WO2022267081A1 - 一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法 - Google Patents
一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法 Download PDFInfo
- Publication number
- WO2022267081A1 WO2022267081A1 PCT/CN2021/103226 CN2021103226W WO2022267081A1 WO 2022267081 A1 WO2022267081 A1 WO 2022267081A1 CN 2021103226 W CN2021103226 W CN 2021103226W WO 2022267081 A1 WO2022267081 A1 WO 2022267081A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- butene
- butylene oxide
- green
- catalyst
- organic
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 title claims abstract description 37
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 150000003384 small molecules Chemical class 0.000 title claims abstract description 12
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 title abstract description 5
- 239000003054 catalyst Substances 0.000 claims abstract description 38
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000003960 organic solvent Substances 0.000 claims abstract description 23
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000001301 oxygen Substances 0.000 claims abstract description 15
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 15
- 239000002994 raw material Substances 0.000 claims abstract description 11
- 239000007800 oxidant agent Substances 0.000 claims abstract description 7
- 230000001590 oxidative effect Effects 0.000 claims abstract description 7
- 239000002243 precursor Substances 0.000 claims abstract description 7
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 6
- 125000003118 aryl group Chemical group 0.000 claims abstract description 6
- 150000001875 compounds Chemical class 0.000 claims abstract description 6
- 125000000753 cycloalkyl group Chemical group 0.000 claims abstract description 6
- 125000000623 heterocyclic group Chemical group 0.000 claims abstract description 6
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 5
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 5
- 150000002367 halogens Chemical class 0.000 claims abstract description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 5
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims abstract description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 49
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 18
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 12
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 9
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 claims description 9
- -1 nitroxide radical Chemical class 0.000 claims description 9
- GETTZEONDQJALK-UHFFFAOYSA-N (trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=CC=C1 GETTZEONDQJALK-UHFFFAOYSA-N 0.000 claims description 8
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 claims description 7
- 238000006555 catalytic reaction Methods 0.000 claims description 5
- 230000003197 catalytic effect Effects 0.000 claims description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 4
- 150000003254 radicals Chemical class 0.000 claims description 3
- GTFDJMHTJNPQFS-UHFFFAOYSA-N 1-hydroxypiperidine-2,6-dione Chemical compound ON1C(=O)CCCC1=O GTFDJMHTJNPQFS-UHFFFAOYSA-N 0.000 claims description 2
- CFMZSMGAMPBRBE-UHFFFAOYSA-N 2-hydroxyisoindole-1,3-dione Chemical group C1=CC=C2C(=O)N(O)C(=O)C2=C1 CFMZSMGAMPBRBE-UHFFFAOYSA-N 0.000 claims description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 8
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 6
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 6
- 230000035484 reaction time Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- XENVCRGQTABGKY-ZHACJKMWSA-N chlorohydrin Chemical compound CC#CC#CC#CC#C\C=C\C(Cl)CO XENVCRGQTABGKY-ZHACJKMWSA-N 0.000 description 4
- QJPBDGMPYPSJSF-UHFFFAOYSA-N 5,6-dichloroisoindole-1,3-dione Chemical class C1=C(Cl)C(Cl)=CC2=C1C(=O)NC2=O QJPBDGMPYPSJSF-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 3
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 3
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellityc acid Natural products OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 125000005543 phthalimide group Chemical group 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000006897 homolysis reaction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/02—Synthesis of the oxirane ring
- C07D301/03—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
- C07D301/04—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
- C07D301/06—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the liquid phase
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/04—Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Definitions
- the invention relates to the technical field of industrial catalysis, and more specifically relates to a method for preparing butylene oxide from butene with small organic molecules, which is green and highly efficient.
- butylene oxide As a very important organic chemical raw material, butylene oxide is also called butylene oxide. It is widely used in the synthesis of organic intermediates and polymers. Such as synthesis of antioxidants, corrosion inhibitors, surfactants, etc. Due to the wide application and high added value of butylene oxide, its synthesis method has attracted extensive attention of researchers at home and abroad. At present, the industrial methods for synthesizing butylene oxide mainly include the chlorohydrin method and the peracetic acid method.
- the chlorohydrin method is a traditional process for preparing low-carbon oxides, which has been industrialized for more than 60 years. Its main technological process is chloroalcoholization of n-butene with water and chlorine gas to obtain chlorobutanol, and then saponification with lye to obtain butylene oxide. Although this method has a relatively mature process, a large amount of industrial wastewater will be generated during the production process, which seriously pollutes the environment and severely corrodes the equipment. Compared with the chlorohydrin method, peracetic acid does not discharge three wastes and has little environmental pollution, but peracetic acid is unstable in nature and has safety problems.
- Chinese invention patent CN107903164A discloses a method for simultaneously preparing organic acid and butylene oxide, which uses organic aldehyde and butene as raw materials, oxygen or air as oxidant, and organic liquid solvent as medium.
- the synthesis metal salt of pyrrole is used as a catalyst to prepare butylene oxide under the conditions of a reaction temperature of 50-160 DEG C and a reaction pressure of 0.05-3.5 MPa.
- this method does not produce a large amount of waste water and waste residue, and improves safety.
- air or oxygen is used as the oxidant, which avoids the transportation problem caused by the easy decomposition of hydrogen peroxide, but this method still has needs. Problems with higher reaction temperatures.
- the purpose of the present invention is to overcome the problem of high reaction temperature required in the above-mentioned prior art, and to provide a method for preparing butylene oxide from small organic molecules with green and high-efficiency catalysis of butene.
- the method has mild conditions, green safety, low cost and good industrial application prospect.
- a method for preparing butylene oxide from butene with small organic molecules which is green and highly efficient, uses butene as a raw material, adds an organic solvent and a catalyst, uses isobutyraldehyde as a co-reductant, and uses oxygen as an oxidant.
- the reaction Butylene oxide is produced under the condition of pressure of 0.1-4.5MPa;
- the catalyst is selected from at least one of cyclic organic nitroxide radical precursors or compounds having the structures described in the following formula (I), (II), (III) or (IV);
- R 1 , R 2 , R 3 are independently selected from a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heterocycle, a hydroxyl group, a nitro group or a halogen, or at least two members of R 2 , R 3 , and R 4 ring.
- the cyclic organic nitroxide free radical precursor or the compound having the structure described in formula I), (II), (III) or (IV) can catalyze the oxidation of butylene under the condition of the presence of oxygen, Produces butylene oxide with high selectivity.
- the self-oxidation of isobutyraldehyde is very slow, and high temperature is usually required to speed up the reaction speed.
- the above catalyst can promote the chain initiation process of isobutyraldehyde to generate acyl radicals at room temperature, thereby accelerating the free radical reaction of butene epoxidation , to achieve the preparation of butylene oxide at room temperature.
- the room temperature of the present invention is 25°C to 30°C.
- the catalyst is selected from at least one compound having the structure described in the following formula (I), (II), (III) or (IV);
- R 2 and R 3 are independently selected from hydrogen atom, alkyl, cycloalkyl, aryl, heterocycle, hydroxyl, nitro or halogen, or at least two of R 2 , R 3 and R 4 form a ring.
- the number of carbon atoms of the alkyl group is 1-8; the carbon number of the cycloalkyl group is 3-7; the aryl group is selected from benzene ring, anthracene, phenanthrene, naphthalene, etc.; Five-membered or six-membered heterocyclic ring.
- the catalyst is selected from phthalimides represented by the following formula (a), 4,5-dichlorophthalimides represented by the following formula (b), and phthalimides represented by the following formula (c). At least one of the 2,3-naphthalimide shown or the pyromellitic acid diamine shown in the following formula (d);
- the catalysts described in the formulas (a) to (d) can not only promote the homolysis of isobutyraldehyde, but also form hydrogen bonds with peroxy radicals to promote the formation of peroxyacids, thereby increasing the yield of butylene oxide.
- the cyclic organic nitroxide radical precursor is selected from at least A sort of.
- the reaction pressure is 1.5-3 MPa. More preferably, it is 2 MPa.
- the catalyst is used in an amount of 1 mol% to 10 mol% of the raw material. More preferably, it is 3 mol% - 8 mol%.
- isobutyraldehyde is used in an amount of 1-5 equivalents (eq) relative to 1 equivalent (eq) of butene. More preferably, it is 2 to 3 equivalents (eq).
- the organic solvent of the present invention is selected from one or more of benzonitrile, ethyl acetate, acetonitrile, trifluorotoluene, and dichloromethane. Preferably it is one or more of acetonitrile, ethyl acetate, and trifluorotoluene.
- the present invention uses butene as a raw material, isobutyraldehyde as a co-reductant, oxygen as an oxidant, and under the action of a catalyst, butylene oxide is prepared at room temperature, thereby reducing energy consumption and potential safety hazards.
- oxygen as an oxidant
- the use of oxygen as the oxidant avoids the transportation problem caused by the easy decomposition of hydrogen peroxide.
- the invention has simple process, mild conditions, high yield and selectivity of butylene oxide, and has good industrial application prospect.
- the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field unless otherwise specified.
- Organic solvent A acetonitrile
- Organic solvent B benzonitrile
- Organic solvent C ethyl acetate
- Organic solvent D trifluorotoluene
- Organic solvent E dichloromethane
- Co-reducing agent A isobutyraldehyde
- Co-reducing agent B benzaldehyde
- Co-reducing agent C acetaldehyde
- Catalyst A phthalimide
- Catalyst B N-Hydroxyphthalimide
- Catalyst C 4,5-dichlorophthalimide
- Catalyst D 2,3-naphthalimide
- Catalyst E pyromellitic acid diamine
- Catalyst F N-hydroxysuccinimide
- Catalyst G 1-hydroxypiperidine-2,6-dione.
- Embodiments 2 to 5 provide a series of organic small molecule green, efficient catalytic butylenes to prepare butylene oxide.
- the amount of catalyst used in different embodiments is different. See Table 1 for details to explore the impact of different catalyst amounts on the yield of butylene oxide. and selective effects.
- Example 2 Example 3
- Example 4 Example 5
- Organic solvent A 20mL 20mL 20mL 20mL butene 26mmol 26mmol 26mmol 26mmol Catalyst
- Co-reducing agent A 2eq 2eq 2eq 2eq oxygen 2 MPa 2 MPa 2 MPa 2 MPa Reaction time 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours
- Embodiments 6 to 9 provide a series of organic small molecule green and highly efficient catalytic butylenes to prepare butylene oxide.
- the amount of isobutyraldehyde in different examples is different, see Table 2 for details, to explore the effect of different amounts of isobutyraldehyde on epoxy Effects on butane yield and selectivity.
- Example 6 Example 7
- Example 8 Organic solvent A 20mL 20mL 20mL 20mL Butene 26mmol 26mmol 26mmol 26mmol 26mmol
- Catalyst A 5mol% 5mol% 5mol% 5mol% 5mol% Co-reducing agent A 1eq 3eq 4eq 5eq oxygen 2 MPa 2 MPa 2 MPa 2 MPa Reaction time 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours
- Embodiments 10 to 14 provide a series of organic small molecule green and highly efficient methods for preparing butylene oxide from butene.
- the reaction pressures in different examples are different. See Table 3 for details to explore the impact of different reaction pressures on the yield of butylene oxide. and selective effects.
- Example 10 Example 11
- Example 12 Example 13
- Example 14 Organic solvent A 20mL 20mL 20mL 20mL 20mL 20mL Butene 26mmol 26mmol 26mmol 26mmol Catalyst A 5mol% 5mol% 5mol% 5mol% 5mol% 5mol% Co-reducing agent A 2eq 2eq 2eq 2eq oxygen 1MPa 1.5MPa 2.5MPa 3.0MPa 4.5MPa Reaction time 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours
- Embodiments 15-18 provide a series of organic small molecule green, highly efficient catalytic butylenes to prepare butylene oxide.
- the organic solvents in different examples are different. See Table 4 for details to explore the impact of different organic solvents on the yield of butylene oxide. and selective effects.
- Example 15 Example 16
- Example 17 Example 18
- Organic solvent B 20mL -- -- organic solvent C -- 20mL -- organic solvent D.
- -- -- 20mL -- Organic solvent E -- -- -- 20mL Butene 26mmol 26mmol 26mmol Catalyst A 5mol% 5mol% 5mol% 5mol% Co-reducing agent A 2eq 2eq 2eq 2eq
- Embodiments 19-24 provide a series of organic small molecule green and highly efficient methods for preparing butylene oxide from butene.
- the catalysts in different examples are different. See Table 5 for details to explore the yield and selection of different catalysts for butylene oxide. sexual influence.
- Examples 25-27 provide a series of green and highly efficient methods for preparing butylene oxide from butene with small organic molecules, see Table 6 for details.
- Example 25 Example 26
- Example 27 Organic solvent A 20mL 20mL 20mL Butene 26mmol 26mmol 26mmol Catalyst A 5mol% 5mol% 5mol%
- Comparative Examples 1-3 provide a series of green and highly efficient methods for preparing butylene oxide from butene with small organic molecules, as shown in Table 7 for details.
- Comparative example 1 Comparative example 2 Comparative example 3
- Organic solvent A 20mL 20mL 20mL Butene 26mmol 26mmol 26mmol Catalyst A -- 5mol% 5mol% Co-reducing agent B -- 2eq -- Co-reducing agent C -- -- 2eq oxygen 2 MPa 2 MPa 2 MPa Reaction time 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours
- reaction pressure can influence butylene oxide yield, when reaction pressure is 1.5 ⁇ 3MPa, there is higher yield of butylene oxide, and optimum reaction pressure is 2MPa.
- the used organic solvent of reaction also can influence the yield of butylene oxide, and optimum organic solvent is acetonitrile.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Epoxy Compounds (AREA)
Abstract
公开了一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,所述方法以丁烯为原料,加入有机溶剂和催化剂,以异丁醛为共还原剂,以氧气为氧化剂,在室温下,反应压力为0.1~4.5MPa的条件下制得环氧丁烷;所述催化剂选自环状有机氮氧自由基前体或具有如下式(I)、(II)、(III)或(IV)所述结构的化合物中的至少一种;式中R 1、R 2、R 3独立地选自氢原子、烷基、环烷基、芳香基、杂环、羟基、硝基或卤素,或者R 2、R 3、R 4至少两个成环。该工艺简单,条件温和,环氧丁烷收率和选择性高,具有良好的工业应用前景。
Description
本发明涉及工业催化技术领域,更具体地,涉及一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法。
环氧丁烷作为一种非常重要的有机化工原料,又称为氧化丁烯。被广泛地应用在有机中间体和聚合物的合成。例如抗氧化剂、缓蚀剂、表面活性剂的合成等等。由于环氧丁烷应用广泛,附加值高,其合成方法受到国内外研究者的广泛关注。目前工业上合成环氧丁烷的方法主要有氯醇法和过氧乙酸法。
氯醇法是制备低碳氧化物的传统工艺,已经工业化60多年。其主要工艺流程是正丁烯与水、氯气发生氯醇化得到氯丁醇,然后用碱液皂化得到环氧丁烷。该方法虽然工艺较为成熟,但在生产过程中会产生大量的工业废水,严重污染环境,对设备腐蚀严重。与氯醇法相比,过乙酸不排放三废,对环境污染小,但过氧乙酸性质不稳定,存在安全问题。此外,绿色友好的钛硅分子筛/过氧化氢体系也得到了一定的发展,然而由于过氧化氢易分解,难以运输,造成了成本的增加,工业化难度较大。
为了解决上述问题,中国发明专利CN107903164A公开了一种同时制备有机酸和环氧丁烷的方法,该方法以有机醛和丁烯为原料,以氧气或空气为氧化剂,以有机液体溶剂为介质,以吡咯合成金属盐为催化剂,在反应温度为50~160℃,反应压力为0.05~3.5MPa的条件下制备得到环氧丁烷。与氯醇法和过氧乙酸法相比,该方法不产生大量废水和废渣,且提高了安全性,同时以空气或氧气为氧化剂,避免了双氧水易分解造成的运输问题,但该方法还存在需要较高的反应温度的问题。
发明内容
本发明的目的是克服上述现有技术需要较高的反应温度的问题,提供一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法。该方法条件温和,绿色安全,成本低,具有良好的工业应用前景。
本发明的上述目的通过以下技术方案实现:
一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,以丁烯为原料,加入有机溶剂和催化剂,以异丁醛为共还原剂,以氧气为氧化剂,在室温下,反应压力为0.1~4.5MPa的条件下制得环氧丁烷;
所述催化剂选自环状有机氮氧自由基前体或具有如下式(I)、(II)、(III)或(IV)所述结构的化合物中的至少一种;
式中R
1、R
2、R
3独立地选自氢原子、烷基、环烷基、芳香基、杂环、羟基、硝基或卤素,或者R
2、R
3、R
4至少两个成环。
在本发明中,环状有机氮氧自由基前体或具有如式I)、(II)、(III)或(IV)所述结构的化合物,能够在氧气存在的条件下催化氧化丁烯,高选择性地生成环氧丁烷。常温下,异丁醛自氧化非常缓慢,通常需要高温来加快反应速度,上述催化剂可在室温下促进异丁醛产生酰基自由基这一链引发过程,从而加速丁烯环氧化的自由基反应,实现在室温下制备环氧丁烷。
本发明所述室温为25℃~30℃。
优选地,所述催化剂选自具有如下式(I)、(II)、(III)或(IV)所述结构的化合物中的至少一种;
式中R
2、R
3独立地选自氢原子、烷基、环烷基、芳香基、杂环、羟基、硝基或卤素,或者R
2、R
3、R
4至少两个成环。
所述催化剂中,烷基的碳原子数为1~8;环烷基的碳原子为3~7;芳香基选自苯环、蒽、菲、萘等;杂环选自含N、S的五元或六元杂环。
更优选地,所述催化剂选自如下式(a)所示的邻苯二甲酰亚胺、如下式(b)所示的4,5-二氯酞酰亚胺、如下式(c)所示的2,3-萘二甲酰亚胺或如下式(d)所示的均苯四甲酸二胺中的至少一种;
式(a)~(d)所述催化剂除了可促进异丁醛均裂,还可与过氧自由基形成氢键,促使其形成过氧酸,进而提高环氧丁烷的收率。
优选地,所述环状有机氮氧自由基前体选自N-羟基邻苯二甲酰亚胺、N-羟基琥珀酰亚胺或1-羟基哌啶-2,6-二酮中的至少一种。
优选地,反应压力为1.5~3MPa。更优选为2MPa。
优选地,催化剂的用量为原料的1mol%~10mol%。更优选为3mol%~8mol%。
优选地,相对于1当量(eq)的丁烯,异丁醛的用量为1~5当量(eq)。更优选为2~3当量(eq)。
本发明所述有机溶剂选自苯甲腈、乙酸乙酯、乙腈、三氟甲苯、二氯甲烷中的一种或多种。优选为乙腈、乙酸乙酯、三氟甲苯中的一种或多种。
与现有技术相比,本发明的有益效果是:
本发明以丁烯为原料,以异丁醛为共还原剂,以氧气为氧化剂,在催化剂作用下,实现室温下制备环氧丁烷,降低了能耗,也减小了安全隐患。同时,采用氧气作为氧化剂,避免了双氧水易分解造成的运输问题。本发明工艺简单,条件温和,环氧丁烷收率和选择性高,具有良好的工业应用前景。
为了更清楚、完整的描述本发明的技术方案,以下通过具体实施例进一步详细说明本发明,应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明,可以在本发明权利限定的范围内进行各种改变。
本发明所采用的试剂、方法和设备,如无特殊说明,均为本技术领域常规试剂、方法和设备。
以下实施例及对比例中采用的原料如下:
有机溶剂A:乙腈;
有机溶剂B:苯甲腈;
有机溶剂C:乙酸乙酯;
有机溶剂D:三氟甲苯;
有机溶剂E:二氯甲烷;
共还原剂A:异丁醛;
共还原剂B:苯甲醛;
共还原剂C:乙醛;
催化剂A:邻苯二甲酰亚胺;
催化剂B:N-羟基邻苯二甲酰亚胺
催化剂C:4,5-二氯酞酰亚胺;
催化剂D:2,3-萘二甲酰亚胺;
催化剂E:均苯四甲酸二胺;
催化剂F:N-羟基琥珀酰亚胺;
催化剂G:1-羟基哌啶-2,6-二酮。
实施例1
一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,步骤如下:
向100mL聚四氟乙烯内衬不锈钢高压反应釜中加入乙腈(20mL),邻苯二甲酰亚胺(5mol%),异丁醛(2eq),充入正丁烯(1.46g,26mmol),再充入氧气(2MPa),以联苯(50mg)作为内标物,27℃下水浴反应12h制得1,2-环氧丁烷。
术语“2eq”,指的是按物质的量计,异丁醛的用量是正丁烯的2倍。
实施例2~5
实施例2~5提供一系列有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,不同实施例催化剂用量不一样,具体见表1,以探究不同催化剂用量对环氧丁烷收率和选择性的影响。
表1
实施例2 | 实施例3 | 实施例4 | 实施例5 | |
有机溶剂A | 20mL | 20mL | 20mL | 20mL |
正丁烯 | 26mmol | 26mmol | 26mmol | 26mmol |
催化剂A | 1mol% | 3mol% | 8mol% | 10mol% |
共还原剂A | 2eq | 2eq | 2eq | 2eq |
氧气 | 2MPa | 2MPa | 2MPa | 2MPa |
反应时间 | 12h | 12h | 12h | 12h |
实施例6~9
实施例6~9提供一系列有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,不同实施例异丁醛用量不一样,具体见表2,以探究不同异丁醛用量对环氧丁烷收率和选择性的影响。
表2
实施例6 | 实施例7 | 实施例8 | 实施例9 | |
有机溶剂A | 20mL | 20mL | 20mL | 20mL |
正丁烯 | 26mmol | 26mmol | 26mmol | 26mmol |
催化剂A | 5mol% | 5mol% | 5mol% | 5mol% |
共还原剂A | 1eq | 3eq | 4eq | 5eq |
氧气 | 2MPa | 2MPa | 2MPa | 2MPa |
反应时间 | 12h | 12h | 12h | 12h |
实施例10~14
实施例10~14提供一系列有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,不同实施例反应压力不一样,具体见表3,以探究不同反应压力对环氧丁烷收率和选择性的影响。
表3
实施例10 | 实施例11 | 实施例12 | 实施例13 | 实施例14 | |
有机溶剂A | 20mL | 20mL | 20mL | 20mL | 20mL |
正丁烯 | 26mmol | 26mmol | 26mmol | 26mmol | 26mmol |
催化剂A | 5mol% | 5mol% | 5mol% | 5mol% | 5mol% |
共还原剂A | 2eq | 2eq | 2eq | 2eq | 2eq |
氧气 | 1MPa | 1.5MPa | 2.5MPa | 3.0MPa | 4.5MPa |
反应时间 | 12h | 12h | 12h | 12h | 12h |
实施例15~18
实施例15~18提供一系列有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,不同实施例有机溶剂不一样,具体见表4,以探究不同有机溶剂对环氧丁烷收率和选择性的影响。
表4
实施例15 | 实施例16 | 实施例17 | 实施例18 | |
有机溶剂B | 20mL | -- | -- | -- |
有机溶剂C | -- | 20mL | -- | -- |
有机溶剂D | -- | -- | 20mL | -- |
有机溶剂E | -- | -- | -- | 20mL |
正丁烯 | 26mmol | 26mmol | 26mmol | 26mmol |
催化剂A | 5mol% | 5mol% | 5mol% | 5mol% |
共还原剂A | 2eq | 2eq | 2eq | 2eq |
氧气 | 2MPa | 2MPa | 2MPa | 2MPa |
反应时间 | 12h | 12h | 12h | 12h |
实施例19~24
实施例19~24提供一系列有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,不同实施例催化剂不一样,具体见表5,以探究不同催化剂对环氧丁烷收率和选择性的影响。
表5
实施例25~27
实施例25~27提供一系列有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,具体见表6。
表6
实施例25 | 实施例26 | 实施例27 | |
有机溶剂A | 20mL | 20mL | 20mL |
正丁烯 | 26mmol | 26mmol | 26mmol |
催化剂A | 5mol% | 5mol% | 5mol% |
共还原剂A | 2eq | 2eq | 2eq |
氧气 | 0.1MPa | 2MPa | 2MPa |
反应时间 | 12h | 6h | 48h |
对比例1~3
对比例1~3提供一系列有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,具体见表7。
表7
对比例1 | 对比例2 | 对比例3 | |
有机溶剂A | 20mL | 20mL | 20mL |
正丁烯 | 26mmol | 26mmol | 26mmol |
催化剂A | -- | 5mol% | 5mol% |
共还原剂B | -- | 2eq | -- |
共还原剂C | -- | -- | 2eq |
氧气 | 2MPa | 2MPa | 2MPa |
反应时间 | 12h | 12h | 12h |
分析检测
反应结束后取液相样品,利用气相色谱分析产物,采用内标法定量产物,结果见表8。
表8
环氧丁烷收率(%) | 环氧丁烷选择性(%) | |
实施例1 | 53 | >98 |
实施例2 | 17 | >98 |
实施例3 | 38 | >98 |
实施例4 | 42 | >98 |
实施例5 | 29 | >98 |
实施例6 | 20 | >98 |
实施例7 | 42 | >98 |
实施例8 | 30 | >98 |
实施例9 | 25 | >98 |
实施例10 | 19 | >98 |
实施例11 | 31 | >98 |
实施例12 | 50 | >98 |
实施例13 | 40 | >98 |
实施例14 | 26 | >98 |
实施例15 | 13 | >98 |
实施例16 | 31 | >98 |
实施例17 | 44 | >98 |
实施例18 | 14 | >98 |
实施例19 | 39 | >98 |
实施例20 | 50 | >98 |
实施例21 | 49 | >98 |
实施例22 | 52 | >98 |
实施例23 | 38 | >98 |
实施例24 | 40 | >98 |
实施例25 | 10 | >98 |
实施例26 | 35 | >98 |
实施例27 | 53 | >98 |
对比例1 | 0 | 0 |
对比例2 | 0 | 0 |
对比例3 | 0 | 0 |
从实施例1~5看,催化剂的用量过多或过少均会影响环氧丁烷的收率,催化剂用量为原料的3mol%~8mol%具有较高的环氧丁烷收率,最佳用量为原料的5mol%。
从实施例1和6~9看,异丁醛的用量过多或过少均会影响环氧丁烷收率,当使用1eq的丁烯时,异丁醛用量为2~3eq具有较高的环氧丁烷收率,使用1eq丁烯时,异丁醛最佳用量为2eq。
从实施例1和10~14看,反应压力会影响环氧丁烷收率,反应压力为1.5~3MPa时具有较高的环氧丁烷收率,最佳反应压力为2MPa。
从实施例1和15~18看,反应所使用的有机溶剂也会影响环氧丁烷的收率,最佳有机溶剂为乙腈。
从实施例1和19~24看,与环状有机氮氧自由基前体作为催化剂相比,邻苯二甲酰亚胺、4,5-二氯酞酰亚胺、2,3-萘二甲酰亚胺或均苯四甲酸二胺作为催化剂具有更高的环氧丁烷收率。
从对比例1~3可知,当不使用催化剂和共还原剂时,或者使用苯甲醛作为共还原剂,又或者使用乙醛作为共还原剂时,无目标产物生成,表明室温不足以激活苯甲醛和乙醛。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。
Claims (10)
- 如权利要求1所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,所述环状有机氮氧自由基前体选自N-羟基邻苯二甲酰亚胺、N-羟基琥珀酰亚胺或1-羟基哌啶-2,6-二酮中的至少一种。
- 如权利要求1所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,反应压力为1.5~3MPa。
- 如权利要求1所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,催化剂的用量为原料的1mol%~10mol%。
- 如权利要求6所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,催化剂的用量为原料的3mol%~8mol%。
- 如权利要求1所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,相对于1当量的丁烯,异丁醛的用量为1~5当量。
- 如权利要求8所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,相对于1当量的丁烯,异丁醛的用量为2~3当量。
- 如权利要求1所述有机小分子绿色、高效催化丁烯制备环氧丁烷的方法,其特征在于,有机溶剂选自苯甲腈、乙酸乙酯、乙腈、三氟甲苯、二氯甲烷中的一种或多种。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110694682.0 | 2021-06-22 | ||
CN202110694682.0A CN113292518B (zh) | 2021-06-22 | 2021-06-22 | 一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022267081A1 true WO2022267081A1 (zh) | 2022-12-29 |
Family
ID=77329166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/103226 WO2022267081A1 (zh) | 2021-06-22 | 2021-06-29 | 一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113292518B (zh) |
WO (1) | WO2022267081A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115260129A (zh) * | 2022-08-03 | 2022-11-01 | 中山大学 | 一种亚胺类化合物催化液体烯烃环氧化反应的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104098531A (zh) * | 2014-07-25 | 2014-10-15 | 南京红太阳新材料有限公司 | 一种1,2-环氧丁烷的合成方法 |
CN104098532A (zh) * | 2014-07-18 | 2014-10-15 | 中国石油化工股份有限公司 | 丁烯环氧化制备环氧丁烷的方法 |
CN106279069A (zh) * | 2015-08-10 | 2017-01-04 | 中国石油化工股份有限公司 | 一种制备环氧丁烷的方法 |
CN107903164A (zh) * | 2017-10-24 | 2018-04-13 | 山东联创互联网传媒股份有限公司 | 同时制备有机酸和环氧丁烷的方法 |
CN109232510A (zh) * | 2018-10-24 | 2019-01-18 | 浙江大学 | 一种环烷烃类化合物氧化制备内酯类化合物的方法 |
CN111978274A (zh) * | 2019-05-22 | 2020-11-24 | 广州大有精细化工厂 | 制备环氧丁烷的方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4368267A (en) * | 1978-04-14 | 1983-01-11 | Exxon Research And Engineering Co. | Epoxidation of lower α-olefins |
-
2021
- 2021-06-22 CN CN202110694682.0A patent/CN113292518B/zh active Active
- 2021-06-29 WO PCT/CN2021/103226 patent/WO2022267081A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104098532A (zh) * | 2014-07-18 | 2014-10-15 | 中国石油化工股份有限公司 | 丁烯环氧化制备环氧丁烷的方法 |
CN104098531A (zh) * | 2014-07-25 | 2014-10-15 | 南京红太阳新材料有限公司 | 一种1,2-环氧丁烷的合成方法 |
CN106279069A (zh) * | 2015-08-10 | 2017-01-04 | 中国石油化工股份有限公司 | 一种制备环氧丁烷的方法 |
CN107903164A (zh) * | 2017-10-24 | 2018-04-13 | 山东联创互联网传媒股份有限公司 | 同时制备有机酸和环氧丁烷的方法 |
CN109232510A (zh) * | 2018-10-24 | 2019-01-18 | 浙江大学 | 一种环烷烃类化合物氧化制备内酯类化合物的方法 |
CN111978274A (zh) * | 2019-05-22 | 2020-11-24 | 广州大有精细化工厂 | 制备环氧丁烷的方法 |
Non-Patent Citations (4)
Title |
---|
DAI PENG-FEI, QU JIAN-PING, KANG YAN-BIAO: "Organocatalyzed Aerobic Oxidation of Aldehydes to Acids", ORGANIC LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 21, no. 5, 1 March 2019 (2019-03-01), US , pages 1393 - 1396, XP093017235, ISSN: 1523-7060, DOI: 10.1021/acs.orglett.9b00101 * |
MINISCI FRANCESCO, FRANCESCO RECUPERO, ANDREA CECCHETTO, CARLO PUNTA, CRISTIAN GAMBAROTTI, FRANCESCA FONTANA, GIAN FRANCO PEDULLI: "Polar Effects in Free-Radical Reactions. A Novel Homolytic Acylation of Heteroaromatic Bases by Aerobic Oxidation of Aldehydes, Catalysed by N-Hydroxyphthalimide and Co Salts", JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 40, no. 2, 11 March 2009 (2009-03-11), pages 325 - 328, XP093017233, DOI: 10.1002/jhet.5570400220 * |
ZHOU XIAN-TAI, SUN MU-ZHAO, JI HONG-BING: "Highly Efficient Aerobic Oxidation of Cyclohexene Catalyzed by Iron(III) Porphyrins in Supercritical Carbon Dioxide ", ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, vol. 9, 11 May 2020 (2020-05-11), XP093017227, DOI: 10.1149/2162-8777/ab8f38 * |
ZHOU, X. ; JI, H.: "Biomimetic kinetics and mechanism of cyclohexene epoxidation catalyzed by metalloporphyrins", CHEMICAL ENGENEERING JOURNAL, ELSEVIER, AMSTERDAM, NL, vol. 156, no. 2, 15 January 2010 (2010-01-15), AMSTERDAM, NL , pages 411 - 417, XP026827912, ISSN: 1385-8947 * |
Also Published As
Publication number | Publication date |
---|---|
CN113292518B (zh) | 2022-05-31 |
CN113292518A (zh) | 2021-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liang et al. | NHPI and palladium cocatalyzed aerobic oxidative acylation of arenes through a radical process | |
JP2018535201A (ja) | 長鎖末端アミノ酸と二塩基酸の共同製造方法 | |
WO2022267081A1 (zh) | 一种有机小分子绿色、高效催化丁烯制备环氧丁烷的方法 | |
Wang et al. | Radical cyclizations of enynes/dienes with alcohols in water using a green oxidant | |
CN105669338A (zh) | 一种水合肼还原芳香硝基化合物制备芳香胺的方法 | |
WO2016184038A1 (zh) | 一种采用微流场反应技术制备环氧环己烷的方法 | |
Karakhanov et al. | Oxidation of p-Xylene | |
CN104478677B (zh) | 一种仿生催化二苯甲烷氧气氧化制备二苯甲酮的方法 | |
CN104193670B (zh) | 一种催化氧化乙苯及其衍生物制备芳酮的方法 | |
CN103922903B (zh) | 用共轭聚合金属卟啉催化氧化烷烃和环烷烃的方法 | |
CN102010376B (zh) | 离子液体水相催化喹喔啉类化合物的合成 | |
WO2024031838A1 (zh) | 一种采用固载镍催化工业化生产氘代医药中间体的方法 | |
CN114345388B (zh) | 一种类石墨相氮化碳的改性方法 | |
CN114539126B (zh) | 一种酰胺连续氢化还原方法 | |
Panda | Use of gold nanoparticles in the synthesis of heterocyclic compounds | |
CN114685276B (zh) | 一种乙烯羰基化制备丙酸酯类产品的方法 | |
CN101440021A (zh) | 一种苯酚的制备方法 | |
CN114315532A (zh) | 一种2,2-二烷氧基乙醛合成1,1,4,4-四烷氧基-2-丁烯的方法 | |
CN113813982A (zh) | 一种整构式n改性ts-1催化剂载体及其制备方法 | |
CN108314646B (zh) | 一种高分散双金属纳米材料制备泌尿生殖系统用药物中间体的方法 | |
CN109384212B (zh) | 一种多孔碳及其在制备金属负载型催化剂中的应用 | |
CN101879447A (zh) | 草酸酯加氢制备乙二醇的催化剂及其制备方法和应用 | |
Miao et al. | Reaction of [60] fullerene with epoxides under photo-irradiation: Synthesis of C60-fused tetrahydrofuran derivatives | |
CN110105303A (zh) | 一种以液氯为氧化剂连续生产硫化促进剂cbs的方法 | |
CN111039863A (zh) | 一种橡胶防老剂tmq的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21946570 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21946570 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/07/2024) |