WO2023005428A1 - 从高冰镍浸出渣中提取镍的方法 - Google Patents

从高冰镍浸出渣中提取镍的方法 Download PDF

Info

Publication number
WO2023005428A1
WO2023005428A1 PCT/CN2022/097174 CN2022097174W WO2023005428A1 WO 2023005428 A1 WO2023005428 A1 WO 2023005428A1 CN 2022097174 W CN2022097174 W CN 2022097174W WO 2023005428 A1 WO2023005428 A1 WO 2023005428A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
filtrate
copper sulfate
filter residue
copper
Prior art date
Application number
PCT/CN2022/097174
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to US18/552,447 priority Critical patent/US20240084421A1/en
Priority to DE112022001019.3T priority patent/DE112022001019B4/de
Priority to ES202390154A priority patent/ES2956159A2/es
Publication of WO2023005428A1 publication Critical patent/WO2023005428A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3844Phosphonic acid, e.g. H2P(O)(OH)2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3846Phosphoric acid, e.g. (O)P(OH)3
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of metallurgy, and in particular relates to a method for extracting nickel from high nickel matte leaching slag.
  • High nickel matte is a sulfide eutectic of nickel, copper, cobalt, iron and other metals formed by primary smelting of nickel concentrate through electric converter. It can be used to produce electrolytic nickel, nickel oxide, ferronickel, nickel-containing alloys and various nickel salts. It can also be directly used in steelmaking after special treatment.
  • nickel concentrate After fine grinding and crushing of high-grade nickel matte, it is separated by flotation and magnetic separation to obtain nickel concentrate containing 67%-68% nickel. At the same time, copper concentrate and copper-nickel alloy are selected to recover copper and platinum group gold respectively.
  • the nickel concentrate is melted in a reverberatory furnace to obtain nickel sulfide, and then sent to electrolytic refining or reduced and smelted in an electric furnace (or reverberatory furnace) to obtain crude nickel and then electrolytically refined.
  • High nickel matte can not only produce electrolytic nickel by conventional electrolysis process, but also produce nickel sulfate by high pressure leaching process. In this way, through the intermediate product of high nickel matte, electrolytic nickel, ferronickel and nickel sulfate can be exchanged in the market. Transformation and balance will generally be conducive to the healthy and steady development of the market.
  • the main raw materials of nickel sulfate include high nickel matte, nickel wet process intermediate products, nickel beans/nickel powder, nickel waste, etc.
  • the preparation of nickel sulfate by high-pressure nickel matte acid leaching is the main source of nickel sulfate products at present. This process has the characteristics of short process, strong adaptability of raw materials, high recovery rate of valuable metals, and low quality of solution slag, and is widely used.
  • the nickel content in the leaching slag is still high, resulting in a waste of nickel resources.
  • the forms of various elements in high-nickel matte leaching slag are relatively complex, mainly composed of CuS, Cu 2 S, NiS, Ni 3 S 2 , FeS, CuFeS 2 and sulfur element, nickel-iron-copper alloy and so on. At present, there is no effective method for the recovery and treatment of nickel in high-nickel matte leaching slag.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a kind of method that extracts nickel from high nickel matte leaching slag, and this method first converts the complex composition of high nickel matte leaching slag into simple composition, and then replaces and extracts the nickel element wherein.
  • propose a kind of method that extracts nickel from high nickel matte leaching slag comprise the following steps:
  • the organic solvent is carbon disulfide, carbon tetrachloride, methylcyclohexane, trichloroethane, trichloroethylene, tetrachloroethane, diglyme One or more of ether, tetralin or decahydronaphthalene.
  • step S1 the concentration of the sulfur in the organic solvent is 10-700 g/L.
  • step S1 the solid-to-liquid ratio of the pulverized material to the organic solvent is 1 g: (0.5-5) mL.
  • the heating temperature is 80-120° C., preferably, the reaction time is 1-5 h.
  • Elemental sulfur can only oxidize metals to sub-ions under ordinary heating conditions, such as Cu 2 S, while elemental sulfur can oxidize metals to ions at 100°C in CS2 solution, such as CuS. Therefore, the oxidation performance of sulfur can be improved under the aforementioned reaction conditions.
  • the first filtrate is an organic solvent, which can be recycled after being supplemented with sulfur.
  • the concentration of the copper sulfate solution in step S2, is 0.1-4.0 mol/L. More preferably, it is 2.0-4.0 mol/L. The higher the concentration of the copper sulfate solution, the faster the reaction speed, and the more thorough replacement of nickel ions and ferrous ions.
  • step S2 the solid-to-liquid ratio of the first filter residue and the copper sulfate solution is 1g: (0.5-5) mL.
  • the heating temperature is 80-180° C., preferably, the reaction time is 2-8 hours.
  • step S2 the second filter residue is used for copper production, and the second filter residue is CuS.
  • step S3 the condensate produced by the evaporation and condensation and the copper sulfate crystals can be configured as a copper sulfate solution for recycling.
