WO2022254872A1 - 被覆活物質、電極材料および電池 - Google Patents

被覆活物質、電極材料および電池 Download PDF

Info

Publication number
WO2022254872A1
WO2022254872A1 PCT/JP2022/011266 JP2022011266W WO2022254872A1 WO 2022254872 A1 WO2022254872 A1 WO 2022254872A1 JP 2022011266 W JP2022011266 W JP 2022011266W WO 2022254872 A1 WO2022254872 A1 WO 2022254872A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
coating
solid electrolyte
coated active
coating layer
Prior art date
Application number
PCT/JP2022/011266
Other languages
English (en)
French (fr)
Inventor
和弥 橋本
出 佐々木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280036270.0A priority Critical patent/CN117378055A/zh
Priority to JP2023525421A priority patent/JPWO2022254872A1/ja
Publication of WO2022254872A1 publication Critical patent/WO2022254872A1/ja
Priority to US18/500,490 priority patent/US20240063375A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to coated active materials, electrode materials and batteries.
  • Patent Document 1 discloses a battery using a halide as a solid electrolyte.
  • Non-Patent Document 1 discloses a battery using a sulfide as a solid electrolyte.
  • This disclosure is an active material; a coating layer that covers at least part of the surface of the active material;
  • a coated active material comprising the coating layer comprises a first coating material;
  • the mass content ratio is defined as R1 and the mass content ratio of the first coating material in the fine powder is defined as R2, the value of R2/R1 is less than 7.1.
  • a coated active material is provided.
  • the interfacial resistance of the battery can be reduced.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a coated active material according to Embodiment 1.
  • FIG. FIG. 2 is a diagram for explaining the principle of airflow classification.
  • FIG. 3A is a schematic diagram showing how air classification is performed when the amount of residue contained in the powder of the coated active material is small.
  • FIG. 3B is a schematic diagram showing how air classification is performed when the powder of the coated active material contains a large amount of residue.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a coated active material in a modified example.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of an electrode material according to Embodiment 2.
  • FIG. FIG. 6 is a cross-sectional view showing a schematic configuration of a battery according to Embodiment 3.
  • the sulfide solid electrolyte may undergo oxidative decomposition during charging of the battery.
  • the surface of the active material is coated with a material having excellent oxidation stability, such as an oxide solid electrolyte.
  • the present inventors have noticed that even if the material covering the active material is the same, there is a large difference in battery characteristics, especially interfacial resistance. Furthermore, the present inventors have found that this difference is related to the amount of residue generated when coating the active material with the coating material, and arrived at the present disclosure.
  • the coated active material according to the first aspect of the present disclosure is an active material; a coating layer that covers at least part of the surface of the active material; A coated active material comprising the coating layer comprises a first coating material;
  • the mass content ratio is defined as R1 and the mass content ratio of the first coating material in the fine powder is defined as R2, the value of R2/R1 is less than 7.1.
  • the interfacial resistance of the battery can be reduced.
  • the active material may be a positive electrode active material. If the technology of the present disclosure is applied to the positive electrode active material, it becomes possible to use a solid electrolyte that has poor oxidation resistance but high ionic conductivity for the positive electrode.
  • the R2/R1 value may be 4.9 or less. With such a configuration, the interfacial resistance of the battery can be further reduced.
  • the R2/R1 value may be 3.7 or less. With such a configuration, the interfacial resistance of the battery can be further reduced.
  • the coating layer may contain a first coating material, and the first coating material is It may contain Li, M1, and X1, M1 may be at least one selected from the group consisting of metal elements other than Li and metalloid elements, and X1 is F, Cl, Br, and I may be at least one selected from the group consisting of.
  • Such materials have good ionic conductivity and oxidation resistance.
  • the first coating material may be represented by the following compositional formula (1), where ⁇ 1, ⁇ 1, and ⁇ 1 are respectively Independently, it may be a value greater than zero.
  • the halide solid electrolyte represented by the compositional formula (1) is used in a battery, the output characteristics of the battery can be improved.
  • M1 may contain yttrium.
  • the halide solid electrolyte represented by the compositional formula (1) exhibits high ionic conductivity.
  • the coating layer comprises a first coating layer containing a first coating material and a second coating material. and a second coating layer comprising a second coating layer, wherein the first coating layer may be located outside the second coating layer.
  • the second coating material may contain an oxide solid electrolyte having lithium ion conductivity. With such a configuration, the interfacial resistance of the battery can be further reduced.
  • the second coating material may contain Nb.
  • the second coating material may contain lithium niobate.
  • the electrode material according to the twelfth aspect of the present disclosure is the coated active material of any one of the first to eleventh aspects; a solid electrolyte; It has
  • the interfacial resistance of the battery can be reduced.
  • the solid electrolyte may contain a sulfide solid electrolyte.
  • Sulfide solid electrolytes are excellent in ionic conductivity and flexibility. Therefore, when a sulfide solid electrolyte is used as an electrode material, the interfacial resistance of the battery is likely to be reduced.
  • the battery according to the fourteenth aspect of the present disclosure includes a positive electrode comprising the electrode material of the twelfth or thirteenth aspect; a negative electrode; an electrolyte layer disposed between the positive electrode and the negative electrode; It has
  • a battery with reduced interfacial resistance can be provided.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a coated active material 130 according to Embodiment 1.
  • FIG. Coating active material 130 includes active material 110 and coating layer 111 .
  • the shape of the active material 110 is, for example, particulate.
  • Coating layer 111 covers at least part of the surface of active material 110 .
  • the coating layer 111 suppresses direct contact between the active material 110 and the solid electrolyte at the electrodes of the battery, and suppresses side reactions of the solid electrolyte. As a result, the interfacial resistance of the battery can be reduced.
  • the coating layer 111 is a layer containing a coating material (first coating material).
  • a coating layer 111 is provided on the surface of the active material 110 .
  • the coating layer 111 may contain only the coating material. "Containing only the coating material” means that materials other than the coating material are not intentionally added except for unavoidable impurities.
  • unavoidable impurities include raw materials of the coating material, by-products generated when the coating material is produced, and the like.
  • the coating material can be a solid electrolyte (first solid electrolyte) having lithium ion conductivity.
  • the mass ratio of the inevitable impurities to the total mass of the coating layer 111 may be 5% or less, 3% or less, 1% or less, or 0.5% or less.
  • Interface resistance is a value calculated by the following method. After completion of the battery, charge and discharge processes are performed. Stop the first cycle discharge at 50% depth of discharge. The state of 50% depth of discharge is the state when the battery in the charged state is discharged with the amount of electric power obtained by charging capacity ⁇ 0.93 (average value of initial charge/discharge efficiency) ⁇ 0.50. After that, the impedance measurement of the battery is performed. The impedance measurement range is, for example, 10 mHz to 1 MHz. In the complex impedance plot, the resistance value is calculated from the arc present around the frequency of 1 kHz. A value obtained by multiplying the calculated resistance value by the mass of the active material contained in the battery can be regarded as the “interface resistance”.
  • the coating layer 111 may evenly cover the active material 110 .
  • the coating layer 111 suppresses direct contact between the active material 110 and the solid electrolyte at the electrodes of the battery, and suppresses side reactions of the solid electrolyte. As a result, the interfacial resistance of the battery can be reduced.
  • the coating layer 111 may cover only part of the surface of the active material 110 . Since the particles of the active material 110 are in direct contact with each other through the portions not covered with the coating layer 111, the electron conductivity between the particles of the active material 110 is improved. As a result, it becomes possible to operate the battery at a high output.
  • the amount of residue contained in the powder of the coated active material 130 is small.
  • the amount of residue can be defined by the value of "R2/R1" described below.
  • the mass content ratio of the coating material (first coating material) in the coarse powder is defined as R1.
  • the mass content ratio of the coating material (first coating material) in the fine powder is defined as R2.
  • the value of R2/R1 is less than 7.1. In this case, the battery using the coated active material 130 exhibits low interfacial resistance.
  • the value of R2/R1 is a value reflecting the amount of residue of the coating material forming coating layer 111 and also a value reflecting the coverage of active material 110 by coating layer 111 .
  • R2/R1 When the coverage of the active material 110 by the coating material is low and the residue of the coating material is large, R2/R1 is large. On the other hand, when the coverage of the active material 110 with the coating material is high and the residue of the coating material is small, R2/R1 is small.
  • An ideal coating state is a state in which the coating layer 111 prevents contact between the active material 110 and the solid electrolyte, thereby suppressing oxidative decomposition of the solid electrolyte. As a result, the interfacial resistance of the battery is reduced.
  • the main component of the residue is the coating material used to form the coating layer 111.
  • a "main component” means the component contained most in mass ratio.
  • the residue may also contain by-products and impurities. The residue does not adhere to the active material 110 when the coating layer 111 is formed, but remains in the powder of the coated active material 130 in the form of fine particles.
  • R2/R1 is determined by the following operations and calculations.
  • Fig. 2 is a diagram explaining the principle of airflow classification.
  • Air classification is a dry classification method. Two forces acting in different directions can be used to separate the particles 300 into coarse (large particles) and fine (small particles) according to their size.
  • One force is centrifugal force 303 acting on particle 300 .
  • Another force is drag force 304 acting on particle 300 .
  • the particles 300 ride on the swirling flow 301 and swirl inside the device. This causes a centrifugal force 303 to act on the particles 300 .
  • drag force 304 is created by, for example, air flow 302 .
  • the particles 300 are sorted according to the magnitude of the centrifugal force 303 acting on the particles 300 and the drag force 304 caused by the air flow 302 . Since the centrifugal force 303 increases as the rotation speed of the swirling flow 301 increases, the mass ratio of coarse powder and fine powder can be adjusted by the rotation speed of the swirling flow 301 .
  • the powder of the coated active material 130 is classified into coarse powder and fine powder by the air classification described above.
  • the content ratio of the coating material in each of the coarse powder and the fine powder is calculated.
  • the mass of coating material includes both coating material present as coating layer 111 and coating material present as residue.
  • the ratio of the mass of the coating material to the total mass of the meal can be calculated from inductively coupled plasma atomic emission spectroscopy (ICP) measurements.
  • ICP inductively coupled plasma atomic emission spectroscopy
  • R2 the ratio of the mass of the coating material to the total mass of the fines
  • FIG. 3A is a schematic diagram showing how air classification is performed when the powder of the coated active material 130 contains a small amount of residue.
  • the residue contained in the powder of the coated active material 130 is small, that is, when the coverage of the active material 110 with the coating material is high, even if the powder of the coated active material 130 is classified into coarse powder and fine powder, the residue contained in the fine powder is There is little residue left behind. Therefore, the ratio R2 calculated by the method described above is also small.
  • the ratio R1 calculated from the coarse powder is less likely to be affected by the amount of residue contained in the powder of the coated active material 130 . Therefore, when the powder of the coated active material 130 contains little residue, the value of R2/R1 is small.
  • FIG. 3B is a schematic diagram showing how air classification is performed when the powder of the coated active material 130 contains a large amount of residue.
  • the powder of the coated active material 130 contains a large amount of residue 111a, that is, when the coverage of the active material 110 by the coating material is low, the residue 111a contained in the fine powder obtained by classifying the powder of the coated active material 130 is many. Therefore, the ratio R2 calculated by the method described above is also large. On the other hand, the ratio R1 calculated from the coarse powder is less affected by the amount of the residue 111a contained in the powder of the coated active material 130. FIG. Therefore, when the amount of residue 111a contained in the powder of coated active material 130 is large, the value of R2/R1 is large.
  • R2/R1 increases or decreases depending on the residue of the coated active material 130. In other words, it increases or decreases according to an increase or decrease in the coverage of the coated active material 130 .
  • the value of R2/R1 may be 4.9 or less. With such a configuration, the interfacial resistance of the battery can be further reduced.
  • the lower limit of the value of R2/R1 is not particularly limited, and is 3.7, for example.
  • the coating material (first coating material) can be a material containing Li, M1, and X1.
  • M1 is at least one selected from the group consisting of metal elements other than Li and metalloid elements.
  • X1 is at least one selected from the group consisting of F, Cl, Br and I; Such materials have good ionic conductivity and oxidation resistance.
  • “Semimetallic elements” include B, Si, Ge, As, Sb, and Te.
  • Metallic element means all elements contained in Groups 1 to 12 of the periodic table, except hydrogen, and B, Si, Ge, As, Sb, Te, C, N, P, O, S, and Se. Including all elements contained in Groups 13 to 16, except That is, the metal element is a group of elements that can become cations when forming an inorganic compound with a halogen compound.
  • the coating material is, for example, a halide solid electrolyte.
  • a halide solid electrolyte is a solid electrolyte containing a halogen element.
  • a halide solid electrolyte is represented, for example, by the following compositional formula (1). In composition formula (1), ⁇ 1, ⁇ 1, and ⁇ 1 are each independently a value greater than 0.
  • the halide solid electrolyte represented by the compositional formula (1) has higher ionic conductivity than a halide solid electrolyte such as LiI, which consists only of Li and a halogen element. Therefore, when the halide solid electrolyte represented by the compositional formula (1) is used in a battery, the output characteristics of the battery can be improved.
  • the halide solid electrolyte represented by the compositional formula (1) exhibits high ionic conductivity.
  • X1 may contain at least one selected from the group consisting of Cl and Br.
  • X1 may contain Cl and Br.
  • the halide solid electrolyte does not have to contain sulfur.
  • the halide solid electrolyte containing Y may be a compound represented by the following compositional formula (2).
  • Me contains at least one element selected from the group consisting of metal elements other than Li and Y, and metalloid elements.
  • m is the valence of Me.
  • X includes at least one selected from the group consisting of F, Cl, Br, and I;
  • Me may contain at least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta and Nb.
  • the coating material may be a compound represented by the following compositional formula (A1).
  • X is at least one element selected from the group consisting of Cl and Br.
  • composition formula (A1) 0 ⁇ d ⁇ 2 is satisfied.
  • the coating material may be a compound represented by the following compositional formula (A2).
  • X is at least one element selected from the group consisting of Cl and Br.
  • the coating material may be a compound represented by the following compositional formula (A3).
  • 0 ⁇ 0.15 is satisfied in the composition formula (A3).
  • the coating material may be a compound represented by the following compositional formula (A4).
  • 0 ⁇ 0.25 is satisfied in the composition formula (A4).
  • the coating material may be a compound represented by the following compositional formula (A5).
  • Me is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn.
  • composition formula (A5) ⁇ 1 ⁇ 2, 0 ⁇ a ⁇ 3, 0 ⁇ (3 ⁇ 3 ⁇ +a), 0 ⁇ (1+ ⁇ a), and 0 ⁇ x ⁇ 6 are satisfied.
  • the coating material may be a compound represented by the following compositional formula (A6).
  • Me is at least one element selected from the group consisting of Al, Sc, Ga, and Bi.
  • composition formula (A6) ⁇ 1 ⁇ 1, 0 ⁇ a ⁇ 2, 0 ⁇ (1+ ⁇ a), and 0 ⁇ x ⁇ 6 are satisfied.
  • the coating material may be a compound represented by the following compositional formula (A7).
  • Me is at least one element selected from the group consisting of Zr, Hf, and Ti.
  • composition formula (A7) ⁇ 1 ⁇ 1, 0 ⁇ a ⁇ 1.5, 0 ⁇ (3 ⁇ 3 ⁇ a), 0 ⁇ (1+ ⁇ a), and 0 ⁇ x ⁇ 6 are satisfied.
  • the coating material may be a compound represented by the following compositional formula (A8).
  • Me is at least one element selected from the group consisting of Ta and Nb.
  • composition formula (A8) ⁇ 1 ⁇ 1, 0 ⁇ a ⁇ 1.2, 0 ⁇ (3 ⁇ 3 ⁇ 2a), 0 ⁇ (1+ ⁇ a), and 0 ⁇ x ⁇ 6 are satisfied.
  • Li3YX6 Li2MgX4 , Li2FeX4, Li(Al, Ga, In)X4 , Li3 ( Al , Ga, In) X6 , etc.
  • X contains at least one element selected from the group consisting of Cl and Br.
  • a typical composition of Li3YX6 is, for example, Li3YBr2Cl4 .
  • the coating material may include Li3YBr2Cl4 .
  • the coating material may be Li2.7Y1.1Cl6 , Li3YBr6 or Li2.5Y0.5Zr0.5Cl6 .
  • the thickness of the coating layer 111 is, for example, 1 nm or more and 500 nm or less. If the thickness of coating layer 111 is appropriately adjusted, contact between active material 110 and solid electrolyte 100 can be sufficiently suppressed.
  • the thickness of the coating layer 111 can be specified by thinning the coated active material 130 by a method such as ion milling and observing the cross section of the coated active material 130 with a transmission electron microscope. An average value of thicknesses measured at a plurality of arbitrary positions (for example, 5 points) can be regarded as the thickness of the coating layer 111 .
  • the coating material can be manufactured by the following method.
  • Raw material powders of halides are prepared so as to have a compounding ratio of a desired composition.
  • LiCl and YCl 3 are prepared at a molar ratio of 3:1.
  • M1, Me, X and X1 in the above composition formula can be determined by appropriately selecting the type of raw material powder.
  • the values ⁇ 1, ⁇ 1, ⁇ 1, a, b, c, d, m, ⁇ , and x can be adjusted.
  • the raw material powders are well mixed, the raw material powders are mixed, pulverized, and reacted using the mechanochemical milling method.
  • the raw material powders may be well mixed and then sintered in a vacuum. This results in a coating material with the desired composition.
  • Active material 110 is, for example, a positive electrode active material. If the technology of the present disclosure is applied to the positive electrode active material, it becomes possible to use a solid electrolyte that has poor oxidation resistance but high ionic conductivity for the positive electrode. Such solid electrolytes include sulfide solid electrolytes, halide solid electrolytes, and the like.
  • the positive electrode active material includes materials that have properties of intercalating and deintercalating metal ions (eg, lithium ions).
  • positive electrode active materials that can be used include lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxysulfides, and transition metal oxynitrides.
  • lithium-containing transition metal oxides include Li(NiCoAl)O 2 , Li(NiCoMn)O 2 and LiCoO 2 .
  • the positive electrode active material may contain Ni, Co, and Al.
  • the positive electrode active material may be nickel-cobalt-lithium aluminum oxide.
  • the positive electrode active material may be Li(NiCoAl) O2 .
  • the active material 110 has, for example, a particle shape.
  • the shape of the particles of active material 110 is not particularly limited.
  • the shape of the particles of the active material 110 may be spherical, oval, scaly, or fibrous.
  • the coated active material 130 can be manufactured by the following method.
  • a mixture is obtained by mixing the powder of the active material 110 and the powder of the coating material in an appropriate ratio.
  • the mixture is milled and mechanical energy is imparted to the mixture.
  • a mixing device such as a ball mill can be used for the milling treatment.
  • the milling process may be performed in a dry and inert atmosphere to suppress oxidation of the material.
  • the coated active material 130 may be manufactured by a dry particle compounding method. Processing by the dry particle compounding method includes applying at least one mechanical energy selected from the group consisting of impact, compression and shear to the active material 110 and the coating material. Active material 110 and coating material are mixed in a suitable ratio.
  • the device used to manufacture the coated active material 130 is not particularly limited, and may be a device capable of imparting mechanical energy of impact, compression, and shear to the mixture of the active material 110 and the coating material.
  • Apparatuses capable of imparting mechanical energy include compression shear processing apparatuses (particle compounding apparatuses) such as ball mills, "Mechanofusion” (manufactured by Hosokawa Micron Corporation), and "Nobiruta” (manufactured by Hosokawa Micron Corporation).
  • Mechanisms is a particle compounding device that uses dry mechanical compounding technology by applying strong mechanical energy to multiple different raw material powders.
  • mechanofusion mechanical energies of compression, shear, and friction are imparted to raw material powder placed between a rotating container and a press head. This causes particle compositing.
  • Nobilta is a particle compounding device that uses dry mechanical compounding technology, which is an advanced form of particle compounding technology, in order to compound nanoparticles from raw materials. Nobilta manufactures composite particles by subjecting multiple types of raw powders to mechanical energy of impact, compression and shear.
  • the rotor which is arranged in a horizontal cylindrical mixing vessel with a predetermined gap between it and the inner wall of the mixing vessel, rotates at high speed, forcing the raw material powder to pass through the gap. This process is repeated multiple times. This allows the mixture to be subjected to impact, compression, and shear forces to produce composite particles of the active material 110 and the coating material.
  • the thickness of the coating layer 111, the coverage of the active material 110 with the coating material, and the like can be controlled by adjusting the conditions such as the rotation speed of the rotor, the treatment time, and the amount of preparation. That is, the value of R2/R1 described above can also be controlled.
  • the coated active material 130 may be manufactured by mixing the active material 110 and the coating material using a mortar, mixer, or the like.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a coated active material 140 in a modified example.
  • Coating active material 140 includes active material 110 and coating layer 120 .
  • the covering layer 120 has a first covering layer 111 and a second covering layer 112 .
  • the first coating layer 111 is a layer containing a first coating material.
  • the second coating layer 112 is a layer containing a second coating material.
  • the first coating layer 111 is positioned outside the second coating layer 112 .
  • the first covering layer 111 is the covering layer 111 described in the first embodiment.
  • the first coating material is the coating material described in the first embodiment.
  • a first coating material includes a halide solid electrolyte.
  • the ionic conductivity of the first coating material is higher than the ionic conductivity of the second coating material.
  • the second coating layer 112 is located between the first coating layer 111 and the active material 110 .
  • the second coating layer 112 is in direct contact with the active material 110 .
  • the second coating material included in the second coating layer 112 may be a material with good ionic conductivity and oxidation resistance.
  • the second coating material can also be a solid electrolyte with lithium ion conductivity (second solid electrolyte).
  • the second coating material is typically an oxide solid electrolyte with lithium ion conductivity. With such a configuration, the interfacial resistance of the battery can be further reduced.
  • the second coating material can be a material containing Nb.
  • the second coating material typically includes lithium niobate ( LiNbO3 ). With such a configuration, the interfacial resistance of the battery can be further reduced. It is also possible to use the materials described later as the oxide solid electrolyte, which is the second coating material.
  • the thickness of the first covering layer 111 is, for example, 1 nm or more and 500 nm or less.
  • the thickness of the second covering layer 112 is, for example, 1 nm or more and 100 nm or less. If the thicknesses of first coating layer 111 and second coating layer 112 are appropriately adjusted, contact between active material 110 and solid electrolyte 100 can be sufficiently suppressed.
  • the thickness of each layer can be specified in the manner previously described.
  • the coated active material 140 can be manufactured by the following method.
  • the second coating layer 112 is formed on the surface of the active material 110 .
  • a method for forming the second coating layer 112 is not particularly limited. Methods for forming the second coating layer 112 include a liquid phase coating method and a vapor phase coating method.
  • a precursor solution of the second coating material is applied to the surface of the active material 110 .
  • the precursor solution can be a mixed solution (sol solution) of solvent, lithium alkoxide and niobium alkoxide.
  • Lithium alkoxides include lithium ethoxide.
  • Niobium alkoxides include niobium ethoxide.
  • Solvents are, for example, alcohols such as ethanol. The amounts of lithium alkoxide and niobium alkoxide are adjusted according to the target composition of the second coating layer 112 . Water may be added to the precursor solution, if desired.
  • the precursor solution may be acidic or alkaline.
  • the method of applying the precursor solution to the surface of the active material 110 is not particularly limited.
  • the precursor solution can be applied to the surface of the active material 110 using a tumbling fluidized granulation coating apparatus.
  • the precursor solution can be sprayed onto the active material 110 while rolling and fluidizing the active material 110 to apply the precursor solution to the surface of the active material 110 .
  • a precursor coating is formed on the surface of the active material 110 .
  • the active material 110 coated with the precursor coating is heat-treated. The heat treatment promotes gelation of the precursor coating to form the second coating layer 112 .
  • the vapor phase coating method includes a pulsed laser deposition (PLD) method, a vacuum deposition method, a sputtering method, a thermal chemical vapor deposition (CVD) method, a plasma chemical vapor deposition method, and the like.
  • PLD pulsed laser deposition
  • CVD thermal chemical vapor deposition
  • a plasma chemical vapor deposition method and the like.
  • an ion-conducting material as a target is irradiated with a high-energy pulse laser (eg, KrF excimer laser, wavelength: 248 nm) to deposit sublimated ion-conducting material on the surface of the active material 110 .
  • a high-energy pulse laser eg, KrF excimer laser, wavelength: 248 nm
  • high-density sintered LiNbO 3 is used as a target.
  • the first coating layer 111 is formed by the method described in the first embodiment. Thereby, the coated active material 140 is obtained.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the electrode material 1000 according to the second embodiment.
  • Electrode material 1000 includes coated active material 130 and solid electrolyte 100 in the first embodiment. According to the solid electrolyte 100, sufficient ionic conductivity in the electrode material 1000 can be ensured.
  • the electrode material 1000 can be a positive electrode material.
  • the coated active material 130 is a coated negative electrode active material, this embodiment can provide a negative electrode material.
  • Modified coated active material 140 may also be used in place of or in conjunction with coated active material 130 .
  • the active material 110 of the coated active material 130 is separated from the solid electrolyte 100 by the coating layer 111 .
  • Active material 110 does not have to be in direct contact with solid electrolyte 100 . This is because the coating layer 111 has ion conductivity.
  • the solid electrolyte 100 may contain at least one selected from the group consisting of halide solid electrolytes, sulfide solid electrolytes, oxide solid electrolytes, polymer solid electrolytes, and complex hydride solid electrolytes.
  • halide solid electrolyte examples include the materials described as the coating material in the first embodiment.
  • Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li10GeP2S12 and the like can be used.
  • LiX, Li2O , MOq , LipMOq , etc. may be added to these.
  • X is at least one selected from the group consisting of F, Cl, Br and I.
  • the element M in “MO q " and “Li p MO q " is at least one selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe, and Zn.
  • p and q in "MO q " and "L p MO q " are independent natural numbers.
  • oxide solid electrolytes examples include NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof, (LaLi)TiO 3 -based perovskite solid electrolytes, Li 14 ZnGe 4 O 16 , Li LISICON solid electrolytes typified by 4 SiO 4 , LiGeO 4 and elemental substitutions thereof, garnet type solid electrolytes typified by Li 7 La 3 Zr 2 O 12 and elemental substitutions thereof, Li 3 PO 4 and its N Glass or glass-ceramics obtained by adding materials such as Li 2 SO 4 and Li 2 CO 3 to a base material containing a Li—BO compound such as LiBO 2 and Li 3 BO 3 may be used.
  • a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure.
  • a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt. Therefore, the ionic conductivity can be further increased.
  • Lithium salts include LiPF6 , LiBF4 , LiSbF6, LiAsF6 , LiSO3CF3 , LiN ( SO2F )2, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ) ( SO2C4F9 ), LiC( SO2CF3 ) 3 etc. are mentioned .
  • One lithium salt selected from these may be used alone, or a mixture of two or more lithium salts selected from these may be used.
  • LiBH 4 --LiI LiBH 4 --P 2 S 5 or the like
  • LiBH 4 --LiI LiBH 4 --P 2 S 5 or the like
  • the shape of the solid electrolyte 100 is not particularly limited, and may be acicular, spherical, oval, or the like, for example.
  • the shape of the solid electrolyte 100 may be particulate.
  • the median diameter may be 100 ⁇ m or less.
  • the coated active material 130 and the solid electrolyte 100 can form a good dispersion state in the electrode material 1000 . Therefore, the charge/discharge characteristics of the battery are improved.
  • the median diameter of solid electrolyte 100 may be 10 ⁇ m or less.
  • the median diameter of the solid electrolyte 100 may be smaller than the median diameter of the coated active material 130 . According to such a configuration, in the electrode material 1000, the solid electrolyte 100 and the coated active material 130 can form a better dispersed state.
  • the median diameter of the coated active material 130 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the coated active material 130 and the solid electrolyte 100 can form a good dispersion state in the electrode material 1000 .
  • the charge/discharge characteristics of the battery are improved.
  • the median diameter of coated active material 130 is 100 ⁇ m or less, the diffusion rate of lithium inside coated active material 130 is sufficiently ensured. Therefore, the battery can operate at high output.
  • the median diameter of the coated active material 130 may be larger than the median diameter of the solid electrolyte 100 . Thereby, the coated active material 130 and the solid electrolyte 100 can form a good dispersed state.
  • the solid electrolyte 100 and the coated active material 130 may be in contact with each other, as shown in FIG. At this time, coating layer 111 and solid electrolyte 100 are in contact with each other.
  • the electrode material 1000 may contain a plurality of solid electrolyte 100 particles and a plurality of coated active material 130 particles.
  • the content of the solid electrolyte 100 and the content of the coated active material 130 may be the same or different.
  • volume diameter means the particle diameter when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution is measured by, for example, a laser diffraction measurement device or an image analysis device.
  • the electrode material 1000 is obtained by mixing the coated active material 130 and the solid electrolyte 100 .
  • a method for mixing the coated active material 130 and the solid electrolyte 100 is not particularly limited. Coated active material 130 and solid electrolyte 100 may be mixed using a device such as a mortar, or coated active material 130 and solid electrolyte 100 may be mixed using a mixing device such as a ball mill.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 3.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 3.
  • a battery 2000 according to Embodiment 3 includes a positive electrode 201 , an electrolyte layer 202 and a negative electrode 203 .
  • the positive electrode 201 contains the electrode material 1000 in the second embodiment.
  • the electrolyte layer 202 is arranged between the positive electrode 201 and the negative electrode 203 .
  • the interfacial resistance of the battery 2000 can be reduced.
  • the ratio "v1:100-v1" between the volume of the positive electrode active material and the volume of the solid electrolyte may satisfy 30 ⁇ v1 ⁇ 95.
  • the solid electrolyte volume is the total volume of the solid electrolyte 100 and the coating material.
  • the thickness of the positive electrode 201 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode 201 is 10 ⁇ m or more, the energy density of the battery 2000 is sufficiently ensured. When the thickness of the positive electrode 201 is 500 ⁇ m or less, operation at high output becomes possible.
  • the electrolyte layer 202 is a layer containing an electrolyte.
  • the electrolyte is, for example, a solid electrolyte. That is, electrolyte layer 202 may be a solid electrolyte layer.
  • the electrolyte layer 202 may contain at least one selected from the group consisting of halide solid electrolytes, sulfide solid electrolytes, oxide solid electrolytes, polymer solid electrolytes, and complex hydride solid electrolytes.
  • a halide solid electrolyte having the same composition as the coating material in the first embodiment may be used as the halide solid electrolyte.
  • the solid electrolyte contained in the electrolyte layer 202 may be a halide solid electrolyte having a composition different from that of the coating material in the first embodiment. With such a configuration, the charge/discharge characteristics of the battery can be further improved.
  • the materials exemplified in Embodiment 2 can be used as the sulfide solid electrolyte.
  • Electrolyte layer 202 may contain a sulfide solid electrolyte having the same composition as solid electrolyte 100 in the second embodiment.
  • the sulfide solid electrolyte with excellent reduction stability since the sulfide solid electrolyte with excellent reduction stability is included, a low-potential negative electrode material such as graphite or metallic lithium can be used, and the energy density of the battery 2000 can be improved. Further, according to the configuration in which electrolyte layer 202 contains the same sulfide solid electrolyte as solid electrolyte 100 in Embodiment 2, the charge/discharge characteristics of battery 2000 can be improved.
  • the materials exemplified in Embodiment 2 can be used as the oxide solid electrolyte.
  • the materials exemplified in Embodiment 2 can be used as the polymer solid electrolyte.
  • the materials exemplified in Embodiment 2 can be used as the complex hydride solid electrolyte.
  • the electrolyte layer 202 may contain a solid electrolyte as a main component. That is, the electrolyte layer 202 may contain, for example, 50% or more of the solid electrolyte in mass ratio with respect to the entire electrolyte layer 202 . With such a configuration, the charge/discharge characteristics of the battery 2000 can be further improved.
  • the electrolyte layer 202 may contain 70% or more of the solid electrolyte in mass ratio with respect to the entire electrolyte layer 202 . With such a configuration, the charge/discharge characteristics of the battery 2000 can be further improved.
  • the electrolyte layer 202 contains the solid electrolyte contained in the electrolyte layer 202 as a main component, and also contains unavoidable impurities, starting materials, by-products, decomposition products, etc. used when synthesizing the solid electrolyte. may contain.
  • the electrolyte layer 202 may contain 100% of the solid electrolyte contained in the electrolyte layer 202 in terms of mass ratio with respect to the entire electrolyte layer 202, except for impurities that are unavoidably mixed.
  • the charge/discharge characteristics of the battery 2000 can be further improved.
  • the electrolyte layer 202 may be composed only of the solid electrolyte.
  • the electrolyte layer 202 may contain two or more of the materials listed as solid electrolytes.
  • electrolyte layer 202 may include a halide solid electrolyte and a sulfide solid electrolyte.
  • the thickness of the electrolyte layer 202 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of the electrolyte layer 202 is 1 ⁇ m or more, the positive electrode 201 and the negative electrode 203 can be separated more reliably. When the thickness of the electrolyte layer 202 is 300 ⁇ m or less, high output operation can be realized.
  • the negative electrode 203 includes a material that has the property of intercalating and deintercalating metal ions (eg, lithium ions).
  • the negative electrode 203 contains, for example, a negative electrode active material.
  • Metal materials, carbon materials, oxides, nitrides, tin compounds, silicon compounds, etc. can be used for the negative electrode active material.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • metallic materials include lithium metal, lithium alloys, and the like.
  • carbon materials include natural graphite, coke, ungraphitized carbon, carbon fiber, spherical carbon, artificial graphite, and amorphous carbon.
  • Silicon (Si), tin (Sn), silicon compounds or tin compounds can be used in terms of capacity density.
  • the negative electrode 203 may contain a solid electrolyte.
  • the solid electrolyte the solid electrolyte exemplified as the material forming the electrolyte layer 202 may be used. According to the above configuration, the lithium ion conductivity inside the negative electrode 203 is increased, and operation at high output becomes possible.
  • the median diameter of the particles of the negative electrode active material may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the particles of the negative electrode active material is 0.1 ⁇ m or more, the negative electrode active material and the solid electrolyte can form a good dispersion state in the negative electrode. Thereby, the charge/discharge characteristics of the battery 2000 are improved. Further, when the median diameter of the negative electrode active material is 100 ⁇ m or less, diffusion of lithium inside the negative electrode active material becomes faster. Therefore, battery 2000 can operate at high power.
  • the median diameter of the particles of the negative electrode active material may be larger than the median diameter of the solid electrolyte contained in the negative electrode 203 . Thereby, the particles of the negative electrode active material and the particles of the solid electrolyte can be well dispersed.
  • the volume ratio "v2:100-v2" between the negative electrode active material and the solid electrolyte may satisfy 30 ⁇ v2 ⁇ 95.
  • 30 ⁇ v2 a sufficient energy density of the battery 2000 can be ensured.
  • v2 ⁇ 95 operation at high power can be achieved.
  • the thickness of the negative electrode 203 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the negative electrode 203 is 10 ⁇ m or more, a sufficient energy density of the battery 2000 can be secured. Further, when the thickness of the negative electrode 203 is 500 ⁇ m or less, operation at high output can be realized.
  • At least one of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a binder for the purpose of improving adhesion between particles.
  • a binder is used to improve the binding properties of the material that constitutes the electrode. Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylate hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber
  • Binders include tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and Copolymers of two or more materials selected from the group consisting of hexadiene can be used. Also, two or more selected from these may be mixed and used as a binder.
  • At least one of the positive electrode 201 and the negative electrode 203 may contain a conductive aid for the purpose of increasing electronic conductivity.
  • conductive aids include graphites such as natural graphite or artificial graphite, carbon blacks such as acetylene black and Ketjen black, conductive fibers such as carbon fiber or metal fiber, carbon fluoride, and metal powder such as aluminum.
  • conductive whiskers such as zinc oxide or potassium titanate; conductive metal oxides such as titanium oxide; and conductive polymer compounds such as polyaniline, polypyrrole, and polythiophene. Cost reduction can be achieved when a carbon conductive aid is used.
  • the battery 2000 in Embodiment 3 can be configured as batteries of various shapes such as coin type, cylindrical type, rectangular type, sheet type, button type, flat type, and laminated type.
  • NCA Powder of Li(NiCoAl)O 2
  • a tumbling fluidization granulation coating apparatus manufactured by Powrex, FD-MP-01E was used for the treatment for forming the coating layer of LiNbO 3 on the surface of the NCA.
  • the input amount of NCA, the stirring rotation speed, and the feeding rate of the coating solution were 1 kg, 400 rpm, and 6.59 g/min, respectively.
  • the charging amount of the coating solution was adjusted so that the film thickness of LiNbO 3 was 10 nm.
  • the input amount of the coating solution was calculated using the specific surface area of the active material and the density of LiNbO 3 .
  • Nb-NCA an NCA having a second coating layer
  • the second coating layer was made of a second coating material, lithium niobate (LiNbO 3 ).
  • a first coating layer made of LYBC was formed on the surface of Nb-NCA.
  • the first coating layer was formed by compressive shearing treatment using a particle compounding device (NOB-MINI, manufactured by Hosokawa Micron Corporation). Specifically, Nb-NCA and LYBC were weighed so as to have a mass ratio of 93.7:6.3, and treated under the conditions of blade clearance: 2 mm, rotation speed: 5500 rpm, and treatment time: 25 minutes. Thus, a coated active material of Example 1 was obtained.
  • Example 1 [Preparation of positive electrode material]
  • the coated active material of Example 1 and the solid electrolyte (LPS) were weighed so that the volume ratio of Nb-NCANCA to the solid electrolyte was 70:30.
  • the positive electrode material of Example 1 was produced by mixing these with an agate mortar.
  • "solid electrolyte” means the total volume of LYBC and LPS, which are the first coating materials.
  • ⁇ Reference example 1>> Refer to the same method as in Example 1, except that when forming the first coating layer, the first coating layer was formed by mixing the NCA and the solid electrolyte in an agate mortar without using a particle compounding device. A cathode material of Example 1 was obtained.
  • the coated active material classified into coarse powder and fine powder was analyzed by an inductively coupled plasma emission spectrometer ICP-AES (manufactured by Spectro, CIROS-120), and the content ratio R1 of the coating material (LYBC) in the coarse powder and in the fine powder
  • the content ratio R2 of the coating material (LYBC) was measured and calculated.
  • the R2/R1 values of the coated active materials of Examples and Reference Examples were obtained.
  • metal Li thinness: 200 ⁇ m
  • the resulting laminate was pressure-molded at a pressure of 80 MPa to produce a laminate comprising a positive electrode, a solid electrolyte layer, and a negative electrode.
  • an insulating ferrule was used to seal the insulating outer cylinder to isolate the inside of the outer cylinder from the outside atmosphere, and the battery was produced.
  • the battery was placed in a constant temperature bath at 25°C.
  • the battery was charged at a constant current of 140 ⁇ A, which is a 0.05C rate (20 hour rate) for the theoretical capacity of the battery, until the voltage reached 4.3V. After 20 minutes of rest time, the battery was discharged at a constant current of 140 ⁇ A to a voltage of 3.7 V at a rate of 0.05 C (20 hour rate).
  • the frequency characteristics of the battery were measured under the conditions of frequency range: 10 mHz to 1 MHz, voltage amplitude: 10 mV.
  • the interfacial resistance was calculated by multiplying the arc resistance (unit: ⁇ ) seen around 1 kHz by the mass (unit: mg) of the positive electrode active material.
  • the interfacial resistance of the battery varied depending on the value of R2/R1. Specifically, the interfacial resistance decreased significantly as the value of R2/R1 decreased. When the value of R2/R1 was 7.1, the interfacial resistance showed a value lower than 461 ⁇ mg. When the value of R2/R1 was 4.9, the interfacial resistance was 415 ⁇ mg. When the value of R2/R1 was 3.7, the interfacial resistance was 244 ⁇ mg.
  • the technology of the present disclosure is useful, for example, for all-solid lithium secondary batteries.

Abstract

本開示の被覆活物質130は、活物質110と、活物質110の表面の少なくとも一部を被覆する被覆層111と、を備え、被覆層111が第1被覆材料を含み、粗粉:微粉=9:1の質量比率で分級されるように被覆活物質130の粉末に含まれる粗粉と微粉とを気流分級によって分級し、粗粉における第1被覆材料の質量含有比率をR1と定義し、微粉における第1被覆材料の質量含有比率をR2と定義したとき、R2/R1の値が7.1未満である。

Description

被覆活物質、電極材料および電池
 本開示は、被覆活物質、電極材料および電池に関する。
 特許文献1には、ハロゲン化物を固体電解質として用いた電池が開示されている。非特許文献1には、硫化物を固体電解質として用いた電池が開示されている。
国際公開第2018/025582号
Journal of Power Sources 159 (2006), p193-199.
 従来技術においては、電池の界面抵抗を低減することが望まれる。
 本開示は、
 活物質と、
 前記活物質の表面の少なくとも一部を被覆する被覆層と、
 を備えた被覆活物質であって、
 前記被覆層が第1被覆材料を含み、
 粗粉:微粉=9:1の質量比率で分級されるように前記被覆活物質の粉末に含まれる前記粗粉と前記微粉とを気流分級によって分級し、前記粗粉における前記第1被覆材料の質量含有比率をR1と定義し、前記微粉における前記第1被覆材料の質量含有比率をR2と定義したとき、R2/R1の値が7.1未満である、
 被覆活物質を提供する。
 本開示によれば、電池の界面抵抗を低減することができる。
図1は、実施の形態1における被覆活物質の概略構成を示す断面図である。 図2は、気流分級の原理を説明する図である。 図3Aは、被覆活物質の粉末に含まれる残渣が少ないときの気流分級の様子を示す模式図である。 図3Bは、被覆活物質の粉末に含まれる残渣が多いときの気流分級の様子を示す模式図である。 図4は、変形例おける被覆活物質の概略構成を示す断面図である。 図5は、実施の形態2における電極材料の概略構成を示す断面図である。 図6は、実施の形態3における電池の概略構成を示す断面図である。
 (本開示の基礎となった知見)
 例えば、正極活物質と硫化物固体電解質とが接している場合、電池の充電中に硫化物固体電解質が酸化分解することがある。この課題を解決するために、酸化物固体電解質のような酸化安定性に優れた材料で活物質の表面を被覆することが行われる。
 ここで、本発明者らは、活物質を被覆する材料が同一であっても電池の特性、特に界面抵抗に大きい違いが生じることに気が付いた。さらに、本発明者らは、この違いが被覆材料で活物質を被覆するときに発生する残渣の量に関係していることを見出し、本開示に想到した。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る被覆活物質は、
 活物質と、
 前記活物質の表面の少なくとも一部を被覆する被覆層と、
 を備えた被覆活物質であって、
 前記被覆層が第1被覆材料を含み、
 粗粉:微粉=9:1の質量比率で分級されるように前記被覆活物質の粉末に含まれる前記粗粉と前記微粉とを気流分級によって分級し、前記粗粉における前記第1被覆材料の質量含有比率をR1と定義し、前記微粉における前記第1被覆材料の質量含有比率をR2と定義したとき、R2/R1の値が7.1未満である。
 第1態様によれば、電池の界面抵抗を低減することができる。
 本開示の第2態様において、例えば、第1態様に係る被覆活物質では、前記活物質は正極活物質であってもよい。正極活物質に本開示の技術を適用すれば、酸化耐性に劣るが高いイオン伝導度を有する固体電解質を正極に使用することが可能となる。
 本開示の第3態様において、例えば、第1または第2態様に係る被覆活物質では、前記R2/R1の値が4.9以下であってもよい。このような構成によれば、電池の界面抵抗を更に低減することができる。
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つに係る被覆活物質では、前記R2/R1の値が3.7以下であってもよい。このような構成によれば、電池の界面抵抗を更に低減することができる。
 本開示の第5態様において、例えば、第1から第4態様のいずれか1つに係る被覆活物質では、前記被覆層は第1被覆材料を含んでいてもよく、前記第1被覆材料は、Li、M1、およびX1を含んでいてもよく、M1は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであってもよく、X1は、F、Cl、Br、およびIからなる群より選択される少なくとも1つであってもよい。このような材料は、イオン伝導性および酸化耐性に優れている。
 本開示の第6態様において、例えば、第5態様に係る被覆活物質では、前記第1被覆材料は、下記の組成式(1)で表されてもよく、α1、β1、およびγ1は、それぞれ独立して、0より大きい値であってもよい。組成式(1)で表されるハロゲン化物固体電解質を電池に用いた場合、電池の出力特性を向上させることができる。
 Liα1M1β1X1γ1・・・(1)
 本開示の第7態様において、例えば、第5または第6態様に係る被覆活物質では、M1は、イットリウムを含んでいてもよい。M1がYを含む場合、組成式(1)で表されるハロゲン化物固体電解質は、高いイオン伝導度を示す。
 本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係る被覆活物質では、前記被覆層は、第1被覆材料を含む第1被覆層と、第2被覆材料を含む第2被覆層とを含んでいてもよく、前記第1被覆層は、前記第2被覆層の外側に位置していてもよい。このような構成によれば、電池の界面抵抗を更に低減することができる。
 本開示の第9態様において、例えば、第8態様に係る被覆活物質では、前記第2被覆材料がリチウムイオン伝導性を有する酸化物固体電解質を含んでいてもよい。このような構成によれば、電池の界面抵抗を更に低減することができる。
 本開示の第10態様において、例えば、第8または第9態様に係る被覆活物質では、前記第2被覆材料がNbを含んでいてもよい。このような構成によれば、電池の界面抵抗を更に低減することができる。
 本開示の第11態様において、例えば、第8から第10態様のいずれか1つに係る被覆活物質では、前記第2被覆材料がニオブ酸リチウムを含んでいてもよい。このような構成によれば、電池の界面抵抗を更に低減することができる。
 本開示の第12態様に係る電極材料は、
 第1から第11態様のいずれか1つの被覆活物質と、
 固体電解質と、
 を備えている。
 本開示の電極材料を使用することによって、電池の界面抵抗を低減することができる。
 本開示の第13態様において、例えば、第12態様に係る電極材料では、前記固体電解質は、硫化物固体電解質を含んでいてもよい。硫化物固体電解質は、イオン伝導度および柔軟性に優れている。そのため、硫化物固体電解質が電極材料に使用されている場合、電池の界面抵抗が低減されやすい。
 本開示の第14態様に係る電池は、
 第12または第13態様の電極材料を含む正極と、
 負極と、
 前記正極と前記負極との間に配置された電解質層と、
 を備えている。
 本開示によれば、界面抵抗が低減された電池を提供できる。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 (実施の形態1)
 図1は、実施の形態1における被覆活物質130の概略構成を示す断面図である。被覆活物質130は、活物質110および被覆層111を含む。活物質110の形状は、例えば、粒子状である。被覆層111は、活物質110の表面の少なくとも一部を被覆している。被覆層111は、電池の電極において活物質110と固体電解質との直接接触を抑制し、固体電解質の副反応を抑制する。その結果、電池の界面抵抗が低減されうる。
 被覆層111は、被覆材料(第1被覆材料)を含む層である。活物質110の表面上に被覆層111が設けられている。被覆層111は、被覆材料のみを含んでいてもよい。「被覆材料のみを含む」とは、不可避不純物を除き、被覆材料以外の材料が意図的に添加されていないことを意味する。例えば、被覆材料の原料、被覆材料を作製する際に生じる副生成物などは、不可避不純物に含まれる。
 被覆材料は、リチウムイオン伝導性を有する固体電解質(第1固体電解質)でありうる。
 被覆層111の全体の質量に対する不可避不純物の質量の比率は、5%以下であってもよく、3%以下であってもよく、1%以下であってもよく、0.5%以下であってもよい。
 「界面抵抗」は、次の方法によって算出された値である。電池の完成後、充放電の処理を行う。1サイクル目の放電を放電深度(Depth of Discharge)50%で止める。放電深度50%の状態は、充電容量×0.93(初回充放電効率の平均値)×0.50で求められる電力量を充電状態の電池から放電させたときの状態である。その後、電池のインピーダンス測定を行う。インピーダンス測定の範囲は、例えば、10mHzから1MHzである。複素インピーダンスプロットにおいて、周波数1kHzの周辺に存在する円弧から抵抗値を算出する。算出した抵抗値と電池に含まれる活物質の質量とを掛け合わせた値を「界面抵抗」とみなすことができる。
 被覆層111は、活物質110を一様に被覆していてもよい。被覆層111は、電池の電極において活物質110と固体電解質との直接接触を抑制し、固体電解質の副反応を抑制する。その結果、電池の界面抵抗が低減されうる。
 被覆層111は、活物質110の表面の一部のみを被覆していてもよい。被覆層111によって被覆されていない部分を介して活物質110の粒子同士が直接接触するので、活物質110の粒子間の電子伝導性が向上する。その結果、電池の高出力での動作が可能となる。
 被覆活物質130の粉末に含まれた残渣の量は少ない。本開示において、残渣の量は、以下に説明する「R2/R1」の値によって規定されうる。粗粉:微粉=9:1の質量比率で分級されるように被覆活物質130に含まれる粗粉と微粉とを気流分級によって分級する。粗粉における被覆材料(第1被覆材料)の質量含有比率をR1と定義する。微粉における被覆材料(第1被覆材料)の質量含有比率をR2と定義する。本実施の形態において、R2/R1の値は7.1未満である。この場合、被覆活物質130を用いた電池が低い界面抵抗を示す。R2/R1の値は、被覆層111を構成する被覆材料の残渣の量を反映した値であるとともに、被覆層111による活物質110の被覆率を反映した値でもある。
 被覆材料による活物質110の被覆率が低く、被覆材料の残渣が多い場合、R2/R1は大きい。他方、被覆材料による活物質110の被覆率が高く、被覆材料の残渣が少ない場合、R2/R1は小さい。理想的な被覆状態は、被覆層111によって活物質110と固体電解質との接触が妨げられて固体電解質の酸化分解が抑制される状態である。その結果、電池の界面抵抗が低減する。
 残渣の主成分は、被覆層111を形成する際に使用した被覆材料である。「主成分」は、質量比で最も多く含まれる成分を意味する。残渣には、副生成物および不純物が含まれることもある。残渣は、被覆層111を形成する際に活物質110に付着せず、被覆活物質130の粉末に微粒子の形態で残存している。
 次に、R2/R1の値について詳細に説明する。R2/R1の値は、以下の操作および計算によって求められる。
 図2は、気流分級の原理を説明する図である。気流分級は、乾式の分級方法である。粒子300をその大きさによって粗粉(大きい粒子)と微粉(小さい粒子)とに分けるために、異なる方向に働く2つの力を利用しうる。1つの力は、粒子300に働く遠心力303である。もう1つの力は、粒子300に働く抗力304である。乾式の分級方法を応用した装置において、粒子300は、旋回流301に乗って装置の内部を旋回する。これにより、粒子300に遠心力303が働く。装置の内部において、抗力304は、例えば、空気の流れ302によって作り出される。粒子300に働く遠心力303と空気の流れ302による抗力304との大小によって粒子300が選別される。旋回流301の回転数の増加に伴って遠心力303が増加するため、粗粉と微粉との質量比率を旋回流301の回転数によって調節できる。
 上記の気流分級によって、被覆活物質130の粉末を粗粉と微粉とに分級する。粗粉と微粉との比率は、質量比率にて、粗粉:微粉=9:1である。仮に、被覆活物質130の粉末に被覆材料の残渣が多く含まれている場合、その大部分が微粉に移る。被覆材料の残渣は、被覆活物質130よりも小さくて軽いからである。粗粉に含まれる残渣は少ない。粗粉は、ほぼ、被覆活物質130そのもので構成される。
 次に、粗粉および微粉のそれぞれにおける被覆材料の含有比率を算出する。詳細には、粗粉において、粗粉の全質量に対する被覆材料の質量の比率(=R1)を算出する。被覆材料の質量には、被覆層111として存在している被覆材料と残渣として存在している被覆材料との両方が含まれる。粗粉の全質量に対する被覆材料の質量の比率は、誘導結合プラズマ発光分光分析(ICP)の測定結果から算出されうる。同じ方法によって、微粉において、微粉の全質量に対する被覆材料の質量の比率(=R2)を算出する。これにより、R2/R1の値を算出することができる。
 図3Aは、被覆活物質130の粉末に含まれる残渣が少ないときの気流分級の様子を示す模式図である。被覆活物質130の粉末に含まれる残渣が少ない場合、すなわち、被覆材料による活物質110の被覆率が高い場合、被覆活物質130の粉末を粗粉と微粉とに分級したとしても、微粉に含まれる残渣は少ない。そのため、上記した方法によって算出される比率R2も小さい。一方、粗粉から算出される比率R1は、被覆活物質130の粉末に含まれる残渣の多寡に左右されにくい。したがって、被覆活物質130の粉末に含まれる残渣が少ないとき、R2/R1の値は小さい。
 図3Bは、被覆活物質130の粉末に含まれる残渣が多いときの気流分級の様子を示す模式図である。被覆活物質130の粉末に含まれる残渣111aが多い場合、すなわち、被覆材料による活物質110の被覆率が低い場合、被覆活物質130の粉末を分級したときに得られる微粉に含まれる残渣111aは多い。そのため、上記した方法によって算出される比率R2も大きい。一方、粗粉から算出される比率R1は、被覆活物質130の粉末に含まれる残渣111aの多寡に左右されにくい。したがって、被覆活物質130の粉末に含まれる残渣111aが多いとき、R2/R1の値は大きい。
 以上の説明から理解できるように、R2/R1の値は、被覆活物質130の残渣に応じて増減する。言い換えれば、被覆活物質130の被覆率の増減に応じて増減する。
 R2/R1の値は4.9以下であってもよい。このような構成によれば、電池の界面抵抗を更に低減することができる。R2/R1の値の下限は特に限定されず、例えば、3.7である。
 次に、被覆層111および活物質110について詳細に説明する。
 (被覆層111)
 被覆層111には、イオン伝導性および酸化耐性に優れた被覆材料が適している。被覆材料(第1被覆材料)は、Li、M1、およびX1を含む材料でありうる。M1は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つである。X1は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。このような材料は、イオン伝導性および酸化耐性に優れている。
 「半金属元素」は、B、Si、Ge、As、Sb、およびTeを含む。
 「金属元素」は、水素を除く周期表1族から12族に含まれる全ての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く13族から16族に含まれる全ての元素を含む。すなわち、金属元素は、ハロゲン化合物と無機化合物を形成した際にカチオンとなりうる元素群である。
 被覆材料は、例えば、ハロゲン化物固体電解質である。ハロゲン化物固体電解質は、ハロゲン元素を含む固体電解質である。ハロゲン化物固体電解質は、例えば、下記の組成式(1)により表される。組成式(1)において、α1、β1、およびγ1は、それぞれ独立して、0より大きい値である。
 Liα1M1β1X1γ1・・・式(1)
 組成式(1)で表されるハロゲン化物固体電解質は、Liおよびハロゲン元素のみからなるLiIなどのハロゲン化物固体電解質と比較して、高いイオン伝導度を有する。そのため、組成式(1)で表されるハロゲン化物固体電解質を電池に用いた場合、電池の出力特性を向上させることができる。
 本開示において、式中の元素を「(Al,Ga,In)」のように表すとき、この表記は、括弧内の元素群より選択される少なくとも1種の元素を示す。すなわち、「(Al,Ga,In)」は、「Al、Ga、およびInからなる群より選択される少なくとも1種」と同義である。他の元素の場合でも同様である。
 組成式(1)において、M1は、Y(=イットリウム)を含んでいてもよい。すなわち、被覆材料は、金属元素としてYを含んでいてもよい。M1がYを含む場合、組成式(1)で表されるハロゲン化物固体電解質は、高いイオン伝導度を示す。
 組成式(1)は、2.5≦α1≦3、1≦β1≦1.1、およびγ1=6を満たしてもよい。
 X1は、ClおよびBrからなる群より選択される少なくとも1つを含んでいてもよい。X1は、ClとBrとを含んでいてもよい。
 ハロゲン化物固体電解質は、硫黄を含んでいなくてもよい。
 Yを含むハロゲン化物固体電解質は、下記の組成式(2)により表される化合物であってもよい。
 LiaMebc6・・・式(2)
 組成式(2)は、a+mb+3c=6、かつ、c>0を満たす。組成式(2)において、Meは、LiおよびY以外の金属元素ならびに半金属元素からなる群より選択される少なくとも1つの元素を含む。mは、Meの価数である。Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つを含む。
 Meは、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、TaおよびNbからなる群より選択される少なくとも1つを含んでいてもよい。
 被覆材料は、下記の組成式(A1)により表される化合物であってもよい。ここで、組成式(A1)において、Xは、ClおよびBrからなる群より選択される少なくとも1つの元素である。組成式(A1)において、0<d<2が満たされる。
 Li6-3dd6・・・式(A1)
 被覆材料は、下記の組成式(A2)により表される化合物であってもよい。ここで、組成式(A2)において、Xは、ClおよびBrからなる群より選択される少なくとも1つの元素である。
 Li3YX6・・・式(A2)
 被覆材料は、下記の組成式(A3)により表される化合物であってもよい。ここで、組成式(A3)において、0<δ≦0.15が満たされる。
 Li3-3δ1+δCl6・・・式(A3)
 被覆材料は、下記の組成式(A4)により表される化合物であってもよい。ここで、組成式(A4)において、0<δ≦0.25が満たされる。
 Li3-3δ1+δBr6・・・式(A4)
 被覆材料は、下記の組成式(A5)により表される化合物であってもよい。ここで、組成式(A5)において、Meは、Mg、Ca、Sr、Ba、およびZnからなる群より選択される少なくとも1つの元素である。組成式(A5)において、-1<δ<2、0<a<3、0<(3-3δ+a)、0<(1+δ-a)、および0≦x≦6が満たされる。
 Li3-3δ+a1+δ-aMeaCl6-xBrx・・・式(A5)
 被覆材料は、下記の組成式(A6)により表される化合物であってもよい。ここで、組成式(A6)において、Meは、Al、Sc、Ga、およびBiからなる群より選択される少なくとも1つの元素である。組成式(A6)において、-1<δ<1、0<a<2、0<(1+δ-a)、および0≦x≦6が満たされる。
 Li3-3δ1+δ-aMeaCl6-xBrx・・・式(A6)
 被覆材料は、下記の組成式(A7)により表される化合物であってもよい。ここで、組成式(A7)において、Meは、Zr、Hf、およびTiからなる群より選択される少なくとも1つの元素である。組成式(A7)において、-1<δ<1、0<a<1.5、0<(3-3δ-a)、0<(1+δ-a)、および0≦x≦6が満たされる。
 Li3-3δ-a1+δ-aMeaCl6-xBrx・・・式(A7)
 被覆材料は、下記の組成式(A8)により表される化合物であってもよい。ここで、組成式(A8)において、Meは、TaおよびNbからなる群より選択される少なくとも1つの元素である。組成式(A8)において、-1<δ<1、0<a<1.2、0<(3-3δ-2a)、0<(1+δ-a)、および0≦x≦6が満たされる。
 Li3-3δ-2a1+δ-aMeaCl6-xBrx・・・式(A8)
 被覆材料として、例えば、Li3YX6、Li2MgX4、Li2FeX4、Li(Al,Ga,In)X4、Li3(Al,Ga,In)X6などが用いられうる。ここで、Xは、ClおよびBrからなる群より選択される少なくとも1つの元素を含む。
 Li3YX6の代表的な組成は、例えば、Li3YBr2Cl4である。被覆材料は、Li3YBr2Cl4を含んでいてもよい。
 被覆材料は、Li2.71.1Cl6、Li3YBr6またはLi2.50.5Zr0.5Cl6であってもよい。
 被覆層111の厚さは、例えば、1nm以上かつ500nm以下である。被覆層111の厚さが適切に調整されていると、活物質110と固体電解質100との接触が十分に抑制されうる。被覆層111の厚さは、被覆活物質130をイオンミリングなどの方法で薄片化し、透過型電子顕微鏡で被覆活物質130の断面を観察することによって特定されうる。任意の複数の位置(例えば、5点)で測定された厚さの平均値を被覆層111の厚さとみなすことができる。
 被覆材料は、下記の方法により製造されうる。
 目的とする組成の配合比となるようにハロゲン化物の原料粉末を用意する。例えば、Li3YCl6を作製する場合には、LiClとYCl3とを3:1のモル比で用意する。
 このとき、原料粉末の種類を適切に選択することで、上述の組成式におけるM1、Me、XおよびX1を決定することができる。また、原料と配合比と合成プロセスを調整することで、上述の値α1、β1、γ1、a、b、c、d、m、δおよびxを調整できる。
 原料粉末をよく混合した後、メカノケミカルミリングの方法を用いて原料粉末同士を混合、粉砕および反応させる。もしくは、原料粉末をよく混合した後、真空中で焼結してもよい。これにより、所望の組成を有する被覆材料が得られる。
 (活物質110)
 活物質110は、例えば、正極活物質である。正極活物質に本開示の技術を適用すれば、酸化耐性に劣るが高いイオン伝導度を有する固体電解質を正極に使用することが可能となる。そのような固体電解質としては、硫化物固体電解質、ハロゲン化物固体電解質などが挙げられる。
 正極活物質は、金属イオン(例えば、リチウムイオン)を吸蔵および放出する特性を有する材料を含む。正極活物質として、例えば、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、遷移金属オキシ窒化物などが用いられうる。特に、正極活物質として、リチウム含有遷移金属酸化物を用いた場合には、電池の製造コストを安くでき、平均放電電圧を高めることができる。リチウム含有遷移金属酸化物としては、Li(NiCoAl)O2、Li(NiCoMn)O2、LiCoO2などが挙げられる。
 正極活物質は、NiとCoとAlとを含んでいてもよい。正極活物質は、ニッケル・コバルト・アルミニウム酸リチウムであってもよい。例えば、正極活物質は、Li(NiCoAl)O2であってもよい。このような構成によれば、電池のエネルギー密度および充放電効率をより高めることができる。
 活物質110は、例えば、粒子の形状を有する。活物質110の粒子の形状は特に限定されない。活物質110の粒子の形状は、球状、楕円球状、鱗片状、または繊維状でありうる。
 (被覆活物質の製造方法)
 被覆活物質130は、下記の方法によって製造されうる。
 活物質110の粉末および被覆材料の粉末を適切な比率で混合して混合物を得る。混合物をミリング処理し、混合物に機械的エネルギーを付与する。ミリング処理には、ボールミルなどの混合装置を用いることができる。材料の酸化を抑制するために、ミリング処理を乾燥雰囲気かつ不活性雰囲気で行ってもよい。
 被覆活物質130は、乾式粒子複合化法によって製造されてもよい。乾式粒子複合化法による処理は、衝撃、圧縮およびせん断からなる群より選ばれる少なくとも1つの機械的エネルギーを活物質110および被覆材料に付与することを含む。活物質110と被覆材料とは、適切な比率で混合される。
 被覆活物質130の製造で使用される装置は、特に限定されず、活物質110と被覆材料との混合物に衝撃、圧縮、およびせん断の機械的エネルギーを付与できる装置でありうる。機械的エネルギーを付与できる装置として、ボールミル、「メカノフュージョン」(ホソカワミクロン社製)、「ノビルタ」(ホソカワミクロン社製)などの圧縮せん断式加工装置(粒子複合化装置)が挙げられる。
 「メカノフュージョン」は、複数の異なる原料粉末に強い機械的エネルギーを加えることによる乾式機械的複合化技術を用いた粒子複合化装置である。メカノフュージョンにおいては、回転する容器とプレスヘッドとの間に投入された原料粉末に圧縮、せん断、および摩擦の機械的エネルギーが付与される。これにより、粒子の複合化が起きる。
 「ノビルタ」は、ナノ粒子を原料として複合化を行うために、粒子複合化技術を発展させた乾式機械的複合化技術を用いた粒子複合化装置である。ノビルタは、複数の種類の原料粉末に衝撃、圧縮、およびせん断の機械的エネルギーを付与することによって、複合粒子を製造する。
 「ノビルタ」では、水平円筒状の混合容器内で、混合容器の内壁との間に所定の間隙を有するように配置されたローターが高速回転し、原料粉末に対して、間隙を強制的に通過させる処理が複数回繰り返される。これにより、混合物に衝撃、圧縮、およびせん断の力を作用させて、活物質110と被覆材料との複合粒子を作製することができる。ローターの回転速度、処理時間、仕込み量などの条件を調節することによって、被覆層111の厚さ、被覆材料による活物質110の被覆率などを制御できる。つまり、先に説明したR2/R1の値も制御可能である。
 ただし、上記の装置による処理は必須ではない。被覆活物質130は、乳鉢、ミキサーなどを使って活物質110と被覆材料とを混合することによって製造されてもよい。
 (変形例)
 図4は、変形例における被覆活物質140の概略構成を示す断面図である。被覆活物質140は、活物質110および被覆層120を含む。本変形例において、被覆層120は、第1被覆層111および第2被覆層112を有する。第1被覆層111は、第1被覆材料を含む層である。第2被覆層112は、第2被覆材料を含む層である。第1被覆層111は、第2被覆層112の外側に位置している。このような構成によれば、電池の界面抵抗を更に低減することができる。
 第1被覆層111は、実施の形態1で説明した被覆層111である。第1被覆材料は、実施の形態1で説明した被覆材料である。第1被覆材料としては、ハロゲン化物固体電解質が挙げられる。一例において、第1被覆材料のイオン伝導度は、第2被覆材料のイオン伝導度よりも高い。
 第2被覆層112は、第1被覆層111と活物質110との間に位置している。本変形例では、第2被覆層112が活物質110に直接接している。第2被覆層112に含まれた第2被覆材料は、イオン伝導性および酸化耐性に優れた材料でありうる。第2被覆材料もリチウムイオン伝導性を有する固体電解質(第2固体電解質)でありうる。第2被覆材料は、典型的には、リチウムイオン伝導性を有する酸化物固体電解質である。このような構成によれば、電池の界面抵抗を更に低減することができる。
 第2被覆材料は、Nbを含む材料でありうる。第2被覆材料は、典型的には、ニオブ酸リチウム(LiNbO3)を含む。このような構成によれば、電池の界面抵抗を更に低減することができる。第2被覆材料である酸化物固体電解質として、後述する材料を使用することも可能である。
 第1被覆層111の厚さは、例えば、1nm以上かつ500nm以下である。第2被覆層112の厚さは、例えば、1nm以上かつ100nm以下である。第1被覆層111および第2被覆層112の厚さが適切に調整されていると、活物質110と固体電解質100との接触が十分に抑制されうる。各層の厚さは、先に説明した方法で特定されうる。
 被覆活物質140は、下記の方法によって製造されうる。
 まず、活物質110の表面に第2被覆層112を形成する。第2被覆層112を形成する方法は特に限定されない。第2被覆層112を形成する方法としては、液相被覆法と気相被覆法とが挙げられる。
 例えば、液相被覆法においては、第2被覆材料の前駆体溶液を活物質110の表面に塗布する。LiNbO3を含む第2被覆層112を形成する場合、前駆体溶液は、溶媒、リチウムアルコキシドおよびニオブアルコキシドの混合溶液(ゾル溶液)でありうる。リチウムアルコキシドとしては、リチウムエトキシドが挙げられる。ニオブアルコキシドとしては、ニオブエトキシドが挙げられる。溶媒は、例えば、エタノールなどのアルコールである。第2被覆層112の目標組成に応じて、リチウムアルコキシドおよびニオブアルコキシドの量を調整する。必要に応じて、前駆体溶液に水を加えてもよい。前駆体溶液は、酸性であってもよく、アルカリ性であってもよい。
 前駆体溶液を活物質110の表面に塗布する方法は特に限定されない。例えば、転動流動造粒コーティング装置を用いて前駆体溶液を活物質110の表面に塗布することができる。転動流動造粒コーティング装置によれば、活物質110を転動および流動させつつ、活物質110に前駆体溶液を吹き付け、前駆体溶液を活物質110の表面に塗布することができる。これにより、活物質110の表面に前駆体被膜が形成される。その後、前駆体被膜によって被覆された活物質110を熱処理する。熱処理によって前駆体被膜のゲル化が進行し、第2被覆層112が形成される。
 気相被覆法としては、パルスレーザー堆積(Pulsed Laser Deposition:PLD)法、真空蒸着法、スパッタリング法、熱化学気相堆積(Chemical Vapor Deposition:CVD)法、プラズマ化学気相堆積法などが挙げられる。例えば、PLD法においては、ターゲットとしてのイオン伝導材料にエネルギーの強いパルスレーザー(例えば、KrFエキシマレーザー、波長:248nm)を照射し、昇華したイオン伝導材料を活物質110の表面に堆積させる。LiNbO3の第2被覆層112を形成する場合、高密度に焼結したLiNbO3がターゲットとして用いられる。
 第2被覆層112の形成後、実施の形態1で説明した方法によって第1被覆層111を形成する。これにより、被覆活物質140が得られる。
 (実施の形態2)
 図5は、実施の形態2における電極材料1000の概略構成を示す断面図である。
 電極材料1000は、実施の形態1における被覆活物質130および固体電解質100を含む。固体電解質100によれば、電極材料1000におけるイオン伝導性を十分に確保できる。電極材料1000は、正極材料でありうる。被覆活物質130が被覆負極活物質であるとき、本実施の形態は、負極材料を提供しうる。被覆活物質130に代えて、または、被覆活物質130とともに、変形例の被覆活物質140も使用されうる。
 被覆活物質130の活物質110は、被覆層111によって固体電解質100から隔てられている。活物質110は、固体電解質100に直接接触していなくてもよい。被覆層111がイオン伝導性を有するためである。
 固体電解質100は、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、および錯体水素化物固体電解質からなる群より選ばれる少なくとも1つを含んでいてもよい。
 ハロゲン化物固体電解質としては、実施の形態1において被覆材料として説明した材料が挙げられる。
 硫化物固体電解質としては、例えば、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、Li10GeP212などが用いられうる。これらに、LiX、Li2O、MOq、LipMOqなどが添加されてもよい。ここで、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。「MOq」および「LipMOq」における元素Mは、P、Si、Ge、B、Al、Ga、In、Fe、およびZnからなる群より選択される少なくとも1つである。「MOq」および「LipMOq」におけるpおよびqは、それぞれ独立な自然数である。
 酸化物固体電解質としては、例えば、LiTi2(PO43およびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO3系のペロブスカイト型固体電解質、Li14ZnGe416、Li4SiO4、LiGeO4およびそれらの元素置換体を代表とするLISICON型固体電解質、Li7La3Zr212およびその元素置換体を代表とするガーネット型固体電解質、Li3PO4およびそのN置換体、LiBO2、Li3BO3などのLi-B-O化合物を含むベース材料にLi2SO4、Li2CO3などの材料が添加されたガラスまたはガラスセラミックスなどが用いられうる。
 高分子固体電解質としては、例えば、高分子化合物とリチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができる。このため、イオン伝導度をより高めることができる。リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2F)2、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33などが挙げられる。これらから選択される1種のリチウム塩が単独で使用されてもよいし、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
 錯体水素化物固体電解質としては、例えば、LiBH4-LiI、LiBH4-P25などが用いられうる。
 固体電解質100の形状は、特に限定されるものではなく、例えば、針状、球状、楕円球状などであってもよい。例えば、固体電解質100の形状は、粒子状であってもよい。
 固体電解質100の形状が粒子状(例えば、球状)の場合、メジアン径は、100μm以下であってもよい。メジアン径が100μm以下の場合、被覆活物質130と固体電解質100とが、電極材料1000において良好な分散状態を形成しうる。このため、電池の充放電特性が向上する。固体電解質100のメジアン径は10μm以下であってもよい。
 固体電解質100のメジアン径は、被覆活物質130のメジアン径より小さくてもよい。このような構成によれば、電極材料1000において、固体電解質100と被覆活物質130とが更に良好な分散状態を形成できる。
 被覆活物質130のメジアン径は、0.1μm以上かつ100μm以下であってもよい。被覆活物質130のメジアン径が0.1μm以上の場合、電極材料1000において、被覆活物質130と固体電解質100とが良好な分散状態を形成しうる。この結果、電池の充放電特性が向上する。被覆活物質130のメジアン径が100μm以下の場合、被覆活物質130の内部のリチウムの拡散速度が十分に確保される。このため、電池が高出力で動作しうる。
 被覆活物質130のメジアン径は、固体電解質100のメジアン径よりも大きくてもよい。これにより、被覆活物質130と固体電解質100とが、良好な分散状態を形成できる。
 電極材料1000において、固体電解質100と被覆活物質130とは、図5に示されるように、互いに、接触していてもよい。このとき、被覆層111と固体電解質100とは、互いに接触する。
 電極材料1000は、複数の固体電解質100の粒子と、複数の被覆活物質130の粒子と、を含んでいてもよい。
 電極材料1000において、固体電解質100の含有量と被覆活物質130の含有量とは、互いに、同じであってもよいし、異なってもよい。
 本明細書において、「メジアン径」は、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置または画像解析装置により測定される。
 電極材料1000は、被覆活物質130と固体電解質100とを混合することによって得られる。被覆活物質130と固体電解質100とを混合する方法は特に限定されない。乳鉢などの器具を用いて被覆活物質130と固体電解質100とを混合してもよく、ボールミルなどの混合装置を用いて被覆活物質130と固体電解質100とを混合してもよい。
 (実施の形態3)
 以下、実施の形態3が説明される。上述の実施の形態1および実施の形態2と重複する説明は、適宜、省略される。
 図6は、実施の形態3における電池2000の概略構成を示す断面図である。
 実施の形態3における電池2000は、正極201と、電解質層202と、負極203と、を備える。
 正極201は、実施の形態2における電極材料1000を含む。
 電解質層202は、正極201と負極203との間に配置される。
 以上の構成によれば、電池2000の界面抵抗を低減することができる。
 正極201において、正極活物質の体積と固体電解質の体積との比率「v1:100-v1」が30≦v1≦95を満たしてもよい。30≦v1が満たされる場合、電池2000のエネルギー密度が十分に確保される。また、v1≦95が満たされる場合、高出力での動作が可能となる。固体電解質の体積は、固体電解質100と被覆材料との合計体積である。
 正極201の厚さは、10μm以上かつ500μm以下であってもよい。正極201の厚さが10μm以上である場合、電池2000のエネルギー密度が十分に確保される。正極201の厚さが500μm以下である場合、高出力での動作が可能となる。
 電解質層202は、電解質を含む層である。当該電解質は、例えば、固体電解質である。すなわち、電解質層202は、固体電解質層であってもよい。
 電解質層202は、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、および錯体水素化物固体電解質からなる群より選ばれる少なくとも1つを含んでいてもよい。
 電解質層202がハロゲン化物固体電解質を含む場合、ハロゲン化物固体電解質として、実施の形態1における被覆材料と同じ組成のハロゲン化物固体電解質を用いてもよい。このような構成によれば、電池2000の出力密度および充放電特性をより向上させることができる。
 電解質層202に含まれる固体電解質は、実施の形態1における被覆材料の組成とは異なる組成のハロゲン化物固体電解質であってもよい。このような構成によれば、電池の充放電特性をより向上させることができる。
 電解質層202が硫化物固体電解質を含む場合、硫化物固体電解質としては、実施の形態2で例示した材料が使用されうる。
 電解質層202に含まれる固体電解質として、実施の形態2における固体電解質100と同じ硫化物固体電解質を用いてもよい。電解質層202は、実施の形態2における固体電解質100の組成と同じ組成の硫化物固体電解質を含んでいてもよい。
 以上の構成によれば、還元安定性に優れる硫化物固体電解質を含むため、黒鉛または金属リチウムなどの低電位の負極材料を用いることができ、電池2000のエネルギー密度を向上させることができる。また、電解質層202が実施の形態2における固体電解質100と同じ硫化物固体電解質を含む構成によれば、電池2000の充放電特性を向上させることができる。
 電解質層202が酸化物固体電解質を含む場合、酸化物固体電解質としては、実施の形態2で例示した材料が使用されうる。
 電解質層202が高分子固体電解質を含む場合、高分子固体電解質としては、実施の形態2で例示した材料が使用されうる。
 電解質層202が錯体水素化物固体電解質を含む場合、錯体水素化物固体電解質としては、実施の形態2で例示した材料が使用されうる。
 電解質層202は、固体電解質を主成分として含んでいてもよい。すなわち、電解質層202は、例えば、電解質層202の全体に対する質量割合で固体電解質を50%以上含んでいてもよい。このような構成によれば、電池2000の充放電特性をより向上させることができる。
 電解質層202は、電解質層202の全体に対する質量割合で固体電解質を70%以上含んでいてもよい。このような構成によれば、電池2000の充放電特性をより向上させることができる。
 電解質層202は、電解質層202に含まれる固体電解質を主成分として含みながら、さらに、不可避的な不純物、または、固体電解質を合成する際に用いられる出発原料、副生成物および分解生成物などを含んでいてもよい。
 電解質層202は、混入が不可避的な不純物を除いて、電解質層202の全体に対する質量割合で電解質層202に含まれる固体電解質を100%含んでいてもよい。
 以上の構成によれば、電池2000の充放電特性をより向上させることができる。
 以上のように、電解質層202は固体電解質のみから構成されていてもよい。
 電解質層202は、固体電解質として挙げられた材料のうちの2種以上を含んでいてもよい。例えば、電解質層202は、ハロゲン化物固体電解質と硫化物固体電解質とを含んでいてもよい。
 電解質層202の厚さは、1μm以上かつ300μm以下であってもよい。電解質層202の厚さが1μm以上の場合には、正極201と負極203とをより確実に分離することができる。電解質層202の厚さが300μm以下の場合には、高出力での動作を実現しうる。
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵および放出する特性を有する材料を含む。負極203は、例えば、負極活物質を含む。
 負極活物質には、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物などが使用されうる。金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属、リチウム合金などが挙げられる。炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素などが挙げられる。容量密度の観点から、珪素(Si)、錫(Sn)、珪素化合物または錫化合物を使用できる。
 負極203は、固体電解質を含んでいてもよい。固体電解質としては、電解質層202を構成する材料として例示された固体電解質を用いてもよい。以上の構成によれば、負極203内部のリチウムイオン伝導性を高め、高出力での動作が可能となる。
 負極活物質の粒子のメジアン径は、0.1μm以上かつ100μm以下であってもよい。負極活物質の粒子のメジアン径が0.1μm以上の場合、負極において、負極活物質と固体電解質とが、良好な分散状態を形成し得る。これにより、電池2000の充放電特性が向上する。また、負極活物質のメジアン径が100μm以下の場合、負極活物質の内部のリチウム拡散が速くなる。このため、電池2000が高出力で動作し得る。
 負極活物質の粒子のメジアン径は、負極203に含まれた固体電解質のメジアン径よりも大きくてもよい。これにより、負極活物質の粒子と固体電解質の粒子との良好な分散状態を形成できる。
 負極活物質と固体電解質との体積比率「v2:100-v2」について、30≦v2≦95が満たされてもよい。30≦v2の場合、十分な電池2000のエネルギー密度を確保し得る。v2≦95の場合、高出力での動作を実現しうる。
 負極203の厚さは、10μm以上かつ500μm以下であってもよい。負極203の厚さが10μm以上の場合には、十分な電池2000のエネルギー密度を確保し得る。また、負極203の厚さが500μm以下の場合には、高出力での動作を実現しうる。
 正極201と電解質層202と負極203とのうちの少なくとも1つには、粒子同士の密着性を向上させる目的で、結着剤が含まれてもよい。結着剤は、電極を構成する材料の結着性を向上させるために、用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロースなどが挙げられる。また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択された2種以上の材料の共重合体が用いられうる。また、これらのうちから選択された2種以上が混合されて、結着剤として用いられてもよい。
 正極201と負極203との少なくとも1つは、電子導電性を高める目的で、導電助剤を含んでいてもよい。導電助剤としては、例えば、天然黒鉛または人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、炭素繊維または金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物などが用いられうる。炭素導電助剤を用いた場合、低コスト化を図ることができる。
 なお、実施の形態3における電池2000は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、積層型など種々の形状の電池として構成されうる。
 以下、実施例および参照例を用いて、本開示の詳細が説明される。
 <<実施例1>>
 [固体電解質の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉末であるLi2SとP25とを、モル比でLi2S:P25=75:25となるように秤量した。これらを乳鉢で粉砕および混合して混合物を得た。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、10時間、510rpmの条件で混合物をミリング処理した。これにより、ガラス状の固体電解質を得た。ガラス状の固体電解質について、不活性雰囲気中、270℃、2時間の条件で熱処理した。これにより、ガラスセラミックス状の固体電解質であるLi2S-P25(以下、「LPS」と表記する)を得た。
 [第1被覆材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉末であるLiCl、LiBr、およびYCl3を、モル比でLiCl:LiBr:YCl3=1:2:1となるように秤量した。これらを乳鉢で粉砕および混合して混合物を得た。その後、遊星型ボールミル(フリッチュ社製、P-5型)を用い、25時間、600rpmの条件で混合物をミリング処理した。これにより、Li31Br2Cl4(以下、LYBCと表記する)の組成式で表される固体電解質の粉末を得た。
 [被覆活物質の作製]
 アルゴングローブボックス内で、5.95gのエトキシリチウム(高純度化学社製)と36.43gのペンタエトキシニオブ(高純度化学社製)とを500mLの超脱水エタノール(和光純薬社製)に溶解して被覆溶液を作製した。
 正極活物質として、Li(NiCoAl)O2(以下、NCAと表記する)の粉末を用意した。NCAの表面上にLiNbO3の被覆層を形成するための処理には、転動流動造粒コーティング装置(パウレック社製、FD-MP-01E)を用いた。NCAの投入量、攪拌回転数、被覆溶液の送液レートは、それぞれ、1kg、400rpm、6.59g/分であった。LiNbO3の膜厚が10nmとなるように被覆溶液の投入量を調整した。被覆溶液の投入量は、活物質の比表面積およびLiNbO3の密度を用いて算出した。転動流動造粒コーティング装置を用いた一連の工程は、露点-30℃以下のドライ雰囲気にて実施した。LiNbO3の被覆層を形成するための処理の終了後、得られた粉末をアルミナ製るつぼに入れ、大気雰囲気、300℃、1時間の条件で熱処理を行った。熱処理後の粉末をメノウ乳鉢にて再粉砕した。これにより、第2被覆層を有するNCA(以下、「Nb-NCA」と表記する)を得た。第2被覆層は、第2被覆材料であるニオブ酸リチウム(LiNbO3)でできていた。
 次に、Nb-NCAの表面上にLYBCでできた第1被覆層を形成した。第1被覆層は、粒子複合化装置(NOB-MINI、ホソカワミクロン社製)を用いた圧縮せん断処理により形成した。具体的には、Nb-NCAとLYBCとを93.7:6.3の質量比となるように秤量し、ブレードクリアランス:2mm、回転数:5500rpm、処理時間:25minの条件で処理した。これにより、実施例1の被覆活物質を得た。
 [正極材料の作製]
 アルゴングローブボックス内で、Nb-NCANCAと固体電解質との体積比率が70:30となるように、実施例1の被覆活物質および固体電解質(LPS)を秤量した。これらをメノウ乳鉢で混合することで、実施例1の正極材料を作製した。Nb-NCAと固体電解質との体積比率において、「固体電解質」は、第1被覆材料であるLYBCおよびLPSの合計の体積を意味する。
 <<実施例2>>
 被覆活物質を作製する際の圧縮せん断処理において、粒子複合化装置の回転数を2800rpmに変更したことを除き、実施例1と同じ方法で実施例2の正極材料を得た。
 <<参照例1>>
 第1被覆層を形成するとき、粒子複合化装置を使用せず、メノウ乳鉢でNCAと固体電解質とを混合することによって第1被覆層を形成したことを除き、実施例1と同じ方法で参照例1の正極材料を得た。
 [R2/R1の値の算出]
 実施例および参照例の被覆活物質を粗粉と微粉とに分級した。分級には、気流分級装置(日清エンジニアリング社製、強制渦遠心式分級装置、TC-15)を使用した。粗粉と微粉との質量比率が粗粉:微粉=9:1となるように気流分級装置の回転数を調節した。
 粗粉と微粉とに分級された被覆活物質を誘導結合プラズマ発光分光装置ICP-AES(Spectro社製、CIROS-120)によって分析し、粗粉における被覆材料(LYBC)の含有比率R1および微粉における被覆材料(LYBC)の含有比率R2を測定および算出した。このようにして、実施例および参照例の被覆活物質のR2/R1の値を求めた。
 [電池の作製]
 正極材料、LYBCおよびLPSを用いて、下記の工程を実施した。
 まず、絶縁性外筒の中で、60mgのLPS、20mgのLYBC、および正極材料をこの順に積層した。このとき、正極材料は、正極活物質の質量が14mgとなるように秤量した。得られた積層体を720MPaの圧力で加圧成形することで、正極および固体電解質層を得た。
 次に、正極と接する側とは反対側において、固体電解質層に金属Li(厚さ200μm)を積層した。得られた積層体を80MPaの圧力で加圧成形することで、正極、固体電解質層、および負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼製の集電体を配置した。各集電体に集電リードを付設した。
 最後に、絶縁性フェルールを用いて絶縁性外筒を密閉することで外筒の内部を外気雰囲気から遮断し、電池を作製した。
 以上により、実施例1、実施例2および参照例1の電池をそれぞれ作製した。
 [充電試験]
 実施例1、実施例2および参照例1の電池を用いて、以下の条件で、充電試験が実施された。
 電池を25℃の恒温槽に配置した。
 電池の理論容量に対して0.05Cレート(20時間率)となる電流値140μAで電圧4.3Vに達するまで電池を定電流充電した。20minの休止時間の経過後、0.05Cレート(20時間率)となる電流値140μAで電圧3.7Vまで電池を定電流放電させた。
 インピーダンス測定システム(Solartron Analytical社、1470E、1255B)を用い、周波数範囲:10mHzから1MHz、電圧振幅:10mVの条件で電池の周波数特性を測定した。1kHz周辺に見られる円弧抵抗(単位:Ω)に正極活物質の質量(単位:mg)を乗じた値を界面抵抗として算出した。
 以上により得られた結果は表1に示される。
Figure JPOXMLDOC01-appb-T000001
 <<考察>>
 表1に示すように、被覆活物質を用いた正極材料において、R2/R1の値に応じて電池の界面抵抗が変動した。具体的には、R2/R1の値が減少するにつれて界面抵抗が顕著に減少した。R2/R1の値が7.1のとき、界面抵抗が461Ω・mgよりも低い値を示した。R2/R1の値が4.9のとき、界面抵抗は415Ω・mgであった。R2/R1の値が3.7のとき、界面抵抗は244Ω・mgであった。これらの効果は、被覆層が硫化物固体電解質と活物質との接触を抑制した結果であると考えられる。
 本開示の技術は、例えば、全固体リチウム二次電池に有用である。
100 固体電解質
110 活物質
111 被覆層(第1被覆層)
111a 残渣
112 第2被覆層
120 被覆層
130,140 被覆活物質
201 正極
202 電解質層
203 負極
300 粒子
301 旋回流
302 空気の流れ
303 遠心力
304 抗力
1000 電極材料
2000 電池

Claims (14)

  1.  活物質と、
     前記活物質の表面の少なくとも一部を被覆する被覆層と、
     を備えた被覆活物質であって、
     前記被覆層が第1被覆材料を含み、
     粗粉:微粉=9:1の質量比率で分級されるように前記被覆活物質の粉末に含まれる前記粗粉と前記微粉とを気流分級によって分級し、前記粗粉における前記第1被覆材料の質量含有比率をR1と定義し、前記微粉における前記第1被覆材料の質量含有比率をR2と定義したとき、R2/R1の値が7.1未満である、
     被覆活物質。
  2.  前記活物質は正極活物質である、
     請求項1に記載の被覆活物質。
  3.  前記R2/R1の値が4.9以下である、
     請求項1または2に記載の被覆活物質。
  4.  前記R2/R1の値が3.7以上である、
     請求項1から3のいずれか1項に記載の被覆活物質。
  5.  前記第1被覆材料は、Li、M1、およびX1を含み、
     M1は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
     X1は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである、
     請求項1から4のいずれか1項に記載の被覆活物質。
  6.  前記第1被覆材料は、下記の組成式(1)で表され、
     Liα1M1β1X1γ1・・・(1)
     ここで、α1、β1、およびγ1は、それぞれ独立して、0より大きい値である、
     請求項5に記載の被覆活物質。
  7.  M1は、イットリウムを含む、
     請求項5または6に記載の被覆活物質。
  8.  前記被覆層は、前記第1被覆材料を含む第1被覆層と、第2被覆材料を含む第2被覆層とを含み、
     前記第1被覆層は、前記第2被覆層の外側に位置する、
     請求項1から7のいずれか1項に記載の被覆活物質。
  9.  前記第2被覆材料がリチウムイオン伝導性を有する酸化物固体電解質を含む、
     請求項8に記載の被覆活物質。
  10.  前記第2被覆材料がNbを含む、
     請求項8または9に記載の被覆活物質。
  11.  前記第2被覆材料がニオブ酸リチウムを含む、
     請求項8から10のいずれか1項に記載の被覆活物質。
  12.  請求項1から11のいずれか1項に記載の被覆活物質と、
     固体電解質と、
     を備えた、電極材料。
  13.  前記固体電解質は、硫化物固体電解質を含む、
     請求項12に記載の電極材料。
  14.  請求項12または13に記載の電極材料を含む正極と、
     負極と、
     前記正極と前記負極との間に配置された電解質層と、
     を備えた、電池。
PCT/JP2022/011266 2021-05-31 2022-03-14 被覆活物質、電極材料および電池 WO2022254872A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280036270.0A CN117378055A (zh) 2021-05-31 2022-03-14 被覆活性物质、电极材料和电池
JP2023525421A JPWO2022254872A1 (ja) 2021-05-31 2022-03-14
US18/500,490 US20240063375A1 (en) 2021-05-31 2023-11-02 Coated active material, electrode material, and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021091717 2021-05-31
JP2021-091717 2021-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/500,490 Continuation US20240063375A1 (en) 2021-05-31 2023-11-02 Coated active material, electrode material, and battery

Publications (1)

Publication Number Publication Date
WO2022254872A1 true WO2022254872A1 (ja) 2022-12-08

Family

ID=84324266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011266 WO2022254872A1 (ja) 2021-05-31 2022-03-14 被覆活物質、電極材料および電池

Country Status (4)

Country Link
US (1) US20240063375A1 (ja)
JP (1) JPWO2022254872A1 (ja)
CN (1) CN117378055A (ja)
WO (1) WO2022254872A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121642A1 (ja) * 2012-02-17 2013-08-22 ソニー株式会社 二次電池、二次電池の製造方法、二次電池用電極および電子機器
JP2015041543A (ja) * 2013-08-22 2015-03-02 トヨタ自動車株式会社 活物質含有膜の製造方法
JP2016024916A (ja) * 2014-07-17 2016-02-08 トヨタ自動車株式会社 全固体電池用電極及びその製造方法
WO2017119032A1 (ja) * 2016-01-04 2017-07-13 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに非水電解質二次電池用負極活物質の製造方法
WO2020049843A1 (ja) * 2018-09-07 2020-03-12 株式会社カネカ 被覆正極活物質、リチウムイオン二次電池の製造方法及びリチウムイオン二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121642A1 (ja) * 2012-02-17 2013-08-22 ソニー株式会社 二次電池、二次電池の製造方法、二次電池用電極および電子機器
JP2015041543A (ja) * 2013-08-22 2015-03-02 トヨタ自動車株式会社 活物質含有膜の製造方法
JP2016024916A (ja) * 2014-07-17 2016-02-08 トヨタ自動車株式会社 全固体電池用電極及びその製造方法
WO2017119032A1 (ja) * 2016-01-04 2017-07-13 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに非水電解質二次電池用負極活物質の製造方法
WO2020049843A1 (ja) * 2018-09-07 2020-03-12 株式会社カネカ 被覆正極活物質、リチウムイオン二次電池の製造方法及びリチウムイオン二次電池

Also Published As

Publication number Publication date
US20240063375A1 (en) 2024-02-22
CN117378055A (zh) 2024-01-09
JPWO2022254872A1 (ja) 2022-12-08

Similar Documents

Publication Publication Date Title
WO2022004397A1 (ja) 正極材料および電池
WO2019146292A1 (ja) 正極材料およびそれを用いた電池
WO2021161752A1 (ja) 被覆正極活物質、正極材料、電池、および被覆正極活物質の製造方法
WO2021157361A1 (ja) 正極材料および電池
WO2022019098A1 (ja) 正極材料および電池
WO2020174868A1 (ja) 正極材料、および、電池
WO2021205821A1 (ja) 正極材料および電池
WO2023037817A1 (ja) 被覆活物質、電極材料および電池
WO2022244445A1 (ja) 被覆正極活物質、正極材料および電池
WO2021200086A1 (ja) 正極材料および電池
WO2022254872A1 (ja) 被覆活物質、電極材料および電池
WO2022254871A1 (ja) 被覆活物質、電極材料および電池
WO2022254870A1 (ja) 被覆活物質、電極材料および電池
WO2022254869A1 (ja) 被覆活物質、電極材料および電池
WO2022255026A1 (ja) 被覆活物質、正極材料、正極および電池
WO2022254984A1 (ja) 正極材料、正極および電池
WO2022255027A1 (ja) 被覆活物質、正極材料、正極および電池
WO2022254985A1 (ja) 被覆活物質、正極材料、正極および電池
WO2023139897A1 (ja) 電池
WO2023008005A1 (ja) 正極材料および電池
WO2023037757A1 (ja) 正極材料、正極および電池
WO2023037769A1 (ja) 正極材料、正極および電池
WO2023032473A1 (ja) 正極材料および電池
WO2023132304A1 (ja) 正極材料および電池
WO2022209686A1 (ja) 被覆正極活物質、正極材料、電池、および被覆正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525421

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE