WO2022264847A1 - 金属含有膜および金属含有膜の製造方法 - Google Patents

金属含有膜および金属含有膜の製造方法 Download PDF

Info

Publication number
WO2022264847A1
WO2022264847A1 PCT/JP2022/022760 JP2022022760W WO2022264847A1 WO 2022264847 A1 WO2022264847 A1 WO 2022264847A1 JP 2022022760 W JP2022022760 W JP 2022022760W WO 2022264847 A1 WO2022264847 A1 WO 2022264847A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
film
containing unit
supercooling
degree
Prior art date
Application number
PCT/JP2022/022760
Other languages
English (en)
French (fr)
Inventor
浩二 秋山
知大 田村
宏明 芦澤
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020247000865A priority Critical patent/KR20240019319A/ko
Publication of WO2022264847A1 publication Critical patent/WO2022264847A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Definitions

  • the present disclosure relates to a metal-containing film and a method for manufacturing a metal-containing film.
  • metal-containing films are often used as wiring, electrodes, barrier films, metal hard masks, and the like. Such metal-containing films are required to have characteristics such as low resistance, high mechanical strength, and low atomic diffusion, depending on their respective uses, and various techniques have been proposed to meet these requirements. ing.
  • Patent Document 1 by using CoW as a seed layer of a metal wiring layer containing tungsten (W) as a main component, the crystals of the metal wiring layer are made finer and the deposition resistance value of the metal wiring layer is reduced. It states that it is possible.
  • a metal-containing film according to an aspect of the present disclosure has a first metal-containing unit film having a film thickness less than a crystal nucleation critical diameter, and a film thickness less than a crystal nucleation critical diameter, wherein the first metal A second metal-containing unit film different from the containing unit film is alternately laminated to have a laminate structure that does not contain grain boundaries.
  • a metal-containing film and a method for producing the metal-containing film having favorable properties according to the application are provided.
  • FIG. 10 is an SEM photograph of sample A in which the film thickness of the Al film is set to less than 1.7 nm when the metal-containing film having the Al—Ti laminate structure is produced by sputtering.
  • FIG. 10 is an SEM photograph of sample B in which the film thickness of the Al film is set to 1.7 nm or more when the metal-containing film having the Al—Ti laminate structure is manufactured by sputtering.
  • 10 is an SEM photograph of sample C manufactured under the same conditions as sample A, except that the total film thickness was 1000 nm.
  • FIG. 4 is an SEM photograph showing an enlarged cross section of Sample C.
  • FIG. FIG. 2 is a diagram showing transition of free energy when a phase transition occurs from an amorphous state, which is a metastable state, to a crystalline state, which is a stable state.
  • FIG. 4 is a diagram showing the relationship (calculated value) between the degree of supercooling of various metals and the critical nucleus radius r * .
  • FIG. 4 is a diagram showing the relationship between the degree of supercooling and the cooling rate in an Al—Si alloy; FIG.
  • FIG. 10 is an SEM photograph showing a state in which a metal-containing film having an Al--Ti laminate structure and a metal-containing film having an (AlSi)--Ti laminate structure were formed with thicknesses of 500 nm and 1000 nm by sputtering.
  • FIG. 4 is a diagram showing the relationship between the degree of supercooling and the cooling rate in an Al—Mg alloy;
  • FIG. 4 is an SEM photograph of a metal-containing film having an (AlSi)-Ti laminate structure and a metal-containing film having an (AlMg)-Ti laminate structure. It is an Al-Si phase diagram. It is an Al--Mg phase diagram.
  • FIG. 1 is a cross-sectional view showing an example of a fine wiring structure in which a metal-containing film of one embodiment is applied to fine wiring
  • FIG. 1 is a cross-sectional view showing an example of a fine wiring structure in which a metal film of one embodiment is applied as a barrier film
  • FIG. 2 is a cross-sectional view showing an example of a capacitor in which the metal-containing film of one embodiment is applied to electrodes having a pillar structure
  • FIG. 3 is a cross-sectional view showing an example of a capacitor in which the metal-containing film of one embodiment is applied to electrodes having a cylindrical structure
  • FIG. 1 is a cross-sectional view schematically showing a metal-containing film according to one embodiment.
  • the metal-containing film 1 has a laminate structure in which a first metal-containing unit film 2 and a second metal-containing unit film 3 different from the first metal-containing unit film are alternately laminated. formed on W.
  • the thickness of each of the first metal-containing unit film 2 and the second metal-containing unit film 3 is less than the crystal nucleation critical diameter, and the metal-containing film 1 does not include grain boundaries.
  • the substrate W include a semiconductor substrate and an FPD substrate.
  • the critical nucleus radius r * is a critical crystal nucleus size above which crystal nuclei are formed, and can be rephrased as a crystal nucleus formation critical radius.
  • the diameter of the nucleus at that time is the crystal nucleus formation critical diameter D * .
  • the metal-containing film 1 can be a film that does not contain grain boundaries.
  • the critical nucleus radius r * can be calculated from a relational expression proportional to Tm/T ⁇ max using the maximum degree of supercooling ⁇ Tmax and the melting point Tm for each metal.
  • the crystal nucleation critical diameter D * is a value twice the calculated critical nucleus radius r * .
  • the calculated values of the crystal nucleation critical diameter D * for major metals are shown in FIG. As shown in FIG. 2, many metals have a calculated value of the crystal nucleation critical diameter D * in the range of 1.4 to 2.6 nm, and the first metal-containing unit film 2 and the second metal-containing unit film Crystallization can be suppressed by setting the film thickness of 3 to less than this value.
  • Methods for forming the first metal-containing unit film 2 and the second metal-containing unit film 3 having such thicknesses include PVD represented by sputtering and chemical film forming methods using gas. Some common thin film deposition techniques such as ALD and CVD can be used.
  • first metal-containing unit film 2 and the second metal-containing unit film 3 it is preferable to select a combination having the lowest reactivity or a two-phase coexistence relationship. If an interfacial reaction occurs between these layers to create a chemical potential difference, diffusion (atom movement) occurs, which facilitates phase transition from a metastable state to a stable state, thus facilitating crystallization.
  • the first metal-containing unit film 2 and the second metal-containing unit film 3 may be metal nitride films or metal films.
  • the first metal-containing unit film 2 and the second metal-containing unit film 3 one of them is a metal nitride film and the other is a metal film, both are a metal nitride film, and both are a metal film. Combinations can be mentioned.
  • the metal nitride film forming the first metal-containing unit film 2 or the second metal-containing unit film 3 any one of TiN, NbN, VN, WN, TaN, MoN, and W 2 N 3 can be mentioned.
  • the metal film may be any one of Ru, Co, Ni, Mo, W, Al, Ti, V, Mn, Si and Mg.
  • Preferred combinations of the first metal-containing unit film 2 and the second metal-containing unit film 3 are as follows. ⁇ Combination of metal nitride films TiN--TaN, TiN--NbN, TiN--MoN, TiN--W 2 N 3 , TaN--NbN, TaN--W 2 N 3 ⁇ Combination of metal nitride film and metal film TiN-W, TiN-Mo, TiN-Ru, TaN-W, TaN-Mo, TaN-Ru ⁇ Combination of metal films Si-Al, W-Al, Mg-Al, W-Ti, V-Ti, Mg-Ti
  • the above preferred combinations are combinations with minimal reactivity or combinations in which two phases coexist, and diffusion (atom migration) due to interfacial reactions is difficult to occur and crystallization is difficult to occur.
  • the combination of the first metal-containing unit film 2 and the second metal-containing unit film 3 has reactivity, it is possible to form a metal-containing film that does not contain grain boundaries.
  • an Al—Ti combination is a reactive combination of Al and Ti.
  • the bond is a metallic bond and the bond is weak. Therefore, the combination of Al—Ti is a combination in which it is difficult to maintain the metastable amorphous state. Even with such a combination, as a result of forming a metal-containing film having a laminate structure under the following conditions, a metal-containing film that does not actually contain grain boundaries could be obtained.
  • Al film thickness 1.6 nm (less than 1.7 nm, which is the calculated value of D * )
  • Thickness of Ti film 0.8 nm (less than 2.7 nm, which is the calculated value of D * )
  • Film formation method sputtering Film thickness ratio of Al and Ti (Al:Ti): 77:23, 66:34, 55:45 Total film thickness (target value): 35 nm
  • the film thickness ratio of Al and Ti was set to 2:1, and the total film thickness was set to 100 nm.
  • sample C was manufactured under the same conditions as sample A, except that the total film thickness was 1000 nm. As a result, it was crystallized as shown in the SEM photograph of FIG. FIG. 6 is an enlarged SEM photograph showing the cross section of sample C. While the crystal grain size on the substrate side is small, the crystal grain size on the surface side is large. From this, it is considered that the reason why the film was crystallized was that heat was input from the surface side during film formation by sputtering, and the effect of the heat input became greater as the film thickness increased. The reason why the crystal grain size differs between the substrate side and the surface side is considered to be that the substrate side is the cooling side and the surface side is the heat input side, and the degree of supercooling is different.
  • FIG. 7 is a diagram showing transition of free energy when a phase transition from an amorphous state, which is a metastable state, to a crystalline state, which is a stable state.
  • an activation energy ⁇ Ea is required for the phase transition from the metastable amorphous state to the stable crystalline state.
  • the activation barrier ( ⁇ Ea) is overcome by the heat input, a crystalline state is reached.
  • the free energy G ⁇ of the amorphous state must be reduced to further stabilize the amorphous state, and the activation energy Either or both of increasing ⁇ Ea and raising the phase transition barrier are required.
  • Amorphous is a supercooled liquid that solidifies as it is, so it is thought that the higher the maximum degree of supercooling, the easier it is to maintain a metastable amorphous state. In other words, it is considered that the larger the maximum degree of supercooling, the smaller the G ⁇ and the more the amorphous state is stabilized. Therefore, in order to stabilize the amorphous state, it is effective to add an element that increases the degree of supercooling.
  • FIG. 8 is a diagram showing the relationship (calculated value) between the degree of supercooling and the critical nucleus radius r * of various metals, and the right end of the degree of supercooling curve for each metal is the maximum degree of supercooling. From this figure, it can be seen that both Al and Ti have a small maximum degree of supercooling and are materials that are difficult to maintain an amorphous state.
  • FIG. 9 is a diagram showing the relationship between the degree of supercooling and the cooling rate in an Al—Si alloy (Source: Ichikawa et al., Casting vol. 46 (1973), 1, 25, FIG. 8). From this figure, it can be seen that Si is an element that increases the degree of supercooling of pure Al.
  • a metal-containing film with an Al-Ti laminate structure and a metal-containing film with an (AlSi)-Ti laminate structure were formed by sputtering to a thickness of 500 nm and 1000 nm.
  • the amount of Si added to the AlSi film was set to 6 at %, and the film thicknesses of the Al film and the AlSi film were set to 1.6 nm.
  • FIG. 10 is an SEM photograph of these. As is clear from the SEM photograph, in the Al--Ti laminate structure, no crystallization occurred at a film thickness of 500 nm, but crystallized at a film thickness of 1000 nm.
  • the (AlSi)—Ti laminate structure did not crystallize even with a film thickness of 1000 nm. From this, it is considered that adding Si to Al to increase the degree of supercooling of pure Al reduces G ⁇ and maintains a metastable amorphous state. Also, the addition of the element itself leads to an increase in entropy, which is advantageous in reducing G ⁇ .
  • Mg is also known as an element that increases the degree of supercooling of the Al film.
  • FIG. 11 is a diagram showing the relationship between the degree of supercooling and the cooling rate in an Al—Mg alloy (Source: Ichikawa et al., Casting vol. 46 (1973), 1, 25, FIG. 4). From this figure, it can be seen that Mg can be an additive element that increases the degree of supercooling of pure Al.
  • FIG. 12 is an SEM photograph of the metal-containing film of the (AlSi)-Ti laminate structure and the metal-containing film of this (AlMg)-Ti laminate structure. As is clear from the SEM photograph, the (AlSi)-Ti laminate structure did not crystallize at a film thickness of 1000 nm, whereas the (AlMg)-Ti laminate structure crystallized at a film thickness of 1000 nm.
  • FIG. 13 is an Al--Si phase diagram
  • FIG. 14 is an Al--Mg phase diagram.
  • Al--Si is a phase separation system (eutectic system)
  • Al--Mg is an intermetallic compound forming system. That is, Si and Mg interact greatly with Al.
  • Al and Mg attract each other and tend to be arranged (ordered) as Al--Mg--Al.
  • the mixing enthalpy 0 H mix of the binary system of the pure substances A and B at 0 K can be expressed by the following equation (1).
  • 0 H A and 0 H B are enthalpies of pure substances A and B at 0 K
  • X B is the atomic fraction of pure substance B
  • 0 ⁇ AB is an interaction parameter.
  • the interaction parameter 0 ⁇ AB is represented by the following equation (2).
  • N is the total number of atoms of A and B
  • z is the coordination number
  • e AB , e AA , and e BB are the bond energies of AB, AA, and BB, respectively. is.
  • the physical meaning of the value of the interaction parameter 0 ⁇ AB is as follows. (1) 0 ⁇ AB > 0 : In this case, e AB >(e AA +e BB )/2, and the energy of the AB pair is higher than the average energy of the AA pair and the BB pair, so A, B means that it is repulsive and tends to separate into a phase containing A as the main component and a phase containing B as the main component. Therefore, the combination facilitates the formation of an amorphous material.
  • the Al—Si system mentioned above is this case.
  • the mixing enthalpy 0 H mix of the binary system as described above is related to the activation energy ⁇ Ea at the time of phase transition from the amorphous state to the crystalline state. is thought to change.
  • the above-described difference in behavior when Si and Mg are added to Al can be explained by the difference in ⁇ Ea depending on whether 0 ⁇ AB is positive or negative. That is, since 0 ⁇ AB >0 in the Al—Si system, the added Si repels Al, which is the matrix phase, and ⁇ Ea increases. On the other hand, since 0 ⁇ AB ⁇ 0 in the Al—Mg system, the added Mg bonds with the matrix Al to form an order, thereby reducing ⁇ Ea.
  • G ⁇ is lowered to form an amorphous film.
  • the quality state can be stabilized, and crystallization due to heat input can be suppressed.
  • the element that increases the degree of supercooling it is preferable to select an element that satisfies the interaction parameter 0 ⁇ AB between the element and the matrix phase, 0 ⁇ AB ⁇ 0.