  • step S3 the nickel-containing filtrate is extracted by adding an extractant, left to stand, separated to obtain the nickel-containing extracted organic phase and raffinate, and then sulfuric acid solution is used to extract the nickel-containing organic phase Nickel is back-extracted to obtain nickel sulfate solution.
  • the extractant is selected from one or more of P204, P507, DEHPA or Cyanex272; preferably, the extracted organic phase obtained after stripping can be re-saponified and recycled.
  • the raffinate can be recycled as a copper sulfate solution after iron removal.
  • the complex components of high-nickel matte leaching slag are converted into simple components, and then the nickel element is replaced and extracted. Utilize the oxidizability of elemental sulfur in organic solvents to oxidize Cu 2 S, Ni 3 S 2 , CuFeS 2 , nickel-iron-copper alloys, etc.
  • Fig. 1 is a schematic process flow diagram of embodiment 1 of the present invention.
  • This embodiment extracts nickel and prepares nickel sulfate from high nickel matte leaching slag, high nickel matte leaching slag composition: nickel 7.38%, copper 42.3%, iron 10.9%, sulfur 23.35%, with reference to Fig. 1, carry out by following steps:
  • Raw material pretreatment high matte leaching slag is ball milled into powder
  • step (4) After step (4) reaction finishes, obtain filtrate and CuS filter residue through solid-liquid separation, CuS filter residue sends copper factory copper;
  • step (5) the filtrate obtained in step (5) is evaporated, condensed and concentrated and then filtered to obtain copper sulfate crystals and nickel-containing filtrate.
  • the condensate produced by evaporation and condensation and the copper sulfate crystals obtained by filtration can be configured for recycling of copper sulfate solution;
  • Extraction treatment use extraction agent P204 to extract the nickel-containing filtrate in step (6), let it stand, separate to obtain the nickel-containing extraction organic phase and raffinate, use 5mol/L sulfuric acid solution to extract the organic phase from the nickel-containing Nickel is back-extracted in the phase to obtain a nickel sulfate solution, and the obtained extracted organic phase can be re-saponified for recycling, and the raffinate is recycled as a copper sulfate solution after iron removal.
  • the CuS filter residue was detected, and the composition was 0.36% nickel, 59.86% copper, 0.93% iron, and 28.22% sulfur. It shows that nickel and iron are basically leached after copper replacement reaction.
  • nickel is extracted from high nickel matte leaching slag and nickel sulfate is prepared.
  • the components of high nickel matte leaching slag are: 5.58% nickel, 55.7% copper, 8.66% iron, and 20.37% sulfur, carried out through the following steps:
  • Raw material pretreatment high matte leaching slag is ball milled into powder
  • step (4) After step (4) reaction finishes, obtain filtrate and CuS filter residue through solid-liquid separation, CuS filter residue sends copper factory copper;
  • step (5) the filtrate obtained in step (5) is evaporated, condensed and concentrated and then filtered to obtain copper sulfate crystals and nickel-containing filtrate.
  • the condensate produced by evaporation and condensation and the copper sulfate crystals obtained by filtration can be configured for recycling of copper sulfate solution;
  • Extraction treatment use extraction agent P507 to extract the nickel-containing filtrate in step (6), let it stand, separate to obtain the nickel-containing extraction organic phase and raffinate, use 3mol/L sulfuric acid solution to extract the organic phase from the nickel-containing Nickel is back-extracted in the phase to obtain a nickel sulfate solution, and the obtained extracted organic phase can be re-saponified for recycling, and the raffinate is recycled as a copper sulfate solution after iron removal.
  • the CuS filter residue was detected, and the composition was 0.47% nickel, 65.52% copper, 0.75% iron, and 25.22% sulfur. It shows that nickel and iron are basically leached out after copper replacement reaction.
  • nickel is extracted from high nickel matte leaching slag and nickel sulfate is prepared.
  • the components of high nickel matte leaching slag are: 6.28% nickel, 58.73% copper, 9.32% iron, and 17.23% sulfur, carried out through the following steps:
  • Raw material pretreatment high matte leaching slag is ball milled into powder
  • step (4) After step (4) reaction finishes, obtain filtrate and CuS filter residue through solid-liquid separation, CuS filter residue sends copper factory copper;
  • step (5) the filtrate obtained in step (5) is evaporated, condensed and concentrated and then filtered to obtain copper sulfate crystals and nickel-containing filtrate.
  • the condensate produced by evaporation and condensation and the copper sulfate crystals obtained by filtration can be configured for recycling of copper sulfate solution;
  • Extraction treatment use the extractant Cyanex272 to extract the nickel-containing filtrate in step (6), leave it to stand, separate and obtain the nickel-containing extraction organic phase and raffinate, and use 4mol/L sulfuric acid solution to extract the organic phase from the nickel-containing Nickel is back-extracted in the phase to obtain a nickel sulfate solution, and the obtained extracted organic phase can be re-saponified for recycling, and the raffinate is recycled as a copper sulfate solution after iron removal.
  • the CuS filter residue was detected, and the composition was 0.51% nickel, 64.53% copper, 0.82% iron, and 24.29% sulfur. It shows that nickel and iron are basically leached out after copper replacement reaction.

Abstract

本发明公开了一种从高冰镍浸出渣中提取镍的方法,先将高冰镍浸出渣的粉碎料加入溶解有硫磺的有机溶剂中,加热进行反应,固液分离得到第一滤液和第一滤渣,第一滤渣加入到硫酸铜溶液中,加热进行反应,固液分离得到第二滤液和第二滤渣,将第二滤液进行蒸发冷凝浓缩,过滤得到硫酸铜晶体和含镍滤液。本发明利用硫单质在有机溶剂中的氧化性,将高冰镍浸出渣中的Cu 2S、Ni 3S 2、CuFeS 2、镍铁铜合金等氧化为CuS、NiS、FeS,且在有机溶剂的存在下,高冰镍浸出渣中的单质硫则溶解于溶剂中,再采用硫酸铜溶液将NiS、FeS置换为更难溶的CuS,镍离子与亚铁离子则进入溶液中,进一步提高了浸出渣中铜含量。整个反应中仅有少量硫磺和硫酸铜的消耗,有机溶剂可循环再用。

Description

从高冰镍浸出渣中提取镍的方法 技术领域
本发明属于冶金技术领域,具体涉及一种从高冰镍浸出渣中提取镍的方法。
背景技术
高冰镍是镍精矿经电转炉初级冶炼而成的镍、铜、钴、铁等金属的硫化物共熔体。可用于生产电解镍、氧化镍、镍铁、含镍合金及各种镍盐,特殊处理也可直接用于炼钢。
高冰镍细磨、破碎后,用浮选和磁选分离,得到含镍67%-68%的镍精矿,同时选出铜精矿和铜镍合金分别回收铜和铂族金。镍精矿经反射炉熔化得到硫化镍,再送电解精炼或经电炉(或反射炉)还原熔炼得粗镍再电解精炼。
高冰镍既可以采用常规电解工艺生产电解镍,也可以采用高压浸出工艺出生产硫酸镍,这样通过高冰镍这一中间产品就可以使电解镍、镍铁、硫酸镍这几种镍产品在市场中进行相互转化和平衡,总体将有利于市场的健康稳健发展。
同时,随着电动汽车市场的迅速发展,动力电池对钴与硫酸镍的需求水涨船高。硫酸镍的主要原料有高冰镍、镍湿法中间产品、镍豆/镍粉、废镍等。其中,由高冰镍高压酸浸制备硫酸镍是目前硫酸镍产品的主要来源,该工艺具有流程短、原料适应性强、有价金属回收率高、溶液渣质低的特点,被广泛应用。
然而,高冰镍经过三段硫酸选择性浸出后,浸出渣中镍含量依然较高,造成了镍资源的浪费。高冰镍浸出渣中各元素的形式较为复杂,主要由CuS、Cu 2S、NiS、Ni 3S 2、FeS、CuFeS 2以及单质形式存在的硫单质、镍铁铜合金等。目前,针对高冰镍浸出渣中镍的回收处理,并没有行之有效的方法。
因此,亟需一种针对高冰镍浸出渣的处理方法,以提取浸出渣中的镍元素,提高镍资源的利用率。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种 从高冰镍浸出渣中提取镍的方法,该方法首先将高冰镍浸出渣复杂的成分转化为简单成分,再置换提取其中的镍元素。
根据本发明的一个方面,提出了一种从高冰镍浸出渣中提取镍的方法,包括以下步骤:
S1:将高冰镍浸出渣的粉碎料加入溶解有硫磺的有机溶剂中,加热进行反应,固液分离得到第一滤液和第一滤渣;
S2:所述第一滤渣加入到硫酸铜溶液中,加热进行反应,固液分离得到第二滤液和第二滤渣;
S3:将所述第二滤液进行蒸发冷凝浓缩,过滤得到硫酸铜晶体和含镍滤液。
在本发明的一些实施方式中,步骤S1中,所述有机溶剂为二硫化碳、四氯化碳、甲基环己烷、三氯乙烷、三氯乙烯、四氯乙烷、二甘醇二甲醚、四氢萘或十氢萘的一种或几种。
在本发明的一些实施方式中,步骤S1中,所述硫磺在所述有机溶剂中的浓度为10-700g/L。
在本发明的一些实施方式中,步骤S1中,所述粉碎料与所述有机溶剂的固液比为1g:(0.5-5)mL。
在本发明的一些实施方式中,步骤S1中,所述加热的温度为80-120℃,优选的,所述反应的时间为1-5h。硫单质在普通加热的条件下只能将金属氧化为亚离子,如Cu 2S,而硫单质在CS2溶液中,在100℃时,可将金属氧化为离子,如CuS。因此在前述反应条件下可提高硫磺的氧化性能。
