WO2023008005A1 - 正極材料および電池 - Google Patents

正極材料および電池 Download PDF

Info

Publication number
WO2023008005A1
WO2023008005A1 PCT/JP2022/025012 JP2022025012W WO2023008005A1 WO 2023008005 A1 WO2023008005 A1 WO 2023008005A1 JP 2022025012 W JP2022025012 W JP 2022025012W WO 2023008005 A1 WO2023008005 A1 WO 2023008005A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
conductive material
solid electrolyte
electrode active
active material
Prior art date
Application number
PCT/JP2022/025012
Other languages
English (en)
French (fr)
Inventor
勇祐 西尾
賢治 長尾
出 佐々木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023538337A priority Critical patent/JPWO2023008005A1/ja
Priority to EP22849080.1A priority patent/EP4379831A1/en
Priority to CN202280051178.1A priority patent/CN117693828A/zh
Publication of WO2023008005A1 publication Critical patent/WO2023008005A1/ja
Priority to US18/405,033 priority patent/US20240145725A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to cathode materials and batteries.
  • Patent Document 1 discloses a solid battery having a positive electrode containing an active material, a fibrous conductive material, a granular conductive material, and a solid electrolyte.
  • the positive electrode material comprises: comprising a mixture of a positive electrode active material, a solid electrolyte and a conductive material;
  • the conductive material includes a first conductive material having an average major axis diameter of 1 ⁇ m or more and a second conductive material having an average particle size of 100 nm or less, A ratio of the volume of the positive electrode active material to the total volume of the positive electrode active material and the solid electrolyte is 60% or more and 90% or less.
  • both energy density and electronic conductivity can be achieved in the positive electrode.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material in Embodiment 1.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a positive electrode material in Modification 1.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a battery according to Embodiment 2.
  • FIG. 4 is a diagram explaining a method for evaluating the electron conductivity of the positive electrode.
  • 5 is a graph showing the correlation between the voltage and the current value in the opposing positive electrode of Example 1.
  • FIG. 6 is a graph showing the electron conductivity of the positive electrodes of Examples 1 to 9 and Comparative Examples 1 to 5.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material in Embodiment 1.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a positive electrode material in Modification 1.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a battery according to Embod
  • Patent Document 1 discloses a solid battery having a positive electrode containing an active material, a fibrous conductive material, a granular conductive material, and a solid electrolyte.
  • Patent Document 1 describes that in the positive electrode material, the amount of the active material is about 60 parts by mass with respect to the total amount of 100 parts by mass of the active material, the fibrous conductive material, the granular conductive material, and the solid electrolyte. ing. That is, in the positive electrode material of Patent Document 1, the ratio of the volume of the active material to the total volume of the active material, the fibrous conductive material, the granular conductive material, and the solid electrolyte is about 43%.
  • the volume ratio of the electronically insulating solid electrolyte is larger than the volume ratio of the active material. Therefore, when the positive electrode material of Patent Document 1 is used, it is difficult to ensure sufficient electron conductivity in the positive electrode. On the other hand, when the ratio of the conductive material is increased to ensure electronic conductivity, the ratio of the active material is decreased, so the energy density of the positive electrode is lowered.
  • the inventors have conducted extensive research on methods for reducing the resistance of all-solid-state lithium-ion batteries. As a result, the inventors have found that improving the electronic conductivity of the positive electrode reduces the resistance of the battery. It is presumed that this is largely due to the resistance between the positive electrode and the current collector. Furthermore, the present inventors have found that if the ratio of the conductive material is increased too much to improve the electronic conductivity, not only does the energy density of the battery decrease, It was found that the lithium ion conduction between When lithium ion conduction is inhibited, the reaction resistance of the positive electrode active material increases. Based on these findings, the present inventors discovered a positive electrode material capable of achieving both energy density and electronic conductivity in the positive electrode.
  • the positive electrode material according to the first aspect of the present disclosure is comprising a mixture of a positive electrode active material, a solid electrolyte and a conductive material;
  • the conductive material includes a first conductive material having an average major axis diameter of 1 ⁇ m or more and a second conductive material having an average particle size of 100 nm or less, A ratio of the volume of the positive electrode active material to the total volume of the positive electrode active material and the solid electrolyte is 60% or more and 90% or less.
  • the energy density in the positive electrode can be improved.
  • the first conductive material has an average major axis diameter of 1 ⁇ m or more, the first conductive material and the second conductive material are easily connected to each other in the positive electrode. Therefore, an electron-conducting network can be efficiently formed in the positive electrode. Thereby, both the energy density and the electronic conductivity can be achieved in the positive electrode.
  • the volume ratio of the positive electrode active material to the total volume of the positive electrode active material and the solid electrolyte is 65% or more and 85% or less.
  • the ratio of the volume of the positive electrode active material to the total volume of the positive electrode active material and the solid electrolyte is 67% or more and 75% or less.
  • the mass ratio of the positive electrode active material when the mass ratio of the positive electrode active material is 100, the mass ratio of the conductive material is 3 It may be below. According to the above configuration, it is possible to suppress inhibition of lithium ion conduction between the positive electrode active material and the solid electrolyte due to the conductive material.
  • the ratio of the mass of the second conductive material to the mass of the conductive material is 80% or less. There may be. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the ratio of the mass of the second conductive material to the mass of the conductive material may be 5% or more and 50% or less. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the ratio of the mass of the second conductive material to the mass of the conductive material may be 6% or more and 25% or less. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the first conductive material may have an average major axis diameter of 4 ⁇ m or more. According to the above configuration, a conductive path that enables long-distance electron conduction in the positive electrode is easily formed by the first conductive material. Thereby, the electron conductivity in the positive electrode can be further improved.
  • the second conductive material may have an average particle size of 25 nm or less. According to the above configuration, it becomes easier for the second conductive material to adhere to the surface of the positive electrode active material. Therefore, by connecting the first conductive material and the second conductive material, an electron-conducting network is likely to be formed in the positive electrode.
  • the first conductive material and the second conductive material may contain a carbon material. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the first conductive material may contain a fibrous carbon material. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the second conductive material may contain carbon black. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the carbon black may contain acetylene black. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the solid electrolyte is at least one selected from the group consisting of a sulfide solid electrolyte and a halide solid electrolyte may contain According to the above configuration, it is possible to improve the output characteristics of the battery.
  • the positive electrode active material may have a layered rock salt structure.
  • transition metals and lithium are regularly arranged to form a two-dimensional plane, so lithium can diffuse two-dimensionally. Therefore, according to the above configuration, the energy density of the battery can be improved.
  • the positive electrode material according to any one of the first to fifteenth aspects may further include a coating layer that covers at least part of the surface of the positive electrode active material. According to the above configuration, the resistance of the battery can be further reduced.
  • the battery according to the seventeenth aspect of the present disclosure includes a positive electrode comprising the positive electrode material according to any one of the first to sixteenth aspects; a negative electrode; an electrolyte layer provided between the positive electrode and the negative electrode; Prepare.
  • the electrolyte layer may contain a sulfide solid electrolyte. According to the above configuration, it is possible to improve the output characteristics of the battery.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material 1000 according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material 1000 according to Embodiment 1.
  • the positive electrode material 1000 includes a mixture of a positive electrode active material 110, a solid electrolyte 100 and a conductive material 140.
  • the conductive material 140 includes a first conductive material 150 having an average major axis diameter of 1 ⁇ m or more and a second conductive material 160 having an average particle size of 100 nm or less.
  • the ratio of the volume of positive electrode active material 110 to the total volume of positive electrode active material 110 and solid electrolyte 100 is 60% or more and 90% or less.
  • the energy density of the positive electrode can be improved. Also, since the first conductive material 150 has an average major axis diameter of 1 ⁇ m or more, the first conductive material 150 and the second conductive material 160 are easily connected in the positive electrode. Therefore, an electron-conducting network can be efficiently formed in the positive electrode. Thereby, both the energy density and the electronic conductivity can be achieved in the positive electrode.
  • the average major axis diameter of the first conductive material 150 can be measured, for example, using a scanning electron microscope SEM image. Specifically, the average major axis diameter is obtained by calculating the average major axis diameter of 20 arbitrarily selected particles of the first conductive material 150 using the SEM image.
  • the major axis diameter of the first conductive material 150 is defined as the diameter of the circle with the smallest area surrounding the particles of the first conductive material 150 in the SEM image of the particles of the first conductive material 150 .
  • the average particle size of the second conductive material 160 can be measured, for example, using a TEM image obtained by a transmission electron microscope (TEM). Specifically, the average particle diameter is obtained by calculating the average value of the equivalent circle diameters of 20 arbitrarily selected particles of the second conductive material 160 using a TEM image.
  • TEM transmission electron microscope
  • the average length axis of the first conductive material and the average particle diameter of the second conductive material contained in the positive electrode material can be measured, for example, as follows.
  • the positive electrode material is obtained by, for example, scraping off the positive electrode material from the battery so as not to mix the negative electrode material.
  • the obtained positive electrode material is mixed with water for dissolving the solid electrolyte, and filtered to extract the active material other than the solid electrolyte, the binder, and the conductive material.
  • the active material, binder, and conductive material taken out are mixed with an organic solvent such as toluene to dissolve the binder, and filtered to take out the active material and conductive material.
  • the active material and conductive material taken out are mixed with an acid aqueous solution to dissolve the active material, and filtered to take out the conductive material. After that, the removed conductive material is dried.
  • the average major axis diameter of the first conductive material can be measured based on the SEM image as described above, and the average grain size of the second conductive material can be measured based on the TEM image. Diameter can be measured.
  • the volume ratio of the positive electrode active material 110 to the total volume of the positive electrode active material 110 and the solid electrolyte 100 can be calculated, for example, by the following method.
  • the positive electrode active material 110 contained in the positive electrode material 1000 can be taken out, for example, by dissolving only the solid electrolyte 100 using a solvent.
  • the total mass of positive electrode active material 110 and solid electrolyte 100 and the mass of positive electrode active material 110 can be obtained from the masses before and after the dissolution.
  • the respective specific gravities of the positive electrode active material 110 and the solid electrolyte 100 can be known from literature and the like. From these values, the ratio of the volume of positive electrode active material 110 to the total volume of positive electrode active material 110 and solid electrolyte 100 can be calculated.
  • the volume ratio of the positive electrode active material 110 to the total volume of the positive electrode active material 110 and the solid electrolyte 100 may be 65% or more and 85% or less. According to the above configuration, it is possible to further improve the energy density in the positive electrode.
  • the volume ratio of the positive electrode active material 110 to the total volume of the positive electrode active material 110 and the solid electrolyte 100 may be 67% or more and 75% or less. According to the above configuration, it is possible to further improve the energy density in the positive electrode.
  • the mass ratio of the conductive material 140 may be 3 or less. According to the above configuration, it is possible to suppress inhibition of lithium ion conduction between positive electrode active material 110 and solid electrolyte 100 by conductive material 140 .
  • the mass ratio of the conductive material 140 when the mass ratio of the positive electrode active material 110 is 100 can be calculated, for example, by the following method.
  • the mass of the positive electrode active material 110 contained in the positive electrode material 1000 can be obtained by the method described above.
  • the mass of conductive material 140 included in cathode material 1000 can be obtained, for example, from mass reduction due to high temperature pyrolysis. From these values, the mass ratio of the conductive material 140 when the mass ratio of the positive electrode active material 110 is 100 can be calculated.
  • the ratio of the mass of the second conductive material 160 to the mass of the conductive material 140 may be 80% or less. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the ratio of the mass of the second conductive material 160 to the mass of the conductive material 140 can be calculated, for example, by the following method.
  • the mass of the second conductive material 160 relative to the mass of the conductive material 140 can be obtained by particle size distribution measurement, classification, or the like for the conductive material 140 taken out by the method described above. In this way, the ratio of the mass of second conductive material 160 to the mass of conductive material 140 can be calculated.
  • the ratio of the mass of the second conductive material 160 to the mass of the conductive material 140 may be 5% or more and 50% or less. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the ratio of the mass of the second conductive material 160 to the mass of the conductive material 140 may be 6% or more and 25% or less. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • First conductive material 150 and second conductive material 160 may include a carbon material. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the first conductive material 150 and the second conductive material 160 may be carbon materials. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the first conductive material 150 may contain a fibrous carbon material. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the first conductive material 150 may be a fibrous carbon material. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • fibrous carbon materials include fibrous carbon such as vapor-grown carbon fiber, carbon nanotube, and carbon nanofiber.
  • first conductive material 150 may include any one of these materials, or two or more of these materials. You can When first conductive material 150 is a fibrous carbon material, first conductive material 150 may be composed of any one of these materials, or composed of two or more of these materials. may
  • the second conductive material 160 may contain carbon black. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the second conductive material 160 may be carbon black. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • Carbon black includes acetylene black and ketjen black.
  • the second conductive material 160 may contain acetylene black or may contain ketjen black.
  • the second conductive material 160 may contain both acetylene black and ketjen black.
  • the carbon black contains acetylene black, it is possible to further improve the electron conductivity of the positive electrode.
  • the second conductive material 160 may be carbon black, the second conductive material 160 may be acetylene black or Ketjen black.
