WO2023035636A1 - 一种由低冰镍制备硫酸镍的方法 - Google Patents

一种由低冰镍制备硫酸镍的方法 Download PDF

Info

Publication number
WO2023035636A1
WO2023035636A1 PCT/CN2022/090532 CN2022090532W WO2023035636A1 WO 2023035636 A1 WO2023035636 A1 WO 2023035636A1 CN 2022090532 W CN2022090532 W CN 2022090532W WO 2023035636 A1 WO2023035636 A1 WO 2023035636A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
filtrate
sulfuric acid
matte
solution
Prior art date
Application number
PCT/CN2022/090532
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023035636A1 publication Critical patent/WO2023035636A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of metallurgy, and in particular relates to a method for preparing nickel sulfate from low-matte nickel.
  • Nickel sulfate is mainly used in ternary batteries, nickel-metal hydride batteries and electroplating and other fields. In the battery field, it includes ternary batteries and nickel-metal hydride batteries. Among them, ternary batteries are used to prepare NCM/NCA ternary precursors, and the level of nickel content determines the energy of battery materials.
  • the main raw materials of nickel sulfate include high nickel matte, nickel wet process intermediate products, nickel beans/nickel powder, nickel waste, etc. Among them, the preparation of nickel sulfate by high-pressure nickel matte acid leaching is the main source of nickel sulfate products at present.
  • high nickel matte is generally produced by repeated blowing of low nickel matte at high temperature in a converter, and high-pressure acid leaching of high nickel matte to leach nickel sulfate solution with high impurities, and finally extract and remove impurities to obtain pure nickel sulfate product.
  • the process route is long, the operation is complicated, and the consumption of auxiliary materials is large. Blowing high nickel matte by low nickel matte converter increases the investment cost, and the high pressure acid leaching process requires extremely high equipment, and the loss rate of nickel increases after multiple smelting processes.
  • the related technology discloses a production method of battery-grade nickel sulfate, comprising the following steps: a) nickel sulfide leaching: nickel sulfide is leached under concentrated sulfuric acid, high temperature, and slight negative pressure conditions, then dissolved in water, and solid-liquid separation to obtain nickel sulfide leachate and nickel sulfide leaching slag; b) impurity removal: the nickel sulfide leaching solution is neutralized with residual acid by hydroxide, and then impurity removal, extraction, oil removal, evaporation and crystallization are used to produce battery-grade nickel sulfate products; c) sulfur recovery: nickel sulfide leaching slag is processed Washing, drying, and then producing and recovering high-purity commercial sulfur through a hot-melt filtration process.
  • the method adopted in the method has a high nickel leaching rate, and requires a short process and low energy consumption, and can quickly and efficiently realize the production and slag-free sulfur element, which is conducive to maximizing the benefit of resource recycling.
  • this method uses high nickel matte with a higher nickel content, and utilizes the strong oxidizing property of concentrated sulfuric acid to leaching nickel sulfide. While producing sulfur, it also produces sulfur dioxide, a polluting gas, and this method consumes a lot of sulfuric acid. Raw material cost is higher.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a method for preparing nickel sulfate from low nickel matte, which can produce battery-grade nickel sulfate, and the method has the advantages of short process flow and low consumption of auxiliary materials.
  • propose a kind of method preparing nickel sulfate by low matte nickel comprise the following steps:
  • S1 Add sulfuric acid solution and oxidant to the low nickel matte crushed material for acid leaching reaction, control the reaction temperature to 160-220°C, after the reaction is completed, adjust the pH to 3.2-3.5, and separate solid-liquid to obtain filtrate and filter residue; oxidant and The sulfide reaction in low nickel matte generates sulfur element;
  • step S1 after the reaction is completed, the pH is adjusted to 3.2-3.5.
  • the oxidizing agent is one or both of persulfuric acid or ammonium persulfate.
  • persulfuric acid and ammonium persulfate are used to react with sulfide in low-matte nickel under acidic conditions to obtain elemental sulfur, which avoids the problem of direct reaction with dilute sulfuric acid to produce toxic gas hydrogen sulfide; also avoids the problem of concentrated sulfuric acid or The presence of other strong oxidizing agents leads to problems with the formation of sulfur dioxide.
  • step S1 the solid-to-liquid ratio of the low nickel matte pulverized material to the sulfuric acid solution is 1:(0.5-5) g/mL.
  • step S1 the concentration of the sulfuric acid is 0.1-0.5 mol/L.
  • step S1 an organic solvent is added to the filter residue, and solid-liquid separation is performed to obtain iron slag and a sulfur-containing elemental solution.
  • the iron slag is washed to obtain the product iron red.
