating film can be used.
  • the organic particles are not particularly limited as long as they are solid organic particles including resin particles and organic pigment particles.
  • Composite particles of inorganic substances and organic substances include composite particles in which inorganic particles are dispersed in a matrix of organic substances, composite particles in which the periphery of organic particles is coated with inorganic substances, and composite particles in which the periphery of inorganic particles is coated with organic substances. composite particles and the like.
  • the particles may be surface-treated for the purpose of imparting dispersibility.
  • the above composite particles may be obtained by subjecting the composite particles to a surface treatment.
  • particle size there are no particular restrictions on the particle size, specific gravity, usage form (for example, whether or not they are used in combination), etc., and may be determined according to the intended coating film or conditions suitable for producing the coating film. can be selected as appropriate.
  • the content of the particles in the water-based coating solution is not particularly limited, and may be appropriately adjusted depending on the desired coating film, conditions suitable for producing the coating film, or purpose of adding the particles. , should be determined.
  • the content of the particles in the water-based coating liquid may be, for example, 50% by mass or more.
  • the solid content contained in the water-based coating liquid is not particularly limited, and includes various components used for obtaining the intended coating film.
  • the solid content contained in the water-based coating liquid includes, in addition to the above particles, a binder component, a component that contributes to the dispersibility of the particles, a polymerizable compound, a reactive component such as a polymerization initiator, a surfactant, and the like. components for enhancing the coating performance of the coating, other additives, and the like.
  • the solid content rate (that is, the ratio of solid content to the total mass of the coating liquid, corresponding to "p" in the above formula 1) in the coating liquid (preferably a water-based coating liquid) has a relationship of 0 ⁇ k ⁇ 6000 is preferably 0.2 or more, more preferably 0.3 or more, from the viewpoint of satisfying
  • the upper limit of the solid content in the coating liquid is, for example, 0.8.
  • the film thickness of the coating liquid film formed in this step (corresponding to “t c ” in the above formula 1) is not particularly limited, and may be appropriately determined according to the intended coating film.
  • the thickness of the coating liquid film can be selected, for example, from 50 ⁇ m to 350 ⁇ m, from 80 ⁇ m to 300 ⁇ m, and from 80 ⁇ m to 200 ⁇ m.
  • the thickness of the coating liquid film is measured as follows. That is, for the coating liquid film, three locations along the width direction (specifically, the position of 5 mm from both edges in the width direction and the central portion in the width direction), an optical interference thickness measuring machine (for example, Keyence Corporation (Infrared spectroscopic interference type film thickness meter SI-T80). The arithmetic average value of the measured values at three points is obtained, and this value is defined as the thickness of the coating liquid film.
  • an optical interference thickness measuring machine for example, Keyence Corporation (Infrared spectroscopic interference type film thickness meter SI-T80).
  • the width of one coating (that is, the width of one coating liquid film, specifically, "Wa” shown in FIG. 3) is not particularly limited, and it depends on the desired coating film. can be determined as appropriate.
  • the coating width can be selected to be, for example, 200 mm or less, 150 mm or less, or 100 mm or less.
  • the lower limit of the coating width is, for example, 30 mm.
  • the coating width may be different for each line, or may be the same.
  • the coating widths of the plurality of coating liquid films are approximately the same, and the coating liquid films are arranged in a nearly symmetrical manner in the width direction of the substrate.
  • the difference in coating width between the plurality of coating liquid films is preferably 20 mm or less, more preferably 5 mm or less, and may be 0 mm.
  • the width of the uncoated portion between the coating liquid films (that is, the width of the exposed portion of the substrate between the coating liquid films, specifically, "Wb" shown in FIG. 3) is not particularly limited. Instead, it may be determined as appropriate according to the intended use of the coating film.
  • the width of the uncoated portion between the coating liquid films can be selected, for example, from 5 mm to 100 mm, and can be selected from 10 mm to 50 mm. When there are a plurality of uncoated portions between coating liquid films, the widths of the plurality of uncoated portions may be different or the same.
  • the width of the uncoated portion between the coating liquid films is 5% to 40% of the width of the single coating liquid film (that is, the coating width). is preferably.
  • the width of the uncoated portion between the coating liquid films is 5% to 40% of the width of a single coating liquid film, creases tend to occur in the uncoated portion, but this practice With the method for producing a coating film according to the embodiment, it is possible to suppress creases in the uncoated portion.
  • the width of the uncoated portion is more preferably 5% to 30% of the width of the coating liquid film, and even more preferably 8% to 25% of the width of the coating liquid film.
  • the width of one coating liquid film means the arithmetic mean value of the width of two coating liquid films adjacent to the uncoated portion between the coating liquid films.
  • the width of the coating and the width of the uncoated portion are measured as follows. That is, the film surface of the coating liquid film is viewed from above, and the width of one strip of the coating liquid film is measured with a ruler at three points spaced apart by 500 mm in the longitudinal direction. Arithmetic mean value of measured values of three points is obtained, and this value is defined as coating width. In addition, the film surface of the coating liquid film is viewed from above, and the width of the uncoated portion between the coating liquid films is measured at three points with an interval of 500 mm in the longitudinal direction with a ruler. The arithmetic mean value of the measured values of the three points is determined and taken as the width of the uncoated portion.
  • the number of coating liquid films to be formed may be two or more, and may be determined based on the width of the base material, depending on the width of the coating liquid film and the width of the uncoated portion. good.
  • the application of the coating liquid in this step is not particularly limited as long as it can be applied to form a plurality of coating liquid films, and a known coating means is applied.
  • a coating means for example, the coating means 20 in FIG. 1
  • a coating means called multi-line coating, stripe coating, or the like is applied.
  • Specific examples of the coating means include a pre-weighing type coater such as an extrusion die coater, a spray coater, and a slide bead coater.
  • the drying point Te at both ends in the width direction of the coating liquid film is transported more than the drying point Tc at the central portion in the width direction of the coating liquid film. Drying of the coating liquid film is performed in the downstream direction.
  • there are two drying points Te at both ends in the width direction of the coating liquid film but both of the two drying points Te are closer to the substrate than the drying point Tc at the central portion in the width direction of the coating liquid film.
  • the coating liquid film is dried so that it is on the downstream side in the transport direction.
  • the drying point Te at both ends in the width direction of the coating liquid film and the drying point Tc at the central portion in the width direction of the coating liquid film in this step will be described.
  • the “drying point” in the present disclosure refers to the point at which the coating liquid film transitions from the constant rate drying period to the decreasing rate drying period.
  • the period during which the film surface temperature of the coating liquid film shows a constant value specifically, the temperature change of the film surface temperature is within ⁇ 5 ° C.
  • the constant rate drying period that is, the period during which the film surface temperature shows a constant value
  • the period during which the film surface temperature rises is called the "decreasing rate drying period.” do. Therefore, as shown in FIG.
  • the drying point is the changing point of the film surface temperature at which the film surface temperature of the formed coating liquid film changes from a constant value to a rising value.
  • the dry point is defined as a point at which the film surface temperature changes by more than 5°C during the period in which it remains constant.
  • the film surface temperature of the coating liquid film is measured by a plurality of non-contact radiation thermometers installed along the conveying direction of the substrate above the coating liquid film.
  • the drying point obtained from the film surface temperature measured at both ends in the width direction of the coating liquid film is the "drying point Te at both ends in the width direction of the coating liquid film".
  • the film surface temperature at both ends in the width direction of the coating liquid film is measured 5 mm inside from the edges in the width direction of the coating liquid film.
  • the dry point Te refers to the dry point 5 mm inside from the edge in the width direction of the coating liquid film.
  • the drying point obtained from the film surface temperature measured at the center in the width direction of the coating liquid film is the "drying point Tc at the center in the width direction of the coating liquid film".
  • the film surface temperature at the central portion in the width direction of the coating liquid film is, for example, 5 or the like in the width direction at the central portion in the width direction of the coating liquid film (that is, the region inside the both ends in the width direction of the coating liquid film). Measure the center of each of the 5 equal parts in the width direction. This measurement is desirably adopted when the width of the central portion in the width direction of the coating liquid film is more than 90 mm.
  • the central portion in the width direction of the coating liquid film is 30 mm to 90 mm
  • the central portion in the width direction of the coating liquid film (that is, the area inside the both ends in the width direction of the coating liquid film) is divided into three equal parts in the width direction, and the center of each of the three equal parts in the width direction is measured.
  • the measurement may be performed at one point in the center of the coating liquid film in the width direction. As described above, one drying point Tc at the center of the coating liquid film in the width direction may be obtained, or three or five drying points may be obtained depending on the width of the coating liquid film.
  • FIG. 3 is a schematic top view for explaining a plurality of coating liquid films formed on a substrate. As shown in FIG. 3, when the transport direction of the elongated substrate 10 is the X direction, in each of the two coating liquid films 12 formed, both ends in the width direction of the coating liquid film are dried.
  • the coating liquid film 12 is dried so that the point Te is positioned downstream in the X direction from the drying point Tc at the center of the coating liquid film in the width direction. As described above, when three or five drying points Tc are required at the central portion in the width direction of the coating liquid film, the drying points Te at both ends in the width direction of the coating liquid film are The coating liquid film 12 is dried so as to be located downstream in the X direction from all the drying points Tc in the central portion in the width direction.
  • “d” in FIG. 3 is the distance between the drying point Te at both ends in the width direction of the coating liquid film and the drying point Tc at the central portion in the width direction of the coating liquid film. More specifically, as shown in FIG. 3, "d” is a straight line Le that passes through the dry point Te and is parallel to the width direction of the base material 10 (that is, the direction perpendicular to the conveying direction X of the base material). , and a straight line Lc passing through the drying point Tc and parallel to the width direction of the substrate 10 (that is, the direction perpendicular to the transport direction X of the substrate). As shown in FIG.
  • d is the drying point The shortest distance between Te and the dry point Tc may be set.
  • “d” means that the drying points Te at both ends in the width direction of the coating liquid film are downstream of the drying point Tc at the central portion in the width direction of the coating liquid film in the conveying direction of the substrate (downstream in the X direction).
  • the drying point Te at both ends in the width direction of the coating liquid film is upstream of the drying point Tc at the center in the width direction of the coating liquid film in the conveying direction of the substrate (X direction upstream), it is represented by a negative value. That is, when the value of “d” is “0.1 m”, the drying point Te at both ends in the width direction of the coating liquid film is closer to the substrate than the drying point Tc at the central portion in the width direction of the coating liquid film. This indicates that the distance between dry points Te and Tc on the downstream side in the transport direction (downstream side in the X direction) is 0.1 m.
  • the drying point Te at both ends in the width direction of the coating liquid film is lower than the drying point Tc at the central portion in the width direction of the coating liquid film.
  • the distance between dry point Te and dry point Tc is 0.2 m.
  • the distance between the dry point Te at both ends in the width direction of the coating liquid film and the dry point Tc at the central portion in the width direction of the coating liquid film (the above formula 1 is preferably 0.05 m or more, and more preferably 0.08 m or more.
  • the upper limit of the distance between the drying point Te at both ends in the width direction of the coating liquid film and the drying point Tc at the central portion in the width direction of the coating liquid film is 10 m.
  • the coating liquid A method may be used in which the central portion in the width direction of the film is dried faster than the both end portions in the width direction.
  • the coating liquid films are dried by applying hot air from a hot air drying mechanism 32 to each of the plurality of coating liquid films as indicated by the arrows. is preferred. More specifically, the following (1) to ( It is preferable to satisfy the condition of 3). (1) In each of the plurality of coating liquid films, the wind speed of the hot air hitting the widthwise central portion of the coating liquid film is made higher than the wind speed of the hot air hitting both widthwise end portions of the coating liquid film.
  • the dew point of the hot air hitting the widthwise central portion of the coating liquid film is made lower than the dew point of the hot air hitting both widthwise ends of the coating liquid film.
  • the temperature of the hot air that hits the central portion in the width direction of the coating liquid film is made higher than the temperature of the hot air that hits both ends in the width direction of the coating liquid film.