  • Such additive elements that increase the degree of supercooling are effective when the first metal-containing unit film 2 and the second metal-containing unit film 3 are metal films, and are suitable depending on these materials.
  • the material when the material is Al, Si is suitable as an additive element.
  • Ru, Ir, Pd, Ni, Co, and Mn are suitable as additive elements.
  • Pd, and Ru are preferred.
  • W Mo, Ta, Nb, Ti, and Mn are suitable as additive elements.
  • Mo, W, Ta, Nb, Ti, and Mn are suitable.
  • Ti Zr, Hf, V, W, Mo, Nb and Ta are preferred, and Ru, Fe, Mo and W are preferred for Mn.
  • metal-containing film with a laminate structure For semiconductor devices, for example, wiring metals for fine wiring, electrodes with pillar structures and cylinder structures used for capacitors, barrier films, metal hard masks, etc., metal-containing films such as W, Cu, TiN, and TaN are used for various purposes. is used. Such a metal-containing film generally has a crystal structure, and crystal grain boundaries cause problems in the semiconductor device itself and in the manufacturing process of the semiconductor device.
  • grain boundary scattering and interfacial scattering due to irregularities based on grain boundaries increase wiring resistance.
  • metal hard masks used for microfabrication if there is a crystal grain boundary, the shape of the grain boundary portion is transferred to the workpiece as it is, and deformation (wiggling) due to film stress due to grain boundary sliding may occur. occurs.
  • twisting occurs due to stress concentration due to grain boundary sliding, which may increase interfacial resistance and induce misalignment due to interference between adjacent wirings.
  • grain boundary sliding reduces the mechanical strength, and shear stress is applied to the grain boundaries, causing plastic deformation such as leaning (falling or collapsing) during the manufacturing process.
  • the barrier film is used as a diffusion barrier for halogen-based impurities and the like, but if there is a crystal grain boundary, bypass diffusion through the grain boundary significantly reduces the barrier properties.
  • the metal-containing film 1 having no crystal grain boundary is obtained by the laminate structure of the first metal-containing unit film 2 and the second metal-containing unit film 3 .
  • the metal-containing film of the laminate structure of this embodiment is suitable for use as a wiring metal for fine wiring, an electrode having a pillar structure or a cylinder structure, a barrier film, a metal hard mask, and the like.
  • Amorphous structures and single crystals called amorphous metals and glass metals have been conventionally known as metal-containing films in which grain boundaries do not exist.
  • many conventional metal-containing films with an amorphous structure are alloyed by combining a plurality of metals, and the degree of freedom in combining metal elements is small. be a constraint.
  • a high-temperature process is required, the steps are limited, the process is complicated, and production is difficult.
  • materials that can be grown into single crystals are also limited.
  • the present embodiment since it is sufficient to form a laminate structure of the first metal-containing unit film 2 and the second metal-containing unit film 3, it can be manufactured by combining existing film forming processes. No manufacturing difficulties are involved. In addition, the degree of freedom in material selection is high, and the combination of materials for the first metal-containing unit film 2 and the second metal-containing unit film 3 can be selected according to device performance requirements and process requirements and restrictions. can be done. Furthermore, there is a possibility that new functional materials can be obtained only by combining existing processes.
  • Applications of the metal-containing film according to this embodiment include wiring metals for fine wiring, barrier films, electrodes with pillar structures and cylinder structures, and metal hard masks.
  • the wiring metal using the metal-containing film according to this embodiment can be used, for example, as a substitute for the W film, Cu film, and TiN film used for existing fine wiring.
  • FIG. 15 is a cross-sectional view showing an example of fine wiring in which the metal-containing film of one embodiment is applied to wiring metal.
  • an insulating film 102 having recesses such as trenches and holes is formed on a substrate 101 having a lower structure (not shown).
  • the metal-containing film 105 of the embodiment is embedded.
  • the metal-containing film forming the wiring metal has crystal grain boundaries, as described above, grain boundary scattering and interfacial scattering due to unevenness based on the grain boundaries increase wiring resistance, and grain boundary sliding causes twisting.
  • the metal-containing film 105 of this embodiment does not include grain boundaries, such inconvenience does not occur.
  • an appropriate combination can be selected according to the required characteristics such as the resistance value.
  • any combination of a metal nitride film on one side and a metal film on the other side, a combination of metal nitride films on both sides, and a combination of metal films on both sides can be used.
  • a typical example of the combination is a combination of a TiN film (thickness 1-2 nm) and a WN film (thickness 1-2 nm).
  • a barrier film using a metal-containing film according to one embodiment can be used, for example, as a substitute for TaN films and TiN films used in existing barrier films.
  • FIG. 16 is a cross-sectional view showing an example of a fine wiring structure in which the metal film of one embodiment is applied as a barrier film.
  • the fine wiring structure 111 of FIG. 16 in a structure in which an insulating film 102 having recesses such as trenches and holes is formed on a substrate 101 having a lower structure (not shown) similar to that of FIG. A metal-containing film 114 of this embodiment is formed, and a fine wiring 115 is embedded in the recess.
  • the metal-containing film forming the barrier film has crystal grain boundaries, as described above, the presence of the crystal grain boundaries significantly reduces the barrier properties due to bypass diffusion through the grain boundaries. Since the metal-containing film 114 does not contain grain boundaries, such inconvenience does not occur.
  • an appropriate combination can be selected according to the required barrier property.
  • any combination of a metal nitride film on one side and a metal film on the other side, a combination of metal nitride films on both sides, and a combination of metal films on both sides can be used.
  • a typical combination is a combination of a TiN film (1 nm thick) and a WN film, VN film, or NbN film (all 1 nm thick).
  • a pillar-structure or cylinder-structure electrode using a metal-containing film according to one embodiment can be used, for example, as a substitute for a TiN film or the like used for an existing electrode.
  • FIG. 17 is a cross-sectional view showing an example of a capacitor in which the metal-containing film of one embodiment is applied to electrodes having a pillar structure.
  • This example is an example in which the lower electrode of the capacitor 120 has a pillar structure, and the metal-containing film 122 of this embodiment, which serves as the lower electrode having the pillar structure, is formed on the contact 121a formed on the substrate 121.
  • FIG. For example, a first TiO 2 film 123 , a ZrO 2 film 124 and a second TiO 2 film 125 are formed as dielectric films on the metal-containing film 122 .
  • An electrode 126 is formed.
  • the material and the number of layers of the dielectric film are not limited to this example. In the manufacturing process of the capacitor shown in FIG.
  • the insulating film supporting the lower electrode of the pillar structure is removed to allow the lower electrode to stand on its own, and then the dielectric film and the like are formed.
  • the mechanical strength is lowered due to grain boundary sliding, and shear stress is applied to the grain boundary, which may cause plastic deformation such as leaning (falling or collapsing).
  • the metal-containing film 122 of the present embodiment that does not contain grain boundaries is used as the lower electrode of the pillar structure, there is no decrease in mechanical strength due to grain boundary sliding, and leaning due to decrease in strength does not occur. Such plastic deformation is difficult to occur.
  • FIG. 18 is a cross-sectional view showing an example of a capacitor in which the metal-containing film of one embodiment is applied to electrodes having a cylindrical structure.
  • This example is an example in which the lower electrode of the capacitor 130 has a cylindrical structure, and the metal-containing film 132 of this embodiment, which serves as the lower electrode having a cylindrical structure, is formed on the contact 131 a formed on the substrate 131 .
  • a first TiO 2 film 133 , a ZrO 2 film 134 and a second TiO 2 film 135 are formed as dielectric films on the metal-containing film 132 .
  • An electrode 136 is formed.
  • the material and the number of layers of the dielectric film are not limited to this example. In the manufacturing process of the capacitor shown in FIG.
  • the insulating film supporting the lower electrode of the cylinder structure is removed to allow the lower electrode to stand on its own, and then the dielectric film and the like are formed.
  • the presence of grain boundaries may cause plastic deformation such as leaning (collapse, collapse). Mechanical strength reduction due to slippage does not occur, and plastic deformation such as leaning due to strength reduction is unlikely to occur.
  • an appropriate combination can be selected according to the required characteristics such as resistance value. can be selected.
  • any combination of a metal nitride film on one side and a metal film on the other side, a combination of metal nitride films on both sides, and a combination of metal films on both sides can be used.
  • a typical example of a combination is a combination of a TiN film (thickness 1-2 nm) and a WN film, VN film, or NbN film (thickness 1-2 nm each).
  • a metal hard mask using a metal-containing film according to one embodiment can be used, for example, as a substitute for a TiN film or the like used in existing metal hard masks.
  • FIG. 19 is a cross-sectional view showing an example of a structure in which the metal-containing film of one embodiment is applied as a hard mask.
  • a structure 140 of this example is configured by forming an etching target film 142 on a substrate 141 and forming a metal-containing film 143 of this embodiment, which serves as a metal hard mask, thereon.
  • the etching target film 142 is not particularly limited, but examples thereof include a tungsten film, a GST (GeSbTe) film, a Poly-Si film, a carbon film, a SiO 2 film, and a SiON film.
  • the etching target film 142 may be a laminated film in which a plurality of films are laminated.
  • the metal-containing film that constitutes the metal hard mask has crystal grain boundaries, as described above, the shape of the grain boundary portion is transferred as it is to the etching target film 142 that is the workpiece, and grain boundary slippage occurs. Wiggling occurs due to membrane stress due to On the other hand, the metal-containing film 143 of this example does not include grain boundaries, so such a problem does not occur.
  • the first metal-containing unit film and the second metal-containing unit film constituting the metal-containing film 143 serving as a hard mask as described above, one is a combination of a metal nitride film and the other is a metal film, and both are metal films. Either a combination of nitride films or a combination of both metal films can be used. An appropriate combination may be selected among them according to the material of the film 142 to be etched.
  • the film formation method according to the present embodiment comprises a step of forming the first metal-containing unit film 2 with a film thickness less than the crystal nucleation critical diameter, and a second metal-containing unit film 2 different from the first metal-containing unit film 2.
  • a step of forming the containing unit film 3 to a film thickness less than the crystal nucleation critical diameter is alternately performed to manufacture the metal containing film 1 having a laminate structure containing no crystal grain boundaries.
  • the first metal-containing unit film 2 and the second metal-containing unit film 3 can be formed by general PVD such as sputtering, or ALD and CVD, which are chemical film forming methods using gas. can be formed by a thin film forming technique. These may be used in combination.
  • the first metal-containing unit film 2 and the second metal-containing unit film 3 may be formed by a combination of PVD and ALD, a combination of PVD and CVD, or a combination of ALD and CVD. These will be described below.
  • FIG. 20 is a cross-sectional view showing an example of a plasma sputtering apparatus for film formation by PVD.
  • the apparatus in FIG. 20 shows an ICP type plasma sputtering apparatus which is a kind of ionized PVD apparatus.
  • this plasma sputtering apparatus 200 has a grounded processing container 201 made of metal, and an exhaust port 203 and a gas introduction port 207 are provided at the bottom 202 of the processing container 201 . .
  • An exhaust pipe 204 is connected to the exhaust port 203 , and a throttle valve 205 and a vacuum pump 206 for adjusting pressure are connected to the exhaust pipe 204 .
  • a gas supply pipe 208 is connected to the gas inlet 207.
  • the gas supply pipe 208 is used for supplying a plasma excitation gas such as Ar gas and other necessary gases such as N 2 gas.
  • a source 209 is connected.
  • a gas control unit 210 including a gas flow controller, a valve, and the like is interposed in the gas supply pipe 208 .
  • a mounting mechanism 212 for mounting the substrate W is provided in the processing container 201 .
  • the mounting mechanism 212 has a disk-shaped mounting table 213 and a hollow cylindrical post 214 that supports the mounting table 213 .
  • the mounting table 213 is made of a conductive material and is grounded via a support 214 .
  • a cooling jacket 215 is provided in the mounting table 213, and a cooling medium is supplied therein to cool the mounting table.
  • a resistance heater 237 covered with an insulating material is embedded on the cooling jacket 215 in the mounting table 213 .
  • An electrostatic chuck 216 is provided on the upper surface of the mounting table 213 for electrostatically attracting the substrate W, which is configured by embedding an electrode 216b in a dielectric member 216a.
  • a lower portion of the support 214 extends downward through an insertion hole 217 formed in the center of the bottom portion 202 of the processing container 201 .
  • the column 214 can be raised and lowered by a lifting mechanism (not shown), whereby the entire mounting mechanism 212 can be raised and lowered.
  • An extendable metal bellows 218 is provided so as to surround the strut 214 .
  • the upper end of the metal bellows 218 is joined to the lower surface of the mounting table 213 , and the lower end is joined to the upper surface of the bottom 202 of the processing container 201 . is allowed.
  • a loading/unloading port 221 is provided in the lower side wall of the processing container 201 for allowing the transfer arm to enter, and the loading/unloading port 221 is provided with a gate valve 238 that can be opened and closed.
  • a power source 223 for chucking is connected to the electrode 216b of the electrostatic chuck 216 described above through a power supply line 222.
  • the substrate W is caused to generate an electrostatic force. It is adsorbed and held by
  • a high-frequency bias power source 224 is connected to the power supply line 222, and supplies high-frequency power for bias to the electrode 216b of the electrostatic chuck 216 via the power supply line 222, thereby applying the bias power to the substrate W. It has become so.
  • the frequency of this high-frequency power is preferably 400 kHz to 60 MHz, for example, 13.56 MHz.
  • a transmission plate 226 made of a dielectric material is airtightly provided on the ceiling of the processing container 201 via a sealing member 227 .
  • a plasma generation source 228 is provided above the transmission plate 226 for generating plasma by transforming the plasma excitation gas into plasma in the processing space S in the processing container 201 .
  • the plasma generation source 228 has an induction coil 230 provided corresponding to the transmission plate 226.
  • a high frequency power source 231 for plasma generation for example, 13.56 MHz is connected to the induction coil 230 to transmit the transmission.
  • High-frequency power is introduced into the processing space S through the plate 226 to form an induced electric field.
  • a metallic baffle plate 232 for diffusing the introduced high-frequency power is provided directly below the transmission plate 226 .
  • a target 233 is provided so as to surround the upper side of the processing space S, and has a cross section inclined inward, for example.
  • the target 233 is composed of the material of the film to be deposited.
  • a plurality of targets 233 may be provided so as to correspond to these materials.
  • co-sputtering using a plurality of targets may be performed.
  • a target voltage variable DC power supply 234 for applying DC power for attracting Ar ions is connected to the target 233 . Note that an AC power supply may be used instead of the DC power supply.
  • a magnet 235 is provided on the outer peripheral side of the target 233 .
  • the target 233 is sputtered by Ar ions in the plasma, particles are emitted from the target 233, and most of the particles are ionized when passing through the plasma.
  • a cylindrical protective cover member 236 is provided below the target 233 so as to surround the processing space S. This protective cover member 236 is grounded. An inner end portion of the protective cover member 236 is provided so as to surround the outer peripheral side of the mounting table 213 .
  • the control unit 240 has a main control unit composed of a computer (CPU) that controls each component, an input device, an output device, a display device, and a storage device.
  • the storage device stores parameters of various processes performed by the plasma sputtering apparatus 200 .
  • the storage device has a storage medium storing a program for controlling the processing performed by the plasma sputtering apparatus 200, that is, a processing recipe.
  • the main controller calls up a predetermined processing recipe stored in the storage medium, and causes the plasma sputtering apparatus 200 to perform a predetermined operation based on the processing recipe.
  • the substrate W is loaded into the processing container 201, placed on the mounting table 213 and attracted by the electrostatic chuck 216, and controlled by the control unit 240.
  • the following actions are performed below.
  • the temperature of the mounting table 213 is controlled by controlling the supply of coolant to the cooling jacket 215 and the power supply to the resistance heater 237 based on the temperature detected by a thermocouple (not shown).
  • the gas control unit 210 is operated to flow Ar gas at a predetermined flow rate into the processing container 201 , which is brought into a predetermined vacuum state by operating the vacuum pump 206 . is maintained at a predetermined degree of vacuum.
  • DC power is applied to the target 233 from the DC power supply 234 with a variable voltage, and high-frequency power (plasma power) is supplied to the induction coil 230 from the high-frequency power supply 231 of the plasma generation source 228 .
  • a high frequency power for bias is supplied from the high frequency power supply 224 for bias to the electrode 216 b of the electrostatic chuck 216 .
  • argon plasma is generated in the processing container 201 by the high-frequency power supplied to the induction coil 230 to generate argon ions.
  • this target 233 is sputtered and particles are emitted.
  • the amount of emitted particles is optimally controlled by the DC voltage applied to the target 233 .
  • the ions When the ions enter the region of an ion sheath with a thickness of several millimeters formed on the surface of the substrate W by the high-frequency power for bias applied to the electrode 216b of the electrostatic chuck 216 from the high-frequency bias power supply 224, the ions are strongly oriented. It is attracted to the substrate W side so as to be accelerated and deposited on the substrate W. A desired film is formed on the substrate W by this.
  • both the first metal-containing unit film 2 and the second metal-containing unit film 3 are formed by sputtering, these films are continuously formed by simply switching the target in the plasma sputtering apparatus 200 to form the metal-containing unit film 2 .
  • a film 1 can be deposited.
  • the inside of the processing container 201 is purged, the mounting table 213 is lowered, the gate valve 238 is opened, and the substrate W is unloaded.
  • FIG. 21 is a cross-sectional view showing an example of a film forming apparatus for film formation by ALD or CVD.
  • the film forming apparatus 300 has a processing container 301 , a susceptor 302 , a shower head 303 , an exhaust section 304 , a gas supply mechanism 305 and a control section 307 .
  • the processing container 301 is made of metal and has a substantially cylindrical shape.
  • a loading/unloading port 311 for loading/unloading the substrate W is formed in the side wall of the processing chamber 301 , and the loading/unloading port 311 can be opened and closed by a gate valve 312 .
  • An annular exhaust duct 313 having a rectangular cross section is provided on the main body of the processing container 301 .
  • a slit 313 a is formed along the inner peripheral surface of the exhaust duct 313 .
  • An exhaust port 313b is formed in the outer wall of the exhaust duct 313.
  • a ceiling wall 314 is provided on the upper surface of the exhaust duct 313 so as to block the upper opening of the processing container 301 .
  • a seal ring 315 hermetically seals between the ceiling wall 314 and the exhaust duct 313 .
  • the susceptor 302 is for horizontally supporting the substrate W within the processing container 301 .
  • the susceptor 302 has a disc shape with a size corresponding to the substrate W and is supported by a support member 323 .
  • the susceptor 302 is made of a ceramic material or a metal material, and a heater 321 for heating the substrate W is embedded inside.
  • the heater 321 is powered by a heater power source (not shown) to generate heat.
  • the output of the heater 321 is controlled by a temperature signal from a thermocouple (not shown) provided near the substrate mounting surface on the upper surface of the susceptor 302, thereby controlling the temperature of the substrate W at a predetermined temperature.
  • the susceptor 302 is provided with a cover member 322 made of ceramics such as alumina so as to cover the outer peripheral area of the substrate mounting surface and the side surfaces of the susceptor 302 .
  • a support member 323 that supports the susceptor 302 extends downward from the processing container 301 through a hole formed in the bottom wall of the processing container 301 from the center of the bottom surface of the susceptor 302 .
  • a lifting mechanism 324 allows the susceptor 302 to move up and down via a support member 323 between a processing position indicated by a solid line in FIG. .
  • a flange member 325 is attached to the support member 323 below the processing container 301. Between the bottom surface of the processing container 301 and the flange member 325, the atmosphere inside the processing container 301 is separated from the outside air.
  • a bellows 326 is provided that expands and contracts as the susceptor 302 moves up and down.
  • three support pins 327 are provided so as to protrude upward from the elevating plate 327a.
  • the support pins 327 can be moved up and down via an elevating plate 327a by an elevating mechanism 328 provided below the processing container 301.
  • the support pins 327 are inserted into through holes 302a provided in the susceptor 302 at the transfer position, and the susceptor 302 moves upward. It is possible to plunge into the upper surface of the.
  • the substrate W is transferred between the substrate transfer mechanism (not shown) and the susceptor 302 .
  • the shower head 303 is a metal member for supplying the processing gas into the processing container 301 in the form of a shower. .
  • the shower head 303 has a body portion 331 fixed to the ceiling wall 314 of the processing vessel 301 and a shower plate 332 connected below the body portion 331 .
  • a gas diffusion space 333 is formed between the main body 331 and the shower plate 332 , and the gas diffusion space 333 is provided so as to penetrate the center of the main body 331 and the ceiling wall 314 of the processing container 301 .
  • a gas introduction hole 336 is connected.
  • An annular protrusion 334 protruding downward is formed on the peripheral edge of the shower plate 332 , and a gas discharge hole 335 is formed on the inner flat surface of the annular protrusion 334 of the shower plate 332 .
  • a processing space 337 is formed between the shower plate 332 and the susceptor 302, and an annular gap 338 is formed by the annular protrusion 334 and the upper surface of the cover member 322 of the susceptor 302 coming close to each other. be done.
  • the exhaust unit 304 is for exhausting the inside of the processing container 301, and includes an exhaust pipe 341 connected to the exhaust port 313b of the exhaust duct 313, and a vacuum pump, a pressure control valve, etc. connected to the exhaust pipe 341. and an exhaust mechanism 342 having During processing, the gas in the processing container 301 reaches the exhaust duct 313 through the slit 313 a and is exhausted from the exhaust duct 313 through the exhaust pipe 341 by the exhaust mechanism 342 of the exhaust section 304 .
  • the gas supply mechanism 305 is for supplying a plurality of process gases for film formation to the shower head 303, and has supply sources and supply pipes for each process gas.
  • As the processing gas a film-forming raw material gas, a reactive gas, an inert gas, and the like are supplied. Inert gases are used as purge gas, carrier gas and diluent gas.
  • Each processing gas supply pipe of the gas supply mechanism 305 merges with the pipe 366 and reaches the shower head 303 .
  • the film-forming raw material gas various gases can be used according to the metal of the film to be formed.
  • TiCl 4 gas, TiI 4 gas, TiBr 4 gas, TiBr 3 gas, TiI 5 gas, and TiF 5 gas can be used.
  • NbCl4 gas, NbF4 gas, NbI4 gas, NbBr5 gas, NbF5 gas, NbOBr3 gas, NbOCl3 gas, NbOBr3 gas, NbO2F gas can be used.
  • VOBr 3 gas For VN and V films, VOBr 3 gas, VOCl 3 gas, VOF 3 gas, V(CO) 6 gas, VCl 4 gas, VF 5 gas, VF 4 gas, VOBr gas, VOCl gas, VOBr 2 gas, VOCl 2 gas and VOF 2 gas can be used.
  • W(CO) 6 gas, WBr2 gas, WCl2 gas, WI2 gas, WBr3 gas, WCl3 gas, WBr5 gas, WCl5 gas, WF5 gas , WOBr3 gas, WO2Cl3 gas, WBr6 gas, WCl6 gas, WO2Br2 gas, WO2Cl2 gas, WO2I2 gas , WF6 gas, WOBr4 gas , WOBr4 gas , WOCl4 gas , WOF 4 gas can be used.
  • TaBr 5 gas, TaCl 5 gas, TaF 5 gas, and TaI 5 gas can be used.
  • Mo(CO) 6 gas MoCl 5 gas, MoF 5 gas, MoOCl 3 gas, MoF 5 gas, MoCl 3 gas, MoF 6 gas, MoOF 4 gas, MoOCl 4 gas, MoO 2 Cl2 gas
  • Ru(CO) 12 gas, RuBr 3 gas, RuCl 3 gas, RuF 3 gas, RuI 3 gas, RuF 4 gas, and RuF 5 gas can be used.
  • cobalt amidinate and nickel amidinate can be used.
  • trimethylaluminum (TMA) gas can be used.
  • MnOF 3 gas and MnO 3 Cl gas can be used.
  • the gas may be turned into plasma by, for example, applying high-frequency power to the shower head 303 .
  • the control unit 307 has a main control unit composed of a computer (CPU) that controls each component of the film forming apparatus 300, an input device, an output device, a display device, and a storage device.
  • the storage device stores parameters of various processes executed in the film forming apparatus 300 .
  • the storage device also has a storage medium storing a program for controlling the process executed by the film forming apparatus 300, that is, a process recipe.
  • the main controller calls a predetermined processing recipe stored in the storage medium, and causes the film forming apparatus 300 to perform a predetermined operation based on the processing recipe.
  • the gate valve 312 is opened, and the substrate W is loaded into the processing container 301 through the loading/unloading port 311 by a transport device (not shown). be placed on. After that, the transport device is retracted, and the susceptor 302 is raised to the processing position. Then, the gate valve 312 is closed to keep the inside of the processing container 301 in a predetermined decompressed state, and the heater 321 controls the temperature of the susceptor 302 to a desired temperature.
  • a processing gas is supplied from the gas supply mechanism 305 into the processing container 301 to form a desired film on the substrate W by ALD or CVD.
  • a source gas and a reaction gas are alternately supplied into the processing container 301 while purging the processing container 301 with an inert gas to form a film.
  • an inert gas for example, when forming a TiN film, TiCl 4 gas as a source gas and NH 3 gas as a reaction gas are alternately supplied with a purge in between.
  • film formation by CVD is performed by simultaneously supplying a raw material gas and a reaction gas to the processing container 301 .
  • film formation may proceed by thermal decomposition of the film formation source gas without using a reaction gas, such as Ru film formation using Ru(CO) 12 gas.
  • both the first metal-containing unit film 2 and the second metal-containing unit film 3 are formed by ALD or CVD, these films are continuously formed in the film forming apparatus 300 only by switching the processing gas.
  • the metal-containing film 1 can be formed by using the
  • the inside of the processing container 301 is purged, the susceptor 302 is lowered, the gate valve 312 is opened, and the substrate W is unloaded.
  • the materials for the first metal-containing unit film and the second metal-containing unit film were exemplified, but these are merely examples and other metal-containing films may be used.
  • the plasma sputtering apparatus 200 is exemplified as an apparatus for film formation by PVD and the film formation apparatus 300 as an apparatus for film formation by ALD or CVD, various apparatuses can be used without being limited to these.
  • PVD, ALD, and CVD were exemplified as the film forming method, but the thin film forming technique is not limited to these.
  • fine wiring, pillar-structured and cylindrical-structured electrodes, barrier films, and metal hard masks have been exemplified as applications of the metal-containing film, but are not limited to these.
  • metal-containing film, 2 first metal-containing unit film, 3; second metal-containing unit film, 101, 121, 131, 141, W; substrate, 105; metal-containing film (fine wiring), 110, 111; Fine wiring structure, 114; Metal-containing film (barrier film), 120, 130; Capacitor, 122; Metal-containing film (lower electrode of pillar structure), 132; Structure, 143; Metal-containing film (metal hard mask), 200; Plasma sputtering device, 300;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

