WO2023000847A1 - 镍铁湿法处理方法及其应用 - Google Patents

镍铁湿法处理方法及其应用 Download PDF

Info

Publication number
WO2023000847A1
WO2023000847A1 PCT/CN2022/097183 CN2022097183W WO2023000847A1 WO 2023000847 A1 WO2023000847 A1 WO 2023000847A1 CN 2022097183 W CN2022097183 W CN 2022097183W WO 2023000847 A1 WO2023000847 A1 WO 2023000847A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
filtrate
ferronickel
treatment method
acid
Prior art date
Application number
PCT/CN2022/097183
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to DE112022000294.8T priority Critical patent/DE112022000294B4/de
Priority to GB2314580.8A priority patent/GB2622488A/en
Priority to US18/260,241 priority patent/US12006227B2/en
Priority to MA61498A priority patent/MA61498A1/fr
Priority to ES202390090A priority patent/ES2957058A2/es
Publication of WO2023000847A1 publication Critical patent/WO2023000847A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/003Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • C22B23/0469Treatment or purification of solutions, e.g. obtained by leaching by chemical methods by chemical substitution, e.g. by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3842Phosphinic acid, e.g. H2P(O)(OH)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3844Phosphonic acid, e.g. H2P(O)(OH)2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/408Mixtures using a mixture of phosphorus-based acid derivatives of different types
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of metallurgy, and in particular relates to a ferronickel wet treatment method and application thereof.
  • the related technology discloses a method for preparing nickel sulfate solution and battery-grade iron phosphate from nickel-containing pig iron, including the following steps: raw material pretreatment, acid leaching treatment, precipitation treatment, iron phosphate Drying treatment, nickel-containing filtrate extraction treatment and stripping to obtain nickel sulfate solution.
  • this method has the characteristics of simple process, high recovery rate of nickel-containing pig iron, low cost and good product performance, it cannot be applied in large quantities due to slow reaction and long time in acid leaching treatment.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a ferronickel wet treatment method and its application.
  • the method has the advantages of short process flow, low auxiliary material consumption, and high leaching rate.
  • propose a kind of ferronickel wet processing method comprise the following steps:
  • step S2 performing solid-liquid separation on the slurry after acid leaching in step S1, adding an oxidizing agent to the obtained filtrate, and heating to remove the corrosion aid;
  • the corrosion aid is one or more of hydrogen peroxide, acetic acid, acetylacetone, oxalic acid or glycine.
  • the corrosion aid plays the role of accelerating oxidation and rapidly corroding ferronickel.
  • the corrosion enhancer hydrogen peroxide can accelerate oxidative leaching
  • the corrosion enhancer acetylacetone and glycine can complex with ferronickel to accelerate the reaction
  • the corrosion enhancer oxalic acid and acetic acid not only have the performance of acid dissolution, but also have the ability of complexation function, which increases the rate of the entire reaction.
  • step S1 the concentration of the sulfuric acid is 3-8 mol/L.
  • step S1 the pressure of the acid leaching reaction is 3.0-6.5 MPa, and the reaction temperature is 50-90°C.
  • the oxidizing agent is one or more of chlorate, nitrite, nitrate or persulfate. Choose a strong oxidizing agent to oxidize the corrosion promoter into carbon dioxide or water to avoid interference with subsequent organic extraction.
  • step S2 the filter residue obtained from solid-liquid separation can be returned to step S1 to continue the acid leaching reaction, so as to avoid waste of materials.
  • the heating temperature is 60-95°C. Controlling the heating temperature can speed up the progress of the reaction, so that the carbon dioxide generated by the oxidation of the oxidizing agent can be released.
  • the precipitating agent is one or more of ammonia water, sodium hydroxide, sodium carbonate or sodium bicarbonate.
  • step S3 the pH is 3-3.5. Under this pH, ferric hydroxide can be completely precipitated and separated, and nickel ions can be retained.
  • step S3 further includes: washing and heating the iron hydroxide precipitate to prepare iron red.
  • step S2 ferronickel can be added to the obtained filtrate for replacement and reduction leaching, and the leaching solution for ferronickel slag and copper removal can be obtained by filtration, and the ferronickel slag is returned to step S1 for acid leaching, and the leaching solution
  • the oxidizing agent is added for subsequent treatment.
  • the replacement and reduction leaching reaction can be done under normal pressure without the participation of oxygen.
  • the filtrate after high-pressure acid leaching contains a large amount of hydrogen ions, ferric ions, and a small amount of copper ions. Adding nickel-iron to react to achieve secondary leaching, and Substitute copper to obtain divalent iron ions, and then continue the subsequent operation of adding oxidant.
  • the secondary leaching mainly takes place in the replacement reduction reaction, which can increase the concentration of nickel and iron ions and remove copper ions.
  • the return of ferronickel slag to the previous step of acid leaching will lead to more and more copper, but because the copper content in ferronickel is very small, it can be recycled many times, and copper will gradually accumulate in the ferronickel slag leached for the second time.
  • For slag detection when the copper content is high, use atmospheric pressure acid leaching to selectively leach nickel and iron, and the resulting leaching solution is returned to step S1 for high-pressure acid leaching, and the leaching slag is sent to the copper factory for processing.
  • the invention also proposes the application of the nickel-containing filtrate obtained by the method in the preparation of battery-grade nickel sulfate. Specifically, the nickel-containing filtrate is added to the nickel-containing filtrate to extract nickel, left to stand, and separated to obtain the nickel-containing extracted organic phase and the impurity-containing raffinate, and then 3-5mol/L H 2 SO 4 solution is used to extract the nickel-containing organic phase Nickel is stripped from the medium to obtain a battery-grade nickel sulfate solution.
  • the extractant is selected from one or more of P204, P507, DEHPA or Cyanex272.
  • the present invention oxidizes and dissolves ferronickel with corrosion aids under high-pressure oxygen and acidic conditions; in high-pressure oxygen environment, ferronickel is easily oxidized, and the reaction rate is accelerated under the action of corrosion aids. Subsequent addition of strong oxidants such as chlorate, nitrite, nitrate, and persulfate to the filtrate not only ensures that all ferrous ions in the filtrate are converted into ferric ions, but also oxidizes the corrosion promoters to form Pollution-free carbon dioxide and water avoid the impact of corrosion aids on the subsequent extraction process.
  • the whole reaction process is relatively rapid, and under the double cooperation of corrosion aid and oxidant, the leaching efficiency is very high, and the leaching rate can be as high as more than 97%, and no toxic gas is released, which avoids environmental pollution.
  • Fig. 1 is the process flow chart of embodiment 1 of the present invention.
  • a kind of ferronickel wet processing method, in conjunction with Fig. 1, concrete process is:
  • step (2) One stage of high-pressure acid leaching.
  • the pulverized material obtained in step (1) is acid-leached with sulfuric acid with a concentration of 3mol/L, and acetic acid is added to obtain a mixed Slurry, the solid-to-liquid ratio of the mixed slurry is 1:100g/mL, and the reaction time is 3h;
  • step (2) Filtration treatment, after step (2) reaction finishes, filter to obtain filtrate and filter residue, add ferronickel pulverized material in filtrate and carry out secondary leaching, make a small amount of copper ion replacement in filtrate come out, filter again to obtain ferronickel slag and remove
  • the filtrate of copper, ferronickel slag returns step (2) one stage of high-pressure acid leaching, when it is detected that the copper content of ferronickel slag is higher after circulation several times, carries out normal pressure leaching with ferronickel slag, and the leachate that produces returns to a stage of high pressure acid leaching. Acid leaching, the leaching slag is sent to the copper factory for processing;
  • control precipitation continue to add ammoniacal liquor in step (4) gained filtrate, and control filtrate pH to be 3-3.5, filter again, obtain iron hydroxide precipitation and nickel-containing filtrate, iron hydroxide precipitation obtains after washing, heating Iron oxide red.
  • Nickel sulfate extract nickel from nickel-containing filtrate with extractant P507, let it stand, and separate to obtain nickel-containing extracted organic phase and impurity-containing raffinate; then use 5mol/L H 2 SO 4 solution to extract nickel-containing organic phase Nickel is stripped to obtain a battery-grade nickel sulfate solution.
  • the nickel sulfate crystal obtained after evaporation and crystallization was sent to the laboratory for analysis.
  • the analysis results were 22.12% Ni, 0.021% Co, 0.00038% Cu, and 0.00028% Fe, which met the product standard of battery grade nickel sulfate.
  • a kind of ferronickel wet processing method, concrete process is:
  • step (2) One section of high-pressure acid leaching.
  • the pulverized material obtained in step (1) is acid-leached with sulfuric acid with a concentration of 8 mol/L, and acetylacetone is added to obtain Mix the slurry, the solid-to-liquid ratio of the mixed slurry is 1:200g/mL, and the reaction time is 1.5h;
  • step (2) Filtration treatment, after step (2) reaction finishes, filter to obtain filtrate and filter residue, add ferronickel pulverized material in filtrate and carry out secondary leaching, make a small amount of copper ion replacement in filtrate come out, filter again to obtain ferronickel slag and remove
  • the filtrate of copper, ferronickel slag returns step (2) one stage of high-pressure acid leaching, when it is detected that the copper content of ferronickel slag is higher after circulation several times, carries out normal pressure leaching with ferronickel slag, and the leachate that produces returns to a stage of high pressure acid leaching. Acid leaching, the leaching slag is sent to the copper factory for processing;
  • control precipitation continue to add ammoniacal liquor in step (4) gained filtrate, and control filtrate pH to be 3-3.5, filter again, obtain iron hydroxide precipitation and nickel-containing filtrate, iron hydroxide precipitation obtains after washing, heating Iron oxide red.
  • Nickel sulfate Extract the nickel-containing filtrate with the extractant Cyanex272, let it stand, and separate to obtain the nickel-containing extraction organic phase and the impurity-containing raffinate; then use 3mol/L H2SO4 solution to extract the nickel - containing organic phase Nickel is stripped to obtain a battery-grade nickel sulfate solution.
  • the nickel sulfate crystal obtained after evaporation and crystallization was sent to the laboratory for analysis.
  • the analysis results were 22.06% Ni, 0.027% Co, 0.00031% Cu, and 0.00012% Fe, which met the product standard of battery grade nickel sulfate.
  • a kind of ferronickel wet processing method, concrete process is:
  • step (2) One stage of high-pressure acid leaching.
  • the pulverized material obtained in step (1) is acid-leached with sulfuric acid with a concentration of 5mol/L, and oxalic acid is added to obtain a mixed Slurry, the solid-to-liquid ratio of the mixed slurry is 1:300g/mL, and the reaction time is 3h;
  • step (2) Filtration treatment, after step (2) reaction finishes, filter to obtain filtrate and filter residue, add ferronickel pulverized material in filtrate and carry out secondary leaching, make a small amount of copper ion replacement in filtrate come out, filter again to obtain ferronickel slag and remove
  • the filtrate of copper, ferronickel slag returns step (2) one stage of high-pressure acid leaching, when it is detected that the copper content of ferronickel slag is higher after circulation several times, carries out normal pressure leaching with ferronickel slag, and the leachate that produces returns to a stage of high pressure acid leaching. Acid leaching, the leaching slag is sent to the copper factory for processing;
  • Precipitation treatment adding ammonium nitrate to the filtrate after copper removal in step (3), oxidizing the ferrous iron in the filtrate, and heating, controlling the heating temperature to be 80-95°C, removing oxalic acid, and avoiding interference to the follow-up the extraction process;
  • control precipitation continue to add ammoniacal liquor in step (4) gained filtrate, and control filtrate pH to be 3-3.5, filter again, obtain iron hydroxide precipitation and nickel-containing filtrate, iron hydroxide precipitation obtains after washing, heating Iron oxide red.
  • Nickel sulfate extract the nickel-containing filtrate with a mixture of extractants P204 and P507, leave it to stand, and separate to obtain the nickel-containing extraction organic phase and impurity-containing raffinate; then use 4mol/L H 2 SO 4 solution from the Nickel extraction The nickel is stripped from the organic phase to obtain a battery-grade nickel sulfate solution.
  • the nickel sulfate crystal obtained after evaporation and crystallization was sent to the laboratory for analysis.
  • the analysis results were 22.18% Ni, 0.012% Co, 0.00028% Cu, and 0.00011% Fe, which met the product standard of battery grade nickel sulfate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种镍铁湿法处理方法及其应用,该处理方法是在高压氧气环境中,将镍铁粉碎料、硫酸和助蚀剂混合,进行酸浸反应,再将酸浸后浆料进行固液分离,所得滤液加入氧化剂,并加热,除去助蚀剂,再向滤液中加入沉淀剂,并控制滤液的pH,固液分离,得到氢氧化铁沉淀和含镍滤液;含镍滤液经过萃取和反萃取可以制备电池级硫酸镍。本发明通过在高压氧气及酸性条件下,配合助蚀剂,对镍铁进行氧化酸溶,在高压氧气环境中镍铁极易氧化;后续在滤液中加入强氧化剂,不仅保证了滤液中二价铁离子全部转化为三价铁离子,且可对助蚀剂进行氧化,生成无污染的二氧化碳和水,避免了助蚀剂对后续萃取工序的影响。

Description

镍铁湿法处理方法及其应用 技术领域
本发明属于冶金技术领域,具体涉及一种镍铁湿法处理方法及其应用。
背景技术
目前有关镍铁增值利用的方法还不多,相关技术公开了一种含镍生铁制备硫酸镍溶液和电池级磷酸铁的方法,包括以下步骤:原料预处理、酸浸处理、沉淀处理、磷酸铁干燥处理、含镍滤液萃取处理和反萃得到硫酸镍溶液。虽然该方法具有工艺简单、含镍生铁回收率高、成本低廉和产品性能好特点,但是在酸浸处理中存在反应慢、时间长,无法大批量应用。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种镍铁湿法处理方法及其应用,该方法具有工艺流程短、辅料消耗量低、浸出率高等优势。
根据本发明的一个方面,提出了一种镍铁湿法处理方法,包括以下步骤:
S1:在高压氧气环境中,将镍铁粉碎料、硫酸和助蚀剂混合,进行酸浸反应;
S2:将步骤S1酸浸后浆料进行固液分离,所得滤液加入氧化剂,并加热,除去助蚀剂;
S3:再向滤液中加入沉淀剂,并控制滤液的pH,固液分离,得到氢氧化铁沉淀和含镍滤液。
在本发明的一些实施方式中,步骤S1中,所述助蚀剂为过氧化氢、乙酸、乙酰丙酮、草酸或甘氨酸中的一种或多种。助蚀剂起到加速氧化,快速腐蚀镍铁的作用。
其中,助蚀剂过氧化氢可以加快氧化浸出,助蚀剂乙酰丙酮与甘氨酸可以与镍铁络合,从而加快反应,助蚀剂草酸和乙酸,不仅具备酸性溶解的性能,还具有络合的功能,提升了整个反应的速率。
在本发明的一些实施方式中,步骤S1中,所述硫酸的浓度为3-8mol/L。
在本发明的一些实施方式中,步骤S1中,所述酸浸反应的压力为3.0-6.5MPa,反应的温度为50-90℃。
在本发明的一些实施方式中,步骤S2中,所述氧化剂为氯酸盐、亚硝酸盐、硝酸盐或过硫酸盐中的一种或多种。选择强氧化剂,可将助蚀剂氧化成二氧化碳或水,避免对后续有机萃取的干扰。
在本发明的一些实施方式中,步骤S2中,固液分离所得滤渣可返回步骤S1中继续进行酸浸反应,避免物料的浪费。
在本发明的一些实施方式中,步骤S2中,所述加热的温度为60-95℃。控制加热温度可以加快反应进度,使氧化剂氧化助蚀剂生成的二氧化碳脱出。
在本发明的一些实施方式中,步骤S3中,所述沉淀剂为氨水、氢氧化钠、碳酸钠或碳酸氢钠中的一种或多种。
在本发明的一些实施方式中,步骤S3中,所述pH为3-3.5。该pH下可使氢氧化铁完全沉淀分离,并保留镍离子。
在本发明的一些实施方式中,步骤S3中,还包括:将所述氢氧化铁沉淀经洗涤、加热后制备铁红。
在本发明的一些实施方式中,步骤S2中,所得滤液可加入镍铁进行置换还原浸出,过滤得到镍铁渣和除铜的浸出液,所述镍铁渣返回步骤S1进行酸浸,所述浸出液加入所述氧化剂进行后续处理。置换还原浸出反应在常压下即可,无需氧气参与,高压酸浸后的滤液中含有大量的氢离子、三价铁离子,还有少量铜离子,加入镍铁反应,实现二次浸出,并将铜置换出来,得到二价铁离子,再继续后续加氧化剂的操作。二次浸出主要发生置换还原反应,可以提升镍、铁离子浓度,并除去铜离子。此外,镍铁渣返回上一步酸浸会导致铜越来越多,但由于镍铁中铜含量很少,可以循环很多次,铜会逐渐积累在二次浸出的镍铁渣中,对镍铁渣检测,当铜含量较高时,采用常压酸浸,选择性的浸出镍和铁,产生的浸出液返回步骤S1高压酸浸,浸出渣送去铜厂处理。
本发明还提出所述的方法得到的含镍滤液在制备电池级硫酸镍中的应用。具体为,所述含镍滤液加入萃取剂萃取镍,静置,分离得到含镍萃取有机相和含杂质萃余液,再用3-5mol/L的H 2SO 4溶液从含镍萃取有机相中反萃取镍,得到电池级硫酸镍溶液。
在本发明的一些实施方式中,萃取剂选自P204、P507、DEHPA或Cyanex272中的一种或多种。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
本发明通过在高压氧气及酸性条件下,配合助蚀剂,对镍铁进行氧化酸溶;在高压 氧气环境中,镍铁极易氧化,并在助蚀剂的作用下加快反应速率。后续在滤液中加入氯酸盐、亚硝酸盐、硝酸盐、过硫酸盐等强氧化剂,不仅保证了滤液中二价铁离子全部转化为三价铁离子,且可对助蚀剂进行氧化,生成无污染的二氧化碳和水,避免了助蚀剂对后续萃取工序的影响。整个反应过程,较为迅速,在助蚀剂和氧化剂的双重配合下,浸出效率很高,浸出率可高达97%以上,且不会释放有毒气体,避免了环境污染。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的工艺流程图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种镍铁湿法处理方法,结合图1,具体过程为:
(1)原料预处理,将镍含量为22.35%的镍铁破碎成粉状或颗粒状;
(2)一段高压酸浸,在密闭压力为6.5MPa、温度为90℃的高压氧气环境中,将步骤(1)所得粉碎料采用浓度为3mol/L的硫酸酸浸,并加入乙酸,得到混合浆料,混合浆料的固液比为1:100g/mL,反应时间3h;
(3)过滤处理,步骤(2)反应结束后,过滤得到滤液和滤渣,向滤液中加入镍铁粉碎料进行二段浸出,使滤液中少量铜离子置换出来,再次过滤得到镍铁渣和除铜的滤液,镍铁渣返回步骤(2)的一段高压酸浸,循环若干次后检测到镍铁渣的含铜量较高时,将镍铁渣进行常压浸出,产生的浸出液返回一段高压酸浸,浸出渣送去铜厂处理;
(4)沉淀处理,向步骤(3)除铜后的滤液中加入氯酸铵,对滤液中的二价铁进行氧化,并进行加热,控制加热温度为60-70℃,除去乙酸,避免干扰后续的萃取过程;
(5)控制沉淀,向步骤(4)所得滤液中继续加入氨水,并控制滤液pH为3-3.5,再次过滤,得到氢氧化铁沉淀和含镍滤液,氢氧化铁沉淀经洗涤、加热后得到铁红。
制备硫酸镍:将含镍滤液用萃取剂P507萃取镍,静置,分离得到含镍萃取有机相 和含杂质萃余液;再用5mol/L的H 2SO 4溶液从含镍萃取有机相中反萃取镍,得到电池级硫酸镍溶液。
蒸发结晶后制得的硫酸镍晶体送化验室分析,分析结果为22.12%Ni、0.021%Co、0.00038%Cu、0.00028%Fe,符合电池级硫酸镍的产品标准。
实施例2
一种镍铁湿法处理方法,具体过程为:
(1)原料预处理,将镍含量为25.85%的镍铁破碎成粉状或颗粒状;
(2)一段高压酸浸,在密闭压力为3.0MPa、温度为50℃的高压氧气环境中,将步骤(1)所得粉碎料采用浓度为8mol/L的硫酸酸浸,并加入乙酰丙酮,得到混合浆料,混合浆料的固液比为1:200g/mL,反应时间1.5h;
(3)过滤处理,步骤(2)反应结束后,过滤得到滤液和滤渣,向滤液中加入镍铁粉碎料进行二段浸出,使滤液中少量铜离子置换出来,再次过滤得到镍铁渣和除铜的滤液,镍铁渣返回步骤(2)的一段高压酸浸,循环若干次后检测到镍铁渣的含铜量较高时,将镍铁渣进行常压浸出,产生的浸出液返回一段高压酸浸,浸出渣送去铜厂处理;
(4)沉淀处理,向步骤(3)除铜后的滤液中加入硝酸铵,对滤液中的二价铁进行氧化,并进行加热,控制加热温度为75-85℃,除去乙酰丙酮,避免干扰后续的萃取过程;
(5)控制沉淀,向步骤(4)所得滤液中继续加入氨水,并控制滤液pH为3-3.5,再次过滤,得到氢氧化铁沉淀和含镍滤液,氢氧化铁沉淀经洗涤、加热后得到铁红。
制备硫酸镍:将含镍滤液用萃取剂Cyanex272萃取镍,静置,分离得到含镍萃取有机相和含杂质萃余液;再用3mol/L的H 2SO 4溶液从含镍萃取有机相中反萃取镍,得到电池级硫酸镍溶液。
蒸发结晶后制得的硫酸镍晶体送化验室分析,分析结果为22.06%Ni、0.027%Co、0.00031%Cu、0.00012%Fe,符合电池级硫酸镍的产品标准。
实施例3
一种镍铁湿法处理方法,具体过程为:
(1)原料预处理,将镍含量为55.35%的镍铁破碎成粉状或颗粒状;
(2)一段高压酸浸,在密闭压力为5.0MPa、温度为70℃的高压氧气环境中,将步 骤(1)所得粉碎料采用浓度为5mol/L的硫酸酸浸,并加入草酸,得到混合浆料,混合浆料的固液比为1:300g/mL,反应时间3h;
(3)过滤处理,步骤(2)反应结束后,过滤得到滤液和滤渣,向滤液中加入镍铁粉碎料进行二段浸出,使滤液中少量铜离子置换出来,再次过滤得到镍铁渣和除铜的滤液,镍铁渣返回步骤(2)的一段高压酸浸,循环若干次后检测到镍铁渣的含铜量较高时,将镍铁渣进行常压浸出,产生的浸出液返回一段高压酸浸,浸出渣送去铜厂处理;
(4)沉淀处理,向步骤(3)除铜后的滤液中加入硝酸铵,对滤液中的二价铁进行氧化,并进行加热,控制加热温度为80-95℃,除去草酸,避免干扰后续的萃取过程;
(5)控制沉淀,向步骤(4)所得滤液中继续加入氨水,并控制滤液pH为3-3.5,再次过滤,得到氢氧化铁沉淀和含镍滤液,氢氧化铁沉淀经洗涤、加热后得到铁红。
制备硫酸镍:将含镍滤液用萃取剂P204和P507的混合液萃取镍,静置,分离得到含镍萃取有机相和含杂质萃余液;再用4mol/L的H 2SO 4溶液从含镍萃取有机相中反萃取镍,得到电池级硫酸镍溶液。
蒸发结晶后制得的硫酸镍晶体送化验室分析,分析结果为22.18%Ni、0.012%Co、0.00028%Cu、0.00011%Fe,符合电池级硫酸镍的产品标准。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种镍铁湿法处理方法,其特征在于,包括以下步骤:
    S1:在高压氧气环境中,将镍铁粉碎料、硫酸和助蚀剂混合,进行酸浸反应;
    S2:将步骤S1酸浸后浆料进行固液分离,所得滤液加入氧化剂,并加热,除去助蚀剂;
    S3:再向滤液中加入沉淀剂,并控制滤液的pH,固液分离,得到氢氧化铁沉淀和含镍滤液。
  2. 根据权利要求1所述的镍铁湿法处理方法,其特征在于,步骤S1中,所述助蚀剂为过氧化氢、乙酸、乙酰丙酮、草酸或甘氨酸中的一种或多种。
  3. 根据权利要求1所述的镍铁湿法处理方法,其特征在于,步骤S1中,所述硫酸的浓度为3-8mol/L。
  4. 根据权利要求1所述的镍铁湿法处理方法,其特征在于,步骤S1中,所述酸浸反应的压力为3.0-6.5MPa,反应的温度为50-90℃。
  5. 根据权利要求1所述的镍铁湿法处理方法,其特征在于,步骤S2中,所述氧化剂为氯酸盐、亚硝酸盐、硝酸盐或过硫酸盐中的一种或多种。
  6. 根据权利要求1所述的镍铁湿法处理方法,其特征在于,步骤S2中,所述加热的温度为60-95℃。
  7. 根据权利要求1所述的镍铁湿法处理方法,其特征在于,步骤S3中,所述沉淀剂为氨水、氢氧化钠、碳酸钠或碳酸氢钠中的一种或多种。
  8. 根据权利要求1所述的镍铁湿法处理方法,其特征在于,步骤S3中,所述pH为3-3.5。
  9. 根据权利要求1所述的镍铁湿法处理方法,其特征在于,还包括向步骤S2中所得滤液加入镍铁进行置换还原浸出,过滤得到镍铁渣和除铜的浸出液,所述镍铁渣返回步骤S1进行酸浸,所述浸出液加入所述氧化剂进行后续处理。
  10. 权利要求1-9任一项所述的镍铁湿法处理方法得到的含镍滤液在制备电池级硫酸镍中的应用。
PCT/CN2022/097183 2021-07-20 2022-06-06 镍铁湿法处理方法及其应用 WO2023000847A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112022000294.8T DE112022000294B4 (de) 2021-07-20 2022-06-06 Verfahren zur nassbehandlung von nickel-eisen und dessen anwendung
GB2314580.8A GB2622488A (en) 2021-07-20 2022-06-06 Nickel-iron wet treatment method and application thereof
US18/260,241 US12006227B2 (en) 2021-07-20 2022-06-06 Nickel-iron wet treatment method and application thereof
MA61498A MA61498A1 (fr) 2021-07-20 2022-06-06 Procédé de traitement humide de fer-nickel et son application
ES202390090A ES2957058A2 (es) 2021-07-20 2022-06-06 Procedimiento de tratamiento húmedo de níquel-hierro y aplicación del mismo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110818269.0A CN113667825B (zh) 2021-07-20 2021-07-20 镍铁湿法处理方法及其应用
CN202110818269.0 2021-07-20

Publications (1)

Publication Number Publication Date
WO2023000847A1 true WO2023000847A1 (zh) 2023-01-26

Family

ID=78539611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097183 WO2023000847A1 (zh) 2021-07-20 2022-06-06 镍铁湿法处理方法及其应用

Country Status (6)

Country Link
CN (1) CN113667825B (zh)
DE (1) DE112022000294B4 (zh)
ES (1) ES2957058A2 (zh)
GB (1) GB2622488A (zh)
MA (1) MA61498A1 (zh)
WO (1) WO2023000847A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113667825B (zh) * 2021-07-20 2022-11-15 广东邦普循环科技有限公司 镍铁湿法处理方法及其应用
CN116409830A (zh) * 2021-12-29 2023-07-11 荆门市格林美新材料有限公司 一种镍铁合金资源化综合利用方法
CN117003212B (zh) * 2023-08-07 2024-04-05 上海天汉环境资源有限公司 一种电池级材料的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468973A (zh) * 2013-09-28 2013-12-25 周骏宏 一种从含镍磷铁中提镍的方法
KR101403185B1 (ko) * 2012-12-21 2014-06-11 재단법인 포항산업과학연구원 니켈 제련 부산물 재활용 방법
CN103911514A (zh) * 2013-01-06 2014-07-09 中石化上海工程有限公司 废旧硬质合金磨削料的回收处理方法
CN106829907A (zh) * 2017-03-31 2017-06-13 广东佳纳能源科技有限公司 一种含镍生铁制备硫酸镍溶液和电池级磷酸铁的方法
CN109457112A (zh) * 2019-01-08 2019-03-12 中国科学院过程工程研究所 红土镍矿浸出液的处理方法
CN111498918A (zh) * 2020-06-01 2020-08-07 中国恩菲工程技术有限公司 一种镍铁材料的湿法处理工艺
WO2021018796A1 (en) * 2019-07-26 2021-02-04 Basf Se Process for the recovery of lithium and other metals from waste lithium ion batteries
CN112941314A (zh) * 2021-01-29 2021-06-11 湖南邦普循环科技有限公司 一种从镍铁合金中分离镍和铁的方法和应用
CN113667825A (zh) * 2021-07-20 2021-11-19 广东邦普循环科技有限公司 镍铁湿法处理方法及其应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB757323A (en) * 1952-03-14 1956-09-19 Chemical Construction Corp Improvements in or relating to the production of powdered metals
US2805937A (en) 1954-08-20 1957-09-10 Hans O Bennedsen Leaching of refractory alloys
US4060464A (en) * 1974-06-26 1977-11-29 Boliden Aktiebolag Method for extracting and recovering iron and nickel in metallic form
CA2726655A1 (en) * 2008-06-06 2009-12-10 The University Of Sydney Multi-stage leaching process
US11473170B2 (en) * 2017-09-25 2022-10-18 Mohammad Asadrokht Treatment of non-sulfidic nickeliferous resources and recovery of metal values therefrom
CN109897957A (zh) * 2019-01-16 2019-06-18 中南大学 一种选择性分离钴镍铜铁合金中有价金属的方法
CN112481502A (zh) * 2020-11-20 2021-03-12 湖南金鑫新材料股份有限公司 一种采用no催化氧化法浸出铁基镍钴合金的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403185B1 (ko) * 2012-12-21 2014-06-11 재단법인 포항산업과학연구원 니켈 제련 부산물 재활용 방법
CN103911514A (zh) * 2013-01-06 2014-07-09 中石化上海工程有限公司 废旧硬质合金磨削料的回收处理方法
CN103468973A (zh) * 2013-09-28 2013-12-25 周骏宏 一种从含镍磷铁中提镍的方法
CN106829907A (zh) * 2017-03-31 2017-06-13 广东佳纳能源科技有限公司 一种含镍生铁制备硫酸镍溶液和电池级磷酸铁的方法
CN109457112A (zh) * 2019-01-08 2019-03-12 中国科学院过程工程研究所 红土镍矿浸出液的处理方法
WO2021018796A1 (en) * 2019-07-26 2021-02-04 Basf Se Process for the recovery of lithium and other metals from waste lithium ion batteries
CN111498918A (zh) * 2020-06-01 2020-08-07 中国恩菲工程技术有限公司 一种镍铁材料的湿法处理工艺
CN112941314A (zh) * 2021-01-29 2021-06-11 湖南邦普循环科技有限公司 一种从镍铁合金中分离镍和铁的方法和应用
CN113667825A (zh) * 2021-07-20 2021-11-19 广东邦普循环科技有限公司 镍铁湿法处理方法及其应用

Also Published As

Publication number Publication date
US20240034639A1 (en) 2024-02-01
DE112022000294T5 (de) 2023-09-14
CN113667825B (zh) 2022-11-15
CN113667825A (zh) 2021-11-19
DE112022000294B4 (de) 2024-02-29
MA61498A1 (fr) 2023-11-30
ES2957058A2 (es) 2024-01-09
GB2622488A (en) 2024-03-20
GB202314580D0 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
WO2023000847A1 (zh) 镍铁湿法处理方法及其应用
Jung et al. A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments
US20230050044A1 (en) Comprehensive recycling method for waste lithium iron phosphate battery
US20220166079A1 (en) Manganese-lithium separation process and pre-extraction solution preparation process in comprehensive recovery of ternary battery wastes, and method for comprehensive recovery of cobalt, nickel, manganese and lithium elements from ternary battery wastes
CN112158894A (zh) 一种废旧锂电池正极材料的回收方法
US20230340635A1 (en) Method for recovering lithium from lithium iron phosphate waste and application thereof
CN111498918B (zh) 一种镍铁材料的湿法处理工艺
CN106048217B (zh) 氧化锌粉的综合回收利用方法
CN109022793B (zh) 一种从含钴镍锰中至少一种的正极材料废粉中选择性浸出锂的方法
CN111334664B (zh) 一种基于镁盐循环的三元锂电池正极材料综合回收有价金属的方法
CN110983045A (zh) 一种镍钴锰溶液除铁铝的方法
JPS5919976B2 (ja) 深海床の団塊に含まれる金属、特にニツケル及び銅の抽出方法
AU2011341872B2 (en) Method for enrichment-recovering ferronickel from raw material containing nickel, method for recovering nickel from enriched ferronickel, and method for recycling solution containing iron produced from same
CN113880063B (zh) 废旧磷酸铁锂提锂后磷铁渣的除铝方法及电池级磷酸铁的制备方法
CN111041217A (zh) 三元电池废料综合回收中制取萃前液的方法
CN112662877A (zh) 一种从电解锰硫化渣中制备高纯硫酸镍的方法
WO2023035636A1 (zh) 一种由低冰镍制备硫酸镍的方法
CN113802017A (zh) 一种萃取法分离回收废旧磷酸铁锂电池正极材料酸浸出液中铝的方法
KR20230093490A (ko) 리튬 이온 전지 폐기물의 처리 방법
GB2622169A (en) Method for selectively recovering valuable metal in waste lithium battery
WO2023024592A1 (zh) 由镍铁制备硫酸镍的方法
CN112662878B (zh) 一种从电解锰硫化渣中制备高纯硫酸钴的方法
CN113846219A (zh) 一种从废旧锂电池中提取锂的方法
CN114875238B (zh) 一种回收废弃锂电三元正极材料中镍、锰、钴和锂的方法
CN113943019A (zh) 一种从含铬、铁溶液中分离铬铁的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022000294

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 18260241

Country of ref document: US

ENP Entry into the national phase

Ref document number: 202314580

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220606