  • FIG. 4 is a schematic diagram for explaining a mode of applying hot air from the hot air drying mechanism 32 to the coating liquid film 12 formed on the base material 10 .
  • FIG. 4 is a schematic cross-sectional view of the substrate 10 and the coating liquid film 12 in the second step in the width direction (the Y direction in FIG. 4).
  • a hot air drying mechanism 32 is arranged so as to face the film surface of the coating liquid film 12 .
  • the hot air drying mechanism 32 includes an air supply unit 34 for applying hot air to the central portion of the coating liquid film 12 in the width direction in the width direction of the substrate 10,
  • An air supply unit 36 for blowing hot air is arranged side by side.
  • the directions in which hot air is applied are indicated by white arrows.
  • the wind speed of the warm air blown from the air supply unit 34 toward the central portion in the width direction of the coating liquid film 12 shown in FIG. It is sufficient that the air velocity is higher than the air velocity of the hot air blown to both ends of the working liquid film 12 in the width direction.
  • hot air is blown from the air supply unit 34 only toward the central portion in the width direction of the coating liquid film 12, and hot air is not blown from the air supply unit 36 toward both ends in the width direction of the coating liquid film 12.
  • the wind speed of the hot air hitting the widthwise central portion of the coating liquid film 12 can be made higher than the wind speed of the hot air hitting both widthwise end portions of the coating liquid film 12 .
  • the wind velocity of the hot air hitting the coating liquid film 12 can be measured by a thermal anemometer disposed between the hot air outlet of the air supply units 34 and 36 and the coating liquid film.
  • the dew point may be lower than the dew point of the hot air blown to both ends of the working liquid film 12 in the width direction.
  • the dew point of the hot air hitting the center of the coating liquid film 12 in the width direction can be made lower than the dew point of the hot air hitting both ends of the coating liquid film 12 in the width direction.
  • the dew point of the hot air hitting the coating liquid film 12 can be measured by a capacitance dew point meter disposed between the hot air outlet of the air supply units 34 and 36 and the coating liquid film. can.
  • the temperature may be higher than the temperature of the hot air blown to both ends of the working liquid film 12 in the width direction.
  • the temperature of the hot air hitting the central portion of the coating liquid film 12 in the width direction can be made higher than the temperature of the hot air hitting both ends of the coating liquid film 12 in the width direction.
  • the temperature of the hot air hitting the coating liquid film 12 can be measured by a thermometer disposed between the hot air outlet of the air supply units 34 and 36 and the coating liquid film.
  • FIG. 5 is a schematic cross-sectional view for explaining the drying zone 30A using curved conveying means. Further, FIG. 5 is a cross-sectional view of the substrate cut along the longitudinal direction (also the transport direction) and the thickness direction.
  • reference numeral 14 indicates a laminate of a substrate and a coating liquid film formed on the substrate
  • reference numeral 38 indicates a transport roll
  • reference numeral 32A indicates a hot air drying mechanism.
  • the hot air drying mechanism 32A has an arc-shaped surface in a cross-sectional view.
  • the laminate 14 can be curved along the arcuate shape of the hot air drying mechanism 32A.
  • the laminated body 14 can be conveyed while curving in the thickness direction (while being wavy).
  • the wind velocity of the warm air hitting the coating liquid film (or laminate) is preferably 10 m/sec to 60 m/sec, more preferably 20 m/sec to 50 m/sec.
  • the difference in the speed of the hot air between the central portion in the width direction and the both ends in the width direction of the coating liquid film is preferably 1 m/sec to 40 m/sec, and is 5 m/sec. More preferably there is a difference of seconds to 20 m/s.
  • the dew point of the warm air hitting the coating liquid film (or laminate) is preferably -30°C to 20°C, more preferably -20°C to 10°C.
  • the dew point of the hot air between the central portion in the width direction and the both end portions in the width direction of the coating liquid film preferably has a difference of 5° C. to 40° C., preferably 10° C. to 30° C. It is more preferable that there is a difference of °C.
  • the temperature of the warm air hitting the coating liquid film (or laminate) is preferably 30°C to 150°C, more preferably 45°C to 100°C.
  • the difference in temperature between the central portion in the width direction and both ends in the width direction of the coating liquid film is preferably 5° C. to 50° C., preferably 10° C. to 30° C. It is more preferable that there is a difference of °C.
  • a coating film is formed on the base material through the second step.
  • the thickness of the coating film obtained through the second step is not particularly limited as long as the thickness is suitable for the purpose, application, and the like.
  • the thickness of the coating film is preferably 40 ⁇ m or more, more preferably 50 ⁇ m or more, and even more preferably 60 ⁇ m or more.
  • the upper limit of the thickness of the coating film is not particularly limited, and may be determined depending on the application, and is, for example, 300 ⁇ m.
  • the measurement of the thickness of the coating film is the same as the measurement of the thickness of the coating liquid film.
  • At least one of before the first step and after the second step may have other steps, if necessary.
  • Other steps further include a pretreatment step performed before applying the coating liquid film, a post-treatment step performed on the formed coating film according to the application of the coating film, and the like.
  • Other steps include, specifically, for example, a step of cutting an uncoated portion (exposed portion of the substrate) between coating films, a step of surface-treating the substrate, a step of curing the coating film, Examples include a step of compressing the coating film, a step of peeling the base material from the coating film, and the like.
  • the number of substrates being continuously transported may be one, or may be two or more. That is, a plurality of substrates may be continuously transported in parallel, and the coating liquid film may be formed on each substrate.
  • the method for producing a coating film according to the present embodiment is a method for producing a large number of coating films on a substrate that is continuously conveyed, it is suitable for producing a coating film for applications that require high productivity. is.
  • An aluminum substrate (thermal conductivity: 230 W / m K, Young's modulus (“E” in formula 1): 70.3 GPa) with a width of 208 mm, a thickness (“t B ” in formula 1) of 10 ⁇ m, and a length of 300 m prepared.
  • a polyethylene terephthalate substrate having a width of 208 mm, a thickness (“t B ” in Formula 1) of 12 ⁇ m, and a length of 300 m (thermal conductivity: 0.23 W/m ⁇ K, Young's modulus (“E” in Formula 1): 4. 1 GPa) was prepared.
  • a copper substrate (thermal conductivity: 400 W / m K, Young's modulus (“E” in formula 1): 129.8 GPa) with a width of 208 mm, a thickness (“t B ” in formula 1) of 12 ⁇ m, and a length of 300 m prepared.
  • a water-based coating liquid 1 was prepared by mixing the following components. ⁇ Polyvinyl alcohol: 58 parts (CKS-50: degree of saponification 99 mol%, degree of polymerization 300, Nippon Synthetic Chemical Industry Co., Ltd.) ⁇ Daiichi Kogyo Seiyaku Co., Ltd. Cerogen PR: 24 parts ⁇ Surfactant (Nippon Emulsion Co., Ltd., Emarex 710): 5 parts ⁇ Aqueous dispersions 1 to 3 of Artpearl J-7P prepared by the following method : 913 copies
  • Artpearl (registered trademark) J-7P (Negami Kogyo Co., Ltd., silica composite crosslinked acrylic resin fine particles) was added to the resulting aqueous solution, and the mixture was homogenized at 10,000 rpm with an Ace homogenizer (Nippon Seiki Seisakusho Co., Ltd.). , and dispersed for 15 minutes to obtain an aqueous dispersion 2 of Artpearl J-7P (particle concentration: 41% by mass).
  • Artpearl (registered trademark) J-7P (Negami Kogyo Co., Ltd., silica composite crosslinked acrylic resin fine particles) was added to the resulting aqueous solution, and the mixture was homogenized at 10,000 rpm with an Ace homogenizer (Nippon Seiki Seisakusho Co., Ltd.). , and dispersed for 15 minutes to obtain an aqueous dispersion 3 of Artpearl J-7P (particle concentration: 22.2% by mass).
  • the true specific gravity of the silica composite crosslinked acrylic resin fine particles in the obtained aqueous dispersions 1 to 3 is 1.20, and the average particle size is 6.5 ⁇ m.
  • Example A1 In an apparatus configured as shown in FIG. 1, two lines of water-based coating liquid 1 are applied on an aluminum substrate to form a coating liquid film, and the formed coating liquid film is dried. , two strips of coating film were obtained. Specifically, the water-based coating liquid 1 was applied in two lines onto the substrate being continuously conveyed (first step). In the formed coating liquid film, the coating width is 85.5 mm, the film thickness (“t C ” in Formula 1) is 180 ⁇ m, and the width of the uncoated portion between the coating liquid films is 16 mm, The width of the uncoated portion at both ends of the substrate was 20.5 mm (the width of the uncoated portion between the coating liquid films was 18.7% of the width of one coating liquid film).
  • the coating liquid film was dried by applying hot air to the coating liquid film using a hot air drying mechanism (second step).
  • hot air with a dew point of 10 ° C. and 60 ° C. is applied to the central part in the width direction of the coating liquid film at a wind speed of 20 m / min, and hot air is applied to 25 mm at both ends in the width direction of the coating liquid film. I didn't guess.
  • the dry point Te was located downstream of the dry point Tc in the substrate conveying direction, and that "d" was 2 m.
  • Example A1 [Examples A2 to A13, Comparative Example A1]
  • two strips were formed on the substrate in the same manner as in Example A1, except that the type of substrate and the conditions in the first step and the second step were appropriately changed as shown in Table 1 below.
  • a coating film was formed.
  • Example A2 Two strips of the coating film were formed on the substrate in the same manner as in Example A1, except that hot air at 60° C. was applied to the entire surface of the coating liquid film at a wind speed of 20 m/min.
  • Example A3 In Example A1, except that hot air at 60° C. was applied to the entire surface of the coating liquid film at a wind speed of 20 m / min, and the conveying speed of the substrate in the second step was changed to the value shown in Table 1 below. In the same manner as above, two strips of coating film were formed on the substrate.
  • Example A14 In Example A1, two coating films were formed on the substrate in the same manner as in Example A1, except that a drying zone 30A using curved conveying means as shown in FIG. 5 was applied in the second step. formed.
  • Example A14 two strips were formed on the substrate in the same manner as in Example A14, except that the type of substrate and the conditions in the first step and the second step were appropriately changed as shown in Table 1 below. A coating film was formed.
  • Example B1 In Example A1, two coating films were formed on the substrate in the same manner as in Example A1, except that the second step was changed as follows.
  • hot air was applied to the coating liquid film using a hot air drying mechanism to dry the coating liquid film.
  • hot air with a dew point of -20 ° C. and a temperature of 40 ° C. is applied to the central part of the coating liquid film in the width direction at a wind speed of 20 m / min, and 25 mm at both ends of the coating liquid film in the width direction
  • Hot air with a dew point of 10°C and a temperature of 40°C was applied at 20 m/min.
  • Example B1 two strips were formed on the substrate in the same manner as in Example B1, except that the type of substrate and the conditions in the first step and the second step were appropriately changed as shown in Table 2 below. A coating film was formed.
  • Example B1 In Example B1, two strips were formed on the substrate in the same manner as in Example B1 except that hot air with a dew point of -20 ° C. and a temperature of 40 ° C. was applied to the entire surface of the coating liquid film at a wind speed of 20 m / min. A coating film was formed.
  • Example B2 hot air with a dew point of ⁇ 20° C. and a temperature of 40° C. was applied to the entire surface of the coating liquid film at a wind speed of 20 m / min, and the conveying speed of the substrate in the second step was changed to the values shown in Table 2 below. Two strips of coating film were formed on the substrate in the same manner as in Example B1, except for the above.
  • Example B14 In Example B1, two coating films were formed on the substrate in the same manner as in Example B1, except that a drying zone 30A using curved conveying means as shown in FIG. 5 was applied in the second step. formed.
  • Example B14 two strips were formed on the substrate in the same manner as in Example B14, except that the type of substrate and the conditions in the first step and the second step were appropriately changed as shown in Table 2 below. A coating film was formed.
  • Example C1 In Example A1, two coating films were formed on the substrate in the same manner as in Example A1, except that the second step was changed as follows.
  • hot air was applied to the coating liquid film using a hot air drying mechanism to dry the coating liquid film.
  • hot air with a dew point of 10 ° C. and a temperature of 60 ° C. was applied to the central part of the coating liquid film in the width direction at a wind speed of 20 m / min, and both ends of the coating liquid film in the width direction (25 mm from each end) area) was exposed to warm air having a dew point of 10°C and a temperature of 30°C at a wind speed of 20 m/min.
  • Example C2 In Example C1, two strips were formed on the substrate in the same manner as in Example C1, except that the type of substrate and the conditions in the first step and the second step were appropriately changed as shown in Table 3 below. A coating film was formed.
  • Example C1 In Example C1, two coating films were formed on the substrate in the same manner as in Example C1, except that hot air at a temperature of 60°C was applied to the entire surface of the coating liquid film at a wind speed of 20 m / min. bottom.
  • Example C2 hot air at a temperature of 60 ° C. was applied to the entire surface of the coating liquid film at a wind speed of 20 m / min, and the conveying speed of the substrate in the second step was changed to the value shown in Table 3 below. Two strips of coating film were formed on the substrate in the same manner as in Example C1.
  • Example C13 In Example C1, two coating films were formed on the substrate in the same manner as in Example C1, except that a drying zone 30A using curved conveying means as shown in FIG. 5 was applied in the second step. formed.
  • Example C13 two strips were formed on the substrate in the same manner as in Example C13, except that the type of substrate and the conditions in the first step and the second step were appropriately changed as shown in Table 3 below. A coating film was formed.
  • ⁇ B Weak deformation (crease) occurs in the uncoated portion between the coating liquid films in parallel with the longitudinal direction of the base material, but the deformation returns as the conveyance progresses, and no creases are formed. rice field.
  • C Strong deformation (crease) occurred in the uncoated portion between the coating liquid films in parallel with the longitudinal direction of the base material, and folding wrinkles occurred when it came into contact with the pass rollers.

Abstract

連続搬送されている基材に対して塗工液を塗工し、基材上に複数条の塗工液膜を形成する第1工程と、複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向両端部の乾燥点Teを、塗工液膜の幅方向中央部の乾燥点Tcよりも基材の搬送方向下流側とする、塗工液膜の乾燥を行う第2工程と、を有する、塗工膜の製造方法。

Description

塗工膜の製造方法
 本開示は、塗工膜の製造方法に関する。
 ロールトゥロール方式での連続プロセスにて、狭幅(例えば、幅200mm以下)の塗工膜を効率良く製造する方法としては、以下の方法が知られている。
 即ち、連続搬送する広幅の基材上に塗工液を多条で塗工し、得られた塗工液膜を乾燥した後、隣接する塗工膜間の未塗工部(すなわち基材の露出部)を塗工膜に沿って切断することで複数条の塗工膜を得る、塗工膜の製造方法である。
 塗工液を多条で塗工する技術を用いた方法として、特開2001-223012号公報には、長尺状の導電性電極基材上に、電極用塗料を、該基材の長さ方向に未塗布部分を形成するように多条塗布する電極の製造方法において、基材として、特定の方法で定義された耐たわみモーメントmが0.08g・cm以上のものを使用する電極の製造方法が記載されている。
 塗工液を多条で塗工する技術を用いた塗工膜の製造方法において、塗工膜の用途によっては、隣接する塗工膜間に形成される未塗工部には平滑性が求められる。しかしながら、塗工膜の製造方法において上述のように塗工液膜の乾燥が行われる場合には、隣接する塗工膜間の未塗工部に折れシワが発生してしまうことがある。この未塗工部の折れシワは、塗工液膜の乾燥時に、塗工液膜が収縮することで、未塗工部における基材が変形してしまうことに起因する。未塗工部に変形が生じると、その変形部分が、搬送ロールとの接触により折れシワとなる。
 未塗工部の折れシワは、基材の未塗工部において、基材の一部に折れ跡が付いたり、基材の一部が折れ重なったりすることで生じる、基材の長手方向(搬送方向でもある)に連なる痕跡をいう。なお、ここでは、未塗工部の折れシワについて着目しているが、折れシワは、塗工部にも生じる現象でもある。
 そこで、本開示の一実施形態が解決しようとする課題は、上記事情に鑑みてなされたものであり、基材上に複数条の塗工液膜を形成し、かかる塗工液膜を乾燥させて、基材上に複数本の塗工膜を製造する過程において生じる、未塗工部の折れシワを抑制しうる塗工膜の製造方法を提供することである。
 上記課題を解決するための手段は、以下の実施形態を含む。
<1> 連続搬送されている基材に対して塗工液を塗工し、基材上に複数条の塗工液膜を形成する第1工程と、
 複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向両端部の乾燥点Teを、塗工液膜の幅方向中央部の乾燥点Tcよりも基材の搬送方向下流側とする、塗工液膜の乾燥を行う第2工程と、
 を有する、塗工膜の製造方法。
<2> 下記式1に示されるkが、0<k<6000の関係を満たす、<1>に記載の塗工膜の製造方法。
Figure JPOXMLDOC01-appb-M000002
 上記式1中、tはμmを単位とする塗工液膜の膜厚を表し、EはGPaを単位とする基材のヤング率を表し、pは塗工液の固形分率を表し、tはμmを単位とする基材の厚みを表し、dは乾燥点Teと乾燥点Tcとの間のmを単位とする距離を表す。
<3> 塗工液膜間の未塗工部の幅が、一条の塗工液膜の幅の5%~40%である、<1>又は<2>に記載の塗工膜の製造方法。
<4> 第2工程において、複数条の塗工液膜のそれぞれに温風を当てる、<1>~<3>のいずれか1つに記載の塗工膜の製造方法。
<5> 複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向中央部に当たる温風の風速が、塗工液膜の幅方向両端部に当たる温風の風速より大きい、<4>に記載の塗工膜の製造方法。
<6> 複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向中央部に当たる温風の露点が、塗工液膜の幅方向両端部に当たる温風の露点より低い、<4>に記載の塗工膜の製造方法。
<7> 複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向中央部に当たる温風の温度が、塗工液膜の幅方向両端部に当たる温風の温度より高い、<4>に記載の塗工膜の製造方法。
<8> 第2工程では、複数条の塗工液膜のそれぞれに温風を当て、温風の風圧により塗工液膜と基材との積層体を厚み方向に湾曲させながら連続搬送する、<1>~<7>のいずれか1つに記載の塗工膜の製造方法。
<9> 前記基材が、熱伝導率が200W/m・K以上の基材である、<1>~<8>のいずれか1つに記載の塗工膜の製造方法。
 本開示の一実施形態によれば、基材上に複数条の塗工液膜を形成し、かかる塗工液膜を乾燥させて、基材上に複数本の塗工膜を製造する過程において生じる、未塗工部の折れシワを抑制しうる塗工膜の製造方法が提供される。
図1は、一実施形態の塗工膜の製造方法の各工程の一例を示す概略図である。 図2は、基材上に形成された塗工液膜の乾燥点を説明するためのグラフである。 図3は、基材上に形成された複数条の塗工液膜を説明するための概略上面模式図である。 図4は、第2工程における基材及び塗工液膜を幅方向に断面視した概略模式図である。 図5は、温風の風圧により塗工液膜と基材との積層体を厚み方向に湾曲させながら連続搬送する手段を用いた乾燥を説明するための概略断面模式図である。
 以下、塗工膜の製造方法の実施形態について説明する。但し、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実
施することができる。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示にて示す各図面における各要素は必ずしも正確な縮尺ではなく、本開示の原理を明確に示すことに主眼が置かれており、強調がなされている箇所もある。
 また、各図面において、同一機能を有する構成要素には同一符号を付し、重複する説明は省略する。
 本開示おいて「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、「塗工液膜」とは、第2工程にて乾燥される前、及び、第2工程にて乾燥中の膜を指し、「塗工膜」とは乾燥が終了した後の膜を指す。
 本開示において、「幅方向」とは、長尺の基材、塗工液膜、及び塗工膜のいずれかの長手方向と直交する方向を指す。
 本開示において、「幅方向両端部」とは、塗工液膜又は塗工膜の幅方向の両端部分を指し、幅方向縁部(具体的には、下記の塗工領域と未塗工領域との境界線)から、5mmまで内側の領域を指す。
 本開示において、「幅方向中央部」とは、塗工液膜又は塗工膜の幅方向の中央部分であって、上記「幅方向両端部」よりも内側の領域を指す。
 本開示において、「幅方向縁部」とは、塗工液膜又は塗工膜の幅方向の縁部を指し、塗工液膜又は塗工膜の膜面を上面視したときには、塗工領域(即ち、塗工液膜又は塗工膜の形成部)と未塗工領域(即ち、基材の露出部)との境界線として視認される。
 本開示において、2以上の好ましい形態又は態様の組み合わせは、より好ましい形態又は態様である。
≪塗工膜の製造方法≫
 既述のように、塗工液を多条で塗工する工程と、塗工された塗工液膜を乾燥する工程と、を有する塗工膜の製造方法においては、隣接する塗工膜間の未塗工部に折れシワが発生することがある。
 本発明者らは、この未塗工部の折れシワの抑制について鋭意検討を行ったところ、塗工液膜の幅方向における中央部と両端部とのそれぞれで乾燥状態を制御することで、塗工液膜の乾燥時に生じる未塗工部における基材の変形が抑えられることを見出し、本発明をなすに至った。なお、未塗工部の折れシワを抑制する観点からは、未塗工部における基材の変形が生じないことが好ましいが、未塗工部における基材の変形が多少生じていても、連続搬送時にその変形が直ぐに(例えば、変形後に到達する搬送ロールとの接触の前までに)元に戻る程度であればよい。
 本実施形態に係る塗工膜の製造方法は、連続搬送されている基材に対して塗工液を塗工し、基材上に複数条の塗工液膜を形成する第1工程と、複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向両端部の乾燥点Teを、塗工液膜の幅方向中央部の乾燥点Tcよりも基材の搬送方向下流側とする、塗工液膜の乾燥を行う第2工程と、を有する。
 本実施形態に係る塗工膜の製造方法によれば、塗工膜間の未塗工部における折れシワを抑制しうる。
 特に、本実施形態に係る塗工膜の製造方法では、下記式1に示されるkが、0<k<6000の関係を満たす、ことが好ましい。
Figure JPOXMLDOC01-appb-M000003
 上記式1中、tはμmを単位とする塗工液膜の膜厚を表し、EはGPaを単位とする基材のヤング率を表し、pは塗工液の固形分率を表し、tはμmを単位とする基材の厚みを表し、dは乾燥点Teと乾燥点Tcとの間のmを単位とする距離を表す。
 式1は、基材の変形、及び、基材の変形の戻りに影響を及ぼすファクターに基づき導き出された式である。
 tで表される塗工液膜の膜厚は、塗工液膜の乾燥時の収縮量に寄与する。tの値が大きいほど、即ち、塗工液膜の膜厚が大きいほど、塗工液膜の乾燥時の収縮量が大きく、未塗工部における基材を変形させ易い傾向にある。
 Eで表される基材のヤング率は、基材の変形の残り易さに寄与する。Eの値が大きいほど、即ち、基材のヤング率が大きいほど、弾性限度が小さく、未塗工部における基材の変形が残り易い傾向にある。
 pで表される塗工液の固形分率は、塗工液膜の乾燥時の収縮応力に寄与する。pの値が大きいほど、即ち、塗工液の固形分率の値が大きいほど、塗工液膜の乾燥時の収縮応力が強くなり、未塗工部における基材を変形させ易い傾向にある。
 tで表される基材の厚みは、基材の曲がり易さに寄与する。tの値が大きいほど、即ち、基材の厚みが大きいほど、基材が曲がり難く、未塗工部における基材が変形し難い傾向にある。