金属含有膜は、結晶核形成臨界直径未満の膜厚を有する第1の金属含有単位膜と、結晶核形成臨界直径未満の膜厚を有し、第1の金属含有単位膜とは異なる第2の金属含有単位膜とが、交互に積層されてなり、結晶粒界を含まないラミネート構造を有する。

Description

金属含有膜および金属含有膜の製造方法
 本開示は、金属含有膜および金属含有膜の製造方法に関する。
 半導体装置を製造する際には、配線、電極、バリア膜、メタルハードマスク等として金属含有膜が多用される。このような金属含有膜には、それぞれの用途に応じて、低抵抗であること、機械的強度が高いこと、原子の拡散が小さいこと等の特性が要求され、そのために種々の技術が提案されている。例えば、特許文献1には、タングステン(W)を主成分とする金属配線層のシード層としてCoWを用いることにより、金属配線層の結晶を微細化して、金属配線層の堆積抵抗値を小さく抑えることができることが記載されている。
特開2018-73949号公報
 本開示は、用途に応じた良好な特性を有する金属含有膜および金属含有膜の製造方法を提供する。
 本開示の一態様に係る金属含有膜は、結晶核形成臨界直径未満の膜厚を有する第1の金属含有単位膜と、結晶核形成臨界直径未満の膜厚を有し、前記第1の金属含有単位膜とは異なる第2の金属含有単位膜とが、交互に積層されてなり、結晶粒界を含まないラミネート構造を有する。
 本開示によれば、用途に応じた良好な特性を有する金属含有膜および金属含有膜の製造方法が提供される。
一実施形態に係る金属含有膜を模式的に示す断面図である。 主な金属の結晶核形成臨界直径Dの計算値を示す図である。 Al-Tiラミネート構造の金属含有膜をスパッタリングで製造するにあたり、Al膜の膜厚を1.7nm未満にしたサンプルAのSEM写真である。 Al-Tiラミネート構造の金属含有膜をスパッタリングで製造するにあたり、Al膜の膜厚を1.7nm以上にしたサンプルBのSEM写真である。 トータル膜厚を1000nmとした以外は、サンプルAと同様の条件で製造したサンプルCのSEM写真である。 サンプルCの断面を拡大して示すSEM写真である。 準安定状態である非晶質状態から安定状態である結晶状態に相転移する際の自由エネルギーの推移を示す図である。 種々の金属の過冷度と臨界核半径rとの関係(計算値)を示す図である。 Al-Si合金における過冷度と冷却速度との関係を示す図である。 Al-Tiラミネート構造の金属含有膜と(AlSi)-Tiラミネート構造の金属含有膜をスパッタリングにより膜厚500nmおよび1000nmで形成した際の状態を示すSEM写真である。 Al-Mg合金における過冷度と冷却速度との関係を示す図である。 (AlSi)-Tiラミネート構造の金属含有膜と(AlMg)-Tiラミネート構造の金属含有膜のSEM写真である。 Al-Si状態図である。 Al-Mg状態図である。 一実施形態の金属含有膜を微細配線に適用した微細配線構造の例を示す断面図である。 一実施形態の金属膜をバリア膜に適用した微細配線構造の例を示す断面図である。 一実施形態の金属含有膜をピラー構造の電極に適用したキャパシタの例を示す断面図である。 一実施形態の金属含有膜をシリンダ構造の電極に適用したキャパシタの例を示す断面図である。 一実施形態の金属含有膜をハードマスクに適用した構造体の例を示す断面図である。 PVDによる成膜を行うためのプラズマスパッタ装置の一例を示す断面図である。 ALDまたはCVDによる成膜を行うための成膜装置の一例を示す断面図である。
 以下、添付図面を参照して実施形態について説明する。
 <金属含有膜>
 図1は、一実施形態に係る金属含有膜を模式的に示す断面図である。金属含有膜1は、第1の金属含有単位膜2と第1の金属含有単位膜とは異なる第2の金属含有単位膜3とを交互に積層してなるラミネート構造を有しており、基板W上に形成されている。第1の金属含有単位膜2および第2の金属含有単位膜3は、いずれもその膜厚が結晶核形成臨界直径未満であり、金属含有膜1は、結晶粒界を含まない。基板Wとしては半導体基板やFPD基板等が例示される。
 核の半径が臨界核半径r未満の場合、体積増加によるエネルギーが表面エネルギーを上回ることができず、核生成は促進されず結晶核は形成されない。しかし、核の半径が臨界核半径r以上になると核生成が促進され結晶核が形成される。つまり、臨界核半径rとは、それ以上で結晶核が形成される臨界的な結晶核サイズであり、結晶核形成臨界半径と言い換えることができる。そして、その時の核の直径が結晶核形成臨界直径Dである。したがって、第1の金属含有単位膜2と第2の金属含有単位膜3の膜厚を結晶核形成臨界直径D未満に抑えることにより、核の直径は結晶核形成臨界直径D未満となり、理論上、第1の金属含有単位膜2と第2の金属含有単位膜3の結晶化を抑制することができる。これにより、結果的に金属含有膜1を、結晶粒界を含まない膜とすることができる。
 臨界核半径rは、金属ごとに、最大過冷度ΔTmaxと融点Tmを用いて、Tm/TΔmaxに比例する関係式により算出することができる。結晶核形成臨界直径Dは、このようにして算出した臨界核半径rの2倍の値である。主な金属の結晶核形成臨界直径Dの計算値は図2に示す通りである。図2に示すように、多くの金属は結晶核形成臨界直径Dの計算値が1.4~2.6nmの範囲であり、第1の金属含有単位膜2と第2の金属含有単位膜3の膜厚をこの値未満とすることで結晶化を抑制することができる。
 このような膜厚の、第1の金属含有単位膜2と第2の金属含有単位膜3を形成する手法としては、スパッタリングに代表されるPVDや、ガスを用いた化学的な成膜手法であるALDおよびCVDのような一般的な薄膜形成技術を用いることができる。
 第1の金属含有単位膜2と第2の金属含有単位膜3とは、反応性が極力小さな組み合わせ、または2相共存関係にある組み合わせを選択することが好ましい。これらの層間で界面反応が生じて化学ポテンシャル差ができると、拡散(原子の移動)が生じ、準安定状態から安定状態に相転移しやすくなり、結晶化しやすくなってしまう。
 第1の金属含有単位膜2および第2の金属含有単位膜3としては、金属窒化膜であっても、金属膜であってもよい。第1の金属含有単位膜2および第2の金属含有単位膜3の組み合わせとしては、これらの一方が金属窒化膜、他方が金属膜の組み合わせ、両方が金属窒化膜の組み合わせ、両方が金属膜の組み合わせを挙げることができる。
 第1の金属含有単位膜2または第2の金属含有単位膜3を構成する金属窒化膜としては、TiN、NbN、VN、WN、TaN、MoN、Wのいずれかを挙げることができ、金属膜としては、Ru、Co、Ni、Mo、W、Al、Ti、V、Mn、Si、Mgのいずれかを挙げることができる。
 第1の金属含有単位膜2および第2の金属含有単位膜3の好ましい組み合わせとしては、以下のようなものを挙げることができる。
 ・金属窒化膜同士の組み合わせ
 TiN-TaN、TiN-NbN、TiN-MoN、TiN-W、TaN-NbN、TaN-W
 ・金属窒化膜と金属膜との組み合わせ
 TiN-W、TiN-Mo、TiN-Ru、TaN-W、TaN-Mo、TaN-Ru
 ・金属膜同士の組み合わせ
 Si-Al、W-Al、Mg-Al、W-Ti、V-Ti、Mg-Ti
 以上の好ましい組み合わせは、反応性が極力小さな組み合わせ、または2相共存関係にある組み合わせであり、界面反応による拡散(原子の移動)が生じ難く、結晶化し難い。
 ただし、第1の金属含有単位膜2と第2の金属含有単位膜3との組み合わせが反応性を有するものであっても、結晶粒界を含まない金属含有膜を形成することは可能である。例えば、Al-Tiの組み合わせは、AlとTiとが反応性を有する組み合わせである。また、Al-Tiは、純金属系のため、結合が金属結合であり結合が弱い。このためAl-Tiの組み合わせは、準安定状態である非晶質状態を維持しにくい組み合わせである。このような組み合わせであっても、以下の条件でラミネート構造の金属含有膜を形成した結果、実際に結晶粒界を含まない金属含有膜を得ることができた。
 Al膜の膜厚:1.6nm(Dの計算値である1.7nm未満)
 Ti膜の膜厚:0.8nm(Dの計算値である2.7nm未満)
 成膜手法:スパッタリング
 AlとTiの膜厚比率(Al:Ti): 77:23、66:34、55:45
 トータル膜厚(目標値):35nm
 また、Al-Tiラミネート構造の金属含有膜をスパッタリングで製造するにあたり、Al膜の膜厚を1.7nm未満の1.6nmにしたサンプルAと、1.7nm以上の1.8nmにしたサンプルBを比較した。なお、成膜にあたっては、AlとTiの膜厚比率を2:1とし、トータル膜厚を100nmとした。
 その結果、Al膜の膜厚がDの計算値である1.7nm未満のサンプルAでは図3のSEM写真に示すように結晶粒界を含まない非晶質状態の膜となったが、Al膜の膜厚がDの計算値である1.7nm以上のサンプルBでは図4のSEM写真に示すように結晶化が見られた。
 次に、トータル膜厚を1000nmとした以外は、サンプルAと同様の条件でサンプルCを製造した。その結果、図5のSEM写真に示すように結晶化した。図6はサンプルCの断面を拡大して示すSEM写真であるが、基板側の結晶粒径が小さいのに対し、表面側の結晶粒径が大きくなっている。このことから、結晶化したのは、スパッタリング成膜する際に、表面側から入熱し、膜厚が厚くなることにより入熱の影響が大きくなったためと考えられる。また、基板側と表面側で結晶粒径が異なるのは、基板側は冷却側であり、表面側は入熱側であって、過冷度が異なるためと考えられる。
 このように、第1の金属含有単位膜2および第2の金属含有単位膜3は、膜厚が結晶核形成臨界直径D未満であっても、入熱により結晶化する場合がある。図7は、準安定状態である非晶質状態から安定状態である結晶状態に相転移する際の自由エネルギーの推移を示す図である。この図に示すように、準安定状態である非晶質状態から、安定状態の結晶状態に相転移するためには、活性化エネルギーΔEaが必要である。しかし、入熱がある場合、入熱により活性化障壁(ΔEa)を乗り越えると、結晶状態に至る。したがって、入熱があっても結晶化させずに非晶質状態を維持するためには、非晶質状態の自由エネルギーGαを小さくして非晶質状態をより安定化すること、活性化エネルギーΔEaを大きくして相転移の障壁を上げることのいずれか、または両方が必要である。
 非晶質は過冷液体がそのまま凝固したものであるため、最大過冷度が大きいほど、準安定な非晶質状態を維持しやすいと考えられる。つまり、最大過冷度が大きいほどGαが小さくなり非晶質状態が安定化すると考えられる。したがって、非晶質状態を安定化させるためには、過冷度を増加させる元素の添加が有効である。
 図8は、種々の金属の過冷度と臨界核半径rとの関係(計算値)を示す図であり、各金属の過冷度曲線の右端が最大過冷度である。この図から、AlおよびTiはいずれも最大過冷度が小さく、非晶質状態を維持し難い材料であることがわかる。
 そこで、Al-Tiのラミネート構造の金属含有膜を製造する際に、Al膜に過冷度を増加させる元素を添加して非晶質状態を安定化させることを試みた。図9はAl-Si合金における過冷度と冷却速度との関係を示す図である(出典:市川ら,鋳物vol.46(1973)、1,25の図8)。この図から、Siが純Alの過冷度を増加させる元素であることがわかる。
 実際に、Al-Tiラミネート構造の金属含有膜と(AlSi)-Tiラミネート構造の金属含有膜をスパッタリングにより膜厚500nmおよび1000nmで形成した。AlSi膜のSiの添加量は6at%とし、Al膜およびAlSi膜の膜厚は1.6nmとした。図10はこれらのSEM写真である。SEM写真から明らかなように、Al-Tiラミネート構造においては、膜厚500nmでは結晶化しなかったが、膜厚1000nmで結晶化した。これに対し、(AlSi)-Tiラミネート構造においては、膜厚1000nmでも結晶化しなかった。このことから、AlにSiを添加して純Alの過冷度を増加させることによりGαが小さくなり準安定状態である非晶質状態が維持できたと考えられる。また、元素添加を行うこと自体がエントロピーの増大につながり、このことがGαを小さくするために有利に作用する。
 Al膜の過冷度を増加させる元素としては、Siの他にMgも知られている。図11はAl-Mg合金における過冷度と冷却速度との関係を示す図である(出典:市川ら,鋳物vol.46(1973)、1,25の図4)。この図から、Mgが純Alの過冷度を増加させる添加元素となり得ることがわかる。
 また、実際に、(AlMg)-Tiラミネート構造の金属含有膜をスパッタリングにより膜厚1000nmで形成した。AlMg膜のMgの添加量は6at%とし、膜厚は1000nmとした。図12は上述の(AlSi)-Tiラミネート構造の金属含有膜とこの(AlMg)-Tiラミネート構造の金属含有膜のSEM写真である。SEM写真から明らかなように、(AlSi)-Tiラミネート構造は、膜厚1000nmで結晶化しなかったのに対し、(AlMg)-Tiラミネート構造は、膜厚1000nmで結晶化した。
 このように、SiとMgはいずれもAlの過冷度を増加させる添加元素であるにもかかわらず、Mgには非晶質状態を安定化させる効果がみられなかった。この違いを状態図に基づいて検討した。図13はAl-Si状態図であり、図14はAl-Mg状態図である。これらの図から明らかなように、Al-Siは相分離系(共晶系)であるのに対し、Al-Mgは金属間化合物形成系である。すなわち、SiとMgはAlに対する相互作用が大きく異なり、Al-SiではAlとSiが互いに反発し合いAlを主成分とする相とSiを主成分とする相に分離するのに対し、Al-MgではAlとMgが互いに引き合い、Al-Mg-Alと配列(オーダリング)しやすい。
 このような相互作用は、2元系の混合エンタルピーの相互作用パラメータにより把握することができる(西澤、須藤ら,金属組織学,丸善(昭和47年8月31日発行))。純物質A、Bの2元系の0Kにおける混合エンタルピーmixは、以下の(1)式で表すことができる。(1)式中、は、0Kにおける純物質A、Bのエンタルピー、Xは純物質Bの原子分率、ΩABは相互作用パラメータである。相互作用パラメータΩABは、以下の(2)式で表される。(2)式中、NはAとBを合わせた原子の総個数、zは配位数、eAB、eAA、eBBは、それぞれA-B、A-A、B-Bの結合エネルギーである。
Figure JPOXMLDOC01-appb-M000001
 