在本发明的一些实施方式中,步骤S1中,所述第一滤液为有机溶剂,可补充硫磺后循环使用。
在本发明的一些实施方式中,步骤S2中,所述硫酸铜溶液的浓度为0.1-4.0mol/L。进一步优选为2.0-4.0mol/L。硫酸铜溶液的浓度越高,反应速度越快,镍离子与亚铁离子置换得更彻底。
在本发明的一些实施方式中,步骤S2中,所述第一滤渣与所述硫酸铜溶液的固液 比为1g:(0.5-5)mL。
在本发明的一些实施方式中,步骤S2中,所述加热的温度为80-180℃,优选的,所述反应的时间为2-8h。
在本发明的一些实施方式中,步骤S2中,所述第二滤渣用于制铜,第二滤渣为CuS。
在本发明的一些实施方式中,步骤S3中,所述蒸发冷凝产生的冷凝液与所述硫酸铜晶体可配置成硫酸铜溶液循环使用。
在本发明的一些实施方式中,步骤S3中,所述含镍滤液加入萃取剂进行萃取,静置,分离得到含镍萃取有机相和萃余液,再用硫酸溶液从含镍萃取有机相中反萃取镍,得到硫酸镍溶液。
在本发明的一些优选的实施方式中,所述萃取剂选自P204、P507、DEHPA或Cyanex272中的一种或几种;优选的,反萃取后得到的萃取有机相可重新皂化循环利用。
在本发明的一些优选的实施方式中,所述萃余液经除铁后可作为硫酸铜溶液循环使用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明首先将高冰镍浸出渣复杂的成分转化为简单成分,再置换提取其中的镍元素。利用硫单质在有机溶剂中的氧化性,将高冰镍浸出渣中的Cu 2S、Ni 3S 2、CuFeS 2、镍铁铜合金等氧化为CuS、NiS、FeS,且在有机溶剂的存在下,高冰镍浸出渣中的单质硫则溶解于溶剂中;对于高冰镍浸出渣中的镍与铁,常规的酸浸出,已无法进行,相比于氢离子,铜离子更易析出,且CuS的溶度积常数更小,更加难溶,故采用硫酸铜溶液将NiS、FeS置换为更难溶的CuS,镍离子与亚铁离子则进入溶液中,进一步提高了浸出渣中铜含量,有利于后续铜的冶炼。
2、整个反应流程中,仅有少量硫磺和硫酸铜的消耗,有机溶剂可循环再用,且蒸发冷凝过程的冷凝液与析出的硫酸铜晶体可再利用;本发明工艺流程短,做到了物尽其用,辅料消耗少,成本低、见效快,适合工业化推广。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的工艺流程示意图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例从高冰镍浸出渣中提取镍并制备了硫酸镍,高冰镍浸出渣成分:镍7.38%、铜42.3%、铁10.9%、硫23.35%,参照图1,通过以下步骤进行:
(1)原料预处理:将高冰镍浸出渣球磨制成粉末状;
(2)硫氧化:向步骤(1)所得粉末料中加入溶解有硫磺的二硫化碳中,硫磺的浓度为700g/L,并控制固液比为1g:0.5mL,反应温度为120℃,反应时间为1h;
(3)过滤处理:步骤(2)反应结束后,经过固液分离得到滤液和滤渣,滤液为有机溶剂,可补充硫磺后循环使用;
(4)铜置换:向步骤(3)所得滤渣中加入浓度为4.0mol/L的硫酸铜溶液,并控制滤渣与硫酸铜溶液的固液比为1g:0.5mL,反应温度为180℃,反应时间为2h。
(5)过滤:步骤(4)反应结束后,经过固液分离得到滤液和CuS滤渣,CuS滤渣送铜厂制铜;
(6)蒸发冷凝:将步骤(5)所得滤液进行蒸发冷凝浓缩后过滤,得到硫酸铜晶体和含镍滤液,蒸发冷凝产生的冷凝液与过滤得到的硫酸铜晶体可配置硫酸铜溶液循环使用;
(7)萃取处理:使用萃取剂P204对步骤(6)中的含镍滤液进行萃取,静置,分离得到含镍萃取有机相和萃余液,用5mol/L的硫酸溶液从含镍萃取有机相中反萃取镍,得到硫酸镍溶液,得到的萃取有机相可重新皂化循环利用,萃余液经除铁后作为硫酸铜溶液循环使用。
对CuS滤渣进行检测,成分为镍0.36%、铜59.86%、铁0.93%、硫28.22%。表明 经过铜置换反应后镍和铁基本浸出。
实施例2
本实施例从高冰镍浸出渣中提取镍并制备了硫酸镍,高冰镍浸出渣成分:镍5.58%、铜55.7%、铁8.66%、硫20.37%,通过如下步骤进行:
(1)原料预处理:将高冰镍浸出渣球磨制成粉末状;
(2)硫氧化:向步骤(1)所得粉末料中加入溶解有硫磺的四氯化碳中,硫磺的浓度为10g/L,并控制固液比为1g:5mL,反应温度为80℃,反应时间为5h。
(3)过滤处理:步骤(2)反应结束后,经过固液分离得到滤液和滤渣,滤液为有机溶剂,可补充硫磺后循环使用;
(4)铜置换:向步骤(3)所得滤渣中加入浓度为0.1mol/L的硫酸铜溶液,并控制滤渣与硫酸铜溶液的固液比为1g:5mL,反应温度为80℃,反应时间为8h。
(5)过滤:步骤(4)反应结束后,经过固液分离得到滤液和CuS滤渣,CuS滤渣送铜厂制铜;
(6)蒸发冷凝:将步骤(5)所得滤液进行蒸发冷凝浓缩后过滤,得到硫酸铜晶体和含镍滤液,蒸发冷凝产生的冷凝液与过滤得到的硫酸铜晶体可配置硫酸铜溶液循环使用;
(7)萃取处理:使用萃取剂P507对步骤(6)中的含镍滤液进行萃取,静置,分离得到含镍萃取有机相和萃余液,用3mol/L的硫酸溶液从含镍萃取有机相中反萃取镍,得到硫酸镍溶液,得到的萃取有机相可重新皂化循环利用,萃余液经除铁后作为硫酸铜溶液循环使用。
对CuS滤渣进行检测,成分为镍0.47%、铜65.52%、铁0.75%、硫25.22%。表明经过铜置换反应后镍和铁基本浸出。
实施例3
本实施例从高冰镍浸出渣中提取镍并制备了硫酸镍,高冰镍浸出渣成分:镍6.28%、铜58.73%、铁9.32%、硫17.23%,通过如下步骤进行:
(1)原料预处理:将高冰镍浸出渣球磨制成粉末状;
(2)硫氧化:向步骤(1)所得粉末料中加入溶解有硫磺的十氢萘中,硫磺的浓度为350g/L,并控制固液比为1g:2.5mL,反应温度为100℃,反应时间为3h。
(3)过滤处理:步骤(2)反应结束后,经过固液分离得到滤液和滤渣,滤液为有机溶剂,可补充硫磺后循环使用;
(4)铜置换:向步骤(3)所得滤渣中加入浓度为2.0mol/L的硫酸铜溶液,并控制滤渣与硫酸铜溶液的固液比为1g:2.5mL,反应温度为130℃,反应时间为5h。
(5)过滤:步骤(4)反应结束后,经过固液分离得到滤液和CuS滤渣,CuS滤渣送铜厂制铜;
(6)蒸发冷凝:将步骤(5)所得滤液进行蒸发冷凝浓缩后过滤,得到硫酸铜晶体和含镍滤液,蒸发冷凝产生的冷凝液与过滤得到的硫酸铜晶体可配置硫酸铜溶液循环使用;
(7)萃取处理:使用萃取剂Cyanex272对步骤(6)中的含镍滤液进行萃取,静置,分离得到含镍萃取有机相和萃余液,用4mol/L的硫酸溶液从含镍萃取有机相中反萃取镍,得到硫酸镍溶液,得到的萃取有机相可重新皂化循环利用,萃余液经除铁后作为硫酸铜溶液循环使用。
对CuS滤渣进行检测,成分为镍0.51%、铜64.53%、铁0.82%、硫24.29%。表明经过铜置换反应后镍和铁基本浸出。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种从高冰镍浸出渣中提取镍的方法,其特征在于,包括以下步骤:
    S1:将高冰镍浸出渣的粉碎料加入溶解有硫磺的有机溶剂中,加热进行反应,固液分离得到第一滤液和第一滤渣;
    S2:所述第一滤渣加入到硫酸铜溶液中,加热进行反应,固液分离得到第二滤液和第二滤渣;