  • the iron red can be tested for nickel content, and if the requirements are not met, it can return to the leaching process of step S1 to continue leaching.
  • the elemental sulfur is dissolved in an organic solvent, and the remaining iron oxide is sold as the product iron red.
  • the organic solvent is carbon disulfide, carbon tetrachloride, methylcyclohexane, trichloroethane, trichloroethylene, tetrachloroethane, diglyme, tetrahydro One or more of naphthalene or decahydronaphthalene.
  • the sulfur-containing elemental solution is evaporated and condensed to separate the organic solvent and sulfur.
  • the organic solvent can be recycled, and the obtained sulfur can be sold as a product.
  • the regulator for controlling the pH of the filtrate is one or more of sulfuric acid, nickel hydroxide or nickel carbonate. The introduction of other impurity ions is avoided.
  • step S2 the copper sulfide precipitate is sent to a copper factory for treatment.
  • the extractant is selected from one or more of P204, P507, DEHPA or Cyanex272.
  • step S3 the concentration of the sulfuric acid solution is 3-5 mol/L.
  • step S3 the extracted organic phase obtained after nickel stripping is re-saponified and recycled.
  • the method of the present invention can be reacted under normal pressure and has low requirements on equipment.
  • persulfuric acid and ammonium persulfate are used to react with sulfide in low nickel matte under acidic conditions to obtain elemental sulfur, which avoids the reaction with dilute sulfuric acid.
  • Direct reaction the problem of producing toxic gas hydrogen sulfide; first, nickel, copper, cobalt, iron, etc. are dissolved in the solution, and after adjusting the pH, iron coexists with sulfur as a solid in the form of ferric hydroxide.
  • the hydrogen sulfide gas is introduced to precipitate and separate the copper ions in the form of copper sulfide, while the nickel ions and other ions remain in the solution.
  • a battery-grade nickel sulfate product is prepared.
  • the elemental sulfur is dissolved by an organic solvent, and the remaining iron oxide is sold as the product iron red.
  • the dissolved elemental sulfur is condensed by evaporation, and the organic solvent obtained by separation can be recycled, and the elemental sulfur obtained can be sold as a product.
  • the invention has a short process flow, and the leaching rate of low-matte nickel can be as high as 98%.
  • Nickel sulfate is directly prepared by low-matte nickel, which saves the manufacturing process of intermediate high-grade nickel matte, saves auxiliary materials, reduces investment costs, and is suitable for industrialization. .
  • the invention can be widely used in the production process of nickel sulfate, especially in the production of battery grade nickel sulfate prepared from low nickel matte.
  • Fig. 1 is a schematic process flow diagram of embodiment 1 of the present invention.
  • a kind of method for preparing nickel sulfate by low nickel matte the composition of low nickel matte: nickel 19.68%, copper 12.7%, cobalt 0.56%, iron 38.9%, sulfur 23.55%, with reference to Fig. 1, prepare nickel sulfate by following steps:
  • Raw material pretreatment crush 100g of low nickel matte into powder or granule
  • step (1) Acid leaching at normal pressure: the pulverized material obtained in step (1) is acid leached with 0.1mol/L sulfuric acid, the solid-to-liquid ratio of low matte nickel and sulfuric acid is 1:0.5g/mL, and 1.6mol persulfuric acid is added As an oxidant, control the reaction temperature to 160-170°C, and adjust the pH to 3.2-3.5 after the reaction is completed;
  • step (3) Filtration treatment: after the reaction in step (2), obtain filtrate and filter residue through solid-liquid separation, add carbon disulfide to the filter residue, and carry out solid-liquid separation again after the reaction is completed to obtain filter residue and organic solution, and obtain the product after washing the filter residue
  • Iron red the iron red can be tested for nickel content, if the requirements are not met, it can return to step (1) normal pressure leaching process to continue leaching; the organic solution is evaporated and condensed, and the organic solvent and sulfur are separated, and the organic solvent can be recycled;
  • Precipitation treatment feed hydrogen sulfide gas into the filtrate gained in step (3), and add sulfuric acid to control the pH of the filtrate to be 1.5-2.0;
  • step (4) Filtration again: after step (4) reaction finishes, obtain nickel-containing filtrate and copper sulfide precipitation through solid-liquid separation, and copper sulfide precipitation is sent to copper factory for processing;
  • Extraction treatment use extraction agent P507 to extract the nickel-containing filtrate in step (5), leave standstill, separate to obtain the nickel-containing extraction organic phase and impurity-containing raffinate, use the sulfuric acid solution of 5mol/L from the nickel-containing The nickel is extracted and stripped from the organic phase to obtain a battery-grade nickel sulfate solution.
  • the 88.81g of nickel sulfate crystals obtained after evaporation and crystallization were sent to the laboratory for analysis.
