WO2023007881A1 - 光ケーブル及び光ケーブル製造方法 - Google Patents

光ケーブル及び光ケーブル製造方法 Download PDF

Info

Publication number
WO2023007881A1
WO2023007881A1 PCT/JP2022/018194 JP2022018194W WO2023007881A1 WO 2023007881 A1 WO2023007881 A1 WO 2023007881A1 JP 2022018194 W JP2022018194 W JP 2022018194W WO 2023007881 A1 WO2023007881 A1 WO 2023007881A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
optical cable
twist angle
twisted
Prior art date
Application number
PCT/JP2022/018194
Other languages
English (en)
French (fr)
Inventor
正砂 清水
総一郎 金子
彰 鯰江
健 大里
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CA3224254A priority Critical patent/CA3224254A1/en
Priority to AU2022320172A priority patent/AU2022320172A1/en
Priority to KR1020237044564A priority patent/KR20240011802A/ko
Priority to JP2023538283A priority patent/JPWO2023007881A1/ja
Priority to CN202280046489.9A priority patent/CN117642664A/zh
Priority to TW111115979A priority patent/TWI818525B/zh
Publication of WO2023007881A1 publication Critical patent/WO2023007881A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the present invention relates to an optical cable and an optical cable manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2021-124564 filed in Japan on July 29, 2021, the content of which is incorporated herein.
  • Patent Document 1 describes twisting a plurality of optical fiber units in an SZ shape (or in one direction).
  • the optical fiber units In order to reduce the allowable bending radius of the optical cable, it is desirable to twist the optical fiber units at a short pitch.
  • the twist is easily untwisted (the twist is easily untwisted) at the reversal portion of the twist direction. may be in line with If the ratio of the portion (straight portion) of the optical fiber along the longitudinal direction increases, the transmission loss may increase when the optical cable is bent.
  • An object of the present invention is to suppress the transmission loss of an optical cable.
  • the main invention for achieving the above object comprises a plurality of optical fiber units each having a fiber bundle composed of a plurality of optical fibers, and the plurality of optical fiber units are twisted in an SZ shape by reversing the twist direction. and the twist angle at which the optical fiber units are twisted in the circumferential direction from one reversal of the twist direction to the next reversal is 540 degrees or more.
  • FIG. 1A is an explanatory diagram of the optical cable 1.
  • FIG. 1B is an explanatory diagram of the optical fiber unit 10.
  • FIG. 10 is an explanatory diagram of another optical cable;
  • FIG. 3 is an explanatory diagram of the manufacturing system 40 for the optical cable 1.
  • FIG. 4A to 4C are explanatory diagrams of how to twist a plurality of optical fiber units 10.
  • FIG. 5 is a comparison table of the first embodiment.
  • FIG. 6 is a comparison table of the second embodiment.
  • FIG. 7 is a comparison table of the third embodiment.
  • Aspect 1 includes a plurality of optical fiber units each having a fiber bundle composed of a plurality of optical fibers, the plurality of optical fiber units being twisted in an SZ shape by reversing the twisting direction.
  • the optical cable is characterized in that a twist angle at which the optical fiber unit is twisted in the circumferential direction from one reversal portion to the next reversal portion is 540 degrees or more. Such an optical cable can suppress transmission loss.
  • Aspect 2 is the optical cable of Aspect 1, wherein the twist angle is 1800 degrees or less.
  • Aspect 3 is the optical cable of Aspect 2, wherein the twist angle is 1440 degrees or less. Thereby, transmission loss can be suppressed.
  • Aspect 4 is the optical cable according to any one of aspects 1 to 3, wherein the optical fiber unit includes a bundle material for bundling the plurality of optical fibers. Thereby, the optical fibers can be bundled with the bundle material.
  • Aspect 5 is the optical cable according to Aspect 4, wherein the optical fiber unit is composed of an intermittently connected optical fiber tape. This makes it easier to bundle the plurality of optical fibers that constitute the optical fiber unit.
  • Mode 6 is the optical cable according to any one of Modes 1 to 5, wherein the twist angle in the S direction and the twist angle in the Z direction are substantially equal.
  • FIG. 1A is an explanatory diagram of the optical cable 1.
  • FIG. 1B is an explanatory diagram of the optical fiber unit 10.
  • the optical cable 1 is a cable housing an optical fiber 11 .
  • the optical cable 1 of this embodiment is an optical cable that does not have a slot rod in which a slot (a groove for accommodating the optical fiber 11) is formed, and is a so-called slotless optical cable.
  • the optical cable 1 has a plurality of optical fiber units 10 and a jacket 20 .
  • the optical fiber unit 10 is a structure in which a plurality of optical fibers 11 are bundled.
  • the optical fiber unit 10 shown in the drawing has a fiber bundle and a bundle material 12 .
  • a fiber bundle is a bundle of a plurality of optical fibers 11.
  • the fiber bundle is configured by bundling a plurality of intermittently connected optical fiber tapes.
  • a plurality of optical fibers 11 are intermittently connected by a connecting portion, and the optical fibers 11 are not restrained at a portion (separating portion) other than the connecting portion. Therefore, by configuring the optical fiber unit 10 using the intermittently connected optical fiber tape, the plurality of optical fibers 11 can be easily bundled.
  • the fiber bundle does not have to be composed of a plurality of intermittently connected optical fiber tapes. It may be composed of fiber.
  • the plurality of optical fibers 11 forming the optical fiber unit 10 may or may not be twisted together.
  • the bundle material 12 is a member for bundling a plurality of optical fibers 11 forming a fiber bundle.
  • the bundle material 12 is, for example, a string-like member.
  • the bundle material 12 is wrapped around the outer circumference of the fiber bundle.
  • the optical fiber unit 10 in the figure has a pair of bundle materials 12, and each bundle material 12 is wound around the outer circumference of the fiber bundle in an SZ shape so that the winding directions are opposite at the joining point. .
  • the bundle material 12 is not limited to being wound in the SZ shape, and may be spirally wound in one direction around the outer circumference of the fiber bundle.
  • the number of bundle materials 12 is not limited to two.
  • the optical fiber unit 10 may not include the bundle material 12 .
  • the optical fiber unit 10 does not need to be provided with the bundle material 12 because the bundle of the optical fibers 11 does not come apart.
  • the fiber unit 12 may be configured by covering the fiber bundle with a bundle material such as a tube or film.
  • the optical cable 1 has multiple optical fiber units 10 .
  • the optical fiber units 10 are drawn to extend linearly in the longitudinal direction. are aligned. Therefore, each optical fiber unit 10 is twisted at a predetermined twist angle around the axis along the longitudinal direction of the optical cable 1 . How to twist the plurality of optical fiber units 10 will be described later.
  • the plurality of optical fiber units 10 are housed in the jacket 20 while being wrapped with the pressure winding tape 15 .
  • the optical cable 1 may not be provided with the pressing tape 15 .
  • the jacket 20 is a member that covers the plurality of optical fiber units 10 (and the pressure winding tape 15).
  • the outer shape of the outer cover 20 has a substantially circular cross section here, but the outer shape of the outer cover 20 is not limited to a circular shape.
  • a tension member 21 is embedded in the jacket 20 .
  • not only the tension member 21 but also other members (for example, the rip cord 22 ) may be embedded in the jacket 20 .
  • members other than the plurality of optical fiber units 10 and the pressure winding tape 15 may be accommodated inside the jacket 20 .
  • the shape of the optical cable is not limited to the optical cable shown in FIG. FIG. 2 is an explanatory diagram of another optical cable 1.
  • FIG. The optical cable 1 shown in FIG. 2 is a flat optical cable (square optical cable) having a substantially rectangular cross section.
  • This optical cable 1 also has a plurality of optical fiber units 10 and a jacket 20 .
  • Each optical fiber unit 10 is composed of, for example, one piece of intermittently connected optical fiber tape. Since the optical fiber unit 10 is composed of one optical fiber tape, the optical fiber unit 10 of the optical cable 1 shown in FIG.
  • a plurality of (for example, six) optical fiber units 10 are twisted together in an SZ shape and housed in the jacket 20 while being wrapped with a pressure winding tape 15 .
  • the jacket 20 is provided with a notch 20A.
  • Notch 20A is a groove along the longitudinal direction. By cutting the notch 20A of the jacket 20 with a splitting tool, the jacket 20 can be split to remove the optical fiber unit 10.
  • the optical cable 1 may not be provided with the notch 20A.
  • a pair of tension members and a separator 23 are embedded in the jacket 20. As shown in FIG.
  • the separator 23 is a sheet-like member and is arranged directly below the notch 20A.
  • a plurality of optical fiber units 10 are accommodated in the jacket 20 while being sandwiched between a pair of separators 23 .
  • the separator 23 has a function of protecting the optical fiber 11 from the blade of the splitting tool and a function of facilitating the work of removing the optical fiber 11 from the inside of the jacket 20 .
  • the optical cable 1 does not have to have the separator 23 .
  • the shape and configuration of the optical cable are not limited to those shown in FIGS.
  • the optical cable of the present embodiment may be provided with a plurality of optical fiber units 10 twisted together in an SZ shape.
  • FIG. 3 is an explanatory diagram of the manufacturing system 40 for the optical cable 1.
  • a manufacturing system 40 in the drawing is a system for manufacturing the optical cable 1 shown in FIG.
  • the manufacturing system may manufacture the optical cable 1 shown in FIG. 2, or may manufacture optical cables having other shapes and configurations.
  • the manufacturing system 40 has a supply section 42 , a twisting section (not shown) having battens 44 , an extrusion section 46 and a control section 48 .
  • the supply unit 42 is a device (supply source) that supplies the optical fiber unit 10 .
  • the supply unit 42 is composed of, for example, a bobbin that supplies a plurality of optical fiber tapes, and a bundle device that winds the bundle material 12 around the outer periphery of a fiber bundle composed of a plurality of optical fiber tapes.
  • the supply unit 42 may include a tape manufacturing device for manufacturing the optical fiber tape or a fiber manufacturing device for manufacturing the optical fiber 11 instead of the bobbin for supplying the optical fiber tape.
  • the supply unit 42 may not include a bundling device for winding the bundle material 12 around the fiber bundle.
  • the supply unit 42 supplies the optical fiber units 10 to the battens 44 .
  • the speed at which the supply section 42 supplies the optical fiber units 10 can be adjusted by the control section 48 .
  • the twisting section is a device for twisting a plurality of optical fiber units 10, and has a batten board 44 and a driving section for rotating (oscillating) the batten board 44.
  • the batten board 44 is a member for twisting a plurality of optical fiber units 10, and is a plate-like member having a plurality of insertion holes.
  • the optical fiber unit 10 is inserted through each insertion hole of the battens 44 .
  • a plurality of optical fiber units 10 are twisted together in an SZ shape by swinging the battens 44 around the central rotation axis.
  • the plurality of optical fiber units 10 that have passed through the batten plate 44 are supplied to the extruder 46 in a state of being twisted together in an SZ shape.
  • the rotation speed of the batten plate 44 and the reversal timing of the rocking motion can be adjusted by the controller 48 . Since the rotation angle of the battens 44 and the twist angle of the optical fiber units 10 (the angle at which the optical fiber units are twisted in the circumferential direction; described later) do not match (because the twist of the optical fiber units 10 is loosened), the twist of the battens 44 The rotation angle is set larger than the twist angle of the optical fiber unit 10 . For example, in order to set the twist angle of the optical fiber unit 10 to 540 degrees, the batten plate 44 is swung at a rotation angle larger than 540 degrees.
  • the rotation angle (swing angle) of the batten plate 44 corresponding to the twist angle of the optical fiber units 10 is the time required to apply a member (loosening prevention member) for preventing loosening of the twisting of the plurality of optical fiber units 10. It is determined as appropriate in consideration of other manufacturing conditions such as distance and distance.
  • the loosening prevention member is the jacket 20 in this embodiment. However, the loosening prevention member is not limited to the jacket 20 .
  • loosening of twisted optical fiber units 10 may be prevented by winding a string-shaped or tape-shaped loosening prevention member around the plurality of optical fiber units 10 before extruding the jacket 20 . .
  • the extruder 46 is a device that forms the outer cover 20 .
  • the extruder 46 manufactures the optical cable 1 by extruding a resin that forms the jacket 20 around the outer circumferences of the plurality of optical fiber units 10 .
  • the extrusion molding section 46 is supplied not only with a plurality of optical fiber units 10 twisted together in an SZ shape, but also with the pressing winding tape 15, the tension member 21, and the like.
  • the optical cable 1 manufactured by the extrusion molding section 46 is cooled by a cooling device and then wound on a winding section (for example, a drum).
  • the control unit 48 is a device that controls the manufacturing system 40 .
  • the control unit 48 is composed of, for example, a computer, and controls the operations of the supply unit 42 , the battens 44 and the extrusion molding unit 46 .
  • the control unit 48 controls the supply unit 42 to control the supply speed of the optical fiber unit 10, and controls the driving unit (not shown) of the batten plate 44 to rotate the batten plate 44 (rotational speed and reversal timing of oscillation).
  • FIG. 10 An assembly (core) is drawn in which a plurality of optical fiber units 10 are twisted together. A core obtained by twisting a plurality of optical fiber units 10 is accommodated inside the jacket 20 of the optical cable 1 .
  • illustration of the optical fibers 11 constituting the optical fiber unit 10 is omitted, and only the outer shape of the optical fiber unit 10 is conceptually illustrated.
  • the figure shows a plurality of optical fiber units 10 twisted together in an SZ shape.
  • the reversal portion in the figure indicates the position where the twisting direction (twisting direction) of the plurality of optical fiber units 10 is reversed.
  • the twisting direction is reversed so that the plurality of optical fiber units 10 twisted in the S direction (or Z direction) are twisted in the Z direction (or S direction).
  • the pitch P in the drawing indicates the interval between the reversal portions.
  • the pitch P is the distance between one inversion and its next inversion.
  • the pitch P includes a reversal portion where a plurality of optical fiber units 10 twisted in the S direction (or Z direction) are reversed in the Z direction (or S direction), and It is the interval with the reversing portion where the plurality of optical fiber units 10 that are connected are reversed in the S direction (or the Z direction).
  • a plurality of optical fiber units 10 are twisted in an SZ shape so that the twist angle in the S direction and the twist angle in the Z direction are substantially equal.
  • the twist angle is the angle at which the optical fiber unit 10 is twisted in the circumferential direction (direction around the axis of the optical cable 1; S direction or Z direction) from one reversal portion to the next reversal portion inside the optical cable 1. be.
  • the twist angle in the S direction and the twist angle in the Z direction of the optical fiber unit 10 may be different, twisting of the optical cable 1 can be suppressed by making the twist angle in the S direction and the twist angle in the Z direction substantially equal. .
  • the twist is untwisted at the reversal portion of the twist direction (due to untwisting), so that the optical fiber 11 near the reversal portion extends along the longitudinal direction of the optical cable 1.
  • a portion (region) where the optical fiber 11 can be in a state along the longitudinal direction due to untwisting at the reversing portion is indicated as a "straight portion”.
  • FIG. 4A by twisting a plurality of optical fiber units 10 spirally, it is possible to suppress the line length difference of the optical fibers 11 when the optical cable 1 is bent. If a plurality of optical fiber units 10 are helically twisted in one direction, the manufacturing system 40 will have a complicated structure, and the work of removing the optical fiber units 10 at the time of intermediate branching of the optical cable 1 will become difficult. There is a risk. Therefore, as shown in FIG. 4A, a plurality of optical fiber units 10 are twisted in an SZ shape by reversing the twisting direction halfway through.
  • FIG. 4B is an explanatory diagram when the optical fiber units 10 are twisted at a shorter pitch than in FIG. 4A.
  • it is desirable to increase the twist angle ( N/P) per unit length of the optical fiber unit 10.
  • FIG. 4B that is, in order to reduce the allowable bending radius of the optical cable 1, the twisting method shown in FIG. 4B is preferable to the twisting method shown in FIG. 4A.
  • the twist becomes easy to untwist (easy to untwist) at the reversal portion of the twist direction, and as a result, the optical fiber There is also a possibility that the unit 10 cannot be kept in an SZ-twisted state.
  • FIG. 4C is an explanatory diagram when the twist angle is set larger than that in FIG. 4B.
  • the twist angle is set larger than that in FIG. 4B, and as a result, the inverted pitch P shown in FIG. 4C is longer than the inverted pitch shown in FIG. 4B. 4C, compared to the twisting method shown in FIG.
  • FIG. 5 is a comparison table of 1st Example.
  • the twisting methods shown in FIGS. 4A, 4B, and 4C correspond to the twisting methods of Comparative Example 1A, Comparative Example 1B, and Example 1A in the table, respectively.
  • an optical cable 1 having the structure shown in FIG. 1A was produced.
  • one optical fiber unit 10 is composed of six sheets of intermittently connected 12-core optical fiber tapes, and the six optical fiber units 10 are twisted in an SZ shape to form 36 intermittently connected optical fiber tapes.
  • a 432-fiber optical cable was prepared.
  • the outer diameter of the optical cable 1 was set to about 11 mm
  • the accommodation area in the jacket 20 was set to about 60 mm 2
  • multiple types of optical cables 1 with different twist angles N and pitches P were produced.
  • the twist angle N in the table indicates the angle at which the optical fiber unit 10 is twisted in the circumferential direction (direction around the axis of the optical cable 1) from one reversal portion to the next reversal portion inside the optical cable 1. (The twist angle N in the table is not the rotation angle of the battens 44 when manufacturing the optical cable 1).
  • a ribbon state, a twisted state, a core wire drawing force, a transmission loss, and a bending property were evaluated for each of a plurality of types of optical cables 1 produced.
  • the connection portion of the intermittently connected optical fiber tape (the portion where the two adjacent optical fibers 11 are intermittently connected) was broken.
  • the connecting part was not destroyed, it was evaluated as " ⁇ (excellent)", and when the connecting part was destroyed, it was evaluated as " ⁇ (failed)".
  • the twist state it was confirmed whether the optical fiber unit 10 was twisted at a predetermined twist angle.
  • optical fiber unit 10 was twisted at a predetermined twisting angle, it was evaluated as " ⁇ (excellent)", and if the optical fiber unit 10 was not twisted at a predetermined twisting angle, it was evaluated as “X (failed). ” was evaluated.
  • the tension core wire pullout force
  • this cord drawing force is 25 N/10 m or more, it is evaluated as “ ⁇ (excellent)”, and when it is less than 25 N/10 m and 15 N/10 m or more, it is evaluated as " ⁇ (good)”. When it was less than 15N/10m or more, it was evaluated as "x (failed)”.
  • the optical cable 1 wound in a drum was measured for the transmission loss at a wavelength of 1550 nm by the OTDR method. If the transmission loss is 0.25 dB/km or less, it is marked as “ ⁇ (excellent)”; )”, and when the transmission loss was greater than 0.30 dB/km, it was evaluated as “x (failed)”.
  • a winding test based on IEC60794-1-21E11A/IEC60794-3-10 was performed to measure the transmission loss of the optical cable 1 . In the winding test, the mandrel diameter was 20 times the outer diameter of the cable, the number of winding was 4 turns, and the number of cycles (the same test was repeated) was 3 cycles.
  • the increase in transmission loss after the winding test is 0.05 dB or less per optical fiber, and if the increase in transmission loss during the test is 0.05 dB or less per optical fiber, it is evaluated as “Excellent”. ", and if the increase in transmission loss after the winding test is 0.05 dB or less per optical fiber, it is rated as “Good (Good)", and the increase in transmission loss after the winding test is greater than 0.05 dB per optical fiber. If it was large, it was evaluated as "x (failed)".
  • the twist angle is set larger and the pitch P is set longer than in Comparative Example 1A.
  • the relationship between Comparative Example 1A and Example 1C corresponds to the relationship between the twisting method shown in FIG. 4B and the twisting method shown in FIG. 4C. Therefore, in Example 1C, the ratio of the straight portion to the entire length of the optical cable 1 in the longitudinal direction can be suppressed as compared with Comparative Example 1A.
  • Example 1C was slightly improved in wire drawing force and bending characteristics as compared with Comparative Example 1A was that the ratio of the straight portion to the entire length of the optical cable 1 in the longitudinal direction could be suppressed. .
  • it is effective to set the twist angle N large and the pitch P long from not only the comparison between Comparative Example 1B and Example 1A but also the comparison between Comparative Example 1A and Example 1C. was confirmed.
  • FIG. 6 is a comparison table of 2nd Example. Comparative Example 1A, Example 1A, and Example 1B in FIG. 5 described above correspond to Comparative Example 2, Example 2F, and Example 2G in FIG.
  • an optical cable 1 having the structure shown in FIG. 1A was produced.
  • one optical fiber unit 10 is composed of six intermittently connected 12-core optical fiber tapes, and the six optical fiber units 10 are twisted in an SZ shape to form an intermittently connected optical fiber tape.
  • a 432-fiber optical cable with 36 sheets of was created.
  • the outer diameter of the optical cable 1 was set to about 11 mm
  • the accommodation area in the jacket 20 was set to about 60 mm 2
  • the pitch P was set to 800 mm
  • a plurality of types of optical cables 1 with different twist angles N in the range of 360 to 720 degrees were produced.
  • the twist angle N in the table indicates the angle at which the optical fiber unit 10 is twisted in the circumferential direction (direction around the axis of the optical cable 1) from one reversal portion to the next reversal portion inside the optical cable 1.
  • twist angle N of the optical fiber unit 10 is less than 2160 degrees. That is, it is desirable that the twist angle N of the optical fiber unit 10 is 540 degrees or more and 1800 degrees or less.
  • the reason for this is thought to be that the optical fiber tape was strongly twisted, which locally increased the packaging density of the optical fibers 11 and increased the microbend loss. Therefore, it is more desirable that the twist angle N of the optical fiber unit 10 is less than 1800 degrees. That is, it is more desirable that the twist angle N of the optical fiber unit 10 is 540 degrees or more and 1440 degrees or less.
  • FIG. 7 is a comparison table of 3rd Example.
  • an optical cable shown in FIG. 2 was produced.
  • one optical fiber unit 10 is composed of one intermittently connected four-core optical fiber tape, and six intermittently connected optical fiber tapes are formed by twisting the six optical fiber units 10 in an SZ shape.
  • a 24-core optical cable with 24 cores was created.
  • a flat optical cable with a short diameter of 3.5 mm and a long diameter of 5.5 mm was prepared, and the housing area in the jacket 20 was set to 2.5 mm 2 .
  • the twist angle N in the table indicates the angle at which the optical fiber unit 10 is twisted in the circumferential direction (the direction around the axis of the optical cable) from one reversal portion to the next reversal portion inside the optical cable.
  • the twist angle N of the optical fiber unit 10 is less than 2160 degrees. That is, it is desirable that the twist angle N of the optical fiber unit 10 is 540 degrees or more and 1800 degrees or less.
  • the reason for this is thought to be that the optical fiber tape was strongly twisted, which locally increased the packaging density of the optical fibers 11 and increased the microbend loss. Therefore, it is more desirable that the twist angle N of the optical fiber unit 10 is less than 1800 degrees. That is, it is more desirable that the twist angle N of the optical fiber unit 10 is 540 degrees or more and 1440 degrees or less.
  • a plurality of types of flat optical cables with different twisting angles N and pitches P were similarly prepared with housing areas of 1.8 mm 2 and 2.0 mm 2 in the jacket 20 .
  • a flat optical cable having a housing area of 1.8 mm 2 in the jacket 20 it was impossible to twist a plurality of optical fiber units 10 in an SZ shape under any conditions.
  • a flat optical cable having a housing area of 2.0 mm 2 in the jacket 20 the same results as in FIG. 7 were obtained. Therefore, it was confirmed that the twist angle N of the optical fiber units 10 is 540 degrees or more under the condition that the plurality of optical fiber units 10 can be twisted in an SZ shape.
  • optical cable 10 optical fiber unit, 11 optical fiber, 12 bundle material, 15 presser winding tape, 17 inclusions, 20 jacket, 20A notch, 21 tension member, 22 rip cord, 23 separator, 40 manufacturing system, 42 supply unit, 44 grid plate, 46 extrusion part, 48 control part

Abstract

【解決手段】本開示に係る光ケーブルは、複数の光ファイバで構成されたファイバ束を有する光ファイバユニットを複数備える。複数の前記光ファイバユニットは、撚り方向を反転させることによってSZ状に撚り合わせられている。前記撚り方向の反転部から次の前記反転部までの間に前記光ファイバユニットが周方向に撚られる撚り角度は、540度以上であることを特徴とする。

Description

光ケーブル及び光ケーブル製造方法
 本発明は、光ケーブル及び光ケーブル製造方法に関する。
 本願は、2021年7月29日に日本に出願された特願2021-124564号に基づき優先権を主張し、その内容をここに援用する。
 光ケーブルを曲げたときの光ファイバの線長差を抑制するため、複数の光ファイバを束ねた複数の光ファイバユニットを相互に撚り合わせて、光ケーブルを構成することが知られている。特許文献1には、複数の光ファイバユニットをSZ状に(又は一方向に)撚り合わせることが記載されている。
特開2019-159078号公報
 光ケーブルの許容曲げ半径を小さくするためには、短ピッチで光ファイバユニットを撚ることが望ましい。一方、短ピッチで光ファイバユニットをSZ状に撚ると、撚り方向の反転部において撚りが解け易くなり(撚りが戻り易くなり)、この結果、反転部付近において、光ファイバが光ケーブルの長手方向に沿った状態になるおそれがある。長手方向に沿った光ファイバの部位(ストレート部)の割合が多くなると、光ケーブルを曲げたときに、伝送損失が増加するおそれがある。
 本発明は、光ケーブルの伝送損失を抑制することを目的とする。
 上記目的を達成するための主たる発明は、複数の光ファイバで構成されたファイバ束を有する光ファイバユニットを複数備え、複数の前記光ファイバユニットは、撚り方向を反転させることによってSZ状に撚り合わせられており、前記撚り方向の反転部から次の前記反転部までの間に前記光ファイバユニットが周方向に撚られる撚り角度は、540度以上であることを特徴とする光ケーブルである。
 本発明の他の特徴については、後述する明細書及び図面の記載により明らかにする。
 本発明によれば、光ケーブルの伝送損失を抑制することができる。
図1Aは、光ケーブル1の説明図である。図1Bは、光ファイバユニット10の説明図である。 別の光ケーブルの説明図である。 図3は、光ケーブル1の製造システム40の説明図である。 図4A~図4Cは、複数の光ファイバユニット10の撚り方の説明図である。 図5は、第1実施例の比較表である。 図6は、第2実施例の比較表である。 図7は、第3実施例の比較表である。
 後述する明細書及び図面の記載から、少なくとも以下の態様が明らかとなる。
 態様1は、複数の光ファイバで構成されたファイバ束を有する光ファイバユニットを複数備え、複数の前記光ファイバユニットは、撚り方向を反転させることによってSZ状に撚り合わせられており、前記撚り方向の反転部から次の前記反転部までの間に前記光ファイバユニットが周方向に撚られる撚り角度は、540度以上であることを特徴とする光ケーブルである。このような光ケーブルによれば、伝送損失を抑制することができる。
 態様2は、態様1の光ケーブルであって、前記撚り角度は、1800度以下であることを特徴とする光ケーブルである。
 また、態様3は、態様2の光ケーブルであって、前記撚り角度は、1440度以下であることを特徴とする光ケーブルである。これにより、伝送損失を抑制することができる。
 態様4は、態様1~3のいずれかの光ケーブルであって、前記光ファイバユニットは、前記複数の光ファイバを束ねるバンドル材を備えることを特徴とする光ケーブルである。これにより、バンドル材で光ファイバを束ねることができる。
 態様5は、態様4の光ケーブルであって、前記光ファイバユニットは、間欠連結型の光ファイバテープで構成されていることを特徴とする光ケーブルである。これにより、光ファイバユニットを構成する複数の光ファイバを束ねやすくなる。
 態様6は、態様1~5のいずれかの光ケーブルであって、S方向の撚り角度とZ方向の撚り角度が略等しいことを特徴とする光ケーブルである。
 ===実施形態===
 <光ケーブル1の構成>
 図1Aは、光ケーブル1の説明図である。図1Bは、光ファイバユニット10の説明図である。
 光ケーブル1は、光ファイバ11を収容したケーブルである。本実施形態の光ケーブル1は、スロット(光ファイバ11を収容する溝)が形成されたスロットロッドを有さない光ケーブルであり、いわゆるスロットレス型の光ケーブルである。光ケーブル1は、複数の光ファイバユニット10と、外被20とを有する。
 光ファイバユニット10は、複数の光ファイバ11を束ねた構造体である。図中に示す光ファイバユニット10は、ファイバ束と、バンドル材12とを有する。
 ファイバ束は、複数の光ファイバ11の束である。本実施形態では、ファイバ束は、複数枚の間欠連結型の光ファイバテープを束ねて構成されている。間欠連結型の光ファイバテープは、複数の光ファイバ11が間欠的に連結部によって連結されており、連結部以外の部位(分離部)では光ファイバ11同士が拘束されていない。このため、間欠連結型の光ファイバテープを用いて光ファイバユニット10を構成することによって、複数の光ファイバ11を束ねやすくなる。但し、ファイバ束は、複数枚の間欠連結型の光ファイバテープで構成されていなくても良く、例えば、1枚の間欠連結型の光ファイバテープで構成されても良いし、複数の単心光ファイバで構成されても良い。光ファイバユニット10を構成する複数の光ファイバ11は、撚り合わせられていても良いし、撚られていなくても良い。
 バンドル材12は、ファイバ束を構成する複数の光ファイバ11を束ねる部材である。バンドル材12は、例えば紐状の部材である。バンドル材12は、ファイバ束の外周上に巻き付けられている。図中の光ファイバユニット10は一対のバンドル材12を有しており、それぞれのバンドル材12は接合点で巻付方向が逆になるように、SZ状にファイバ束の外周に巻き付けられている。但し、バンドル材12は、SZ状に巻き付けるものに限られず、ファイバ束の外周に一方向に螺旋状に巻き付けられても良い。また、バンドル材12の数は2本に限られるものではない。また、光ファイバユニット10は、バンドル材12を備えなくても良い。例えば、光ファイバユニット10が1枚の間欠連結型の光ファイバテープで構成されるような場合、光ファイバ11の束がバラバラにならないため、光ファイバユニット10はバンドル材12を備えなくても良い。また、チューブやフィルムのようなバンドル材がファイバ束を覆うことによって、ファイバユニット12が構成されても良い。
 本実施形態では、光ケーブル1は複数の光ファイバユニット10を有する。図1A及び図1Bでは、光ファイバユニット10が長手方向に直線状に延在して描かれているが、本実施形態では、後述するように、複数の光ファイバユニット10は、SZ状に撚り合わせられている。このため、それぞれの光ファイバユニット10は、光ケーブル1の長手方向に沿った軸の軸周りに所定の撚り角度で撚られている。複数の光ファイバユニット10の撚り方については、後述する。
 図1Aに示すように、複数の光ファイバユニット10は、押え巻きテープ15の包まれた状態で外被20に収容されている。但し、光ケーブル1は、押え巻きテープ15を備えていなくても良い。
 外被20は、複数の光ファイバユニット10(及び押え巻きテープ15)を被覆する部材である。外被20の外形は、ここでは断面が略円形状であるが、外被20の外形形状は円形状に限られるものではない。外被20には、テンションメンバ21が埋設されている。また、外被20には、テンションメンバ21だけでなく、他の部材(例えばリップコード22)が埋設されても良い。また、外被20の内側に、複数の光ファイバユニット10や押え巻きテープ15とは別の部材が収容されても良い。
 なお、光ケーブルの形状は、図1に示す光ケーブルに限られるものではない。図2は、別の光ケーブル1の説明図である。
 図2に示す光ケーブル1は、断面が略矩形状の平型光ケーブル(角型光ケーブル)である。この光ケーブル1も、複数の光ファイバユニット10と、外被20とを有する。それぞれの光ファイバユニット10は、例えば1枚の間欠連結型の光ファイバテープで構成されている。なお、光ファイバユニット10が1枚の光ファイバテープで構成されるため、図2に示す光ケーブル1の光ファイバユニット10は、バンドル材12を備えていない。複数(例えば6つ)の光ファイバユニット10は、SZ状に撚り合わせられており、押え巻きテープ15の包まれた状態で外被20に収容されている。また、押え巻きテープ15の内側には、空間を埋めるための介在物17が収容されている。但し、光ケーブル1は、押え巻きテープ15や介在物17を備えていなくても良い。複数の光ファイバユニット10の撚り方については、後述する。
 図2に示すように、外被20には、ノッチ20Aが設けられている。ノッチ20Aは、長手方向に沿った溝である。分割工具で外被20のノッチ20Aに切り込みを入れることにより、外被20を分割して光ファイバユニット10を取り出すことができる。但し、光ケーブル1にノッチ20Aが設けられていなくても良い。
 また、図2に示すように、外被20には、一対のテンションメンバが埋設されているとともに、セパレータ23が埋設されている。セパレータ23は、シート状の部材であり、ノッチ20Aの直下に配置されている。複数の光ファイバユニット10は、一対のセパレータ23に挟み込まれた状態で外被20に収容されている。セパレータ23は、分割工具の刃から光ファイバ11を保護する機能や、外被20の内側から光ファイバ11の取り出す作業を容易にする機能を有する。但し、光ケーブル1がセパレータ23を有していなくても良い。
 光ケーブルの形状や構成は、図1や図2に示すものに限られるものではない。本実施形態の光ケーブルは、SZ状に撚り合わせられた複数の光ファイバユニット10を備えていれば良い。
 <光ケーブル1の製造方法>
 図3は、光ケーブル1の製造システム40の説明図である。図中の製造システム40は、図1に示す光ケーブル1を製造するシステムである。但し、製造システムは、図2に示す光ケーブル1を製造しても良いし、他の形状・構成の光ケーブルを製造しても良い。製造システム40は、供給部42と、目板44を有する撚り合わせ部(不図示)と、押出成型部46と、制御部48とを有する。
 供給部42は、光ファイバユニット10を供給する装置(供給源)である。供給部42は、例えば、複数の光ファイバテープを供給するボビンと、複数の光ファイバテープで構成されたファイバ束の外周にバンドル材12を巻き付けるバンドル装置とにより構成される。但し、供給部42は、光ファイバテープを供給するボビンの代わりに、光ファイバテープを製造するテープ製造装置や、光ファイバ11を製造するファイバ製造装置を備えていても良い。また、供給部42は、ファイバ束にバンドル材12を巻き付けるバンドル装置を備えていなくても良い。供給部42は、目板44に光ファイバユニット10を供給する。供給部42が光ファイバユニット10を供給する速度は、制御部48によって調整可能である。
 撚り合わせ部は、複数の光ファイバユニット10を撚り合わせる装置であり、目板44と、目板44を回転(揺動)させる駆動部とを有する。目板44は、複数の光ファイバユニット10を撚り合わせるための部材であり、複数の挿通穴を有する板状の部材である。目板44のそれぞれの挿通穴には、光ファイバユニット10が挿通されている。目板44が中央の回転軸を中心にして揺動することによって、複数の光ファイバユニット10がSZ状に撚り合わせられる。目板44を通過した複数の光ファイバユニット10は、SZ状に撚り合わせられた状態で押出成型部46に供給される。目板44の回転速度や揺動の反転タイミングは、制御部48によって調整可能である。なお、目板44の回転角度と光ファイバユニット10の撚り角度(光ファイバユニットが周方向に撚られる角度;後述)は一致しないため(光ファイバユニット10の撚りが緩むため)、目板44の回転角度は、光ファイバユニット10の撚り角度よりも大きく設定されることになる。例えば、光ファイバユニット10の撚り角度を540度にするためには、目板44は540度よりも大きい回転角度で揺動することになる。光ファイバユニット10の撚り角度に対応する目板44の回転角度(揺動角度)は、複数の光ファイバユニット10の撚り合わせの緩みを防止するための部材(緩み防止部材)を施すまでの時間や距離など他の製造条件を考慮して適宜決定される。緩み防止部材は、本実施形態では外被20である。但し、緩み防止部材は、外被20に限られるものではない。例えば、外被20を押出成形する前に、紐状やテープ状の緩み防止部材を複数の光ファイバユニット10に巻き付けることによって、複数の光ファイバユニット10の撚り合わせの緩みが防止されても良い。
 押出成型部46は、外被20を形成する装置である。押出成型部46は、複数の光ファイバユニット10の外周に外被20となる樹脂を押出成型することによって、光ケーブル1を製造する。押出成型部46には、SZ状に撚り合わせられた複数の光ファイバユニット10だけでなく、押え巻きテープ15やテンションメンバ21なども供給される。押出成型部46によって製造された光ケーブル1は、冷却装置によって冷却された後、巻取部(例えばドラム)に巻き取られることになる。
 制御部48は、製造システム40の制御を司る装置である。制御部48は、例えばコンピューターで構成されており、供給部42、目板44及び押出成型部46の動作を制御する。ここでは、制御部48は、供給部42を制御して光ファイバユニット10の供給速度を制御したり、目板44の駆動部(不図示)を制御して目板44の回転動作(回転速度や揺動の反転タイミングなど)を制御したりする。
 <光ファイバユニット10の撚りについて>
 図4A~図4Cは、複数の光ファイバユニット10の撚り方の説明図である。図中には、複数の光ファイバユニット10を撚り合わせた集合体(コア)が描かれている。複数の光ファイバユニット10を撚り合わせたコアは、光ケーブル1の外被20の内側に収容されている。なお、本図では、光ファイバユニット10を構成する光ファイバ11を個々に描くことは省略されており、光ファイバユニット10の外形のみが概念的に描かれている。
 図中には、SZ状に撚り合わせられた複数の光ファイバユニット10が示されている。図中の反転部は、複数の光ファイバユニット10の撚られる方向(撚り方向)が反転する位置を示している。反転部では、S方向(又はZ方向)に撚られている複数の光ファイバユニット10がZ方向(又はS方向)に撚られるように、撚り方向が反転している。また、図中のピッチPは、反転部の間隔を示している。ピッチPは、或る反転部と、その隣の反転部との間隔である。詳しくは、ピッチPは、S方向(又はZ方向)に撚られている複数の光ファイバユニット10がZ方向(又はS方向)に反転する反転部と、Z方向(又はS方向)に撚られている複数の光ファイバユニット10がS方向(又はZ方向)に反転する反転部との間隔となる。ここでは、S方向の撚り角度とZ方向の撚り角度とが略等しくなるように、複数の光ファイバユニット10がSZ状に撚り合わされている。なお、撚り角度は、光ケーブル1の内部において反転部から次の反転部までの間に光ファイバユニット10が周方向(光ケーブル1の軸周りの方向;S方向又はZ方向)に撚られた角度である。光ファイバユニット10のS方向の撚り角度とZ方向の撚り角度とが異なっていても良いが、S方向の撚り角度とZ方向の撚り角度とが略等しいことによって、光ケーブル1の捻れを抑制できる。
 光ファイバユニット10がSZ状に撚られた場合、撚り方向の反転部において撚りが解けることによって(撚り戻りが起こることによって)、反転部付近の光ファイバ11が光ケーブル1の長手方向に沿った状態になるおそれがある。図中には、反転部における撚り戻りによって光ファイバ11が長手方向に沿った状態になり得る部位(領域)を「ストレート部」として示している。
 図4Aに示すように、複数の光ファイバユニット10が螺旋状に撚り合わせられることによって、光ケーブル1を曲げたときの光ファイバ11の線長差を抑制することが可能となる。なお、一方向に螺旋状に複数の光ファイバユニット10を撚り合わせると、製造システム40が複雑な構成なったり、光ケーブル1の中間分岐の際に光ファイバユニット10の取り出す作業が困難になったりするおそれがある。このため、図4Aに示すように、撚り方向を途中で反転させることによって、複数の光ファイバユニット10をSZ状に撚り合わせることが行われている。
 図4Bは、図4Aよりも、短ピッチで光ファイバユニット10を撚った場合の説明図である。光ケーブル1の許容曲げ半径を小さくするためには、ピッチPを短縮化することが望ましい。言い換えると、光ケーブル1の許容曲げ半径を小さくするためには、光ファイバユニット10の単位長さ当たりの撚り角度(=N/P)を大きくすることが望ましい。つまり、光ケーブル1の許容曲げ半径を小さくするためには、図4Aに示す撚り方よりも、図4Bに示す撚り方の方が望ましい。
 一方、撚り角度Nを変更せずにピッチPを短縮化した場合、光ファイバユニット10の単位長さ当たりの撚り角度(=N/P)が大きくなる。このため、短ピッチで光ファイバユニット10をSZ状に撚ると、撚り方向の反転部において撚りが解け易くなる(撚りが戻り易くなる)。この結果、反転部付近において、光ファイバ11が光ケーブル1の長手方向に沿った状態になる可能性が高くなり、反転部付近にストレート部が形成される可能性が高くなる。長手方向に沿った光ファイバの部位(ストレート部)の割合が多くなると、光ケーブル1を曲げたときに、伝送損失が増加するおそれがある。なお、後述する実施例に示すように、短ピッチで光ファイバユニット10をSZ状に撚ると、撚り方向の反転部において撚りが解け易くなり(撚りが戻り易くなり)、この結果、光ファイバユニット10をSZ状に撚った状態を保つことができないおそれもある。
 図4Cは、図4Bよりも、撚り角度を大きく設定した場合の説明図である。ここでは説明のため、図4Cに示す光ファイバユニット10の単位長さ当たりの撚り角度(=N/P)は、図4Bに示す光ファイバユニット10の単位長さ当たりの撚り角度と同じにしている。
 図4Cに示す撚り方においても、光ファイバユニット10の単位長さ当たりの撚り角度(=N/P)が図4Bに示す撚り方と同じであるため、撚り方向の反転部において撚りが解け易くなり(撚りが戻り易くなり)、この結果、反転部付近にストレート部が形成される可能性が高くなる。但し、図4Cに示す撚り方では、図4Bよりも撚り角度が大きく設定されており、この結果、図4Cに示す反転ピッチPは、図4Bに示す反転ピッチよりも長くなる。これにより、図4Cに示す撚り方では、図4Bに示す撚り方と比べて、光ケーブル1の長手方向全体の長さに対する反転部の数を減らすことができ、ストレート部になり得る部分の割合を抑制することができる。このため、図4Cに示す撚り方では、図4Bに示す撚り方と比べて、光ケーブル1を曲げたときの伝送損失を抑制することができる(後述する曲げ特性を向上させることができる)。
 そこで、通常では光ファイバユニット10の撚り角度が270度程度(N=270)であるのに対し、本実施形態では、光ファイバユニット10の撚り角度を540度以上にしている。
・第1実施例
 図5は、第1実施例の比較表である。なお、前述の図4A、図4B及び図4Cに示す撚り方は、それぞれ、表中の比較例1A、比較例1B及び実施例1Aの撚り方の関係に相当する。
 第1実施例として、図1Aに示す構造の光ケーブル1を作成した。ここでは、1つの光ファイバユニット10を6枚の間欠連結型の12心光ファイバテープで構成し、6つの光ファイバユニット10をSZ状に撚ることによって、間欠連結型の光ファイバテープを36枚備えた432心光ケーブルを作成した。光ケーブル1の外径を約11mmとし、外被20内の収容面積を約60mm2とし、撚り角度N及びピッチPの異なる光ケーブル1を複数種類作成した。なお、表中の撚り角度Nは、光ケーブル1の内部において反転部から次の反転部までの間に光ファイバユニット10が周方向(光ケーブル1の軸周りの方向)に撚られた角度を示している(表中の撚り角度Nは、光ケーブル1を製造するときの目板44の回転角度ではない)。
 作成した複数種類の光ケーブル1について、それぞれリボン状態、撚り状態、心線引抜力、伝送損失、曲げ特性を評価した。
 リボン状態の評価のため、間欠連結型の光ファイバテープの連結部(隣接する2本の光ファイバ11を間欠的に連結する部位)の破壊の有無を確認した。連結部が破壊されていない場合には「◎(優)」と評価し、連結部が破壊されていた場合には「×(不合格)」と評価した。
 撚り状態の評価のため、光ファイバユニット10が所定の撚り角度で撚られているか否かを確認した。光ファイバユニット10が所定の撚り角度で撚られていた場合には「◎(優)」と評価し、光ファイバユニット10が所定の撚り角度で撚られていない場合には「×(不合格)」と評価した。
 心線引抜力の評価のため、10mに切断した光ファイバケーブルの光ファイバ11(光ファイバ心線)を引き抜いたときに光ファイバ11が引張端逆側で移動を開始したときの張力(心線引抜力)を測定した。この心線引抜力が25N/10m以上である場合には「◎(優)」と評価し、25N/10m未満であり15N/10m以上である場合には「○(良)」と評価し、15N/10m以上未満である場合には「×(不合格)」と評価した。
 伝送損失の評価のため、ドラム巻きされた光ケーブル1に対してOTDR法にて波長1550nmで伝送損失を測定した。伝送損失が0.25dB/km以下である場合には「◎(優)」とし、伝送損失が0.30dB/km以下(且つ0.25dB/kmより大きい)である場合には「○(良)」とし、伝送損失が0.30dB/kmより大きい場合には「×(不合格)」とした。
 曲げ特性の評価のため、IEC60794-1-21E11A/IEC60794-3-10に基づいた巻き付き試験を行い、光ケーブル1の伝送損失を測定した。巻き付き試験では、マンドレル直径をケーブル外径の20倍とし、巻き付け回数を4ターンとし、サイクル数(同じ試験を繰り返す回数)を3サイクルとした。巻き付き試験の試験後の伝送損失の増加が光ファイバ1本あたり0.05dB以下であり、且つ、試験中の伝送損失の増加も光ファイバ1本あたり0.05dB以下であれば「◎(優)」とし、巻き付き試験後の伝送損失の増加が光ファイバ1本あたり0.05dB以下であれば「○(良)」とし、巻き付き試験後の伝送損失の増加が光ファイバ1本あたり0.05dBより大きければ「×(不合格)」と評価した。
 また、総合判定として、全ての評価項目が「◎(優)」である場合には「◎(優)」とし、全ての評価項目に「×(不合格)」が含まれていない場合には「○(良)」とし、いずれかの評価項目に「×(不合格)」が含まれている場合には「×(不良)」とした。
 比較例1A及び比較例1Bでは、撚り角度Nを同じに設定しつつ、比較例1Bは、比較例1Aと比べて、ピッチPを半分に短縮して設定した。但し、比較例1Bでは、単位長さ当たりの撚り角度(=N/P)が大きいため、反転部において撚りが解けてしまい、この結果、光ファイバユニット10をSZ状に撚った状態を保てなかった(このため、比較例1Bでは、引抜力、伝送損失及び曲げ特性を評価できなかった)。
 一方、実施例1Aでは、単位長さ当たりの撚り角度(=N/P)が比較例1Bと同じに設定されている。但し、実施例1Aでは、比較例1Bと比べて、ピッチPが長く設定されているため、反転部付近にストレート部が形成されるものの、光ファイバユニット10をSZ状に撚った状態を保つことが可能である。このように、単位長さ当たりの撚り角度(=N/P)が大きい場合であっても(撚り角度Nが360度のときに撚り状態が×(不合格)になるほどN/Pが大きい値であっても)、撚り角度Nを大きく設定し、ピッチPを長く設定することによって、撚り状態が改善することが確認された。なお、実施例1Bにおいても、実施例1Aと同様に、比較例1Bと比べて、撚り角度Nが大きく設定されており、ピッチPが長く設定されており、撚り状態が改善することが確認された。
 また、実施例1Aでは、比較例1Aと比べて、曲げ特性が向上した。これは、実施例1Aでは、比較例1Aと比べて、光ファイバユニット10の単位長さ当たりの撚り角度(=N/P)を大きいため、光ケーブル1を曲げたときの伝送損失を抑制できたと考えられる。なお、実施例1Bにおいても、実施例1Aと同様に、比較例1Aと比べて曲げ特性が向上した。この理由も、実施例1Bでは、比較例1Aと比べて、光ファイバユニット10の単位長さ当たりの撚り角度(=N/P)を大きいため、光ケーブル1を曲げたときの伝送損失を抑制できたためだと考えられる。
 実施例1Cでは、単位長さ当たりの撚り角度(=N/P)が比較例1Aと同じに設定されている。一方、実施例1Cでは、比較例1Aと比べて、撚り角度が大きく設定されており、ピッチPが長く設定されている。このような比較例1Aと実施例1Cとの関係は、前述の図4Bの撚り方と図4Cに示す撚り方の関係に相当する。このため、実施例1Cでは、比較例1Aと比べて、光ケーブル1の長手方向全体の長さに対するストレート部の割合を抑制することができる。したがって、実施例1Cが、比較例1Aと比べて、心線引抜力及び曲げ特性が若干向上した理由は、光ケーブル1の長手方向全体の長さに対するストレート部の割合を抑制できたためだと考えられる。このように、比較例1Bと実施例1Aとの比較だけでなく、比較例1Aと実施例1Cとの比較からも、撚り角度Nを大きく設定し、ピッチPを長く設定することが有効であることが確認された。
・第2実施例
 図6は、第2実施例の比較表である。なお、前述の図5の比較例1A、実施例1A及び実施例1Bは、図6の比較例2、実施例2F及び実施例2Gに相当する。
 第2実施例においても、第1実施例と同様に、図1Aに示す構造の光ケーブル1を作成した。具体的には、1つの光ファイバユニット10を6枚の間欠連結型の12心光ファイバテープで構成し、6つの光ファイバユニット10をSZ状に撚ることによって、間欠連結型の光ファイバテープを36枚備えた432心光ケーブルを作成した。光ケーブル1の外径を約11mmとし、外被20内の収容面積を約60mm2とし、ピッチPを800mmとし、撚り角度Nを360~720度の範囲で異なる光ケーブル1を複数種類作成した。なお、表中の撚り角度Nは、光ケーブル1の内部において反転部から次の反転部までの間に光ファイバユニット10が周方向(光ケーブル1の軸周りの方向)に撚られた角度を示している。
 図6に示すように、撚り角度Nが540度以上の場合には、比較例2と比べて、曲げ特性が向上した。これは、実施例2A~2Jでは、比較例2と比べて、光ファイバユニット10の単位長さ当たりの撚り角度(=N/P)を大きいため、光ケーブル1を曲げたときの伝送損失を抑制できたと考えられる。このため、図6に示すように、光ファイバユニット10の撚り角度Nは、540度以上であることが望ましい。
 また、図6に示すように、撚り角度Nが2160度の場合には、間欠連結型の光ファイバテープの連結部に破壊が確認されることがあった。連結部が破壊された理由は、光ファイバテープが強く捩られたためだと考えられる。このため、光ファイバユニット10の撚り角度Nは、2160度未満であることが望ましい。つまり、光ファイバユニット10の撚り角度Nは、540度以上、1800度以下であることが望ましい。
 また、図6に示すように、撚り角度Nが1800度以上の場合には、伝送損失が悪化した。この理由は、光ファイバテープが強く捩られたため、局所的に光ファイバ11の実装密度が上昇し、マイクロベンドロスが増加したためだと考えられる。このため、光ファイバユニット10の撚り角度Nは、1800度未満であることが更に望ましい。つまり、光ファイバユニット10の撚り角度Nは、540度以上、1440度以下であることが更に望ましい。
・第3実施例
 図7は、第3実施例の比較表である。
 第3実施例として、図2に示す光ケーブルを作成した。ここでは、1つの光ファイバユニット10を1枚の間欠連結型の4心光ファイバテープで構成し、6つの光ファイバユニット10をSZ状に撚ることによって、間欠連結型の光ファイバテープを6枚備えた24心光ケーブルを作成した。短径を3.5mmとし、長径を5.5mmとする平型の光ケーブルとし、外被20内の収容面積を2.5mm2とし、撚り角度N及びピッチPの異なる光ケーブルを複数種類作成した。なお、表中の撚り角度Nは、光ケーブルの内部において反転部から次の反転部までの間に光ファイバユニット10が周方向(光ケーブルの軸周りの方向)に撚られた角度を示している。
 図7に示すように、撚り角度Nが540度以上の場合には、比較例3と比べて、曲げ特性が向上した。これは、実施例3A~3Fでは、比較例3と比べて、光ファイバユニット10の単位長さ当たりの撚り角度(=N/P)を大きいため、光ケーブルを曲げたときの伝送損失を抑制できたと考えられる。このため、図7に示すように、光ファイバユニット10の撚り角度Nは、540度以上であることが望ましい。
 また、図7に示すように、撚り角度Nが2160度の場合には、間欠連結型の光ファイバテープの連結部に破壊が確認されることがあった。連結部が破壊された理由は、光ファイバテープが強く捩られたためだと考えられる。このため、第3実施例においても、光ファイバユニット10の撚り角度Nは、2160度未満であることが望ましい。つまり、光ファイバユニット10の撚り角度Nは、540度以上、1800度以下であることが望ましい。
 また、図7に示すように、撚り角度Nが1800度以上の場合には、伝送損失が悪化した。この理由は、光ファイバテープが強く捩られたため、局所的に光ファイバ11の実装密度が上昇し、マイクロベンドロスが増加したためだと考えられる。このため、光ファイバユニット10の撚り角度Nは、1800度未満であることが更に望ましい。つまり、光ファイバユニット10の撚り角度Nは、540度以上、1440度以下であることが更に望ましい。
 なお、外被20内の収容面積を1.8mm2、2.0mm2とし、同様に撚り角度N及びピッチPを異ならせた平型の光ケーブルを複数種類作成した。外被20内の収容面積を1.8mm2とする平型の光ケーブルでは、どの条件においても、複数の光ファイバユニット10にSZ状の撚りをいれることができなかった。一方、外被20内の収容面積を2.0mm2とする平型の光ケーブルでは、図7と同様の結果が得られた。このため、複数の光ファイバユニット10をSZ状に撚ることが可能な条件下では、光ファイバユニット10の撚り角度Nは、540度以上であることが確認された。
 ===その他の実施形態===
 上述の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更・改良され得ると共に、本発明には、その等価物が含まれることは言うまでもない。また、上述の各実施形態が適宜組み合わせられてもよい。
1 光ケーブル、10 光ファイバユニット、
11 光ファイバ、12 バンドル材、
15 押え巻きテープ、17 介在物、
20 外被、20A ノッチ、
21 テンションメンバ、22 リップコード、
23 セパレータ、
40 製造システム、42 供給部、
44 目板、46 押出成型部、48 制御部

Claims (6)

  1.  複数の光ファイバで構成されたファイバ束を有する光ファイバユニットを複数備え、
     複数の前記光ファイバユニットは、撚り方向を反転させることによってSZ状に撚り合わせられており、
     前記撚り方向の反転部から次の前記反転部までの間に前記光ファイバユニットが周方向に撚られる撚り角度は、540度以上である
    ことを特徴とする光ケーブル。
  2.  請求項1に記載の光ケーブルであって、
     前記撚り角度は、1800度以下であることを特徴とする光ケーブル。
  3.  請求項2に記載の光ケーブルであって、
     前記撚り角度は、1440度以下であることを特徴とする光ケーブル。
  4.  請求項1~3のいずれかに記載の光ケーブルであって、
     前記光ファイバユニットは、前記複数の光ファイバを束ねるバンドル材を備えることを特徴とする光ケーブル。
  5.  請求項4に記載の光ケーブルであって、
     前記光ファイバユニットは、間欠連結型の光ファイバテープで構成されていることを特徴とする光ケーブル。
  6.  請求項1~5のいずれかに記載の光ケーブルであって、
     S方向の撚り角度とZ方向の撚り角度が略等しいことを特徴とする光ケーブル。
PCT/JP2022/018194 2021-07-29 2022-04-19 光ケーブル及び光ケーブル製造方法 WO2023007881A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3224254A CA3224254A1 (en) 2021-07-29 2022-04-19 Optical cable and optical cable manufacturing method
AU2022320172A AU2022320172A1 (en) 2021-07-29 2022-04-19 Optical cable and optical cable manufacturing method
KR1020237044564A KR20240011802A (ko) 2021-07-29 2022-04-19 광케이블 및 광케이블 제조 방법
JP2023538283A JPWO2023007881A1 (ja) 2021-07-29 2022-04-19
CN202280046489.9A CN117642664A (zh) 2021-07-29 2022-04-19 光缆及光缆制造方法
TW111115979A TWI818525B (zh) 2021-07-29 2022-04-27 光纖纜線及光纖纜線製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021124564 2021-07-29
JP2021-124564 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023007881A1 true WO2023007881A1 (ja) 2023-02-02

Family

ID=85086480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018194 WO2023007881A1 (ja) 2021-07-29 2022-04-19 光ケーブル及び光ケーブル製造方法

Country Status (7)

Country Link
JP (1) JPWO2023007881A1 (ja)
KR (1) KR20240011802A (ja)
CN (1) CN117642664A (ja)
AU (1) AU2022320172A1 (ja)
CA (1) CA3224254A1 (ja)
TW (1) TWI818525B (ja)
WO (1) WO2023007881A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506997A (ja) * 1998-03-12 2002-03-05 シーメンス アクチエンゲゼルシヤフト 光学的伝送素子、並びに光学的伝送素子の偏光モード分散を低減する方法
US20160041354A1 (en) * 2014-08-08 2016-02-11 Corning Optical Communications LLC Optical fiber cable
JP2016527568A (ja) * 2013-08-09 2016-09-08 コーニング オプティカル コミュニケーションズ リミテッド ライアビリティ カンパニー 外装材付き光ファイバケーブル
JP2019090929A (ja) * 2017-11-15 2019-06-13 株式会社フジクラ 光ファイバテープの製造方法及び間欠連結型光ファイバテープ
JP2019128363A (ja) * 2018-01-19 2019-08-01 株式会社フジクラ 光ファイバユニットの製造方法、光ファイバユニットの製造装置及び光ファイバユニット
JP2019159078A (ja) 2018-03-13 2019-09-19 株式会社フジクラ 光ファイバケーブル
WO2020054493A1 (ja) * 2018-09-11 2020-03-19 株式会社フジクラ 光ファイバケーブル
CN111077618A (zh) * 2020-01-21 2020-04-28 江苏南方通信科技有限公司 层绞式光缆正弦绞合方法
JP2020106734A (ja) * 2018-12-28 2020-07-09 株式会社フジクラ 光ファイバユニットの製造方法及び光ファイバユニット製造装置
JP2021124564A (ja) 2020-02-04 2021-08-30 キヤノン株式会社 画像形成システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000023391A (ko) * 1998-09-25 2000-04-25 오카야마 노리오 광 케이블 및 그 제조 방법
US9091830B2 (en) * 2012-09-26 2015-07-28 Corning Cable Systems Llc Binder film for a fiber optic cable
CN106104347B (zh) * 2014-02-17 2019-11-08 康宁光电通信有限责任公司 可变铺设绞合
JP6663911B2 (ja) * 2015-04-07 2020-03-13 株式会社フジクラ ルースチューブ、ルースチューブ型光ファイバケーブル、ルースチューブの製造方法、及び、複数の光ファイバの集線方法
US9869838B2 (en) * 2015-11-25 2018-01-16 Fujikura Ltd. Optical fiber cable and method of manufacturing same
US11340414B2 (en) * 2019-07-02 2022-05-24 Corning Research & Development Corporation SZ stranded tight-buffered ribbon stacks with binder film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506997A (ja) * 1998-03-12 2002-03-05 シーメンス アクチエンゲゼルシヤフト 光学的伝送素子、並びに光学的伝送素子の偏光モード分散を低減する方法
JP2016527568A (ja) * 2013-08-09 2016-09-08 コーニング オプティカル コミュニケーションズ リミテッド ライアビリティ カンパニー 外装材付き光ファイバケーブル
US20160041354A1 (en) * 2014-08-08 2016-02-11 Corning Optical Communications LLC Optical fiber cable
JP2019090929A (ja) * 2017-11-15 2019-06-13 株式会社フジクラ 光ファイバテープの製造方法及び間欠連結型光ファイバテープ
JP2019128363A (ja) * 2018-01-19 2019-08-01 株式会社フジクラ 光ファイバユニットの製造方法、光ファイバユニットの製造装置及び光ファイバユニット
JP2019159078A (ja) 2018-03-13 2019-09-19 株式会社フジクラ 光ファイバケーブル
WO2020054493A1 (ja) * 2018-09-11 2020-03-19 株式会社フジクラ 光ファイバケーブル
JP2020106734A (ja) * 2018-12-28 2020-07-09 株式会社フジクラ 光ファイバユニットの製造方法及び光ファイバユニット製造装置
CN111077618A (zh) * 2020-01-21 2020-04-28 江苏南方通信科技有限公司 层绞式光缆正弦绞合方法
JP2021124564A (ja) 2020-02-04 2021-08-30 キヤノン株式会社 画像形成システム

Also Published As

Publication number Publication date
TWI818525B (zh) 2023-10-11
CN117642664A (zh) 2024-03-01
KR20240011802A (ko) 2024-01-26
TW202305432A (zh) 2023-02-01
AU2022320172A1 (en) 2024-01-25
JPWO2023007881A1 (ja) 2023-02-02
CA3224254A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
JP6657976B2 (ja) 間欠連結型光ファイバテープ心線および光ケーブル
JP4902580B2 (ja) 光ファイバケーブル及びその製造方法
US11181706B2 (en) Optical fiber cable
US11513302B2 (en) Optical fiber cable and cable core production method
CN107076954B (zh) 光缆、光缆的制造方法以及制造装置
WO2020054493A1 (ja) 光ファイバケーブル
US6529662B1 (en) Optical fiber cable
WO2023007881A1 (ja) 光ケーブル及び光ケーブル製造方法
WO2018116420A1 (ja) 光ファイバユニット、光ファイバケーブル、および光ファイバユニットの製造方法
JP2020042175A (ja) 光ファイバケーブル
JP2013088641A (ja) 光ファイバケーブル
WO2019059251A1 (ja) 光ファイバケーブル
JP7426873B2 (ja) 光ファイバケーブル
WO2023127421A1 (ja) 光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法
WO2023127420A1 (ja) 光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法
WO2023127418A1 (ja) 光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法
WO2023120727A1 (ja) 光ケーブル及び光ケーブルの製造方法
WO2022270028A1 (ja) 光ファイバケーブル、および光ファイバケーブルの製造方法
JP2023114328A (ja) 光ファイバケーブル
JP2023122119A (ja) 光ファイバケーブル、ケーブルコアの製造方法
JP2005331711A (ja) 光ファイバケーブル
JP2017009925A (ja) 光ファイバユニット、光ファイバケーブル、および光ファイバユニットの製造方法
JPH06235850A (ja) スペーサ型光ケーブルの製造方法
JP2005301159A (ja) 光ファイバケーブル及び光ファイバケーブルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538283

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237044564

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237044564

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 3224254

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022320172

Country of ref document: AU

Ref document number: AU2022320172

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022320172

Country of ref document: AU

Date of ref document: 20220419

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022848964

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022848964

Country of ref document: EP

Effective date: 20240229