    S3:将所述第二滤液进行蒸发冷凝浓缩,过滤得到硫酸铜晶体和含镍滤液。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述有机溶剂为二硫化碳、四氯化碳、甲基环己烷、三氯乙烷、三氯乙烯、四氯乙烷、二甘醇二甲醚、四氢萘或十氢萘的一种或几种。
  3. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述硫磺在所述有机溶剂中的浓度为10-700g/L。
  4. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述粉碎料与所述有机溶剂的固液比为1g:(0.5-5)mL。
  5. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述加热的温度为80-120℃,优选的,所述反应的时间为1-5h。
  6. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述硫酸铜溶液的浓度为0.1-4.0mol/L。
  7. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述第一滤渣与所述硫酸铜溶液的固液比为1g:(0.5-5)mL。
  8. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述加热的温度为80-180℃,优选的,所述反应的时间为2-8h。
  9. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述第二滤渣用于制铜。
  10. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述含镍滤液加入萃取剂进行萃取,静置,分离得到含镍萃取有机相和萃余液,再用硫酸溶液从含镍萃取有机相中反萃取镍,得到硫酸镍溶液。
PCT/CN2022/097174 2021-07-29 2022-06-06 从高冰镍浸出渣中提取镍的方法 WO2023005428A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/552,447 US20240084421A1 (en) 2021-07-29 2022-06-06 Method for extracting nickel from high matte nickel leaching residue
DE112022001019.3T DE112022001019B4 (de) 2021-07-29 2022-06-06 Verfahren zur extraktion von nickel aus dem auslaugungsrückstand eines hochangereicherten nickelsteins
ES202390154A ES2956159A2 (es) 2021-07-29 2022-06-06 Método para extraer níquel de un residuo de lixiviación de mata con alto contenido de níquel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110866011.8A CN113755698B (zh) 2021-07-29 2021-07-29 从高冰镍浸出渣中提取镍的方法
CN202110866011.8 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023005428A1 true WO2023005428A1 (zh) 2023-02-02

Family

ID=78788156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097174 WO2023005428A1 (zh) 2021-07-29 2022-06-06 从高冰镍浸出渣中提取镍的方法

Country Status (5)

Country Link
US (1) US20240084421A1 (zh)
CN (1) CN113755698B (zh)
DE (1) DE112022001019B4 (zh)
ES (1) ES2956159A2 (zh)
WO (1) WO2023005428A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755698B (zh) * 2021-07-29 2022-11-15 广东邦普循环科技有限公司 从高冰镍浸出渣中提取镍的方法
CN114672640B (zh) * 2022-03-15 2023-05-16 金川镍钴研究设计院有限责任公司 一种高冰镍提取合金的工艺方法
CN115558797B (zh) * 2022-10-12 2023-07-18 昆明理工大学 一种高冰镍氧压浸出渣的资源综合利用工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544664A (zh) * 2003-11-13 2004-11-10 吉林吉恩镍业股份有限公司 水淬高冰镍硫酸选择性浸出制取电池级高纯硫酸镍工艺
CN101381810A (zh) * 2008-09-10 2009-03-11 中国恩菲工程技术有限公司 铜镍细粒合金的浸出工艺
KR101191042B1 (ko) * 2011-12-27 2012-10-15 강호길 니켈정광, 니켈매트로부터 고순도 황산니켈을 제조하는 방법
CN107630146A (zh) * 2017-08-07 2018-01-26 中国恩菲工程技术有限公司 镍回收方法
JP2018150183A (ja) * 2017-03-10 2018-09-27 住友金属鉱山株式会社 粗硫酸ニッケル溶液の製造方法
CN110342590A (zh) * 2019-08-19 2019-10-18 中南大学 一种常压分解高冰镍制备硫酸镍的方法
CN212127522U (zh) * 2020-02-19 2020-12-11 金川集团股份有限公司 一种提硫设备
CN113755698A (zh) * 2021-07-29 2021-12-07 广东邦普循环科技有限公司 从高冰镍浸出渣中提取镍的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114049B2 (ja) * 2006-12-15 2013-01-09 Dowaメタルマイン株式会社 銅砒素化合物からの砒素液の製法
CN103993169B (zh) * 2014-06-06 2015-12-30 中南大学 一种镍钼矿催化氧化加压酸浸分解方法
CN107012324B (zh) * 2017-04-10 2018-09-28 中南大学 一种从铜镍硫化矿中回收主伴生元素的方法及其系统
CN107185386A (zh) * 2017-07-07 2017-09-22 金川集团股份有限公司 一种低冰镍矿浆吸收治理氮氧化物废气的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544664A (zh) * 2003-11-13 2004-11-10 吉林吉恩镍业股份有限公司 水淬高冰镍硫酸选择性浸出制取电池级高纯硫酸镍工艺
CN101381810A (zh) * 2008-09-10 2009-03-11 中国恩菲工程技术有限公司 铜镍细粒合金的浸出工艺
KR101191042B1 (ko) * 2011-12-27 2012-10-15 강호길 니켈정광, 니켈매트로부터 고순도 황산니켈을 제조하는 방법
JP2018150183A (ja) * 2017-03-10 2018-09-27 住友金属鉱山株式会社 粗硫酸ニッケル溶液の製造方法
CN107630146A (zh) * 2017-08-07 2018-01-26 中国恩菲工程技术有限公司 镍回收方法
CN110342590A (zh) * 2019-08-19 2019-10-18 中南大学 一种常压分解高冰镍制备硫酸镍的方法
CN212127522U (zh) * 2020-02-19 2020-12-11 金川集团股份有限公司 一种提硫设备
CN113755698A (zh) * 2021-07-29 2021-12-07 广东邦普循环科技有限公司 从高冰镍浸出渣中提取镍的方法

Also Published As

Publication number Publication date
CN113755698A (zh) 2021-12-07
DE112022001019B4 (de) 2024-04-11
CN113755698B (zh) 2022-11-15
ES2956159A2 (es) 2023-12-14
US20240084421A1 (en) 2024-03-14
DE112022001019T5 (de) 2023-12-21

Similar Documents

Publication Publication Date Title
WO2023005428A1 (zh) 从高冰镍浸出渣中提取镍的方法
CN107058730B (zh) 一种对铜镍硫化矿综合利用的方法及其系统
CN106319228B (zh) 一种从含镍钴锰废渣中同步回收镍钴锰的方法
US11459636B2 (en) Method and system for comprehensive recovery and utilization of copper-nickel sulfide ore
CN107012324B (zh) 一种从铜镍硫化矿中回收主伴生元素的方法及其系统
WO2023035636A1 (zh) 一种由低冰镍制备硫酸镍的方法
CN113621819B (zh) 从低冰镍转炉渣中提取有价金属的方法
CN105177307A (zh) 一种低冰镍磨浮分离回收铜镍钴的方法
AU2017344873B2 (en) Process for recycling cobalt-bearing materials
CN114959300B (zh) 高冰镍综合提取镍、铜的方法
US11952289B2 (en) Method for preparing nickel sulfate from nickel-iron-copper alloy
CN112251598A (zh) 硫酸化焙烧-浸出-浮选-萃取-沉钴耦合炼铜的方法
CN113088710A (zh) 一种铜锗置换渣中铜锗分离的方法
WO2021006772A1 (ru) Способ переработки медно-никелевых сульфидных материалов
CN110540252A (zh) 从白合金中制备电池级硫酸钴和高纯二氧化锗的方法
WO2023005404A1 (zh) 低冰镍浸出提取有价金属及硫元素的方法
CN114959302A (zh) 采用红土镍矿制备硫酸镍/钴的方法
CN112458306A (zh) 一种降低湿法炼锌过程浮选银精矿含锌的方法
US1808547A (en) Copper extraction process
RU2341573C1 (ru) Способ переработки медного концентрата от флотационного разделения файнштейна
CN110616312A (zh) 一种低品位多金属氧复杂矿的火法富集工艺
CN116162802A (zh) 利用红土镍矿型高冰镍提取镍钴的方法
SU276118A1 (ru) Способ переработки окисленных никелевых руд
CN115927859A (zh) 一种硫酸铜循环浸出中冰镍回收有价金属的方法
CN114086003A (zh) 镍钴渣料中镍钴的回收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848038

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18552447

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022001019

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: P202390154

Country of ref document: ES