  • the analysis results were 22.01% Ni, 0.031% Co, 0.00033% Cu, and 0.0002% Fe, which met the product standard of battery grade nickel sulfate. It is calculated that the leaching rate of nickel reaches 99.33%.
  • a method for preparing nickel sulfate by low nickel matte the composition of low nickel matte: nickel 22.48%, copper 13.5%, cobalt 0.42%, iron 37.6%, sulfur 22.35%, nickel sulfate is prepared by the following steps:
  • Raw material pretreatment crush 100g of low nickel matte into powder or granule
  • Atmospheric acid leaching the crushed material obtained in step (1) is acid leached with 0.2mol/L of sulfuric acid, the solid-to-liquid ratio of low matte nickel and sulfuric acid is 1:3g/mL, and the persulfuric acid of 1.8mol is added as Oxidant, control the reaction temperature to 160-170°C, after the reaction is completed, adjust the pH to 3.2-3.5;
  • step (3) Filtration treatment: after step (2) reaction finishes, obtain filtrate and filter residue through solid-liquid separation, add carbon tetrachloride in filter residue, carry out solid-liquid separation again after reaction finishes, obtain filter residue and organic solution, filter residue is through washing
  • step (3) Filtration treatment: after step (2) reaction finishes, obtain filtrate and filter residue through solid-liquid separation, add carbon tetrachloride in filter residue, carry out solid-liquid separation again after reaction finishes, obtain filter residue and organic solution, filter residue is through washing
  • the nickel content detection can be carried out to the iron red. When the requirements are not met, it can return to step (1) normal pressure leaching process to continue leaching; the organic solution is evaporated and condensed to separate and obtain organic solvent and sulfur.
  • the organic solvent can be Recycling;
  • Precipitation treatment feed hydrogen sulfide gas into the filtrate gained in step (3), and add sulfuric acid to control the pH of the filtrate to be 1.0-1.5;
  • step (4) Filtration again: after step (4) reaction finishes, obtain nickel-containing filtrate and copper sulfide precipitation through solid-liquid separation, and copper sulfide precipitation is sent to copper factory for processing;
  • Extraction treatment use extractant P204 and P507 mixed solution to extract the nickel-containing filtrate in step (5), stand still, separate to obtain nickel-containing extraction organic phase and impurity-containing raffinate, use 3mol/L sulfuric acid The solution strips nickel from the nickel-containing extraction organic phase to obtain a battery-grade nickel sulfate solution.
  • the 100.54g nickel sulfate crystal obtained after evaporation and crystallization was sent to the laboratory for analysis.
  • the analysis results were 22.13% Ni, 0.021% Co, 0.00036% Cu, 0.0001% Fe, which met the product standard of battery grade nickel sulfate. It is calculated that the leaching rate of nickel reaches 98.97%.
  • a method for preparing nickel sulfate by low nickel matte the composition of low nickel matte: nickel 18.33%, copper 10.66%, cobalt 0.92%, iron 40.5%, sulfur 23.55%, nickel sulfate is prepared by the following steps:
  • Raw material pretreatment crush 100g of low nickel matte into powder or granule
  • Atmospheric acid leaching the crushed material obtained in step (1) is acid leached with 0.3mol/L of sulfuric acid, the solid-to-liquid ratio of low matte nickel and sulfuric acid is 1:5g/mL, and the persulfuric acid of 1.7mol is added as Oxidant, control the reaction temperature to 160-170°C, after the reaction is completed, adjust the pH to 3.2-3.5;
  • step (3) Filtration treatment: after the reaction in step (2), obtain filtrate and filter residue through solid-liquid separation, add trichloroethane in the filter residue, carry out solid-liquid separation again after the reaction is completed, obtain filter residue and organic solution, and filter residue through washing
  • the nickel content detection can be carried out to the iron red.
  • it can return to step (1) normal pressure leaching process to continue leaching; the organic solution is evaporated and condensed to separate and obtain organic solvent and sulfur.
  • the organic solvent can be Recycling;
  • Precipitation treatment feed hydrogen sulfide gas into the filtrate gained in step (3), and add sulfuric acid to control the pH of the filtrate to be 1.0-1.5;
  • step (4) Filtration again: after step (4) reaction finishes, obtain nickel-containing filtrate and copper sulfide precipitation through solid-liquid separation, and copper sulfide precipitation is sent to copper factory for processing;
  • Extraction treatment use extraction Cyanex272 to extract the nickel-containing filtrate in step (5), stand still, separate to obtain the nickel-containing extraction organic phase and impurity-containing raffinate, use 3mol/L sulfuric acid solution to extract from the nickel-containing Nickel is stripped from the organic phase to obtain a battery-grade nickel sulfate solution.
  • the 82.27g of nickel sulfate crystals obtained after evaporation and crystallization were sent to the laboratory for analysis.
  • the analysis results were 22.15% Ni, 0.012% Co, 0.00038% Cu, and 0.0001% Fe, which met the product standard of battery grade nickel sulfate. It is calculated that the leaching rate of nickel reaches 99.42%.

