WO2022267081A1 - 一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法 - Google Patents

一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法 Download PDF

Info

Publication number
WO2022267081A1
WO2022267081A1 PCT/CN2021/103226 CN2021103226W WO2022267081A1 WO 2022267081 A1 WO2022267081 A1 WO 2022267081A1 CN 2021103226 W CN2021103226 W CN 2021103226W WO 2022267081 A1 WO2022267081 A1 WO 2022267081A1
Authority
WO
WIPO (PCT)
Prior art keywords
butene
butylene oxide
green
catalyst
organic
Prior art date
Application number
PCT/CN2021/103226
Other languages
English (en)
French (fr)
Inventor
纪红兵
薛灿
徐德靖
周贤太
何耀荣
熊超
梁壹超
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Publication of WO2022267081A1 publication Critical patent/WO2022267081A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/06Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to the technical field of industrial catalysis, and more specifically relates to a method for preparing butylene oxide from butene with small organic molecules, which is green and highly efficient.
  • butylene oxide As a very important organic chemical raw material, butylene oxide is also called butylene oxide. It is widely used in the synthesis of organic intermediates and polymers. Such as synthesis of antioxidants, corrosion inhibitors, surfactants, etc. Due to the wide application and high added value of butylene oxide, its synthesis method has attracted extensive attention of researchers at home and abroad. At present, the industrial methods for synthesizing butylene oxide mainly include the chlorohydrin method and the peracetic acid method.
  • the chlorohydrin method is a traditional process for preparing low-carbon oxides, which has been industrialized for more than 60 years. Its main technological process is chloroalcoholization of n-butene with water and chlorine gas to obtain chlorobutanol, and then saponification with lye to obtain butylene oxide. Although this method has a relatively mature process, a large amount of industrial wastewater will be generated during the production process, which seriously pollutes the environment and severely corrodes the equipment. Compared with the chlorohydrin method, peracetic acid does not discharge three wastes and has little environmental pollution, but peracetic acid is unstable in nature and has safety problems.
  • Chinese invention patent CN107903164A discloses a method for simultaneously preparing organic acid and butylene oxide, which uses organic aldehyde and butene as raw materials, oxygen or air as oxidant, and organic liquid solvent as medium.
  • the synthesis metal salt of pyrrole is used as a catalyst to prepare butylene oxide under the conditions of a reaction temperature of 50-160 DEG C and a reaction pressure of 0.05-3.5 MPa.
  • this method does not produce a large amount of waste water and waste residue, and improves safety.
  • air or oxygen is used as the oxidant, which avoids the transportation problem caused by the easy decomposition of hydrogen peroxide, but this method still has needs. Problems with higher reaction temperatures.
  • the purpose of the present invention is to overcome the problem of high reaction temperature required in the above-mentioned prior art, and to provide a method for preparing butylene oxide from small organic molecules with green and high-efficiency catalysis of butene.
  • the method has mild conditions, green safety, low cost and good industrial application prospect.
  • a method for preparing butylene oxide from butene with small organic molecules which is green and highly efficient, uses butene as a raw material, adds an organic solvent and a catalyst, uses isobutyraldehyde as a co-reductant, and uses oxygen as an oxidant.
  • the reaction Butylene oxide is produced under the condition of pressure of 0.1-4.5MPa;
  • the catalyst is selected from at least one of cyclic organic nitroxide radical precursors or compounds having the structures described in the following formula (I), (II), (III) or (IV);
  • R 1 , R 2 , R 3 are independently selected from a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heterocycle, a hydroxyl group, a nitro group or a halogen, or at least two members of R 2 , R 3 , and R 4 ring.
  • the cyclic organic nitroxide free radical precursor or the compound having the structure described in formula I), (II), (III) or (IV) can catalyze the oxidation of butylene under the condition of the presence of oxygen, Produces butylene oxide with high selectivity.
  • the self-oxidation of isobutyraldehyde is very slow, and high temperature is usually required to speed up the reaction speed.
  • the above catalyst can promote the chain initiation process of isobutyraldehyde to generate acyl radicals at room temperature, thereby accelerating the free radical reaction of butene epoxidation , to achieve the preparation of butylene oxide at room temperature.
  • the room temperature of the present invention is 25°C to 30°C.
  • the catalyst is selected from at least one compound having the structure described in the following formula (I), (II), (III) or (IV);
  • R 2 and R 3 are independently selected from hydrogen atom, alkyl, cycloalkyl, aryl, heterocycle, hydroxyl, nitro or halogen, or at least two of R 2 , R 3 and R 4 form a ring.
  • the number of carbon atoms of the alkyl group is 1-8; the carbon number of the cycloalkyl group is 3-7; the aryl group is selected from benzene ring, anthracene, phenanthrene, naphthalene, etc.; Five-membered or six-membered heterocyclic ring.
  • the catalyst is selected from phthalimides represented by the following formula (a), 4,5-dichlorophthalimides represented by the following formula (b), and phthalimides represented by the following formula (c). At least one of the 2,3-naphthalimide shown or the pyromellitic acid diamine shown in the following formula (d);
  • the catalysts described in the formulas (a) to (d) can not only promote the homolysis of isobutyraldehyde, but also form hydrogen bonds with peroxy radicals to promote the formation of peroxyacids, thereby increasing the yield of butylene oxide.
  • the cyclic organic nitroxide radical precursor is selected from at least A sort of.
  • the reaction pressure is 1.5-3 MPa. More preferably, it is 2 MPa.
  • the catalyst is used in an amount of 1 mol% to 10 mol% of the raw material. More preferably, it is 3 mol% - 8 mol%.
  • isobutyraldehyde is used in an amount of 1-5 equivalents (eq) relative to 1 equivalent (eq) of butene. More preferably, it is 2 to 3 equivalents (eq).
  • the organic solvent of the present invention is selected from one or more of benzonitrile, ethyl acetate, acetonitrile, trifluorotoluene, and dichloromethane. Preferably it is one or more of acetonitrile, ethyl acetate, and trifluorotoluene.
  • the present invention uses butene as a raw material, isobutyraldehyde as a co-reductant, oxygen as an oxidant, and under the action of a catalyst, butylene oxide is prepared at room temperature, thereby reducing energy consumption and potential safety hazards.
  • oxygen as an oxidant
  • the use of oxygen as the oxidant avoids the transportation problem caused by the easy decomposition of hydrogen peroxide.
  • the invention has simple process, mild conditions, high yield and selectivity of butylene oxide, and has good industrial application prospect.
  • the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field unless otherwise specified.
  • Organic solvent A acetonitrile
  • Organic solvent B benzonitrile
  • Organic solvent C ethyl acetate
  • Organic solvent D trifluorotoluene
  • Organic solvent E dichloromethane
  • Co-reducing agent A isobutyraldehyde
  • Co-reducing agent B benzaldehyde
  • Co-reducing agent C acetaldehyde
  • Catalyst A phthalimide
  • Catalyst B N-Hydroxyphthalimide
  • Catalyst C 4,5-dichlorophthalimide
  • Catalyst D 2,3-naphthalimide
  • Catalyst E pyromellitic acid diamine
  • Catalyst F N-hydroxysuccinimide
  • Catalyst G 1-hydroxypiperidine-2,6-dione.