  • the second conductive material 160 may be composed of acetylene black and ketjen black.
  • the first conductive material 150 when the first conductive material 150 is a fibrous carbon material, the first conductive material 150 contains the fibrous carbon material as a main component and further includes unavoidable impurities or synthesizes the fibrous carbon material. It may contain starting materials, by-products, decomposition products, and the like that are used in practice. In the present disclosure, "main component" means the component contained in the largest amount in terms of mass ratio.
  • the first conductive material 150 may contain, for example, 100% of the fibrous carbon material in terms of mass ratio to the entire first conductive material 150, except for impurities that are unavoidably mixed.
  • the first conductive material 150 may be composed only of the fibrous carbon material.
  • the second conductive material 160 When the second conductive material 160 is carbon black, the second conductive material 160 contains carbon black as a main component, and further contains unavoidable impurities or starting materials used when synthesizing carbon black. , by-products and decomposition products.
  • the second conductive material 160 may contain, for example, 100% carbon black in terms of mass ratio with respect to the entire second conductive material 160, excluding impurities that are unavoidably mixed.
  • the second conductive material 160 may be composed of carbon black only.
  • the first conductive material 150 may have an average major axis diameter of 4 ⁇ m or more. According to the above configuration, the first conductive material 150 easily forms a conduction path that enables long-distance electron conduction to the positive electrode. Thereby, the electron conductivity in the positive electrode can be further improved.
  • the second conductive material 160 may have an average particle size of 25 nm or less. According to the above configuration, the second conductive material 160 easily adheres to the surface of the positive electrode active material 110 . Therefore, by connecting the first conductive material 150 and the second conductive material 160, an electron-conducting network is likely to be formed in the positive electrode.
  • the shape of the first conductive material 150 is not particularly limited as long as it has an average major axis diameter of 1 ⁇ m or more.
  • the first conductive material 150 may be fibrous, acicular, or the like, for example.
  • the shape of the first conductive material 150 may be fibrous.
  • the shape of the second conductive material 160 is not particularly limited as long as it has an average particle size of 100 nm or less.
  • the second conductive material 160 may be spherical, oval, or the like, for example.
  • the shape of the second conductive material 160 may be spherical.
  • the conductive material 140 may contain a conductive material different from the first conductive material 150 and the second conductive material 160 .
  • conductive materials include graphites such as natural graphite or artificial graphite, metal fibers, carbon fluoride, metal powders such as aluminum, conductive whiskers such as zinc oxide or potassium titanate, and conductive materials such as titanium oxide. and conductive polymer compounds such as polyaniline, polypyrrole and polythiophene. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the conductive material 140 may be composed of only the first conductive material 150 and the second conductive material 160. That is, conductive material 140 does not have to include a conductive material different from first conductive material 150 and second conductive material 160 .
  • the positive electrode active material 110 a material that can be used as a positive electrode active material for all-solid-state lithium ion batteries can be used.
  • the positive electrode active material 110 include LiCoO 2 , LiNi x Me 1-x O 2 , LiNi x Co 1-x O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMnO 2 , Li -Mn spinel, lithium titanate, lithium metal phosphate, and transition metal oxides.
  • LiNi x Me 1-x O 2 x satisfies 0.5 ⁇ x ⁇ 1, and Me includes at least one selected from the group consisting of Co, Mn and Al.
  • LiNi x Co 1-x O 2 x satisfies 0 ⁇ x ⁇ 0.5.
  • O4 can be mentioned.
  • Lithium titanate includes Li 4 Ti 5 O 12 .
  • Lithium metal phosphates include LiFePO4 , LiMnPO4 , LiCoPO4 , and LiNiPO4 .
  • Transition metal oxides include V2O5 and MoO3 .
  • the positive electrode active material 110 includes LiCoO 2 , LiNi x Me 1-x O 2 , LiNi x Co 1-x O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMnO 2 , Li— It may be a lithium-containing composite oxide selected from Mn spinel, lithium metal phosphate, and the like.
  • the positive electrode active material 110 When the positive electrode active material 110 is a lithium-containing composite oxide, the positive electrode active material 110 may have a layered rock salt structure. In the layered rock salt structure, transition metals and lithium are regularly arranged to form a two-dimensional plane, so lithium can diffuse two-dimensionally. Therefore, according to the above configuration, the energy density of the battery can be improved.
  • Solid electrolyte 100 may contain at least one selected from the group consisting of sulfide solid electrolytes and halide solid electrolytes. According to the above configuration, it is possible to improve the output characteristics of the battery.
  • the solid electrolyte 100 may be a mixture of a sulfide solid electrolyte and a halide solid electrolyte.
  • Sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 and the like are included. Also, a sulfide solid electrolyte having an Argyrodite structure, such as Li6PS5Cl , Li6PS5Br , and Li6PS5I , may be used. LiX , Li2O , MOq , LipMOq , etc. may be added to these sulfide solid electrolytes.
  • X is at least one selected from the group consisting of F, Cl, Br and I.
  • M is at least one selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe and Zn.
  • p and q are natural numbers respectively.
  • One or more sulfide solid electrolytes selected from the above materials may be used.
  • the ionic conductivity of the sulfide solid electrolyte can be further improved.
  • the charge/discharge efficiency of the battery can be further improved.
  • a halide solid electrolyte is represented, for example, by the following compositional formula (1).
  • M contains at least one element selected from the group consisting of metal elements other than Li and metalloid elements.
  • X includes at least one selected from the group consisting of F, Cl, Br, and I;
  • metal elements are B, Si, Ge, As, Sb and Te.
  • Metallic element means all elements contained in Groups 1 to 12 of the periodic table except hydrogen, and B, Si, Ge, As, Sb, Te, C, N, P, O, S, and All elements contained in groups 13 to 16 of the periodic table except Se. That is, the term “semimetallic element” or “metallic element” refers to a group of elements that can become cations when an inorganic compound is formed with a halogen element.
  • the halide solid electrolyte represented by the compositional formula (1) has high ionic conductivity compared to a halide solid electrolyte such as LiI composed of Li and a halogen element. Therefore, according to the halide solid electrolyte represented by the compositional formula (1), the ionic conductivity of the halide solid electrolyte can be further improved.
  • M may be at least one element selected from the group consisting of metal elements other than Li and metalloid elements.
  • X may be at least one selected from the group consisting of F, Cl, Br and I.
  • the halide solid electrolyte containing Y may be, for example, a compound represented by the composition formula LiaMebYcX6 .
  • Me is at least one element selected from the group consisting of metal elements excluding Li and Y and metalloid elements.
  • m is the valence of the element Me.
  • X is at least one selected from the group consisting of F, Cl, Br and I;
  • Me may be, for example, at least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta and Nb.
  • the ionic conductivity of the halide solid electrolyte can be further improved.
  • the following materials can be used as the halide solid electrolyte.
  • the ionic conductivity of the halide solid electrolyte can be further improved.
  • the halide solid electrolyte may be a material represented by the following compositional formula (A1).
  • composition formula (A1) X is at least one selected from the group consisting of F, Cl, Br and I. Also, 0 ⁇ d ⁇ 2 is satisfied.
  • the halide solid electrolyte may be a material represented by the following compositional formula (A2).
  • X is at least one selected from the group consisting of F, Cl, Br and I.
  • the halide solid electrolyte may be a material represented by the following compositional formula (A3).
  • composition formula (A3) 0 ⁇ 0.15 is satisfied in the composition formula (A3).
  • the halide solid electrolyte may be a material represented by the following compositional formula (A4).
  • composition formula (A4) 0 ⁇ 0.25 is satisfied in the composition formula (A4).
  • the halide solid electrolyte may be a material represented by the following compositional formula (A5).
  • Me includes at least one selected from the group consisting of Mg, Ca, Sr, Ba and Zn. Me may be at least one selected from the group consisting of Mg, Ca, Sr, Ba and Zn.
  • composition formula (A5) -1 ⁇ ⁇ ⁇ 2, 0 ⁇ a ⁇ 3, 0 ⁇ (3-3 ⁇ + a), 0 ⁇ (1 + ⁇ - a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and ( x+y) ⁇ 6 is satisfied.
  • the halide solid electrolyte may be a material represented by the following compositional formula (A6).
  • Me includes at least one selected from the group consisting of Al, Sc, Ga and Bi. Me may be at least one selected from the group consisting of Al, Sc, Ga and Bi.
  • composition formula (A6) ⁇ 1 ⁇ 1, 0 ⁇ a ⁇ 2, 0 ⁇ (1+ ⁇ a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x+y) ⁇ 6 are satisfied .
  • the halide solid electrolyte may be a material represented by the following compositional formula (A7).
  • Me includes at least one selected from the group consisting of Zr, Hf and Ti. Me may be at least one selected from the group consisting of Zr, Hf and Ti.
  • composition formula (A7) -1 ⁇ ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.5, 0 ⁇ (3-3 ⁇ -a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x+y) ⁇ 6 are satisfied.
  • the halide solid electrolyte may be a material represented by the following compositional formula (A8).
  • Me includes at least one selected from the group consisting of Ta and Nb. Me may be at least one selected from the group consisting of Ta and Nb.
  • composition formula (A8) -1 ⁇ ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.2, 0 ⁇ (3-3 ⁇ -2a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x+y) ⁇ 6 are satisfied.
  • halide solid electrolyte more specifically, for example, Li 3 YX 6 , Li 2 MgX 4 , Li 2 FeX 4 , Li(Al, Ga, In) X 4 , Li 3 (Al, Ga, In) X 6 , etc. can be used.
  • X is at least one selected from the group consisting of F, Cl, Br and I.
  • the notation "(A, B, C)" in the chemical formula means "at least one selected from the group consisting of A, B, and C".
  • “(Al, Ga, In)” is synonymous with “at least one selected from the group consisting of Al, Ga and In”. The same is true for other elements.
  • the halide solid electrolyte does not have to contain sulfur. According to the above configuration, generation of hydrogen sulfide gas can be suppressed. Therefore, it is possible to realize a battery with improved safety.
  • the shape of the solid electrolyte 100 is not particularly limited.
  • the shape of the solid electrolyte 100 may be, for example, needle-like, spherical, or oval.
  • the shape of the solid electrolyte 100 may be particulate.
  • the median diameter of the solid electrolyte 100 may be 100 ⁇ m or less.
  • the positive electrode active material 110 and the solid electrolyte 100 can form a good dispersion state in the positive electrode material 1000 . This improves the charge/discharge characteristics of the battery.
  • the median diameter of the solid electrolyte 100 may be 10 ⁇ m or less. According to the above configuration, the positive electrode active material 110 and the solid electrolyte 100 can form a good dispersion state in the positive electrode material 1000 .
  • the median diameter of the solid electrolyte 100 may be smaller than the median diameter of the positive electrode active material 110 . According to the above configuration, the positive electrode active material 110 and the solid electrolyte 100 can form a better dispersion state in the positive electrode material 1000 .
  • the shape of the positive electrode active material 110 is not particularly limited.
  • the shape of the positive electrode active material 110 may be, for example, acicular, spherical, or oval.
  • the shape of the positive electrode active material 110 may be particulate.
  • the median diameter of the positive electrode active material 110 may be 0.1 ⁇ m or more and 100 ⁇ m or less. When the median diameter of the positive electrode active material 110 is 0.1 ⁇ m or more, the positive electrode active material 110 and the solid electrolyte 100 can form a good dispersion state in the positive electrode material 1000 . This improves the charge/discharge characteristics of the battery. When the median diameter of the positive electrode active material 110 is 100 ⁇ m or less, the diffusion rate of lithium in the positive electrode active material 110 is sufficiently ensured. This allows the battery to operate at high output.
  • the median diameter of the positive electrode active material 110 may be larger than the median diameter of the solid electrolyte 100 . Thereby, the positive electrode active material 110 and the solid electrolyte 100 can form a good dispersed state.
  • the median diameter means the particle size (d50) when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution is measured by, for example, a laser diffraction measurement device or an image analysis device.
  • the solid electrolyte 100 and the positive electrode active material 110 may be in contact with each other.
  • the positive electrode material 1000 may contain a plurality of solid electrolyte 100 particles and a plurality of positive electrode active material 110 particles.
  • the content of the solid electrolyte 100 and the content of the positive electrode active material 110 may be the same or different.
  • the positive electrode material 1000 may contain multiple conductive materials 140 .
  • the positive electrode material 1000 may include multiple first conductive materials 150 and multiple second conductive materials 160 .
  • the positive electrode material 1000 can be manufactured, for example, by the method described below.
  • the positive electrode active material 110, the solid electrolyte 100 and the conductive material 140 are mixed to produce a mixture of these materials.
  • Conductive material 140 includes first conductive material 150 and second conductive material 160 .
  • the positive electrode active material 110 and the solid electrolyte 100 may be added to and mixed with the resulting mixture. Thereby, a positive electrode material 1000 including a mixture of the positive electrode active material 110, the solid electrolyte 100 and the conductive material 140 is obtained.
  • the method of mixing the positive electrode active material 110, the solid electrolyte 100 and the conductive material 140 is not particularly limited.
  • a machine such as a homogenizer may be used to mix these materials. Uniform mixing can be achieved by using a homogenizer.
  • the mixing ratio of positive electrode active material 110 and solid electrolyte 100 is not particularly limited.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a positive electrode material 1001 in Modification 1.
  • the positive electrode material 1001 further includes a coating layer 120 that covers at least part of the surface of the positive electrode active material 110 .
  • the positive electrode active material 110 at least part of the surface of which is covered with the coating layer 120 is referred to as a "covered positive electrode active material 130".
  • the positive electrode material 1001 may further include a coating layer 120 covering at least part of the surface of the positive electrode active material 110 . According to the above configuration, the resistance of the battery can be further reduced.
  • the coating layer 120 is in direct contact with the positive electrode active material 110 .
  • Coated positive electrode active material 130 in Embodiment 2 includes positive electrode active material 110 and a coating material.
  • the coating material forms the coating layer 120 by being present on at least part of the surface of the positive electrode active material 110 .
  • the coating layer 120 may evenly cover the positive electrode active material 110 . According to the above configuration, since the positive electrode active material 110 and the coating layer 120 are in close contact with each other, the resistance of the battery can be further reduced.
  • the coating layer 120 may cover only part of the surface of the positive electrode active material 110 .
  • the particles of the positive electrode active material 110 are in direct contact with each other through the portions not covered with the coating layer 120, thereby improving the electron conductivity between the particles of the positive electrode active material 110. As a result, it becomes possible to operate the battery at a high output.
  • the coating of the positive electrode active material 110 with the coating layer 120 suppresses the formation of an oxide film due to oxidative decomposition of other solid electrolytes during charging of the battery. As a result, the charging and discharging efficiency of the battery is improved.
  • Another solid electrolyte example is solid electrolyte 100 .
  • the coating material may contain Li and at least one selected from the group consisting of O, F and Cl.
  • the coating material is selected from the group consisting of lithium niobate, lithium phosphate, lithium titanate, lithium tungstate, lithium fluorozirconate, lithium fluoroaluminate, lithium fluorotitanate, and lithium fluoromagnesiumate. At least one may be included.
  • the coating material may be lithium niobate (LiNbO 3 ).
  • the positive electrode material 1001 can be manufactured by replacing the positive electrode active material 110 with the coated positive electrode active material 130 in the manufacturing method of the positive electrode material 1000 described in the first embodiment.
  • the coated positive electrode active material 130 can be produced, for example, by the following method.
  • the coating layer 120 is formed on the surfaces of the particles of the positive electrode active material 110 .
  • a method for forming the coating layer 120 is not particularly limited. Methods for forming the coating layer 120 include a liquid phase coating method and a vapor phase coating method.
  • the precursor solution can be a mixed solution (sol solution) of a solvent, lithium alkoxide and niobium alkoxide.
  • Lithium alkoxides include lithium ethoxide.
  • Niobium alkoxides include niobium ethoxide.
  • Solvents are, for example, alcohols such as ethanol. The amounts of lithium alkoxide and niobium alkoxide are adjusted according to the target composition of the coating layer 120 . Water may be added to the precursor solution, if desired.
  • the precursor solution may be acidic or alkaline.
  • the method of applying the precursor solution to the surface of the positive electrode active material 110 is not particularly limited.
  • the precursor solution can be applied to the surface of the cathode active material 110 using a tumbling flow granulation coating apparatus.
  • the precursor solution can be sprayed onto the positive electrode active material 110 while rolling and flowing the positive electrode active material 110 to apply the precursor solution to the surface of the positive electrode active material 110 . .
  • a precursor film is formed on the surface of the positive electrode active material 110 .
  • the positive electrode active material 110 coated with the precursor coating is heat-treated.
  • the heat treatment promotes gelation of the precursor coating to form the coating layer 120 .
  • the coated positive electrode active material 130 is obtained.
  • the coating layer 120 covers substantially the entire surface of the positive electrode active material 110 .
  • the thickness of the covering layer 120 is generally uniform.
  • the vapor phase coating method includes a pulsed laser deposition (PLD) method, a vacuum deposition method, a sputtering method, a thermal chemical vapor deposition (CVD) method, a plasma chemical vapor deposition method, and the like.
  • PLD pulsed laser deposition
  • CVD thermal chemical vapor deposition
  • a plasma chemical vapor deposition method and the like.
  • an ion-conducting material as a target is irradiated with a high-energy pulse laser (eg, KrF excimer laser, wavelength: 248 nm) to deposit sublimated ion-conducting material on the surface of the positive electrode active material 110 .
  • a high-energy pulse laser eg, KrF excimer laser, wavelength: 248 nm
  • high-density sintered LiNbO 3 is used as a target.
  • Embodiment 2 (Embodiment 2) Embodiment 2 will be described below. Descriptions overlapping those of the first embodiment are omitted as appropriate.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 2.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 2.
  • a battery 2000 according to Embodiment 2 includes a positive electrode 201 , an electrolyte layer 202 and a negative electrode 203 .
  • the positive electrode 201 includes the positive electrode material in Embodiment 1 or Modification 1.
  • Electrolyte layer 202 is positioned between positive electrode 201 and negative electrode 203 .
  • FIG. 3 shows a positive electrode material 1000 as an example of a positive electrode material contained in the positive electrode 201. As shown in FIG.
  • both energy density and electron conductivity can be achieved in the positive electrode 201 .
  • the energy density of the battery 2000 can be improved, and the resistance of the battery 2000 can be lowered.
  • the volume ratio "v1:100-v1" between the positive electrode active material 110 and the solid electrolyte 100 contained in the positive electrode 201 may satisfy 30 ⁇ v1 ⁇ 95.
  • v1 represents the volume ratio of the positive electrode active material 110 when the total volume of the positive electrode active material 110 and the solid electrolyte 100 contained in the positive electrode 201 is 100.
  • a sufficient energy density of the battery 2000 can be ensured when 30 ⁇ v1 is satisfied.
  • v1 ⁇ 95 the battery 2000 can operate at high output.
  • the volume ratio "v11:100-v11" between the coated positive electrode active material 130 and the solid electrolyte 100 contained in the positive electrode 201 may satisfy 30 ⁇ v11 ⁇ 95.
  • v11 represents the volume ratio of the coated positive electrode active material 130 when the total volume of the coated positive electrode active material 130 and the solid electrolyte 100 contained in the positive electrode 201 is 100.
  • 30 ⁇ v11 is satisfied, a sufficient energy density of the battery 2000 can be secured.
  • v11 ⁇ 95 the battery 2000 can operate at high output.
  • the thickness of the positive electrode 201 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode 201 is 10 ⁇ m or more, a sufficient energy density of the battery 2000 can be secured. When the thickness of positive electrode 201 is 500 ⁇ m or less, battery 2000 can operate at high output.
  • the electrolyte layer 202 is a layer containing an electrolyte.
  • the electrolyte is, for example, a solid electrolyte. That is, electrolyte layer 202 may be a solid electrolyte layer.
  • the material exemplified as solid electrolyte 100 in Embodiment 1 may be used. That is, electrolyte layer 202 may contain a solid electrolyte having the same composition as solid electrolyte 100 . According to the above configuration, the charge/discharge efficiency of the battery 2000 can be further improved.
  • the electrolyte layer 202 may contain a halide solid electrolyte having a composition different from that of the solid electrolyte 100 .
  • the electrolyte layer 202 may contain a sulfide solid electrolyte.
  • the electrolyte layer 202 may contain only one solid electrolyte selected from the materials listed as solid electrolytes.
  • the electrolyte layer 202 may contain two or more solid electrolytes selected from the materials listed as solid electrolytes. In this case, the plurality of solid electrolytes have compositions different from each other.
  • electrolyte layer 202 may include a halide solid electrolyte and a sulfide solid electrolyte.
  • the thickness of the electrolyte layer 202 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of the electrolyte layer 202 is 1 ⁇ m or more, the short circuit between the positive electrode 201 and the negative electrode 203 is less likely to occur. When the thickness of electrolyte layer 202 is 300 ⁇ m or less, battery 2000 can operate at high output.
  • the negative electrode 203 includes a material that has the property of intercalating and deintercalating metal ions (eg, lithium ions).
  • the negative electrode 203 contains, for example, a negative electrode active material.
  • Metal materials, carbon materials, oxides, nitrides, tin compounds, silicon compounds, etc. can be used for the negative electrode active material.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • metallic materials include lithium metal, lithium alloys, and the like.
  • carbon materials include natural graphite, coke, ungraphitized carbon, carbon fiber, spherical carbon, artificial graphite, and amorphous carbon.
  • the capacity density can be improved by using silicon (Si), tin (Sn), a silicon compound, a tin compound, or the like.
  • the negative electrode 203 may contain a solid electrolyte. According to the above configuration, the lithium ion conductivity inside the negative electrode 203 is increased, and the battery 2000 can operate at high output.
  • the solid electrolyte contained in negative electrode 203 the material exemplified as solid electrolyte 100 in Embodiment 1 may be used. That is, negative electrode 203 may contain a solid electrolyte having the same composition as that of solid electrolyte 100 .
  • the shape of the solid electrolyte contained in the negative electrode 203 in Embodiment 2 is not particularly limited.
  • the shape of the solid electrolyte contained in the negative electrode 203 may be acicular, spherical, oval, or the like, for example.
  • the shape of the solid electrolyte contained in the negative electrode 203 may be particulate.
  • the median diameter of the solid electrolyte may be 100 ⁇ m or less.
  • the negative electrode active material and the solid electrolyte can form a good dispersion state in the negative electrode 203 . Thereby, the charge/discharge characteristics of the battery 2000 are improved.
  • the median diameter of the solid electrolyte contained in the negative electrode 203 may be 10 ⁇ m or less, or may be 1 ⁇ m or less. According to the above configuration, the negative electrode active material and the solid electrolyte can form a good dispersion state in the negative electrode 203 .
  • the median diameter of the solid electrolyte contained in the negative electrode 203 may be smaller than the median diameter of the negative electrode active material. According to the above configuration, the negative electrode active material and the solid electrolyte can form a better dispersion state in the negative electrode 203 .
  • the shape of the negative electrode active material in Embodiment 2 is not particularly limited.
  • the shape of the negative electrode active material may be, for example, acicular, spherical, or oval.
  • the shape of the negative electrode active material may be particulate.
  • the median diameter of the negative electrode active material may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the negative electrode active material is 0.1 ⁇ m or more, the negative electrode active material and the solid electrolyte can form a good dispersion state in the negative electrode 203 . Thereby, the charge/discharge characteristics of the battery 2000 are improved.
  • the median diameter of the negative electrode active material is 100 ⁇ m or less, the diffusion rate of lithium in the negative electrode active material is sufficiently ensured. This allows battery 2000 to operate at high output.
  • the median diameter of the negative electrode active material may be larger than the median diameter of the solid electrolyte contained in the negative electrode 203 . Thereby, the negative electrode active material and the solid electrolyte can form a good dispersed state.
  • the volume ratio "v2:100-v2" between the negative electrode active material and the solid electrolyte contained in the negative electrode 203 may satisfy 30 ⁇ v2 ⁇ 95.
  • v2 represents the volume ratio of the negative electrode active material when the total volume of the negative electrode active material and the solid electrolyte contained in the negative electrode 203 is taken as 100.
  • a sufficient energy density of the battery 2000 can be ensured when 30 ⁇ v2 is satisfied.
  • v2 ⁇ 95 the battery 2000 can operate at high output.
  • the thickness of the negative electrode 203 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the negative electrode 203 is 10 ⁇ m or more, a sufficient energy density of the battery 2000 can be secured. When the thickness of the negative electrode 203 is 500 ⁇ m or less, the battery 2000 can operate at high output.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a binder for the purpose of improving adhesion between particles.
  • a binder is used to improve the binding properties of the material that constitutes the electrode.
  • Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylate hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber, Carboxymethyl cellulose etc.
  • the negative electrode 203 may contain a conductive aid for the purpose of improving electronic conductivity.
  • conductive aids include graphites such as natural graphite or artificial graphite, carbon blacks such as acetylene black and Ketjen black, conductive fibers such as carbon fiber or metal fiber, carbon fluoride, and metal powder such as aluminum.
  • conductive whiskers such as zinc oxide or potassium titanate; conductive metal oxides such as titanium oxide; and conductive polymer compounds such as polyaniline, polypyrrole, and polythiophene. Cost reduction can be achieved when a carbon conductive aid is used.
  • Shapes of the battery 2000 in Embodiment 2 include, for example, a coin shape, a cylindrical shape, a rectangular shape, a sheet shape, a button shape, a flat shape, and a laminated shape.
  • LiNi 0.8 (Co, Mn) 0.2 O 2 (hereinafter referred to as NCM) was used as a positive electrode active material.
  • LiNbO 3 was used as the coating material.
  • a coating layer containing LiNbO 3 was formed by a liquid phase coating method. Specifically, first, a precursor solution of an ion conductive material was applied to the surface of the NCM. This formed a precursor coating on the surface of the NCM. The NCM coated with the precursor coating was then heat treated. Gelation of the precursor film progressed by the heat treatment, and a coating layer made of LiNbO 3 was formed.
  • a coated positive electrode active material (hereinafter referred to as Nb-NCM) was produced by such a method.
  • Carbon fiber (VGCF-H, manufactured by Showa Denko KK) was used as the first conductive material.
  • the average major axis diameter of VGCF-H was 6 ⁇ m.
  • Acetylene black with an average particle size of 23 nm was used as the second conductive material.
  • the binder, solvent, VGCF-H and acetylene black were mixed in an argon glove box with a dew point of ⁇ 60° C. or less and dispersed using a homogenizer. This gave a mixture of binder, solvent, VGCF-H and acetylene black.
  • the mixing ratio of VGCF-H and acetylene black was 2:0.125 in mass ratio.
  • Nb-NCM as a coating active material and LPS as a solid electrolyte were added to and mixed with the mixture and dispersed with a homogenizer to prepare a slurry containing the positive electrode material.
  • the mixing ratio of Nb-NCM and LPS was 70:30 by volume.
  • VGCF is a registered trademark of Showa Denko K.K.
  • the positive electrode was produced by apply
  • Example 9>> In the manufacturing process of the positive electrode material, the mixing ratio of VGCF-H and acetylene black was 2:0.3 in mass ratio. The mixing ratio of Nb-NCM and LPS was 75:25 by volume. A positive electrode of Example 9 was obtained in the same manner as in Example 1 except for these steps.
  • FIG. 4 is a diagram explaining a method for evaluating the electronic conductivity of the positive electrode.
  • the opposing positive electrode 3000 was produced by stacking current collectors 204 on the outer sides of a stack of two positive electrodes 201 facing each other, and then pressing the stack at a high pressure. Al foil was used as the current collector 204 .
  • a potentiostat 400 was connected to the opposing positive electrode 3000 thus obtained, and the electronic resistance was measured by the following procedure.
  • FIG. 5 is a graph showing the correlation between voltage and current value in the facing positive electrode 3000 of Example 1.
  • the current values were linearly approximated by Ohm's law. The slope of the approximate straight line indicates the DC resistance.
  • the electron conductivity ⁇ of the positive electrode of Example 1 was calculated using the following formula (2).
  • Table 1 shows the calculated electronic conductivity.
  • S is the surface area of the positive electrode.
  • R is the DC resistance value obtained from the slope of the approximate straight line.
  • t is the thickness of the positive electrode. The “thickness of the positive electrode” means the thickness of the positive electrode 201 in FIG.
  • VGCF-H (% by mass) represents the mass ratio of VGCF-H when the mass of the positive electrode active material is taken as 100%.
  • Acetylene black (% by mass) represents the mass ratio of acetylene black to the mass of the positive electrode active material as 100%.
  • the total conductive material (% by mass) represents the ratio of the total mass of VGCF-H and acetylene black to the mass of the positive electrode active material as 100%.
  • VGCF-H (% by mass) represents the mass ratio of VGCF-H to the total mass of VGCF-H and acetylene black.
  • Acetylene black (mass %) represents the ratio of the mass of acetylene black to the total mass of VGCF-H and acetylene black.
  • FIG. 6 is a graph showing the electron conductivity of the positive electrodes of Examples 1 to 9 and Comparative Examples 1 to 5.
  • the vertical axis indicates the calculated electronic conductivity.
  • the horizontal axis indicates the mass ratio of the conductive material when the mass of the coated positive electrode active material is taken as 100%.
  • Example 3 The mass ratio of the conductive material in Example 3 and Comparative Example 1 was the same. However, the electronic conductivity of Example 3 was more than twice the electronic conductivity of Comparative Example 1. That is, when the mass ratio of the conductive material is about the same, the electronic conductivity can be greatly improved.
  • Example 7 and Comparative Example 1 were comparable. However, the mass ratio of the conductive material of Example 7 was smaller than that of the conductive material of Comparative Example 1. In other words, when the electronic conductivity was the same, the mass ratio of the conductive material could be reduced. This is probably because VGCF-H and acetylene black are easily connected to each other by containing VGCF-H and acetylene black as the conductive material, so that an electron-conducting network is efficiently formed in the positive electrode.
  • the mass ratios of the conductive materials of Examples 2, 8 and 9 were the same.
  • the volume ratio and electronic conductivity of the coated positive electrode active material increased in the order of Examples 2, 8 and 9. That is, it was possible to improve the electron conductivity with an increase in the volume ratio of the positive electrode active material.
  • the electronic conductivity could be improved with an increase in the mass ratio of acetylene black to the total conductive material.
  • the battery of the present disclosure can be used, for example, as an all-solid lithium secondary battery.
  • Reference Signs List 1000 1001 positive electrode material 100 solid electrolyte 110 positive electrode active material 120 coating layer 130 coated positive electrode active material 140 conductive material 150 first conductive material 160 second conductive material 2000 battery 201 positive electrode 202 electrolyte layer 203 negative electrode 204 current collector 3000 Opposite positive electrode 400 potentiostat