Abstract

本发明公开了一种由低冰镍制备硫酸镍的方法,向低冰镍粉碎料中加入硫酸溶液和氧化剂进行酸浸反应,控制反应的温度,反应完成后调节pH,固液分离得到滤液和滤渣,再向滤液中通入硫化氢气体,并控制滤液的pH,固液分离得到含镍滤液和硫化铜沉淀,对含镍滤液进行萃取和反萃取镍,得到硫酸镍溶液。本发明利用稀硫酸和氧化剂对低冰镍进行常压浸出,得到单质硫,避免了浓硫酸的存在导致生成二氧化硫的问题,整个浸出反应过程,镍、铜、钴等溶解在溶液中,铁以氧化铁的形式与硫单质共存为固体,对含镍滤液调节pH,通入硫化氢气体,使铜离子以硫化铜的形式沉淀分离,而镍离子及其它离子仍保留在溶液中,本发明工艺流程短,低冰镍的浸出率可高达98%以上。

Description

一种由低冰镍制备硫酸镍的方法 技术领域
本发明属于冶金技术领域,具体涉及一种由低冰镍制备硫酸镍的方法。
背景技术
硫酸镍主要应用于三元电池、镍氢电池以及电镀等领域。在电池领域,包括三元电池和镍氢电池,其中,三元电池用于制备NCM/NCA三元前驱体,含镍的高低决定电池材料能量的多少。
近几年,新能源汽车市场如火如荼,备受关注。但目前,续航里程不足是电动车推广最主要的障碍之一,解决这一问题的根本就是要提升电池的能量密度比。而电池四大材料中,唯一能大幅提升密度的就是正极。镍含量决定了正极材料的比容量,数值越高,能量密度比越大,也因此,镍被认为可能是下一个锂或者钴。随着电动汽车市场的迅速发展,动力电池对钴与硫酸镍的需求水涨船高。
硫酸镍的主要原料有高冰镍、镍湿法中间产品、镍豆/镍粉、废镍等。其中,由高冰镍高压酸浸制备硫酸镍是目前硫酸镍产品的主要来源。
然而,高冰镍一般由低冰镍经过转炉高温反复吹炼制得,再将高冰镍经高压酸浸,从而浸出含杂质较高的硫酸镍溶液,最后经萃取除杂,从而得到纯净的硫酸镍产品。此法,工艺路线较长,操作复杂,辅料消耗量大。由低冰镍转炉吹炼高冰镍,增加了投资成本,且高压酸浸工艺对设备要求极高,经过多重冶炼工艺,增加了镍的损失率。
相关技术公开了一种电池级硫酸镍的生产方法,包括以下步骤:a)硫化镍浸出:硫化镍在浓硫酸、高温、微负压条件下浸出,再加水溶解,固液分离得到硫化镍浸出液和硫化镍浸出渣;b)除杂:硫化镍浸出液经氢氧化物中和余酸,除杂、萃取、除油、蒸发结晶制电池级硫酸镍产品;c)硫磺回收:硫化镍浸出渣经过洗涤、烘干,再经过热熔过滤工艺生产和回收高纯度商品硫磺。该方法采用的方法镍浸出率较高,且所需流程短、能耗低,可快速、高效地实现硫单质的生产和无渣化,有利于资源回用效益最大化。 然而,该方法使用了镍含量较高的高冰镍,并利用浓硫酸自身的强氧化性氧化浸出硫化镍,产生硫磺的同时,也产生了污染性气体二氧化硫,且此法对硫酸的消耗较高,原料成本较高。
而目前,对于低冰镍直接制备硫酸镍的工艺并未见相关报道。
在硫酸镍成本居高不下、供给紧张的情况下,市场上亟需一种低成本、大批量制备硫酸镍的方法。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种由低冰镍制备硫酸镍的方法,该方法能够制备出电池级硫酸镍,且该方法具有工艺流程短、辅料消耗量低等优势。
根据本发明的一个方面,提出了一种由低冰镍制备硫酸镍的方法,包括以下步骤:
S1:向低冰镍粉碎料中加入硫酸溶液和氧化剂进行酸浸反应,控制反应的温度为160-220℃,反应完成后,调节pH为3.2-3.5,固液分离得到滤液和滤渣;氧化剂与低冰镍中的硫化物反应,生成硫单质;
S2:向所述滤液中通入硫化氢气体,并控制滤液的pH为0-2.0,固液分离得到含镍滤液和硫化铜沉淀;通入硫化氢和控制pH可使铜离子以硫化铜的形式沉淀分离,而镍离子及其它离子仍保留在溶液中;
S3:向所述含镍滤液加入萃取剂进行萃取,分离出含镍萃取有机相,再用硫酸溶液从所述含镍萃取有机相中反萃取镍,得到硫酸镍溶液。
其中,步骤S1中,反应完成后,调节pH为3.2-3.5。
在本发明的一些实施方式中,步骤S1中,所述氧化剂为过硫酸或过硫酸铵中的一种或两种。反应过程中利用过硫酸、过硫酸铵在酸性条件与低冰镍中的硫化物反应,得到单质硫,避免了其与稀硫酸直接反应,产生有毒气体硫化氢的问题;也避免了浓硫酸或其他强氧化剂的存在导致生成二氧化硫的问题。反应方程式为:S 2O 8 2-+MS==2SO 4 2-+M 2++S、S 2O 8 2-+2Fe 2+==2SO 4 2-+2Fe 3+,其中M代表镍、铜、钴、铁等金属元素。
在本发明的一些实施方式中,步骤S1中,所述低冰镍粉碎料与所述硫酸溶液的固液比为1:(0.5-5)g/mL。
在本发明的一些实施方式中,步骤S1中,所述硫酸的浓度为0.1-0.5mol/L。
在本发明的一些实施方式中,步骤S1中,向所述滤渣中加入有机溶剂,固液分离得到铁渣和含硫单质溶液。铁渣经洗涤后得到产品铁红。可对铁红进行镍含量检测,不满足要求时,可返回至步骤S1的浸出工序继续浸出。通过有机溶剂将硫单质溶解,剩余氧化铁作为产品铁红售卖。
在本发明的一些实施方式中,所述有机溶剂为二硫化碳、四氯化碳、甲基环己烷、三氯乙烷、三氯乙烯、四氯乙烷、二甘醇二甲醚、四氢萘或十氢萘的一种或几种。
在本发明的一些实施方式中,将所述含硫单质溶液进行蒸发冷凝,分离得到有机溶剂和硫磺。有机溶剂可循环利用,得到硫磺可作为产品售卖。
在本发明的一些实施方式中,步骤S2中,控制滤液pH的调节剂为硫酸、氢氧化镍或碳酸镍中的一种或几种。避免了其它杂质离子的引入。
在本发明的一些实施方式中,步骤S2中,所述硫化铜沉淀送至铜厂处理。
在本发明的一些实施方式中,步骤S3中,所述萃取剂选自P204、P507、DEHPA或Cyanex272中的一种或几种。
在本发明的一些实施方式中,步骤S3中,所述硫酸溶液的浓度为3-5mol/L。
在本发明的一些实施方式中,步骤S3中,反萃取镍后得到的萃取有机相重新皂化循环利用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
本发明的方法在常压下即可反应,对设备要求低,反应过程中利用过硫酸、过硫酸铵在酸性条件与低冰镍中的硫化物反应,得到单质硫,避免了其与稀硫酸直接反应,产生有毒气体硫化氢的问题;首先镍、铜、钴、铁等溶解在溶液中,调节pH后铁以氢氧化铁的形式与硫单质共存为固体。通入硫化氢气体,使铜离子以硫化铜的形式沉淀分离,而镍离子及其它离子仍保留在溶液中,后续经过萃取剂萃取除钴后,制备得到电池级硫 酸镍产品。在得到的滤渣中,通过有机溶剂将硫单质溶解,剩余氧化铁作为产品铁红售卖,溶解的硫单质通过蒸发冷凝,分离得到的有机溶剂可循环使用,得到硫单质可作为产品售卖。本发明工艺流程短,低冰镍的浸出率可高达98%以上,通过低冰镍直接制备硫酸镍,省去了中间品高冰镍的制造工艺,节省辅料的同时,降低了投资成本,适合工业化推广。本发明可广泛应用于硫酸镍的生产工艺中,特别是低冰镍制备电池级硫酸镍的生产中。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的工艺流程示意图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种由低冰镍制备硫酸镍的方法,低冰镍的成分:镍19.68%、铜12.7%、钴0.56%、铁38.9%、硫23.55%,参照图1,通过如下步骤制备硫酸镍:
(1)原料预处理:将100g低冰镍破碎成粉状或颗粒状;
(2)常压酸浸:将步骤(1)所得粉碎料采用0.1mol/L的硫酸酸浸,低冰镍和硫酸的固液比为1:0.5g/mL,并加入1.6mol的过硫酸作为氧化剂,控制反应温度为160-170℃,反应完成后,调节pH为3.2-3.5;
(3)过滤处理:步骤(2)反应结束后,经过固液分离得到滤液和滤渣,向滤渣中加入二硫化碳,反应完成后再次进行固液分离,得到滤渣和有机溶液,滤渣经洗涤后得到产品铁红,可对铁红进行镍含量检测,不满足要求时,可返回至步骤(1)常压浸出工序继续浸出;有机溶液进行蒸发冷凝,分离得到有机溶剂和硫磺,有机溶剂可循环利 用;
(4)沉淀处理:向步骤(3)所得滤液中通入硫化氢气体,并加入硫酸控制滤液pH为1.5-2.0;
(5)再次过滤:步骤(4)反应结束后,经过固液分离得到含镍滤液和硫化铜沉淀,硫化铜沉淀送至铜厂处理;
(6)萃取处理:使用萃取剂P507对步骤(5)中的含镍滤液进行萃取,静置,分离得到含镍萃取有机相和含杂质萃余液,用5mol/L的硫酸溶液从含镍萃取有机相中反萃取镍,得到电池级硫酸镍溶液。
蒸发结晶后制得的88.81g硫酸镍晶体送化验室分析,分析结果为22.01%Ni、0.031%Co、0.00033%Cu、0.0002%Fe,符合电池级硫酸镍的产品标准。计算得出镍的浸出率达99.33%。
实施例2
一种由低冰镍制备硫酸镍的方法,低冰镍的成分:镍22.48%、铜13.5%、钴0.42%、铁37.6%、硫22.35%,通过如下步骤制备硫酸镍:
(1)原料预处理:将100g低冰镍破碎成粉状或颗粒状;
(2)常压酸浸:将步骤(1)所得粉碎料采用0.2mol/L的硫酸酸浸,低冰镍和硫酸的固液比为1:3g/mL,并加入1.8mol的过硫酸作为氧化剂,控制反应温度为160-170℃,反应完成后,调节pH为3.2-3.5;
(3)过滤处理:步骤(2)反应结束后,经过固液分离得到滤液和滤渣,向滤渣中加入四氯化碳,反应完成后再次进行固液分离,得到滤渣和有机溶液,滤渣经洗涤后得到产品铁红,可对铁红进行镍含量检测,不满足要求时,可返回至步骤(1)常压浸出工序继续浸出;有机溶液进行蒸发冷凝,分离得到有机溶剂和硫磺,有机溶剂可循环利用;
(4)沉淀处理:向步骤(3)所得滤液中通入硫化氢气体,并加入硫酸控制滤液pH为1.0-1.5;
(5)再次过滤:步骤(4)反应结束后,经过固液分离得到含镍滤液和硫化铜沉淀,硫化铜沉淀送至铜厂处理;
(6)萃取处理:使用萃取剂P204和P507混合液对步骤(5)中的含镍滤液进行萃取,静置,分离得到含镍萃取有机相和含杂质萃余液,用3mol/L的硫酸溶液从含镍萃取有机相中反萃取镍,得到电池级硫酸镍溶液。
蒸发结晶后制得的100.54g硫酸镍晶体送化验室分析,分析结果为22.13%Ni、0.021%Co、0.00036%Cu、0.0001%Fe,符合电池级硫酸镍的产品标准。计算得出镍的浸出率达98.97%。
实施例3
一种由低冰镍制备硫酸镍的方法,低冰镍的成分:镍18.33%、铜10.66%、钴0.92%、铁40.5%、硫23.55%,通过如下步骤制备硫酸镍:
(1)原料预处理:将100g低冰镍破碎成粉状或颗粒状;
(2)常压酸浸:将步骤(1)所得粉碎料采用0.3mol/L的硫酸酸浸,低冰镍和硫酸的固液比为1:5g/mL,并加入1.7mol的过硫酸作为氧化剂,控制反应温度为160-170℃,反应完成后,调节pH为3.2-3.5;
(3)过滤处理:步骤(2)反应结束后,经过固液分离得到滤液和滤渣,向滤渣中加入三氯乙烷,反应完成后再次进行固液分离,得到滤渣和有机溶液,滤渣经洗涤后得到产品铁红,可对铁红进行镍含量检测,不满足要求时,可返回至步骤(1)常压浸出工序继续浸出;有机溶液进行蒸发冷凝,分离得到有机溶剂和硫磺,有机溶剂可循环利用;
(4)沉淀处理:向步骤(3)所得滤液中通入硫化氢气体,并加入硫酸控制滤液pH为1.0-1.5;
(5)再次过滤:步骤(4)反应结束后,经过固液分离得到含镍滤液和硫化铜沉淀,硫化铜沉淀送至铜厂处理;
(6)萃取处理:使用萃取Cyanex272对步骤(5)中的含镍滤液进行萃取,静置, 分离得到含镍萃取有机相和含杂质萃余液,用3mol/L的硫酸溶液从含镍萃取有机相中反萃取镍,得到电池级硫酸镍溶液。
蒸发结晶后制得的82.27g硫酸镍晶体送化验室分析,分析结果为22.15%Ni、0.012%Co、0.00038%Cu、0.0001%Fe,符合电池级硫酸镍的产品标准。计算得出镍的浸出率达99.42%。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种由低冰镍制备硫酸镍的方法,其特征在于,包括以下步骤:
    S1:向低冰镍粉碎料中加入硫酸溶液和氧化剂进行酸浸反应,控制反应的温度为160-220℃,反应完成后,调节pH为3.2-3.5,固液分离得到滤液和滤渣;
    S2:向所述滤液中通入硫化氢气体,并控制滤液的pH为0-2.0,固液分离得到含镍滤液和硫化铜沉淀;
    S3:向所述含镍滤液加入萃取剂进行萃取,分离出含镍萃取有机相,再用硫酸溶液从所述含镍萃取有机相中反萃取镍,得到硫酸镍溶液。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述氧化剂为过硫酸或过硫酸铵中的一种或两种。
  3. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述低冰镍粉碎料与所述硫酸溶液的固液比为1:(0.5-5)g/ml。
  4. 根据权利要求1所述的方法,其特征在于,步骤S1中,向所述滤渣中加入有机溶剂,固液分离得到铁渣和含硫单质溶液。
  5. 根据权利要求4所述的方法,其特征在于,所述有机溶剂为二硫化碳、四氯化碳、甲基环己烷、三氯乙烷、三氯乙烯、四氯乙烷、二甘醇二甲醚、四氢萘或十氢萘的一种或几种。
  6. 根据权利要求4所述的方法,其特征在于,将所述含硫单质溶液进行蒸发冷凝,分离得到有机溶剂和硫磺。
  7. 根据权利要求1所述的方法,其特征在于,步骤S2中,控制滤液pH的调节剂为硫酸、氢氧化镍或碳酸镍中的一种或几种。
  8. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述萃取剂选自P204、P507、DEHPA或Cyanex272中的一种或几种。
  9. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述硫酸溶液的浓度为3-5mol/L。
  10. 根据权利要求1所述的方法,其特征在于,步骤S3中,反萃取镍后得到的萃取有机相重新皂化循环利用。
PCT/CN2022/090532 2021-09-13 2022-04-29 一种由低冰镍制备硫酸镍的方法 WO2023035636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111068589.5A CN113957264A (zh) 2021-09-13 2021-09-13 一种由低冰镍制备硫酸镍的方法
CN202111068589.5 2021-09-13

Publications (1)

Publication Number Publication Date
WO2023035636A1 true WO2023035636A1 (zh) 2023-03-16

Family

ID=79461318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090532 WO2023035636A1 (zh) 2021-09-13 2022-04-29 一种由低冰镍制备硫酸镍的方法

Country Status (2)

Country Link
CN (1) CN113957264A (zh)
WO (1) WO2023035636A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957264A (zh) * 2021-09-13 2022-01-21 广东邦普循环科技有限公司 一种由低冰镍制备硫酸镍的方法
CN114959303B (zh) * 2022-06-30 2024-03-26 西安建筑科技大学 一种从电镀污泥中选择性回收铜、镍的方法
CN115404517A (zh) * 2022-08-26 2022-11-29 吉林吉恩镍业股份有限公司 一种分离高铜高冰镍阳极中铜的方法
CN115818739A (zh) * 2022-12-22 2023-03-21 广西中伟新能源科技有限公司 使用高冰镍制备硫酸镍的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652265A (en) * 1969-11-28 1972-03-28 Engelhard Min & Chem Recovery of metal values from nickel-copper mattes
CN107312930A (zh) * 2017-07-07 2017-11-03 金川集团股份有限公司 一种低镍锍硝酸浸出液热解除铁的方法
CN112342377A (zh) * 2020-11-13 2021-02-09 中国恩菲工程技术有限公司 镍精矿的处理工艺
CN113957264A (zh) * 2021-09-13 2022-01-21 广东邦普循环科技有限公司 一种由低冰镍制备硫酸镍的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6428604B1 (en) * 2000-09-18 2002-08-06 Inco Limited Hydrometallurgical process for the recovery of nickel and cobalt values from a sulfidic flotation concentrate
CN1148461C (zh) * 2001-11-09 2004-05-05 北京矿冶研究总院 一种从含铜低的硫化镍物料提取镍的方法
CN1283816C (zh) * 2005-04-18 2006-11-08 昆明理工大学 一种高冰镍浸出方法
CN101195858B (zh) * 2007-12-20 2010-08-25 金川集团有限公司 非金属化高镍锍物料的加压浸出提取镍方法
CN102206834B (zh) * 2011-05-03 2012-12-26 四川省尼科国润新材料有限公司 一种用低冰镍直接生产电解镍的方法
JP5904459B2 (ja) * 2011-11-22 2016-04-13 住友金属鉱山株式会社 高純度硫酸ニッケルの製造方法
CN107012324B (zh) * 2017-04-10 2018-09-28 中南大学 一种从铜镍硫化矿中回收主伴生元素的方法及其系统
CN107058730B (zh) * 2017-04-10 2018-10-16 中南大学 一种对铜镍硫化矿综合利用的方法及其系统
CN111411229B (zh) * 2020-04-29 2021-04-09 长沙华时捷环保科技发展股份有限公司 一种高效分离镍电解液中镍与铜的工艺
CN112095016B (zh) * 2020-08-27 2022-06-10 矿冶科技集团有限公司 一种高冰镍浸出渣热压处理降低镍含量的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652265A (en) * 1969-11-28 1972-03-28 Engelhard Min & Chem Recovery of metal values from nickel-copper mattes
CN107312930A (zh) * 2017-07-07 2017-11-03 金川集团股份有限公司 一种低镍锍硝酸浸出液热解除铁的方法
CN112342377A (zh) * 2020-11-13 2021-02-09 中国恩菲工程技术有限公司 镍精矿的处理工艺
CN113957264A (zh) * 2021-09-13 2022-01-21 广东邦普循环科技有限公司 一种由低冰镍制备硫酸镍的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN GUANGJU, WANG HUI-GANG; ZHANG MEI; GUO MIN: "High efficient leaching of Ni, Cu and Co from low nickel matte", ZHONGGUO YOUSE JINSHU XUEBAO - TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, GAI-KAN-BIAN-WEI-HUI, CHANSHA, CN, vol. 27, no. 9, 30 September 2017 (2017-09-30), CN , pages 1936 - 1942, XP093046147, ISSN: 1004-0609, DOI: 10.19476/j.ysxb.1004.0609.2017.09.23 *

Also Published As

Publication number Publication date
CN113957264A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
CN108878866B (zh) 利用废旧锂离子电池三元正极材料制备三元材料前驱体及回收锂的方法
CN111206148B (zh) 一种利用废旧三元锂电池回收制备三元正极材料的方法
CN112941314B (zh) 一种从镍铁合金中分离镍和铁的方法和应用
CN111519031B (zh) 一种从废旧动力锂离子电池黑粉中回收镍钴锰锂的方法
WO2023035636A1 (zh) 一种由低冰镍制备硫酸镍的方法
CN106319228B (zh) 一种从含镍钴锰废渣中同步回收镍钴锰的方法
US11459636B2 (en) Method and system for comprehensive recovery and utilization of copper-nickel sulfide ore
CN107267759A (zh) 一种锂离子电池正极材料的综合回收方法
CN108963371B (zh) 一种从废旧锂离子电池中回收有价金属的方法
CN113772649A (zh) 一种废旧磷酸铁锂正极粉回收再生制备电池级磷酸铁的方法
CN109022793B (zh) 一种从含钴镍锰中至少一种的正极材料废粉中选择性浸出锂的方法
WO2023045331A1 (zh) 一种选择性回收废旧锂电池中有价金属的方法
CN111471864A (zh) 一种废旧锂离子电池浸出液中回收铜、铝、铁的方法
WO2023005428A1 (zh) 从高冰镍浸出渣中提取镍的方法
CN113912033A (zh) 一种前置提锂的废旧磷酸铁锂电池正负极混粉的回收方法
US20230335818A1 (en) Method for separating and recovering valuable metals from waste ternary lithium batteries
US11952289B2 (en) Method for preparing nickel sulfate from nickel-iron-copper alloy
WO2023029573A1 (zh) 一种从废旧锂电池中提取锂的方法
CN116190843A (zh) 一种废旧磷酸铁锂电池正极粉料的再回收方法
CN110029226B (zh) 一种从废旧三元锂离子正极材料中回收有价金属方法
CN111549229A (zh) 一种废旧锂离子电池正极材料中预还原优溶提锂的方法
CN110540252A (zh) 从白合金中制备电池级硫酸钴和高纯二氧化锗的方法
CN112342383A (zh) 三元废料中镍钴锰与锂的分离回收方法
CN115784188A (zh) 回收制备电池级磷酸铁的方法
CN112310498A (zh) 一种利用废旧三元电池制备镍钴锰三元材料前驱体的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866114

Country of ref document: EP

Kind code of ref document: A1