 dで表される乾燥点Teと乾燥点Tcとの距離は、塗工液膜の幅方向両端部と幅方向中央部との乾燥状態の差を示している。dの値が大きいほど、即ち、乾燥点Teと乾燥点Tcとの距離が離れているほど、未塗工部の基材が変形し難い傾向にある。
 基材の選択により「E」及び「t」をそれぞれ調整し、第1工程にて「t」及び「p」をそれぞれ調整し、第2工程にて「d」を調整することで、0<k<6000の関係を満たすように調整することができる。
 0<k<6000の関係を満たすことで、未塗工部の折れシワをより効果的に抑制することができる。
 本実施形態に係る塗工膜の製造方法は、未塗工部の折れシワを更に効果的に抑制する観点から、上記式1に示されるkが、0<k<5000の関係を満たすことがより好ましく、0<k<4000の関係を満たすことが更に好ましい。
 ここで、特開2001-223012号公報に記載の方法では、塗工液膜の乾燥点について着目されていない。また、特開2001-223012号公報に記載の方法では、乾燥時に塗工液膜の収縮応力が強く働くような、塗工液膜を急速に乾燥させる条件等によっては、塗工膜間の未塗工部の折れシワを抑制し難いものと推測される。
 以下、本実施形態の塗工膜の製造方法の各工程について説明する。
 まず、塗工膜の製造方法の一例について、図1を参照して説明する。図1は、一実施形態の塗工膜の製造方法の各工程の一例を示す概略図である。
 図1に示すように、長尺の基材10は、ロール状に巻回されたロールR1からその先端が送り出され、連続搬送が開始される。連続搬送されている基材10が、塗工手段20の設置位置まで到達したとき、基材10上に塗工手段20により塗工液が複数条で塗工される。これにより、長尺の基材10上には、塗工液による複数条の塗工液膜が形成される(第1工程)。
 続いて、乾燥ゾーン30の中を、第1工程にて形成された複数条の塗工液膜を有する基材10を連続搬送させることで、基材10上にて複数条の塗工液膜を乾燥する(第2工程)。具体的には、第2工程では、複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向両端部の乾燥点Teを、塗工液膜の幅方向中央部の乾燥点Tcよりも基材10の搬送方向下流側とする、塗工液膜の乾燥を行う。この第2工程により、長尺の基材10上の複数条の塗工液膜が乾燥し、複数条の塗工膜が形成される。
 続いて、複数条の塗工膜が形成された基材10はロール状に巻き取られ、複数条の塗工膜と基材10との積層体によるロールR2が得られる。
[第1工程]
 第1工程では、連続搬送されている基材に対して塗工液を塗工し、基材上に複数条の塗工液膜を形成する。
-基材-
 本工程に用いる基材は、塗工膜の用途に応じて選択すればよく、また、連続搬送への適用性(好ましくは、ロールトゥロール方式への適用性)を考慮して選択すればよい。
 塗工液膜の乾燥時の収縮に影響を及ぼし易いのは、金属基材等の熱伝導性が高い基材である。本実施形態に係る塗工膜の製造方法では、熱伝導性が高い基材を用いた場合であっても、未塗工部の折れシワを抑制することができる。
 なお、基材としては、樹脂フィルムを用いてもよい。
 熱伝導性が高い基材としては、例えば、熱伝導率が200W/m・K以上の基材が挙げられる。なお、本工程で用いる基材が、例えば、金属箔及び樹脂膜を含む多層構造の基材の場合、その基材全体としての熱伝導率が200W/m・K以上であれば、熱伝導率が200W/m・K以上の基材とする。
 基材の熱伝導率の上限値は特に制限されず、例えば、500W/m・Kである。
 上記熱伝導率を示す基材としては、例えば、金属基材が挙げられる。より具体的には、上記熱伝導率を示す基材としては、銅、アルミニウム、銀、金、及びこれらの合金による金属基材が挙げられる。
 その他、金属基材としては、ステンレス、ニッケル、チタン、又はインバー合金による基材であってもよい。
 中でも、基材としての形状安定性、使用実績等の点から、銅基材、及びアルミニウム基材が好ましく用いられる。
 基材の熱伝導率は、以下のようにして測定する。
 まず、基材を後述する装置に適したサイズに切り出し、測定用試料を得る。得られた測定用試料について、レーザーフラッシュ法で厚み方向の熱拡散率を測定する。例えば、NETZSCH社の「LFA467」を用いて測定することができる。次いで、天秤を用いて測定用試料の比重を測定する。例えば、メトラー・トレド(株)の天秤「XS204」(「固体比重測定キット」使用)を用いて測定することができる。更に、セイコーインスツル(株)の「DSC320/6200」を用い、10℃/分の昇温条件の下、25℃における測定用試料の比熱を求める。得られた熱拡散率に比重及び比熱を乗じることで、測定用試料(即ち、基材)の熱伝導率を算出する。
 基材のヤング率(上記式1における「E」に該当)は、連続搬送への適用性(好ましくはロールトゥロール方式への適用性)の観点、0<k<6000の関係を満たす観点から、1GPa~200GPaであることが好ましく、50GPa~150GPaであることがより好ましい。
 ここで、基材のヤング率は、25℃におけるヤング率を示す。
 基材のヤング率は、自由共振式固有振動法にて測定することができる。具体的には、基材のヤング率は、例えば、自由共振式固有振動法を採用した、日本テクノプラス(株)の自由共振式ヤング率測定装置(製品名:JE-RT)を用いて測定される。
 基材の厚み(上記式1における「t」に該当)は、連続搬送への適用性(好ましくはロールトゥロール方式への適用性)の観点から、また、0<k<6000の関係を満たす観点から、適宜、設定すればよい。
 基材の厚みは、例えば、5μm~100μmであることが好ましく、8μm~30μmであることがより好ましく、10μm~20μmであることが更に好ましい。
 なお、基材の幅及び長さは、ロールトゥロール方式に適用する観点、目的とする塗工膜の幅及び長さから、適宜、設定すればよい。
 基材の厚みは、以下のようにして測定する。
 即ち、接触式の厚み測定機を用い、基材の幅方向の3箇所(即ち、幅方向の両縁部から5mmの位置と幅方向中央部)の厚みを、長手方向に500mmの間隔を開けて3点測定する。
 測定された計9つの測定値の算術平均値を求め、これを基材の厚みとする。
 接触式の厚み測定機としては、例えば、(株)フジワークのS-2270が用いられる。
 本工程において、連続搬送されている基材の搬送速度としては、特に制限はない。
 基材の搬送速度としては、例えば、0.1m/分~100m/分を選択することができ、0.2m/分~20m/分を選択することができる。
-塗工液-
 本工程で用いる塗工液としては、目的とする塗工膜を形成し得る塗工液を用いればよい。
 塗工液膜の乾燥時の収縮に影響を及ぼし易いのは、塗工液中に含まれる溶媒(又は分散媒)が実質的に水である塗工液(以下、水系塗工液ともいう)である。本実施形態に係る塗工膜の製造方法では、水系塗工液を用いた場合であっても、未塗工部の折れシワを抑制することができる。
 ここで、水系塗工液において、「溶媒(又は分散媒)が実質的に水である」とは、固形分を用いる際に導入される水以外の溶媒の含有を許容することを意味し、全溶媒(又は全分散媒)中の水の割合が90質量%以上であること指し、全溶媒(又は全分散媒)中の水の割合が95質量%以上であることが好ましく、全溶媒(又は全分散媒)が水であることが特に好ましい。
 また、固形分とは、溶媒(又は分散媒)を除く成分を指す。
 本工程で用いる水系塗工液としては、既述のように、溶媒(又は分散媒)としての水と、固形分と、を含む液状物であれば、特に制限されない。
 水系塗工液に含まれる固形分には、目的とする塗工膜を得るための成分の他、塗布適性を向上させるための成分等が含まれる。
 水系塗工液に含まれる水としては、天然水、精製水、蒸留水、イオン交換水、純水、超純水(例えば、Milli-Q水)等が挙げられる。なお、Milli-Q水とは、メルク(株)のMilli-Q水製造装置により得られる超純水である。
 水系塗工液における水の含有量は特に制限はなく、例えば、水系塗工液の全質量に対して、20質量%以上であることが好ましく、30質量%以上であることがより好ましい。
 水の含有量の上限値は100質量%未満であればよいが、例えば、塗布適性の観点からは、水系塗工液の全質量に対して、90質量%であることが好ましく、80質量%であることがより好ましい。
 水系塗工液は、固形分の1つとして、粒子を含んでいてもよい。つまり、水系塗工液は、粒子を含む塗工液であってもよい。
 粒子を含む水系塗工液を用いると、定率乾燥の段階において、溶媒である水の蒸発に加えて粒子の凝集に伴う体積変化が加わることから、塗工液膜の収縮が大きくなる傾向にある。しかしながら、本実施形態に係る塗工膜の製造方法を適用することで、粒子を含む水系塗工液を用いる場合(言い換えれば、塗工液膜の収縮が大きくなる態様の場合)であっても、未塗工部の折れシワを抑制することができる。
 粒子は、粒状物であれば特に制限はなく、無機粒子であってもよいし、有機粒子であってもよいし、無機物質と有機物質との複合粒子であってもよい。
 無機粒子としては、目的とする塗工膜に適用しうる公知の無機粒子を用いることができる。
 無機粒子としては、例えば、金属(アルカリ金属、アルカリ土類金属、遷移金属、又はこれらの金属の合金)の粒子、半金属(ケイ素等)の粒子、又は金属又は半金属の化合物(酸化物、水酸化物、窒化物等)の粒子、カーボンブラック等を含む無機顔料の粒子等が挙げられる。
 無機粒子としては、その他、雲母等の鉱物の粒子等も挙げられる。
 有機粒子としては、目的とする塗工膜に適用しうる公知の有機粒子を用いることができる。
 有機粒子としては、樹脂粒子及び有機顔料粒子をはじめ、固体有機物の粒子であれば、特に制限はされない。
 無機物質と有機物質との複合粒子としては、有機物質によるマトリックス中に無機粒子が分散した複合粒子、有機粒子の周囲を無機物質にて被覆した複合粒子、無機粒子の周囲を有機物質にて被覆した複合粒子等が挙げられる。
 粒子は、分散性の付与等の目的から、表面処理が施されていてもよい。
 なお、表面処理が施されることで、上記の複合粒子となっていてもよい。
 粒子の粒径、比重、使用形態(例えば、併用の有無等)等には、特に制限はなく、目的とする塗工膜に応じて、又は、塗工膜を製造するに適する条件に応じて、適宜、選択すればよい。
 水系塗工液における粒子の含有量としては、特に制限はなく、目的とする塗工膜に応じて、塗工膜を製造するに適する条件に応じて、又は粒子の添加目的に応じて、適宜、決定されればよい。
 水系塗工液中の粒子の含有量は、例えば、50質量%以上であってもよい。
 水系塗工液に含まれる固形分としては、特に制限されず、目的とする塗工膜を得るために用いられる各種成分が挙げられる。
 水系塗工液に含まれる固形分として具体的には、上述の粒子の他、バインダー成分、粒子の分散性に寄与する成分、重合性化合物、重合開始剤等の反応性成分、界面活性剤等の塗布性能を高めるための成分、その他の添加剤等が挙げられる。
 塗工液(好ましくは水系塗工液)における固形分率(即ち、塗工液の全質量に対する固形分の比率、上記式1における「p」に該当)としては、0<k<6000の関係を満たす観点から、0.2以上が好ましく、0.3以上がより好ましい。
 塗工液における固形分率の上限は、例えば、0.8である。
-塗工液膜の膜厚-
 本工程において形成される塗工液膜の膜厚(上記式1における「t」に該当)は特に制限はなく、目的とする塗工膜に応じて、適宜、決定すればよい。
 塗工液膜の厚みは、例えば、50μm~350μmを選択することができ、80μm~300μmを選択することができ、80μm~200μmを選択することができる。
 塗工液膜の厚みは、以下のようにして測定する。
 即ち、塗工液膜について、幅方向に沿って3箇所(具体的には、幅方向の両縁部から5mmの位置と幅方向中央部)、光干渉式の厚み測定機(例えば、キーエンス社の赤外分光干渉式膜厚計SI-T80)にて測定する。3点の測定値の算術平均値を求め、これを塗工液膜の厚みとする。
-塗工幅-
 本工程における、1条の塗工幅(即ち、1条の塗工液膜の幅、具体的には、図3に示す「Wa」)は特に制限はなく、目的とする塗工膜に応じて、適宜、決定すればよい。
 塗工幅は、例えば、200mm以下を選択することができ、150mm以下を選択することができ、100mm以下を選択することができる。
 塗工幅の下限は、例えば、30mmである。
 なお、塗工幅は、1条ごとに異なっていてもよく、同じであってもよい。但し、基材のハンドリングの観点からは、複数の塗工液膜のそれぞれの塗工幅は同程度にし、基材の幅方向で塗工液膜が対称に近い状態で並ぶことが好ましい。このとき、複数の塗工液膜のそれぞれの塗工幅の差は20mm以下であることが好ましく、5mm以下であることがより好ましく、0mmであってもよい。
-未塗工部の幅-
 本工程における、塗工液膜間の未塗工部の幅(即ち、塗工液膜間の基材の露出部の幅、具体的には、図3に示す「Wb」)は特に制限はなく、目的とする塗工膜の用途に応じて、適宜、決定すればよい。
 塗工液膜間の未塗工部の幅としては、例えば、5mm~100mmを選択することができ、10mm~50mmを選択することができる。
 なお、塗工液膜間の未塗工部が複数ある場合、複数ある未塗工部の幅は、それぞれ異なっていてもよく、同じであってもよい。
 また、本実施形態に係る塗工膜の製造方法において、塗工液膜間の未塗工部の幅が、一条の塗工液膜(即ち、塗工幅)の幅の5%~40%である、ことが好ましい。塗工液膜間の未塗工部の幅が、一条の塗工液膜の幅の5%~40%であると、未塗工部の折れシワが発生しやすい傾向があるが、本実施形態に係る塗工膜の製造方法であれば、未塗工部の折れシワを抑制することができる。
 未塗工部の幅は、一条の塗工液膜の幅の5%~30%であることがより好ましく、一条の塗工液膜の幅の8%~25%であることが更に好ましい。
 ここで、上記一条の塗工液膜の幅とは、塗工液膜間の未塗工部に隣接する2つの塗工液膜の幅の算術平均値をいう。
 塗工幅及び未塗工部の幅は、以下のようにして測定する。
 即ち、塗工液膜の膜面を上面視し、1条の塗工液膜の幅を、定規にて、長手方向に500mmの間隔を開けて3点測定する測定する。測定された3点の測定値の算術平均値を求め、これを塗工幅とする。
 また、塗工液膜の膜面を上面視し、塗工液膜間の未塗工部の幅を、定規にて、長手方向に500mmの間隔を開けて3点測定する。測定された3点の測定値の算術平均値を求め、これを未塗工部の幅とする。
-塗工液膜の形成数-
 本工程では、塗工液膜の形成数としては、2以上であればよく、基材の幅をもとに、塗工液膜の幅及び未塗工部の幅に応じて、決定すればよい。
-塗布-
 本工程における塗工液の塗布には、複数条の塗工液膜を形成する塗工が可能であれば特に制限はなく、公知の塗工手段が適用される。
 塗工手段(例えば、図1における塗工手段20)として、多条塗工、ストライプ塗工等と呼ばれる、塗工手段が適用される。塗工手段として、具体的には、エクストルージョン型ダイコータ、スプレーコータ、スライドビードコータなどの前計量方式のコータが挙げられる。
[第2工程]
 第2工程では、複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向両端部の乾燥点Teを、塗工液膜の幅方向中央部の乾燥点Tcよりも基材の搬送方向下流側とする、塗工液膜の乾燥を行う。
 ここで、塗工液膜の幅方向両端部の乾燥点Teは2つあるが、2つの乾燥点Teの両方が、塗工液膜の幅方向中央部の乾燥点Tcよりも、基材の搬送方向下流側にくるように、本工程において塗布液膜の乾燥を行う。
 本工程における、塗工液膜の幅方向両端部の乾燥点Te、及び、塗工液膜の幅方向中央部の乾燥点Tcについて説明する。
 本開示における「乾燥点」とは、塗工液膜が定率乾燥期から減率乾燥期へと移行する点を指す。ここで、本開示においては、図2に示すように、塗工液膜の膜面温度が一定の値を示している期間(具体的には、膜面温度の温度変化が±5℃内に収まっている期間)を「定率乾燥期」とし、定率乾燥期(即ち、膜面温度が一定の値を示している期間)の後、膜面温度が上昇する期間を「減率乾燥期」とする。よって、図2に示すように、形成された塗工液膜の膜面温度が一定の値を示している期間から上昇へ転じる、膜面温度の変化点が乾燥点となる。
 なお、乾燥点は、一定の値を示している期間の膜面温度が5℃を超えて変化した地点とする。
 ここで、塗工液膜の膜面温度は、塗工液膜の上部であって、基材の搬送方向に沿って設置された複数の非接触式放射温度計にて測定される。塗工液膜の幅方向両端部にて測定された膜面温度から求められた乾燥点が「塗工液膜の幅方向両端部の乾燥点Te」となる。なお、塗工液膜の幅方向両端部における膜面温度は、塗工液膜の幅方向縁部から、5mm内側を測定する。つまり、乾燥点Teは、塗工液膜の幅方向縁部から5mm内側での乾燥点を指す。また、塗工液膜の幅方向中央部にて測定された膜面温度から求められた乾燥点が「塗工液膜の幅方向中央部の乾燥点Tc」となる。塗工液膜の幅方向中央部における膜面温度は、例えば、塗工液膜の幅方向中央部(即ち、塗工液膜の幅方向両端部よりも内側の領域)を幅方向に5等分して、5等分された幅方向それぞれの中央を測定する。この測定は、塗工液膜の幅方向中央部の幅が90mm超である場合に採用することが望ましい。なお、塗工液膜の幅方向中央部の幅が30mm~90mmである場合には、塗工液膜の幅方向中央部(即ち、塗工液膜の幅方向両端部よりも内側の領域)を幅方向に3等分して、3等分された幅方向それぞれの中央を測定すればよい。また、塗工液膜の幅方向中央部の幅が30mm未満である場合には、塗工液膜の幅方向中央の1点を測定すればよい。このように、塗工液膜の幅方向中央部の乾燥点Tcは、1つ求める場合もあるし、塗工液膜の幅によっては3つ又は5つ求める場合がある。
-乾燥-
 本工程においては、塗工液膜の幅方向両端部の乾燥点Teが、塗工液膜の幅方向中央部の乾燥点Tcよりも、基材の搬送方向下流側にくるように、塗工液膜の乾燥を行えばよい。
 本工程における塗工液膜の乾燥について、図3を用いて具体的に説明する。図3は、基材上に形成された複数条の塗工液膜を説明するための概略上面模式図である。図3に示すように、長尺状の基材10の搬送方向をX方向としたとき、形成された2条の塗工液膜12のそれぞれにおいて、塗工液膜の幅方向両端部の乾燥点Teが、塗工液膜の幅方向中央部の乾燥点Tcよりも、X方向下流側にくるように、塗工液膜12の乾燥を行う。上述のように、塗工液膜の幅方向中央部の乾燥点Tcが3つ又は5つ求められる場合には、塗工液膜の幅方向両端部の乾燥点Teが、塗工液膜の幅方向中央部の全ての乾燥点Tcよりも、X方向下流側にくるように、塗工液膜12の乾燥を行う。
 本開示において、図3における「d」を、塗工液膜の幅方向両端部の乾燥点Teと、塗工液膜の幅方向中央部の乾燥点Tcと、の間の距離とする。より具体的には、「d」は、図3に示すように、乾燥点Teを通り、基材10の幅方向(即ち、基材の搬送方向Xに直交する方向)に平行な直線Leと、乾燥点Tcを通り、基材10の幅方向(即ち、基材の搬送方向Xに直交する方向)に平行な直線Lcと、の距離を指す。図3に示すように、塗工液膜の幅方向両端部の乾燥点Teが2つあり、塗工液膜の幅方向中央部の乾燥点Tcも複数ある場合、「d」は、乾燥点Teと乾燥点Tcとの最短距離とすればよい。
 なお、「d」は、塗工液膜の幅方向両端部の乾燥点Teが、塗工液膜の幅方向中央部の乾燥点Tcよりも基材の搬送方向下流側(X方向下流側)にあれば、正の値で表し、塗工液膜の幅方向両端部の乾燥点Teが、塗工液膜の幅方向中央部の乾燥点Tcよりも基材の搬送方向上流側(X方向上流側)にあれば、負の値で表す。つまり、「d」の値が「0.1m」であれば、塗工液膜の幅方向両端部の乾燥点Teが、塗工液膜の幅方向中央部の乾燥点Tcよりも基材の搬送方向下流側(X方向下流側)にあって、乾燥点Teと乾燥点Tcとの距離が0.1mであることを示す。また、「d」の値が「-0.2m」であれば、塗工液膜の幅方向両端部の乾燥点Teが、塗工液膜の幅方向中央部の乾燥点Tcよりも基材の搬送方向上流側(X方向上流側)にあって、乾燥点Teと乾燥点Tcとの距離が0.2mであることを示す。
 未塗工部の折れシワの抑制の観点からは、塗工液膜の幅方向両端部の乾燥点Teと、塗工液膜の幅方向中央部の乾燥点Tcと、の距離(上記式1における「d」に該当)は、離れていることが好ましく、0.05m以上であることが好ましく、0.08m以上であることがより好ましい。なお、塗工液膜の幅方向両端部の乾燥点Teと、塗工液膜の幅方向中央部の乾燥点Tcと、の距離の上限としては、10mが挙げられる。
 塗工液膜の幅方向両端部の乾燥点Teが、塗工液膜の幅方向中央部の乾燥点Tcよりも、基材の搬送方向下流側にくるようにするためには、塗工液膜の幅方向中央部を幅方向両端部よりも早く乾燥させる方法を用いればよい。
 塗工液膜の幅方向中央部と幅方向両端部とのそれぞれで乾燥状態を制御し易い観点から、本工程では、以下のようにすることが好ましい。
 即ち、図1に示すように、乾燥ゾーン30において、複数条の塗工液膜のそれぞれに、温風乾燥機構32から矢印で示すように温風を当てることで塗工液膜の乾燥を行うことが好ましい。
 より具体的には、複数条の塗工液膜のそれぞれに温風を当てる上で、以下の(1)~(
3)の条件を満たすことが好ましい。
 (1)複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向中央部に当たる温風の風速を、塗工液膜の幅方向両端部に当たる温風の風速より大きくする。
 (2)複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向中央部に当たる温風の露点を、塗工液膜の幅方向両端部に当たる温風の露点より低くする。
 (3)複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向中央部に当たる温風の温度を、塗工液膜の幅方向両端部に当たる温風の温度より高くする。
 (1)~(3)のそれぞれの条件を満たすことで、塗工液膜の幅方向中央部を幅方向両端部よりも早く乾燥させることができる。
 なお、(1)~(3)の条件は、1つを満たしてもよいし、複数をみたしてもよい。
 上記(1)~(3)の条件を満たす乾燥方法について、図4を用いて、具体的に説明する。
 図4は、基材10上に形成された塗工液膜12に対し、温風乾燥機構32から温風を当てる態様を説明するための模式図である。ここで、図4は、第2工程における基材10及び塗工液膜12を幅方向(図4中のY方向)に断面視した概略模式図である。図4に示すように、塗工液膜12の膜面に対向するように温風乾燥機構32が配置されている。温風乾燥機構32には、基材10の幅方向に、塗工液膜12の幅方向中央部に対して温風を当てる給気部34と、塗工液膜12の幅方向両端部に対して温風を当てる給気部36と、が並んでいる。図4中、温風を当てる方向に関しては、白抜き矢印で示す。
 上記(1)の条件を満たすようにするには、図4に示す、給気部34から塗工液膜12の幅方向中央部に対して吹き出す温風の風速を、給気部36から塗工液膜12の幅方向両端部に対して吹き出す温風の風速よりも大きくすればよい。なお、給気部34から塗工液膜12の幅方向中央部に対してのみ温風を吹き出し、給気部36から塗工液膜12の幅方向両端部に対する温風の吹き出しを行わない態様としてもよい。このような方法を用いることで、塗工液膜12の幅方向中央部に当たる温風の風速を、塗工液膜12の幅方向両端部に当たる温風の風速より大きくすることができる。
 ここで、塗工液膜12にあたる温風の風速は、給気部34,36における温風の吹き出し口と塗工液膜との間に配置された熱式風速計によって測定することができる。
 上記(2)の条件を満たすようにするには、図4に示す、給気部34から塗工液膜12の幅方向中央部に対して吹き出す温風の露点を、給気部36から塗工液膜12の幅方向両端部に対して吹き出す温風の露点よりも低いものとすればよい。このような方法を用いることで、塗工液膜12の幅方向中央部に当たる温風の露点を、塗工液膜12の幅方向両端部に当たる温風の露点より低くすることができる。
 ここで、塗工液膜12にあたる温風の露点は、給気部34,36における温風の吹き出し口と塗工液膜との間に配置された静電容量式露点計によって測定することができる。
 上記(3)の条件を満たすようにするには、図4に示す、給気部34から塗工液膜12の幅方向中央部に対して吹き出す温風の温度を、給気部36から塗工液膜12の幅方向両端部に対して吹き出す温風の温度よりも高くすればよい。このような方法を用いることで、塗工液膜12の幅方向中央部に当たる温風の温度を、塗工液膜12の幅方向両端部に当たる温風の温度より高くすることができる。
 ここで、塗工液膜12にあたる温風の温度は、給気部34,36における温風の吹き出し口と塗工液膜との間に配置された温度計によって測定することができる。
 未塗工部の折れシワをより抑制する観点から、本工程では、複数条の塗工液膜のそれぞれに温風を当て、温風の風圧により塗工液膜と基材との積層体を厚み方向に湾曲させながら連続搬送する、ことが好ましい。
 図5を用いて、温風の風圧により塗工液膜と基材との積層体を厚み方向に湾曲させながら連続搬送する手段(以下、湾曲搬送手段ともいう)について説明する。図5は、湾曲搬送手段を用いた乾燥ゾーン30Aを説明するための概略断面模式図である。また、図5は、基材を、長手方向(搬送方向でもある)且つ厚み方向に沿って切断した断面図である。図5において、符号14は、基材と基材上に形成された塗工液膜との積層体を示しており、符号38は搬送ロールを示しており、符号32Aは温風乾燥機構を示している。
 図5に示すように、温風乾燥機構32Aは、断面視にて円弧状の表面を有しており、温風乾燥機構32Aから積層体14に対し矢印で示すように温風を当てることで、温風乾燥機構32Aの円弧状の形状に沿って積層体14を湾曲させることができる。
 このような乾燥ゾーン30Aによれば、図5に示すように、積層体14を厚み方向に湾曲させながら(波状にうねらせながら)搬送することができる。このように積層体14を連続搬送することで、塗工液膜が乾燥する際の収縮による基材の変形を抑制することができ、未塗工部の折れシワを効果的に抑制することができる。
-温風の風速、露点、温度-
 本工程にて、塗工液膜(又は積層体)に当たる温風の風速は、10m/秒~60m/秒が好ましく、20m/秒~50m/秒がより好ましい。上述の(1)の条件においては、塗工液膜の幅方向中央部と幅方向両端部とでは、温風の風速が、1m/秒~40m/秒の差があることが好ましく、5m/秒~20m/秒の差があることがより好ましい。
 また、塗工液膜(又は積層体)に当たる温風の露点は、-30℃~20℃が好ましく、-20℃~10℃がより好ましい。上述の(2)の条件においては、塗工液膜の幅方向中央部と幅方向両端部とでは、温風の露点が、5℃~40℃の差があることが好ましく、10℃~30℃の差があることがより好ましい。
 更に、塗工液膜(又は積層体)に当たる温風の温度は、30℃~150℃が好ましく、45℃~100℃がより好ましい。上述の(3)の条件においては、塗工液膜の幅方向中央部と幅方向両端部とでは、温風の温度が、5℃~50℃の差があることが好ましく、10℃~30℃の差があることがより好ましい。
 以上のようにして、第2工程を経ることで、基材上に塗工膜が形成される。
 第2工程を経て得られた塗工膜の厚みは、特に制限はなく、目的、用途等に応じた厚みであればよい。
 本実施形態に係る塗工膜の製造方法においては、塗工膜の厚みは、40μm以上とすることが好ましく、50μm以上とすることがより好ましく、60μm以上とすることが更に好ましい。
 塗工膜の厚みの上限値は特に制限はなく、用途に応じて決定されればよいが、例えば、300μmである。
 塗工膜の厚みの測定は、塗工液膜の厚みの測定と同様である。
[その他の工程]
 第1工程の前、及び、第2工程の後の少なくとも一方において、必要に応じて、その他の工程を有していてもよい。
 その他の工程として、更には、塗工液膜を付与する前に行われる前処理工程、塗工膜の用途に応じ、形成された塗工膜に対して行う後処理工程等が挙げられる。
 その他の工程としては、具体的には、例えば、塗工膜間の未塗工部(基材の露出部)を切断する工程、基材を表面処理する工程、塗工膜を硬化させる工程、塗工膜を圧縮する工程、塗工膜から基材を剥離する工程等が挙げられる。
 本実施形態の塗工膜の製造方法において、連続搬送されている基材の数は、1つであってもよいし、2つ以上であってもよい。つまり、複数の基材が平行に連続搬送されており
、それぞれの基材に対して、塗工液膜が形成されてもよい。
 本実施形態に係る塗工膜の製造方法は、連続搬送される基材上に多数条の塗工膜を製造する方法であるため、高い生産性が求められる用途の塗工膜の製造に好適である。
 以下に、実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、各工程の詳細等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 なお、「部」はいずれも質量基準である。また、表1~表3中の「d」は、式1中の「d:乾燥点Teと乾燥点Tcとの間の距離」であり、表1~表3中の「k」は、式1に示される「k」である。
<基材の準備>
・幅208mm、厚み(式1における「t」)12μm、長さ300mのアルミニウム基材(熱伝導率:230W/m・K、ヤング率(式1における「E」):70.3GPa)を用意した。
・幅208mm、厚み(式1における「t」)16μm、長さ300mのアルミニウム基材(熱伝導率:230W/m・K、ヤング率(式1における「E」):70.3GPa)を用意した。
・幅208mm、厚み(式1における「t」)10μm、長さ300mのアルミニウム基材(熱伝導率:230W/m・K、ヤング率(式1における「E」):70.3GPa)を用意した。
・幅208mm、厚み(式1における「t」)12μm、長さ300mのポリエチレンテレフタレート基材(熱伝導率:0.23W/m・K、ヤング率(式1における「E」):4.1GPa)を用意した。
・幅208mm、厚み(式1における「t」)12μm、長さ300mの銅基材(熱伝導率:400W/m・K、ヤング率(式1における「E」):129.8GPa)を用意した。
<塗工液の準備>
[水系塗工液1の調製]
 下記成分を混合して、水系塗工液1を調製した。
・ポリビニルアルコール : 58部
 (CKS-50:ケン化度99モル%、重合度300、日本合成化学工業(株))
・第一工業製薬(株)セロゲンPR : 24部
・界面活性剤(日本エマルジョン(株)、エマレックス 710) : 5部
・下記方法で調製されたアートパールJ-7Pの水分散物1~3 : 913部
(アートパールJ-7Pの水分散物1~3)
-アートパールJ-7Pの水分散物1-
・水系塗工液1の固形分率pを0.5にする場合、以下のアートパールJ-7Pの水分散物1を用いた。
 621部の純水中に、エマレックス 710(日本エマルジョン(株)、ノニオン界面活性剤)を25部と、カルボキシメチルセルロースナトリウムを25部と、を添加溶解する。得られた水溶液に、アートパール(登録商標)J-7P(根上工業(株)、シリカ複合架橋アクリル樹脂微粒子)329部を加え、エースホモジナイザー((株)日本精機製作所)で、10,000rpm(revolutions per minute;以下、同じ。)で、15分間分散し、アートパールJ-7Pの水分散物1を得た(粒子濃度:32.9質量%)。
-アートパールJ-7Pの水分散物2-
・水系塗工液1の固形分率pを0.65にする場合、以下のアートパールJ-7Pの水分散物2を用いた。
 546部の純水中に、エマレックス 710(日本エマルジョン(株)、ノニオン界面活性剤)を22部と、カルボキシメチルセルロースナトリウムを22部と、を添加溶解する。得られた水溶液に、アートパール(登録商標)J-7P(根上工業(株)、シリカ複合架橋アクリル樹脂微粒子)410部を加え、エースホモジナイザー((株)日本精機製作所)で、10,000rpmで、15分間分散し、アートパールJ-7Pの水分散物2を得た(粒子濃度:41質量%)。
-アートパールJ-7Pの水分散物3-
・水系塗工液1の固形分率pを0.35にする場合、以下のアートパールJ-7Pの水分散物3を用いた。
 720部の純水中に、エマレックス 710(日本エマルジョン(株)、ノニオン界面活性剤)を29部と、カルボキシメチルセルロースナトリウムを29部と、を添加溶解する。得られた水溶液に、アートパール(登録商標)J-7P(根上工業(株)、シリカ複合架橋アクリル樹脂微粒子)222部を加え、エースホモジナイザー((株)日本精機製作所)で、10,000rpmで、15分間分散し、アートパールJ-7Pの水分散物3を得た(粒子濃度:22.2質量%)。
 得られた水分散物1~3中のシリカ複合架橋アクリル樹脂微粒子の真比重は1.20であり、平均粒径は6.5μmである。
[実施例A1]
 図1に示すように構成された装置にて、アルミニウム基材上に、水系塗工液1を2条塗工して塗工液膜を形成し、形成された塗工液膜を乾燥させて、2条の塗工膜を得た。
 具体的には、水系塗工液1を、連続搬送されている基材上に2条で塗布した(第1工程)。形成された塗工液膜において、塗工幅は85.5mm、膜厚(式1における「t」)は180μmであり、塗工液膜間の未塗工部の幅は16mmであり、基材の両端部における未塗工部の幅はそれぞれ20.5mm(塗工液膜間の未塗工部の幅は一条の塗工液膜の幅の18.7%)であった。
 続いて、温風乾燥機構を用い、塗工液膜に対し温風を当て、塗工液膜の乾燥を行った(第2工程)。このとき、塗工液膜の幅方向中央部には、風速20m/分で、露点10℃、60℃の温風を当て、塗工液膜の幅方向両端部の25mmには、温風を当てなかった。第2工程において、乾燥点Teが乾燥点Tcよりも基材搬送方向下流側にあり、「d」が2mであることを確認した。
 以上のように第1工程及び第2工程を経て、基材上に2条の塗工膜を形成した。
[実施例A2~A13、比較例A1]
 実施例A1において、基材の種類、第1工程及び第2工程における諸条件を、下記表1に示すように適宜変更した以外は、実施例A1と同様にして、基材上に2条の塗工膜を形成した。
[比較例A2]
 実施例A1において、塗工液膜の全面に風速20m/分で60℃の温風を当てた以外は、実施例A1と同様にして、基材上に2条の塗工膜を形成した。
[比較例A3]
 実施例A1において、塗工液膜の全面に風速20m/分で60℃の温風を当て、第2工程における基材の搬送速度を下記表1に示す値に変えた以外は、実施例A1と同様にして、基材上に2条の塗工膜を形成した。
[実施例A14]
 実施例A1において、第2工程において、図5に示すような、湾曲搬送手段を用いた乾燥ゾーン30Aを適用した以外は、実施例A1と同様にして、基材上に2条の塗工膜を形成した。
[実施例A15~A19]
 実施例A14において、基材の種類、第1工程及び第2工程における諸条件を、下記表1に示すように適宜変更した以外は、実施例A14と同様にして、基材上に2条の塗工膜を形成した。
Figure JPOXMLDOC01-appb-T000004
[実施例B1]
 実施例A1において、第2工程を以下のように変えた以外は、実施例A1と同様にして、基材上に2条の塗工膜を形成した。
 第2工程は、温風乾燥機構を用い、塗工液膜に対し温風を当て、塗工液膜の乾燥を行った。このとき、塗工液膜の幅方向中央部には、風速20m/分で、露点-20℃、温度40℃の温風を当て、塗工液膜の幅方向両端部の25mmには、風速20m/分で、露点10℃、温度40℃の温風を当てた。
[実施例B2~B13]
 実施例B1において、基材の種類、第1工程及び第2工程における諸条件を、下記表2に示すように適宜変更した以外は、実施例B1と同様にして、基材上に2条の塗工膜を形成した。
[比較例B1]
 実施例B1において、塗工液膜の全面に風速20m/分で、露点-20℃、温度40℃の温風を当てた以外は、実施例B1と同様にして、基材上に2条の塗工膜を形成した。
[比較例B2]
 実施例B1において、塗工液膜の全面に風速20m/分で、露点-20℃、温度40℃の温風を当て、第2工程における基材の搬送速度を下記表2に示す値に変えた以外は、実施例B1と同様にして、基材上に2条の塗工膜を形成した。
[実施例B14]
 実施例B1において、第2工程において、図5に示すような、湾曲搬送手段を用いた乾燥ゾーン30Aを適用した以外は、実施例B1と同様にして、基材上に2条の塗工膜を形成した。
[実施例B15~B19]
 実施例B14において、基材の種類、第1工程及び第2工程における諸条件を、下記表2に示すように適宜変更した以外は、実施例B14と同様にして、基材上に2条の塗工膜を形成した。
Figure JPOXMLDOC01-appb-T000005
[実施例C1]
 実施例A1において、第2工程を以下のように変えた以外は、実施例A1と同様にして、基材上に2条の塗工膜を形成した。
 第2工程は、温風乾燥機構を用い、塗工液膜に対し温風を当て、塗工液膜の乾燥を行った。このとき、塗工液膜の幅方向中央部には、風速20m/分で、露点10℃、温度60℃の温風を当て、塗工液膜の幅方向両端部(各端部から25mmの領域)には、風速20m/分で、露点10℃、温度30℃の温風を当てた。
[実施例C2~C12]
 実施例C1において、基材の種類、第1工程及び第2工程における諸条件を、下記表3に示すように適宜変更した以外は、実施例C1と同様にして、基材上に2条の塗工膜を形成した。
[比較例C1]
 実施例C1において、塗工液膜の全面に風速20m/分で、温度60℃の温風を当てた以外は、実施例C1と同様にして、基材上に2条の塗工膜を形成した。
[比較例C2]
 実施例C1において、塗工液膜の全面に風速20m/分で、温度60℃の温風を当て、第2工程における基材の搬送速度を下記表3に示す値に変えた以外は、実施例C1と同様にして、基材上に2条の塗工膜を形成した。
[実施例C13]
 実施例C1において、第2工程において、図5に示すような、湾曲搬送手段を用いた乾燥ゾーン30Aを適用した以外は、実施例C1と同様にして、基材上に2条の塗工膜を形成した。
[実施例C14~C18]
 実施例C13において、基材の種類、第1工程及び第2工程における諸条件を、下記表3に示すように適宜変更した以外は、実施例C13と同様にして、基材上に2条の塗工膜を形成した。
Figure JPOXMLDOC01-appb-T000006
[搬送状態の観察及び基材の変形の評価]
 乾燥ゾーン(図1中の乾燥ゾーン30)において、乾燥ゾーン通過中の基材の、塗工された面の裏側より、塗工液膜間の未塗工部の搬送状態と基材の変形とを目視にて観察した。
 搬送状態については、以下の基準に沿って、評価した。評価結果を表1~表3に示す。また、基材の変形の有無についても、別途、表1~表3に示す。
-基準-
・A:塗工液膜間の未塗工部に変形は見られず、未塗工で搬送している基材と同等の搬送状態であった。
・B:塗工液膜間の未塗工部に、基材の長手方向と並行に弱い変形(ツレシワ)が発生しているが、搬送がすすむにつれ変形が戻り、折れシワにはなっていなかった。
・C:塗工液膜間の未塗工部に、基材の長手方向と並行に強い変形(ツレシワ)が発生し、パスローラと接触した際に折れシワが発生していた。
[折れシワの評価]
 乾燥ゾーン(図1中の乾燥ゾーン30)の出口において、折れシワの有無を目視にて確認した。
 評価結果を、表1~表3に示す。
 表1~表3に明らかなように、実施例の塗工膜の製造方法によれば、未塗工部の折れシワが抑制されることが分かる。
[符号の説明]
 10 長尺の基材
 12 塗工液膜
 14 積層体
 20 塗工手段
 30、30A 乾燥ゾーン
 32、32A 温風乾燥機構
 34、36 給気部
 38 搬送ロール
 40 塗工液膜
 R1 ロール
 R2 ロール
 Te 塗工液膜の幅方向両端部の乾燥点
 Tc 塗工液膜の幅方向中央部の乾燥点
 Le 乾燥点Teを通り、基材の幅方向に平行な直線
 Lc 乾燥点Tcを通り、基材の幅方向に平行な直線
 d 塗工液膜の幅方向両端部の乾燥点Teと塗工液膜の幅方向中央部の乾燥点Tcとの間の距離
 Wb 塗工液膜間の未塗工部の幅
 X 基材の搬送方向
 Y 基材の幅方向
 2021年7月30日に出願された日本国特許出願2021-126190号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。

Claims (9)

  1.  連続搬送されている基材に対して塗工液を塗工し、基材上に複数条の塗工液膜を形成する第1工程と、
     複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向両端部の乾燥点Teを、塗工液膜の幅方向中央部の乾燥点Tcよりも基材の搬送方向下流側とする、塗工液膜の乾燥を行う第2工程と、
     を有する、塗工膜の製造方法。
  2.  下記式1に示されるkが、0<k<6000の関係を満たす、請求項1に記載の塗工膜の製造方法。
    Figure JPOXMLDOC01-appb-M000001

     上記式1中、tはμmを単位とする塗工液膜の膜厚を表し、EはGPaを単位とする基材のヤング率を表し、pは塗工液の固形分率を表し、tはμmを単位とする基材の厚みを表し、dは乾燥点Teと乾燥点Tcとの間のmを単位とする距離を表す。
  3.  塗工液膜間の未塗工部の幅が、一条の塗工液膜の幅の5%~40%である、請求項1又は請求項2に記載の塗工膜の製造方法。
  4.  第2工程において、複数条の塗工液膜のそれぞれに温風を当てる、請求項1又は請求項2に記載の塗工膜の製造方法。
  5.  複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向中央部に当たる温風の風速が、塗工液膜の幅方向両端部に当たる温風の風速より大きい、請求項4に記載の塗工膜の製造方法。
  6.  複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向中央部に当たる温風の露点が、塗工液膜の幅方向両端部に当たる温風の露点より低い、請求項4に記載の塗工膜の製造方法。
  7.  複数条の塗工液膜のそれぞれにおいて、塗工液膜の幅方向中央部に当たる温風の温度が、塗工液膜の幅方向両端部に当たる温風の温度より高い、請求項4に記載の塗工膜の製造方法。
  8.  第2工程では、複数条の塗工液膜のそれぞれに温風を当て、温風の風圧により塗工液膜と基材との積層体を厚み方向に湾曲させながら連続搬送する、請求項1又は請求項2に記載の塗工膜の製造方法。
  9.  前記基材が、熱伝導率が200W/m・K以上の基材である、請求項1又は請求項2に記載の塗工膜の製造方法。
PCT/JP2022/028937 2021-07-30 2022-07-27 塗工膜の製造方法 WO2023008479A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280046755.8A CN117651616A (zh) 2021-07-30 2022-07-27 涂布膜的制造方法
KR1020237042173A KR20240005051A (ko) 2021-07-30 2022-07-27 도공막의 제조 방법
JP2023538594A JPWO2023008479A1 (ja) 2021-07-30 2022-07-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-126190 2021-07-30
JP2021126190 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023008479A1 true WO2023008479A1 (ja) 2023-02-02

Family

ID=85087013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028937 WO2023008479A1 (ja) 2021-07-30 2022-07-27 塗工膜の製造方法

Country Status (4)

Country Link
JP (1) JPWO2023008479A1 (ja)
KR (1) KR20240005051A (ja)
CN (1) CN117651616A (ja)
WO (1) WO2023008479A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172562A (ja) * 1988-12-26 1990-07-04 Kawasaki Steel Corp 連続塗装ラインのストリップ振動の抑止装置及び方法
JP2014056840A (ja) * 2013-11-27 2014-03-27 Nec Energy Devices Ltd 電極合材の塗工方法
JP2014065021A (ja) * 2012-09-27 2014-04-17 Gs Yuasa Corp 塗工装置
JP2016224334A (ja) * 2015-06-02 2016-12-28 コニカミノルタ株式会社 光学フィルムの製造方法
JP2019063772A (ja) * 2017-10-04 2019-04-25 トヨタ自動車株式会社 塗工装置
JP2019111477A (ja) * 2017-12-22 2019-07-11 東レ株式会社 基板の局所冷却装置、流動物が付与された基板の前記流動物の端部膜厚の制御装置、流動物のコーティング装置、基板上に付与された流動物の乾燥装置および流動物の端部厚みの制御方法
JP2020028839A (ja) * 2018-08-21 2020-02-27 株式会社ヒラノテクシード 塗工装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172562A (ja) * 1988-12-26 1990-07-04 Kawasaki Steel Corp 連続塗装ラインのストリップ振動の抑止装置及び方法
JP2014065021A (ja) * 2012-09-27 2014-04-17 Gs Yuasa Corp 塗工装置
JP2014056840A (ja) * 2013-11-27 2014-03-27 Nec Energy Devices Ltd 電極合材の塗工方法
JP2016224334A (ja) * 2015-06-02 2016-12-28 コニカミノルタ株式会社 光学フィルムの製造方法
JP2019063772A (ja) * 2017-10-04 2019-04-25 トヨタ自動車株式会社 塗工装置
JP2019111477A (ja) * 2017-12-22 2019-07-11 東レ株式会社 基板の局所冷却装置、流動物が付与された基板の前記流動物の端部膜厚の制御装置、流動物のコーティング装置、基板上に付与された流動物の乾燥装置および流動物の端部厚みの制御方法
JP2020028839A (ja) * 2018-08-21 2020-02-27 株式会社ヒラノテクシード 塗工装置

Also Published As

Publication number Publication date
CN117651616A (zh) 2024-03-05
KR20240005051A (ko) 2024-01-11
JPWO2023008479A1 (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
Kobayashi et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process
Marchand et al. Air entrainment by contact lines of a solid plate plunged into a viscous fluid
WO2023008479A1 (ja) 塗工膜の製造方法
TW200938039A (en) Entry sheet for drilling
Kariper Conductive ink next generation materials: silver nanoparticle/polyvinyl alcohol/polyaniline
JP2008068406A (ja) フレキシブル金属積層体およびフレキシブルプリント基板
JP5970798B2 (ja) 基材への塗布方法
WO2023145842A1 (ja) 乾燥装置及び乾燥方法
JP6001985B2 (ja) 感光性樹脂捲回体の製造装置及び製造方法
JP2024052408A (ja) 塗工膜の製造方法
JP2017056648A (ja) 中間製品ロール
TW500662B (en) Aromatic polyamide film laminate
WO2021205920A1 (ja) 塗工膜の製造方法
WO2022118637A1 (ja) 多層フィルムの製造方法
TWI703077B (zh) 膜捲裝體、及膜捲裝體之製造方法
JP2002086050A (ja) 塗布方法及び塗布製品
WO2021210542A1 (ja) 塗工膜の製造方法
WO1989002822A1 (en) Flexible metal/plastic laminate and method and apparatus for manufacturing same
JP5809185B2 (ja) 溶液製膜方法
CN107476123A (zh) 一种高平整度镜面转移纸
Yamamura et al. Experimental investigation of air entrainment in a vertical liquid jet flowing down onto a rotating roll
WO2022196348A1 (ja) 透明導電性フィルム
JP2009235545A (ja) 金属酸化物薄膜形成装置ならびに金属酸化物薄膜付きシートの製造方法
JP4273827B2 (ja) 熱可塑性樹脂フィルムの製造方法および熱可塑性樹脂フィルム
JP4891041B2 (ja) 乾燥方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538594

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237042173

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237042173

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE