WO2022265096A1 - エポキシ樹脂、硬化性樹脂組成物、およびその硬化物 - Google Patents

エポキシ樹脂、硬化性樹脂組成物、およびその硬化物 Download PDF

Info

Publication number
WO2022265096A1
WO2022265096A1 PCT/JP2022/024317 JP2022024317W WO2022265096A1 WO 2022265096 A1 WO2022265096 A1 WO 2022265096A1 JP 2022024317 W JP2022024317 W JP 2022024317W WO 2022265096 A1 WO2022265096 A1 WO 2022265096A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
epoxy resin
resin composition
curable resin
epoxy
Prior art date
Application number
PCT/JP2022/024317
Other languages
English (en)
French (fr)
Other versions
WO2022265096A9 (ja
Inventor
政隆 中西
圭汰 吉田
政幸 板井
允諭 関
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to KR1020237031690A priority Critical patent/KR20240021736A/ko
Priority to CN202280022791.0A priority patent/CN117043215A/zh
Priority to JP2022557655A priority patent/JP7230285B1/ja
Publication of WO2022265096A1 publication Critical patent/WO2022265096A1/ja
Publication of WO2022265096A9 publication Critical patent/WO2022265096A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin having a specific structure, a curable resin composition, and a cured product thereof.
  • Epoxy resin is excellent in electrical properties (dielectric constant/dielectric loss tangent, insulating properties), mechanical properties, adhesive properties, and thermal properties (heat resistance, etc.). It is widely used in the fields of electrical and electronic materials, structural materials, adhesives, and paints.
  • Patent Document 1 In recent years, in the electrical and electronic fields, performance improvements such as flame retardancy, moisture resistance, adhesion, and dielectric properties of resin compositions, high purity, low viscosity for high filling of fillers (inorganic or organic fillers) There is a demand for further improvement in various properties such as improved reactivity in order to shorten the molding cycle (Patent Document 1). In addition, as structural materials, lightweight materials with excellent mechanical properties are required for use in aerospace materials, leisure and sports equipment, and the like.
  • an aromatic cross-linking unit is sometimes introduced for the purpose of improving the heat resistance of the resin composition, but in this case, since the main skeleton is aromatic, it is easily carbonized and the tracking resistance deteriorates. Further, when the heat resistance is improved by increasing the molecular weight, the thermal decomposition temperature rises due to the increase in the molecular weight, and the tracking resistance deteriorates. In other words, since there is a trade-off relationship between heat resistance and tracking characteristics, it is extremely difficult to satisfy these tracking characteristics while maintaining heat resistance. Furthermore, when a resin containing a polysensitive aromatic compound is blended to impart properties such as flame retardancy, the tracking resistance tends to deteriorate, making it difficult to achieve both high tracking resistance and flame retardancy.
  • a performance level category is set by the value of CTI. Since the PLC belongs to a smaller class, the design size (creepage distance) of the device can be reduced, so the PLC is preferably 3 or less, particularly preferably 1 or less.
  • PLC and CTI have the following relationship. PLC1: CTI 600 or more, PLC2: CTI 400 or more and less than 600, PLC3: 250 or more and less than 400, PLC4: 100 or more and less than 175, PLC5: less than 100.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an epoxy resin and a curable resin composition whose cured product is excellent in heat resistance and tracking resistance.
  • the present invention relates to an epoxy resin having a specific structure, a curable resin composition, and a cured product thereof, which is excellent in heat resistance and tracking resistance. Therefore, the present invention can be applied to insulating materials for electric and electronic parts (such as highly reliable semiconductor sealing materials), laminated boards (printed wiring boards, build-up boards, etc.), various composite materials such as CFRP, adhesives, paints, etc. Useful.
  • insulating materials for electric and electronic parts such as highly reliable semiconductor sealing materials
  • laminated boards printed wiring boards, build-up boards, etc.
  • various composite materials such as CFRP, adhesives, paints, etc. Useful.
  • FIG. 1 shows a GPC chart of Synthesis Example 1.
  • FIG. 2 shows a GPC chart of Synthesis Example 2.
  • FIG. 1 shows a GPC chart of Synthesis Example 3.
  • FIG. 1 shows a GPC chart of Example 1.
  • FIG. 2 shows a GPC chart of Example 2.
  • FIG. The GPC chart of Example 3 is shown.
  • 1 shows a GPC chart of Comparative Synthesis Example 1.
  • FIG. 2 shows a GPC chart of Comparative Synthesis Example 2.
  • FIG. A GPC chart of FAE-2500 is shown.
  • TMA charts of Examples 4 and 5 and Comparative Examples 1 and 2 are shown.
  • 4 shows a GPC chart of Synthesis Example 4.
  • FIG. The GPC chart of Example 7 is shown. CTI measurement results of Examples 10 to 13 and Comparative Examples 5 to 8 are shown.
  • the epoxy resin of the present invention is represented by the following formula (1), and the value obtained by dividing the epoxy equivalent (g/eq.) by the softening point (°C) is 2.0 or more and less than 2.2.
  • n can be calculated from the number average molecular weight obtained by measurement by gel permeation chromatography (GPC, detector: UV 254 nm), or from the area ratio of each separated peak. n is more preferably a real number of 1-5, and particularly preferably a real number of 2-4.
  • the melt viscosity of the resin is an index, and the viscosity is preferably 2 Pa ⁇ s or less in the viscosity measurement (ICI melt viscosity) by the cone-plate method at 150°C.
  • the viscosity is preferably 0.4 Pa ⁇ s or more. In consideration of the balance between heat resistance and thermal decomposition properties, it is more preferably 0.45 Pa ⁇ s or more, and particularly preferably 0.5 Pa ⁇ s or more.
  • the compound of formula (1) where n is less than 1 is preferably contained at a rate of 0.5 to 10 area %, more preferably 0.5 to 5 area %, and particularly preferably 0.5 ⁇ 2.5 area %.
  • the epoxy resin of the present invention is usually in the form of a solid resin at room temperature, and its softening point is preferably 90°C or higher, more preferably 95°C or higher. Moreover, the upper limit is 150 degreeC. If the softening point is higher than 150° C., the solvent tends to remain when the resin is taken out, and voids tend to occur during curing. In addition, there are major problems in production, such as the tendency to foam when the solvent is distilled off. On the other hand, when the softening point is 90° C. or lower, there is an adverse effect on heat resistance and thermal decomposition characteristics. Also, its epoxy equivalent is 200 to 300 g/eq. is preferably 205 to 250 g/eq. is. Epoxy equivalent is 200g/eq.
  • the epoxy equivalent was measured according to JIS K-7236.
  • the softening point was measured using a softening point measuring instrument FP90 manufactured by METLER TOLEDO.
  • the epoxy resin of the present invention preferably has a high softening point and a large number of functional groups per unit molecular weight.
  • the softening point tends to increase as the molecular weight increases. This means that the softening point measures the fluidity of the resin when heated, and that the larger the molecular weight, the more difficult it is for the molecules to move, that is, the higher the softening point. On the other hand, it is generally said that the higher the softening point, the better the heat resistance. However, it is more effective to increase the number of functional groups per unit weight to increase the heat resistance, and the epoxy equivalent is a value linked to the number of functional groups. becomes.
  • the parameter A is the value obtained by dividing the epoxy equivalent (g/eq.) by the softening point (°C), and the parameter A is preferably 2.0 or more and less than 2.2. If the parameter A is less than 2.0, the epoxy equivalent is too small, so some impurities may remain. It means that it is low, and heat resistance and thermal decomposition characteristics cannot be compatible.
  • the thermal decomposition characteristic is said to be a parameter that affects the tracking resistance characteristic, and it is thought that the lower the thermal decomposition temperature in the trunking test, the more difficult it is to conduct between the electrodes, so it can withstand high voltages. Normally, increasing the molecular weight tends to increase the thermal decomposition temperature, but in the present invention, even if the molecular weight is increased, there is no large difference in the thermal decomposition temperature, and it is believed that high tracking resistance can be maintained.
  • the method for producing the epoxy resin of the present invention is not particularly limited, it can be obtained, for example, by adding or ring-closing a phenol resin represented by the following formula (2) and epihalohydrin in the presence of a solvent and a catalyst.
  • n can be calculated from the number average molecular weight obtained by measurement by gel permeation chromatography (GPC, detector: UV 254 nm), or from the area ratio of each separated peak. n is more preferably 1-5, and particularly preferably 1-3.
  • the method for producing the phenolic resin represented by the formula (2) is not particularly limited, but specifically alkylphenols (3-methyl-6-t-butylphenol and 4-methyl-2-t-butylphenol) and p-hydroxybenzaldehyde is polycondensed under acidic conditions to form a novolak.
  • Alkylphenols (3-methyl-6-t-butylphenol and 4-methyl-2-t-butylphenol) and p-hydroxybenzaldehyde are preferably reacted at a ratio of 3:2 to 2:1.
  • the ratio of 3-methyl-6-t-butylphenol and 4-methyl-2-t-butylphenol is preferably 3-methyl-6-t-butylphenol at 90% by weight or more in the alkylphenol, and this ratio is suitable for the production of phenolic resin. Adjust with the amount of alkylphenol blended at times. Specifically, the alkylphenol as a raw material is charged according to the target introduction ratio of the alkylphenol. The resulting phenolic resin has a hydroxyl equivalent weight of 140 to 170 g/eq. is preferably 145 to 165 g/eq. Especially preferably 150 to 160 g/eq. is.
  • the acidic catalyst used in synthesizing the phenolic resin represented by the formula (2) includes hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, methanesulfonic acid, Examples include activated clay and ion exchange resins. These may be used alone or in combination of two or more.
  • the amount of the catalyst used is 0.1 to 50% by weight, preferably 1 to 30% by weight, based on the phenolic hydroxyl groups used. Become slow.
  • the reaction may be carried out using an organic solvent, if necessary, or may be carried out without a solvent.
  • a solvent capable of azeotroping with water since the reaction can proceed more efficiently by azeotropically dehydrating the water to be purified during the reaction.
  • a hydrocarbon-based organic solvent such as toluene or xylene.
  • the softening point of the phenol resin represented by the formula (2) is very high, it is preferably taken out by a technique such as reprecipitation or recrystallization. For example, a technique such as precipitation by replacing the solvent with a poor solvent. is applicable.
  • the total amount of residual raw material monomers is preferably 5 area % or less, and each peak is preferably less than 1.5 area %. The amount of this monomer affects the residual amount of low-molecular-weight epoxy resin, and this amount affects heat resistance and the like.
  • the amount of epihalohydrin to be used is generally 1.0 to 20.0 mol, preferably 1.5 to 10.0 mol, per 1 mol of phenolic hydroxyl group of the phenolic resin.
  • Alkali metal hydroxides that can be used in the epoxidation reaction include sodium hydroxide and potassium hydroxide.
  • the alkali metal hydroxide may be solid or its aqueous solution may be used.
  • an aqueous solution is used, an aqueous solution of the alkali metal hydroxide is continuously added to the reaction system, and water and epihalohydrin are continuously distilled off under reduced pressure or normal pressure, and water is removed by liquid separation. Alternatively, epihalohydrin may be continuously returned to the reaction system.
  • the amount of the alkali metal hydroxide to be used is generally 0.9 to 2.5 mol, preferably 0.95 to 1.5 mol, per 1 mol of the phenolic hydroxyl group of the phenolic resin.
  • a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, or trimethylbenzylammonium chloride may be added as a catalyst to promote the above reaction.
  • the amount of the quaternary ammonium salt to be used is usually 0.1 to 15 g, preferably 0.2 to 10 g, per 1 mol of the phenolic hydroxyl group of the phenolic resin. If the amount used is too small, a sufficient reaction acceleration effect cannot be obtained, and if the amount used is too large, the amount of quaternary ammonium salt remaining in the epoxy resin increases, which may cause deterioration in electrical reliability.
  • an alcohol such as methanol, ethanol and isopropyl alcohol
  • an aprotic polar solvent such as dimethylsulfone, dimethylsulfoxide, tetrahydrofuran and dioxane
  • the amount used is generally 2-50% by weight, preferably 4-20% by weight, based on the amount of epihalohydrin used.
  • an aprotic polar solvent it is usually 5-100% by weight, preferably 10-80% by weight, based on the amount of epihalohydrin used.
  • the reaction temperature is usually 30-90°C, preferably 35-80°C.
  • the reaction time is usually 0.5 to 100 hours, preferably 1 to 30 hours.
  • epihalohydrin, solvent, etc. are removed from the reactant by heating under reduced pressure after washing with water or without washing with water.
  • the recovered epoxy resin is dissolved in a solvent such as toluene or methyl isobutyl ketone, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added. can also be used to ensure ring closure.
  • the alkali metal hydroxide is used in an amount of usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, per 1 mol of the phenolic hydroxyl group of the phenolic resin used for glycidylation.
  • the reaction temperature is generally 50-120° C., and the reaction time is generally 0.5-24 hours.
  • the salt produced is removed by filtration, washing with water, etc., and the solvent is distilled off under heating and reduced pressure to obtain the epoxy resin of the present invention.
  • the epoxy resin represented by the formula (1) may be used alone, or may be used in combination with other epoxy resins.
  • the ratio of the epoxy resin represented by the formula (1) to the total epoxy resin is preferably 10 to 98% by weight, more preferably 30 to 95% by weight, and still more preferably 60 to 95% by weight. % by weight.
  • epoxy resins that can be used in combination with the epoxy resin represented by formula (1) include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.) or phenols (phenol, alkyl Substituted phenol, aromatic substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaric aldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.); the above phenols and various diene compounds (dicyclopenta
  • Resins alicyclic epoxy resins, glycidylamine-based epoxy resins, glycidyl ester-based epoxy resins, and the like can be mentioned, but the epoxy resins that are commonly used are not limited to these. These may be used independently and may use 2 or more types.
  • curing agents examples include amine-based curing agents, acid anhydride-based curing agents, amide-based curing agents, and phenol-based curing agents.
  • Specific examples of usable curing agents include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, 3,3′-diamino Diphenylsulfone, 2,2'-diaminodiphenylsulfone, diethyltoluenediamine, dimethylthiotoluenediamine, diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4' -diaminodiphenylmethane, 4,4'
  • an aromatic amine in order to secure a pot life
  • an aliphatic amine in order to impart quick curing.
  • amide compounds such as polyamide resin synthesized from dicyandiamide, dimer of linolenic acid and ethylenediamine; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydro Acid anhydride compounds such as phthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride; bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.) or phenols ( Phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formal
  • the amount of the curing agent used in the curable resin composition of the present invention is preferably 0.5 to 1.5 equivalents, more preferably 0.6 to 1.2 equivalents, relative to 1 equivalent of the epoxy group of the epoxy resin. is particularly preferred. Good cured physical properties can be obtained by setting the equivalent weight to 0.5 to 1.5.
  • a curing accelerator may be used in combination when performing a curing reaction using the above curing agent.
  • Curing accelerators that can be used include, for example, imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-(dimethylaminomethyl)phenol, triethylenediamine, tertiary amines such as triethanolamine and 1,8-diazabicyclo(5,4,0)undecene-7; organic phosphines such as triphenylphosphine, diphenylphosphine and tributylphosphine; metal compounds such as tin octylate; Tetraphenylphosphonium/tetraphenylborate, tetrasubstituted phosphonium/tetrasubstituted borate such as tetraphenylphosphonium/ethyltriphenylborate, 2-
  • Carboxylic acid compounds such as phenyl boron salts, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, naphthoic acid, and salicylic acid.
  • a carboxylic acid compound such as salicylic acid is preferred from the viewpoint of promoting the curing reaction between the amine compound and the epoxy resin. 0.01 to 15 parts by weight of the curing accelerator is used as needed with respect to 100 parts by weight of the epoxy resin.
  • an inorganic filler can be added to the curable resin composition of the present invention, if necessary.
  • Inorganic fillers include powders of crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, etc. Beads formed by spheroidizing are included, but are not limited to these. These may be used independently and may use 2 or more types. The amount of these inorganic fillers used varies depending on the application.
  • the curable resin composition it is preferably used in a proportion of 20% by weight or more, more preferably 30% by weight or more, and in particular 70 to 95% by weight in order to improve the coefficient of linear expansion with the lead frame % is more preferable.
  • the content of the inorganic filler is important for improving the anti-tracking performance.
  • the content of the inorganic filler in the total amount of the curable resin composition of the present invention is preferably 74% by weight or more and 95% by weight or less, and particularly preferably 78% by weight or more and 95% by weight or less.
  • the anti-tracking performance is greatly improved when the content is 74% by weight or more. Epoxy resin and advantage becomes smaller.
  • a release agent can be added to the curable resin composition of the present invention to improve release from the mold during molding.
  • the mold release agent any of those conventionally known can be used. system waxes and the like. These may be used alone or in combination of two or more.
  • the blending amount of these release agents is preferably 0.5 to 3% by weight based on the total organic components. If the amount is too small, the release from the mold will be poor, and if the amount is too large, adhesion to the lead frame or the like will be poor.
  • a coupling agent can be added to the curable resin composition of the present invention in order to increase the adhesion between the inorganic filler and the resin component.
  • the coupling agent any of conventionally known ones can be used. Examples include various alkoxysilane compounds such as silane, alkoxytitanium compounds, and aluminum chelates. These may be used alone or in combination of two or more.
  • the coupling agent may be added by first treating the surface of the inorganic filler with the coupling agent and then kneading it with the resin, or by mixing the coupling agent with the resin and then kneading the inorganic filler. .
  • additives can be added to the curable resin composition of the present invention as necessary.
  • additives that can be used include polybutadiene and its modified products, modified acrylonitrile copolymers, polyphenylene ethers, polystyrene, polyethylene, polyimide, fluororesins, maleimide compounds, cyanate ester compounds, silicone gels, and silicone oils. and coloring agents such as carbon black, phthalocyanine blue and phthalocyanine green.
  • the curable resin composition of the present invention is obtained by uniformly mixing the above components.
  • the curable resin composition of the present invention can be easily cured by the same method as conventionally known methods. For example, an epoxy resin and a curing agent, and if necessary, a curing accelerator, an inorganic filler, a release agent, a silane coupling agent, and an additive are mixed until uniform using an extruder, a kneader, a roll, etc.
  • the curable resin composition of the present invention is obtained by thorough mixing, which is molded by a melt casting method, a transfer molding method, an injection molding method, a compression molding method, or the like.
  • a cured product can be obtained by heating for a period of time.
  • the curable resin composition of the present invention may contain a solvent as necessary.
  • a curable resin composition containing a solvent is a prepreg obtained by impregnating a fibrous substance (base material) such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc., and heating and drying it.
  • a cured product of the curable resin composition of the present invention can be obtained by hot press molding.
  • the solvent content of this curable resin composition is usually 10 to 70% by weight, preferably about 15 to 70% by weight.
  • the solvent examples include amide solvents such as ⁇ -butyrolactones, N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide and N,N-dimethylimidazolidinone; sulfones such as tetramethylenesulfone; Ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, preferably lower (1 to 3 carbon atoms) alkylene glycol mono- or di-lower (1 carbon atom) 3) Alkyl ethers; ketone-based solvents such as methyl ethyl ketone and methyl isobutyl ketone, preferably two alkyl groups may be the same or different. Di-lower (C 1-3) alkyl ketones; aromatic solvents such as toluene and x
  • a sheet-like adhesive can be obtained by coating the release film with the epoxy resin varnish, removing the solvent under heating, and performing B-stage.
  • This sheet-like adhesive can be used as an interlayer insulating layer in multilayer substrates and the like.
  • thermosetting resins such as epoxy resins
  • molding materials including sheets, films, FRP, etc.
  • insulating materials printed circuit boards, wire coating, etc.
  • sealing agents additives to other resins, and the like.
  • Adhesives include adhesives for civil engineering, construction, automobiles, general office and medical use, as well as adhesives for electronic materials.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, adhesives for semiconductors such as underfill, underfill for BGA reinforcement, anisotropic conductive films ( ACF), mounting adhesives such as anisotropic conductive paste (ACP), and the like.
  • ⁇ Epoxy equivalent was measured by a method according to JIS K-7236.
  • ⁇ A hydroxyl equivalent sample is acetylated using acetic anhydride in a pyridine solution, and after the acetylation is completed, the remaining acid anhydride is decomposed with water. This was titrated with a 0.5N KOH ethanol solution using a potentiometric titrator to measure the amount of free acetic acid, and the hydroxyl equivalent was determined from the results.
  • a GPC chart (measurement condition 1) is shown in FIG.
  • a GPC chart (measurement condition 1) is shown in FIG.
  • a GPC chart (measurement condition 1) is shown in FIG.
  • Example 1 Thermometer, cooling tube, fractionating tube, while purging a flask equipped with a stirrer, 310 parts of the phenolic resin (P1) obtained in Synthesis Example 1, 973 parts of epichlorohydrin, 274 parts of dimethyl sulfoxide, 15 parts of water was added, and the internal temperature was raised to 45°C. After adding 16 parts of sodium hydroxide in portions over 1.5 hours, the mixture was reacted at 45° C. for 2 hours and at 70° C. for 1 hour. Unreacted epichlorohydrin and the solvent were distilled off under heating and reduced pressure. 1040 parts of MIBK was added and the organic layer was washed once with 440 parts of water.
  • the organic layer was returned to the reaction vessel, 20 parts of a 30% by weight sodium hydroxide aqueous solution was added, and the mixture was reacted at 70° C. for 2 hours. After allowing to cool, the organic layer was washed four times with 130 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain 170 parts of epoxy resin (E1) as a solid resin.
  • the epoxy equivalent is 214 g/eq.
  • the ICI viscosity (150° C.) was 0.57 Pa ⁇ s
  • the softening point was 100° C.
  • the parameter A was 2.14.
  • a GPC chart (measurement condition 2) is shown in FIG.
  • Example 2 Thermometer, cooling tube, fractionating tube, while purging a flask equipped with a stirrer, 310 parts of the phenolic resin (P1) obtained in Synthesis Example 1, 584 parts of epichlorohydrin, 274 parts of dimethyl sulfoxide, 15 parts of water was added, and the internal temperature was raised to 45°C. After adding 16 parts of sodium hydroxide in portions over 1.5 hours, the mixture was reacted at 45° C. for 2 hours and at 70° C. for 1 hour. Unreacted epichlorohydrin and the solvent were distilled off under heating and reduced pressure. 1040 parts of MIBK was added and the organic layer was washed once with 440 parts of water.
  • the organic layer was returned to the reaction vessel, 20 parts of a 30 wt % sodium hydroxide aqueous solution was added, and the mixture was reacted at 70° C. for 2 hours. After allowing to cool, the organic layer was washed four times with 130 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain 141 parts of epoxy resin (E2) as a solid resin.
  • the epoxy equivalent is 225 g/eq.
  • the ICI viscosity (150° C.) was 1.92 Pa ⁇ s
  • the softening point was 110° C.
  • the parameter A was 2.05.
  • a GPC chart (measurement condition 2) is shown in FIG.
  • Example 3 Thermometer, cooling tube, fractionating tube, while purging a flask equipped with a stirrer, 310 parts of the phenolic resin (P3) obtained in Synthesis Example 3, 778 parts of epichlorohydrin, 274 parts of dimethyl sulfoxide, 15 parts of water was added, and the internal temperature was raised to 45°C. After adding 16 parts of sodium hydroxide in portions over 1.5 hours, the mixture was reacted at 45° C. for 2 hours and at 70° C. for 1 hour. Unreacted epichlorohydrin and the solvent were distilled off under heating and reduced pressure. 1040 parts of MIBK was added and the organic layer was washed once with 440 parts of water.
  • P3 phenolic resin obtained in Synthesis Example 3
  • the organic layer was returned to the reaction vessel, 20 parts of a 30% by weight sodium hydroxide aqueous solution was added, and the mixture was reacted at 70° C. for 2 hours. After allowing to cool, the organic layer was washed four times with 130 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain 303 parts of epoxy resin (E3) as a solid resin.
  • the epoxy equivalent is 216 g/eq.
  • total chlorine was 440 ppm (ISO21627-3 compliant)
  • inorganic chloride ion concentration was 0.3 ppm
  • ICI viscosity (150°C) was 0.64 Pa s
  • softening point was 100°C
  • parameter A was 2.16. .
  • a GPC chart (measurement condition 3) is shown in FIG.
  • the organic layer was returned to the reaction vessel, 20 parts of a 30% by weight sodium hydroxide aqueous solution was added, and the mixture was reacted at 70° C. for 2 hours. After standing to cool, the organic layer was washed four times with 130 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain 165 parts of epoxy resin (E4) as a solid resin.
  • the epoxy equivalent is 223 g/eq.
  • the ICI viscosity (150° C.) was 0.60 Pa ⁇ s
  • the softening point was 99.7° C.
  • the parameter A was 2.24.
  • a GPC chart (measurement condition 2) is shown in FIG.
  • the organic layer was returned to the reaction vessel, 20 parts of a 30% by weight sodium hydroxide aqueous solution was added, and the mixture was reacted at 70° C. for 2 hours. After allowing to cool, the organic layer was washed four times with 130 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain 161 parts of epoxy resin (E5) as a solid resin.
  • the epoxy equivalent is 224 g/eq.
  • the ICI viscosity (150° C.) was 0.66 Pa ⁇ s
  • the softening point was 100.9° C.
  • the parameter A was 2.22.
  • a GPC chart (measurement condition 2) is shown in FIG.
  • the epoxy equivalent of FAE-2500 is 213 g/eq.
  • the ICI viscosity (150° C.) was 0.30 Pa ⁇ s
  • the softening point was 93.5° C.
  • the parameter A was 2.28.
  • a GPC chart (measurement condition 2) is shown in FIG.
  • Table 1 shows the results of measuring the test piece for evaluation under the following conditions. A TMA chart is shown in FIG.
  • DMA Dynamic viscoelasticity measurement
  • TMA Thermo-mechanical property measurement
  • Tg glass transition temperature
  • CTE coefficient of linear expansion change
  • TG-DTA ⁇ Thermogravimetric differential thermal measurement
  • Epoxy resin (E1) epoxy resin (E6, FAE-2500 (manufactured by Nippon Kayaku)), Zylock-type phenolic resin (MEHC-7800SS manufactured by Meiwa Kasei) as a curing agent, triphenylphosphine (TPP, manufactured by Tokyo Kasei Co., Ltd.) as a catalyst ), silica gel (fused silica MSR-2212, manufactured by Tatsumori) as an inorganic filler, carnauba wax (manufactured by Celarica Noda) as a release agent, and a silane coupling agent (trade name: KBM-303, manufactured by Shin-Etsu Chemical Co., Ltd.) as an additive.
  • KBM-303 silane coupling agent
  • Test sample shape Diameter 50 mm Thickness 3 mm 1 point measurement per sheet
  • a GPC chart (measurement condition 1) is shown in FIG.
  • Example 7 Thermometer, cooling tube, fractionating tube, while purging a flask equipped with a stirrer, 320 parts of the phenolic resin (P4) obtained in Synthesis Example 4, 973 parts of epichlorohydrin, 274 parts of dimethyl sulfoxide, 15 parts of water was added, and the internal temperature was raised to 45°C. After adding 16 parts of sodium hydroxide in portions over 1.5 hours, the mixture was reacted at 45° C. for 2 hours and at 70° C. for 1 hour. Unreacted epichlorohydrin and the solvent were distilled off under heating and reduced pressure. 1040 parts of MIBK was added and the organic layer was washed once with 440 parts of water.
  • the organic layer was returned to the reaction vessel, 20 parts of a 30% by weight sodium hydroxide aqueous solution was added, and the mixture was reacted at 70° C. for 2 hours. After allowing to cool, the organic layer was washed four times with 130 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain 107 parts of epoxy resin (E7) as a solid resin.
  • the epoxy equivalent is 220 g/eq.
  • the ICI viscosity (150° C.) was 0.8 Pa ⁇ s or more
  • the softening point was 108.5° C.
  • the parameter A was 2.03.
  • a GPC chart (measurement condition 3) is shown in FIG. In addition, each peak had a retention time of 35.619 minutes at 1.75%, and other peaks at 1.5 area% or less.
  • Epoxy resins E3 and E7 obtained in the above examples trisphenolmethane type phenol resin (Nippon Kayaku KAYAHARD KTG-105 hydroxyl equivalent 102 g / eq.) as a curing agent, biphenyl aralkyl type phenol resin (Nippon Kayaku KAYAHARD GPH-65 curing agent hydroxyl equivalent 200 g / eq.), triphenylphosphine (TPP, manufactured by Tokyo Kasei Co., Ltd.) as a catalyst, silica gel (fused silica MSR-2212, manufactured by Tatsumori) as an inorganic filler, carnauba wax as a release agent (manufactured by Celarica Noda) and a silane coupling agent (trade name: KBM-303, manufactured by Shin-Etsu Chemical Co., Ltd.) as an additive, blended in the proportions (parts by weight) shown in Table 3, and mixed uniformly using a mixing
  • Epoxy resin E1 obtained in the above example biphenyl aralkyl epoxy resin (manufactured by Nippon Kayaku, NC-3000), Zylock type phenolic resin (manufactured by Meiwa Kasei MEHC-7800SS) as a curing agent, triphenylphosphine as a catalyst ( TPP, manufactured by Tokyo Kasei Co., Ltd.), silica gel (fused silica MSR-2212, manufactured by Tatsumori) as an inorganic filler, carnauba wax (manufactured by Celarica Noda) as a release agent, and a silane coupling agent as an additive (trade name: KBM- 303 manufactured by Shin-Etsu Chemical Co., Ltd.), and the mixture was uniformly mixed and kneaded using a mixing roll to obtain a curable resin composition.
  • This curable resin composition was pulverized and then tableted with a tablet machine.
  • the tableted curable resin composition was subjected to transfer molding (175° C. for 60 to 15 minutes) and further cured under the conditions of 160° C. ⁇ 2 hours+180° C. ⁇ 6 hours after demolding to obtain test pieces for evaluation. A tracking resistance test was performed using this test piece. The measurement results are shown in Table 4.
  • Epoxy resin E1 obtained in the above example biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku, NC-3000), Zylock type phenol resin as a curing agent (Meiwa Kasei MEHC-7800SS), biphenyl aralkyl type phenol resin ( Nippon Kayaku KAYAHARD GPH-65), triphenylphosphine (TPP, Tokyo Kasei Co., Ltd.) as a catalyst, silica gel (fused silica MSR-2212, Tatsumori) as an inorganic filler, carnauba wax (Celarica Noda ), and a silane coupling agent (trade name: KBM-303, manufactured by Shin-Etsu Chemical Co., Ltd.) as an additive, were uniformly mixed and kneaded using a mixing roll to obtain a curable resin composition.
  • This curable resin composition was pulverized and then tableted with a tablet machine.
  • the tableted curable resin composition was subjected to transfer molding (175° C. for 60 to 15 minutes) and further cured under the conditions of 160° C. ⁇ 2 hours+180° C. ⁇ 6 hours after demolding to obtain test pieces for evaluation. A tracking resistance test was performed using this test piece.
  • CTI CTI
  • IEC-Pub. 60112-2003 4th edition
  • the cured product using the epoxy resin of the present invention maintains a relatively high CTI. , confirmed that the rate of increase in CTI is higher.
  • the epoxy resin of the present invention is useful for automotive materials, particularly power device peripheral materials, and is particularly effective for applications that require heat resistance and a high comparative tracking index (CTI).
  • CTI comparative tracking index

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明は、その硬化物が耐熱性、および耐トラッキング特性に優れるエポキシ樹脂、硬化性樹脂組成物を提供する。 下記式(1)で表され、エポキシ当量(g/eq.)を軟化点(℃)で除した値が2.0以上2.2未満であるエポキシ樹脂。 (式(1)中、複数存在するRは独立して存在し、メチル基または水素原子を表す。nは繰り返し数の平均値であり、1~10の実数である。)

Description

エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
 本発明は特定構造を有するエポキシ樹脂、硬化性樹脂組成物、およびその硬化物に関する。
 エポキシ樹脂は、電気的性質(誘電率・誘電正接、絶縁性)、機械的性質、接着性、熱的性質(耐熱性など)などに優れているため、注型品、積層板、IC封止材料等の電気・電子分野、構造用材料、接着剤、塗料等の分野で幅広く用いられている。
 近年、電気・電子分野においては、樹脂組成物の難燃性、耐湿性、密着性、誘電特性等の性能向上、高純度化、フィラー(無機または有機充填剤)を高充填させるための低粘度化、成型サイクルを短くするための反応性向上等の諸特性の一層の向上が求められている(特許文献1)。また、構造用材料としては航空宇宙材料、レジャー・スポーツ器具用途などにおいて軽量で機械物性の優れた材料が求められている。
 半導体封止分野、基板(基板自体、もしくはその周辺材料)においては、その半導体の変遷に従い、薄層化、スタック化、システム化、三次元化と複雑になっていき、非常に高いレベルの耐熱性や高流動性といった要求特性が求められる。特にプラスチックパッケージの車載用途への拡大に伴い、耐熱性の向上要求がいっそう厳しくなっている。具体的には、半導体の駆動温度の上昇により、非常に高い耐熱性が求められるようになってきており、近年の高ワイドギャップ半導体への移行の動きもあり、175℃さらには200℃以上の駆動温度への対応も必要となってきている。これらの駆動温度に対して周辺部材には十分な耐熱性(ガラス転移温度(Tg)、特に熱機械特性(TMA)におけるTg)が求められている。具体的には駆動温度より10%程度高い温度が求められ(200℃の場合220℃以上のTg、例えば225℃が求められる)、その要求は年々高まってきている(非特許文献1)。
 さらに、近年電気自動車などのニーズにおいて、高電圧のパワーデバイスのニーズが急激に伸びてきており、耐トラッキング特性が重要視されている。また、太陽光発電や風力発電、EVなどの用途においても、耐トラッキング特性が重要視されており、特に厳しい用途にいては比較トラッキング指数(CTI)が600を超えることが求められている。
 
特開2019-001841号公報
富士電機技報 2016 vol.89 No.4 247-250頁
 一般に、樹脂組成物の耐熱性を向上させる目的で芳香族架橋ユニットを導入することがあるが、この場合、主骨格が芳香族であることから炭化しやすく、耐トラッキング特性は低下する。また、高分子量化により耐熱性を向上させた場合には、分子量が大きくなることで熱分解温度が上昇して耐トラッキング特性が低下する。つまり、耐熱性とトラッキング特性はトレードオフの関係があるため、耐熱性を維持しながらこのトラッキング特性をクリアすることは非常に難しい。さらには難燃性などの特性を付与するために多感芳香族化合物を含有する樹脂を配合した場合、耐トラッキング特性は悪化しやすく、高い耐トラッキング特性と難燃性を両立することは難しい。
 一般にはCTIの値によりperformance level category(PLC)が設定される。PLCがより小さいクラスに属することでそのデバイスの設計のサイズ(沿面距離)などを小さくすることができるため、PLCは3以下であることが好ましく、1以下であることが特に好ましい。
 なお、PLCとCTIは以下の関係にある。
 PLC1:CTI600以上、PLC2:CTI400以上600未満、PLC3:250以上400未満、PLC4:100以上175未満、PLC5:100未満。
 本発明は、このような状況を鑑みてなされたものであり、その硬化物が耐熱性、および耐トラッキング特性に優れるエポキシ樹脂、硬化性樹脂組成物を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意研究した結果、本発明を完成させるに到った。すなわち本発明は以下の[1]~[3]に関する。なお、本願において「(数値1)~(数値2)」は上下限値を含むことを示す。
[1]
 下記式(1)で表され、エポキシ当量(g/eq.)を軟化点(℃)で除した値が2.0以上2.2未満であるエポキシ樹脂。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、複数存在するRは独立して存在し、メチル基または水素原子を表す。nは繰り返し数の平均値であり、1~10の実数である。)
[2]
 前項[1]に記載のエポキシ樹脂を含有する硬化性樹脂組成物。
[3]
 硬化性樹脂組成物総量中、無機充填剤の含有量が74重量%以上95重量%以下である前項[2]に記載の硬化性樹脂組成物。
[4]
 前項[2]または[3]に記載の硬化性樹脂組成物を硬化した硬化物。
 本発明は特定構造を有するエポキシ樹脂、硬化性樹脂組成物およびその硬化物に関するものであり、その硬化物は耐熱性、および耐トラッキング特性に優れる。
 そのため、本発明は電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用である。
合成例1のGPCチャートを示す。 合成例2のGPCチャートを示す。 合成例3のGPCチャートを示す。 実施例1のGPCチャートを示す。 実施例2のGPCチャートを示す。 実施例3のGPCチャートを示す。 比較合成例1のGPCチャートを示す。 比較合成例2のGPCチャートを示す。 FAE-2500のGPCチャートを示す。 実施例4、5、比較例1、2のTMAチャートを示す。 合成例4のGPCチャートを示す。 実施例7のGPCチャートを示す。 実施例10~13、比較例5~8のCTI測定結果を示す。
 本発明のエポキシ樹脂は、下記式(1)で表され、エポキシ当量(g/eq.)を軟化点(℃)で除した値が2.0以上2.2未満である。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、複数存在するRは独立して存在し、メチル基または水素原子を表す。nは繰り返し数の平均値であり、1~10の実数である。)
 前記式(1)中、nはゲルパーミエーションクロマトグラフィー(GPC、検出器:UV 254nm)の測定により求められた数平均分子量、あるいは分離したピークの各々の面積比から算出することが出来る。nは1~5の実数であることがさらに好ましく、2~4の実数であることが特に好ましい。
 前記式(1)のn=1は50面積%未満が好ましく、さらに好ましくは45面積%未満である。またその下限は25面積%であり、25面積%を切った場合は樹脂の流動性が悪く、封止材として用いる場合には生産性が悪化する。流動性の指標としては樹脂における溶融粘度が指標となり、150℃でのコーンプレート法による粘度測定(ICI溶融粘度)においては2Pa・s以下の粘度であることが好ましい。また、粘度が低すぎると成型時に空気などを巻き込みボイドができる可能性があり、液状樹脂などの配合(あるいは変性)時のブロッキングなどがあることから0.4Pa・s以上であることが好ましい。また、耐熱性と熱分解特性のバランスを考慮して0.45Pa・s以上であることがさらに好ましく、0.5Pa・s以上であることが特に好ましい。
 また、前記式(1)のn=1未満の化合物は0.5~10面積%の割合で含有することが好ましく、より好ましくは0.5~5面積%であり、特に好ましくは0.5~2.5面積%である。n=1未満の化合物は3官能未満の構造を有する化合物、あるいはターシャリーブチルメチルフェノールのエポキシ樹脂であることから、n=1未満の化合物が10面積%を超える場合、耐熱性の低下が示唆されるだけでなく、取り扱い時の臭気、あるいは人体への悪影響が懸念される。一方でn=1未満の化合物が0.5面積%未満の場合、ネットワークが密になりすぎてしまうことから、熱分解による重量減少が大きくなり、熱分解特性に悪影響を及ぼす(ひいてはトラッキング特性に悪影響を及ぼすと想定される。)ことが懸念される。
 本発明のエポキシ樹脂は通常は常温で固体の樹脂状であり、その軟化点は90℃以上であることが好ましく、さらに好ましくは95℃以上である。またその上限は150℃である。軟化点が150℃より高い場合、樹脂取り出しの際に溶剤が残りやすく、硬化時にボイドになりやすい。また溶剤留去時に発泡しやすくなるなど、生産上の課題も大きい。一方で、軟化点が90℃以下の場合、耐熱性や耐熱分解特性に悪影響がある。また、そのエポキシ当量は200~300g/eq.であることが好ましく、さらに好ましくは205~250g/eq.である。エポキシ当量が200g/eq.を切る場合、エピクロロヒドリンの残留や、不純物のエポキシ化物が多く残留しており、特性悪化の可能性があること。また300g/eq.を超える場合、耐熱性の低下が課題となる。
 本発明において、エポキシ当量はJIS K-7236に準じた方法で測定した。軟化点はMETLER TOLEDO社軟化点測定器FP90を用い測定した。
 本発明のエポキシ樹脂は軟化点が高く、かつ単位分子量当たりの官能基数が多いものが好ましい。軟化点は分子量が大きいほど高くなる傾向がある。これは加熱したときの樹脂の流れ性を見ているのが軟化点であり、分子量が大きいほど分子が動きにくい、つまり軟化点が上がるということを意味する。一方で、一般に軟化点が大きくなると耐熱性が向上するといわれているが、その耐熱性の上昇は単位重量当たりの官能基数の向上の方が有効であり、エポキシ当量がその官能基数に紐づく値となる。
 軟化点が小さく、エポキシ当量が大きい場合、1分子あたりの官能基が少ないことが示唆され、逆に軟化点が高く、エポキシ当量が小さい場合は1分子あたりの官能基が多いことがわかる。したがって、軟化点が高く、エポキシ当量が小さい化合物が好ましい。
 本発明においてはエポキシ当量(g/eq.)を軟化点(℃)で除した値をパラメータAとし、パラメータAが、2.0以上2.2未満であることが好ましい。パラメータAが2.0未満の場合、エポキシ当量が小さすぎることから何らかの不純物の残存が考えられ、逆に2.2以上である場合は、エポキシ当量が大きく、エポキシ当量の値のわりに軟化点が低いということを意味し、耐熱性と熱分解特性が両立できない。
 ここで、熱分解特性は耐トラッキング特性に影響するパラメータと言われており、トランキング試験において熱分解温度が低いほど、電極間の導通をしづらいことから高電圧まで耐えられると考えられる。通常、高分子量化すると熱分解温度が上がる傾向があるが、本発明では高分子量化しても熱分解温度に大きな差がなく、高い耐トラッキング特性を維持することができると考えられる。
 本発明のエポキシ樹脂の製法は特に限定されないが、たとえば下記式(2)で表されるフェノール樹脂とエピハロヒドリンを溶剤、触媒の存在下に付加もしくは閉環反応させることで得ることができる。
Figure JPOXMLDOC01-appb-C000004
(式(2)中、複数存在するRは独立して存在し、メチル基または水素原子を表す。nは繰り返し数の平均値であり、1~10の実数である。)
 前記式(2)中、nはゲルパーミエーションクロマトグラフィー(GPC、検出器:UV 254nm)の測定により求められた数平均分子量、あるいは分離したピークの各々の面積比から算出することが出来る。nは1~5であることがさらに好ましく、1~3であることが特に好ましい。
 前記式(2)のフェノール樹脂の水酸基当量は140~180g/eq.であることが好ましく、より好ましくは140~165g/eq.である。また、n=1の化合物の量は30~60面積%であることが好ましく、より好ましくは40~60面積%である。またn=2以上化合物の総計は25~40面積%であることが好ましい。
 ここで、前記式(2)で表されるフェノール樹脂の製法について説明する。
 前記式(2)で表されるフェノール樹脂の製法は特に限定されないが、具体的にはアルキルフェノール(3-メチル-6-t-ブチルフェノールおよび4-メチル-2-t-ブチルフェノール)とp-ヒドロキシベンズアルデヒドを酸性条件にて重縮合を行い、ノボラック化を行う。アルキルフェノール(3-メチル6-t-ブチルフェノールおよび4-メチル-2-t-ブチルフェノール)とp-ヒドロキシベンズアルデヒドの比率を3:2~2:1の割合で反応させることが好ましい。3-メチル-6-t-ブチルフェノールと4-メチル-2-t-ブチルフェノールの比率はアルキルフェノール中90重量%以上が3-メチル6-t-ブチルフェノールであることが好ましく、この比率はフェノール樹脂の製造時に配合するアルキルフェノールの量で調整する。具体的には目的とするアルキルフェノールの導入比率通りに原料となるアルキルフェノールを仕込む。
 得られるフェノール樹脂の水酸基当量は140~170g/eq.であることが好ましく、さらに好ましくは145~165g/eq.特に好ましくは150~160g/eq.である。
 前記式(2)で表されるフェノール樹脂を合成する際に用いる酸性触媒は、塩酸、燐酸、硫酸、蟻酸、塩化亜鉛、塩化第二鉄、塩化アルミニウム、p-トルエンスルホン酸、メタンスルホン酸、活性白土、イオン交換樹脂等が挙げられる。これらは単独でも二種以上併用しても良い。触媒の使用量は、使用するフェノール性水酸基に対して、0.1~50重量%、好ましくは1~30重量%であり、多すぎると廃棄物が増えてしまい、少なすぎると反応の進行が遅くなる。
 反応は必要により有機溶剤を使用して行っても良く、無溶剤で行っても良い。ただし、反応時に精製する水を共沸脱水させることでより反応を効率よく進めることができるため、水との共沸ができる溶剤を利用することが好ましい。本発明においては特にトルエンやキシレンなどの炭化水素系の有機溶剤の使用が好ましい。
 その後、水洗や中和などの工程を行い、溶剤流居後樹脂取り出し、あるいは再沈殿や再結晶などの手法により樹脂を取り出すことができる。前記式(2)で表されるフェノール樹脂の軟化点が非常に高いことから再沈殿や再結晶などの手法により取り出すことが好ましく、例えば、溶剤を貧溶剤に置換することで析出させるなどの手法が適用できる。
 前記式(2)で表されるフェノール樹脂は結晶あるいは樹脂固体であり、その際のGPCにおけるn=1の割合は60%未満であることが好ましい。特に55面積%以下、さらには50面積%以下である。残留する原料モノマーは総計で5面積%以下が好ましく、各々のピークが1.5面積%未満であることが好ましい。本モノマー量はエポキシ樹脂の低分子量の残留量に影響し、この量が耐熱性などに影響する。
 つづいて、本発明のエポキシ樹脂の製法について説明する。
 上述したように、本発明のエポキシ樹脂の製法は特に限定されないが、たとえば前記式(2)で表されるフェノール樹脂とエピハロヒドリンを溶剤、触媒の存在下に付加もしくは閉環反応させることで得ることができる。
 エピハロヒドリンの使用量はフェノール樹脂のフェノール性水酸基1モルに対し通常1.0~20.0モル、好ましくは1.5~10.0モルである。
 エポキシ化反応において使用できるアルカリ金属水酸化物としては水酸化ナトリウム、水酸化カリウム等が挙げられる。アルカリ金属水酸化物は固形物であっても、その水溶液を使用してもよい。水溶液を使用する場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に減圧下、または常圧下連続的に水及びエピハロヒドリンを留出させ、更に分液して水を除去し、エピハロヒドリンを反応系内に連続的に戻す方法でもよい。アルカリ金属水酸化物の使用量はフェノール樹脂のフェノール性水酸基1モルに対して通常0.9~2.5モルであり、好ましくは0.95~1.5モルである。アルカリ金属水酸化物の使用量が少ないと反応が十分に進行しない。一方で、フェノール樹脂のフェノール性水酸基1モルに対して2.5モルを超えるアルカリ金属水酸化物の過剰使用は不必要な廃棄物の副生を招く。
 上記反応を促進するためにテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加しても良い。4級アンモニウム塩の使用量としてはフェノール樹脂のフェノール性水酸基1モルに対し通常0.1~15gであり、好ましくは0.2~10gである。使用量が少なすぎると十分な反応促進効果が得られず、使用量が多すぎるとエポキシ樹脂中に残存する4級アンモニウム塩量が増えてしまうため、電気信頼性を悪化させる原因ともなり得る。
 エポキシ化反応の際、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメチルスルホン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン等の非プロトン性極性溶媒などを添加して反応を行うことが反応進行上好ましい。アルコール類を使用する場合、その使用量はエピハロヒドリンの使用量に対し通常2~50重量%、好ましくは4~20重量%である。また非プロトン性極性溶媒を用いる場合はエピハロヒドリンの使用量に対し通常5~100重量%、好ましくは10~80重量%である。反応温度は通常30~90℃であり、好ましくは35~80℃である。反応時間は通常0.5~100時間であり、好ましくは1~30時間である。
 反応終了後、反応物を水洗後、または水洗無しに加熱減圧下でエピハロヒドリンや溶媒等を除去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、回収したエポキシ樹脂をトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて反応を行い、閉環を確実なものにすることもできる。この場合アルカリ金属水酸化物の使用量はグリシジル化に使用したフェノール樹脂のフェノール性水酸基1モルに対して通常0.01~0.3モル、好ましくは0.05~0.2モルである。反応温度は通常50~120℃、反応時間は通常0.5~24時間である。反応終了後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下溶剤を留去することにより本発明のエポキシ樹脂が得られる。
 以下、本発明の硬化性樹脂組成物について説明する。
 本発明の硬化性樹脂組成物において用いるエポキシ樹脂は、前記式(1)で表されるエポキシ樹脂を単独で使用してもよいが、他のエポキシ樹脂と併用して使用することもできる。併用する場合、前記式(1)で表されるエポキシ樹脂が全エポキシ樹脂中に占める割合は10~98重量%であることが好ましく、より好ましくは30~95重量%、さらに好ましくは60~95重量%である。前記式(1)で表されるエポキシ樹脂の添加量を10%以上とすることで弾性率向上や低吸水性を発現することができる。
 前記式(1)で表されるエポキシ樹脂と併用されうる他のエポキシ樹脂の具体例としては、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)もしくはフェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物;前記フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物;前記フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物;前記フェノール類と芳香族ジメタノール類(ベンゼンジメタノール、ビフェニルジメタノール等)との重縮合物;前記フェノール類と芳香族ジクロロメチル類(α,α’-ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物;前記フェノール類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等)との重縮合物;前記ビスフェノール類と各種アルデヒドの重縮合物またはアルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、通常用いられるエポキシ樹脂であればこれらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 本発明の硬化性樹脂組成物において使用しうる硬化剤としては、アミン系硬化剤、酸無水物系硬化剤、アミド系硬化剤、フェノール系硬化剤などが挙げられる。使用できる硬化剤の具体例としては、例えばo-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、2,2’-ジアミノジフェニルスルホン、ジエチルトルエンジアミン、ジメチルチオトルエンジアミン、ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトラメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトライソプロピルジフェニルメタン、4,4’-メチレンビス(N-メチルアニリン)、ビス(アミノフェニル)フルオレン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,3’-ビス(4-アミノフェノキシ)ベンゼン、1,4’-ビス(4-アミノフェノキシ)ベンゼン、1,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-(1,3-フェニレンジソプロピリデン)ビスアニリン、4,4’-(1,4-フェニレンジソプロピリデン)ビスアニリン、ナフタレンジアミン、ベンジジン、ジメチルベンジジン、国際公開第2017/170551号合成例1および合成例2に記載の芳香族アミン化合物等の芳香族アミン化合物、1,3-ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、ノルボルナンジアミン、エチレンジアミン、プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ダイマージアミン、トリエチレンテトラミン等の脂肪族アミン等が挙げられるが、これに限定されず、組成物に付与したい特性に応じ好適に用いることができる。ポットライフを確保するためには芳香族アミンを使用することが好ましく、即硬化性を付与したい場合には脂肪族アミンを使用することが好ましい。2官能成分を主成分として含有するアミン系化合物を硬化剤として用いることで、硬化反応時、直線性の高いネットワークを構築することができ、特に優れた強靭性を発現することができる。また、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等のアミド系化合物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の酸無水物系化合物;ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)もしくはフェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、または前記フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、または前記フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物、または前記フェノール類と芳香族ジメタノール類(ベンゼンジメタノール、ビフェニルジメタノール等)との重縮合物、または前記フェノール類と芳香族ジクロロメチル類(α,α’-ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物、または前記フェノール類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等)との重縮合物、または前記ビスフェノール類と各種アルデヒドの重縮合物、及びこれらの変性物等のフェノール系化合物;イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体などが挙げられるがこれらに限定されることはない。
 本発明の硬化性樹脂組成物において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.5~1.5当量であることが好ましく、0.6~1.2当量であることが特に好ましい。0.5~1.5当量とすることで良好な硬化物性を得ることができる。
 上記硬化剤を用いて硬化反応を行う際には硬化促進剤を併用しても差し支えない。使用できる硬化促進剤としては、例えば、2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類、2-(ジメチルアミノメチル)フェノール、トリエチレンジアミン、トリエタノールアミン、1,8-ジアザビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィン、ジフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン類、オクチル酸スズなどの金属化合物、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩、安息香酸、フタル酸、イソフタル酸、テレフタル酸、ナフトエ酸、サリチル酸等のカルボン系酸化合物などが挙げられる。アミン系化合物とエポキシ樹脂の硬化反応を促進する観点からサリチル酸等のカルボン酸系化合物が好ましい。硬化促進剤は、エポキシ樹脂100重量部に対して0.01~15重量部が必要に応じて用いられる。
 更に、本発明の硬化性樹脂組成物には、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤は、用途によりその使用量は異なるが、例えば半導体の封止剤用途に使用する場合は硬化性樹脂組成物の硬化物の耐熱性、耐湿性、力学的性質、難燃性などの面から硬化性樹脂組成物中で20重量%以上占める割合で使用するのが好ましく、より好ましくは30重量%以上であり、特にリードフレームとの線膨張率を向上させるために70~95重量%を占める割合で使用することがさらに好ましい。
 なお、本発明において特に耐トラッキング性能を向上させるうえで無機充填剤の含有量が重要となる。耐トラッキング性能を加味した場合、本発明の硬化性樹脂組成物総量中無機充填剤の好ましい含有量は74重量%以上95重量%以下であり、特に好ましくは78重量%以上95重量%以下である。本発明のエポキシ樹脂構造の場合、74重量%以上であると耐トラッキング性能が大きく向上することが確認できており、74重量%未満の場合、たとえば70重量%未満の場合、トラッキング性能は他のエポキシ樹脂と優位性が小さくなる。
 本発明の硬化性樹脂組成物には成形時の金型との離型を良くするために離型剤を配合することができる。離型剤としては従来公知のものいずれも使用できるが、例えばカルナバワックス、モンタンワックスなどのエステル系ワックス、ステアリン酸、パルチミン酸などの脂肪酸およびこれらの金属塩、酸化ポリエチレン、非酸化ポリエチレンなどのポリオレフィン系ワックスなどが挙げられる。これらは単独で使用しても2種以上併用しても良い。これら離型剤の配合量は全有機成分に対して0.5~3重量%が好ましい。これより少なすぎると金型からの離型が悪く、多すぎるとリードフレームなどとの接着が悪くなる。
 本発明の硬化性樹脂組成物には無機充填剤と樹脂成分との接着性を高めるためにカップリング剤を配合することができる。カップリング剤としては従来公知のものをいずれも使用できるが、例えばビニルアルコキシシラン、エポキアルコキシシラン、スチリルアルコキシシラン、メタクリロキシアルコキシシラン、アクリロキシアルコキシシラン、アミノアルコキシシラン、メルカプトアルコキシシラン、イソシアナートアルコキシシランなどの各種アルコキシシラン化合物、アルコキシチタン化合物、アルミニウムキレート類などが挙げられる。これらは単独で使用しても2種以上併用しても良い。カップリング剤の添加方法は、カップリング剤であらかじめ無機充填剤表面を処理した後、樹脂と混練しても良いし、樹脂にカップリング剤を混合してから無機充填剤を混練しても良い。
 更に本発明の硬化性樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、マレイミド系化合物、シアネートエステル系化合物、シリコーンゲル、シリコーンオイル、並びにカーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤などが挙げられる。
 本発明の硬化性樹脂組成物は、上記各成分を均一に混合することにより得られる。本発明の硬化性樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば、エポキシ樹脂と硬化剤、並びに必要により硬化促進剤、無機充填剤、離型剤、シランカップリング剤及び添加剤とを必要に応じて押出機、ニーダ、ロール等を用いて均一になるまで充分に混合することより本発明の硬化性樹脂組成物を得て、これを溶融注型法あるいはトランスファー成型法やインジェクション成型法、圧縮成型法などによって成型し、更に80~200℃で2~10時間加熱することにより硬化物を得ることができる。
 また本発明の硬化性樹脂組成物は必要に応じて溶剤を含んでいてもよい。溶剤を含む硬化性樹脂組成物(エポキシ樹脂ワニス)はガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの繊維状物質(基材)に含浸させ加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物の硬化物とすることができる。この硬化性樹脂組成物の溶剤含量は、内割りで通常10~70重量%、好ましくは15~70重量%程度である。溶剤としては例えばγ-ブチロラクトン類、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイミダゾリジノン等のアミド系溶剤;テトラメチレンスルフォン等のスルフォン類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、好ましくは低級(炭素数1~3)アルキレングリコールのモノ又はジ低級(炭素数1~3)アルキルエーテル;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、好ましくは2つのアルキル基が同一でも異なってもよい。ジ低級(炭素数1~3)アルキルケトン;トルエン、キシレンなどの芳香族系溶剤等が挙げられる。これらは単独であっても、また2以上の混合溶媒であってもよい。
 また、剥離フィルム上に前記エポキシ樹脂ワニスを塗布し加熱下で溶剤を除去、Bステージ化を行うことによりシート状の接着剤を得ることができる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することができる。
 本発明で得られる硬化物は各種用途に使用できる。詳しくはエポキシ樹脂等の熱硬化性樹脂が使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤の他、他樹脂等への添加剤等が挙げられる。
 接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
 封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSI用などのポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップ用のアンダーフィル、QFP、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。
 次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。
・エポキシ当量
JIS K-7236に準じた方法で測定した。
・軟化点
METLER TOLEDO社軟化点測定器FP90を用い測定した。
・水酸基当量
サンプルをピリジン溶液中、無水酢酸を用いてアセチル化を行い、アセチル化完了後に水で残存する酸無水物を分解。これを0.5NのKOHエタノール溶液を用いて、電位差滴定機で滴定することで遊離の酢酸量を測定を行い、その結果から水酸基当量を求めた。
・GPC(ゲルパーミエーションクロマトグラフィー)
(測定条件1)
装置 Waters e2695
カラム:SHODEX GPC KF-401HQ、KF-402HQ、KF-403HQ、KF-404HQ 合計4本  
流速 0.3 ml/min  
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:UV 254nm
(測定条件2)
装置 東ソー株式会社 HLC-8220GPC
カラム:東ソー株式会社 TSK gel G3000HXL 1本 TSK gel G2000HXL 2本 合計3本
流速 1.065ml/min  
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:UV 254nm
(測定条件3)
装置 東ソー株式会社 HLC-8420GPC
カラム:東ソー株式会社 TSK gel G3000HXL 1本 TSK gel G2000HXL 2本 合計3本
流速 1.065ml/min  
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:UV 254nm
標準ポリスチレン(東ソー株式会社)
PStQuickC, PStQuickD(分子量測定時は内部標準としてスチレンを添加して補正した)
[合成例1]
 温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、3-メチル-6-t-ブチルフェノール137.2部、4-メチル-2-t-ブチルフェノール0.16部、p-ヒドロキシベンズアルデヒド60部、トルエン142部、p-トルエンスルホン酸1.4部を加え、110~115℃で8時間反応を行った。反応終了後、25%NaOH 水を加えた後、トルエンを共沸脱水により留去。その後、75%硫酸を加え、pHを5~7に調整し、析出した樹脂粉体をろ過し、60℃で乾燥することで、フェノール樹脂(P1)186部を得た。得られたフェノール樹脂(PI)は粉状であり、軟化点150℃以上、水酸基当量155g/eq.であり、GPCによるn=1は48.8面積%であった。GPCチャート(測定条件1)は図1に示す。
[合成例2]
 温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、3-メチル-6-t-ブチルフェノール153.1部、4-メチル-2-t-ブチルフェノール0.17部、p-ヒドロキシベンズアルデヒド60部、トルエン142部、p-トルエンスルホン酸0.6部を加え、100~105℃で6時間反応を行った。反応終了後、25%NaOH 水を加えた後、トルエンを共沸脱水により留去。その後、75%硫酸を加え、pHを5~7に調整し、析出した樹脂粉体をろ過し、60℃で乾燥することで、フェノール樹脂(P2)198部を得た。得られたフェノール樹脂(P2)は粉状であり、軟化点150℃以上、水酸基当量144g/eq.であり、GPCによるn=1は51.7面積%であった。GPCチャート(測定条件1)は図2に示す。
[合成例3]
 温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、3-メチル-6-t-ブチルフェノール137.2部、4-メチル-2-t-ブチルフェノール0.16部、pヒドロキシベンズアルデヒド60部、トルエン142部、pトルエンスルホン酸1.4部を加え、110~115℃で8時間反応を行った。反応終了後、25%NaOH 水を加えた後、トルエンを共沸脱水により留去。その後、75%硫酸を加え、pHを5~7に調整し、析出した樹脂粉体をろ過し、60℃で乾燥することで、フェノール樹脂(P3)180部を得た。得られたフェノール樹脂(P3)は粉状であり、軟化点150℃以上、水酸基当量153g/eq.であり、GPCによるn=1は47.6面積%であった。GPCチャート(測定条件1)は図3に示す。
[実施例1]
 温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、合成例1で得られたフェノール樹脂(P1)310部、エピクロルヒドリン973部、ジメチルスルホキシド274部、水15部を加え、内温を45℃まで昇温した。水酸化ナトリウム16部を1.5時間かけて分割添加後、45℃で2時間、70℃で1時間反応させた。加熱減圧下で未反応のエピクロルヒドリンおよび溶剤を留去した。MIBK1040部を加え、水440部で有機層を1回洗浄した。有機層を反応容器に戻し、30重量%水酸化ナトリウム水溶液20部を加え、70℃で2時間反応させた。放冷後、水130部で有機層を4回洗浄し、加熱減圧下、溶剤を留去し、固形樹脂としてエポキシ樹脂(E1)を170部得た。エポキシ当量は214g/eq.、ICI粘度(150℃)は0.57Pa・s、軟化点は100℃であり、パラメータAは2.14であった。GPC(検出器 UV254nm)より概算される平均の繰り返し単位nは2.4、n=1は42.3面積%、n=1未満は、1.57面積%であった。GPCチャート(測定条件2)は図4に示す。
[実施例2]
 温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、合成例1で得られたフェノール樹脂(P1)310部、エピクロルヒドリン584部、ジメチルスルホキシド274部、水15部を加え、内温を45℃まで昇温した。水酸化ナトリウム16部を1.5時間かけて分割添加後、45℃で2時間、70℃で1時間反応させた。加熱減圧下で未反応のエピクロルヒドリンおよび溶剤を留去した。MIBK1040部を加え、水440部で有機層を1回洗浄した。有機層を反応容器に戻し、30wt%水酸化ナトリウム水溶液20部を加え、70℃で2時間反応させた。放冷後、水130部で有機層を4回洗浄し、加熱減圧下、溶剤を留去し、固形樹脂としてエポキシ樹脂(E2)を141部得た。エポキシ当量は225g/eq.、ICI粘度(150℃)は1.92Pa・s、軟化点は110℃であり、パラメータAは2.05であった。GPC(検出器 UV254nm)より概算される平均の繰り返し単位nは2.9、n=1は31.1面積%、n=1未満は、1.28面積%であった。GPCチャート(測定条件2)は図5に示す。
[実施例3]
 温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、合成例3で得られたフェノール樹脂(P3)310部、エピクロルヒドリン778部、ジメチルスルホキシド274部、水15部を加え、内温を45℃まで昇温した。水酸化ナトリウム16部を1.5時間かけて分割添加後、45℃で2時間、70℃で1時間反応させた。加熱減圧下で未反応のエピクロルヒドリンおよび溶剤を留去した。MIBK1040部を加え、水440部で有機層を1回洗浄した。有機層を反応容器に戻し、30重量%水酸化ナトリウム水溶液20部を加え、70℃で2時間反応させた。放冷後、水130部で有機層を4回洗浄し、加熱減圧下、溶剤を留去し、固形樹脂としてエポキシ樹脂(E3)を303部得た。エポキシ当量は216g/eq.、全塩素は440ppm(ISO21627-3準拠)、無機塩素イオン濃度0.3ppm、ICI粘度(150℃)は0.64Pa・s、軟化点は100℃であり、パラメータAは2.16であった。GPC(検出器 UV254nm)より概算されるMnは1059、Mwは2001(ポリスチレン換算)、n=1は39.5面積%、n=1未満は1.95面積%であった。GPCチャート(測定条件3)は図6に示す。
[比較合成例1]
 温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、合成例2で得られたフェノール樹脂(P2)288部、エピクロルヒドリン584部、ジメチルスルホキシド274部、水15部を加え、内温を45℃まで昇温した。水酸化ナトリウム16部を1.5時間かけて分割添加後、45℃で2時間、70℃で1時間反応させた。加熱減圧下で未反応のエピクロルヒドリンおよび溶剤を留去した。MIBK1040部を加え、水440部で有機層を1回洗浄した。有機層を反応容器に戻し、30重量%水酸化ナトリウム水溶液20部を加え、70℃で2時間反応させた。放冷後、水130部で有機層を4回洗浄し、加熱減圧下、溶剤を留去し、固形樹脂としてエポキシ樹脂(E4)を165部得た。エポキシ当量は223g/eq.、ICI粘度(150℃)は0.60Pa・s、軟化点は99.7℃であり、パラメータAは2.24であった。GPCより概算される平均の繰り返し単位nは2.4、n=1は43.9面積%、n=1未満は、1.9面積%であった。GPCチャート(測定条件2)は図7に示す。
[比較合成例2]
 温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、合成例2で得られたフェノール樹脂(P2)288部、エピクロルヒドリン487部、ジメチルスルホキシド274部、水15部を加え、内温を45℃まで昇温した。水酸化ナトリウム16部を1.5時間かけて分割添加後、45℃で2時間、70℃で1時間反応させた。加熱減圧下で未反応のエピクロルヒドリンおよび溶剤を留去した。MIBK1040部を加え、水440部で有機層を1回洗浄した。有機層を反応容器に戻し、30重量%水酸化ナトリウム水溶液20部を加え、70℃で2時間反応させた。放冷後、水130部で有機層を4回洗浄し、加熱減圧下、溶剤を留去し、固形樹脂としてエポキシ樹脂(E5)を161部得た。エポキシ当量は224g/eq.、ICI粘度(150℃)は0.66Pa・s、軟化点は100.9℃であり、パラメータAは2.22であった。GPCより概算される平均の繰り返し単位nは2.3、n=1は43面積%、n=1未満は、2.1面積%であった。GPCチャート(測定条件2)は図8に示す。
[実施例4、5、比較例1、2]
 実施例、合成例で得られたエポキシ樹脂E1、E2、E4、およびE6としてFAE-2500(日本化薬製、分析結果は後述)、硬化剤としてトリスフェノールメタン型フェノール樹脂(日本化薬製 KAYAHARD KTG-105)を用い、触媒としてトリフェニルホスフィンを使用し、トリスフェノールメタン型フェノール樹脂をエポキシ樹脂に対し等当量、トリフェニルホスフィンをエポキシ樹脂に対して1phr.配合し、ミキシングロールを用いて均一に混合・混練し、更に脱型後、160℃で2時間、180℃で6時間の条件で硬化し、評価用試験片を得た。
 FAE-2500のエポキシ当量は213g/eq.、ICI粘度(150℃)は0.30Pa・s、軟化点は93.5℃であり、パラメータAは2.28であった。GPCチャート(測定条件2)は図9に示す。
 評価用試験片を下記条件で測定した結果を表1に示す。また、TMAチャートは図10に示す。
<動的粘弾性測定(DMA)>
 動的粘弾性試験機を用いてガラス転移温度(tanδが最大値のときの温度)、およびそのときのtanδの値を測定した。
・動的粘弾性測定器:TA-instruments製DMA-2980
・昇温速度:2℃/分
<熱機械特性測定(TMA)>
 熱機械特性測定装置を用いてガラス転移温度(Tg)、線膨張変化率(CTE)を評価した。
<熱重量示差熱測定(TG-DTA)>
TG-DTAを用いて熱分解温度および500℃における残炭素量を測定した。
測定サンプル:粉状(100μmメッシュ通過、75μmメッシュオン)5~10mg使用
測定条件:昇温速度10℃/min Air flow 200ml
Figure JPOXMLDOC01-appb-T000005
[実施例6、比較例3]
 エポキシ樹脂(E1)、エポキシ樹脂(E6、FAE-2500(日本化薬製))、硬化剤としてザイロック型フェノール樹脂(明和化成製 MEHC-7800SS)、触媒としてトリフェニルホスフィン(TPP、東京化成社製)、無機充填剤としてシリカゲル(溶融シリカ MSR-2212、龍森製)、離型剤としてカルナバワックス(セラリカ野田製)、添加剤としてシランカップリング剤(商品名:KBM-303 信越化学工業製)を使用し、ミキシングロールを用いて均一に混合・混練し、硬化性樹脂組成物を得た。
 この硬化性樹脂組成物を粉砕後、タブレットマシーンにてタブレット化した。タブレット化した硬化性樹脂組成物をトランスファー成型(175℃ 60~150分)し、脱型後160℃×2時間+180℃×6時間の条件で硬化、評価用試験片を得た。本試験片を用いて以下の評価を行った。測定結果は表2に記す。
<耐トラッキング性試験>
適合規格 IEC-Pub.60112-2003(第4版)及びJIS-C2134-2007
対象試験電圧 400V~600V
試験液 塩化アンモニウム 0.1%水溶液
滴下数 50滴 50滴未満で試験片が破壊した場合はNGと判定した。
試験室の温度と湿度 21℃~23℃ 40~45%RH
試験装置 ヤマヨ試験機有限会社製 YST-112型 耐トラッキング試験機
試験サンプル形状 直径50mm 厚み 3mm
1枚につき1点測定
Figure JPOXMLDOC01-appb-T000006
 表1の結果より、本発明のエポキシ樹脂は高い耐熱性とともに寸法安定性(線膨張が低い)ことを確認した。また表2の結果より、本発明のエポキシ樹脂は高い耐トラッキング性能であることを確認した。
[合成例4]
 温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、3-メチル-6-t-ブチルフェノール130.3部、4-メチル-2-t-ブチルフェノール0.2部、pヒドロキシベンズアルデヒド60部、トルエン142部、pトルエンスルホン酸1.4部を加え、110~115℃で8時間反応を行った。反応終了後、25%NaOH 水を加えた後、トルエンを共沸脱水により留去。その後、75%硫酸を加え、pHを5~7に調整し、析出した樹脂粉体をろ過し、60℃で乾燥することで、フェノール樹脂(P4)186部を得た。得られたフェノール樹脂(P4)は粉状であり、軟化点200℃以上、水酸基当量160g/eq.であり、GPCによるn=1は37.0面積%であった。GPCチャート(測定条件1)は図11に示す。
[実施例7]
 温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、合成例4で得られたフェノール樹脂(P4)320部、エピクロルヒドリン973部、ジメチルスルホキシド274部、水15部を加え、内温を45℃まで昇温した。水酸化ナトリウム16部を1.5時間かけて分割添加後、45℃で2時間、70℃で1時間反応させた。加熱減圧下で未反応のエピクロルヒドリンおよび溶剤を留去した。MIBK1040部を加え、水440部で有機層を1回洗浄した。有機層を反応容器に戻し、30重量%水酸化ナトリウム水溶液20部を加え、70℃で2時間反応させた。放冷後、水130部で有機層を4回洗浄し、加熱減圧下、溶剤を留去し、固形樹脂としてエポキシ樹脂(E7)を107部得た。エポキシ当量は220g/eq.、ICI粘度(150℃)は0.8Pa・s以上、軟化点は108.5℃であり、パラメータAは2.03であった。GPC(検出器 UV254nm)より概算される平均の繰り返し単位nは3.4、n=1は24.9面積%、n=1未満は、2.91面積%であった。GPCチャート(測定条件3)は図12に示す。また各々のピークはリテンションタイムが35.619分の物が1.75%、それ以外のピークは1.5面積%以下であった。
[実施例8、9]
 上記実施例で得られたエポキシ樹脂E3、E7、硬化剤としてトリスフェノールメタン型フェノール樹脂(日本化薬製 KAYAHARD KTG-105 水酸基当量102g/eq.)、ビフェニルアラルキル型フェノール樹脂(日本化薬製 KAYAHARD GPH-65 硬化剤 水酸基当量200g/eq.)、触媒としてトリフェニルホスフィン(TPP、東京化成社製)、無機充填剤としてシリカゲル(溶融シリカ MSR-2212、龍森製)、離型剤としてカルナバワックス(セラリカ野田製)、添加剤としてシランカップリング剤(商品名:KBM-303 信越化学工業製)を使用し、表3の割合(重量部)で配合し、ミキシングロールを用いて均一に混合・混練し、更に脱型後、160℃で2時間、180℃で6時間の条件で硬化し、評価用試験片を得た。本試験片を用いて耐トラッキング性試験を行った。測定結果は表3に記す。
Figure JPOXMLDOC01-appb-T000007
[実施例9、比較例4]
 上記実施例で得られたエポキシ樹脂E1、ビフェニルアラルキル型エポキシ樹脂、(日本化薬製、NC-3000)、硬化剤としてザイロック型フェノール樹脂(明和化成製 MEHC-7800SS)、触媒としてトリフェニルホスフィン(TPP、東京化成社製)、無機充填剤としてシリカゲル(溶融シリカ MSR-2212、龍森製)、離型剤としてカルナバワックス(セラリカ野田製)、添加剤としてシランカップリング剤(商品名:KBM-303 信越化学工業製)を使用し、ミキシングロールを用いて均一に混合・混練し、硬化性樹脂組成物を得た。
 この硬化性樹脂組成物を粉砕後、タブレットマシーンにてタブレット化した。タブレット化した硬化性樹脂組成物をトランスファー成型(175℃ 60~15分)し、更に脱型後160℃×2時間+180℃×6時間の条件で硬化、評価用試験片を得た。本試験片を用いて耐トラッキング性試験を行った。測定結果は表4に記す。
Figure JPOXMLDOC01-appb-T000008
[実施例10~13、比較例5~8]
 上記実施例で得られたエポキシ樹脂E1、ビフェニルアラルキル型エポキシ樹脂、(日本化薬製、NC-3000)、硬化剤としてザイロック型フェノール樹脂(明和化成製 MEHC-7800SS)、ビフェニルアラルキル型フェノール樹脂(日本化薬製 KAYAHARD GPH-65)、触媒としてトリフェニルホスフィン(TPP、東京化成社製)、無機充填剤としてシリカゲル(溶融シリカ MSR-2212、龍森製)、離型剤としてカルナバワックス(セラリカ野田製)、添加剤としてシランカップリング剤(商品名:KBM-303 信越化学工業製)を使用し、ミキシングロールを用いて均一に混合・混練し、硬化性樹脂組成物を得た。
 この硬化性樹脂組成物を粉砕後、タブレットマシーンにてタブレット化した。タブレット化した硬化性樹脂組成物をトランスファー成型(175℃ 60~15分)し、更に脱型後160℃×2時間+180℃×6時間の条件で硬化、評価用試験片を得た。本試験片を用いて耐トラッキング性試験を行った。特にCTIに関してはIEC-Pub.60112-2003(第4版)に準拠した測定法を用い測定を行った。測定結果は表5、図13に記す。
Figure JPOXMLDOC01-appb-T000009
 上記結果から本発明のエポキシ樹脂を用いた硬化物は、比較的高いCTIを維持し、特に無機充填剤配合量が74重量%以上、より好ましくは78重量%以上の配合で他の組成に比べ、CTIの上昇率が高くなることを確認した。
 本発明のエポキシ樹脂は、車載用材料、特にパワーデバイス周辺材料の用途に有用であり、特に、耐熱性と高い比較トラッキング指数(CTI)を求められる用途に有効である。

 

Claims (4)

  1.  下記式(1)で表され、エポキシ当量(g/eq.)を軟化点(℃)で除した値が2.0以上2.2未満であるエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、複数存在するRは独立して存在し、メチル基または水素原子を表す。nは繰り返し数の平均値であり、1~10の実数である。)
  2.  請求項1に記載のエポキシ樹脂を含有する硬化性樹脂組成物。
  3.  硬化性樹脂組成物総量中、無機充填剤の含有量が74重量%以上95重量%以下である請求項2に記載の硬化性樹脂組成物。
  4.  請求項2または3に記載の硬化性樹脂組成物を硬化した硬化物。

     
PCT/JP2022/024317 2021-06-18 2022-06-17 エポキシ樹脂、硬化性樹脂組成物、およびその硬化物 WO2022265096A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237031690A KR20240021736A (ko) 2021-06-18 2022-06-17 에폭시 수지, 경화성 수지 조성물 및 그 경화물
CN202280022791.0A CN117043215A (zh) 2021-06-18 2022-06-17 环氧树脂、硬化性树脂组合物、及硬化性树脂组合物的硬化物
JP2022557655A JP7230285B1 (ja) 2021-06-18 2022-06-17 エポキシ樹脂、硬化性樹脂組成物、およびその硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021101988 2021-06-18
JP2021-101988 2021-06-18

Publications (2)

Publication Number Publication Date
WO2022265096A1 true WO2022265096A1 (ja) 2022-12-22
WO2022265096A9 WO2022265096A9 (ja) 2023-01-19

Family

ID=84527126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024317 WO2022265096A1 (ja) 2021-06-18 2022-06-17 エポキシ樹脂、硬化性樹脂組成物、およびその硬化物

Country Status (5)

Country Link
JP (1) JP7230285B1 (ja)
KR (1) KR20240021736A (ja)
CN (1) CN117043215A (ja)
TW (1) TW202313751A (ja)
WO (1) WO2022265096A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252625A (ja) * 1987-12-16 1989-10-09 Sumitomo Chem Co Ltd 多価フェノールのグリシジルエーテルおよびその組成物
JPH01252624A (ja) * 1987-12-16 1989-10-09 Sumitomo Chem Co Ltd 多価フェノールのグリシジルエーテルの製造方法
JPH07258382A (ja) * 1994-03-24 1995-10-09 Sumitomo Chem Co Ltd エポキシ樹脂の製造方法
JPH08259662A (ja) * 1995-03-27 1996-10-08 Nippon Kayaku Co Ltd エポキシ樹脂の製造方法
JPH1149766A (ja) * 1997-07-31 1999-02-23 Sumitomo Chem Co Ltd 部分エーテル化化合物およびその製造法、エポキシ樹脂組成物、ならびに該組成物を用いた製品
JP2001089546A (ja) * 1999-09-27 2001-04-03 Sumitomo Chem Co Ltd フェノール−アルデヒド樹脂の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001841A (ja) 2017-06-12 2019-01-10 信越化学工業株式会社 エポキシ樹脂組成物及び該組成物の硬化物を備える半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252625A (ja) * 1987-12-16 1989-10-09 Sumitomo Chem Co Ltd 多価フェノールのグリシジルエーテルおよびその組成物
JPH01252624A (ja) * 1987-12-16 1989-10-09 Sumitomo Chem Co Ltd 多価フェノールのグリシジルエーテルの製造方法
JPH07258382A (ja) * 1994-03-24 1995-10-09 Sumitomo Chem Co Ltd エポキシ樹脂の製造方法
JPH08259662A (ja) * 1995-03-27 1996-10-08 Nippon Kayaku Co Ltd エポキシ樹脂の製造方法
JPH1149766A (ja) * 1997-07-31 1999-02-23 Sumitomo Chem Co Ltd 部分エーテル化化合物およびその製造法、エポキシ樹脂組成物、ならびに該組成物を用いた製品
JP2001089546A (ja) * 1999-09-27 2001-04-03 Sumitomo Chem Co Ltd フェノール−アルデヒド樹脂の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAMATA, YUKO, ET AL.: "Enhanced Thermal Resistance of Molding Resin Used for All-SiC Modules", FUJI ELECTRIC TECHNICAL REPORT: SPECIAL FEATURE: POWER SEMICONDUCTORS CONTRIBUTING TO ENERGY MANAGEMENT, vol. 89, no. 4, 30 December 2016 (2016-12-30), pages 247 - 250, XP009541952, ISSN: 2187-1817 *

Also Published As

Publication number Publication date
WO2022265096A9 (ja) 2023-01-19
JP7230285B1 (ja) 2023-02-28
JPWO2022265096A1 (ja) 2022-12-22
TW202313751A (zh) 2023-04-01
KR20240021736A (ko) 2024-02-19
CN117043215A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
JP6366504B2 (ja) エポキシ樹脂、エポキシ樹脂組成物および硬化物
JP5019585B2 (ja) エポキシ樹脂組成物及びその硬化物、繊維強化複合材料
JP5273762B2 (ja) エポキシ樹脂、エポキシ樹脂組成物およびその硬化物
JP5386352B2 (ja) 液状エポキシ樹脂、エポキシ樹脂組成物、および硬化物
WO2008020594A1 (fr) Résine époxy liquide modifiée, composition de résine époxy contenant celle-ci et produit cuit dérivé
TWI739976B (zh) 含烯基之樹脂、硬化性樹脂組成物及其硬化物
JP7268256B1 (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
JP7185383B2 (ja) 硬化性樹脂組成物およびその硬化物
WO2022209642A1 (ja) エポキシ樹脂及びその製造方法、硬化性樹脂組成物、およびその硬化物
JP7230285B1 (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
JP7185384B2 (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
JP7240989B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5448137B2 (ja) 多価フェノール樹脂、エポキシ樹脂組成物、およびその硬化物
JP5170724B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP7256160B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP2022147099A (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
JP7068857B2 (ja) 多価ヒドロキシ樹脂の製造方法、熱硬化性樹脂組成物の製造方法、封止材の製造方法、積層板の製造方法、多価ヒドロキシ樹脂および熱硬化性樹脂組成物
JPH10158362A (ja) エポキシ樹脂組成物、硬化物及び半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022557655

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825084

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280022791.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11202307293R

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22825084

Country of ref document: EP

Kind code of ref document: A1