WO2023008006A1 - 正極材料、正極、および電池 - Google Patents

正極材料、正極、および電池 Download PDF

Info

Publication number
WO2023008006A1
WO2023008006A1 PCT/JP2022/025014 JP2022025014W WO2023008006A1 WO 2023008006 A1 WO2023008006 A1 WO 2023008006A1 JP 2022025014 W JP2022025014 W JP 2022025014W WO 2023008006 A1 WO2023008006 A1 WO 2023008006A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
positive electrode
volume
battery
active material
Prior art date
Application number
PCT/JP2022/025014
Other languages
English (en)
French (fr)
Inventor
裕太 杉本
和弥 橋本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP22849081.9A priority Critical patent/EP4379832A1/en
Priority to CN202280051225.2A priority patent/CN117769766A/zh
Priority to JP2023538338A priority patent/JPWO2023008006A1/ja
Publication of WO2023008006A1 publication Critical patent/WO2023008006A1/ja
Priority to US18/418,288 priority patent/US20240162484A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to cathode materials, cathodes, and batteries.
  • Patent Document 1 discloses a method for producing an active material in which a positive electrode active material is coated with an oxide-based solid electrolyte and further coated with a sulfide-based solid electrolyte, and a battery using the same.
  • the positive electrode material of the present disclosure is a positive electrode active material; a first solid electrolyte; a second solid electrolyte; with the first solid electrolyte contains Li, Zr, M, and X; M is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X is at least one selected from the group consisting of F, Cl, Br, and I;
  • the second solid electrolyte has a composition different from that of the first solid electrolyte, A ratio of the volume of the first solid electrolyte to the total volume of the first solid electrolyte and the second solid electrolyte is 3% or more and 60% or less.
  • the safety of batteries can be improved.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view showing a schematic configuration of a modification of the positive electrode material according to Embodiment 1.
  • FIG. FIG. 3 is a cross-sectional view showing a schematic configuration of a battery according to Embodiment 2.
  • Batteries with solid electrolytes are recognized as safe, but this is not always the case.
  • oxygen may be generated from the positive electrode active material.
  • the generated oxygen oxidizes the solid electrolyte and raises the temperature of the battery.
  • the container of the battery is deteriorated and damaged, or that the battery malfunctions. Therefore, it is expected that the safety of batteries using solid electrolytes will be further improved.
  • the positive electrode material according to the first aspect of the present disclosure is a positive electrode active material; a first solid electrolyte; a second solid electrolyte; with the first solid electrolyte contains Li, Zr, M, and X; M is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X is at least one selected from the group consisting of F, Cl, Br, and I;
  • the second solid electrolyte has a composition different from that of the first solid electrolyte, A ratio of the volume of the first solid electrolyte to the total volume of the first solid electrolyte and the second solid electrolyte is 3% or more and 60% or less.
  • the safety of the battery can be improved.
  • the ratio of the volume of the first solid electrolyte to the total volume of the first solid electrolyte and the second solid electrolyte is 3.3. % or more and 50% or less. According to the positive electrode material of the second aspect, it is possible to further improve the safety of the battery.
  • the ratio of the volume of the first solid electrolyte to the total volume of the first solid electrolyte and the second solid electrolyte is 6.7. % or more and 50% or less. According to the positive electrode material of the third aspect, it is possible to further improve the safety of the battery.
  • the ratio of the volume of the first solid electrolyte to the total volume of the first solid electrolyte and the second solid electrolyte is 33% or more. , and may be 50% or less. According to the positive electrode material of the fourth aspect, it is possible to further improve the safety of the battery.
  • the ratio of the volume of the first solid electrolyte to the total volume of the first solid electrolyte and the second solid electrolyte is 3.3. % or more and 8.0% or less. According to the positive electrode material of the fifth aspect, it is possible to further improve the safety of the battery.
  • the second solid electrolyte may contain Li and S.
  • a sulfide solid electrolyte has high ionic conductivity and can improve the charge-discharge efficiency of a battery.
  • sulfide solid electrolytes may be inferior in oxidation resistance.
  • M may contain aluminum.
  • the first solid electrolyte exhibits high ionic conductivity.
  • the first solid electrolyte may be represented by the following compositional formula (1), ⁇ , ⁇ , ⁇ and ⁇ may each independently be a value greater than zero.
  • the output characteristics of the battery can be improved.
  • the positive electrode active material according to any one of the first to eighth aspects may have a coating layer on at least part of the surface. According to such a configuration, it is possible to improve the charging and discharging efficiency of the battery.
  • the coating layer may contain an oxide solid electrolyte having lithium ion conductivity.
  • oxide solid electrolyte By using the oxide solid electrolyte as the coating layer, the charge/discharge efficiency of the battery can be further improved.
  • the coating layer may contain lithium niobate. According to such a configuration, it is possible to improve the charging and discharging efficiency of the battery.
  • a positive electrode according to the twelfth aspect of the present disclosure includes the positive electrode material according to any one of the first to eleventh aspects. With such a configuration, the safety of the battery can be improved.
  • a battery according to the thirteenth aspect of the present disclosure includes the positive electrode of the twelfth aspect. According to the present disclosure, battery safety can be improved.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode material according to Embodiment 1.
  • FIG. Cathode material 10 includes cathode active material 100 , first solid electrolyte 101 , and second solid electrolyte 102 .
  • the first solid electrolyte contains Li, Zr, M, and X.
  • M is at least one selected from the group consisting of metal elements other than Li and Zr and metalloid elements.
  • X is at least one selected from the group consisting of F, Cl, Br and I;
  • the ratio V1/Vt of the volume V1 of the first solid electrolyte to the total volume Vt of the first solid electrolyte 101 and the second solid electrolyte 102 is 3% or more and 60% or less, expressed as a percentage. is.
  • “Semimetallic elements” include B, Si, Ge, As, Sb, and Te.
  • Metallic element means all elements contained in Groups 1 to 12 of the periodic table, except hydrogen, and B, Si, Ge, As, Sb, Te, C, N, P, O, S, and Se. Including all elements contained in Groups 13 to 16, except That is, the metal element is a group of elements that can become a cation when forming an inorganic compound with a halogen element.
  • the first solid electrolyte can be a halogen-containing solid electrolyte, a so-called halide solid electrolyte.
  • Halide solid electrolytes have excellent oxidation resistance. Therefore, by mixing the first solid electrolyte, oxidation of the positive electrode (for example, oxidation of the second solid electrolyte) can be suppressed. Thereby, the heat generation of the battery using the positive electrode material 10 is suppressed, and the safety of the battery using the positive electrode material 10 can be improved.
  • the ratio V1/Vt may be 3.3% or more, 6% or more, or 6.7% or more. If the above ratio V1/Vt is too high, there is concern that the ionic conductivity of the positive electrode material 10 will be insufficient.
  • the ratio V1/Vt may desirably be 50% or less, or 40% or less.
  • the ratio V1/Vt may be, for example, 3.3% or more and 50% or less.
  • the ratio V1/Vt may be 6.7% or more and 50% or less, or 33% or more and 50% or less. good.
  • the above ratio V1/Vt may be 3.3% or more and 8.0% or less.
  • the total volume Vt of the first solid electrolyte 101 and the second solid electrolyte 102 is the sum of the volume V1 of the first solid electrolyte 101 and the volume V2 of the second solid electrolyte 102.
  • the volume V1 of the first solid electrolyte 101 is the total volume of the first solid electrolyte 101 in the positive electrode material 10 powder.
  • the volume V2 of the second solid electrolyte 102 is the total volume of the second solid electrolyte 102 in the positive electrode material 10 powder. That is, the above ratio V1/Vt is a value obtained from a certain amount of powder of the positive electrode material 10 as a whole.
  • the above ratio V1/Vt can be calculated from the charged amount of materials, and can also be calculated by the method described below. That is, a cross section of a positive electrode using the positive electrode material 10 is observed with a scanning electron microscope (SEM-EDX) to obtain a two-dimensional mapping image of elements.
  • the measurement conditions of the scanning electron microscope for acquiring the two-dimensional mapping image are, for example, a magnification of 1000 times to 3000 times and an acceleration voltage of 5 kV.
  • a two-dimensional mapping image is acquired at a resolution of 1280 ⁇ 960.
  • the two-dimensional mapping image of the element is analyzed, and the volume of the positive electrode active material 100 and the volume of the first solid electrolyte 101 are obtained from the number of pixels of the element contained in each of the positive electrode active material 100, the first solid electrolyte 101, and the second solid electrolyte 102.
  • V1 and the volume V2 of the second solid electrolyte 102 can be specified.
  • the ratio "v1:100-v1" between the volume of the positive electrode active material 100 and the volume of the solid electrolyte may satisfy 30 ⁇ v1 ⁇ 95.
  • 30 ⁇ v1 the energy density of the battery is sufficiently ensured.
  • v1 ⁇ 95 the battery can operate at high power.
  • “Volume of solid electrolyte” is the total volume of first solid electrolyte 101 and second solid electrolyte 102 .
  • the positive electrode active material 100 includes a material that has the property of intercalating and deintercalating metal ions (eg, lithium ions).
  • metal ions eg, lithium ions
  • As the positive electrode active material 100 lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxysulfides, transition metal oxynitrides, and the like can be used.
  • a lithium-containing transition metal oxide when a lithium-containing transition metal oxide is used as the positive electrode active material 100, the manufacturing cost of the battery can be reduced and the average discharge voltage can be increased.
  • Lithium-containing transition metal oxides include Li(NiCoAl)O 2 , Li(NiCoMn)O 2 and LiCoO 2 .
  • the positive electrode active material 100 has, for example, a particle shape.
  • the shape of the particles of the positive electrode active material 100 is not particularly limited.
  • the shape of the particles of the positive electrode active material 100 may be spherical, oval, scaly, or fibrous.
  • the median diameter of the positive electrode active material 100 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the positive electrode active material 100 is 0.1 ⁇ m or more, the positive electrode active material 100, the first solid electrolyte 101, and the second solid electrolyte 102 can form a good dispersion state. As a result, the charge/discharge characteristics of the battery are improved.
  • the median diameter of the positive electrode active material 100 is 100 ⁇ m or less, the diffusion rate of lithium inside the positive electrode active material 100 is sufficiently ensured. Therefore, the battery can operate at high output.
  • the median diameter of the positive electrode active material 100 may be larger than the median diameters of the first solid electrolyte 101 and the second solid electrolyte 102 . Thereby, the positive electrode active material 100, the first solid electrolyte 101 and the second solid electrolyte 102 can form a good dispersion state.
  • volume diameter means the particle diameter when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution is measured by, for example, a laser diffraction measurement device or an image analysis device.
  • the first solid electrolyte 101 has, for example, ionic conductivity.
  • the ionic conductivity is typically lithium ion conductivity.
  • Raw materials of the first solid electrolyte 101, by-products generated when manufacturing the first solid electrolyte 101, and the like are included in the unavoidable impurities.
  • the mass ratio of the inevitable impurities to the mass of the entire first solid electrolyte 101 may be 5% or less, 3% or less, 1% or less, or 0.5% or less. may be
  • the first solid electrolyte 101 is a material containing Li, Zr, M, and X. M and X are as described above. Such materials have good ionic conductivity and oxidation resistance. Therefore, the battery using the positive electrode material having the first solid electrolyte 101 improves the charge/discharge efficiency of the battery and the thermal stability of the battery.
  • a halide solid electrolyte as the first solid electrolyte 101 is represented, for example, by the following compositional formula (1).
  • composition formula (1) ⁇ , ⁇ , ⁇ and ⁇ are each independently a value greater than 0. Li ⁇ Zr ⁇ M ⁇ X ⁇ Formula (1)
  • the halide solid electrolyte represented by the compositional formula (1) has higher ionic conductivity than a halide solid electrolyte such as LiI, which consists only of Li and a halogen element. Therefore, when the halide solid electrolyte represented by the compositional formula (1) is used in a battery, the charge/discharge efficiency of the battery can be improved.
  • the halide solid electrolyte may consist essentially of Li, Zr, Al, and X.
  • the halide solid electrolyte consists essentially of Li, Zr, Al, and X
  • the halide solid electrolyte consists essentially of Li, Zr, Al, and X
  • Li, Zr, Al, and X that is, the molar fraction
  • the molar ratio ie, mole fraction
  • the halide solid electrolyte may consist of Li, Zr, Al, and X only.
  • the ratio of the amount of Li substance to the total amount of Zr and Al may be 1.12 or more and 5.07 or less.
  • the halide solid electrolyte may be represented by the following compositional formula (2). Li6-(4-x)b ( Zr1 - xAlx) bF6 ... Formula (2)
  • the formula: 0.01 ⁇ x ⁇ 0.99 may be satisfied in formula (2).
  • the formula: 0.2 ⁇ x ⁇ 0.95 may be satisfied.
  • the upper and lower limits of the range of x in equation (2) are 0.01, 0.2, 0.4, 0.5, 0.5, 0.7, 0.8, 0.95, and 0 It can be defined by any combination of numbers selected from 0.99.
  • the formula: 0.7 ⁇ b ⁇ 1.3 may be satisfied in formula (2).
  • the formula: 0.9 ⁇ b ⁇ 1.04 may be satisfied.
  • the upper and lower limits of the range of b in formula (2) are 0.7, 0.8, 0.9, 0.96, 1, 1.04, 1.1, 1.2, and 1.3. can be defined by any combination selected from the numerical values of
  • the halide solid electrolyte may be crystalline or amorphous.
  • the shape of the halide solid electrolyte is not limited. Examples of such shapes are acicular, spherical, or ellipsoidal.
  • the halide solid electrolyte may be particles.
  • the solid electrolyte When the shape of the halide solid electrolyte is, for example, particulate (eg, spherical), the solid electrolyte may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
  • Median size means the particle size when the cumulative volume in a volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution is measured by, for example, a laser diffraction measurement device or an image analysis device.
  • the halide solid electrolyte may be a solid electrolyte that does not contain sulfur. In this case, generation of sulfur-containing gas such as hydrogen sulfide gas from the solid electrolyte can be avoided.
  • a solid electrolyte containing no sulfur means a solid electrolyte represented by a composition formula containing no elemental sulfur. Therefore, a solid electrolyte containing a very small amount of sulfur, for example a solid electrolyte having a sulfur content of 0.1% by mass or less, belongs to the solid electrolyte containing no sulfur.
  • the halide solid electrolyte may further contain oxygen as an anion other than the halogen element.
  • a halide solid electrolyte as the first solid electrolyte can be produced, for example, by the following method.
  • the raw material powder is prepared and mixed to achieve the desired composition.
  • the raw material powder may be, for example, a halide.
  • the desired composition is Li2.64Zr0.48Al0.48F6
  • LiF , ZrF4 , and AlF3 are mixed in a molar ratio of the order of 2.64 :0.48:0.48.
  • the raw material powders may be mixed in pre-adjusted molar ratios to compensate for possible compositional changes in the synthesis process.
  • the raw material powders are mechanochemically reacted with each other in a mixing device such as a planetary ball mill (that is, using the method of mechanochemical milling) to obtain a reactant.
  • the reactants may be fired in vacuum or in an inert atmosphere.
  • a mixture of raw material powders may be fired in vacuum or in an inert atmosphere to obtain a reactant. Firing is preferably performed at, for example, 100° C. or higher and 400° C. or lower for 1 hour or longer.
  • the raw material powder is preferably fired in a sealed container such as a quartz tube.
  • a halide solid electrolyte can be obtained by these methods.
  • the second solid electrolyte 102 may contain at least one selected from the group consisting of halide solid electrolytes, sulfide solid electrolytes, oxide solid electrolytes, polymer solid electrolytes, and complex hydride solid electrolytes.
  • the halide solid electrolyte examples include the materials previously described as the first solid electrolyte 101 .
  • the second solid electrolyte 102 has a composition different from that of the first solid electrolyte 101 .
  • the different composition means a composition in which the constituent elements do not match, or a composition in which the ratio of the constituent elements differs even when the constituent elements match.
  • An oxide solid electrolyte is a solid electrolyte containing oxygen.
  • the oxide solid electrolyte may further contain anions other than sulfur and halogen elements as anions other than oxygen.
  • oxide solid electrolytes examples include NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof, (LaLi)TiO 3 -based perovskite solid electrolytes, Li 14 ZnGe 4 O 16 , Li LISICON solid electrolytes typified by 4 SiO 4 , LiGeO 4 and elemental substitutions thereof, garnet type solid electrolytes typified by Li 7 La 3 Zr 2 O 12 and elemental substitutions thereof, Li 3 PO 4 and its N Glass or glass-ceramics obtained by adding materials such as Li 2 SO 4 and Li 2 CO 3 to base materials containing Li—BO compounds such as substitutes, LiBO 2 and Li 3 BO 3 may be used.
  • a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure.
  • a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt. Therefore, the ionic conductivity can be further increased.
  • Lithium salts include LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3 , LiN ( SO2F ) 2 , LiN ( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiN( SO2CF3 )( SO2C4F9 ) , LiC ( SO2CF3 ) 3 etc. are mentioned.
  • One lithium salt selected from these may be used alone, or a mixture of two or more lithium salts selected from these may be used.
  • LiBH 4 --LiI LiBH 4 --P 2 S 5 or the like
  • LiBH 4 --LiI LiBH 4 --P 2 S 5 or the like
  • the second solid electrolyte 102 may contain Li and S.
  • the second solid electrolyte 102 may contain a sulfide solid electrolyte.
  • a sulfide solid electrolyte has high ionic conductivity and can improve the charge-discharge efficiency of a battery.
  • sulfide solid electrolytes may be inferior in oxidation resistance.
  • Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 and the like can be used.
  • LiX , Li2O , MOq , LipMOq , etc. may be added to these.
  • X in “LiX” is at least one selected from the group consisting of F, Cl, Br and I.
  • the element M in “MO q " and “Li p MO q " is at least one selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe, and Zn.
  • p and q in "MO q " and "L p MO q " are independent natural numbers.
  • the second solid electrolyte 102 may contain two or more of the materials listed as solid electrolytes.
  • the second solid electrolyte 102 may contain, for example, a halide solid electrolyte and a sulfide solid electrolyte.
  • the second solid electrolyte 102 may have lithium ion conductivity higher than the lithium ion conductivity of the first solid electrolyte 101 .
  • the second solid electrolyte 102 may contain unavoidable impurities such as starting materials, by-products, and decomposition products used when synthesizing the solid electrolyte. This also applies to the first solid electrolyte 101 .
  • the positive electrode material 10 may contain a binder for the purpose of improving adhesion between particles.
  • a binder is used to improve the binding properties of the material forming the positive electrode.
  • Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylate hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polycarbonate, polyether sulfone, polyether ketone, polyether Ether ketone, polyphenylene sulfide, hexafluoropolypropylene
  • tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, butadiene, styrene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid ester, acrylic acid , and hexadiene may also be used.
  • One selected from these may be used alone, or two or more may be used in combination.
  • the binder may be an elastomer because it has excellent binding properties. Elastomers are polymers that have rubber elasticity.
  • the elastomer used as the binder may be a thermoplastic elastomer or a thermosetting elastomer.
  • the binder may contain a thermoplastic elastomer.
  • thermoplastic elastomers styrene-ethylene-butylene-styrene (SEBS), styrene-ethylene-propylene-styrene (SEPS), styrene-ethylene-ethylene-propylene-styrene (SEEPS), butylene rubber (BR), isoprene rubber (IR) , chloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR), styrene-butylene rubber (SBR), styrene-butadiene-styrene (SBS), styrene-isoprene-styrene (SIS), hydrogenated isoprene rubber (HIR), hydrogenated Butyl rubber (HIIR), hydrogenated nitrile rubber (HNBR), hydrogenated styrene-butylene rubber (HSBR), polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE) and
  • the positive electrode material 10 may contain a conductive aid for the purpose of increasing electronic conductivity.
  • conductive aids include graphites such as natural graphite or artificial graphite, carbon blacks such as acetylene black and Ketjen black, conductive fibers such as carbon fiber or metal fiber, carbon fluoride, and metal powder such as aluminum.
  • conductive whiskers such as zinc oxide or potassium titanate, conductive metal oxides such as titanium oxide, conductive polymer compounds such as polyaniline, polypyrrole, polythiophene, and the like. Cost reduction can be achieved when a carbon conductive aid is used.
  • the positive electrode material 10 is obtained by mixing the positive electrode active material 100, the first solid electrolyte 101 and the second solid electrolyte 102 together.
  • a method for mixing the positive electrode active material 100, the first solid electrolyte 101, and the second solid electrolyte 102 is not particularly limited.
  • the positive electrode active material 100, the first solid electrolyte 101, and the second solid electrolyte 102 may be mixed using a tool such as a mortar, and the positive electrode active material 100 and the first solid electrolyte 101 are mixed using a mixing device such as a ball mill. It may be mixed with the second solid electrolyte 102 .
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a modification of the positive electrode material according to Embodiment 1.
  • the positive electrode active material is a coated active material having a coating layer on at least part of the surface. That is, the cathode material 20 has a coating active material 220 , a first solid electrolyte 201 and a second solid electrolyte 202 .
  • Coating active material 220 has positive electrode active material 200 and coating layer 203 .
  • the coating layer 203 may contain a material with low electronic conductivity such as an oxide material or an oxide solid electrolyte.
  • oxide materials include SiO 2 , Al 2 O 3 , TiO 2 , B 2 O 3 , Nb 2 O 5 , WO 3 and ZrO 2 .
  • oxide solid electrolytes include Li—Nb—O compounds such as LiNbO 3 , Li—B—O compounds such as LiBO 2 and Li 3 BO 3 , Li—Al—O compounds such as LiAlO 2 , Li 4 SiO 4 and the like.
  • the base material may be one selected from these or a mixture of two or more.
  • the coating layer 203 may be a solid electrolyte having lithium ion conductivity.
  • Coating layer 203 is typically an oxide solid electrolyte having lithium ion conductivity.
  • the oxide solid electrolyte has high ionic conductivity and excellent high potential stability. By using an oxide solid electrolyte as the coating layer 203, the charging and discharging efficiency of the battery can be improved.
  • the material of the coating layer 203 may be a material containing Nb.
  • Coating layer 203 typically includes lithium niobate (LiNbO 3 ). According to such a configuration, it is possible to improve the charging and discharging efficiency of the battery.
  • As the oxide solid electrolyte as the material of the coating layer 203 it is also possible to use the materials described above.
  • the thickness of the coating layer 203 is, for example, 1 nm or more and 500 nm or less. If the thickness of coating layer 203 is appropriately adjusted, contact between positive electrode active material 200 and second solid electrolyte 202 can be sufficiently suppressed.
  • the thickness of the coating layer 203 can be specified by thinning the coated active material 220 by a method such as ion milling and observing the cross section of the coated active material 220 with a transmission electron microscope. An average value of thicknesses measured at a plurality of arbitrary positions (for example, 5 points) can be regarded as the thickness of the coating layer 203 .
  • the coated active material 220 can be manufactured by the following method.
  • the coating layer 203 is formed on the surface of the positive electrode active material 200 .
  • a method for forming the coating layer 203 is not particularly limited. Methods for forming the coating layer 203 include a liquid phase coating method and a vapor phase coating method.
  • the precursor solution can be a mixed solution (sol solution) of solvent, lithium alkoxide and niobium alkoxide.
  • Lithium alkoxides include lithium ethoxide.
  • Niobium alkoxides include niobium ethoxide.
  • Solvents are, for example, alcohols such as ethanol. The amounts of lithium alkoxide and niobium alkoxide are adjusted according to the target composition of the coating layer 203 . Water may be added to the precursor solution, if desired.
  • the precursor solution may be acidic or alkaline.
  • the method of applying the precursor solution to the surface of the positive electrode active material 200 is not particularly limited.
  • the precursor solution can be applied to the surface of the cathode active material 200 using a tumbling flow granulation coating apparatus.
  • the precursor solution can be sprayed onto the positive electrode active material 200 while rolling and flowing the positive electrode active material 200 to apply the precursor solution to the surface of the positive electrode active material 200 . .
  • a precursor film is formed on the surface of the positive electrode active material 200 .
  • the positive electrode active material 200 coated with the precursor coating is heat-treated. The heat treatment promotes gelation of the precursor coating and forms the coating layer 203 .
  • the vapor phase coating method includes a pulsed laser deposition (PLD) method, a vacuum deposition method, a sputtering method, a thermal chemical vapor deposition (CVD) method, a plasma chemical vapor deposition method, and the like.
  • PLD pulsed laser deposition
  • CVD thermal chemical vapor deposition
  • a plasma chemical vapor deposition method and the like.
  • an ion-conducting material as a target is irradiated with a high-energy pulse laser (eg, KrF excimer laser, wavelength: 248 nm) to deposit sublimated ion-conducting material on the surface of the positive electrode active material 100 .
  • a high-energy pulse laser eg, KrF excimer laser, wavelength: 248 nm
  • high-density sintered LiNbO 3 is used as a target.
  • the method of forming the coating layer 203 is not limited to the above.
  • the coating layer 203 may be formed by various methods such as a spray method, a spray dry coating method, an electrodeposition method, an immersion method, and a mechanical mixing method using a disperser.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a battery according to Embodiment 2.
  • FIG. Battery 300 includes positive electrode 301 , separator layer 302 and negative electrode 303 .
  • a separator layer 302 is arranged between the positive electrode 301 and the negative electrode 303 .
  • Positive electrode 301 includes at least one of positive electrode material 10 and positive electrode material 20 described in the first embodiment. With such a configuration, the safety of battery 300 can be improved.
  • each of the positive electrode 301 and the negative electrode 303 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode 301 and the negative electrode 303 is 10 ⁇ m or more, sufficient energy density of the battery can be ensured. When the thickness of the positive electrode 301 and the negative electrode 303 is 500 ⁇ m or less, the battery 300 can operate at high output.
  • the separator layer 302 is a layer containing an electrolyte material. Separator layer 302 may contain at least one solid electrolyte selected from the group consisting of sulfide solid electrolytes, oxide solid electrolytes, halide solid electrolytes, polymer solid electrolytes, and complex hydride solid electrolytes. Details of each solid electrolyte are as described in the first embodiment.
  • the thickness of the separator layer 302 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of the separator layer 302 is 1 ⁇ m or more, the positive electrode 301 and the negative electrode 303 can be separated more reliably. When the separator layer 302 has a thickness of 300 ⁇ m or less, the battery 300 can operate at high output.
  • the negative electrode 303 contains, as a negative electrode active material, a material that has the property of intercalating and deintercalating metal ions (eg, lithium ions).
  • Metal materials, carbon materials, oxides, nitrides, tin compounds, silicon compounds, etc. can be used as negative electrode active materials.
  • the metal material may be a single metal.
  • the metallic material may be an alloy.
  • metal materials include lithium metal and lithium alloys.
  • Examples of carbon materials include natural graphite, coke, ungraphitized carbon, carbon fiber, spherical carbon, artificial graphite, and amorphous carbon. From the viewpoint of capacity density, silicon (Si), tin (Sn), silicon compounds, tin compounds, etc. can be preferably used.
  • the median diameter of the particles of the negative electrode active material may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode 303 may contain other materials such as a solid electrolyte.
  • a solid electrolyte the material described in Embodiment 1 can be used.
  • Example 1 [Preparation of coated active material]
  • ethoxylithium manufactured by Kojundo Chemical Co., Ltd.
  • pentaethoxyniobium manufactured by Kojundo Chemical Co., Ltd.
  • NCA Powder of Li(NiCoAl)O 2
  • a tumbling fluidization granulation coating apparatus manufactured by Powrex, FD-MP-01E was used for the treatment for forming the coating layer of LiNbO 3 on the surface of the NCA.
  • the input amount of NCA, the stirring rotation speed, and the feeding rate of the coating solution were 1 kg, 400 rpm, and 6.59 g/min, respectively.
  • the charging amount of the coating solution was adjusted so that the film thickness of LiNbO 3 was 10 nm.
  • the input amount of the coating solution was calculated using the specific surface area of the active material and the density of LiNbO 3 .
  • Nb-NCA An NCA having a coating layer of LiNbO 3 is hereinafter referred to as "Nb-NCA".
  • Nb-NCA solid electrolyte
  • LZAF first solid electrolyte
  • LPS second solid electrolyte
  • the positive electrode active material of Example 1 LZAF and LPS were weighed so that the volume ratio of LZAF:LPS was 6.7:93.3.
  • the positive electrode material of Example 1 was produced by mixing these with an agate mortar.
  • solid electrolyte means the total volume of LZAF and LPS.
  • Example 2 A positive electrode material of Example 2 was obtained in the same manner as in Example 1, except that the volume ratio of LZAF and LPS (ie, LZAF:LPS) was changed to 15:75.
  • Example 3 A positive electrode material of Example 3 was obtained in the same manner as in Example 1, except that the volume ratio of LZAF and LPS (ie, LZAF:LPS) was changed to 23.3:76.7.
  • Example 4 A positive electrode material of Example 4 was obtained in the same manner as in Example 1, except that the volume ratio of LZAF and LPS (ie, LZAF:LPS) was changed to 33.3:66.7.
  • Example 5 A positive electrode material of Example 5 was obtained in the same manner as in Example 1, except that the volume ratio of LZAF and LPS (ie, LZAF:LPS) was changed to 50:50.
  • Comparative Example 1 A positive electrode material of Comparative Example 1 was obtained by using only the second solid electrolyte, that is, LPS alone as the solid electrolyte without using LZAF as the first solid electrolyte.
  • Table 1 shows the ratio of the LZAF volume to the total volume of LZAF and LPS in the positive electrode materials of Examples and Comparative Examples.
  • the cathode material was weighed to contain 14 mg of Nb-NCA.
  • LPS and a positive electrode material were laminated in this order in an insulating outer cylinder.
  • the resulting laminate was pressure molded at a pressure of 720 MPa.
  • metallic lithium was arranged so as to be in contact with the LPS layer, and pressure molding was performed again at a pressure of 40 MPa.
  • stainless steel current collectors were arranged above and below the laminate.
  • a current collecting lead was attached to each current collector.
  • the inside of the outer cylinder was isolated from the outside atmosphere by sealing the outer cylinder with an insulating ferrule. Batteries of Examples 1 to 6 and Comparative Example 1 were produced through the above steps.
  • a surface pressure of 150 MPa was applied to the battery by restraining the battery from above and below with four bolts.
  • the charged battery was disassembled in an argon glove box, and only the positive electrode material was taken out. 2 mg of cathode material was placed in a stainless steel closed pan. Thermal analysis samples of Examples 1 to 5 and Comparative Example 1 were thus obtained.
  • thermal analysis Using the thermal analysis samples of Examples 1 to 5 and Comparative Example 1, thermal analysis was performed under the following conditions.
  • a differential scanning calorimeter (TA Instruments Q1000) was used for thermal analysis. The temperature was raised from 0°C to 400°C at 10°C/min. In the thermal analysis curve, the temperature at which the peak rises was regarded as the exothermic start temperature. Table 1 shows the results.
  • the ratio V1/Vt of the volume V1 of the first solid electrolyte to the total volume Vt of the first solid electrolyte and the second solid electrolyte is 3% or more and 60% or less.
  • the exothermic start temperature was higher than that of the battery of Comparative Example 1. That is, when the positive electrode material contains the first solid electrolyte within the above volume range, the reaction between the oxygen released from the positive electrode active material and the sulfide solid electrolyte is suppressed, thereby improving the safety of the battery. It has been suggested.
  • the ratio of the volume of LZAF to the volume of Nb-NCA is desirably 1% or more.
  • the upper limit of the ratio of the volume of LZAF to the volume of Nb-NCA is, for example, 15%.
  • the technology of the present disclosure is useful, for example, for all-solid lithium secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

正極活物質10は、正極活物質100と、第1固体電解質101と、第2固体電解質102とを備える。第1固体電解質101は、Li、Zr、M、およびXを含む。Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つである。Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。第2固体電解質102は、第1固体電解質101と異なる組成を有する。第1固体電解質101と第2固体電解質102との合計体積に対する、第1固体電解質101の体積の比率が、3%以上、かつ、60%以下である。

Description

正極材料、正極、および電池
 本開示は、正極材料、正極、および電池に関する。
 特許文献1には、正極活物質を酸化物系固体電解質にて被覆し、更に硫化物系固体電解質にて被覆する活物質の製造方法と、それを用いた電池が開示されている。
特開2016-18735号公報
 従来技術においては、電池の安全性を向上させることが望まれている。
 本開示の正極材料は、
 正極活物質と、
 第1固体電解質と、
 第2固体電解質と、
を備え、
 前記第1固体電解質は、Li、Zr、M、およびXを含み、
 Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
 Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つであり、
 前記第2固体電解質は、前記第1固体電解質と異なる組成を有し、
 前記第1固体電解質と前記第2固体電解質との合計体積に対する前記第1固体電解質の体積の比率が3%以上、かつ、60%以下である。
 本開示によれば、電池の安全性を向上させることができる。
図1は、実施の形態1に係る正極材料の概略構成を示す断面図である。 図2は、実施の形態1に係る正極材料の変形例の概略構成を示す断面図である。 図3は、実施の形態2に係る電池の概略構成を示す断面図である。
 (本開示の基礎となった知見)
 固体電解質を用いた電池は安全であると認識されているが、常にそうであるとは限らない。例えば、正極活物質から酸素が発生することがある。発生した酸素は、固体電解質を酸化させ、電池の温度を上昇させる。その結果、電池の容器が劣化および破損したり、電池の動作不良が起きたりする可能性がある。したがって、固体電解質を用いた電池についても、安全性を更に向上させることが期待されている。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る正極材料は、
 正極活物質と、
 第1固体電解質と、
 第2固体電解質と、
を備え、
 前記第1固体電解質は、Li、Zr、M、およびXを含み、
 Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
 Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つであり、
 前記第2固体電解質は、前記第1固体電解質と異なる組成を有し、
 前記第1固体電解質と前記第2固体電解質との合計体積に対する前記第1固体電解質の体積の比率が3%以上、かつ、60%以下である。
 第1態様の正極材料によれば、電池の安全性を向上させることができる。
 本開示の第2態様において、例えば、第1態様に係る正極材料では、前記第1固体電解質と前記第2固体電解質との合計体積に対する、前記第1固体電解質の体積の比率が、3.3%以上、かつ、50%以下であってもよい。第2態様の正極材料によれば、電池の安全性をより向上させることができる。
 本開示の第3態様において、例えば、第2態様に係る正極材料では、前記第1固体電解質と前記第2固体電解質との合計体積に対する、前記第1固体電解質の体積の比率が、6.7%以上、かつ、50%以下であってもよい。第3態様の正極材料によれば、電池の安全性をより向上させることができる。
 本開示の第4態様において、例えば、第3態様に係る正極材料では、前記第1固体電解質と前記第2固体電解質との合計体積に対する、前記第1固体電解質の体積の比率が、33%以上、かつ、50%以下であってもよい。第4態様の正極材料によれば、電池の安全性をより向上させることができる。
 本開示の第5態様において、例えば、第2態様に係る正極材料では、前記第1固体電解質と前記第2固体電解質との合計体積に対する、前記第1固体電解質の体積の比率が、3.3%以上、かつ、8.0%以下であってもよい。第5態様の正極材料によれば、電池の安全性をより向上させることができる。
 本開示の第6態様において、例えば、第1から第5態様のいずれか1つに係る正極材料では、前記第2固体電解質は、LiおよびSを含んでいてもよい。硫化物固体電解質は、高いイオン伝導度を有し、電池の充放電効率を向上させうる。一方、硫化物固体電解質は、酸化耐性に劣ることがある。第2固体電解質として硫化物固体電解質が電池に含まれている場合、本開示の技術を適用することによって電池の安全性向上の高い効果が得られる。
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つに係る正極材料では、Mは、アルミニウムを含んでいてもよい。Mがアルミニウムを含む場合、第1固体電解質は、高いイオン伝導度を示す。
 本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係る正極材料では、前記第1固体電解質は、下記の組成式(1)により表されてもよく、α、β、γおよびδは、それぞれ独立して、0より大きい値であってもよい。組成式(1)で表されるハロゲン化物固体電解質を電池に用いた場合、電池の出力特性を向上させることができる。
 LiαZrβγδ・・・式(1)
 本開示の第9態様において、例えば、第1から第8態様のいずれか1つに係る正極活物質は、表面の少なくとも一部に被覆層を有していてもよい。このような構成によれば、電池の充放電効率を向上させることができる。
 本開示の第10態様において、例えば、第9態様に係る正極材料では、前記被覆層がリチウムイオン伝導性を有する酸化物固体電解質を含んでいてもよい。被覆層として酸化物固体電解質を用いることによって、電池の充放電効率を更に向上させることができる。
 本開示の第11態様において、例えば、第9または第10態様に係る正極材料では、前記被覆層がニオブ酸リチウムを含んでいてもよい。このような構成によれば、電池の充放電効率を向上させることができる。
 本開示の第12態様に係る正極は、第1から第11態様のいずれか1つに係る正極材料を備えている。このような構成によれば、電池の安全性を向上させることができる。
 本開示の第13態様に係る電池は、第12態様の正極を備えている。本開示によれば、電池の安全性を向上させることができる。
 以下、本開示の実施の形態について、図面を参照しながら説明する。本開示は、以下の実施の形態に限定されない。
 (実施の形態1)
 図1は、実施の形態1に係る正極材料の概略構成を示す断面図である。正極材料10は、正極活物質100、第1固体電解質101、および第2固体電解質102を備える。
 第1固体電解質は、Li、Zr、M、およびXを含む。Mは、Li、Zr以外の金属元素および半金属元素からなる群より選択される少なくとも1つである。Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。正極材料10において、第1固体電解質101と第2固体電解質102との合計体積Vtに対する第1固体電解質の体積V1の比率V1/Vtは、百分率で表して、3%以上、かつ、60%以下である。
 「半金属元素」は、B、Si、Ge、As、Sb、およびTeを含む。
 「金属元素」は、水素を除く周期表1族から12族に含まれる全ての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く13族から16族に含まれる全ての元素を含む。すなわち、金属元素は、ハロゲン元素と無機化合物を形成した際にカチオンとなりうる元素群である。
 第1固体電解質は、ハロゲンを含む固体電解質、いわゆるハロゲン化物固体電解質でありうる。ハロゲン化物固体電解質は、酸化耐性に優れている。したがって、第1固体電解質を混合することによって、正極の酸化(たとえば、第2固体電解質の酸化)を抑制することができる。これにより、正極材料10を用いた電池の発熱が抑制され、ひいては、正極材料10を用いた電池の安全性を向上させることができる。
 上記の比率V1/Vtが低すぎる場合、第1固体電解質による正極活物質100と第2固体電解質との酸化反応抑制が不十分であり、上記の効果が十分に得られない可能性がある。比率V1/Vtは、3.3%以上であってもよく、6%以上であってもよく、6.7%以上であってもよい。上記の比率V1/Vtが高すぎる場合、正極材料10のイオン伝導度が不足したりすることが懸念される。比率V1/Vtは、望ましくは、50%以下であってもよく、40%以下であってもよい。
 電池の安全性の向上のために、上記の比率V1/Vtは、例えば、3.3%以上、かつ、50%以下であってもよい。
 電池の安全性のさらなる向上のために、上記の比率V1/Vtは、6.7%以上、かつ、50%以下であってもよいし、33%以上、かつ、50%以下であってもよい。
 電池の安全性のさらなる向上のために、上記の比率V1/Vtは、3.3%以上、かつ、8.0%以下であってもよい。
 第1固体電解質101と第2固体電解質102との合計体積Vtは、第1固体電解質101の体積V1と第2固体電解質102の体積V2との和である。第1固体電解質101の体積V1は、正極材料10の粉末における第1固体電解質101の合計体積である。第2固体電解質102の体積V2は、正極材料10の粉末における第2固体電解質102の合計体積である。つまり、上記の比率V1/Vtは、一定量の正極材料10の粉末の全体から求められる値である。
 上記の比率V1/Vtは、材料の仕込み量から算出することも可能であり、以下に説明する方法によって算出することも可能である。すなわち、正極材料10を用いた正極の断面を走査型電子顕微鏡(SEM-EDX)で観察し、元素の二次元マッピング像を取得する。二次元マッピング像を取得するための走査電子顕微鏡の測定条件は、例えば、倍率1000倍から3000倍、加速電圧5kVである。二次元マッピング像は、解像度1280×960の解像度にて取得される。元素の二次元マッピング像を分析し、正極活物質100、第1固体電解質101、第2固体電解質102のそれぞれに含まれる元素の画素数から正極活物質100の体積、第1固体電解質101の体積V1および第2固体電解質102の体積V2を特定することができる。
 正極材料10において、正極活物質100の体積と固体電解質の体積との比率「v1:100-v1」が30≦v1≦95を満たしてもよい。30≦v1が満たされる場合、電池のエネルギー密度が十分に確保される。v1≦95が満たされる場合、電池の高出力での動作が可能となる。「固体電解質の体積」は、第1固体電解質101と第2固体電解質102との合計体積である。
 <正極活物質>
 正極活物質100は、金属イオン(例えば、リチウムイオン)を吸蔵および放出する特性を有する材料を含む。正極活物質100として、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、遷移金属オキシ窒化物などが使用されうる。特に、正極活物質100として、リチウム含有遷移金属酸化物を用いた場合には、電池の製造コストを安くでき、平均放電電圧を高めることができる。リチウム含有遷移金属酸化物としては、Li(NiCoAl)O2、Li(NiCoMn)O2、LiCoO2などが挙げられる。
 正極活物質100は、例えば、粒子の形状を有する。正極活物質100の粒子の形状は特に限定されない。正極活物質100の粒子の形状は、球状、楕円球状、鱗片状、または繊維状でありうる。
 正極活物質100のメジアン径は、0.1μm以上かつ100μm以下であってもよい。正極活物質100のメジアン径が0.1μm以上の場合、正極材料10において、正極活物質100と第1固体電解質101と第2固体電解質102とが良好な分散状態を形成しうる。この結果、電池の充放電特性が向上する。正極活物質100のメジアン径が100μm以下の場合、正極活物質100の内部のリチウムの拡散速度が十分に確保される。このため、電池が高出力で動作しうる。
 正極活物質100のメジアン径は、第1固体電解質101および第2固体電解質102のメジアン径よりも大きくてもよい。これにより、正極活物質100と、第1固体電解質101および第2固体電解質102とが良好な分散状態を形成できる。
 本明細書において、「メジアン径」は、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置または画像解析装置により測定される。
 <第1固体電解質>
 第1固体電解質101は、例えば、イオン伝導性を有する。イオン伝導性は、典型的には、リチウムイオン伝導性である。第1固体電解質101の原料、第1固体電解質101を作製する際に生じる副生成物などは、不可避不純物に含まれる。第1固体電解質101の全体の質量に対する不可避不純物の質量の比率は、5%以下であってもよく、3%以下であってもよく、1%以下であってもよく、0.5%以下であってもよい。
 第1固体電解質101は、Li、Zr、M、およびXを含む材料である。MおよびXは、先に説明した通りである。このような材料は、イオン伝導性および酸化耐性に優れている。そのため、第1固体電解質101を有する正極材料を用いた電池は、電池の充放電効率および電池の熱的安定性を向上させる。
 第1固体電解質101としてのハロゲン化物固体電解質は、例えば、下記の組成式(1)により表される。組成式(1)において、α、β、γおよびδは、それぞれ独立して、0より大きい値である。
 LiαZrβγδ・・・式(1)
 組成式(1)で表されるハロゲン化物固体電解質は、Liおよびハロゲン元素のみからなるLiIなどのハロゲン化物固体電解質と比較して、高いイオン伝導度を有する。そのため、組成式(1)で表されるハロゲン化物固体電解質を電池に用いた場合、電池の充放電効率を向上させることができる。
 Mは、Al(=アルミニウム)を含んでいてもよい。すなわち、ハロゲン化物固体電解質は、金属元素としてAlを含んでいてもよい。MがAlを含む場合、ハロゲン化物固体電解質は、高いイオン伝導度を示す。
 ハロゲン化物固体電解質は、実質的に、Li、Zr、Al、およびXからなっていてもよい。ここで、「ハロゲン化物固体電解質が、実質的に、Li、Zr、Al、およびXからなる」とは、ハロゲン化物固体電解質を構成する全元素の物質量の合計に対する、Li、Zr、Al、およびXの物質量の合計の比(すなわち、モル分率)が、90%以上であることを意味する。一例として、当該モル比(すなわち、モル分率)は、95%以上であってもよい。ハロゲン化物固体電解質は、Li、Zr、Al、およびXのみからなっていてもよい。
 固体電解質のイオン伝導性をさらに高めるために、ハロゲン化物固体電解質では、ZrおよびAlの物質量の合計に対するLiの物質量の比は、1.12以上かつ5.07以下であってもよい。
 ハロゲン化物固体電解質は、以下の組成式(2)により表されてもよい。
 Li6-(4-x)b(Zr1-xAlxb6 ・・・式(2)
 式(2)において、数式:0<x<1、および、0<b≦1.5が充足される。このようなハロゲン化物固体電解質は、高いイオン伝導度を有する。
 ハロゲン化物固体電解質のイオン伝導性を高めるために、式(2)において、数式:0.01≦x≦0.99が充足されてもよい。望ましくは、数式:0.2≦x≦0.95が充足されてもよい。
 式(2)におけるxの範囲の上限値および下限値は、0.01、0.2、0.4、0.5、0.5、0.7、0.8、0.95、および0.99の数値から選ばれる任意の組み合わせによって規定され得る。
 ハロゲン化物固体電解質のイオン伝導性を高めるために、式(2)において、数式:0.7≦b≦1.3が充足されてもよい。望ましくは、数式:0.9≦b≦1.04が充足されてもよい。
 式(2)におけるbの範囲の上限値および下限値は、0.7、0.8、0.9、0.96、1、1.04、1.1、1.2、および1.3の数値から選ばれる任意の組み合わせによって規定され得る。
 ハロゲン化物固体電解質は、結晶質であってもよく、あるいは非晶質であってもよい。
 ハロゲン化物固体電解質の形状は、限定されない。当該形状の例は、針状、球状、または楕円球状である。ハロゲン化物固体電解質は、粒子であってもよい。
 ハロゲン化物固体電解質の形状が、例えば、粒子状(例えば、球状)である場合、当該固体電解質は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。メジアン径とは、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置または画像解析装置により測定される。
 ハロゲン化物固体電解質は、硫黄を含まない固体電解質であってもよい。この場合、固体電解質から硫化水素ガスなどの硫黄含有ガスが発生することを回避できる。硫黄を含まない固体電解質とは、硫黄元素が含まれない組成式で表される固体電解質を意味する。したがって、ごく微量の硫黄を含む固体電解質、例えば硫黄の含有比率が0.1質量%以下である固体電解質は、硫黄を含まない固体電解質に属する。ハロゲン化物固体電解質は、ハロゲン元素以外のアニオンとして、さらに酸素を含んでいてもよい。
 <ハロゲン化物固体電解質の製造方法>
 第1固体電解質としてのハロゲン化物固体電解質は、例えば下記の方法により製造され得る。
 目的とする組成となるように、原料粉が用意され、混合される。原料粉は、例えば、ハロゲン化物であってもよい。
 一例として、目的とする組成がLi2.64Zr0.48Al0.486である場合、LiF、ZrF4、およびAlF3が、2.64:0.48:0.48程度のモル比で混合される。合成プロセスにおいて生じ得る組成変化を相殺するように、あらかじめ調整されたモル比で原料粉が混合されてもよい。
 原料粉を、遊星型ボールミルのような混合装置内でメカノケミカル的に(すなわち、メカノケミカルミリングの方法を用いて)互いに反応させ、反応物を得る。反応物は、真空中または不活性雰囲気中で焼成されてもよい。あるいは、原料粉の混合物を真空中または不活性雰囲気中で焼成し、反応物を得てもよい。焼成は、例えば、100℃以上かつ400℃以下で、1時間以上行うことが好ましい。焼成における組成変化を抑制するために、原料粉は石英管のような密閉容器内で焼成されることが好ましい。
 これらの方法により、ハロゲン化物固体電解質が得られる。
 <第2固体電解質>
 第2固体電解質102は、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、および錯体水素化物固体電解質からなる群より選択される少なくとも1つを含んでいてもよい。
 ハロゲン化物固体電解質としては、第1固体電解質101として先に説明した材料が挙げられる。ただし、第2固体電解質102は、第1固体電解質101とは異なる組成を有する。ここで、異なる組成とは、構成元素が一致しない組成、あるいは、構成元素が一致する場合でも構成元素の比率が異なる組成、を意味する。
 酸化物固体電解質は、酸素を含む固体電解質である。酸化物固体電解質は、酸素以外のアニオンとして、硫黄およびハロゲン元素以外のアニオンを更に含んでいてもよい。
 酸化物固体電解質としては、例えば、LiTi2(PO43およびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO3系のペロブスカイト型固体電解質、Li14ZnGe416、Li4SiO4、LiGeO4およびそれらの元素置換体を代表とするLISICON型固体電解質、Li7La3Zr212およびその元素置換体を代表とするガーネット型固体電解質、Li3PO4およびそのN置換体、LiBO2、Li3BO3などのLi-B-O化合物を含むベース材料にLi2SO4、Li2CO3などの材料が添加されたガラスまたはガラスセラミックスなどが使用されうる。
 高分子固体電解質としては、例えば、高分子化合物とリチウム塩との化合物が使用されうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができる。このため、イオン伝導度をより高めることができる。リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2F)2、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33などが挙げられる。これらから選択される1種のリチウム塩が単独で使用されてもよいし、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
 錯体水素化物固体電解質としては、例えば、LiBH4-LiI、LiBH4-P25などが使用されうる。
 第2固体電解質102は、LiおよびSを含んでいてもよい。言い換えれば、第2固体電解質102は、硫化物固体電解質を含んでいてもよい。硫化物固体電解質は、高いイオン伝導度を有し、電池の充放電効率を向上させうる。一方、硫化物固体電解質は、酸化耐性に劣ることがある。第2固体電解質102として硫化物固体電解質が電池に含まれている場合、本開示の技術を適用することによって高い効果が得られる。
 硫化物固体電解質としては、例えば、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、Li10GeP212などが使用されうる。これらに、LiX、Li2O、MOq、LipMOqなどが添加されてもよい。ここで、「LiX」におけるXは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。「MOq」および「LipMOq」における元素Mは、P、Si、Ge、B、Al、Ga、In、Fe、およびZnからなる群より選択される少なくとも1つである。「MOq」および「LipMOq」におけるpおよびqは、それぞれ独立な自然数である。
 第2固体電解質102は、固体電解質として挙げられた材料のうちの2種以上を含んでいてもよい。第2固体電解質102は、例えば、ハロゲン化物固体電解質と硫化物固体電解質とを含んでいてもよい。
 第2固体電解質102は、第1固体電解質101のリチウムイオン伝導度より高いリチウムイオン伝導度を有していてもよい。
 第2固体電解質102は、固体電解質を合成する際に用いられる出発原料、副生成物、分解生成物などの不可避的な不純物を含んでいてもよい。このことは、第1固体電解質101にも当てはまる。
 <その他の材料>
 正極材料10には、粒子同士の密着性を向上する目的で、結着剤が含まれていてもよい。結着剤は、正極を構成する材料の結着性を向上するために用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリカーボネート、ポリエーテルサルフォン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、エチルセルロースなどが挙げられる。また、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ブタジエン、スチレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸エステル、アクリル酸、およびヘキサジエンからなる群より選択される2種以上のモノマーの共重合体も使用されうる。これらから選ばれる1種が単独で使用されてもよく、2種以上が組み合わされて使用されてもよい。
 結着性に優れるという理由から、結着剤は、エラストマーであってもよい。エラストマーは、ゴム弾性を有するポリマーである。結着剤として用いられるエラストマーは、熱可塑性エラストマーであってもよく、熱硬化性エラストマーであってもよい。結着剤は、熱可塑性エラストマーを含んでいてもよい。熱可塑性エラストマーとして、スチレン-エチレン-ブチレン-スチレン(SEBS)、スチレン-エチレン-プロピレン-スチレン(SEPS)、スチレン-エチレン-エチレン-プロピレン-スチレン(SEEPS)、ブチレンゴム(BR)、イソプレンゴム(IR)、クロロプレンゴム(CR)、アクリロニトリル-ブタジエンゴム(NBR)、スチレン-ブチレンゴム(SBR)、スチレン-ブタジエン-スチレン(SBS)、スチレン-イソプレン-スチレン(SIS)、水素化イソプレンゴム(HIR)、水素化ブチルゴム(HIIR)、水素化ニトリルゴム(HNBR)、水素化スチレン-ブチレンゴム(HSBR)、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)などが挙げられる。これらから選ばれる1種が単独で使用されてもよく、2種以上が組み合わされて使用されてもよい。
 正極材料10は、電子伝導性を高める目的で導電助剤を含んでいてもよい。導電助剤としては、例えば、天然黒鉛または人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、炭素繊維または金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物などが使用されうる。炭素導電助剤を用いた場合、低コスト化を図ることができる。
 <正極材料の製造方法>
 正極材料10は、正極活物質100と第1固体電解質101と第2固体電解質102とを混合することによって得られる。正極活物質100と第1固体電解質101と第2固体電解質102とを混合する方法は特に限定されない。乳鉢などの器具を用いて正極活物質100と第1固体電解質101と第2固体電解質102とを混合してもよく、ボールミルなどの混合装置を用いて正極活物質100と第1固体電解質101と第2固体電解質102とを混合してもよい。
 (変形例)
 図2は、実施の形態1に係る正極材料の変形例の概略構成を示す断面図である。この変形例においては、正極活物質は、表面の少なくとも一部に被覆層を有する被覆活物質である。すなわち、正極材料20は、被覆活物質220と、第1固体電解質201と、第2固体電解質202とを有する。被覆活物質220は、正極活物質200および被覆層203を有する。
 被覆層203は、酸化物材料、酸化物固体電解質などの電子伝導性が低い材料を含んでいてもよい。
 酸化物材料として、SiO2、Al23、TiO2、B23、Nb25、WO3、ZrO2などが挙げられる。酸化物固体電解質として、LiNbO3などのLi-Nb-O化合物、LiBO2、Li3BO3などのLi-B-O化合物、LiAlO2などのLi-Al-O化合物、Li4SiO4などのLi-Si-O化合物、Li2SO4、Li4Ti512などのLi-Ti-O化合物、Li2ZrO3などのLi-Zr-O化合物、Li2MoO3などのLi-Mo-O化合物、LiV25などのLi-V-O化合物、Li2WO4などのLi-W-O化合物などが挙げられる。下地材料は、これらから選ばれる1種であってもよく、2種以上の混合物であってもよい。
 被覆層203は、リチウムイオン伝導性を有する固体電解質であってもよい。被覆層203は、典型的には、リチウムイオン伝導性を有する酸化物固体電解質である。酸化物固体電解質は、高いイオン伝導度を有し、かつ、高電位安定性に優れている。被覆層203として酸化物固体電解質を用いることによって、電池の充放電効率を向上させることができる。
 被覆層203の材料は、Nbを含む材料であってもよい。被覆層203は、典型的には、ニオブ酸リチウム(LiNbO3)を含む。このような構成によれば、電池の充放電効率を向上させることができる。被覆層203の材料としての酸化物固体電解質として、先に説明した材料を使用することも可能である。
 被覆層203の厚さは、例えば、1nm以上かつ500nm以下である。被覆層203の厚さが適切に調整されていると、正極活物質200と第2固体電解質202との接触が十分に抑制されうる。
 被覆層203の厚さは、被覆活物質220をイオンミリングなどの方法で薄片化し、透過型電子顕微鏡で被覆活物質220の断面を観察することによって特定されうる。任意の複数の位置(例えば、5点)で測定された厚さの平均値を被覆層203の厚さとみなすことができる。
 被覆活物質220は、下記の方法によって製造されうる。
 まず、正極活物質200の表面に被覆層203を形成する。被覆層203を形成する方法は特に限定されない。被覆層203を形成する方法としては、液相被覆法と気相被覆法とが挙げられる。
 例えば、液相被覆法においては、下地材料の前駆体溶液を正極活物質100の表面に塗布する。LiNbO3を含む被覆層203を形成する場合、前駆体溶液は、溶媒、リチウムアルコキシドおよびニオブアルコキシドの混合溶液(ゾル溶液)でありうる。リチウムアルコキシドとしては、リチウムエトキシドが挙げられる。ニオブアルコキシドとしては、ニオブエトキシドが挙げられる。溶媒は、例えば、エタノールなどのアルコールである。被覆層203の目標組成に応じて、リチウムアルコキシドおよびニオブアルコキシドの量を調整する。必要に応じて、前駆体溶液に水を加えてもよい。前駆体溶液は、酸性であってもよく、アルカリ性であってもよい。
 前駆体溶液を正極活物質200の表面に塗布する方法は特に限定されない。例えば、転動流動造粒コーティング装置を用いて前駆体溶液を正極活物質200の表面に塗布することができる。転動流動造粒コーティング装置によれば、正極活物質200を転動および流動させつつ、正極活物質200に前駆体溶液を吹き付け、前駆体溶液を正極活物質200の表面に塗布することができる。これにより、正極活物質200の表面に前駆体被膜が形成される。その後、前駆体被膜によって被覆された正極活物質200を熱処理する。熱処理によって前駆体被膜のゲル化が進行し、被覆層203が形成される。
 気相被覆法としては、パルスレーザー堆積(Pulsed Laser Deposition:PLD)法、真空蒸着法、スパッタリング法、熱化学気相堆積(Chemical Vapor Deposition:CVD)法、プラズマ化学気相堆積法などが挙げられる。例えば、PLD法においては、ターゲットとしてのイオン伝導材料にエネルギーの強いパルスレーザー(例えば、KrFエキシマレーザー、波長:248nm)を照射し、昇華したイオン伝導材料を正極活物質100の表面に堆積させる。LiNbO3の第2被覆層103を形成する場合、高密度に焼結したLiNbO3がターゲットとして用いられる。
 ただし、被覆層203の形成方法は上記に限定されない。スプレー法、スプレードライコート法、電析法、浸漬法、分散機を用いた機械混合法などの各種方法によって被覆層203が形成されてもよい。
 (実施の形態2)
 図3は、実施の形態2に係る電池の概略構成を示す断面図である。電池300は、正極301、セパレータ層302、および負極303を含む。セパレータ層302は、正極301と負極303との間に配置されている。正極301は、実施の形態1で説明した正極材料10および正極材料20の少なくとも1つを含む。このような構成によれば、電池300の安全性を向上させることができる。
 正極301および負極303のそれぞれの厚さは、10μm以上かつ500μm以下であってもよい。正極301および負極303の厚さが10μm以上である場合、十分な電池のエネルギー密度が確保されうる。正極301および負極303の厚さが500μm以下である場合、電池300の高出力での動作を実現しうる。
 セパレータ層302は、電解質材料を含む層である。セパレータ層302は、硫化物固体電解質、酸化物固体電解質、ハロゲン化物固体電解質、高分子固体電解質、および錯体水素化物固体電解質からなる群より選択される少なくとも1つの固体電解質を含んでいてもよい。各固体電解質の詳細は、実施の形態1で説明した通りである。
 セパレータ層302の厚さは、1μm以上かつ300μm以下であってもよい。セパレータ層302の厚さが1μm以上の場合には、正極301と負極303とをより確実に分離することができる。セパレータ層302の厚さが300μm以下の場合には、電池300の高出力での動作を実現しうる。
 負極303は、負極活物質として、金属イオン(例えば、リチウムイオン)を吸蔵かつ放出する特性を有する材料を含む。
 負極活物質として、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物などが使用されうる。金属材料は、単体の金属であってもよい。あるいは、金属材料は、合金であってもよい。金属材料として、リチウム金属、リチウム合金などが挙げられる。炭素材料として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素などが挙げられる。容量密度の観点から、珪素(Si)、錫(Sn)、珪素化合物、錫化合物などが好適に使用されうる。
 負極活物質の粒子のメジアン径は、0.1μm以上かつ100μm以下であってもよい。
 負極303は、固体電解質などの他の材料を含んでいてもよい。固体電解質としては、実施の形態1で説明した材料を使用することができる。
 以下、実施例および比較例を用いて、本開示の詳細が説明される。なお、本開示の正極材料および電池は、以下の実施例に限定されない。
 <実施例1>
 [被覆活物質の作製]
 アルゴングローブボックス内で、5.95gのエトキシリチウム(高純度化学社製)と36.43gのペンタエトキシニオブ(高純度化学社製)とを500mLの超脱水エタノール(和光純薬社製)に溶解して被覆溶液を作製した。
 正極活物質として、Li(NiCoAl)O2(以下、NCAと表記する)の粉末を用意した。NCAの表面上にLiNbO3の被覆層を形成するための処理には、転動流動造粒コーティング装置(パウレック社製、FD-MP-01E)を用いた。NCAの投入量、攪拌回転数、被覆溶液の送液レートは、それぞれ、1kg、400rpm、6.59g/分であった。LiNbO3の膜厚が10nmとなるように被覆溶液の投入量を調整した。被覆溶液の投入量は、活物質の比表面積およびLiNbO3の密度を用いて算出した。転動流動造粒コーティング装置を用いた一連の工程は、露点-30℃以下のドライ雰囲気にて実施した。LiNbO3の被覆層を形成するための処理の終了後、得られた粉末をアルミナ製るつぼに入れ、大気雰囲気、300℃、1時間の条件で熱処理を行った。熱処理後の粉末をメノウ乳鉢にて再粉砕した。これにより、LiNbO3の被覆層を有するNCAを得た。被覆層は、ニオブ酸リチウム(LiNbO3)でできていた。以下、LiNbO3の被覆層を有するNCAを「Nb-NCA」と表記する。
 [第1固体電解質の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉末であるLiF、ZrF4、およびAlF3を、LiF:ZrF4:AlF3=2.5:0.5:0.5のモル比で秤量した。これらを乳鉢で粉砕して混合して混合物を得た。得られた混合粉は、遊星型ボールミルを用い、12時間、500rpmでミリング処理された。このようにして、実施例1によるハロゲン化物固体電解質の粉末が得られた。実施例1による第1固体電解質は、Li2.5Zr0.5Al0.56(以下、「LZAF」と表記)により表される組成を有していた。
 [第2固体電解質の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉末であるLi2SとP25とを、モル比でLi2S:P25=75:25となるように秤量した。これらを乳鉢で粉砕および混合して混合物を得た。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、10時間、510rpmの条件で混合物をミリング処理した。これにより、ガラス状の固体電解質を得た。ガラス状の固体電解質について、不活性雰囲気中、270℃、2時間の条件で熱処理した。これにより、ガラスセラミックス状の固体電解質であるLi2S-P25(以下、「LPS」と記載する)を得た。
 [正極材料の作製]
 アルゴングローブボックス内で、Nb-NCAと固体電解質との体積比率(すなわち、Nb-NCA:固体電解質)が70:30、第1固体電解質(すなわち、LZAF)と第2固体電解質(すなわち、LPS)との体積比率(すなわち、LZAF:LPS)が6.7:93.3となるように、実施例1の正極活物質、LZAFおよびLPSを秤量した。これらをメノウ乳鉢で混合することで、実施例1の正極材料を作製した。Nb-NCAと固体電解質との体積比率において、「固体電解質」は、LZAFおよびLPSの合計体積を意味する。
 <実施例2>
 LZAFとLPSとの体積比率(すなわち、LZAF:LPS)を15:75に変更したことを除き、実施例1と同じ方法で実施例2の正極材料を得た。
 <実施例3>
 LZAFとLPSとの体積比率(すなわち、LZAF:LPS)を23.3:76.7に変更したことを除き、実施例1と同じ方法で実施例3の正極材料を得た。
 <実施例4>
 LZAFとLPSの体積比率(すなわち、LZAF:LPS)を33.3:66.7に変更したことを除き、実施例1と同じ方法で実施例4の正極材料を得た。
 <実施例5>
 LZAFとLPSの体積比率(すなわち、LZAF:LPS)を50:50に変更したことを除き、実施例1と同じ方法で実施例5の正極材料を得た。
 <比較例1>
 第1固体電解質であるLZAFを用いず、第2固体電解質のみ、すなわちLPSのみを固体電解質として用いて、比較例1の正極材料を得た。
 実施例および比較例の正極材料において、LZAFおよびLPSの合計体積に対するLZAF体積の比率は表1に示す通りであった。
 [電池の作製]
 14mgのNb-NCAが含まれるように正極材料を秤量した。絶縁性を有する外筒の中にLPSと正極材料とをこの順に積層した。得られた積層体を720MPaの圧力で加圧成形した。次に、LPS層に接するように金属リチウムを配置し、再度40MPaの圧力にて加圧成形した。これにより、正極、固体電解質層および負極からなる積層体を作製した。次に、積層体の上下にステンレス鋼製の集電体を配置した。各集電体に集電リードを取り付けた。次に、絶縁性フェルールを用いて外筒を密閉することで外筒の内部を外気雰囲気から遮断した。以上の工程を経て、実施例1から6および比較例1の電池を作製した。4本のボルトで電池を上下から拘束することで、電池に面圧150MPaの圧力を印加した。
 [熱分析サンプルの作製]
 電池を25℃の恒温槽に配置した。電池の理論容量に対して0.05Cレート(20時間率)となる電流値147μAで電圧4.3Vに達するまで電池を定電流充電した。電流値2.9μAに到達するまで4.3Vで定電圧充電を行った。
 充電状態の電池をアルゴングローブボックス中で解体し、正極材料のみを取り出した。2mgの正極材料をステンレス鋼製のクローズドパンに封入した。これにより、実施例1から5および比較例1の熱分析サンプルを得た。
 [熱分析の実施]
 実施例1から5および比較例1の熱分析サンプルを用いて、以下の条件で熱分析を実施した。
 熱分析には示差走査熱量測定装置(TA Instrument社製Q1000)を用いた。昇温条件は、0℃から400℃まで10℃/分であった。熱分析曲線において、ピークの立ち上がりの温度を発熱開始温度とみなした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <考察>
 表1に示すように、正極材料において、第1固体電解質と第2固体電解質との合計体積Vtに対する第1固体電解質の体積V1の比率V1/Vtが、3%以上、かつ、60%以下の範囲内である実施例1から5の電池では、比較例1の電池に対して発熱開始温度が上昇した。つまり、正極材料が第1固体電解質を上記の体積範囲内で含むことにより、正極活物質から放出される酸素と硫化物固体電解質との反応が抑制され、これにより、電池の安全性が向上することが示唆された。
 Nb-NCAの体積に対するLZAFの体積が1%未満である場合、正極活物質から放出される酸素を抑制することが困難であると推測される。したがって、Nb-NCAの体積に対するLZAFの体積の比率は、望ましくは、1%以上である。Nb-NCAの体積に対するLZAFの体積の比率の上限値は、例えば、15%である。
 本開示の技術は、例えば、全固体リチウム二次電池に有用である。
10,20 正極材料
100,200 正極活物質
101,201 第1固体電解質
102,202 第2固体電解質
203 被覆層
220 被覆活物質
300 電池
301 正極
302 セパレータ層
303 負極

Claims (13)

  1.  正極活物質と、
     第1固体電解質と、
     第2固体電解質と、
    を備え、
     前記第1固体電解質は、Li、Zr、M、およびXを含み、
     Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
     Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つであり、
     前記第2固体電解質は、前記第1固体電解質と異なる組成を有し、
     前記第1固体電解質と前記第2固体電解質との合計体積に対する、前記第1固体電解質の体積の比率が、3%以上、かつ、60%以下である、
     正極材料。
  2.  前記第1固体電解質と前記第2固体電解質との合計体積に対する、前記第1固体電解質の体積の比率が、3.3%以上、かつ、50%以下である、
    請求項1に記載の正極材料。
  3.  前記第1固体電解質と前記第2固体電解質との合計体積に対する、前記第1固体電解質の体積の比率が、6.7%以上、かつ、50%以下である、
    請求項2に記載の正極材料。
  4.  前記第1固体電解質と前記第2固体電解質との合計体積に対する、前記第1固体電解質の体積の比率が、33%以上、かつ、50%以下である、
    請求項3に記載の正極材料。
  5.  前記第1固体電解質と前記第2固体電解質との合計体積に対する、前記第1固体電解質の体積の比率が、3.3%以上、かつ、8.0%以下である、
    請求項2に記載の正極材料。
  6.  前記第2固体電解質は、LiおよびSを含む、
     請求項1から5のいずれか一項に記載の正極材料。
  7.  Mは、アルミニウムを含む、
     請求項1から6のいずれか一項に記載の正極材料。
  8.  前記第1固体電解質は、下記の組成式(1)により表され、
     LiαZrβγδ・・・式(1)
     ここで、α、β、γ、およびδは、それぞれ独立して、0より大きい値である、
     請求項1から7のいずれか1項に記載の正極材料。
  9.  前記正極活物質は、表面の少なくとも一部に被覆層を有する、
     請求項1から8のいずれか1項に記載の正極材料。
  10.  前記被覆層が、リチウムイオン伝導性を有する酸化物固体電解質を含む、
     請求項9に記載の正極材料。
  11.  前記被覆層が、ニオブ酸リチウムを含む、
     請求項9または10に記載の正極材料。
  12.  請求項1から11のいずれか1項に記載の正極材料を含む、正極。
  13.  請求項12に記載の正極を備えた、電池。
PCT/JP2022/025014 2021-07-29 2022-06-23 正極材料、正極、および電池 WO2023008006A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22849081.9A EP4379832A1 (en) 2021-07-29 2022-06-23 Positive electrode material, positive electrode, and battery
CN202280051225.2A CN117769766A (zh) 2021-07-29 2022-06-23 正极材料、正极和电池
JP2023538338A JPWO2023008006A1 (ja) 2021-07-29 2022-06-23
US18/418,288 US20240162484A1 (en) 2021-07-29 2024-01-21 Positive electrode material, positive electrode, and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021124830 2021-07-29
JP2021-124830 2021-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/418,288 Continuation US20240162484A1 (en) 2021-07-29 2024-01-21 Positive electrode material, positive electrode, and battery

Publications (1)

Publication Number Publication Date
WO2023008006A1 true WO2023008006A1 (ja) 2023-02-02

Family

ID=85087864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025014 WO2023008006A1 (ja) 2021-07-29 2022-06-23 正極材料、正極、および電池

Country Status (5)

Country Link
US (1) US20240162484A1 (ja)
EP (1) EP4379832A1 (ja)
JP (1) JPWO2023008006A1 (ja)
CN (1) CN117769766A (ja)
WO (1) WO2023008006A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018735A (ja) 2014-07-10 2016-02-01 トヨタ自動車株式会社 複合活物質及びその製造方法
WO2017141735A1 (ja) * 2016-02-19 2017-08-24 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP2017220339A (ja) * 2016-06-07 2017-12-14 トヨタ自動車株式会社 固体電池
WO2019135322A1 (ja) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 正極材料、および、電池
WO2019146308A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 電極材料、および、電池
WO2020070956A1 (ja) * 2018-10-01 2020-04-09 パナソニックIpマネジメント株式会社 ハロゲン化物固体電解質材料およびこれを用いた電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018735A (ja) 2014-07-10 2016-02-01 トヨタ自動車株式会社 複合活物質及びその製造方法
WO2017141735A1 (ja) * 2016-02-19 2017-08-24 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP2017220339A (ja) * 2016-06-07 2017-12-14 トヨタ自動車株式会社 固体電池
WO2019135322A1 (ja) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 正極材料、および、電池
WO2019146308A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 電極材料、および、電池
WO2020070956A1 (ja) * 2018-10-01 2020-04-09 パナソニックIpマネジメント株式会社 ハロゲン化物固体電解質材料およびこれを用いた電池

Also Published As

Publication number Publication date
CN117769766A (zh) 2024-03-26
US20240162484A1 (en) 2024-05-16
JPWO2023008006A1 (ja) 2023-02-02
EP4379832A1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
JP7199038B2 (ja) 負極材料およびそれを用いた電池
JP7145439B6 (ja) 電池
WO2019135322A1 (ja) 正極材料、および、電池
JP7217432B2 (ja) 正極材料およびそれを用いた電池
JP7249562B2 (ja) 電池
WO2021157361A1 (ja) 正極材料および電池
WO2020174868A1 (ja) 正極材料、および、電池
WO2021220927A1 (ja) 正極材料、および、電池
WO2023037817A1 (ja) 被覆活物質、電極材料および電池
WO2022244445A1 (ja) 被覆正極活物質、正極材料および電池
WO2021200086A1 (ja) 正極材料および電池
WO2023008006A1 (ja) 正極材料、正極、および電池
WO2023037756A1 (ja) 正極材料、正極および電池
WO2022254984A1 (ja) 正極材料、正極および電池
WO2023037815A1 (ja) 被覆活物質、電極材料および電池
WO2023037816A1 (ja) 被覆活物質、電極材料および電池
WO2023037769A1 (ja) 正極材料、正極および電池
WO2022254985A1 (ja) 被覆活物質、正極材料、正極および電池
WO2022255026A1 (ja) 被覆活物質、正極材料、正極および電池
WO2023037757A1 (ja) 正極材料、正極および電池
WO2022255027A1 (ja) 被覆活物質、正極材料、正極および電池
WO2022254871A1 (ja) 被覆活物質、電極材料および電池
WO2022254869A1 (ja) 被覆活物質、電極材料および電池
WO2023002827A1 (ja) 正極材料および電池
WO2022254870A1 (ja) 被覆活物質、電極材料および電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849081

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538338

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280051225.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022849081

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022849081

Country of ref document: EP

Effective date: 20240229