  • Embodiments 2 to 5 provide a series of organic small molecule green, efficient catalytic butylenes to prepare butylene oxide.
  • the amount of catalyst used in different embodiments is different. See Table 1 for details to explore the impact of different catalyst amounts on the yield of butylene oxide. and selective effects.
  • Example 2 Example 3
  • Example 4 Example 5
  • Organic solvent A 20mL 20mL 20mL 20mL butene 26mmol 26mmol 26mmol 26mmol Catalyst
  • Co-reducing agent A 2eq 2eq 2eq 2eq oxygen 2 MPa 2 MPa 2 MPa 2 MPa Reaction time 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours
  • Embodiments 6 to 9 provide a series of organic small molecule green and highly efficient catalytic butylenes to prepare butylene oxide.
  • the amount of isobutyraldehyde in different examples is different, see Table 2 for details, to explore the effect of different amounts of isobutyraldehyde on epoxy Effects on butane yield and selectivity.
  • Example 6 Example 7
  • Example 8 Organic solvent A 20mL 20mL 20mL 20mL Butene 26mmol 26mmol 26mmol 26mmol 26mmol
  • Catalyst A 5mol% 5mol% 5mol% 5mol% 5mol% Co-reducing agent A 1eq 3eq 4eq 5eq oxygen 2 MPa 2 MPa 2 MPa 2 MPa Reaction time 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours
  • Embodiments 10 to 14 provide a series of organic small molecule green and highly efficient methods for preparing butylene oxide from butene.
  • the reaction pressures in different examples are different. See Table 3 for details to explore the impact of different reaction pressures on the yield of butylene oxide. and selective effects.
  • Example 10 Example 11
  • Example 12 Example 13
  • Example 14 Organic solvent A 20mL 20mL 20mL 20mL 20mL 20mL Butene 26mmol 26mmol 26mmol 26mmol Catalyst A 5mol% 5mol% 5mol% 5mol% 5mol% 5mol% Co-reducing agent A 2eq 2eq 2eq 2eq oxygen 1MPa 1.5MPa 2.5MPa 3.0MPa 4.5MPa Reaction time 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours
  • Embodiments 15-18 provide a series of organic small molecule green, highly efficient catalytic butylenes to prepare butylene oxide.
  • the organic solvents in different examples are different. See Table 4 for details to explore the impact of different organic solvents on the yield of butylene oxide. and selective effects.
  • Example 15 Example 16
  • Example 17 Example 18
  • Organic solvent B 20mL -- -- organic solvent C -- 20mL -- organic solvent D.
  • -- -- 20mL -- Organic solvent E -- -- -- 20mL Butene 26mmol 26mmol 26mmol Catalyst A 5mol% 5mol% 5mol% 5mol% Co-reducing agent A 2eq 2eq 2eq 2eq
  • Embodiments 19-24 provide a series of organic small molecule green and highly efficient methods for preparing butylene oxide from butene.
  • the catalysts in different examples are different. See Table 5 for details to explore the yield and selection of different catalysts for butylene oxide. sexual influence.
  • Examples 25-27 provide a series of green and highly efficient methods for preparing butylene oxide from butene with small organic molecules, see Table 6 for details.
  • Example 25 Example 26
  • Example 27 Organic solvent A 20mL 20mL 20mL Butene 26mmol 26mmol 26mmol Catalyst A 5mol% 5mol% 5mol%
  • Comparative Examples 1-3 provide a series of green and highly efficient methods for preparing butylene oxide from butene with small organic molecules, as shown in Table 7 for details.
  • Comparative example 1 Comparative example 2 Comparative example 3
  • Organic solvent A 20mL 20mL 20mL Butene 26mmol 26mmol 26mmol Catalyst A -- 5mol% 5mol% Co-reducing agent B -- 2eq -- Co-reducing agent C -- -- 2eq oxygen 2 MPa 2 MPa 2 MPa Reaction time 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours
  • reaction pressure can influence butylene oxide yield, when reaction pressure is 1.5 ⁇ 3MPa, there is higher yield of butylene oxide, and optimum reaction pressure is 2MPa.
  • the used organic solvent of reaction also can influence the yield of butylene oxide, and optimum organic solvent is acetonitrile.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Epoxy Compounds (AREA)

Abstract

公开了一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,所述方法以丁烯为原料,加入有机溶剂和催化剂,以异丁醛为共还原剂,以氧气为氧化剂,在室温下,反应压力为0.1~4.5MPa的条件下制得环氧丁烷;所述催化剂选自环状有机氮氧自由基前体或具有如下式(I)、(II)、(III)或(IV)所述结构的化合物中的至少一种;式中R 1、R 2、R 3独立地选自氢原子、烷基、环烷基、芳香基、杂环、羟基、硝基或卤素,或者R 2、R 3、R 4至少两个成环。该工艺简单,条件温和,环氧丁烷收率和选择性高,具有良好的工业应用前景。

Description

一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法 技术领域
本发明涉及工业催化技术领域,更具体地,涉及一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法。
背景技术
环氧丁烷作为一种非常重要的有机化工原料,又称为氧化丁烯。被广泛地应用在有机中间体和聚合物的合成。例如抗氧化剂、缓蚀剂、表面活性剂的合成等等。由于环氧丁烷应用广泛,附加值高,其合成方法受到国内外研究者的广泛关注。目前工业上合成环氧丁烷的方法主要有氯醇法和过氧乙酸法。
氯醇法是制备低碳氧化物的传统工艺,已经工业化60多年。其主要工艺流程是正丁烯与水、氯气发生氯醇化得到氯丁醇,然后用碱液皂化得到环氧丁烷。该方法虽然工艺较为成熟,但在生产过程中会产生大量的工业废水,严重污染环境,对设备腐蚀严重。与氯醇法相比,过乙酸不排放三废,对环境污染小,但过氧乙酸性质不稳定,存在安全问题。此外,绿色友好的钛硅分子筛/过氧化氢体系也得到了一定的发展,然而由于过氧化氢易分解,难以运输,造成了成本的增加,工业化难度较大。
为了解决上述问题,中国发明专利CN107903164A公开了一种同时制备有机酸和环氧丁烷的方法,该方法以有机醛和丁烯为原料,以氧气或空气为氧化剂,以有机液体溶剂为介质,以吡咯合成金属盐为催化剂,在反应温度为50~160℃,反应压力为0.05~3.5MPa的条件下制备得到环氧丁烷。与氯醇法和过氧乙酸法相比,该方法不产生大量废水和废渣,且提高了安全性,同时以空气或氧气为氧化剂,避免了双氧水易分解造成的运输问题,但该方法还存在需要较高的反应温度的问题。
发明内容
本发明的目的是克服上述现有技术需要较高的反应温度的问题,提供一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法。该方法条件温和,绿色安全,成本低,具有良好的工业应用前景。
本发明的上述目的通过以下技术方案实现:
一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,以丁烯为原料,加入有机溶剂和催化剂,以异丁醛为共还原剂,以氧气为氧化剂,在室温下,反应压力为0.1~4.5MPa的条件下制得环氧丁烷;
所述催化剂选自环状有机氮氧自由基前体或具有如下式(I)、(II)、(III)或(IV)所述结构的化合物中的至少一种;
Figure PCTCN2021103226-appb-000001
式中R 1、R 2、R 3独立地选自氢原子、烷基、环烷基、芳香基、杂环、羟基、硝基或卤素,或者R 2、R 3、R 4至少两个成环。
在本发明中,环状有机氮氧自由基前体或具有如式I)、(II)、(III)或(IV)所述结构的化合物,能够在氧气存在的条件下催化氧化丁烯,高选择性地生成环氧丁烷。常温下,异丁醛自氧化非常缓慢,通常需要高温来加快反应速度,上述催化剂可在室温下促进异丁醛产生酰基自由基这一链引发过程,从而加速丁烯环氧化的自由基反应,实现在室温下制备环氧丁烷。
本发明所述室温为25℃~30℃。
优选地,所述催化剂选自具有如下式(I)、(II)、(III)或(IV)所述结构的化合物中的至少一种;
Figure PCTCN2021103226-appb-000002
Figure PCTCN2021103226-appb-000003
式中R 2、R 3独立地选自氢原子、烷基、环烷基、芳香基、杂环、羟基、硝基或卤素,或者R 2、R 3、R 4至少两个成环。
所述催化剂中,烷基的碳原子数为1~8;环烷基的碳原子为3~7;芳香基选自苯环、蒽、菲、萘等;杂环选自含N、S的五元或六元杂环。
更优选地,所述催化剂选自如下式(a)所示的邻苯二甲酰亚胺、如下式(b)所示的4,5-二氯酞酰亚胺、如下式(c)所示的2,3-萘二甲酰亚胺或如下式(d)所示的均苯四甲酸二胺中的至少一种;
Figure PCTCN2021103226-appb-000004
式(a)~(d)所述催化剂除了可促进异丁醛均裂,还可与过氧自由基形成氢键,促使其形成过氧酸,进而提高环氧丁烷的收率。
优选地,所述环状有机氮氧自由基前体选自N-羟基邻苯二甲酰亚胺、N-羟基琥珀酰亚胺或1-羟基哌啶-2,6-二酮中的至少一种。
优选地,反应压力为1.5~3MPa。更优选为2MPa。
优选地,催化剂的用量为原料的1mol%~10mol%。更优选为3mol%~8mol%。
优选地,相对于1当量(eq)的丁烯,异丁醛的用量为1~5当量(eq)。更优选为2~3当量(eq)。
本发明所述有机溶剂选自苯甲腈、乙酸乙酯、乙腈、三氟甲苯、二氯甲烷中的一种或多种。优选为乙腈、乙酸乙酯、三氟甲苯中的一种或多种。
与现有技术相比,本发明的有益效果是:
本发明以丁烯为原料,以异丁醛为共还原剂,以氧气为氧化剂,在催化剂作用下,实现室温下制备环氧丁烷,降低了能耗,也减小了安全隐患。同时,采用氧气作为氧化剂,避免了双氧水易分解造成的运输问题。本发明工艺简单,条件温和,环氧丁烷收率和选择性高,具有良好的工业应用前景。
具体实施方式
为了更清楚、完整的描述本发明的技术方案,以下通过具体实施例进一步详细说明本发明,应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明,可以在本发明权利限定的范围内进行各种改变。
本发明所采用的试剂、方法和设备,如无特殊说明,均为本技术领域常规试剂、方法和设备。
以下实施例及对比例中采用的原料如下:
有机溶剂A:乙腈;
有机溶剂B:苯甲腈;
有机溶剂C:乙酸乙酯;
有机溶剂D:三氟甲苯;
有机溶剂E:二氯甲烷;
共还原剂A:异丁醛;
共还原剂B:苯甲醛;
共还原剂C:乙醛;
催化剂A:邻苯二甲酰亚胺;
催化剂B:N-羟基邻苯二甲酰亚胺
催化剂C:4,5-二氯酞酰亚胺;
催化剂D:2,3-萘二甲酰亚胺;
催化剂E:均苯四甲酸二胺;
催化剂F:N-羟基琥珀酰亚胺;
催化剂G:1-羟基哌啶-2,6-二酮。
实施例1
一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,步骤如下:
向100mL聚四氟乙烯内衬不锈钢高压反应釜中加入乙腈(20mL),邻苯二甲酰亚胺(5mol%),异丁醛(2eq),充入正丁烯(1.46g,26mmol),再充入氧气(2MPa),以联苯(50mg)作为内标物,27℃下水浴反应12h制得1,2-环氧丁烷。
术语“2eq”,指的是按物质的量计,异丁醛的用量是正丁烯的2倍。
实施例2~5
实施例2~5提供一系列有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,不同实施例催化剂用量不一样,具体见表1,以探究不同催化剂用量对环氧丁烷收率和选择性的影响。
表1
  实施例2 实施例3 实施例4 实施例5
有机溶剂A 20mL 20mL 20mL 20mL
正丁烯 26mmol 26mmol 26mmol 26mmol
催化剂A 1mol% 3mol% 8mol% 10mol%
共还原剂A 2eq 2eq 2eq 2eq
氧气 2MPa 2MPa 2MPa 2MPa
反应时间 12h 12h 12h 12h
实施例6~9
实施例6~9提供一系列有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,不同实施例异丁醛用量不一样,具体见表2,以探究不同异丁醛用量对环氧丁烷收率和选择性的影响。
表2
  实施例6 实施例7 实施例8 实施例9
有机溶剂A 20mL 20mL 20mL 20mL
正丁烯 26mmol 26mmol 26mmol 26mmol
催化剂A 5mol% 5mol% 5mol% 5mol%
共还原剂A 1eq 3eq 4eq 5eq
氧气 2MPa 2MPa 2MPa 2MPa
反应时间 12h 12h 12h 12h
实施例10~14
实施例10~14提供一系列有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,不同实施例反应压力不一样,具体见表3,以探究不同反应压力对环氧丁烷收率和选择性的影响。
表3
  实施例10 实施例11 实施例12 实施例13 实施例14
有机溶剂A 20mL 20mL 20mL 20mL 20mL
正丁烯 26mmol 26mmol 26mmol 26mmol 26mmol
催化剂A 5mol% 5mol% 5mol% 5mol% 5mol%
共还原剂A 2eq 2eq 2eq 2eq 2eq
氧气 1MPa 1.5MPa 2.5MPa 3.0MPa 4.5MPa
反应时间 12h 12h 12h 12h 12h
实施例15~18
实施例15~18提供一系列有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,不同实施例有机溶剂不一样,具体见表4,以探究不同有机溶剂对环氧丁烷收率和选择性的影响。
表4
  实施例15 实施例16 实施例17 实施例18
有机溶剂B 20mL -- -- --
有机溶剂C -- 20mL -- --
有机溶剂D -- -- 20mL --
有机溶剂E -- -- -- 20mL
正丁烯 26mmol 26mmol 26mmol 26mmol
催化剂A 5mol% 5mol% 5mol% 5mol%
共还原剂A 2eq 2eq 2eq 2eq
氧气 2MPa 2MPa 2MPa 2MPa
反应时间 12h 12h 12h 12h
实施例19~24
实施例19~24提供一系列有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,不同实施例催化剂不一样,具体见表5,以探究不同催化剂对环氧丁烷收率和选择性的影响。
表5
Figure PCTCN2021103226-appb-000005
实施例25~27
实施例25~27提供一系列有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,具体见表6。
表6
  实施例25 实施例26 实施例27
有机溶剂A 20mL 20mL 20mL
正丁烯 26mmol 26mmol 26mmol
催化剂A 5mol% 5mol% 5mol%
共还原剂A 2eq 2eq 2eq
氧气 0.1MPa 2MPa 2MPa
反应时间 12h 6h 48h
对比例1~3
对比例1~3提供一系列有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,具体见表7。
表7
  对比例1 对比例2 对比例3
有机溶剂A 20mL 20mL 20mL
正丁烯 26mmol 26mmol 26mmol
催化剂A -- 5mol% 5mol%
共还原剂B -- 2eq --
共还原剂C -- -- 2eq
氧气 2MPa 2MPa 2MPa
反应时间 12h 12h 12h
分析检测
反应结束后取液相样品,利用气相色谱分析产物,采用内标法定量产物,结果见表8。
表8
  环氧丁烷收率(%) 环氧丁烷选择性(%)
实施例1 53 >98
实施例2 17 >98
实施例3 38 >98
实施例4 42 >98
实施例5 29 >98
实施例6 20 >98
实施例7 42 >98
实施例8 30 >98
实施例9 25 >98
实施例10 19 >98
实施例11 31 >98
实施例12 50 >98
实施例13 40 >98
实施例14 26 >98
实施例15 13 >98
实施例16 31 >98
实施例17 44 >98
实施例18 14 >98
实施例19 39 >98
实施例20 50 >98
实施例21 49 >98
实施例22 52 >98
实施例23 38 >98
实施例24 40 >98
实施例25 10 >98
实施例26 35 >98
实施例27 53 >98
对比例1 0 0
对比例2 0 0
对比例3 0 0
从实施例1~5看,催化剂的用量过多或过少均会影响环氧丁烷的收率,催化剂用量为原料的3mol%~8mol%具有较高的环氧丁烷收率,最佳用量为原料的5mol%。
从实施例1和6~9看,异丁醛的用量过多或过少均会影响环氧丁烷收率,当使用1eq的丁烯时,异丁醛用量为2~3eq具有较高的环氧丁烷收率,使用1eq丁烯时,异丁醛最佳用量为2eq。
从实施例1和10~14看,反应压力会影响环氧丁烷收率,反应压力为1.5~3MPa时具有较高的环氧丁烷收率,最佳反应压力为2MPa。
从实施例1和15~18看,反应所使用的有机溶剂也会影响环氧丁烷的收率,最佳有机溶剂为乙腈。
从实施例1和19~24看,与环状有机氮氧自由基前体作为催化剂相比,邻苯二甲酰亚胺、4,5-二氯酞酰亚胺、2,3-萘二甲酰亚胺或均苯四甲酸二胺作为催化剂具有更高的环氧丁烷收率。
从对比例1~3可知,当不使用催化剂和共还原剂时,或者使用苯甲醛作为共还原剂,又或者使用乙醛作为共还原剂时,无目标产物生成,表明室温不足以激活苯甲醛和乙醛。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,以丁烯为原料,加入有机溶剂和催化剂,以异丁醛为共还原剂,以氧气为氧化剂,在室温下,反应压力为0.1~4.5MPa的条件下制得环氧丁烷;
    所述催化剂选自环状有机氮氧自由基前体或具有如下式(I)、(II)、(III)或(IV)所述结构的化合物中的至少一种;
    Figure PCTCN2021103226-appb-100001
    式中R 1、R 2、R 3独立地选自氢原子、烷基、环烷基、芳香基、杂环、羟基、硝基或卤素,或者R 2、R 3、R 4至少两个成环。
  2. 如权利要求1所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,所述催化剂选自具有如下式(I)、(II)、(III)或(IV)所述结构的化合物中的至少一种;
    Figure PCTCN2021103226-appb-100002
    式中R 2、R 3独立地选自氢原子、烷基、环烷基、芳香基、杂环、羟基、硝基或卤素,或者R 2、R 3、R 4至少两个成环。
  3. 如权利要求1或2所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,所述催化剂选自下式(a)~(d)中的至少一种;
    Figure PCTCN2021103226-appb-100003
  4. 如权利要求1所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,所述环状有机氮氧自由基前体选自N-羟基邻苯二甲酰亚胺、N-羟基琥珀酰亚胺或1-羟基哌啶-2,6-二酮中的至少一种。
  5. 如权利要求1所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,反应压力为1.5~3MPa。
  6. 如权利要求1所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,催化剂的用量为原料的1mol%~10mol%。
  7. 如权利要求6所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,催化剂的用量为原料的3mol%~8mol%。
  8. 如权利要求1所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,相对于1当量的丁烯,异丁醛的用量为1~5当量。
  9. 如权利要求8所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,相对于1当量的丁烯,异丁醛的用量为2~3当量。
  10. 如权利要求1所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,有机溶剂选自苯甲腈、乙酸乙酯、乙腈、三氟甲苯、二氯甲烷中的一种或多种。
PCT/CN2021/103226 2021-06-22 2021-06-29 一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法 WO2022267081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110694682.0 2021-06-22
CN202110694682.0A CN113292518B (zh) 2021-06-22 2021-06-22 一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法

Publications (1)

Publication Number Publication Date
WO2022267081A1 true WO2022267081A1 (zh) 2022-12-29

Family

ID=77329166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103226 WO2022267081A1 (zh) 2021-06-22 2021-06-29 一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法

Country Status (2)

Country Link
CN (1) CN113292518B (zh)
WO (1) WO2022267081A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260129A (zh) * 2022-08-03 2022-11-01 中山大学 一种亚胺类化合物催化液体烯烃环氧化反应的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104098531A (zh) * 2014-07-25 2014-10-15 南京红太阳新材料有限公司 一种1,2-环氧丁烷的合成方法
CN104098532A (zh) * 2014-07-18 2014-10-15 中国石油化工股份有限公司 丁烯环氧化制备环氧丁烷的方法
CN106279069A (zh) * 2015-08-10 2017-01-04 中国石油化工股份有限公司 一种制备环氧丁烷的方法
CN107903164A (zh) * 2017-10-24 2018-04-13 山东联创互联网传媒股份有限公司 同时制备有机酸和环氧丁烷的方法
CN109232510A (zh) * 2018-10-24 2019-01-18 浙江大学 一种环烷烃类化合物氧化制备内酯类化合物的方法
CN111978274A (zh) * 2019-05-22 2020-11-24 广州大有精细化工厂 制备环氧丁烷的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368267A (en) * 1978-04-14 1983-01-11 Exxon Research And Engineering Co. Epoxidation of lower α-olefins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104098532A (zh) * 2014-07-18 2014-10-15 中国石油化工股份有限公司 丁烯环氧化制备环氧丁烷的方法
CN104098531A (zh) * 2014-07-25 2014-10-15 南京红太阳新材料有限公司 一种1,2-环氧丁烷的合成方法
CN106279069A (zh) * 2015-08-10 2017-01-04 中国石油化工股份有限公司 一种制备环氧丁烷的方法
CN107903164A (zh) * 2017-10-24 2018-04-13 山东联创互联网传媒股份有限公司 同时制备有机酸和环氧丁烷的方法
CN109232510A (zh) * 2018-10-24 2019-01-18 浙江大学 一种环烷烃类化合物氧化制备内酯类化合物的方法
CN111978274A (zh) * 2019-05-22 2020-11-24 广州大有精细化工厂 制备环氧丁烷的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAI PENG-FEI, QU JIAN-PING, KANG YAN-BIAO: "Organocatalyzed Aerobic Oxidation of Aldehydes to Acids", ORGANIC LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 21, no. 5, 1 March 2019 (2019-03-01), US , pages 1393 - 1396, XP093017235, ISSN: 1523-7060, DOI: 10.1021/acs.orglett.9b00101 *
MINISCI FRANCESCO, FRANCESCO RECUPERO, ANDREA CECCHETTO, CARLO PUNTA, CRISTIAN GAMBAROTTI, FRANCESCA FONTANA, GIAN FRANCO PEDULLI: "Polar Effects in Free-Radical Reactions. A Novel Homolytic Acylation of Heteroaromatic Bases by Aerobic Oxidation of Aldehydes, Catalysed by N-Hydroxyphthalimide and Co Salts", JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 40, no. 2, 11 March 2009 (2009-03-11), pages 325 - 328, XP093017233, DOI: 10.1002/jhet.5570400220 *
ZHOU XIAN-TAI, SUN MU-ZHAO, JI HONG-BING: "Highly Efficient Aerobic Oxidation of Cyclohexene Catalyzed by Iron(III) Porphyrins in Supercritical Carbon Dioxide ", ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, vol. 9, 11 May 2020 (2020-05-11), XP093017227, DOI: 10.1149/2162-8777/ab8f38 *
ZHOU, X. ; JI, H.: "Biomimetic kinetics and mechanism of cyclohexene epoxidation catalyzed by metalloporphyrins", CHEMICAL ENGENEERING JOURNAL, ELSEVIER, AMSTERDAM, NL, vol. 156, no. 2, 15 January 2010 (2010-01-15), AMSTERDAM, NL , pages 411 - 417, XP026827912, ISSN: 1385-8947 *

Also Published As

Publication number Publication date
CN113292518B (zh) 2022-05-31
CN113292518A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
Liang et al. NHPI and palladium cocatalyzed aerobic oxidative acylation of arenes through a radical process
JP2018535201A (ja) 長鎖末端アミノ酸と二塩基酸の共同製造方法
WO2022267081A1 (zh) 一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法
Wang et al. Radical cyclizations of enynes/dienes with alcohols in water using a green oxidant
CN105669338A (zh) 一种水合肼还原芳香硝基化合物制备芳香胺的方法
WO2016184038A1 (zh) 一种采用微流场反应技术制备环氧环己烷的方法
Karakhanov et al. Oxidation of p-Xylene
CN104478677B (zh) 一种仿生催化二苯甲烷氧气氧化制备二苯甲酮的方法
CN104193670B (zh) 一种催化氧化乙苯及其衍生物制备芳酮的方法
CN103922903B (zh) 用共轭聚合金属卟啉催化氧化烷烃和环烷烃的方法
CN102010376B (zh) 离子液体水相催化喹喔啉类化合物的合成
WO2024031838A1 (zh) 一种采用固载镍催化工业化生产氘代医药中间体的方法
CN114345388B (zh) 一种类石墨相氮化碳的改性方法
CN114539126B (zh) 一种酰胺连续氢化还原方法
Panda Use of gold nanoparticles in the synthesis of heterocyclic compounds
CN114685276B (zh) 一种乙烯羰基化制备丙酸酯类产品的方法
CN101440021A (zh) 一种苯酚的制备方法
CN114315532A (zh) 一种2,2-二烷氧基乙醛合成1,1,4,4-四烷氧基-2-丁烯的方法
CN113813982A (zh) 一种整构式n改性ts-1催化剂载体及其制备方法
CN108314646B (zh) 一种高分散双金属纳米材料制备泌尿生殖系统用药物中间体的方法
CN109384212B (zh) 一种多孔碳及其在制备金属负载型催化剂中的应用
CN101879447A (zh) 草酸酯加氢制备乙二醇的催化剂及其制备方法和应用
Miao et al. Reaction of [60] fullerene with epoxides under photo-irradiation: Synthesis of C60-fused tetrahydrofuran derivatives
CN110105303A (zh) 一种以液氯为氧化剂连续生产硫化促进剂cbs的方法
CN111039863A (zh) 一种橡胶防老剂tmq的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946570

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/07/2024)