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

正極材料1000は、正極活物質110、固体電解質100および導電性材料140の混合物を備える。導電性材料140は、1μm以上の平均長軸径を有する第1導電性材料150および100nm以下の平均粒径を有する第2導電性材料160を含む。正極活物質110および固体電解質100の合計体積に対する正極活物質110の体積の比率は、60%以上かつ90%以下である。

Description

正極材料および電池
 本開示は、正極材料および電池に関する。
 特許文献1には、活物質、繊維状導電材、粒状導電材、および固体電解質を含む正極を備えた固体電池が開示されている。
国際公開第2020/130069号
 従来技術においては、正極においてエネルギー密度と電子伝導度とを両立することが望まれる。
 本開示の一様態における正極材料は、
 正極活物質、固体電解質および導電性材料の混合物を備え、
 前記導電性材料は、1μm以上の平均長軸径を有する第1導電性材料および100nm以下の平均粒径を有する第2導電性材料を含み、
 前記正極活物質および前記固体電解質の合計体積に対する前記正極活物質の体積の比率は、60%以上かつ90%以下である。
 本開示によれば、正極においてエネルギー密度と電子伝導度とを両立させることができる。
図1は、実施の形態1における正極材料の概略構成を示す断面図である。 図2は、変形例1における正極材料の概略構成を示す断面図である。 図3は、実施の形態2における電池の概略構成を示す断面図である。 図4は、正極の電子伝導度の評価方法を説明する図である。 図5は、実施例1の対向正極における電圧と電流値の相関関係を示すグラフである。 図6は、実施例1から9および比較例1から5の正極の電子伝導度を示すグラフである。
 (本開示の基礎となった知見)
 特許文献1には、活物質、繊維状導電材、粒状導電材、および固体電解質を含む正極を備えた固体電池が開示されている。特許文献1には、正極材料において、活物質と繊維状導電材と粒状導電材と固体電解質との合計量100質量部に対して、活物質の量は60質量部程度であることが記載されている。すなわち、特許文献1の正極材料において、活物質と繊維状導電材と粒状導電材と固体電解質との合計体積に対する活物質の体積の比率は、43%程度である。このように、特許文献1の正極材料において、電子絶縁性を有する固体電解質の体積比率は、活物質の体積比率よりも大きい。そのため、特許文献1の正極材料を用いた場合、正極において電子伝導性を十分に確保することは難しい。一方、電子伝導性を確保するために導電材の比率を増加させた場合には、活物質の比率が減少するため、正極のエネルギー密度は低下する。
 本発明者らは、全固体リチウムイオン電池の抵抗を低下させる方法について鋭意研究した。その結果、正極において電子伝導度を向上させると、電池の抵抗が低下するという知見を得た。これは、正極と集電体との間の抵抗の影響が大きいと推測される。本発明者らは、さらに、電子伝導度を向上させるために導電性材料の比率を増加しすぎると、電池のエネルギー密度が低下するだけではなく、導電性材料によって正極活物質と固体電解質との間のリチウムイオン伝導が阻害されるという知見を得た。リチウムイオン伝導が阻害されると、正極活物質の反応抵抗が増加する。本発明者らは、これらの知見に基づき、正極においてエネルギー密度と電子伝導度とを両立させることができる正極材料を発見した。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る正極材料は、
 正極活物質、固体電解質および導電性材料の混合物を備え、
 前記導電性材料は、1μm以上の平均長軸径を有する第1導電性材料および100nm以下の平均粒径を有する第2導電性材料を含み、
 前記正極活物質および前記固体電解質の合計体積に対する前記正極活物質の体積の比率は、60%以上かつ90%以下である。
 以上の構成によれば、正極活物質の体積比率が、固体電解質の体積比率よりも大きいため、正極におけるエネルギー密度を向上させることができる。また、第1導電性材料が1μm以上の平均長軸径を有するので、正極において第1導電性材料と第2導電性材料とがつながりやすい。そのため、正極に電子伝導のネットワークを効率的に形成することができる。これにより、正極においてエネルギー密度と電子伝導度とを両立させることができる。
 本開示の第2態様において、例えば、第1態様に係る正極材料では、前記正極活物質および前記固体電解質の合計体積に対する前記正極活物質の体積の比率は、65%以上かつ85%以下であってもよい。以上の構成によれば、正極におけるエネルギー密度をより向上させることができる。
 本開示の第3態様において、例えば、第1態様に係る正極材料では、前記正極活物質および前記固体電解質の合計体積に対する前記正極活物質の体積の比率は、67%以上かつ75%以下であってもよい。以上の構成によれば、正極におけるエネルギー密度をより向上させることができる。
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つに係る正極材料では、前記正極活物質の質量比率を100としたとき、前記導電性材料の質量比率は、3以下であってもよい。以上の構成によれば、導電性材料によって正極活物質と固体電解質との間のリチウムイオン伝導が阻害されることが抑制できる。
 本開示の第5態様において、例えば、第1から第4態様のいずれか1つに係る正極材料では、前記導電性材料の質量に対する前記第2導電性材料の質量の比率は、80%以下であってもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 本開示の第6態様において、例えば、第5態様に係る正極材料では、前記導電性材料の質量に対する前記第2導電性材料の質量の比率は、5%以上かつ50%以下であってもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 本開示の第7態様において、例えば、第5態様に係る正極材料では、前記導電性材料の質量に対する前記第2導電性材料の質量の比率は、6%以上かつ25%以下であってもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係る正極材料では、前記第1導電性材料は、4μm以上の平均長軸径を有していてもよい。以上の構成によれば、第1導電性材料によって正極における長距離の電子伝導を可能とする伝導パスが形成されやすい。これにより、正極における電子伝導度をより向上させることができる。
 本開示の第9態様において、例えば、第8態様に係る正極材料では、前記第2導電性材料は、25nm以下の平均粒径を有していてもよい。以上の構成によれば、正極活物質の表面に第2導電性材料がより付着しやすくなる。そのため、第1導電性材料と第2導電性材料とがつながることで、正極に電子伝導のネットワークが形成されやすい。
 本開示の第10態様において、例えば、第1から第9態様のいずれか1つに係る正極材料では、前記第1導電性材料および前記第2導電性材料は、炭素材料を含んでいてもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 本開示の第11態様において、例えば、第1から第10態様のいずれか1つに係る正極材料では、前記第1導電性材料は、繊維状炭素材料を含んでいてもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 本開示の第12態様において、例えば、第1から第11態様のいずれか1つに係る正極材料では、前記第2導電性材料は、カーボンブラックを含んでいてもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 本開示の第13態様において、例えば、第12態様に係る正極材料では、前記カーボンブラックはアセチレンブラックを含んでいてもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 本開示の第14態様において、例えば、第1から第13態様のいずれか1つに係る正極材料では、前記固体電解質は、硫化物固体電解質およびハロゲン化物固体電解質からなる群より選ばれる少なくとも1つを含んでいてもよい。以上の構成によれば、電池の出力特性を向上させることができる。
 本開示の第15態様において、例えば、第1から第14態様のいずれか1つに係る正極材料では、前記正極活物質は、層状岩塩構造を有していてもよい。層状岩塩構造は、遷移金属とリチウムとが規則的に配列して二次元平面を形成するため、リチウムの二次元拡散が可能である。そのため、以上の構成によれば、電池のエネルギー密度を向上させることができる。
 本開示の第16態様において、例えば、第1から第15態様のいずれか1つに係る正極材料では、前記正極活物質の表面の少なくとも一部を被覆する被覆層をさらに備えていてもよい。以上の構成によれば、電池の抵抗をより低下させることができる。
 本開示の第17態様に係る電池は、
 第1から第16態様のいずれか1つに係る正極材料を含む正極と、
 負極と、
 前記正極と前記負極との間に設けられた電解質層と、
 を備える。
 以上の構成によれば、正極においてエネルギー密度と電子伝導度とを両立させることができる。これにより、電池のエネルギー密度を向上させることができるとともに、電池の抵抗を低下させることができる。
 本開示の第18態様において、例えば、第17態様に係る電池では、前記電解質層は、硫化物固体電解質を含んでいてもよい。以上の構成によれば、電池の出力特性を向上させることができる。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 (実施の形態1)
 [正極材料]
 図1は、実施の形態1における正極材料1000の概略構成を示す断面図である。
 正極材料1000は、正極活物質110、固体電解質100および導電性材料140の混合物を含む。導電性材料140は、1μm以上の平均長軸径を有する第1導電性材料150および100nm以下の平均粒径を有する第2導電性材料160を含む。正極活物質110および固体電解質100の合計体積に対する正極活物質110の体積の比率は、60%以上かつ90%以下である。
 以上の構成によれば、正極活物質110の体積含有率が、固体電解質100の体積含有率よりも大きいため、正極におけるエネルギー密度を向上させることができる。また、第1導電性材料150が1μm以上の平均長軸径を有するので、正極において第1導電性材料150と第2導電性材料160とがつながりやすい。そのため、正極に電子伝導のネットワークを効率的に形成することができる。これにより、正極においてエネルギー密度と電子伝導度とを両立させることができる。
 第1導電性材料150の平均長軸径は、例えば、走査電子顕微鏡によるSEM像を用いて測定することができる。具体的には、SEM像を用いて、任意に選択した20個の第1導電性材料150の粒子の長軸径の平均値を算出することにより、平均長軸径が求められる。ここで、第1導電性材料150の長軸径は、第1導電性材料150の粒子のSEM像において、第1導電性材料150の粒子を包囲する最小面積の円の直径として定義される。
 第2導電性材料160の平均粒径は、例えば、透過型電子顕微鏡(TEM)によるTEM像を用いて測定することができる。具体的には、TEM像を用いて、任意に選択した20個の第2導電性材料160の粒子の面積円相当径の平均値を算出することにより、平均粒径が求められる。
 ここで、正極材料に含まれる第1導電性材料の平均長径軸及び第2導電性材料の平均粒径は、例えば、以下のように測定できる。まず、電池から、例えば負極材料が混ざらないように正極材料を削り取ることにより、正極材料を取得する。取得した正極材料を、固体電解質を溶解させるために水と混合し、濾過することで、固体電解質以外の活物質、バインダ及び導電性材料を取り出す。次に、取り出した活物質、バインダ及び導電性材料を、バインダを溶解させるためにトルエンなどの有機溶剤と混合し、濾過することで活物質及び導電性材料を取り出す。さらに、取り出した活物質及び導電性材料を、活物質を溶解させるために酸水溶液と混合して、濾過することで、導電性材料を取り出す。その後、取り出した導電性材料を乾燥させる。乾燥させた導電性材料を用いることにより、上記のようにSEM像に基づいて第1導電性材料の平均長軸径を測定することができ、TEM像に基づいて第2導電性材料の平均粒径を測定することができる。
 正極活物質110および固体電解質100の合計体積に対する正極活物質110の体積の比率は、例えば、以下の方法で算出しうる。正極材料1000に含まれている正極活物質110は、例えば、溶媒を用いて固体電解質100のみを溶解させることにより取り出すことができる。正極活物質110および固体電解質100の合計質量と、正極活物質110の質量とは、上記溶解の前後の質量から得ることができる。正極活物質110および固体電解質100それぞれの比重は、文献等から知ることができる。これらの値から正極活物質110および固体電解質100の合計体積に対する正極活物質110の体積の比率を算出できる。
 正極活物質110および固体電解質100の合計体積に対す正極活物質110の体積の比率は、65%以上かつ85%以下であってもよい。以上の構成によれば、正極におけるエネルギー密度をより向上させることができる。
 正極活物質110および固体電解質100の合計体積に対す正極活物質110の体積の比率は、67%以上かつ75%以下であってもよい。以上の構成によれば、正極におけるエネルギー密度をより向上させることができる。
 正極活物質110の質量比率を100としたとき、導電性材料140の質量比率は、3以下であってもよい。以上の構成によれば、導電性材料140によって正極活物質110と固体電解質100との間のリチウムイオン伝導が阻害されることが抑制できる。
 正極活物質110の質量比率を100としたときの導電性材料140の質量比率は、例えば、以下の方法で算出しうる。正極材料1000に含まれている正極活物質110の質量は、上述した方法により得ることができる。正極材料1000に含まれている導電性材料140の質量は、例えば、高温熱分解による質量の減少から得ることができる。これらの値から正極活物質110の質量比率を100としたときの導電性材料140の質量比率を算出できる。