 相互作用パラメータΩABの値がもつ物理的意味は、以下の通りである。
 (1)ΩAB>0:
 この場合は、eAB>(eAA+eBB)/2であり、A-B対のエネルギーがA-A対およびB-B対の平均エネルギーよりも高くて不安定であるから、A、Bは反発的でAを主成分とする相とBを主成分とする相に分離する傾向にあることを意味する。このため、非晶質を形成しやすい組み合わせとなる。上述のAl-Si系はこのケースである。
 (2)ΩAB<0:
 この場合は、eAB<(eAA+eBB)/2であり、A-B対のエネルギーがA-A対およびB-B対の平均エネルギーよりも低くて安定であるから、A、Bは互いに引き合うような傾向があり、A-B-A-Bと並ぶ規則化(ordering)が生じやすいことを意味する。このため、非晶質になりにくくなる。上述のAl-Mg系はこのケースである。
 (2)ΩAB=0:
 この場合は、eAB=(eAA+eBB)/2であり、A-B対のエネルギーがA-A対およびB-B対の平均エネルギーと等しいから、AとBとの間には相互作用が存在せず、A、Bの配置は無秩序となる。このような固溶体は理想溶体(ideal Solution)と称され、非晶質を形成しやすい組み合わせである。
 以上のような2元系の混合エンタルピーmixが非晶質状態から結晶状態に相転移する際の活性化エネルギーΔEaと関係しており、相互作用パラメータΩABの値(正負)でΔEaが変化すると考えられる。上述したAlに対してSiとMgを添加した際のふるまいの違いは、このようなΩABの正負によるΔEaの違いで説明できる。すなわち、Al-Si系ではΩAB>0であるため、添加したSiが母相であるAlと反発してΔEaが上昇する。一方、Al-Mg系ではΩAB<0であるため、添加したMgが母相であるAlと結合して規則化することによりΔEaが低下する。
 以上のように、第1の金属含有単位膜2および第2の金属含有単位膜3のいずれか、または両方に、過冷度を増加させる元素を添加することにより、Gαを低下させて非晶質状態を安定化させることができ、入熱による結晶化を抑制することができる。また、その過冷度を増加させる元素としては、その元素と母相との相互作用パラメータΩABが、ΩAB≧0となるものを選択することが好ましい。
 このような過冷度を増加させる添加元素は、第1の金属含有単位膜2および第2の金属含有単位膜3が金属膜である場合に有効であり、これらの材料に応じて適宜なものを選択することができる。例えば、上述したように材料がAlの場合は添加元素としてSiが好適である他、Ruの場合は添加元素としてIr、Pd、Ni、Co、Mnが好適であり、Coの場合はNi、Cu、Pd、Ruが好適である。また、材料がWの場合は、添加元素としてMo、Ta、Nb、Ti、Mnが好適であり、Moの場合は、W、Ta、Nb、Ti、Mnが好適であり、Tiの場合は、Zr、Hf、V、W、Mo、Nb、Taが好適であり、Mnの場合はRu、Fe、Mo、Wが好適である。
 <ラミネート構造の金属含有膜に至った経緯>
 次に、本実施形態におけるラミネート構造の金属含有膜に至った経緯について説明する。
 半導体デバイスには、例えば、微細配線の配線金属、キャパシタ等に用いるピラー構造やシリンダ構造の電極、バリア膜、メタルハードマスク等、種々の用途で、W、Cu、TiN、TaN等の金属含有膜が用いられている。このような金属含有膜は、一般的に結晶構造を有しており、結晶粒界が半導体デバイスそのものや半導体デバイスの製造プロセスに問題を生じさせる原因となる。
 例えば、微細配線においては、粒界散乱や、粒界に基づく凹凸による界面散乱により配線抵抗の増加が生じる。また、微細加工に用いられるメタルハードマスクにおいては、結晶粒界が存在すると、その粒界部分の形状がそのまま被加工物に転写されてしまうことや、粒界すべりによる膜応力による変形(wiggling)が生じる。さらに、微細配線では、粒界すべりによる応力集中により捩じれが生じ、界面抵抗の増大や、隣接する配線同士の干渉によるミスアライメントを誘発するおそれがある。ピラー構造やシリンダ構造の電極においては、粒界すべりにより機械的強度が低下し、粒界にせん断応力が加わることにより製造過程においてリーニング(倒れ、倒壊)等の塑性変形が生じる。さらにまた、バリア膜は、ハロゲン系不純物等の拡散バリアとして用いられるが、結晶粒界が存在すると粒界を介したバイパス拡散によりそのバリア性が著しく低下してしまう。
 これに対し、本実施形態では、第1の金属含有単位膜2と第2の金属含有単位膜3とのラミネート構造で、結晶粒界を含まない金属含有膜1を得る。このため、粒界散乱や、粒界に基づく凹凸による界面散乱による抵抗の増加がなく、また、加工の際に形状をトレースしやすい、平坦な断面を出しやすいといった利点があり、さらに、粒界すべりによる応力集中や強度低下が生じず、粒界を介したバイパス拡散も生じない。このため、本実施形態のラミネート構造の金属含有膜は、微細配線の配線金属、ピラー構造やシリンダ構造の電極、バリア膜、メタルハードマスク等の用途に適したものとなる。
 結晶粒界が存在しない金属含有膜としては、従来から、アモルファスメタルやガラスメタルと称される非晶質構造や単結晶が知られている。しかし、従来の非晶質構造の金属含有膜は、複数の金属を組み合わせて合金化したものが多く、金属元素の組み合わせの自由度が小さいため、半導体デバイスの性能や半導体デバイスの製造プロセスにおいて大きな制約となる。また、単結晶を得るためには、高温プロセスが必要であり、工程が限定的で、かつプロセスが複雑であり、製造に困難性をともなう。また、単結晶に成長可能な材料も限られる。
 これに対し、本実施形態では第1の金属含有単位膜2と第2の金属含有単位膜3とのラミネート構造を形成すればよいため、既存の成膜プロセスの組み合わせで製造することができ、製造の困難性をともなうことはない。また、材料の選択の自由度が高く、デバイスの要求性能やプロセスからの要請や制約に応じて第1の金属含有単位膜2と第2の金属含有単位膜3の材料の組み合わせを選択することができる。さらに、既存のプロセスの組み合わせのみで、新たな機能性材料が得られる可能性もある。
 <金属含有膜の用途>
 次に、本実施形態に係る金属含有膜の用途についてより詳しく説明する。
 本実施形態の金属含有膜の用途としては、微細配線の配線金属、バリア膜、ピラー構造やシリンダ構造の電極、メタルハードマスク等を挙げることができる。
 本実施形態に係る金属含有膜を用いた配線金属は、例えば、既存の微細配線に用いられるW膜、Cu膜、TiN膜の代替として用いることができる。
 図15は、一実施形態の金属含有膜を配線金属に適用した微細配線の例を示す断面図である。図15の微細配線110においては、図示しない下部構造を有する基板101の上にトレンチやホール等の凹部を有する絶縁膜102が形成され、その凹部内にバリア膜104を介して配線金属となる本実施形態の金属含有膜105が埋め込まれている。配線金属を構成する金属含有膜が結晶粒界を有する場合、上述したように、粒界散乱や、粒界に基づく凹凸による界面散乱により配線抵抗の増加が生じたり、粒界すべりによる捩じれが生じたりするが、本実施形態の金属含有膜105は結晶粒界を含まないのでそのような不都合は生じない。
 配線金属となる金属含有膜105を構成する第1の金属含有単位膜および第2の金属含有単位膜としては、要求される抵抗値等の特性に応じて適宜の組み合わせを選択することができる。例えば、上述のような、一方が金属窒化膜、他方が金属膜の組み合わせ、両方が金属窒化膜の組み合わせ、両方が金属膜の組み合わせのいずれも用いることができる。代表的な組み合わせの例としては、TiN膜(膜厚1~2nm)とWN膜(膜厚1~2nm)の組み合わせを挙げることができる。また、TiN膜(膜厚1~2nm)とRu膜(膜厚1.3nm以下)、TiN膜(膜厚1~2nm)とMn膜(膜厚2.2nm以下)、TiN膜(膜厚1~2nm)とAl膜(膜厚1.6nm以下)、TiN膜(膜厚1~2nm)とTi膜(膜厚2.6nm以下)の組み合わせも挙げることができる。
 一実施形態に係る金属含有膜を用いたバリア膜は、例えば、既存のバリア膜に用いられるTaN膜、TiN膜の代替として用いることができる。
 図16は、一実施形態の金属膜をバリア膜に適用した微細配線構造の例を示す断面図である。図16の微細配線構造111では、図15と同様の図示しない下部構造を有する基板101の上にトレンチやホール等の凹部を有する絶縁膜102が形成された構造において、その凹部内にバリア膜として本実施形態の金属含有膜114が形成され、凹部内に微細配線115が埋め込まれている。バリア膜を構成する金属含有膜が結晶粒界を有する場合、上述したように、結晶粒界が存在すると粒界を介したバイパス拡散によりそのバリア性が著しく低下してしまうが、本実施形態の金属含有膜114は結晶粒界を含まないのでそのような不都合は生じない。
 バリア膜となる金属含有膜114を構成する第1の金属含有単位膜および第2の金属含有単位膜としては、要求されるバリア性に応じて適宜の組み合わせを選択することができる。例えば、上述のような、一方が金属窒化膜、他方が金属膜の組み合わせ、両方が金属窒化膜の組み合わせ、両方が金属膜の組み合わせのいずれも用いることができる。代表的な組み合わせの例としては、TiN膜(膜厚1nm)と、WN膜またはVN膜またはNbN膜(いずれも膜厚1nm)と、の組み合わせを挙げることができる。
 一実施形態に係る金属含有膜を用いたピラー構造やシリンダ構造の電極は、例えば、既存の電極に用いられるTiN膜等の代替として用いることができる。
 図17は、一実施形態の金属含有膜をピラー構造の電極に適用したキャパシタの例を示す断面図である。本例はキャパシタ120の下部電極がピラー構造を有する例であり、基板121に形成されたコンタクト121aの上にピラー構造を有する下部電極となる本実施形態の金属含有膜122が形成されている。金属含有膜122の上には誘電体膜として、例えば、第1のTiO膜123、ZrO膜124、第2のTiO膜125が形成され、第2のTiO膜125の上に上部電極126が形成されている。ただし、誘電体膜の材料や層数はこの例に限るものではない。図17のキャパシタの製造過程においては、ピラー構造の下部電極を支持していた絶縁膜を除去し、下部電極を自立させて、その後の誘電体膜等の成膜を行う。この際に、下部電極に結晶粒界が存在すると、粒界すべりにより機械的強度が低下し、粒界にせん断応力が加わることによりリーニング(倒れ、倒壊)等の塑性変形が生じるおそれがある。これに対して、本例では、ピラー構造の下部電極として、結晶粒界を含まない本実施形態の金属含有膜122を用いるので、粒界すべりによる機械的強度低下が生じず、強度低下によるリーニング等の塑性変形は生じ難い。
 図18は、一実施形態の金属含有膜をシリンダ構造の電極に適用したキャパシタの例を示す断面図である。本例はキャパシタ130の下部電極がシリンダ構造を有する例であり、基板131に形成されたコンタクト131aの上にシリンダ構造を有する下部電極となる本実施形態の金属含有膜132が形成されている。金属含有膜132の上には誘電体膜として、例えば、第1のTiO膜133、ZrO膜134、第2のTiO膜135が形成され、第2のTiO膜135の上に上部電極136が形成されている。ただし、誘電体膜の材料や層数はこの例に限るものではない。図18のキャパシタの製造過程においては、シリンダ構造の下部電極を支持していた絶縁膜を除去し、下部電極を自立させて、その後の誘電体膜等の成膜を行う。シリンダ構造の場合にも結晶粒界が存在することによりリーニング(倒れ、倒壊)等の塑性変形が生じるおそれがあるが、下部電極として結晶粒界を含まない金属含有膜132を用いるので、粒界すべりによる機械的強度低下が生じず、強度低下によるリーニング等の塑性変形は生じ難い。
 ピラー構造やシリンダ構造の電極となる金属含有膜122,132を構成する第1の金属含有単位膜および第2の金属含有単位膜としては、要求される抵抗値等の特性に応じて適宜の組み合わせを選択することができる。例えば、上述のような、一方が金属窒化膜、他方が金属膜の組み合わせ、両方が金属窒化膜の組み合わせ、両方が金属膜の組み合わせのいずれも用いることができる。代表的な組み合わせの例としては、TiN膜(膜厚1~2nm)とWN膜またはVN膜またはNbN膜(いずれも膜厚1~2nm)の組み合わせを挙げることができる。
 一実施形態に係る金属含有膜を用いたメタルハードマスクは、例えば、既存のメタルハードマスク用いられるTiN膜等の代替として用いることができる。
 図19は、一実施形態の金属含有膜をハードマスクに適用した構造体の例を示す断面図である。本例の構造体140は、基板141上にエッチング対象膜142が形成され、その上にメタルハードマスクとなる本実施形態の金属含有膜143が形成されて構成されている。エッチング対象膜142は、特に限定されないが、例えば、タングステン膜、GST(GeSbTe)膜、Poly-Si膜、カーボン膜、SiO膜、SiON膜等が例示される。また、エッチング対象膜142は、複数以上の膜が積層された積層膜であってもよい。メタルハードマスクを構成する金属含有膜が結晶粒界を有する場合、上述したように、その粒界部分の形状がそのまま被加工物であるエッチング対象膜142に転写されてしまうことや、粒界すべりによる膜応力による変形(wiggling)が生じる。これに対して、本例の金属含有膜143は結晶粒界を含まないのでそのような不都合は生じない。
 ハードマスクとなる金属含有膜143を構成する第1の金属含有単位膜および第2の金属含有単位膜としては、上述のような、一方が金属窒化膜、他方が金属膜の組み合わせ、両方が金属窒化膜の組み合わせ、両方が金属膜の組み合わせのいずれも用いることができる。それらの中で、エッチング対象膜142の材料に応じて適宜の組み合わせを選択すればよい。
 <金属含有膜の製造方法>
 次に、一実施形態に係る金属含有膜の製造方法について説明する。
 本実施形態に係る成膜方法は、第1の金属含有単位膜2を結晶核形成臨界直径未満の膜厚で成膜する工程と、第1の金属含有単位膜2とは異なる第2の金属含有単位膜3を結晶核形成臨界直径未満の膜厚で成膜する工程とを交互に行い、結晶粒界を含まないラミネート構造の金属含有膜1を製造する。
 第1の金属含有単位膜2および第2の金属含有単位膜3の成膜は、スパッタリングに代表されるPVDや、ガスを用いた化学的な成膜手法であるALDおよびCVDのような一般的な薄膜形成技術で成膜することができる。これらを組み合わせて用いてもよい。例えば、第1の金属含有単位膜2の成膜および第2の金属含有単位膜3の成膜を、PVDとALDの組み合わせ、PVDとCVDの組み合わせ、ALDとCVDの組み合わせで行ってもよい。以下、これらについて説明する。
  [PVDによる成膜]
 図20は、PVDによる成膜を行うためのプラズマスパッタ装置の一例を示す断面図である。
 図20の装置は、イオン化PVD装置の一種であるICP型プラズマスパッタ装置を示している。
 図20に示すように、このプラズマスパッタ装置200は、金属からなる接地された処理容器201を有しており、処理容器201の底部202には排気口203およびガス導入口207が設けられている。排気口203には排気管204が接続されており、排気管204には圧力調整を行うスロットルバルブ205および真空ポンプ206が接続されている。また、ガス導入口207にはガス供給配管208が接続されており、ガス供給配管208には、Arガス等のプラズマ励起用ガスや他の必要なガス例えばNガス等を供給するためのガス供給源209が接続されている。また、ガス供給配管208には、ガス流量制御器、バルブ等よりなるガス制御部210が介装されている。
 処理容器201内には、基板Wを載置するための載置機構212が設けられる。この載置機構212は、円板状に成形された載置台213と、この載置台213を支持する中空筒体状の支柱214とを有している。載置台213は、導電性材料よりなり、支柱214を介して接地されている。載置台213の中には冷却ジャケット215が設けられており、その中に冷媒が供給されて載置台を冷却するようになっている。また、載置台213内には冷却ジャケット215の上に絶縁材料で被覆された抵抗ヒータ237が埋め込まれている。そして、冷却ジャケット215への冷媒の供給および抵抗ヒータ237への給電を制御することにより、基板温度を所定の温度に制御できるようになっている。
 載置台213の上面側には、誘電体部材216aの中に電極216bが埋め込まれて構成された基板Wを静電吸着するための静電チャック216が設けられている。また、支柱214の下部は、処理容器201の底部202の中心部に形成された挿通孔217を貫通して下方へ延びている。支柱214は昇降機構(図示せず)により昇降可能となっており、これにより載置機構212の全体が昇降される。
 支柱214を囲むように、伸縮可能な金属ベローズ218が設けられている。金属ベローズ218の上端は載置台213の下面に接合され、また下端は処理容器201の底部202の上面に接合されており、処理容器201内の気密性を維持しつつ載置機構212の昇降移動を許容するようになっている。
 底部202には、上方に向けて例えば3本(2本のみ図示)の支持ピン219が垂直に設けられている。載置台213にはこの支持ピン219に対応するピン挿通孔220が形成されており、載置台213を降下させた際に、ピン挿通孔220を貫通した支持ピン219の上端部で基板Wを受けて、その基板Wを外部より侵入する搬送アーム(図示せず)との間で移載することが可能となっている。処理容器201の下部側壁には、搬送アームを侵入させるために搬出入口221が設けられ、この搬出入口221には、開閉可能になされたゲートバルブ238が設けられている。
 上述した静電チャック216の電極216bには、給電ライン222を介してチャック用電源223が接続されており、このチャック用電源223から電極216bに直流電圧を印加することにより、基板Wが静電力により吸着保持される。また給電ライン222にはバイアス用高周波電源224が接続されており、給電ライン222を介して静電チャック216の電極216bに対してバイアス用の高周波電力を供給し、基板Wにバイアス電力が印加されるようになっている。この高周波電力の周波数は、400kHz~60MHzが好ましく、例えば13.56MHzが採用される。
 一方、処理容器201の天井部には、誘電体からなる透過板226がシール部材227を介して気密に設けられている。そして、この透過板226の上部に、処理容器201内の処理空間Sにプラズマ励起用ガスをプラズマ化してプラズマを発生するためのプラズマ発生源228が設けられる。
 プラズマ発生源228は、透過板226に対応して設けられた誘導コイル230を有しており、この誘導コイル230には、プラズマ発生用の例えば13.56MHzの高周波電源231が接続されて、透過板226を介して処理空間Sに高周波電力が導入され誘導電界を形成するようになっている。
 透過板226の直下には、導入された高周波電力を拡散させる金属製のバッフルプレート232が設けられる。このバッフルプレート232の下方には、上記処理空間Sの上部側方を囲むようにして例えば断面が内側に向けて傾斜したターゲット233が設けられている。ターゲット233は、成膜しようとする膜の材料で構成されている。第1の金属含有単位膜2および第2の金属含有単位膜3の両方を成膜する際には、これらの材料にそれぞれ対応するようにターゲット233を複数設けてもよい。また、複数のターゲットを用いたコスパッタを行ってもよい。ターゲット233にはArイオンを引きつけるための直流電力を印加するターゲット用の電圧可変の直流電源234が接続されている。なお、直流電源に代えて交流電源を用いてもよい。
 また、ターゲット233の外周側には、磁石235が設けられている。ターゲット233はプラズマ中のArイオンによりスパッタされ、ターゲット233から粒子が放出され、粒子の多くはプラズマ中を通過する際にイオン化される。
 またこのターゲット233の下部には、処理空間Sを囲むようにして円筒状の保護カバー部材236が設けられている。この保護カバー部材236は接地されている。保護カバー部材236の内側の端部は、載置台213の外周側を囲むようにして設けられている。
 プラズマスパッタ装置200を構成する各構成部は、制御部240により制御される。制御部240は、各構成部を制御するコンピュータ(CPU)からなる主制御部と、入力装置、出力装置、表示装置、および記憶装置を有している。記憶装置には、プラズマスパッタ装置200で実行される各種処理のパラメータが記憶されている。また、記憶装置は、プラズマスパッタ装置200で実行される処理を制御するためのプログラム、すなわち処理レシピが格納された記憶媒体を有する。主制御部は、記憶媒体に記憶されている所定の処理レシピを呼び出し、その処理レシピに基づいて、プラズマスパッタ装置200に、所定の動作を実行させる。
 このように構成されるプラズマスパッタ装置200においては、基板Wを処理容器201内へ搬入し、この基板Wを載置台213上に載置して静電チャック216により吸着し、制御部240の制御下で以下の動作が行われる。このとき、載置台213は、熱電対(図示せず)で検出された温度に基づいて、冷却ジャケット215への冷媒の供給および抵抗ヒータ237への給電を制御することにより温度制御される。
 まず、真空ポンプ206を動作させることにより所定の真空状態にされた処理容器201内に、ガス制御部210を操作して所定流量でArガスを流しつつスロットルバルブ205を制御して処理容器201内を所定の真空度に維持する。その後、電圧可変の直流電源234から直流電力をターゲット233に印加し、さらにプラズマ発生源228の高周波電源231から誘導コイル230に高周波電力(プラズマ電力)を供給する。一方、バイアス用高周波電源224から静電チャック216の電極216bに対して所定のバイアス用の高周波電力を供給する。
 これにより、処理容器201内においては、誘導コイル230に供給された高周波電力によりアルゴンプラズマが形成されてアルゴンイオンが生成され、これらイオンはターゲット233に印加された直流電圧に引き寄せられてターゲット233に衝突し、このターゲット233がスパッタされて粒子が放出される。この際、ターゲット233に印加する直流電圧により放出される粒子の量が最適に制御される。
 また、スパッタされたターゲット233からの粒子はプラズマ中を通る際に多くはイオン化され下方向へ飛散して行く。
 イオンは、バイアス用高周波電源224から静電チャック216の電極216bに印加されたバイアス用の高周波電力により基板W面上に形成される厚さ数mm程度のイオンシースの領域に入ると、強い指向性をもって基板W側に加速するように引き付けられて基板Wに堆積する。これにより、基板W上に所望の膜が成膜される。
 第1の金属含有単位膜2および第2の金属含有単位膜3の両方をスパッタにより成膜する場合は、プラズマスパッタ装置200でターゲットの切り替えのみで連続してこれらの成膜を行って金属含有膜1を成膜することができる。
 成膜終了後、処理容器201内をパージし、載置台213を下降させ、ゲートバルブ238を開放し、基板Wを搬出する。
  [ALDまたはCVDによる成膜]
 図21は、ALDまたはCVDによる成膜を行うための成膜装置の一例を示す断面図である。
 図21に示すように、成膜装置300は、処理容器301と、サセプタ302と、シャワーヘッド303と、排気部304と、ガス供給機構305と、制御部307とを有している。
 処理容器301は、金属製であり、略円筒状を有している。処理容器301の側壁には基板Wを搬入出するための搬入出口311が形成され、搬入出口311はゲートバルブ312で開閉可能となっている。処理容器301の本体の上には、断面が矩形状をなす円環状の排気ダクト313が設けられている。排気ダクト313には、内周面に沿ってスリット313aが形成されている。また、排気ダクト313の外壁には排気口313bが形成されている。排気ダクト313の上面には処理容器301の上部開口を塞ぐように天壁314が設けられている。天壁314と排気ダクト313の間はシールリング315で気密にシールされている。
 サセプタ302は、処理容器301内で基板Wを水平に支持するためのものである。サセプタ302は、基板Wに対応した大きさの円板状をなし、支持部材323に支持されている。このサセプタ302は、セラミックス材料や金属材料で構成されており、内部に基板Wを加熱するためのヒータ321が埋め込まれている。ヒータ321はヒータ電源(図示せず)から給電されて発熱するようになっている。そして、サセプタ302の上面の基板載置面近傍に設けられた熱電対(図示せず)の温度信号によりヒータ321の出力を制御することにより、基板Wを所定の温度に制御するようになっている。
 サセプタ302には、基板載置面の外周領域、およびサセプタ302の側面を覆うようにアルミナ等のセラミックスからなるカバー部材322が設けられている。
 サセプタ302を支持する支持部材323は、サセプタ302の底面中央から処理容器301の底壁に形成された孔部を貫通して処理容器301の下方に延び、その下端が昇降機構324に接続されている。昇降機構324によりサセプタ302が支持部材323を介して、図21の実線で示す処理位置と、その下方の一点鎖線で示す基板Wの搬送が可能な搬送位置との間で昇降可能となっている。また、支持部材323の処理容器301の下方位置には、鍔部材325が取り付けられており、処理容器301の底面と鍔部材325の間には、処理容器301内の雰囲気を外気と区画し、サセプタ302の昇降動作にともなって伸縮するベローズ326が設けられている。
 処理容器301の底面近傍には、昇降板327aから上方に突出するように3本(2本のみ図示)の支持ピン327が設けられている。支持ピン327は、処理容器301の下方に設けられた昇降機構328により昇降板327aを介して昇降可能になっており、搬送位置にあるサセプタ302に設けられた貫通孔302aに挿通されてサセプタ302の上面に対して突没可能となっている。このように支持ピン327を昇降させることにより、基板搬送機構(図示せず)とサセプタ302との間で基板Wの受け渡しが行われる。
 シャワーヘッド303は、処理容器301内に処理ガスをシャワー状に供給するための金属製の部材であり、サセプタ302に対向するように設けられており、サセプタ302とほぼ同じ直径を有している。シャワーヘッド303は、処理容器301の天壁314に固定された本体部331と、本体部331の下に接続されたシャワープレート332とを有している。本体部331とシャワープレート332との間にはガス拡散空間333が形成されており、このガス拡散空間333には、本体部331および処理容器301の天壁314の中央を貫通するように設けられたガス導入孔336が接続されている。シャワープレート332の周縁部には下方に突出する環状突起部334が形成され、シャワープレート332の環状突起部334の内側の平坦面にはガス吐出孔335が形成されている。
 サセプタ302が処理位置に存在した状態では、シャワープレート332とサセプタ302との間に処理空間337が形成され、環状突起部334とサセプタ302のカバー部材322の上面が近接して環状隙間338が形成される。
 排気部304は、処理容器301の内部を排気するためのものであり、排気ダクト313の排気口313bに接続された排気配管341と、排気配管341に接続された、真空ポンプや圧力制御バルブ等を有する排気機構342とを備えている。処理に際しては、処理容器301内のガスはスリット313aを介して排気ダクト313に至り、排気ダクト313から排気部304の排気機構342により排気配管341を通って排気される。
 ガス供給機構305は、シャワーヘッド303に成膜のための複数の処理ガスを供給するためのものであり、各処理ガスの供給源および供給配管を有している。処理ガスとしては、成膜原料ガス、反応ガス、および不活性ガス等が供給される。不活性ガスは、パージガス、キャリアガス、希釈ガスとして用いられる。ガス供給機構305の各処理ガスの供給配管は配管366に合流し、シャワーヘッド303に至る。
 成膜原料ガスとしては、成膜しようとする膜の金属に応じて種々のものを用いることができる。例えば、TiN膜およびTi膜の場合は、TiClガス、TiIガス、TiBrガス、TiBrガス、TiIガス、TiFガスを用いることができる。NbN膜の場合は、NbClガス、NbFガス、NbIガス、NbBrガス、NbFガス、NbOBrガス、NbOClガス、NbOBrガス、NbOFガスを用いることができる。VN膜およびV膜の場合は、VOBrガス、VOClガス、VOFガス、V(CO)ガス、VClガス、VFガス、VFガス、VOBrガス、VOClガス、VOBrガス、VOClガス、VOFガスを用いることができる。WN膜およびW膜の場合は、W(CO)ガス、WBrガス、WClガス、WIガス、WBrガス、WClガス、WBrガス、WClガス、WFガス、WOBrガス、WOClガス、WBrガス、WClガス、WOBrガス、WOClガス、WOガス、WFガス、WOBrガス、WOBrガス、WOClガス、WOFガスを用いることができる。TaN膜の場合は、TaBrガス、TaClガス、TaFガス、TaIガスを用いることができる。MoN膜およびMo膜の場合は、Mo(CO)ガス、MoClガス、MoFガス、MoOClガス、MoFガス、MoClガス、MoFガス、MoOFガス、MoOClガス、MoOClガスを用いることができる。Ru膜の場合、Ru(CO)12ガス、RuBrガス、RuClガス、RuFガス、RuIガス、RuFガス、RuFガスを用いることができる。Co膜、Ni膜の場合、コバルトアミジネート、ニッケルアミジネートを用いることができる。Al膜の場合、トリメチルアルミニウム(TMA)ガスを用いることができる。Mn膜の場合、MnOFガス、MnOClガスを用いることができる。
 なお、成膜原料ガスや反応ガスの種類によっては、例えば、シャワーヘッド303に高周波電力を印加する等によって、ガスをプラズマ化してもよい。
 制御部307は、成膜装置300を構成する各構成部を制御するコンピュータ(CPU)からなる主制御部と、入力装置、出力装置、表示装置、および記憶装置を有している。記憶装置には、成膜装置300で実行される各種処理のパラメータが記憶されている。また、記憶装置は、成膜装置300で実行される処理を制御するためのプログラム、すなわち処理レシピが格納された記憶媒体を有する。主制御部は、記憶媒体に記憶されている所定の処理レシピを呼び出し、その処理レシピに基づいて、成膜装置300に、所定の動作を実行させる。
 このように構成された成膜装置300においては、まず、ゲートバルブ312を開放して搬送装置(図示せず)により搬入出口311を介して処理容器301内に基板Wを搬入し、サセプタ302上に載置する。その後、搬送装置を退避させ、サセプタ302を処理位置まで上昇させる。そして、ゲートバルブ312を閉じ、処理容器301内を所定の減圧状態に保持するとともに、ヒータ321によりサセプタ302の温度を所望の温度に制御する。
 この状態で、ガス供給機構305から処理ガスを処理容器301内に供給してALDまたはCVDにより基板W上に所望の膜を形成する。
 ALDによる成膜においては、原料ガスと反応ガスとを、処理容器301内の不活性ガスによるパージを挟んで交互に処理容器301内に供給することにより成膜を行う。例えば、TiN膜を成膜する場合には、原料ガスとしてTiClガス、反応ガスとしてNHガスを、パージを挟んで交互に供給する。また、CVDによる成膜においては、原料ガスと反応ガスとを同時に処理容器301に供給することにより行われる。成膜原料ガスによっては、例えばRu(CO)12ガスを用いたRu膜の成膜のように、反応ガスを用いずに成膜原料ガスの熱分解により成膜が進行する場合もある。
 第1の金属含有単位膜2および第2の金属含有単位膜3の両方をALDまたはCVDで成膜する場合は、成膜装置300で処理ガスの切り替えのみで連続してこれらの成膜を行って金属含有膜1を成膜することができる。
 成膜終了後、処理容器301内をパージし、サセプタ302を下降させ、ゲートバルブ312を開放し、基板Wを搬出する。
 <他の適用>
 以上、実施形態について説明したが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の特許請求の範囲およびその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 例えば、上記実施形態において、第1の金属含有単位膜および第2の金属含有単位膜の材料を例示したが、これらは単なる例示であって他の金属含有膜であってもよい。また、PVDによる成膜を行う装置としてプラズマスパッタ装置200、およびALDまたはCVDによる成膜を行う装置として成膜装置300を例示したが、これらに限らず、種々の装置を用いることができる。さらに、上記実施形態では、成膜方法としてPVD、ALD、CVDを例示したが、薄膜形成技術であればこれらに限るものではない。
 また、金属含有膜の用途として、微細配線、ピラー構造やシリンダ構造の電極、バリア膜、メタルハードマスクを例示したが、これらに限定されるものではない。
 1;金属含有膜、2;第1の金属含有単位膜、3;第2の金属含有単位膜、101,121,131,141,W;基板、105;金属含有膜(微細配線)、110,111;微細配線構造、114;金属含有膜(バリア膜)、120,130;キャパシタ、122;金属含有膜(ピラー構造の下部電極)、132;金属含有膜(シリンダ構造の下部電極)、140;構造体、143;金属含有膜(メタルハードマスク)、200;プラズマスパッタ装置、300;成膜装置

Claims (20)

  1.  結晶核形成臨界直径未満の膜厚を有する第1の金属含有単位膜と、結晶核形成臨界直径未満の膜厚を有し、前記第1の金属含有単位膜とは異なる第2の金属含有単位膜とが、交互に積層されてなり、結晶粒界を含まないラミネート構造を有する、金属含有膜。
  2.  前記第1の金属含有単位膜および前記第2の金属含有単位膜は、金属窒化膜または金属膜である、請求項1に記載の金属含有膜。
  3.  前記第1の金属含有単位膜および前記第2の金属含有単位膜は、一方が金属窒化膜で他方が金属膜の組み合わせ、両方が金属窒化膜の組み合わせ、両方が金属膜の組み合わせのいずれかである、請求項2に記載の金属含有膜。
  4.  前記金属窒化膜は、TiN、NbN、VN、WN、TaN、MoN、Wから選択されたものであり、前記金属膜は、Ru、Co、Ni、Mo、W、Al、Ti、V、Mn、Si、Mgから選択されたものである、請求項3に記載の金属含有膜。
  5.  前記一方が金属窒化膜で他方が金属膜の組み合わせは、TiN-W、TiN-Mo、TiN-Ru、TaN-W、TaN-Mo、TaN-Ruから選択されたものである、請求項3または請求項4に記載の金属含有膜。
  6.  前記両方が金属窒化膜の組み合わせは、TiN-TaN、TiN-NbN、TiN-MoN、TiN-W、TaN-NbN、TaN-Wから選択されたものである、請求項3または請求項4に記載の金属含有膜。
  7.  前記両方が金属膜の組み合わせは、Si-Al、W-Al、Mg-Al、W-Ti、V-Ti、Mg-Tiから選択されたものである、請求項3または請求項4に記載の金属含有膜。
  8.  前記第1の金属含有単位膜および前記第2の金属含有単位膜の少なくとも一方に、過冷度を増加させる元素が添加される、請求項1から請求項4のいずれか一項に記載の金属含有膜。
  9.  前記過冷度を増加させる元素は、それが添加される母相材料との間の相互作用パラメータが0以上である、請求項8に記載の金属含有膜。
  10.  前記第1の金属含有単位膜および前記第2の金属含有単位膜のうち、前記過冷度を増加させる元素が添加されるものがAl膜の場合は、前記過冷度を増加させる元素はSiであり、
     前記第1の金属含有単位膜および前記第2の金属含有単位膜のうち、前記過冷度を増加させる元素が添加されるものがRu膜の場合は、前記過冷度を増加させる元素はIr、Pd、Ni、Co、Mnから選択されたものであり、
     前記第1の金属含有単位膜および前記第2の金属含有単位膜のうち、前記過冷度を増加させる元素が添加されるものがCo膜の場合は、前記過冷度を増加させる元素はNi、Cu、Pd、Ruから選択されたものであり、
     前記第1の金属含有単位膜および前記第2の金属含有単位膜のうち、前記過冷度を増加させる元素が添加されるものがW膜の場合は、前記過冷度を増加させる元素はMo、Ta、Nb、Ti、Mnから選択されたものであり、
     前記第1の金属含有単位膜および前記第2の金属含有単位膜のうち、前記過冷度を増加させる元素が添加されるものがMo膜の場合は、前記過冷度を増加させる元素はW、Ta、Nb、Ti、Mnから選択されたものであり、
     前記第1の金属含有単位膜および前記第2の金属含有単位膜のうち、前記過冷度を増加させる元素が添加されるものがTi膜の場合は、前記過冷度を増加させる元素はZr、Hf、V、W、Mo、Nb、Taから選択されたものであり、
     前記第1の金属含有単位膜および前記第2の金属含有単位膜のうち、前記過冷度を増加させる元素が添加されるものがMn膜の場合は、前記過冷度を増加させる元素はRu、Fe、Mo、Wから選択されたものである、請求項9に記載の金属含有膜。
  11.  メタルピラー構造またはシリンダ構造の電極として用いられる、請求項1から請求項4のいずれか一項に記載の金属含有膜。
  12.  バリア膜として用いられる、請求項1から請求項4のいずれか一項に記載の金属含有膜。
  13.  配線金属として用いられる、請求項1から請求項4のいずれか一項に記載の金属含有膜。
  14.  メタルハードマスクとして用いられる、請求項1から請求項4のいずれか一項に記載の金属含有膜。
  15.  基板上に、第1の金属含有単位膜を結晶核形成臨界直径未満の膜厚で成膜する工程と、前記第1の金属含有単位膜とは異なる第2の金属含有単位膜を結晶核形成臨界直径未満の膜厚で成膜する工程とを交互に行い、結晶粒界を含まないラミネート構造の金属含有膜を製造する、金属含有膜の製造方法。
  16.  前記第1の金属含有単位膜および前記第2の金属含有単位膜を、PVD、ALD、およびCVDのいずれかで成膜する、請求項15に記載の金属含有膜の製造方法。
  17.  前記第1の金属含有単位膜および前記第2の金属含有単位膜は、金属窒化膜または金属膜である、請求項15または請求項16に記載の金属含有膜の製造方法。
  18.  前記第1の金属含有単位膜および前記第2の金属含有単位膜は、一方が金属窒化膜で他方が金属膜の組み合わせ、両方が金属窒化膜の組み合わせ、両方が金属膜の組み合わせのいずれかである、請求項17に記載の金属含有膜の製造方法。
  19.  前記第1の金属含有単位膜および前記第2の金属含有単位膜の少なくとも一方に、過冷度を増加させる元素を添加する、請求項15または請求項16に記載の金属含有膜の製造方法。
  20.  前記過冷度を増加させる元素は、それが添加される母相材料との間の相互作用パラメータが0以上である、請求項19に記載の金属含有膜の製造方法。
PCT/JP2022/022760 2021-06-18 2022-06-06 金属含有膜および金属含有膜の製造方法 WO2022264847A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247000865A KR20240019319A (ko) 2021-06-18 2022-06-06 금속 함유 막 및 금속 함유 막의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021101521A JP2023000597A (ja) 2021-06-18 2021-06-18 金属含有膜および金属含有膜の製造方法
JP2021-101521 2021-06-18

Publications (1)

Publication Number Publication Date
WO2022264847A1 true WO2022264847A1 (ja) 2022-12-22

Family

ID=84526206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022760 WO2022264847A1 (ja) 2021-06-18 2022-06-06 金属含有膜および金属含有膜の製造方法

Country Status (3)

Country Link
JP (1) JP2023000597A (ja)
KR (1) KR20240019319A (ja)
WO (1) WO2022264847A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155743A (ja) * 1986-12-19 1988-06-28 Fujitsu Ltd 半導体装置
JPH0461125A (ja) * 1990-06-22 1992-02-27 Kanegafuchi Chem Ind Co Ltd 多層配線体
JP2002329680A (ja) * 2001-03-27 2002-11-15 Sharp Corp ALCVDによるCuインターコネクトのための多層バリアメタル薄膜
JP2003324148A (ja) * 2002-04-26 2003-11-14 Nec Electronics Corp 半導体装置およびその製造方法、めっき液
US20050070097A1 (en) * 2003-09-29 2005-03-31 International Business Machines Corporation Atomic laminates for diffusion barrier applications
JP2005294321A (ja) * 2004-03-31 2005-10-20 Furukawa Electric Co Ltd:The 積層回路材料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018073949A (ja) 2016-10-27 2018-05-10 東京エレクトロン株式会社 金属配線層形成方法、金属配線層形成装置および記憶媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155743A (ja) * 1986-12-19 1988-06-28 Fujitsu Ltd 半導体装置
JPH0461125A (ja) * 1990-06-22 1992-02-27 Kanegafuchi Chem Ind Co Ltd 多層配線体
JP2002329680A (ja) * 2001-03-27 2002-11-15 Sharp Corp ALCVDによるCuインターコネクトのための多層バリアメタル薄膜
JP2003324148A (ja) * 2002-04-26 2003-11-14 Nec Electronics Corp 半導体装置およびその製造方法、めっき液
US20050070097A1 (en) * 2003-09-29 2005-03-31 International Business Machines Corporation Atomic laminates for diffusion barrier applications
JP2005294321A (ja) * 2004-03-31 2005-10-20 Furukawa Electric Co Ltd:The 積層回路材料

Also Published As

Publication number Publication date
JP2023000597A (ja) 2023-01-04
KR20240019319A (ko) 2024-02-14

Similar Documents

Publication Publication Date Title
JP5001008B2 (ja) 金属−カルボニルプリカーサからの金属層の低圧堆積。
JP5140957B2 (ja) 成膜装置
KR102013927B1 (ko) 평활한 금속 질화물 막들의 퇴적
JP4579157B2 (ja) 処理装置及び切り替え機構
US20170309490A1 (en) Method of manufacturing semiconductor device
US20110186984A1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
US20150262816A1 (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP6336866B2 (ja) 半導体デバイスの製造方法、基板処理装置およびプログラム
US20140162454A1 (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP2001358091A (ja) 半導体ウェハにおけるコンタクト、ビア及びトレンチの低熱費金属の充填及び平坦化のための方法と装置
JP2008514814A (ja) 熱化学気相成長プロセスにおけるルテニウム金属層の堆積
JP2016111347A (ja) Cu配線の形成方法および成膜システム、記憶媒体
JPWO2007102333A1 (ja) ルテニウム膜の成膜方法およびコンピュータ読取可能な記憶媒体
JP2017186595A (ja) タングステン膜の成膜方法
US8043471B2 (en) Plasma processing apparatus
WO2012090831A1 (ja) 半導体デバイスの製造方法および基板処理装置
WO2022264847A1 (ja) 金属含有膜および金属含有膜の製造方法
TWI651807B (zh) Cu配線之製造方法
JP2006332139A (ja) 成膜方法およびコンピュータにより読み取り可能な記憶媒体
JP6013901B2 (ja) Cu配線の形成方法
JP6584326B2 (ja) Cu配線の製造方法
CN108074976A (zh) TiN系膜及其形成方法
JP4056829B2 (ja) 基板処理装置
JP2009242835A (ja) 成膜方法及び成膜装置
WO2009096095A1 (ja) 薄膜の形成方法、プラズマ成膜装置及び記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247000865

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000865

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE