WO2023029573A1 - 一种从废旧锂电池中提取锂的方法 - Google Patents

一种从废旧锂电池中提取锂的方法 Download PDF

Info

Publication number
WO2023029573A1
WO2023029573A1 PCT/CN2022/092490 CN2022092490W WO2023029573A1 WO 2023029573 A1 WO2023029573 A1 WO 2023029573A1 CN 2022092490 W CN2022092490 W CN 2022092490W WO 2023029573 A1 WO2023029573 A1 WO 2023029573A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
filtrate
reaction
spray pyrolysis
solid
Prior art date
Application number
PCT/CN2022/092490
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to DE112022001143.2T priority Critical patent/DE112022001143T5/de
Priority to ES202390157A priority patent/ES2957120A2/es
Priority to GB2319473.1A priority patent/GB2623222A/en
Priority to US18/555,262 priority patent/US20240088468A1/en
Priority to HU2300351A priority patent/HUP2300351A1/hu
Publication of WO2023029573A1 publication Critical patent/WO2023029573A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0069Leaching or slurrying with acids or salts thereof containing halogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • C22B3/46Treatment or purification of solutions, e.g. obtained by leaching by chemical processes by substitution, e.g. by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of lithium battery recovery, in particular to a method for extracting lithium from waste lithium batteries.
  • Ternary lithium-ion batteries are widely used in the fields of electronic products, mobile power supplies and new energy vehicles due to their good safety, high energy density, environmental protection and good electrochemical performance.
  • the active material in the battery will lose its activity, resulting in a decrease in the capacity of the battery and making the battery scrapped.
  • With the widespread use of lithium-ion batteries there will inevitably be a large number of waste batteries. If they are discarded randomly, it will not only cause serious pollution to the environment, but also contain a variety of precious and scarce metals such as nickel, cobalt, and lithium in the positive electrode material.
  • Ni and Co elements are non-ferrous metals with high value.
  • Ni element can reach 400,000 yuan/ton at the highest price, and the price of cobalt has also risen to 370,000 yuan/ton. It can be said that the recycling of waste lithium-ion batteries is not only green and environmentally friendly , and rich rewards. Therefore, from the perspective of environmental protection and resource recycling, it is very important to choose a suitable method to dispose of waste batteries.
  • Waste lithium-ion batteries contain elements such as iron, aluminum, copper, and magnesium.
  • the leachate needs to be purified during the recovery of valuable metals in batteries.
  • the method of separating and recovering metals one by one is mostly used, which has a long process and high cost, and the extraction agent has the ability to extract lithium, which reduces the recovery rate of lithium. If the leaching solution is directly used as the precursor of the positive electrode material, the recovery of lithium cannot be considered. Therefore, under the premise of ensuring the complete recovery of nickel, cobalt, and manganese, it is necessary to increase the recovery rate of lithium at the same time.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. Therefore, the present invention proposes a method for extracting lithium from waste lithium batteries.
  • propose a kind of method extracting lithium from waste lithium battery comprise the following steps:
  • step S1 the concentration of the hydrochloric acid is 1.0-6.0 mol/L, and the solid-liquid ratio of the positive electrode powder to hydrochloric acid is 100-250 g/L.
  • step S1 hydrogen peroxide is also added to participate in leaching.
  • the leaching rate can be increased.
  • step S2 the process of removing copper and iron is: adding iron powder to the leaching solution for replacement reaction, adding an oxidant after the reaction is completed and adjusting the pH to 3.5-4.0, and separating the solid and liquid Remove copper and iron slag.
  • step S2 the molar ratio of the added amount of iron powder to the content of copper ions in the leaching solution is (1.0-1.1):1.
  • step S2 calcium carbonate is used for adjusting the pH.
  • Calcium carbonate is cheap and can remove fluoride and phosphate while adjusting pH.
  • the oxidizing agent is one or more of chlorine gas, hydrogen peroxide or nitric acid.
  • step S2 the pressure of the hydrogen sulfide is 200-300 kPa; preferably, the reaction temperature for feeding hydrogen sulfide gas is 65-125°C.
  • the first filter residue is a nickel-cobalt sulfide precipitate
  • the nickel-cobalt sulfide precipitate is dissolved in sulfuric acid to obtain a nickel sulfate and cobalt sulfate solution, which can be used as a precursor solution.
  • step S3 the potassium permanganate is added by titration until no more precipitation occurs.
  • step S4 the temperature of the spray pyrolysis is 600-1350° C., and the pressure of the carrier gas is 0.1-0.3 MPa.
  • step S4 carbonate is added to the lithium salt solution for reaction to obtain lithium carbonate precipitation; preferably, the temperature of the reaction is 80-95°C. Lithium carbonate is used as a lithium source for positive electrode materials. Further, lithium carbonate precipitation is also refined and purified.
  • the present invention leaches the positive electrode powder of waste batteries with hydrochloric acid to obtain hydrochloric acid leaching solution, and then removes copper and iron impurities in the leaching solution sequentially, then uses hydrogen sulfide to precipitate nickel and cobalt, and then adds potassium permanganate to precipitate manganese ions and generate carbon dioxide Manganese, and finally through spray pyrolysis, the aluminum and magnesium in the solution are converted into oxides, and the lithium salt is separated. The whole reaction process does not require organic solvent extraction, which reduces the loss of lithium.
  • the present invention uses hydrochloric acid to leach the positive electrode powder.
  • the leaching solution contains magnesium and aluminum, general organic extractants cannot be separated, so hydrogen sulfide is used to precipitate nickel cobalt and potassium permanganate to oxidize manganese ions.
  • Manganese dioxide is prepared, and finally spray pyrolysis is used to take advantage of the volatile characteristics of hydrogen chloride and lithium chloride, while aluminum chloride and magnesium chloride are thermally decomposed into oxides and separated.
  • the present invention has short technological process, low production cost, saves the extraction process of organic solvent, avoids the loss of lithium, and improves the yield of lithium in the leaching solution.
  • Fig. 1 is a schematic process flow diagram of embodiment 1 of the present invention.
  • step (2) Oxidative hydrolysis: after step (2) reaction finishes, add chlorine and add calcium carbonate to adjust pH to be 3.5-4.0, after solid-liquid separation, obtain copper-iron slag and filtrate;
  • Nickel-cobalt precipitation at a temperature of 65-70°C, feed hydrogen sulfide gas with a pressure of 200kPa into the filtrate obtained in step (3) until nickel-cobalt is completely precipitated, and after solid-liquid separation, nickel-cobalt sulfide is produced respectively precipitation and lithium-enriched filtrate;
  • Oxidative titration titrate and add potassium permanganate to the lithium-rich filtrate obtained in step (4), until no precipitation occurs (that is, the solution no longer becomes colorless after stirring), and the manganese dioxide precipitate is separated;
  • Spray pyrolysis carry out spray pyrolysis on the filtrate remaining in step (5), control the spray pyrolysis temperature to 600-700° C., and the carrier gas pressure to 0.1 MPa to obtain solid oxide particles;
  • Lithium collection by water precipitation washing the oxide produced by step (6) spray pyrolysis with water to obtain a lotion, and the tail gas produced by spray pyrolysis is collected by water leaching and mixed with the lotion to obtain a lithium salt solution;
  • Lithium carbonate can be purified to obtain pure lithium carbonate.
  • the quality of lithium carbonate after weighing and refining is 31.50g, and the yield of calculating lithium is 98.47%.
  • a method for extracting lithium from waste lithium batteries, the specific process is:
  • step (2) Oxidative hydrolysis: after step (2) reaction finishes, add hydrogen peroxide and add calcium carbonate to adjust pH to be 3.5-4.0, after solid-liquid separation, obtain copper-iron slag and filtrate;
  • Nickel-cobalt sedimentation at a temperature of 80-90°C, feed hydrogen sulfide gas with a pressure of 300kPa into the filtrate obtained in step (3) until nickel-cobalt is completely precipitated, and after solid-liquid separation, nickel-cobalt sulfide is produced respectively precipitation and lithium-enriched filtrate;
  • Oxidative titration titrate and add potassium permanganate to the lithium-rich filtrate obtained in step (4), until no precipitation occurs (that is, the solution no longer becomes colorless after stirring), and the manganese dioxide precipitate is separated;
  • Spray pyrolysis carry out spray pyrolysis on the remaining filtrate of step (5), control the spray pyrolysis temperature to 800-900° C., and the carrier gas pressure to 0.2 MPa to obtain solid oxide particles;
  • Lithium collection by water precipitation washing the oxide produced by step (6) spray pyrolysis with water to obtain a lotion, and the tail gas produced by spray pyrolysis is collected by water leaching and mixed with the lotion to obtain a lithium salt solution;
  • Lithium carbonate can be purified to obtain pure lithium carbonate.
  • the quality of weighing lithium carbonate is 31.93g, and the yield of calculating lithium is 98.18%.
  • a method for extracting lithium from waste lithium batteries, the specific process is:
  • step (2) Oxidative hydrolysis: after step (2) reaction finishes, add nitric acid and add calcium carbonate to adjust pH to be 3.5-4.0, after solid-liquid separation, obtain copper-iron slag and filtrate;
  • Nickel-cobalt precipitation at a temperature of 85-95°C, feed hydrogen sulfide gas with a pressure of 250kPa into the filtrate obtained in step (3) until nickel-cobalt is completely precipitated, and after solid-liquid separation, nickel-cobalt sulfide is obtained respectively precipitation and lithium-enriched filtrate;
  • Oxidative titration titrate and add potassium permanganate to the lithium-rich filtrate obtained in step (4), until no precipitation occurs (that is, the solution no longer becomes colorless after stirring), and the manganese dioxide precipitate is separated;
  • Spray pyrolysis carry out spray pyrolysis on the remaining filtrate in step (5), control the spray pyrolysis temperature to 950-1350° C., and the carrier gas pressure to 0.1 MPa to obtain solid oxide particles;
  • Lithium collection by water precipitation washing the oxide produced by step (6) spray pyrolysis with water to obtain a lotion, and the tail gas produced by spray pyrolysis is collected by water leaching and mixed with the lotion to obtain a lithium salt solution;
  • Lithium carbonate can be purified to obtain pure lithium carbonate.
  • the quality of weighing lithium carbonate is 31.61g, calculates the yield of lithium to be 97.52%.

Abstract

本发明公开了一种从废旧锂电池中提取锂的方法,将废旧锂电池的正极粉置于盐酸中进行浸出,过滤得浸出液,浸出液除去铜和铁,再通入硫化氢气体进行反应,固液分离得到第一滤渣和第一滤液,向第一滤液中加入高锰酸钾,固液分离得到第二滤渣和第二滤液,对第二滤液进行喷雾热解,得到固体颗粒,对固体颗粒进行水洗得到洗液,喷雾热解产生的尾气经水淋收集后与洗液混合得到锂盐溶液。本发明通过盐酸浸出正极粉,获得盐酸浸出液,再依次去除浸出液中的铜、铁杂质后,采用硫化氢沉淀镍钴,加入高锰酸钾,使锰离子沉淀,生成二氧化锰,最后经喷雾热解使溶液中的铝镁转化为氧化物,并分离出锂盐,整个反应过程,无需有机溶剂萃取,降低了锂的损失。

Description

一种从废旧锂电池中提取锂的方法 技术领域
本发明属于锂电池回收技术领域,具体涉及一种从废旧锂电池中提取锂的方法。
背景技术
三元锂离子电池由于其安全性好、能量密度高、环保和良好的电化学性能等特点,广泛应用在电子产品、移动电源以及新能源汽车领域。然而其经过多次循环充放电后,电池中的活性物质就会失去活性,导致电池的容量下降而使电池报废。随着锂离子电池的广泛使用势必带来大量的废旧电池,如若对其随意丢弃不仅会对环境造成严重污染,同时正极材料中含有多种贵重及稀缺金属比如镍、钴、锂等。其中,Ni和Co元素是价值较高的有色金属,Ni元素的价格最高时可达40万元/吨,钴价也水涨船高达到37万元/吨,可以说废旧锂离子电池回收不仅仅绿色环保,还有丰厚的回报。因此,从环境保护和资源回收利用的角度来看,选择合适的方法处理废电池至关重要。
目前,针对废旧锂离子电池中有价金属的回收已经做了很多研究,较为传统的回收办法是采用酸浸工艺,首先需要对废旧锂离子电池进行拆解获取正极粉末,然后利用强酸浸出有价金属,利用氧化剂如H 2O 2,还原剂Na 2SO 3进行处理,再对溶液进行纯化后,利用溶液萃取的工艺获取纯的Ni、Co和Mn盐溶液。最后,通过元素分离回收金属或按比例加入一定量的硫酸镍、硫酸钴和硫酸锰溶液,组成再生正极材料前驱体的母液。虽然该方法工艺简单,但是效率却非常低,并且会产生大量的废水,对环境造成污染,还存在Li回收率低的问题。另一方面,电池材料对杂质含量要求很高,废锂离子电池中含有铁、铝、铜、镁等元素,在回收电池中的有价金属过程中需对浸出液进行净化。目前,多采用逐一分离回收金属的方法,流程较长、成本高,且萃取剂对锂都有萃取能力,进而降低了锂的回收率。若浸出液直接去做正极材料前驱体,则不能考虑锂的回收。因此,在保证镍、钴、锰完全回收的前提下,需要同时提高锂的回收率。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种从废旧锂电池中提取锂的方法。
根据本发明的一个方面,提出了一种从废旧锂电池中提取锂的方法,包括以下步骤:
S1:将废旧锂电池的正极粉置于盐酸中进行浸出,过滤得浸出液;
S2:所述浸出液除去铜和铁,再通入硫化氢气体进行反应,固液分离得到第一滤渣和第一滤液;
S3:向所述第一滤液中加入高锰酸钾,固液分离得到第二滤渣和第二滤液;
S4:对所述第二滤液进行喷雾热解,得到固体颗粒,对所述固体颗粒进行水洗得到洗液,喷雾热解产生的尾气经水淋收集后与所述洗液混合得到锂盐溶液。
在本发明的一些实施方式中,步骤S1中,所述盐酸的浓度为1.0-6.0mo l/L,正极粉与盐酸的固液比为100-250g/L。
在本发明的一些实施方式中,步骤S1中,还加入过氧化氢参与浸出。可以提高浸出率。
在本发明的一些实施方式中,步骤S2中,所述除去铜和铁的过程为:向浸出液中加入铁粉进行置换反应,待反应结束后加入氧化剂并调节pH至3.5-4.0,固液分离除去铜铁渣。
在本发明的一些优选的实施方式中,步骤S2中,所述铁粉的加入量与浸出液中铜离子的含量的摩尔比为(1.0-1.1):1。
在本发明的一些优选的实施方式中,步骤S2中,所述调节pH采用碳酸钙。碳酸钙价格便宜,调节pH的同时还可以除去氟离子和磷酸根。
在本发明的一些优选的实施方式中,步骤S2中,所述氧化剂为氯气、过氧化氢或硝酸中的一种或多种。
在本发明的一些实施方式中,步骤S2中,所述硫化氢的压力为200-300kPa;优选的,通入硫化氢气体进行反应的温度为65-125℃。
在本发明的一些实施方式中,步骤S2中,所述第一滤渣为硫化镍钴沉淀,硫化镍钴沉淀经硫酸溶解后可得硫酸镍和硫酸钴溶液,可作为前驱体溶液。
在本发明的一些实施方式中,步骤S3中,所述高锰酸钾采用滴定的方式加入,直至不再产生沉淀。
在本发明的一些实施方式中,步骤S4中,所述喷雾热解的温度为600-1350℃,载气压力为0.1-0.3MPa。
在本发明的一些实施方式中,步骤S4中,向所述锂盐溶液中加入碳酸盐进行反应,得到碳酸锂沉淀;优选地,所述反应的温度为80-95℃。碳酸锂作为正极材料的锂源使用。进一步地,碳酸锂沉淀还进行精制提纯。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明通过盐酸浸出废旧电池正极粉,获得盐酸浸出液,再依次去除浸出液中的铜、铁杂质后,采用硫化氢沉淀镍钴,再加入高锰酸钾,使锰离子沉淀,生成二氧化锰,最后经喷雾热解使溶液中的铝镁转化为氧化物,并分离出锂盐,整个反应过程,无需有机溶剂萃取,降低了锂的损失。为保证后续喷雾热解的顺利进行,本发明选用盐酸浸出正极粉,由于浸出液中含有镁、铝,一般的有机萃取剂无法进行分离,故选用硫化氢沉淀镍钴,高锰酸钾氧化锰离子制备二氧化锰,最后采用喷雾热解,利用氯化氢和氯化锂易挥发的特点,氯化铝、氯化镁则热分解为氧化物从而分离出来。
2、本发明工艺流程短、生产成本低,省去了有机溶剂的萃取工艺,避免了锂的损耗,提升了浸出液中锂的收率。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的工艺流程示意图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施 例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种从废旧锂电池中提取锂的方法,参照图1,具体过程为:
(1)浸出:将100g废旧锂电池正极粉放入1L浓度为6.0mo l/L盐酸中,并加入100mL的过氧化氢浸出5h,反应完成后,过滤得到浸出液和炭黑渣;
检测浸出液:
Figure PCTCN2022092490-appb-000001
(2)还原置换:向步骤(1)所得浸出液中加入铁粉,铁粉的加入量与浸出液中铜离子的含量的摩尔比为1.1:1;
(3)氧化水解:步骤(2)反应结束后,加入氯气并加入碳酸钙调节pH为3.5-4.0,固液分离后,得到铜铁渣和滤液;
(4)镍钴沉降:在温度为65-70℃下,向步骤(3)所得滤液中通入压力为200kPa的硫化氢气体至镍钴完全沉淀,固液分离后,分别制得硫化镍钴沉淀和富锂滤液;
(5)氧化滴定:向步骤(4)所得富锂滤液中滴定加入高锰酸钾,直至不再产生沉淀(即搅拌后溶液不再变为无色),分离出二氧化锰沉淀;
(6)喷雾热解:将步骤(5)剩余的滤液进行喷雾热解,控制喷雾热解温度为600-700℃,载气压力为0.1MPa,制得氧化物固体颗粒;
(7)水沉收锂:将步骤(6)喷雾热解产生的氧化物进行水洗得到洗液,喷雾热解产生的尾气经水淋收集后与洗液混合制得锂盐溶液;
(8)在温度为80-95℃下,向锂盐溶液中加入碳酸盐,分离得到的沉淀即为碳酸锂。碳酸锂经过精制提纯后可以得到纯净的碳酸锂。
称量精制后碳酸锂的质量为31.50g,计算得到锂的收率为98.47%。
实施例2
一种从废旧锂电池中提取锂的方法,具体过程为:
(1)浸出:将100g废旧锂电池正极粉放入0.5L浓度为3.0mo l/L盐酸中,并加入800mL的过氧化氢浸出6h,反应完成后,过滤得到浸出液和炭黑渣;
检测浸出液:
Figure PCTCN2022092490-appb-000002
(2)还原置换:向步骤(1)所得浸出液中加入铁粉,铁粉的加入量与浸出液中铜离子的含量的摩尔比为1.05:1;
(3)氧化水解:步骤(2)反应结束后,加入过氧化氢并加入碳酸钙调节pH为3.5-4.0,固液分离后,得到铜铁渣和滤液;
(4)镍钴沉降:在温度为80-90℃下,向步骤(3)所得滤液中通入压力为300kPa的硫化氢气体至镍钴完全沉淀,固液分离后,分别制得硫化镍钴沉淀和富锂滤液;
(5)氧化滴定:向步骤(4)所得富锂滤液中滴定加入高锰酸钾,直至不再产生沉淀(即搅拌后溶液不再变为无色),分离出二氧化锰沉淀;
(6)喷雾热解:将步骤(5)剩余的滤液进行喷雾热解,控制喷雾热解温度为800-900℃,载气压力为0.2MPa,制得氧化物固体颗粒;
(7)水沉收锂:将步骤(6)喷雾热解产生的氧化物进行水洗得到洗液,喷雾热解产生的尾气经水淋收集后与洗液混合制得锂盐溶液;
(8)在温度为80-95℃下,向锂盐溶液中加入碳酸盐,分离得到的沉淀即为碳酸锂。碳酸锂经过精制提纯后可以得到纯净的碳酸锂。
称量碳酸锂的质量为31.93g,计算得到锂的收率为98.18%。
实施例3
一种从废旧锂电池中提取锂的方法,具体过程为:
(1)浸出:将100g废旧锂电池正极粉放入0.8L浓度为1.0mo l/L盐酸中,并加入120mL的过氧化氢浸出5h,反应完成后,过滤得到浸出液和炭黑渣;
检测浸出液:
Figure PCTCN2022092490-appb-000003
(2)还原置换:向步骤(1)所得浸出液中加入铁粉,铁粉的加入量与浸出液中铜离子的含量的摩尔比为1.1:1;
(3)氧化水解:步骤(2)反应结束后,加入硝酸并加入碳酸钙调节pH为3.5-4.0,固液分离后,得到铜铁渣和滤液;
(4)镍钴沉降:在温度为85-95℃下,向步骤(3)所得滤液中通入压力为250kPa的硫化氢气体至镍钴完全沉淀,固液分离后,分别制得硫化镍钴沉淀和富锂滤液;
(5)氧化滴定:向步骤(4)所得富锂滤液中滴定加入高锰酸钾,直至不再产生沉淀(即搅拌后溶液不再变为无色),分离出二氧化锰沉淀;
(6)喷雾热解:将步骤(5)剩余的滤液进行喷雾热解,控制喷雾热解温度为950-1350℃,载气压力为0.1MPa,制得氧化物固体颗粒;
(7)水沉收锂:将步骤(6)喷雾热解产生的氧化物进行水洗得到洗液,喷雾热解产生的尾气经水淋收集后与洗液混合制得锂盐溶液;
(8)在温度为80-95℃下,向锂盐溶液中加入碳酸盐,分离得到的沉淀即为碳酸锂。碳酸锂经过精制提纯后可以得到纯净的碳酸锂。
称量碳酸锂的质量为31.61g,计算得到锂的收率为97.52%。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种从废旧锂电池中提取锂的方法,其特征在于,包括以下步骤:
    S1:将废旧锂电池的正极粉置于盐酸中进行浸出,过滤得浸出液;
    S2:所述浸出液除去铜和铁,再通入硫化氢气体进行反应,固液分离得到第一滤渣和第一滤液;
    S3:向所述第一滤液中加入高锰酸钾,固液分离得到第二滤渣和第二滤液;
    S4:对所述第二滤液进行喷雾热解,得到固体颗粒,对所述固体颗粒进行水洗得到洗液,喷雾热解产生的尾气经水淋收集后与所述洗液混合得到锂盐溶液。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述盐酸的浓度为1.0-6.0mol/L,正极粉与盐酸的固液比为100-250g/L。
  3. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述除去铜和铁的过程为:向浸出液中加入铁粉进行置换反应,待反应结束后加入氧化剂并调节pH至3.5-4.0,固液分离除去铜铁渣。
  4. 根据权利要求3所述的方法,其特征在于,步骤S2中,所述铁粉的加入量与浸出液中铜离子的含量的摩尔比为(1.0-1.1):1。
  5. 根据权利要求3所述的方法,其特征在于,步骤S2中,所述调节pH采用碳酸钙。
  6. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述硫化氢的压力为200-300kPa;优选的,通入硫化氢气体进行反应的温度为65-125℃。
  7. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述第一滤渣为硫化镍钴沉淀,硫化镍钴沉淀经硫酸溶解后可得硫酸镍和硫酸钴溶液。
  8. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述高锰酸钾采用滴定的方式加入,直至不再产生沉淀。
  9. 根据权利要求1所述的方法,其特征在于,步骤S4中,所述喷雾热解的温度为600-1350℃,载气压力为0.1-0.3MPa。
  10. 根据权利要求1所述的方法,其特征在于,步骤S4中,向所述锂盐溶液中加入碳酸盐进行反应,得到碳酸锂沉淀;优选地,所述反应的温度为80-95℃。
PCT/CN2022/092490 2021-09-06 2022-05-12 一种从废旧锂电池中提取锂的方法 WO2023029573A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112022001143.2T DE112022001143T5 (de) 2021-09-06 2022-05-12 Verfahren zur gewinnung von lithium aus lithium-altbatterien
ES202390157A ES2957120A2 (es) 2021-09-06 2022-05-12 Método para extraer litio de una batería de litio de desecho
GB2319473.1A GB2623222A (en) 2021-09-06 2022-05-12 Method for extracting lithium from waste lithium battery
US18/555,262 US20240088468A1 (en) 2021-09-06 2022-05-12 Method for extracting lithium from waste lithium battery
HU2300351A HUP2300351A1 (hu) 2021-09-06 2022-05-12 Eljárás lítium visszanyerésére hulladék lítiumakkumulátorból

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111036546.9A CN113846219B (zh) 2021-09-06 2021-09-06 一种从废旧锂电池中提取锂的方法
CN202111036546.9 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023029573A1 true WO2023029573A1 (zh) 2023-03-09

Family

ID=78973344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092490 WO2023029573A1 (zh) 2021-09-06 2022-05-12 一种从废旧锂电池中提取锂的方法

Country Status (7)

Country Link
US (1) US20240088468A1 (zh)
CN (1) CN113846219B (zh)
DE (1) DE112022001143T5 (zh)
ES (1) ES2957120A2 (zh)
GB (1) GB2623222A (zh)
HU (1) HUP2300351A1 (zh)
WO (1) WO2023029573A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846219B (zh) * 2021-09-06 2022-11-15 广东邦普循环科技有限公司 一种从废旧锂电池中提取锂的方法
WO2023156448A1 (en) * 2022-02-16 2023-08-24 Umicore Process for the recovery of li, ni and co

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025568A2 (en) * 2010-08-24 2012-03-01 Akkuser Oy Metal ion recovery from battery waste
CN102665912A (zh) * 2009-11-30 2012-09-12 韩国地质资源研究院 从锂离子电池和三元正极材料制备cmb催化剂的方法
CN107046154A (zh) * 2017-04-18 2017-08-15 中科过程(北京)科技有限公司 一种废三元锂电池强化还原浸出的方法
WO2018047147A1 (en) * 2016-09-12 2018-03-15 Attero Recycling Pvt. Ltd. Process for recovering pure cobalt and nickel from spent lithium batteries
CN108011149A (zh) * 2017-12-04 2018-05-08 长沙理工大学 一种从废弃动力电池中回收钴镍锂的方法
CN110923453A (zh) * 2019-11-29 2020-03-27 中南大学 一种从废旧锂离子电池中回收锂的方法
CN111534697A (zh) * 2020-06-09 2020-08-14 中国恩菲工程技术有限公司 废旧锂离子电池的选冶联合综合回收方法及装置
CN113846219A (zh) * 2021-09-06 2021-12-28 广东邦普循环科技有限公司 一种从废旧锂电池中提取锂的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3113307B2 (ja) * 1991-04-08 2000-11-27 秋田製錬株式会社 廃乾電池からの亜鉛およびマンガンの分離回収方法
CN101225470B (zh) * 2008-01-31 2010-06-09 曹国华 盐酸法从红土镍矿提取镍钴的方法
BE1018637A3 (fr) * 2009-02-02 2011-05-03 Recyclage Et Valorisation Tech Procede de traitement de piles alcalines et salines pour la valorisation du zinc et du manganese.
CN108193050B (zh) * 2017-11-27 2019-10-18 中国人民解放军陆军防化学院 一种废旧三元动力电池中金属材料回收方法
IT201800002175A1 (it) * 2018-01-30 2019-07-30 Consiglio Nazionale Ricerche Procedimento idrometallurgico per il trattamento di batterie al litio e recupero dei metalli in esse contenuti.
CN110690429B (zh) * 2019-10-14 2021-07-06 王敏 一种废旧磷酸铁锂的处理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102665912A (zh) * 2009-11-30 2012-09-12 韩国地质资源研究院 从锂离子电池和三元正极材料制备cmb催化剂的方法
WO2012025568A2 (en) * 2010-08-24 2012-03-01 Akkuser Oy Metal ion recovery from battery waste
WO2018047147A1 (en) * 2016-09-12 2018-03-15 Attero Recycling Pvt. Ltd. Process for recovering pure cobalt and nickel from spent lithium batteries
CN107046154A (zh) * 2017-04-18 2017-08-15 中科过程(北京)科技有限公司 一种废三元锂电池强化还原浸出的方法
CN108011149A (zh) * 2017-12-04 2018-05-08 长沙理工大学 一种从废弃动力电池中回收钴镍锂的方法
CN110923453A (zh) * 2019-11-29 2020-03-27 中南大学 一种从废旧锂离子电池中回收锂的方法
CN111534697A (zh) * 2020-06-09 2020-08-14 中国恩菲工程技术有限公司 废旧锂离子电池的选冶联合综合回收方法及装置
CN113846219A (zh) * 2021-09-06 2021-12-28 广东邦普循环科技有限公司 一种从废旧锂电池中提取锂的方法

Also Published As

Publication number Publication date
US20240088468A1 (en) 2024-03-14
GB2623222A (en) 2024-04-10
ES2957120A2 (es) 2024-01-11
DE112022001143T5 (de) 2023-12-07
HUP2300351A1 (hu) 2024-01-28
CN113846219A (zh) 2021-12-28
GB202319473D0 (en) 2024-01-31
CN113846219B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
CN107017443B (zh) 一种从废旧锂离子电池中综合回收有价金属的方法
CN107267759B (zh) 一种锂离子电池正极材料的综合回收方法
CN110828926B (zh) 废旧锂离子电池正负极材料协同回收金属及石墨的方法
KR20200060695A (ko) 폐 리튬-기반 배터리 및 다른 공급물로부터 코발트, 리튬 및 기타 금속의 회수 방법
CN108832215A (zh) 一种选择性回收锂离子电池正极材料的方法
CN110474123B (zh) 废旧磷酸铁锂电池正极材料综合回收方法
WO2023029573A1 (zh) 一种从废旧锂电池中提取锂的方法
CN113802002B (zh) 湿法回收锂电池中有价金属的方法
WO2023035636A1 (zh) 一种由低冰镍制备硫酸镍的方法
CN113912033A (zh) 一种前置提锂的废旧磷酸铁锂电池正负极混粉的回收方法
CN113415813A (zh) 废旧三元电池材料锂镍钴锰的回收方法
JP2024514966A (ja) 使用済みリチウムイオン電池からの有価金属の回収方法
CN113104897A (zh) 一种电池黑粉料分离镍钴锂锰制备电池级硫酸锰的方法
CN114249313A (zh) 一种从废磷酸铁锂粉末中回收电池级磷酸铁的方法
CN111180819B (zh) 一种电池级Ni-Co-Mn混合液和电池级Mn溶液的制备方法
CN112723330A (zh) 一种异磷锰铁矿型磷酸铁的制备方法及其应用
JP6402535B2 (ja) 廃ニッケル水素電池からの有価金属の回収方法
JP6314730B2 (ja) 廃ニッケル水素電池からの有価金属の回収方法
CN115784188A (zh) 回收制备电池级磷酸铁的方法
CN115947323A (zh) 废旧磷酸铁锂提锂及制备磷酸铁的方法
CN115304059A (zh) 一种退役电池炭渣的资源化处理方法
CN115074540A (zh) 一种废动力电池有价组分综合回收方法
JP6201905B2 (ja) 廃ニッケル水素電池からの有価金属の回収方法
CN114381605B (zh) 一种综合回收废旧锂离子电池黑粉中有价金属的方法
CN116676493A (zh) 一种废旧锂离子电池材料与高冰镍协同回收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862716

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18555262

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: P202390157

Country of ref document: ES

Ref document number: 112022001143

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/014857

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 202319473

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220512