 導電性材料140の質量に対する第2導電性材料160の質量の比率は、80%以下であってもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 導電性材料140の質量に対する第2導電性材料160の質量の比率は、例えば、以下の方法で算出しうる。上述した方法により取り出した導電性材料140について、粒度分布測定または分級などにより、導電性材料140の質量に対する第2導電性材料160の質量を得ることができる。このようにして、導電性材料140の質量に対する第2導電性材料160の質量の比率を算出することができる。
 導電性材料140の質量に対する第2導電性材料160の質量の比率は、5%以上かつ50%以下であってもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 導電性材料140の質量に対する第2導電性材料160の質量の比率は、6%以上かつ25%以下であってもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 (導電性材料)
 第1導電性材料150および第2導電性材料160は、炭素材料を含んでいてもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 第1導電性材料150および第2導電性材料160は、炭素材料であってもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 第1導電性材料150は、繊維状炭素材料を含んでいてもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 第1導電性材料150は、繊維状炭素材料であってもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 繊維状炭素材料として、気相法炭素繊維、カーボンナノチューブ、カーボンナノファイバーなどの繊維状炭素が挙げられる。第1導電性材料150が繊維状炭素材料を含んでいる場合、第1導電性材料150は、これらの材料のいずれか1つを含んでいてもよく、これらの材料の2つ以上を含んでいてもよい。第1導電性材料150が繊維状炭素材料である場合、第1導電性材料150は、これらの材料のいずれか1つから構成されていてもよく、これらの材料の2つ以上から構成されていてもよい。
 第2導電性材料160は、カーボンブラックを含んでいてもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 第2導電性材料160は、カーボンブラックであってもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 カーボンブラックとしては、アセチレンブラックおよびケチェンブラックが挙げられる。第2導電性材料160がカーボンブラックを含んでいる場合、第2導電性材料160は、アセチレンブラックを含んでいてもよく、ケチェンブラックを含んでいてもよい。第2導電性材料160は、アセチレンブラックおよびケチェンブラックをいずれも含んでいてもよい。カーボンブラックがアセチレンブラックを含んでいる場合には、正極における電子伝導度をより向上させることができる。第2導電性材料160がカーボンブラックである場合、第2導電性材料160は、アセチレンブラックであってもよく、ケチェンブラックであってもよい。第2導電性材料160は、アセチレンブラックおよびケチェンブラックから構成されていてもよい。
 第1導電性材料150が繊維状炭素材料である場合、第1導電性材料150は、繊維状炭素材料を主成分として含みながら、さらに、不可避的な不純物、または、繊維状炭素材料を合成する際に用いられる出発原料、副生成物および分解生成物などを含んでいてもよい。本開示において、「主成分」は、質量比で最も多く含まれた成分を意味する。
 第1導電性材料150は、例えば、混入が不可避的な不純物を除いて、第1導電性材料150の全体に対する質量割合で繊維状炭素材料を100%含んでいてもよい。
 このように、第1導電性材料150は繊維状炭素材料のみから構成されていてもよい。
 第2導電性材料160がカーボンブラックである場合、第2導電性材料160は、カーボンブラックを主成分として含みながら、さらに、不可避的な不純物、または、カーボンブラックを合成する際に用いられる出発原料、副生成物および分解生成物などを含んでいてもよい。
 第2導電性材料160は、例えば、混入が不可避的な不純物を除いて、第2導電性材料160の全体に対する質量割合でカーボンブラックを100%含んでいてもよい。
 このように、第2導電性材料160はカーボンブラックのみから構成されていてもよい。
 第1導電性材料150は、4μm以上の平均長軸径を有していてもよい。以上の構成によれば、第1導電性材料150によって、正極に長距離の電子伝導を可能とする伝導パスが形成されやすい。これにより、正極における電子伝導度をより向上させることができる。
 第2導電性材料160は、25nm以下の平均粒径を有していてもよい。以上の構成によれば、正極活物質110の表面に第2導電性材料160が付着しやすくなる。そのため、第1導電性材料150と第2導電性材料160とがつながることで、正極に電子伝導のネットワークが形成されやすい。
 第1導電性材料150の形状は、1μm以上の平均長軸径を有する限り、特に限定されない。第1導電性材料150は、例えば、繊維状、針状などであってもよい。第1導電性材料150の形状は、繊維状であってもよい。
 第2導電性材料160の形状は、100nm以下の平均粒径を有する限り、特に限定されない。第2導電性材料160は、例えば、球状、楕円球状などであってもよい。第2導電性材料160の形状は、球状であってもよい。
 導電性材料140は、第1導電性材料150および第2導電性材料160とは異なる導電性材料を含んでいてもよい。このような導電性材料としては、天然黒鉛または人造黒鉛のグラファイト類、金属繊維、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物などが挙げられる。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 導電性材料140は、第1導電性材料150および第2導電性材料160のみから構成されていてもよい。すなわち、導電性材料140は、第1導電性材料150および第2導電性材料160とは異なる導電性材料を含んでいなくてもよい。
 (正極活物質)
 正極活物質110として、全固体リチウムイオン電池の正極活物質として使用可能な材料が用いられうる。正極活物質110としては、LiCoO2、LiNixMe1-x2、LiNixCo1-x2、LiNi1/3Co1/3Mn1/32、LiMnO2、異種元素置換Li-Mnスピネル、チタン酸リチウム、リン酸金属リチウム、および遷移金属酸化物が挙げられる。LiNixMe1-x2において、xは0.5≦x<1を満たし、MeはCo、MnおよびAlからなる群より選ばれる少なくとも1つ以上を含む。LiNixCo1-x2において、xは0<x<0.5を満たす。異種元素置換Li-Mnスピネルとしては、LiMn1.5Ni0.54、LiMn1.5Al0.54、LiMn1.5Mg0.54、LiMn1.5Co0.54、LiMn1.5Fe0.54、およびLiMn1.5Zn0.54が挙げられる。チタン酸リチウムとして、Li4Ti512が挙げられる。リン酸金属リチウムとして、LiFePO4、LiMnPO4、LiCoPO4、およびLiNiPO4が挙げられる。遷移金属酸化物として、V25、およびMoO3が挙げられる。
 正極活物質110は、LiCoO2、LiNixMe1-x2、LiNixCo1-x2、LiNi1/3Co1/3Mn1/32、LiMnO2、異種元素置換Li-Mnスピネル、リン酸金属リチウムなどから選ばれるリチウム含有複合酸化物であってもよい。
 正極活物質110がリチウム含有複合酸化物である場合、正極活物質110は、層状岩塩構造を有していてもよい。層状岩塩構造は、遷移金属とリチウムとが規則的に配列して二次元平面を形成するため、リチウムの二次元拡散が可能である。そのため、以上の構成によれば、電池のエネルギー密度を向上させることができる。
 (固体電解質)
 固体電解質100は、硫化物固体電解質およびハロゲン化物固体電解質からなる群より選ばれる少なくとも1つを含んでいてもよい。以上の構成によれば、電池の出力特性を向上させることができる。
 固体電解質100は、硫化物固体電解質とハロゲン化物固体電解質との混合物であってもよい。
 硫化物固体電解質としては、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、Li10GeP212などが挙げられる。また、Li6PS5Cl、Li6PS5Br、Li6PS5Iなどに代表されるArgyrodite構造の硫化物固体電解質が用いられうる。これらの硫化物固体電解質に、LiX、Li2O、MOq、LipMOqなどが添加されてもよい。ここで、Xは、F、Cl、BrおよびIからなる群より選ばれる少なくとも1つである。また、Mは、P、Si、Ge、B、Al、Ga、In、FeおよびZnからなる群より選ばれる少なくとも1つである。pおよびqは、それぞれ、自然数である。上記の材料から選ばれる1つまたは2つ以上の硫化物固体電解質が使用されうる。
 以上の構成によれば、硫化物固体電解質のイオン伝導度をより向上させることができる。これにより、電池の充放電効率をより向上させることができる。
 ハロゲン化物固体電解質は、例えば、以下の組成式(1)により表される。
 Liαβγ ・・・式(1)
 ここで、α、β、およびγは、それぞれ独立して、0より大きい値である。Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つの元素を含む。Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つを含む。
 本開示において、「半金属元素」とは、B、Si、Ge、As、SbおよびTeである。「金属元素」とは、水素を除く周期表1族から12族中に含まれるすべての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く周期表13族から16族中に含まれるすべての元素である。すなわち、「半金属元素」または「金属元素」とは、ハロゲン元素と無機化合物を形成した際に、カチオンとなりうる元素群である。
 組成式(1)で表されるハロゲン化物固体電解質は、Liおよびハロゲン元素からなるLiIなどのハロゲン化物固体電解質と比較して、高いイオン伝導度を有する。そのため、組成式(1)で表されるハロゲン化物固体電解質によれば、ハロゲン化物固体電解質のイオン伝導度をより向上させることができる。
 組成式(1)において、Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つの元素であってもよい。
 組成式(1)において、Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つであってもよい。
 組成式(2)は、2.5≦α≦3、1≦β≦1.1、およびγ=6、を満たしてもよい。以上の構成によれば、ハロゲン化物固体電解質のイオン伝導度をより向上させることができる。
 組成式(1)において、Mは、Y(=イットリウム)を含んでいてもよい。すなわち、ハロゲン化物固体電解質は、金属元素としてYを含んでいてもよい。以上の構成によれば、ハロゲン化物固体電解質のイオン伝導度をより向上させることができる。
 Yを含むハロゲン化物固体電解質は、例えば、LiaMebc6の組成式で表される化合物であってもよい。ここで、a+mb+3c=6、および、c>0が満たされる。Meは、LiおよびYを除く金属元素と半金属元素とからなる群より選ばれる少なくとも1つの元素である。mは、元素Meの価数である。Xは、F、Cl、BrおよびIからなる群より選ばれる少なくとも1つである。
 Meは、例えば、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、TaおよびNbからなる群より選ばれる少なくとも1つであってもよい。
 以上の構成によれば、ハロゲン化物固体電解質のイオン伝導度をより向上させることができる。
 ハロゲン化物固体電解質として、例えば、以下の材料が使用されうる。以下の構成によれば、ハロゲン化物固体電解質のイオン伝導度をより向上させることができる。
 ハロゲン化物固体電解質は、下記の組成式(A1)により表される材料であってもよい。
 Li6-3dd6 ・・・式(A1)
 組成式(A1)において、Xは、F、Cl、BrおよびIからなる群より選ばれる少なくとも1つである。また、0<d<2が満たされる。
 ハロゲン化物固体電解質は、下記の組成式(A2)により表される材料であってもよい。
 Li3YX6 ・・・式(A2)
 組成式(A2)において、Xは、F、Cl、BrおよびIからなる群より選ばれる少なくとも1つである。
 ハロゲン化物固体電解質は、下記の組成式(A3)により表される材料であってもよい。
 Li3-3δ1+δCl6 ・・・式(A3)
 組成式(A3)において、0<δ≦0.15が満たされる。
 ハロゲン化物固体電解質は、下記の組成式(A4)により表される材料であってもよい。
 Li3-3δ1+δBr6 ・・・式(A4)
 組成式(A4)において、0<δ≦0.25が満たされる。
 ハロゲン化物固体電解質は、下記の組成式(A5)により表される材料であってもよい。
 Li3-3δ+a1+δ-aMeaCl6-x-yBrxy ・・・式(A5)
 組成式(A5)において、Meは、Mg、Ca、Sr、BaおよびZnからなる群より選ばれる少なくとも1つを含む。Meは、Mg、Ca、Sr、BaおよびZnからなる群より選ばれる少なくとも1つであってもよい。
 組成式(A5)において、-1<δ<2、0<a<3、0<(3-3δ+a)、0<(1+δ-a)、0≦x≦6、0≦y≦6、および(x+y)≦6、が満たされる。
 ハロゲン化物固体電解質は、下記の組成式(A6)により表される材料であってもよい。
 Li3-3δ1+δ-aMeaCl6-x-yBrxy ・・・式(A6)
 組成式(A6)において、Meは、Al、Sc、GaおよびBiからなる群より選ばれる少なくとも1つを含む。Meは、Al、Sc、GaおよびBiからなる群より選ばれる少なくとも1つであってもよい。
 組成式(A6)において、-1<δ<1、0<a<2、0<(1+δ-a)、0≦x≦6、0≦y≦6、および(x+y)≦6、が満たされる。
 ハロゲン化物固体電解質は、下記の組成式(A7)により表される材料であってもよい。
 Li3-3δ-a1+δ-aMeaCl6-x-yBrxy ・・・式(A7)
 組成式(A7)において、Meは、Zr、HfおよびTiからなる群より選ばれる少なくとも1つを含む。Meは、Zr、HfおよびTiからなる群より選ばれる少なくとも1つであってもよい。
 組成式(A7)において、-1<δ<1、0<a<1.5、0<(3-3δ-a)、0<(1+δ-a)、0≦x≦6、0≦y≦6、および(x+y)≦6、が満たされる。
 ハロゲン化物固体電解質は、下記の組成式(A8)により表される材料であってもよい。
 Li3-3δ-2a1+δ-aMeaCl6-x-yBrxy ・・・式(A8)
 組成式(A8)において、Meは、TaおよびNbからなる群より選ばれる少なくとも1つを含む。Meは、TaおよびNbからなる群より選ばれる少なくとも1つであってもよい。
 組成式(A8)において、-1<δ<1、0<a<1.2、0<(3-3δ-2a)、0<(1+δ-a)、0≦x≦6、0≦y≦6、および(x+y)≦6、が満たされる。
 ハロゲン化物固体電解質として、より具体的には、例えば、Li3YX6、Li2MgX4、Li2FeX4、Li(Al,Ga,In)X4、Li3(Al,Ga,In)X6などが使用されうる。ここで、Xは、F、Cl、BrおよびIからなる群より選ばれる少なくとも1つである。
 本開示において、化学式中の表記「(A,B,C)」は、「A、B、およびCからなる群より選ばれる少なくとも1つ」を意味する。例えば、「(Al,Ga,In)」は、「Al、GaおよびInからなる群より選ばれる少なくとも1つ」と同義である。他の元素の場合でも同様である。
 ハロゲン化物固体電解質は、硫黄を含んでいなくてもよい。以上の構成によれば、硫化水素ガスの発生を抑制できる。そのため、安全性を向上させた電池を実現することが可能となる。
 固体電解質100の形状は、特に限定されない。固体電解質100の形状は、例えば、針状、球状、楕円球状などであってもよい。例えば、固体電解質100の形状は、粒子状であってもよい。
 例えば、固体電解質100の形状が粒子状(例えば、球状)の場合、固体電解質100のメジアン径は、100μm以下であってもよい。固体電解質100のメジアン径が100μm以下の場合、正極材料1000において正極活物質110と固体電解質100とが、良好な分散状態を形成しうる。これにより、電池の充放電特性が向上する。
 固体電解質100のメジアン径は10μm以下であってもよい。以上の構成によれば、正極材料1000において正極活物質110と固体電解質100とが、良好な分散状態を形成できる。
 固体電解質100のメジアン径は、正極活物質110のメジアン径より小さくてもよい。以上の構成によれば、正極材料1000において正極活物質110と固体電解質100とが、より良好な分散状態を形成できる。
 正極活物質110の形状は、特に限定されない。正極活物質110の形状は、例えば、針状、球状、楕円球状などであってもよい。例えば、正極活物質110の形状は、粒子状であってもよい。
 正極活物質110のメジアン径は、0.1μm以上かつ100μm以下であってもよい。正極活物質110のメジアン径が0.1μm以上の場合、正極材料1000において正極活物質110と固体電解質100とが、良好な分散状態を形成しうる。これにより、電池の充放電特性が向上する。正極活物質110のメジアン径が100μm以下の場合、正極活物質110内のリチウムの拡散速度が十分に確保される。これにより、電池が高出力で動作しうる。
 正極活物質110のメジアン径は、固体電解質100のメジアン径よりも大きくてもよい。これにより、正極活物質110と固体電解質100とが、良好な分散状態を形成できる。
 本開示において、メジアン径とは、体積基準の粒度分布における累積体積が50%に等しい場合の粒径(d50)を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置または画像解析装置により測定される。
 正極材料1000において、固体電解質100と正極活物質110とは、互いに接触していてもよい。
 正極材料1000は、複数の固体電解質100の粒子および複数の正極活物質110の粒子を含んでいてもよい。
 正極材料1000において、固体電解質100の含有量と正極活物質110の含有量とは、互いに同じであってもよいし、異なっていてもよい。
 正極材料1000は、複数の導電性材料140を含んでいてもよい。
 正極材料1000は、複数の第1導電性材料150および複数の第2導電性材料160を含んでいてもよい。
 <正極材料の製造方法>
 正極材料1000は、例えば、下記の方法により製造されうる。
 正極活物質110、固体電解質100および導電性材料140を混合して、これらの材料の混合物を作製する。導電性材料140は、第1導電性材料150および第2導電性材料160を含んでいる。例えば、溶媒と導電性材料140を準備し、溶媒に導電性材料140を混合した後、得られた混合物に、正極活物質110および固体電解質100を添加し混合してもよい。これにより、正極活物質110、固体電解質100および導電性材料140の混合物を含む正極材料1000が得られる。
 正極活物質110、固体電解質100および導電性材料140を混合する方法は特に限定されない。例えば、ホモジナイザーなどの機械を用いてこれらの材料を混合してもよい。ホモジナイザーを用いることで、均一な混合を達成できる。正極活物質110と固体電解質100との混合比率は特に限定されない。
 (変形例1)
 図2は、変形例1における正極材料1001の概略構成を示す断面図である。正極材料1001は、正極活物質110の表面の少なくとも一部を被覆する被覆層120をさらに備える。被覆層120によって表面の少なくとも一部を被覆されている正極活物質110を、「被覆正極活物質130」と称する。このように、正極材料1001は、正極活物質110の表面の少なくとも一部を被覆する被覆層120をさら含んでいてもよい。以上の構成によれば、電池の抵抗をより低下させることができる。
 被覆層120は、正極活物質110に直接接している。
 以下、被覆層120を構成する材料を「被覆材料」と称する。実施の形態2における被覆正極活物質130は、正極活物質110および被覆材料を含んでいる。被覆材料が、正極活物質110の表面の少なくとも一部に存在することで被覆層120を形成している。
 被覆層120は、正極活物質110を一様に被覆していてもよい。以上の構成によれば、正極活物質110と被覆層120とが密接に接触するため、電池の抵抗をより低下させることができる。
 被覆層120は、正極活物質110の表面の一部のみを被覆していてもよい。被覆層120によって被覆されていない部分を介して、正極活物質110の粒子同士が直接接触することで、正極活物質110の粒子間の電子伝導度が向上する。その結果、電池の高出力での動作が可能となる。
 被覆層120による正極活物質110の被覆は、電池の充電中における他の固体電解質の酸化分解による酸化膜の形成を抑制する。その結果、電池の充放電効率が向上する。他の固体電解質の例は、固体電解質100である。
 被覆材料は、Liと、O、FおよびClからなる群より選ばれる少なくとも1つを含んでもよい。
 被覆材料は、ニオブ酸リチウム、リン酸リチウム、チタン酸リチウム、タングステン酸リチウム、フッ化ジルコニウム酸リチウム、フッ化アルミニウム酸リチウム、フッ化チタン酸リチウム、およびフッ化マグネシウム酸リチウムからなる群より選ばれる少なくとも1つを含んでいてもよい。
 被覆材料は、ニオブ酸リチウム(LiNbO3)であってもよい。
 <正極材料の製造方法>
 正極材料1001は、実施の形態1で説明した正極材料1000の製造方法において、正極活物質110を被覆正極活物質130に置き換えることで製造されうる。
 ここで、被覆正極活物質130は、例えば、下記の方法により製造されうる。まず、正極活物質110の粒子の表面に被覆層120を形成する。被覆層120を形成する方法は特に限定されない。被覆層120を形成する方法としては、液相被覆法と気相被覆法とが挙げられる。
 例えば、液相被覆法においては、イオン伝導材料の前駆体溶液を正極活物質110の表面に塗布する。LiNbO3を含む被覆層120を形成する場合、前駆体溶液は、溶媒、リチウムアルコキシドおよびニオブアルコキシドの混合溶液(ゾル溶液)でありうる。リチウムアルコキシドとしては、リチウムエトキシドが挙げられる。ニオブアルコキシドとしては、ニオブエトキシドが挙げられる。溶媒は、例えば、エタノールなどのアルコールである。被覆層120の目標組成に応じて、リチウムアルコキシドおよびニオブアルコキシドの量を調整する。必要に応じて、前駆体溶液に水を加えてもよい。前駆体溶液は、酸性であってもよく、アルカリ性であってもよい。
 前駆体溶液を正極活物質110の表面に塗布する方法は特に限定されない。例えば、転動流動造粒コーティング装置を用いて前駆体溶液を正極活物質110の表面に塗布することができる。転動流動造粒コーティング装置によれば、正極活物質110を転動および流動させつつ、正極活物質110に前駆体溶液を吹き付け、前駆体溶液を正極活物質110の表面に塗布することができる。これにより、正極活物質110の表面に前駆体被膜が形成される。その後、前駆体被膜によって被覆された正極活物質110を熱処理する。熱処理によって前駆体被膜のゲル化が進行し、被覆層120が形成される。これにより、被覆正極活物質130が得られる。この時点において、被覆層120は、正極活物質110の表面の概ね全体を被覆している。被覆層120の厚さは概ね均一である。
 気相被覆法としては、パルスレーザー堆積(Pulsed Laser Deposition:PLD)法、真空蒸着法、スパッタリング法、熱化学気相堆積(Chemical Vapor Deposition:CVD)法、プラズマ化学気相堆積法などが挙げられる。例えば、PLD法においては、ターゲットとしてのイオン伝導材料にエネルギーの強いパルスレーザー(例えば、KrFエキシマレーザー、波長:248nm)を照射し、昇華したイオン伝導材料を正極活物質110の表面に堆積させる。LiNbO3の被覆層120を形成する場合、高密度に焼結したLiNbO3がターゲットとして用いられる。
 (実施の形態2)
 以下、実施の形態2が説明される。実施の形態1と重複する説明は、適宜、省略される。
 図3は、実施の形態2における電池2000の概略構成を示す断面図である。
 実施の形態2における電池2000は、正極201と、電解質層202と、負極203と、を備える。正極201は、実施の形態1または変形例1における正極材料を含む。電解質層202は、正極201と負極203との間に配置される。図3では、正極201に含まれる正極材料の例として、正極材料1000を示している。
 以上の構成によれば、正極201においてエネルギー密度と電子伝導度とを両立させることができる。これにより、電池2000のエネルギー密度を向上させることができるとともに、電池2000の抵抗を低下させることができる。
 正極材料が、正極材料1000の場合、正極201に含まれる、正極活物質110と固体電解質100との体積比率「v1:100-v1」について、30≦v1≦95が満たされてもよい。ここで、v1は、正極201に含まれる、正極活物質110および固体電解質100の合計体積を100としたときの正極活物質110の体積比率を表す。30≦v1を満たす場合、十分な電池2000のエネルギー密度を確保しうる。v1≦95を満たす場合、電池2000が高出力で動作しうる。
 正極材料が、正極材料1001の場合、正極201に含まれる、被覆正極活物質130と固体電解質100との体積比率「v11:100-v11」について、30≦v11≦95が満たされてもよい。ここで、v11は、正極201に含まれる、被覆正極活物質130および固体電解質100の合計体積を100としたときの被覆正極活物質130の体積比率を表す。30≦v11を満たす場合、十分な電池2000のエネルギー密度を確保しうる。v11≦95を満たす場合、電池2000が高出力で動作しうる。
 正極201の厚みは、10μm以上かつ500μm以下であってもよい。正極201の厚みが10μm以上の場合、十分な電池2000のエネルギー密度を確保しうる。正極201の厚みが500μm以下の場合、電池2000が高出力で動作しうる。
 電解質層202は、電解質を含む層である。当該電解質は、例えば、固体電解質である。すなわち、電解質層202は、固体電解質層であってもよい。電解質層202に含まれる固体電解質として、実施の形態1において固体電解質100として例示した材料を用いてもよい。すなわち、電解質層202は、固体電解質100の組成と同じ組成を有する固体電解質を含んでいてもよい。以上の構成によれば、電池2000の充放電効率をより向上させることができる。
 電解質層202は、固体電解質100の組成とは異なる組成を有するハロゲン化物固体電解質を含んでいてもよい。
 電解質層202は、硫化物固体電解質を含んでもよい。
 電解質層202は、固体電解質として挙げられた材料から選ばれる1つの固体電解質のみを含んでいてもよい。
 電解質層202は、固体電解質として挙げられた材料から選ばれる2つ以上の固体電解質を含んでもよい。この場合、複数の固体電解質は、互いに異なる組成を有する。例えば、電解質層202は、ハロゲン化物固体電解質と硫化物固体電解質とを含んでもよい。
 電解質層202の厚みは、1μm以上かつ300μm以下であってもよい。電解質層202の厚みが1μm以上の場合、正極201と負極203とが短絡しにくくなる。電解質層202の厚みが300μm以下の場合、電池2000が高出力で動作しうる。
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵および放出する特性を有する材料を含む。負極203は、例えば、負極活物質を含む。
 負極活物質には、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物などが使用されうる。金属材料は、単体の金属であってもよい。金属材料は、合金であってもよい。金属材料の例として、リチウム金属、リチウム合金などが挙げられる。炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素などが挙げられる。珪素(Si)、錫(Sn)、珪素化合物、および錫化合物などを用いることで容量密度を向上させることができる。
 負極203は、固体電解質を含んでいてもよい。以上の構成によれば、負極203内部のリチウムイオン伝導度が高まり、電池2000が高出力で動作しうる。負極203に含まれる固体電解質として、実施の形態1において固体電解質100として例示した材料を用いてもよい。すなわち、負極203は、固体電解質100の組成と同じ組成を有する固体電解質を含んでいてもよい。
 実施の形態2における負極203に含まれる固体電解質の形状は、特に限定されない。負極203に含まれる固体電解質の形状は、例えば、針状、球状、楕円球状などであってもよい。例えば、負極203に含まれる固体電解質の形状は、粒子状であってもよい。
 負極203に含まれる固体電解質の形状が粒子状(例えば、球状)の場合、固体電解質のメジアン径は、100μm以下であってもよい。固体電解質のメジアン径が100μm以下の場合、負極203において負極活物質と固体電解質とが、良好な分散状態を形成しうる。これにより、電池2000の充放電特性が向上する。
 負極203に含まれる固体電解質のメジアン径は10μm以下であってもよく、1μm以下であってもよい。以上の構成によれば、負極203において負極活物質と固体電解質とが、良好な分散状態を形成できる。
 負極203に含まれる固体電解質のメジアン径は、負極活物質のメジアン径より小さくてもよい。以上の構成によれば、負極203において負極活物質と固体電解質とが、より良好な分散状態を形成できる。
 実施の形態2における負極活物質の形状は、特に限定されない。負極活物質の形状は、例えば、針状、球状、楕円球状などであってもよい。例えば、負極活物質の形状は、粒子状であってもよい。
 負極活物質のメジアン径は、0.1μm以上かつ100μm以下であってもよい。負極活物質のメジアン径が0.1μm以上の場合、負極203において負極活物質と固体電解質とが、良好な分散状態を形成しうる。これにより、電池2000の充放電特性が向上する。負極活物質のメジアン径が100μm以下の場合、負極活物質内のリチウム拡散速度が十分に確保される。これにより、電池2000が高出力で動作しうる。
 負極活物質のメジアン径は、負極203に含まれる固体電解質のメジアン径よりも大きくてもよい。これにより、負極活物質と固体電解質とが、良好な分散状態を形成できる。
 負極203に含まれる、負極活物質と固体電解質との体積比率「v2:100-v2」について、30≦v2≦95が満たされてもよい。ここで、v2は、負極203に含まれる、負極活物質および固体電解質の合計体積を100としたときの負極活物質の体積比率を表す。30≦v2を満たす場合、十分な電池2000のエネルギー密度を確保しうる。v2≦95を満たす場合、電池2000が高出力で動作しうる。
 負極203の厚みは、10μm以上かつ500μm以下であってもよい。負極203の厚みが10μm以上の場合、十分な電池2000のエネルギー密度を確保しうる。負極203の厚みが500μm以下の場合、電池2000が高出力で動作しうる。
 正極201、電解質層202、および負極203からなる群より選ばれる少なくとも1つには、粒子同士の密着性を向上する目的で、結着剤が含まれてもよい。結着剤は、電極を構成する材料の結着性を向上するために用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロースなどが挙げられる。また、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選ばれる2つ以上の材料の共重合体も結着剤として用いられうる。また、上記の材料から選ばれる2つ以上の混合物を結着剤として使用してもよい。
 負極203は、電子伝導度を向上させる目的で、導電助剤を含んでもよい。導電助剤としては、例えば、天然黒鉛または人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、炭素繊維または金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物などが用いられうる。炭素導電助剤を用いた場合、低コスト化を図ることができる。
 実施の形態2における電池2000の形状は、例えば、コイン型、円筒型、角型、シート型、ボタン型、扁平型、および積層型などが挙げられる。
 以下、実施例1から9および比較例1から5を用いて、本開示の詳細が説明される。
 ≪実施例1≫
 [硫化物固体電解質の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉末であるLi2SおよびP25を、モル比でLi2S:P25=75:25となるように秤量した。原料粉末を乳鉢で粉砕および混合して混合物を得た。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、10時間、510rpmの条件で混合物をミリング処理した。これにより、ガラス状の固体電解質を得た。得られた固体電解質を不活性雰囲気、270度、2時間の条件で熱処理した。これにより、硫化物固体電解質であるガラスセラミックス状のLi2S-P25(以下、LPSと表記する)を作製した。
 [被覆正極活物質の作製]
 正極活物質として、LiNi0.8(Co,Mn)0.22(以下、NCMと表記する)を用いた。被覆材料として、LiNbO3を用いた。液相被覆法により、LiNbO3を含む被覆層を形成した。具体的には、まず、イオン伝導材料の前駆体溶液をNCMの表面に塗布した。これにより、NCMの表面に前駆体被膜を形成した。その後、前駆体被膜によって被覆されたNCMを熱処理した。熱処理によって前駆体被膜のゲル化が進行し、LiNbO3からなる被覆層が形成された。このような方法で、被覆正極活物質(以後、Nb-NCMと表記する)を作製した。
 [正極材料の作製]
 第1導電性材料として、炭素繊維(VGCF-H、昭和電工社製)を用いた。VGCF-Hの平均長軸径は6μmであった。第2導電性材料として、平均粒径23nmのアセチレンブラックを用いた。露点-60℃以下のアルゴングローブボックス内で、バインダ、溶媒、VGCF-Hおよびアセチレンブラックを混合し、ホモジナイザーを用いて分散させた。これにより、バインダ、溶媒、VGCF-Hおよびアセチレンブラックの混合物を得た。VGCF-Hおよびアセチレンブラックの混合比率は、質量比率で、2:0.125であった。混合物に被覆活物質であるNb-NCMおよび固体電解質であるLPSを添加および混合し、ホモジナイザーで分散させ、正極材料を含むスラリーを作製した。Nb-NCMおよびLPSの混合比率は、体積比率で70:30であった。なお、「VGCF」は、昭和電工株式会社の登録商標である。
 [正極の作製]
 作製したスラリーを集電体上に塗布し、ホットプレート上で乾燥させることで、正極を作製した。
 ≪実施例2≫
 正極材料の作製工程において、VGCF-Hおよびアセチレンブラックの混合比率は、質量比率で、2:0.3であった。これ以外の工程は実施例1と同様にして、実施例2の正極を得た。
 ≪実施例3≫
 正極材料の作製工程において、VGCF-Hおよびアセチレンブラックの混合比率は、質量比率で、2:0.4であった。これ以外の工程は実施例1と同様にして、実施例3の正極を得た。
 ≪実施例4≫
 正極材料の作製工程において、VGCF-Hおよびアセチレンブラックの混合比率は、質量比率で、2:0.475であった。これ以外の工程は実施例1と同様にして、実施例4の正極を得た。
 ≪実施例5≫
 正極材料の作製工程において、VGCF-Hおよびアセチレンブラックの混合比率は、質量比率で、1.6:0.475であった。これ以外の工程は実施例1と同様にして、実施例5の正極を得た。
 ≪実施例6≫
 正極材料の作製工程において、VGCF-Hおよびアセチレンブラックの混合比率は、質量比率で、2:0.65であった。これ以外の工程は実施例1と同様にして、実施例6の正極を得た。
 ≪実施例7≫
 正極材料の作製工程において、VGCF-Hおよびアセチレンブラックの混合比率は、質量比率で、1.5:0.475であった。Nb-NCMおよびLPSの混合比率は、体積比率で67:33であった。これら以外の工程は実施例1と同様にして、実施例7の正極を得た。
 ≪実施例8≫
 正極材料の作製工程において、VGCF-Hおよびアセチレンブラックの混合比率は、質量比率で、2:0.3であった。Nb-NCMおよびLPSの混合比率は、体積比率で72:28であった。これら以外の工程は実施例1と同様にして、実施例8の正極を得た。
 ≪実施例9≫
 正極材料の作製工程において、VGCF-Hおよびアセチレンブラックの混合比率は、質量比率で、2:0.3であった。Nb-NCMおよびLPSの混合比率は、体積比率で75:25であった。これら以外の工程は実施例1と同様にして、実施例9の正極を得た。
 ≪比較例1≫
 正極材料の作製工程において、VGCF-Hおよびアセチレンブラックの混合比率は、質量比率で、2.4:0であった。すなわち、比較例1の導電性材料はVGCF-Hのみであった。これ以外の工程は実施例1と同様にして、比較例1の正極を得た。
 ≪比較例2≫
 正極材料の作製工程において、VGCF-Hおよびアセチレンブラックの混合比率は、質量比率で、2:0であった。すなわち、比較例2の導電性材料はVGCF-Hのみであった。これ以外の工程は実施例1と同様にして、比較例2の正極を得た。
 ≪比較例3≫
 正極材料の作製工程において、VGCF-Hおよびアセチレンブラックの混合比率は、質量比率で、1.6:0であった。すなわち、比較例3の導電性材料はVGCF-Hのみであった。これ以外の工程は実施例1と同様にして、比較例3の正極を得た。
 ≪比較例4≫
 正極材料の作製工程において、VGCF-Hおよびアセチレンブラックの混合比率は、質量比率で、0.8:0であった。すなわち、比較例4の導電性材料はVGCF-Hのみであった。これ以外の工程は実施例1と同様にして、比較例4の正極を得た。
 ≪比較例5≫
 正極材料の作製工程において、VGCF-Hおよびアセチレンブラックの混合比率は、質量比率で、0:0.65であった。すなわち、比較例5の導電性材料はアセチレンブラックのみであった。これ以外の工程は実施例1と同様にして、比較例5の正極を得た。
 (電子伝導度の評価)
 実施例1から9および比較例1から5の正極を用い、以下の条件で、電子伝導度の評価を実施した。
 図4は、正極の電子伝導度の評価方法を説明する図である。図4に示すような対向正極3000を使用して、25℃で、正極の電子伝導度の評価を実施した。対向正極3000は、2枚の正極201を対向させた積層体の外側にそれぞれ集電体204を積層させてから、高圧でプレスすることで作製した。集電体204として、Al箔を用いた。このようにして得られた対向正極3000に、ポテンショスタット400を接続して、以下の手順で電子抵抗を測定した。
 ポテンショスタット400によって、0.3V、0.2V、-0.2V、-0.3Vの電圧を1分間ずつ印加し、それぞれについて電流値を読み取った。図5は、実施例1の対向正極3000における電圧と電流値の相関関係を示すグラフである。電流値の値は、オームの法則により直線状に近似された。近似直線の傾きは直流抵抗を示す。
 近似直線の傾きから得られた直流抵抗の値を用いて、以下の式(2)を用いて、実施例1の正極の電子伝導度σを算出した。算出した電子伝導度を表1に示す。
 σ={R×S/(2t)}-1・・・(2)
 式(2)において、Sは正極の表面積である。Rは近似直線の傾きから得られた直流抵抗の値である。tは正極の厚みである。「正極の厚み」とは、図4における正極201の厚みを意味する。
 上記と同様の方法により、実施例2から9および比較例1から5の正極の電子伝導度を算出した。算出した電子伝導度を表1に示す。表1において、VGCF-H(質量%)は、正極活物質の質量を100%としたときのVGCF-Hの質量の比率を表わす。アセチレンブラック(質量%)は、正極活物質の質量を100%としたときのアセチレンブラックの質量の比率を表わす。導電性材料合計(質量%)は、正極活物質の質量を100%としたときのVGCF-Hおよびアセチレンブラックの合計質量の比率を表わす。また、表1において、VGCF-H(質量%)は、VGCF-Hおよびアセチレンブラックの合計質量に対するVGCF-Hの質量の比率を表わす。アセチレンブラック(質量%)は、VGCF-Hおよびアセチレンブラックの合計質量に対するアセチレンブラックの質量の比率を表わす。
Figure JPOXMLDOC01-appb-T000001
 ≪考察≫
 導電性材料としてVGCF-Hおよびアセチレンブラックを含む実施例1から9は、VGCF-Hおよびアセチレンブラックのいずれか1つのみを含む比較例1から5に比べて、正極の電子伝導度が増加する傾向を示した。
 図6は、実施例1から9および比較例1から5の正極の電子伝導度を示すグラフである。図6において、縦軸は、算出した電子伝導度を示す。横軸は、被覆正極活物質の質量を100%としたときの導電性材料の質量比率を示す。
 実施例3と比較例1の導電性材料の質量比率は同じであった。しかし、実施例3の電子伝導度は、比較例1の電子伝導度の2倍以上であった。すなわち、導電性材料の質量比率が同程度の場合、電子伝導度を大幅に向上させることができた。
 実施例7と比較例1の電子伝導度は同程度であった。しかし、実施例7の導電性材料の質量比率は、比較例1の導電性材料の質量比率よりも小さかった。すなわち、電子伝導度が同程度の場合、導電性材料の質量比率を減少させることができた。これは、導電性材料としてVGCF-Hおよびアセチレンブラックを含むことにより、VGCF-Hとアセチレンブラックとがつながりやすいため、正極に電子伝導のネットワークが効率的に形成されたためと考えられる。
 実施例2、8及び9の導電性材料の質量比率は同じであった。被覆正極活物質の体積比率および電子伝導度は、実施例2、8、9の順に増加した。すなわち、正極活物質の体積比率の増加に伴って、電子伝導度を向上させることができた。
 実施例2から6に示されるように、導電性材料全体に対するアセチレンブラックの質量比率の増加に伴って、電子伝導度を向上させることができた。
 本開示の電池は、例えば、全固体リチウム二次電池などとして利用されうる。
 1000,1001 正極材料
 100 固体電解質
 110 正極活物質
 120 被覆層
 130 被覆正極活物質
 140 導電性材料
 150 第1導電性材料
 160 第2導電性材料
 2000 電池
 201 正極
 202 電解質層
 203 負極
 204 集電体
 3000 対向正極
 400 ポテンショスタット

Claims (18)

  1.  正極活物質、固体電解質および導電性材料の混合物を備え、
     前記導電性材料は、1μm以上の平均長軸径を有する第1導電性材料および100nm以下の平均粒径を有する第2導電性材料を含み、
     前記正極活物質および前記固体電解質の合計体積に対する前記正極活物質の体積の比率は、60%以上かつ90%以下である、
     正極材料。
  2.  前記正極活物質および前記固体電解質の合計体積に対する前記正極活物質の体積の比率は、65%以上かつ85%以下である、
     請求項1に記載の正極材料。
  3.  前記正極活物質および前記固体電解質の合計体積に対する前記正極活物質の体積の比率は、67%以上かつ75%以下である、
     請求項1に記載の正極材料。
  4.  前記正極活物質の質量比率を100としたとき、前記導電性材料の質量比率は、3以下である、
     請求項1から3のいずれか一項に記載の正極材料。
  5.  前記導電性材料の質量に対する前記第2導電性材料の質量の比率は、80%以下である、
     請求項1から4のいずれか一項に記載の正極材料。
  6.  前記導電性材料の質量に対する前記第2導電性材料の質量の比率は、5%以上かつ50%以下である、
     請求項5に記載の正極材料。
  7.  前記導電性材料の質量に対する前記第2導電性材料の質量の比率は、6%以上かつ25%以下である、
     請求項5に記載の正極材料。
  8.  前記第1導電性材料は、4μm以上の平均長軸径を有する、
     請求項1から7のいずれか一項に記載の正極材料。
  9.  前記第2導電性材料は、25nm以下の平均粒径を有する、
     請求項8に記載の正極材料。
  10.  前記第1導電性材料および前記第2導電性材料は、炭素材料を含む、
     請求項1から9のいずれか一項に記載の正極材料。
  11.  前記第1導電性材料は、繊維状炭素材料を含む、
     請求項1から10のいずれか一項に記載の正極材料。
  12.  前記第2導電性材料は、カーボンブラックを含む、
     請求項1から11のいずれか一項に記載の正極材料。
  13.  前記カーボンブラックはアセチレンブラックを含む、
     請求項12に記載の正極材料。
  14.  前記固体電解質は、硫化物固体電解質およびハロゲン化物固体電解質からなる群より選ばれる少なくとも1つを含む、
     請求項1から13のいずれか一項に記載の正極材料。
  15.  前記正極活物質は、層状岩塩構造を有する、
     請求項1から14のいずれか一項に記載の正極材料。
  16.  前記正極活物質の表面の少なくとも一部を被覆する被覆層をさらに備える、
     請求項1から15のいずれか一項に記載の正極材料。
  17.  請求項1から16のいずれか一項に記載の正極材料を含む正極と、
     負極と、
     前記正極と前記負極との間に配置された電解質層と、
     を備えた、
     電池。
  18.  前記電解質層は、硫化物固体電解質を含む、
     請求項17に記載の電池。
PCT/JP2022/025012 2021-07-27 2022-06-23 正極材料および電池 WO2023008005A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023538337A JPWO2023008005A1 (ja) 2021-07-27 2022-06-23
EP22849080.1A EP4379831A1 (en) 2021-07-27 2022-06-23 Positive electrode material and battery
CN202280051178.1A CN117693828A (zh) 2021-07-27 2022-06-23 正极材料和电池
US18/405,033 US20240145725A1 (en) 2021-07-27 2024-01-05 Positive electrode material and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021122768 2021-07-27
JP2021-122768 2021-07-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/405,033 Continuation US20240145725A1 (en) 2021-07-27 2024-01-05 Positive electrode material and battery

Publications (1)

Publication Number Publication Date
WO2023008005A1 true WO2023008005A1 (ja) 2023-02-02

Family

ID=85087861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025012 WO2023008005A1 (ja) 2021-07-27 2022-06-23 正極材料および電池

Country Status (5)

Country Link
US (1) US20240145725A1 (ja)
EP (1) EP4379831A1 (ja)
JP (1) JPWO2023008005A1 (ja)
CN (1) CN117693828A (ja)
WO (1) WO2023008005A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009679A (ja) * 2014-06-26 2016-01-18 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体リチウム二次電池
JP2016058277A (ja) * 2014-09-10 2016-04-21 トヨタ自動車株式会社 正極合剤、正極、固体電池及びそれらの製造方法
JP2018041686A (ja) * 2016-09-09 2018-03-15 日産自動車株式会社 電気デバイス用正極及びそれを用いたリチウムイオン電池
WO2020130069A1 (ja) 2018-12-20 2020-06-25 昭和電工株式会社 固体電池の電極層、および固体電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009679A (ja) * 2014-06-26 2016-01-18 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体リチウム二次電池
JP2016058277A (ja) * 2014-09-10 2016-04-21 トヨタ自動車株式会社 正極合剤、正極、固体電池及びそれらの製造方法
JP2018041686A (ja) * 2016-09-09 2018-03-15 日産自動車株式会社 電気デバイス用正極及びそれを用いたリチウムイオン電池
WO2020130069A1 (ja) 2018-12-20 2020-06-25 昭和電工株式会社 固体電池の電極層、および固体電池

Also Published As

Publication number Publication date
EP4379831A1 (en) 2024-06-05
US20240145725A1 (en) 2024-05-02
CN117693828A (zh) 2024-03-12
JPWO2023008005A1 (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
WO2019135322A1 (ja) 正極材料、および、電池
WO2019146294A1 (ja) 電池
CN111864207B (zh) 全固体电池
JP7249562B2 (ja) 電池
WO2019146292A1 (ja) 正極材料およびそれを用いた電池
WO2021157361A1 (ja) 正極材料および電池
WO2020174868A1 (ja) 正極材料、および、電池
US20240145726A1 (en) Cathode, battery, and method for manufacturing cathode
WO2022244445A1 (ja) 被覆正極活物質、正極材料および電池
WO2021200086A1 (ja) 正極材料および電池
WO2023008005A1 (ja) 正極材料および電池
WO2023132304A1 (ja) 正極材料および電池
WO2023132303A1 (ja) 正極材料および電池
WO2022254871A1 (ja) 被覆活物質、電極材料および電池
WO2022254869A1 (ja) 被覆活物質、電極材料および電池
WO2022254985A1 (ja) 被覆活物質、正極材料、正極および電池
WO2022254872A1 (ja) 被覆活物質、電極材料および電池
WO2022254870A1 (ja) 被覆活物質、電極材料および電池
WO2022255026A1 (ja) 被覆活物質、正極材料、正極および電池
WO2022254984A1 (ja) 正極材料、正極および電池
WO2022255027A1 (ja) 被覆活物質、正極材料、正極および電池
JP7336055B1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池、リチウムイオン電池用正極活物質の製造方法及び全固体リチウムイオン電池用正極活物質の製造方法
WO2023037756A1 (ja) 正極材料、正極および電池
WO2023181452A1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池、リチウムイオン電池用正極活物質の製造方法及び全固体リチウムイオン電池用正極活物質の製造方法
WO2023008006A1 (ja) 正極材料、正極、および電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849080

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538337

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280051178.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022849080

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022849080

Country of ref document: EP

Effective date: 20240227