WO2023005485A1 - 对焦马达、对焦马达的闭环控制方法及摄像设备 - Google Patents

对焦马达、对焦马达的闭环控制方法及摄像设备 Download PDF

Info

Publication number
WO2023005485A1
WO2023005485A1 PCT/CN2022/099289 CN2022099289W WO2023005485A1 WO 2023005485 A1 WO2023005485 A1 WO 2023005485A1 CN 2022099289 W CN2022099289 W CN 2022099289W WO 2023005485 A1 WO2023005485 A1 WO 2023005485A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
pole plate
moving
fixed
capacitance
Prior art date
Application number
PCT/CN2022/099289
Other languages
English (en)
French (fr)
Inventor
张耀国
夏波
张毓麟
Original Assignee
基合半导体(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 基合半导体(宁波)有限公司 filed Critical 基合半导体(宁波)有限公司
Priority to KR1020237018949A priority Critical patent/KR102630262B1/ko
Publication of WO2023005485A1 publication Critical patent/WO2023005485A1/zh
Priority to US18/401,454 priority patent/US20240146169A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • H02P25/034Voice coil motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors

Definitions

  • the embodiments of the present application relate to the technical field of imaging, and in particular to a focus motor, a closed-loop control method for the focus motor, and an imaging device.
  • the camera modules in most current camera equipment usually adopt a closed-loop control method to detect the real-time position of the mover bracket in the focus motor during the focusing process, and according to the detection The position of the mover bracket adjusts the driving current of the drive lens, so that the mover bracket can quickly reach the accurate focus position.
  • the moving distance of the moving sub-support is much greater than the length of the moving sub-support in the focusing direction, when the moving sub-support moves to a certain distance, the electrical signal corresponding to the exact position of the moving sub-support cannot be obtained, and thus the above-mentioned large stroke cannot be achieved. Closed-loop control of the motor.
  • An embodiment of the present application provides a focusing motor, including: a mover bracket, a stator, a moving plate set on the mover support, a first fixed plate and a second fixed plate set on the stator, and A processing unit in which the moving plate, the first fixed plate and the second fixed plate are all connected; the mover bracket can move along the focusing direction, the moving plate and the first fixed plate, the moving plate and the second fixed plate They are set relatively, the length of the first fixed plate in the focusing direction and the length of the second fixed plate in the focusing direction are greater than the length of the moving plate in the focusing direction, the positive distance between the moving plate and the first fixed plate
  • the opposing area, the facing area of the movable plate and the second fixed plate all change with the movement of the mover support; the processing unit controls the mover support to move in the focusing direction according to the capacitance signals of the first capacitor and the second capacitor; , the first capacitance is the capacitance formed by the moving plate and the first fixed plate, and the second capacit
  • the embodiment of the present application also provides a closed-loop control method of the focus motor, which is applied to the above-mentioned focus motor.
  • the second capacitance signal according to the first capacitance signal and the second capacitance signal, judge whether the position of the mover bracket coincides with the target position; if not, control the mover bracket to move again along the focusing direction until the position of the mover bracket is determined coincides with the target position.
  • An embodiment of the present application also provides an imaging device, including: a lens, and the above-mentioned focus motor used to drive the lens.
  • Fig. 1 is a cross-sectional view of the focus motor structure along the focus direction according to the present application
  • FIG. 2 is a schematic structural view of each pole plate of a focus motor according to the present application.
  • FIG. 3 is a schematic structural view of each pole plate of another focus motor according to the present application.
  • FIG. 4 is a schematic structural view of each pole plate of another focus motor according to the present application.
  • FIG. 5 is a schematic structural view of each pole plate of another focus motor according to the present application.
  • FIG. 6 is a schematic structural view of each pole plate of another focus motor according to the present application.
  • Fig. 7 is a schematic diagram of parameters of each pole plate of a focus motor according to the present application.
  • FIG. 8 is a flow chart of a closed-loop control method for a focus motor according to an embodiment of the present application.
  • Fig. 9 is a flow chart of the process of judging whether it coincides with the target position according to the embodiment of the present application.
  • FIG. 10 is a flowchart of a method of establishing a correspondence relationship between a position and a capacitance value according to an embodiment of the present application.
  • the purpose of the embodiments of the present application is to provide a focus motor, a closed-loop control method for the focus motor, and an imaging device, so as to realize focus control for a focus motor with a large moving range of the mover support and a relatively small thickness of the mover support.
  • the embodiment of the present application relates to a focusing motor, as shown in Figures 1 to 2, including: a mover bracket 1, a stator 2, a moving pole plate 3 arranged on the mover bracket 1, a second pole plate arranged on the stator 2 A certain pole plate 41 and a second fixed pole plate 42, and a processing unit connected to the movable pole plate 3, the first fixed pole plate 41 and the second fixed pole plate 42; the mover support 1 is movable along the focusing direction,
  • the moving pole plate 3 and the first fixed pole plate 41, the moving pole plate 3 and the second fixed pole plate 42 are all arranged oppositely, the length of the first fixed pole plate 41 in the focusing direction, and the length of the second fixed pole plate 42 in the focusing direction
  • the lengths are greater than the length of the moving pole plate 3 in the focusing direction, the facing area of the moving pole plate 3 and the first fixed pole plate 41, and the facing area of the moving pole plate 3 and the second fixed pole plate 42 follow the mover
  • the movement of the bracket 1 changes; the
  • the moving sub-support coincides with the target position in the following manner: first, if the obtained capacitance signal of the first capacitor It is the same as the capacitance signal of the first capacitor obtained when the focus motor is at the target position during the pre-adjustment process, and the capacitance signal of the second capacitor obtained is the same as the capacitance signal of the second capacitor obtained when the focus motor is at the target position during the pre-adjustment process, then The mover bracket 1 coincides with the target position.
  • Second perform a logic operation on the first capacitance value corresponding to the acquired capacitance signal of the first capacitor and the second capacitance value corresponding to the capacitance signal of the second capacitor to obtain the operation result.
  • the mover support 1 coincides with the target position if the logic operation results are the same according to the capacitance signals of the first capacitor and the second capacitor.
  • the focus motor mentioned above can be an electromagnetic motor, a piezoelectric motor or a shape memory alloy motor, but it is not limited to these three types of motors.
  • Electromagnetic motors are motors that use the electromagnetic force of coils and magnets as the driving force.
  • Piezoelectric motors use the piezoelectric effect of ultrasonic piezoelectric ceramics as the driving force.
  • Shape memory alloy motors use the deformation characteristics of memory metals as the driving force. motor.
  • the focus motor is provided with a mover bracket 1, a stator 2, a moving plate 3 set on the mover support 1, a first fixed plate 41 and a second fixed plate 42 set on the stator , the length of the first fixed pole plate 41 in the focusing direction, the length of the second fixed pole plate 42 in the focusing direction are greater than the length of the moving pole plate 3 in the focusing direction, the moving pole plate 3 and the first fixed pole plate 41
  • the facing area of the moving pole plate 3 and the second fixed pole plate 42 all change with the movement of the mover support 1, thus ensuring that when the length of the moving pole plate 3 in the focusing direction is small, the moving pole plate 3
  • the first capacitance formed by the first fixed pole plate 41 and the second capacitance formed by the moving pole plate 3 and the second fixed pole plate 42 will also change, no matter where the mover support 1 moves to any position, comprehensive consideration
  • the monotonous change includes a monotonically increasing change or a monotonically decreasing change.
  • Fig. 2 to Fig. 5 in the process that the moving pole plate 3 moves downward along the vertical direction as shown in the figure, the facing area of the moving pole plate 3 and the first fixed pole plate 41 increases monotonously, and the moving pole plate 3 and the first fixed pole plate 41 increase monotonically.
  • the facing area of the second fixed pole plate 42 decreases monotonously. At this time, the installation area of the first fixed pole plate and the second fixed pole plate can be reduced to a certain extent.
  • the facing area of the second fixed pole plate 42 also monotonically increases, and the change trend of the facing area between the moving pole plate 3 and the first fixed pole plate 41 and the second fixed pole plate 42 is the same. On the contrary, when the moving plate 3 moves upwards in the vertical direction as shown in the figure, the facing areas between the moving plate 3 and the first fixed plate 41 and the second fixed plate 42 decrease monotonically.
  • the shape and size of the first fixed pole plate 41 and the second fixed pole plate 42 as described in FIGS. 2 to 6 are not limited.
  • the shapes of the first fixed pole plate 41 and the second fixed pole plate 42 are arranged in this way, so that the first capacitance formed when the movable pole plate 3 is moved to each position is a capacitance signal of different values.
  • the second capacitors are also capacitance signals of different values.
  • the position of the moving plate can be distinguished from the value of the obtained capacitance signal, and then the position of the mover support 1 can be determined, which simplifies the calculation process based on the first capacitance. and the capacitance signal of the second capacitor control the complexity of moving the mover support 1 in the focusing direction.
  • the facing area of the moving pole plate 3 and the first fixed pole plate 41 and the facing area of the moving pole plate 3 and the second fixed pole plate 42 change with the movement of the mover support 1. . Therefore, the complexity of controlling the movement of the mover support 1 in the focus direction according to the capacitance signals of the first capacitor and the second capacitor is further simplified. Taking the first fixed pole plate 41 and the second fixed pole plate 42 shown in FIG. 7 as an example, how to further simplify the complexity of controlling the movement of the mover support 1 is described in detail below:
  • the length of the movable pole plate 3 in the focusing direction in Fig. 7 is a
  • the length of the right-angled side of the first fixed pole plate 41 in the vertical direction of the focusing direction is b
  • the first fixed pole plate 41 is in the vertical direction of the focusing direction
  • the angle formed between the right-angled side and the hypotenuse above is ⁇
  • the distance between the moving pole plate 3 and the highest point of the first fixed pole plate 41 in the focusing direction is x
  • the first fixed pole plate 41 and the moving pole plate 41 are calculated.
  • the facing area A a*cot ⁇ *(2x+a)/2 between the plates 3
  • the facing area B a*[2b-cot ⁇ *(2x +a)]/2.
  • the difference between the facing area A and the facing area B has a linear relationship with the moving distance x of the mover support 1
  • the difference between the generated capacitance signal of the first capacitor and the capacitance signal of the second capacitor is also related to the moving distance x
  • a linear relationship compared with a randomly generated capacitance signal, it is easier to determine the moving distance of the mover support 1 with a capacitance signal with a linear relationship, thus further simplifying the complexity of controlling the movement of the mover support 1 .
  • the shapes of the first fixed pole plate 41 and the second fixed pole plate 42 are irregular, the generated capacitance signal has a nonlinear relationship with the distance, and the moving distance of the mover support 1 can also be determined.
  • the degree of change of the capacitance signal can be controlled by changing the slope in the above calculation, and increasing the slope within a certain range is more helpful to improve the accuracy of the determined moving distance of the mover support 1 .
  • the first fixed plate 41 and the second fixed plate 42 together form a rectangle.
  • the first fixed plate 41 and the second fixed plate 42 are arranged symmetrically to the center, which is convenient for mass production of focus motors.
  • the center point of symmetry is the center of the rectangle formed by the first fixed plate 41 and the second fixed plate 42 .
  • the arrangement of the first fixed pole plate 41 and the second fixed pole plate 42 has a certain regularity, which is convenient for mass production.
  • the first fixed pole plate 41 and the second fixed pole plate 42 can both be right-angled triangles, and can also be other regular or irregular shapes, as long as the above-mentioned requirements for the first fixed pole plate 41 are satisfied.
  • the shape and size of the first fixed plate 41 and the second fixed plate 42 are not limited here.
  • the stator 2 is specifically a base, and the first fixed pole plate 41 and the second fixed pole plate 42 arranged on the base can be arranged in such a way that the first fixed pole plate 41 and the second fixed pole plate 42 can be pasted directly. It is attached to the corresponding area of the base, and the first fixed plate 41 and the second fixed plate 42 are connected with the internal wiring of the motor. It is also possible to use insert injection molding in which metal parts are added to plastic parts, and direct injection molding can save the assembly process of the motor.
  • LDS Laser Direct Structuring
  • the first fixed plate 41 and the second fixed plate 42 can also be integrated with the base by insert injection molding or laser direct structuring (Laser Direct Structuring, LDS) process, thereby increasing the first fixed plate. plate and the fixing strength of the second fixed plate.
  • LDS Laser Direct Structuring
  • the processing unit is connected to the movable plate 3, the first fixed plate 41 and the second fixed plate 42 through the motor pin 6, and the processing unit obtains the first fixed plate through the motor pin 6. capacitance and the capacitance signal of the second capacitance.
  • the focus motor further includes: a lens, and the lens is carried by the mover bracket 1 .
  • Another embodiment of the present application relates to a closed-loop control method of a focus motor, which is applied to the above-mentioned focus motor, as shown in FIG. 8 , the method includes:
  • Step 801 after the mover support moves along the focus direction, acquire a first capacitance signal of the first capacitor and a second capacitance signal of the second capacitor.
  • Step 802 according to the first capacitance signal and the second capacitance signal, it is judged whether the position of the mover support coincides with the target position, and if so, proceed to step 803 to complete the movement of the mover support.
  • step 804 control the mover bracket to continue moving by increasing or decreasing the output drive current or drive voltage, and return to step 801 to obtain the first capacitance signal of the first capacitor after the mover bracket moves along the focusing direction and the second capacitance signal of the second capacitor, and repeat the judgment of step 802 until it is determined that the position of the mover support coincides with the target position, and enter step 803 to complete the movement of the mover support.
  • Step 901 receiving the target position of the mover support sent by the host.
  • Step 902 according to the pre-stored correspondence between the position and the capacitance value, determine the capacitance value corresponding to the target position as the target capacitance value.
  • Step 903 Acquire a first capacitance value corresponding to the first capacitance signal and a second capacitance value corresponding to the second capacitance signal; perform a preset operation using the first capacitance value and the second capacitance value to obtain an operation result.
  • the preset operation can be a sum operation or a difference operation, that is, adding the first capacitance value to the second capacitance value or subtracting the first capacitance value from the second capacitance value.
  • the specific operation is based on the first fixed plate and the shape and size of the second fixed plate are adjusted.
  • Step 904 according to whether the calculation result is the same as the target capacitance value, it is judged whether the position of the mover support coincides with the target position. If the calculation result is the same as the target capacitance value, the position between the movers coincides with the target position.
  • the closed-loop control can be realized by a control chip, and the control chip includes: a capacitance detection circuit, an analysis calculation circuit and a control output circuit.
  • the capacitance detection circuit is used to detect the capacitance signal formed by the pole plate
  • the analysis and calculation circuit is used to judge whether to move the mover and the driving current (or driving voltage) required for the movement according to the obtained capacitance signal.
  • the control output current is used to output the calculated driving current (or driving voltage) to the motor, so as to control the mover support of the motor to move.
  • the capacitive signal generated by the capacitor driven by the moved mover bracket changes again, and the control chip performs analysis and calculation according to the changed capacitance signal again until the current of the mover bracket The position coincides with the target position to complete the control of the motor.
  • step 902 the corresponding relationship between the pre-stored position and the capacitance value can be established in the following manner, and the establishment process is shown in Figure 10, including:
  • Step 1001 move the mover bracket to the bottom of the focus motor.
  • Step 1002 control the mover bracket to move step by step at preset intervals, and record the capacitance value corresponding to the capacitance signal generated by the first capacitor and the second capacitor after each movement and the distance between the mover bracket and the bottom of the focus motor after each movement.
  • the corresponding relationship between the distance between the mover support and the bottom after each movement and the capacitance value corresponding to the capacitance signal generated by the first capacitor and the second capacitor is taken as the corresponding relationship between the position and the capacitance value.
  • step division of the above various methods is only for the sake of clarity of description. During implementation, it can be combined into one step or some steps can be split and decomposed into multiple steps. As long as they include the same logical relationship, they are all within the scope of protection of this patent. ; Adding insignificant modifications or introducing insignificant designs to the algorithm or process, but not changing the core design of the algorithm and process are all within the scope of protection of this patent.
  • Yet another embodiment of the present application relates to an imaging device, including: a lens, and the above-mentioned focus motor used to drive the lens.
  • the imaging device provided by the embodiment of the present application is provided with the focus motor provided by the above-mentioned embodiment, therefore, it also has the technical effect provided by the above-mentioned embodiment, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Focusing (AREA)
  • Studio Devices (AREA)
  • Control Of Electric Motors In General (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

本申请实施例涉及摄像技术领域,提供了一种对焦马达、对焦马达的闭环控制方法及摄像设备。对焦马达包括:动子支架(1)及其上设置的动极板(3)、定子(2)及其上设置的第一定极板(41)和第二定极板(42)、以及与动极板(3)、第一定极板(41)和第二定极板(42)相连接的处理单元;动极板(3)与第一定极板(41)和第二定极板(42)均相对设置,且正对面积均随动子支架(1)的移动改变;在对焦方向上,第一定极板(41)和第二定极板(42)长度均大于动极板(3);处理单元根据动极板(3)与第一定极板(41)形成的第一电容以及与第二定极板(42)所形成的第二电容的电容信号控制动子支架(1)在对焦方向上移动。

Description

对焦马达、对焦马达的闭环控制方法及摄像设备
相关申请的交叉引用
本申请基于申请号为“202110851784.9”、申请日为2021年7月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及摄像技术领域,特别涉及一种对焦马达、对焦马达的闭环控制方法及摄像设备。
背景技术
随着摄像技术的发展,为了快速且稳定的实现对焦,目前大部分摄像设备中的摄像头模组通常采用闭环控制的方法,在对焦过程中检测对焦马达中动子支架的实时位置,并根据检测的动子支架的位置调整驱动镜头的驱动电流,以便动子支架可以快速到达准确的对焦位置。
发明人发现目前对焦马达正趋于小型化,即减少了对焦马达在对焦方向上的厚度,另外,为了扩大对焦马达的拍照距离,还需要增大对焦马达的动子支架的运动距离,在动子支架的运动距离远大于动子支架在对焦方向上的长度时,在动子支架运动至某些特定距离时,无法获取动子支架的准确位置对应的电信号,进而无法实现对上述大行程马达的闭环控制。
发明内容
本申请的实施例提供了一种对焦马达,包括:动子支架、定子、设置在动子支架上的动极板、设置在定子上的第一定极板和第二定极板、以及与动极板、第一定极板和第二定极板均相连接的处理单元;动子支架沿对焦方向可移动,动极板与第一定极板、动极板与第二定极板均相对设置,第一定极板在对焦方向上的长度、第二定极板在对焦方向上的长度均大于动极板在对焦方向上的长度,动极板与第一定极板的正对面积、动极板与第二定极板的正对面积均随动子支架的移动发生改变;处理单元根据第一电容和第二电容的电容信号控制动子支架在对焦方向上移动;其中,第一电容为动极板与第一定极板所形成的电容,第二电容为动极板与第二定极板所形成的电容。
本申请的实施例还提供了一种对焦马达的闭环控制方法,应用于上述的对焦马达,方法包括:在动子支架沿对焦方向移动之后,获取第一电容的第一电容信号和第二电容的第二电容信号;根据第一电容信号和第二电容信号判断动子支架所在位置是否与目标位置重合;若未重合,则控制动子支架沿对焦方向再次移动,直至判定动子支架所在位置与目标位置重合。
本申请的实施例还提供了一种摄像设备,包括:镜头,用于驱动镜头的上述的对焦马达。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本申请对焦马达结构沿对焦方向的剖视图;
图2是根据本申请的一种对焦马达的各个极板的结构示意图;
图3是根据本申请的另一种对焦马达的各个极板的结构示意图;
图4是根据本申请的又一种对焦马达的各个极板的结构示意图;
图5是根据本申请的再一种对焦马达的各个极板的结构示意图;
图6是根据本申请的还一种对焦马达的各个极板的结构示意图;
图7是根据本申请的一种对焦马达的各个极板的参数的示意图;
图8是根据本申请实施例中对焦马达的闭环控制方法的流程图;
图9是根据本申请实施例中判断与目标位置是否重合的过程的流程图;
图10是根据本申请实施例中位置与电容值的对应关系的建立方式的流程图。
具体实施方式
本申请实施例的目的在于提供一种对焦马达、对焦马达的闭环控制方法及摄像设备,实现针对动子支架运动范围较大且动子支架厚度相对较小的对焦马达的对焦控制。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请的实施例涉及一种对焦马达,如图1至图2所示,包括:动子支架1、定子2、设置在动子支架1上的动极板3、设置在定子2上的第一定极板41和第二定极板42、以及与动极板3、第一定极板41和第二定极板42均相连接的处理单元;动子支架1沿对焦方向可移动,动极板3与第一定极板41、动极板3与第二定极板42均相对设置,第一定极板41在对焦方向上的长度、第二定极板42在对焦方向上的长度均大于动极板3在对焦方向上的长度,动极板3与第一定极板41的正对面积、动极板3与第二定极板42的正对面积均随动子支架1的移动发生改变;处理单元根据第一电容和第二电容的电容信号控制动子支架1在对焦方向上移动;其中,第一电容为动极板3与第一定极板41所形成的电容,第二电容为动极板3与第二定极板42所形成的电容。
在利用第一电容和第二电容的电容信号控制动子支架1在对焦方向上移动时,可以根据以下方式判断动子支架是否与目标位置重合:其一,若获取的第一电容的电容信号与预先调试过程中对焦马达处于目标位置获取的第一电容的电容信号相同,且获取的第二电容的电容信号与预先调试过程中对焦马达处于目标位置获取的第二电容的电容信号相同,则动子支架1与目标位置重合。其二,对获取的第一电容的电容信号对应的第一电容值与第二电容的电容信号对应的第二电容值进行逻辑运算,得到运算结果,若运算结果与预先调试过程中对焦马达处于目标位置时根据第一电容和第二电容的电容信号进行逻辑运算的结果相同,则动子支架1与目标位置重合。通过对第一电容和第二电容的电容信号进行逻辑运算,增加了动子支架1处于不同位置对应的电容信号的差异,进而更加容易根据第一电容和第二电容的信号判断动子支架1所处的位置。
上述中的对焦马达可以是电磁马达,压电马达或形状记忆合金马达,但不仅仅局限于这 三类马达。电磁马达为利用线圈和磁铁的电磁作用力作为驱动力的马达,压电马达为利用超声波压电陶瓷的压电效应作为驱动力的马达,形状记忆合金马达为利用记忆金属的变形特性作为驱动力的马达。
本申请实施例中,在对焦马达中设置动子支架1、定子2、设置在动子支架1上的动极板3、设置在定子上的第一定极板41和第二定极板42,第一定极板41在对焦方向上的长度、第二定极板42在对焦方向上的长度均大于动极板3在对焦方向上的长度,动极板3与第一定极板41的正对面积、动极板3与第二定极板42的正对面积均随动子支架1的移动发生改变,因此保证了动极板3在对焦方向上长度较小时,动极板3与第一定极板41所形成的第一电容,以及动极板3与第二定极板42所形成的第二电容同样均会发生变化,无论动子支架1移动至任何位置,综合考虑动极板1与第一定极板41所形成的第一电容,以及动极板3与第二定极板42所形成的第二电容可以准确的确定动子支架1的实时位置,进而对动子支架1的移动进行闭环控制实现对焦。
在一些实施例中,关于第一定极板和第二定极板的设置,如图2至图6所示,动极板3与第一定极板41的正对面积、动极板3与第二定极板42的正对面积随动子支架1的移动而单调变化,单调变化包括单调递增变化或单调递减变化。如图2至图5所示,在动极板3沿如图垂直方向向下移动的过程中,动极板3与第一定极板41的正对面积单调递增,且动极板3与第二定极板42的正对面积单调递减,此时,可以一定程度减少第一定极板和第二定极板的设置面积。反之,在动极板3沿如图所示垂直方向向上移动的过程中,动极板3与第一定极板41的正对面积单调递减,且动极板3与第二定极板42的正对面积单调递增,此时,也可以一定程度减少第一定极板和第二定极板的设置面积。或者如图4所示,在动极板3沿如图所示垂直方向向下移动的过程中,动极板3与第一定极板41的正对面积单调递增,且动极板3与第二定极板42的正对面积同样单调递增,动极板3与第一定极板41、第二定极板42两者之间的正对面积的变化趋势相同。反之,在动极板3沿如图所示垂直方向向上移动的过程中,动极板3与第一定极板41、第二定极板42两者之间的正对面积均单调递减。在实际应用中,并不局限于如图2至图6中所描述的第一定极板41和第二定极板42的形状和大小。
第一定极板41和第二定极板42的形状如此设置,可以使动极板3在移动过程中,所移动到各个位置时所形成的第一电容均是不同的数值的电容信号,同理第二电容同样均为不同数值的电容信号,由所获取的电容信号的数值即可区分动极板所处的位置,进而确定动子支架1所处的位置,简化了根据第一电容和第二电容的电容信号控制动子支架1在对焦方向上移动的复杂度。
在一些实施例中,动极板3与第一定极板41的正对面积、动极板3与第二定极板42的正对面积随动子支架1的移动而改变的面积大小相同。从而进一步简化根据第一电容和第二电容的电容信号控制动子支架1在对焦方向上移动的复杂度。下面以图7所示的第一定极板41和第二定极板42为例,具体说明如何进一步简化控制动子支架1移动的复杂度:
假设图7中动极板3在对焦方向上的长度为a,第一定极板41在对焦方向的垂直方向上的直角边的长度为b,第一定极板41在对焦方向的垂直方向上的直角边与斜边之间形成的角度为θ,动极板3与第一定极板41在对焦方向上的最高点的距离为x,那么计算得到第一定极板41与动极板3之间的正对面积A=a*cotθ*(2x+a)/2,第二定极板42与动极板3之间的正对面积B=a*[2b-cotθ*(2x+a)]/2。正对面积A与正对面积B的差值A-B=a*(b-a*cot θ)-2a*cotθ*x,由此可知,在极板的尺寸参数a和b为固定数值时,正对面积A和正对面积B的差值与距离x的关系为线性关系,斜率为-2a*cotθ。由于正对面积A和正对面积B的差值与动子支架1的移动距离x具有线性关系,因此所产生的第一电容的电容信号与第二电容的电容信号的差值同样与移动距离x具有线性关系,相对于随机产生的电容信号,具有线性关系的电容信号确定动子支架1的移动距离更为容易,因此进一步简化了控制动子支架1移动的复杂度。若第一定极板41和第二定极板42的形状不规则,则所产生的电容信号与距离之间为非线性关系,同样可以确定动子支架1的移动距离。
在一些实施例中,可以通过改变上述计算中的斜率,控制电容信号改变的程度,在一定范围内提高斜率更加有助于提升所确定的动子支架1的移动距离的准确度。
在一些实施例中,第一定极板41和第二定极板42共同组成一个长方形。
在一些实施例中,第一定极板41和第二定极板42呈中心对称设置,便于对焦马达的批量生产。对称中心点为第一定极板41和第二定极板42共同组成的长方形的中心。使第一定极板41和第二定极板42的设置具有一定的规律性,方便批量生产。
在一些实施例中,第一定极板41和第二定极板42可以均为直角三角形,还可以是其他规则或不规则的形状,只需满足上述提到的对第一定极板41和第二定极板42形状的要求条件即可,在此对第一定极板41和第二定极板42的形状和尺寸不做其他限制。
在一些实施例中,定子2具体为底座,在底座上设置的第一定极板41和第二定极板42,设置方式可以直接将第一定极板41和第二定极板42贴附在底座对应区域,并将第一定极板41和第二定极板42和马达内部连线导通。也可以,使用塑料件中加入金属零部件的嵌入注塑,直接注塑成型,节省马达的组装工序。还可以,通过激光直接成型(Laser DirectStructuring,LDS)工艺,通过对塑料件局部表面镭雕活化电镀,使电镀区域具有导电能力,实现在底座的相应区域加工出第一定极板41和第二定极板42。
在一些实施例中,第一定极板41和第二定极板42同样可以通过嵌入式注塑与底座一体成型或激光直接成型(Laser Direct Structuring,LDS)工艺实现,从而增加了第一定极板和第二定极板的固定强度。
在一些实施例中,如图1所示,处理单元通过马达引脚6与动极板3、第一定极板41和第二定极板42连接,处理单元通过马达引脚6获取第一电容和第二电容的电容信号。
在一些实施例中,对焦马达中还包括:镜头,镜头由动子支架1承载。
本申请的另一实施例涉及一种对焦马达的闭环控制方法,应用于上述的对焦马达,如图8所示,方法包括:
步骤801,在动子支架沿对焦方向移动之后,获取第一电容的第一电容信号和第二电容的第二电容信号。
步骤802,根据第一电容信号和第二电容信号判断动子支架所在位置是否与目标位置重合,若重合则进入步骤803完成对动子支架的移动。
若未重合则进入步骤804,通过增大或减少输出的驱动电流或驱动电压控制动子支架继续移动,并返回步骤801在动子支架沿对焦方向移动之后,获取第一电容的第一电容信号和第二电容的第二电容信号,以及重复步骤802的判断,直至判定动子支架所在位置与目标位置重合,进入步骤803完成对动子支架的移动。
在一些实施例中,在根据第一电容信号和第二电容信号判断动子支架所在位置是否与目 标位置重合时,具体步骤如图9所示,
步骤901,接收主机发送的动子支架所需移动的目标位置。
步骤902,根据预先存储的位置与电容值的对应关系,确定目标位置对应的电容值为目标电容值。
步骤903,获取第一电容信号对应的第一电容值,以及第二电容信号对应的第二电容值;利用第一电容值和第二电容值进行预设运算,得到运算结果。
具体地说,预设运算可以为作和运算或作差运算,即将第一电容值与第二电容值相加或第一电容值与第二电容值相减,具体运算基于第一定极板和第二定极板的形状及尺寸进行调整。
步骤904,根据运算结果与目标电容值是否相同,判断动子支架所在位置是否与目标位置重合。若运算结果与目标电容值相同,则动子之间的位置与目标位置相重合。
在一些实施例中,闭环控制可由控制芯片来实现,控制芯片包括:电容检测电路,分析计算电路和控制输出电路。其中,电容检测电路用于检测极板构成的电容信号,分析计算电路用于根据获取的电容信号判断是否对动子进行移动,以及移动所需的驱动电流(或驱动电压)。控制输出电流则用于将计算得到的驱动电流(或驱动电压)输出至马达,以控制马达的动子支架进行移动。
在一些实施例中,在控制马达动子支架移动之后,移动后的动子支架再次带动电容产生的电容信号发生改变,控制芯片再次根据变化后的电容信号进行分析计算,直至动子支架的当前位置与目标位置重合,完成对马达的控制。
在步骤902中预先存储的位置与电容值的对应关系可以通过以下方式建立,建立过程如图10所示,包括:
步骤1001,将动子支架移动至对焦马达的底部。
步骤1002,控制动子支架以预设间隔逐步移动,并记录每次移动后第一电容和第二电容产生的电容信号对应的电容值以及每次移动后动子支架与对焦马达的底部之间的距离,将每次移动后动子支架与底部之间的距离与第一电容和第二电容产生的电容信号对应的电容值的对应关系作为位置与电容值的对应关系。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请又一实施例涉及一种摄像设备,包括:镜头,用于驱动镜头的上述的对焦马达。
与相关技术相比,本申请实施例所提供的摄像装置中设置有前述实施例所提供的对焦马达,因此,其同样具备前述实施例所提供的技术效果,在此不进行赘述。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种对焦马达,包括:动子支架、定子、设置在所述动子支架上的动极板、设置在所述定子上的第一定极板和第二定极板、以及与所述动极板、所述第一定极板和所述第二定极板均相连接的处理单元;
    所述动子支架沿对焦方向可移动,所述动极板与所述第一定极板、所述动极板与所述第二定极板均相对设置,所述第一定极板在所述对焦方向上的长度、所述第二定极板在所述对焦方向上的长度均大于所述动极板在所述对焦方向上的长度,所述动极板与所述第一定极板的正对面积、所述动极板与所述第二定极板的正对面积均随所述动子支架的移动发生改变;
    所述处理单元根据第一电容和第二电容的电容信号控制所述动子支架在对焦方向上移动;其中,所述第一电容为所述动极板与所述第一定极板所形成的电容,所述第二电容为所述动极板与所述第二定极板所形成的电容。
  2. 根据权利要求1所述的对焦马达,其中,所述动极板与所述第一定极板的正对面积、所述动极板与所述第二定极板的正对面积随所述动子支架的移动而单调变化,所述单调变化包括递增变化或递减变化。
  3. 根据权利要求2所述的对焦马达,其中,所述动极板与所述第一定极板的正对面积递增变化时,所述动极板与所述第二定极板的正对面积递减变化;所述动极板与所述第一定极板的正对面积递减变化时,所述动极板与所述第二定极板的正对面积递增变化。
  4. 根据权利要求1至3任一项所述的对焦马达,其中,所述第一定极板和所述第二定极板共同组成一个长方形。
  5. 根据权利要求1至4任一项所述的对焦马达,其中,所述动极板与所述第一定极板的正对面积、所述动极板与所述第二定极板的正对面积随所述动子支架的移动而改变的面积大小相同。
  6. 根据权利要求1至5任一项所述的对焦马达,其中,所述第一定极板和所述第二定极板的形状和大小均相同。
  7. 根据权利要求1至6中任一项所述的对焦马达,其中,所述定子为底座,所述第一定极板、所述第二定极板均通过嵌入式注塑与所述底座一体成型。
  8. 一种对焦马达的闭环控制方法,应用于如权利要求1至7任一项所述的对焦马达,所述方法包括:
    在动子支架沿对焦方向移动之后,获取所述第一电容的第一电容信号和所述第二电容的第二电容信号;
    根据所述第一电容信号和所述第二电容信号判断所述动子支架所在位置是否与目标位置重合;
    若未重合,则控制所述动子支架沿对焦方向再次移动,直至判定所述动子支架所在位置与所述目标位置重合。
  9. 根据权利要求8所述的对焦马达的闭环控制方法,其中,所述根据所述第一电容信号和所述第二电容信号判断所述动子支架所在位置是否与目标位置重合,包括:
    根据预先存储的位置与电容值的对应关系,确定所述目标位置对应的电容值为目标电容值;
    获取所述第一电容信号对应的第一电容值,以及所述第二电容信号对应的第二电容值;
    利用所述第一电容值和所述第二电容值进行预设运算,得到运算结果;
    根据所述运算结果与所述目标电容值是否相同,判断所述动子支架所在位置是否与所述目标位置重合。
  10. 一种摄像设备,包括:镜头,用于驱动所述镜头的如权利要求1至7中任一项所述的对焦马达。
PCT/CN2022/099289 2021-07-27 2022-06-16 对焦马达、对焦马达的闭环控制方法及摄像设备 WO2023005485A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237018949A KR102630262B1 (ko) 2021-07-27 2022-06-16 포커싱 모터, 포커싱 모터의 폐 루프 제어 방법 및 촬영 기기
US18/401,454 US20240146169A1 (en) 2021-07-27 2023-12-30 Focus motor with closed-loop control method and camera equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110851784.9A CN113300563B (zh) 2021-07-27 2021-07-27 对焦马达、对焦马达的闭环控制方法及摄像设备
CN202110851784.9 2021-07-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/401,454 Continuation US20240146169A1 (en) 2021-07-27 2023-12-30 Focus motor with closed-loop control method and camera equipment

Publications (1)

Publication Number Publication Date
WO2023005485A1 true WO2023005485A1 (zh) 2023-02-02

Family

ID=77331322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099289 WO2023005485A1 (zh) 2021-07-27 2022-06-16 对焦马达、对焦马达的闭环控制方法及摄像设备

Country Status (5)

Country Link
US (1) US20240146169A1 (zh)
JP (1) JP2023018641A (zh)
KR (1) KR102630262B1 (zh)
CN (1) CN113300563B (zh)
WO (1) WO2023005485A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300563B (zh) * 2021-07-27 2021-11-19 基合半导体(宁波)有限公司 对焦马达、对焦马达的闭环控制方法及摄像设备
CN114614629B (zh) * 2022-05-10 2022-08-30 基合半导体(宁波)有限公司 防抖马达、摄像模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080010A (ja) * 1996-09-02 1998-03-24 East Japan Railway Co 主幹制御装置
CN105091979A (zh) * 2015-09-21 2015-11-25 中国石油大学(华东) 一种利用三角形电容式传感器进行液位测量的方法
CN108595049A (zh) * 2018-04-24 2018-09-28 北京硬壳科技有限公司 一种触控方法及装置
CN112437223A (zh) * 2021-01-26 2021-03-02 基合半导体(宁波)有限公司 对焦马达、对焦马达的闭环控制方法及摄像设备
CN112600360A (zh) * 2020-12-14 2021-04-02 基合半导体(宁波)有限公司 对焦马达、对焦马达的闭环控制方法及摄像设备
CN113300563A (zh) * 2021-07-27 2021-08-24 基合半导体(宁波)有限公司 对焦马达、对焦马达的闭环控制方法及摄像设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05252722A (ja) * 1991-05-15 1993-09-28 K G S Kk リニアモータ装置
JP2003185406A (ja) * 2001-12-18 2003-07-03 Minolta Co Ltd 位置検出装置
JP3759508B2 (ja) * 2003-03-31 2006-03-29 オリンパス株式会社 アクチュエータ及びアクチュエータ駆動方法並びにアクチュエータシステム
JP2005237072A (ja) * 2004-02-18 2005-09-02 Konica Minolta Opto Inc 静電アクチュエータおよびカメラモジュール
WO2009154090A1 (ja) * 2008-06-17 2009-12-23 コニカミノルタオプト株式会社 レンズ駆動装置及びカメラユニット
CN205407555U (zh) * 2016-02-19 2016-07-27 信利光电股份有限公司 一种马达
CN111522183B (zh) * 2016-07-29 2021-12-31 台湾东电化股份有限公司 镜头驱动装置
CN108242907A (zh) * 2018-03-07 2018-07-03 信利光电股份有限公司 一种音圈马达的闭环反馈装置、音圈马达和摄像模组
CN109742998A (zh) * 2018-12-24 2019-05-10 维沃移动通信有限公司 振动组件、马达控制方法及终端
CN212846099U (zh) * 2020-08-04 2021-03-30 林小军 一种用于镜头驱动装置的移动平台装置及镜头驱动装置
CN112235511B (zh) * 2020-12-14 2021-04-30 基合半导体(宁波)有限公司 防抖马达、防抖马达的闭环控制方法及摄像设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080010A (ja) * 1996-09-02 1998-03-24 East Japan Railway Co 主幹制御装置
CN105091979A (zh) * 2015-09-21 2015-11-25 中国石油大学(华东) 一种利用三角形电容式传感器进行液位测量的方法
CN108595049A (zh) * 2018-04-24 2018-09-28 北京硬壳科技有限公司 一种触控方法及装置
CN112600360A (zh) * 2020-12-14 2021-04-02 基合半导体(宁波)有限公司 对焦马达、对焦马达的闭环控制方法及摄像设备
CN112437223A (zh) * 2021-01-26 2021-03-02 基合半导体(宁波)有限公司 对焦马达、对焦马达的闭环控制方法及摄像设备
CN113300563A (zh) * 2021-07-27 2021-08-24 基合半导体(宁波)有限公司 对焦马达、对焦马达的闭环控制方法及摄像设备

Also Published As

Publication number Publication date
JP2023018641A (ja) 2023-02-08
KR20230086811A (ko) 2023-06-15
CN113300563B (zh) 2021-11-19
US20240146169A1 (en) 2024-05-02
CN113300563A (zh) 2021-08-24
KR102630262B1 (ko) 2024-01-29

Similar Documents

Publication Publication Date Title
WO2023005485A1 (zh) 对焦马达、对焦马达的闭环控制方法及摄像设备
CN112600360B (zh) 对焦马达、对焦马达的闭环控制方法及摄像设备
US9852338B2 (en) Biometric imaging method and device
CN112235511B (zh) 防抖马达、防抖马达的闭环控制方法及摄像设备
CN112437223B (zh) 对焦马达、对焦马达的闭环控制方法及摄像设备
US9160917B2 (en) Handheld electronic apparatus and image capturing apparatus and focusing method thereof
TW200837519A (en) Method of fuzzy logic control with combined sliding mode concept for ideal dynamic responses
CN108989791A (zh) 一种马达线性检测方法、装置及计算机可读存储介质
CN106131415B (zh) 二维码图像扫描方法、装置及移动终端
WO2018082061A1 (zh) 基于镜头倾斜可控马达和快速对焦传感器的摄像模组及控制方法
CN217904644U (zh) 一种扬声器及电子设备
CN204721458U (zh) 阵列摄像模组和阵列摄像装置
CN108242907A (zh) 一种音圈马达的闭环反馈装置、音圈马达和摄像模组
WO2023231896A1 (zh) 摄像模组、控制方法、装置和电子设备
KR101093372B1 (ko) 포커스 제어 회로
CN214281484U (zh) 具有放大物体功能的摄像模组及移动终端
CN207039500U (zh) 一种音圈马达驱动系统
Leng et al. Optical flow-based closed-loop control of a multi-degree-of-freedom clamping-type ultrasonic motor
CN113890965A (zh) 联动装置、摄像模组及电子设备
CN110764251B (zh) 驱动扫描微镜进行转动的方法及其装置
CN207926475U (zh) 一种音圈马达的闭环反馈装置、音圈马达和摄像模组
CN215181152U (zh) 一种提高动子位移量的中置自动对焦马达
CN107707910A (zh) 一种获取校验镜头参数的方法以及装置
CN116320749B (zh) 摄像头的控制方法、摄像系统、移动终端和存储介质
JP2001090661A (ja) リニアコンプレッサの駆動制御装置および駆動制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237018949

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE