WO2022262430A1 - 冷却控制阀、控制方法、双离合变速器冷却系统及车辆 - Google Patents

冷却控制阀、控制方法、双离合变速器冷却系统及车辆 Download PDF

Info

Publication number
WO2022262430A1
WO2022262430A1 PCT/CN2022/089178 CN2022089178W WO2022262430A1 WO 2022262430 A1 WO2022262430 A1 WO 2022262430A1 CN 2022089178 W CN2022089178 W CN 2022089178W WO 2022262430 A1 WO2022262430 A1 WO 2022262430A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
cooling
oil inlet
valve
oil outlet
Prior art date
Application number
PCT/CN2022/089178
Other languages
English (en)
French (fr)
Inventor
宋建军
唐立中
康志军
刘振宇
樊雪来
毛泽贤
金星月
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022262430A1 publication Critical patent/WO2022262430A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0412Cooling or heating; Control of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0435Pressure control for supplying lubricant; Circuits or valves therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N23/00Special adaptations of check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N39/00Arrangements for conditioning of lubricants in the lubricating system
    • F16N39/06Arrangements for conditioning of lubricants in the lubricating system by filtration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/38Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems

Definitions

  • the present application relates to the technical field of vehicle cooling control, for example, to a cooling control valve, a control method, a dual-clutch transmission cooling system and a vehicle.
  • dual-clutch automatic transmissions can make the overall structure of the gearbox body more compact and have greater torque transmission capacity.
  • both the clutch and the shafting will generate a lot of heat, and cooling oil is needed to cool the clutch and the shafting in real time to ensure normal operation.
  • the technical solution generally adopted in the related art is: according to the operating conditions, the cooling oil flow of the clutch is controlled in real time through a solenoid valve, and the cooling flow of the shafting is limited by an orifice, which is basically maintained at one under different working conditions. Relatively stable value (i.e. shaft cooling flow is not controllable).
  • shaft cooling flow is not controllable.
  • the application provides a cooling control valve, a control method, a dual-clutch transmission cooling system and a vehicle, which can realize simultaneous control of the shafting and clutch cooling circuits, simplify the structure and control process, save costs, reduce power loss, and ensure transmission efficiency .
  • One embodiment provides a cooling control valve, including: a valve casing, on which a first oil inlet, a second oil inlet, a first oil outlet and a second oil outlet are arranged, and the first oil outlet An oil inlet communicates with the second oil inlet, the first oil inlet is configured to communicate with the first oil outlet, and the second oil inlet is configured to communicate with the second oil outlet connected; the spool is movably plugged into the valve housing, the spool is provided with a first stopper and a second stopper, and the first stopper and the second stopper are provided with There are oil passages, and the oil passages communicate with the first oil inlet and the second oil inlet respectively, and the first oil outlet and the second oil outlet are respectively arranged to communicate with the The oil passage is communicated; and the driving part is connected with the external power supply, the driving part is connected with the valve core in transmission, and the driving part can drive the valve core to move so that the first stopper, the second The stopper blocks or avoids the second oil outlet and the first
  • An embodiment also provides a control method, using the above-mentioned cooling control valve, the control method includes: adjusting the current I of the driving member to a first preset value, making the valve core at the initial position, and the first step The oil port is not connected to the first oil outlet, and the second oil inlet is connected to the second oil outlet; the current I of the driver is adjusted to a second preset value, and the second preset value is greater than the first preset value value, so that the spool moves in the valve casing, the first oil inlet communicates with the first oil outlet, and the second oil inlet communicates with the second oil outlet; and the The current I of the driving part is adjusted to a third preset value, and the third preset value is greater than the second preset value, so that the valve core continues to move in the valve housing, the first oil inlet and the The first oil outlet is connected, and the second oil inlet and the second oil outlet are not connected.
  • the present application also provides a cooling system for a dual-clutch transmission, including an oil supply circuit, a clutch cooling oil circuit, and a shaft cooling oil circuit.
  • the dual-clutch transmission cooling system also includes the cooling control valve as described above.
  • the oil passages are respectively connected to the first oil inlet and the second oil inlet, the clutch cooling oil passage is connected to the second oil outlet, and the shaft cooling oil passage is connected to the first oil outlet.
  • the present application also provides a vehicle, including a clutch and a shafting system, the vehicle also includes the dual-clutch transmission cooling system as described above, the clutch is connected to the clutch cooling oil circuit, and the shafting system is connected to the shafting cooling oil circuit Connection, so as to realize the cooling of the clutch and shafting.
  • Fig. 1 is a schematic diagram of the principle of the cooling control valve provided in Embodiment 1 of the present application;
  • Fig. 2 is a schematic structural diagram of the cooling control valve provided in Embodiment 1 of the present application;
  • Fig. 3 is a schematic diagram of the principle of the dual-clutch transmission cooling system provided by Embodiment 1 of the present application;
  • Fig. 4 is a schematic diagram of the principle of the cooling control valve provided in Embodiment 2 of the present application.
  • Fig. 5 is a schematic diagram of the principle of the dual clutch transmission cooling system provided by the second embodiment of the present application.
  • Cooling control valve 11. Valve housing; 111. First oil inlet; 112. Second oil inlet; 113. First oil outlet; 114. Second oil outlet; 12. Spool; 121. The first block; 122, the second block; 123, the oil passage; 124, the limit groove; 13, the elastic reset member; 14, the driving member;
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • connection can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • a first feature being "on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the embodiment of the present application discloses a cooling control valve 1, as shown in Fig. 1-Fig.
  • the valve core 12 is connected with a driving member 14 .
  • the valve housing 11 is provided with a first oil inlet 111, a second oil inlet 112, a first oil outlet 113 and a second oil outlet 114, the first oil inlet 111 and the second oil inlet
  • the oil port 112 communicates, the first oil inlet 111 can communicate with the first oil outlet 113 , and the second oil inlet 112 can communicate with the second oil outlet 114 .
  • the spool 12 is movably inserted into the valve casing 11, the spool 12 is provided with a first stopper 121 and a second stopper 122, and an oil passage is provided between the first stopper 121 and the second stopper 122 123 , the oil passage 123 communicates with the first oil inlet 111 and the second oil inlet 112 respectively, and the first oil outlet 113 and the second oil outlet 114 can communicate with the oil passage 123 .
  • the driver 14 is electrically connected to the external power supply, and the driver 14 is in transmission connection with the spool 12. The driver 14 can drive the spool 12 to move so that the first stopper 121 and the second stopper 122 are opposite to the second oil outlet 114 and the second oil outlet 114 respectively. The first oil outlet 113 is blocked or avoided.
  • the driving member 14 and the spool 12 remain relatively stable, the first oil inlet 111 communicates with the first oil outlet 113, and the second oil inlet 112 communicates with the second oil outlet 114, so as to simultaneously
  • the clutch and the shaft system are cooled; when the clutch requires instantaneous large flow, the driver 14 drives the spool 12 to move in the valve housing 11, so that the second block 122 blocks the first oil outlet 113, so that the first oil inlet
  • the port 111 and the second oil inlet 112 communicate with the second oil outlet 114 through the oil passage 123 to provide a sufficient amount of cooling oil to the second oil outlet 114 to realize sufficient cooling of the clutch; when the shaft system needs When the instantaneous flow rate is large, the driving member 14 drives the spool 12 to move in the reverse direction in the valve housing 11, so that the first stopper 121 blocks the second oil outlet 114, so that the first oil inlet 111 and the second oil inlet 112 communicates with the first oil outlet 113 through an oil passage 123 to provide
  • the cooling control valve 1 provided by the present application can realize simultaneous control of the shafting and clutch cooling circuits, simplify the structure and control process, and save costs, and the cooling flow can be adjusted according to different working conditions without the need for additional cooling.
  • the 26 specifications of the large oil pump can be adjusted to reduce power loss and ensure transmission efficiency.
  • the valve casing 11 is a cylindrical casing with one end closed and one end opened.
  • the inner wall of the valve housing 11 is provided with a plurality of arc-shaped grooves arranged at intervals, and the plurality of arc-shaped grooves are connected with the oil passage 123, the first oil inlet 111, the second oil inlet 112, and the first oil outlet 113. and the second oil outlets 114 are set in one-to-one correspondence to expand the oil passing capacity.
  • the first oil inlet 111 communicates with the second oil inlet 112 to form a large oil inlet, the first oil inlet 111, the second oil inlet 112, the first oil outlet 113 and the second oil outlet
  • the oil outlet 114 is disposed on the same side of the valve housing 11 .
  • the positions of the first oil inlet 111 , the second oil inlet 112 , the first oil outlet 113 and the second oil outlet 114 can be adjusted as required, and are not limited to this embodiment.
  • the first oil inlet 111 and the second oil inlet 112 are respectively connected to the oil supply oil passage 21, the second oil outlet 114 corresponds to the clutch cooling oil passage 23, and the first oil outlet 113 is connected to the shaft system
  • the cooling oil passages 22 are connected correspondingly, so that the clutch and the shaft system can be cooled together by one cooling control valve 1 , which simplifies the structure and reduces the installation cost.
  • the first oil outlet 113 and the second oil outlet 114 may also be respectively connected to corresponding equipment to realize cooling, which is not limited to this embodiment.
  • the valve core 12 is inserted into the valve housing 11 through the opening, and the first stopper 121 and the second stopper 122 abut against the inner wall of the valve housing 11 to ensure good sealing.
  • the first stopper 121 and the second stopper 122 are annular projections respectively, and the annular groove formed between the first stopper 121 and the second stopper 122 is an oil passage.
  • one end of the valve core 12 is provided with a limiting groove 124 .
  • the cooling control valve 1 further includes an elastic reset member 13 disposed between the inner wall of the valve housing 11 and the valve core 12 , configured to reset the valve core 12 to ensure the reciprocating movement of the valve core 12 .
  • the elastic return member 13 is abutted against and arranged in the limiting groove 124, so as to limit the elastic return member 13 and reduce the skew in motion.
  • the elastic return member 13 may be a spring, and the manufacturing cost is low.
  • the driving part 14 is an electromagnet, and the electromagnet abuts against one end of the spool 12, and the spool 12 can be pushed to move in the valve casing 11 by generating magnetic force through the energization of the electromagnet, so that the first stopper 121 is opposite to the second stopper 121.
  • the oil outlet 114 is shielded or avoided, and the second stopper 122 is shielded or avoided for the first oil outlet 113, so as to realize the adjustment of the amount of cooling oil to meet the use requirements of various working conditions.
  • the energizing current of the electromagnet be 1, by controlling the magnitude of the energizing current to the electromagnet, the magnetic force that the spool 12 is subject to can be controlled, and its displacement in the valve casing 11 can be controlled.
  • the specific control process is as follows:
  • the electromagnetic force of the electromagnet is less than or equal to the spring force of the elastic reset member 13, and the cooling control valve 1 is in the initial position.
  • An oil inlet 111 is not connected to the first oil outlet 113
  • the second oil inlet 112 is connected to the second oil outlet 114 .
  • the cooling oil provided by the oil supply oil circuit 21 flows into the clutch cooling oil circuit 23 through the second oil inlet 112 and the second oil outlet 114 to cool the clutch. condition.
  • the electromagnetic force provided by the electromagnet is greater than the spring force provided by the elastic reset member 13, and the spool 12 moves to the right ( Take the left and right directions in FIG. 1 as an example)
  • the first oil inlet 111 communicates with the first oil outlet 113
  • the second oil inlet 112 communicates with the second oil outlet 114 .
  • part of the cooling oil provided by the oil supply oil passage 21 flows into the clutch cooling oil passage 23 through the second oil inlet 112 and the second oil outlet 114 to cool the clutch, and the other part passes through the first oil inlet 111 and the second oil outlet 111.
  • An oil outlet 113 enters the shafting cooling oil passage 22 to cool the shafting.
  • the opening of the port 113 and the second oil outlet 114 can further control the clutch cooling flow and the shaft cooling flow to meet the requirements of different working conditions.
  • I1, I2 and I3 can be adjusted as required, and are not limited to this embodiment.
  • This embodiment also discloses a control method, using the cooling control valve 1 as described above, the control method includes the following steps:
  • part of the cooling oil provided by the oil supply oil passage 21 flows into the clutch cooling oil passage 23 through the second oil inlet 112 and the second oil outlet 114 to cool the clutch, and the other part passes through the first oil inlet 111 and the second oil outlet 111.
  • An oil outlet 113 enters the shaft system cooling oil passage 22 to cool the shaft system, which is suitable for the situation where the clutch and the shaft system need to be cooled at the same time under normal working conditions.
  • the driving member 14 is an electromagnet.
  • the force of the electromagnet acting on the valve core 12 can be controlled, thereby controlling the first oil outlet 113 and the second oil outlet.
  • the size of the opening of 114 can further control the clutch cooling flow and the shaft cooling flow to meet the needs of different working conditions.
  • the first preset value is greater than or equal to 0.2A
  • the second preset value is less than or equal to 1.2A
  • the third preset value is less than or equal to 1.5A.
  • the set value and the third preset value can be set as required, and are not limited to this embodiment.
  • This embodiment also discloses a dual-clutch transmission cooling system 2.
  • the oil supply oil passage 21 is connected to the first oil inlet 111 and the second oil inlet 112 respectively
  • the clutch cooling oil passage 23 is connected to the second oil outlet 114
  • the shaft cooling oil passage 22 is connected to the second oil outlet 114.
  • the first oil outlet 113 is connected to meet the cooling requirements of the clutch and the shafting at the same time, simplifying the structure and saving installation costs.
  • an oil tank 24, an oil suction filter 25, an oil pump 26, a cooler 27, and a pressure filter 28 are sequentially arranged on the oil supply circuit 21, and the pressure filter 28 is connected to the first oil inlet 111 respectively. It is connected with the second oil inlet 112 to realize oil supply to the first oil inlet 111 and the second oil inlet 112 .
  • the oil tank 24 stores cooling oil
  • the oil suction filter 25 is configured to filter the cooling oil
  • the oil pump 26 provides transmission power for the cooling oil
  • the cooler 27 is configured to cool the cooling oil to ensure the cooling oil Cooling effect
  • the pressure filter 28 filters the cooling oil flowing out of the cooler 27 again to reduce impurities
  • the cooled and filtered cooling oil flows into the cooling control valve 1 through the first oil inlet 111 and the second oil inlet 112 .
  • the dual-clutch transmission cooling system 2 further includes a bypass valve 29, the first end of the bypass valve 29 is connected to the oil supply oil passage 21 between the oil pump 26 and the cooler 27, and the bypass valve 29 The second end of each is connected with the first oil inlet 111 and the second oil inlet 112 respectively.
  • the cooling oil in the oil tank 24 is filtered by the oil suction filter 25, and then pumped to the oil supply circuit 21 by the oil pump 26 after being cooled by the cooler 27 and filtered by the pressure filter 28, so as to ensure Cooling effect of cooling oil.
  • the temperature of the cooling oil can be measured by a temperature sensor, and the criteria for judging whether the cooling oil is at low temperature, normal temperature, or high temperature can be set according to needs, which is not specifically limited in this embodiment.
  • the dual-clutch transmission cooling system 2 also includes a safety valve 291.
  • the safety valve 291 is arranged on the oil supply pipeline at the outlet of the oil pump 26 to limit the outlet oil pressure of the oil pump 26 and prevent the oil pump 26 from being damaged. .
  • This embodiment also discloses a vehicle, including a clutch and a shafting, the vehicle also includes the cooling system 2 of the dual-clutch transmission as described above, the clutch is connected to the clutch cooling oil passage 23, and the shafting is connected to the shafting cooling oil passage 22 , so as to realize the cooling of the clutch and shafting.
  • the embodiment of the present application provides a cooling control valve 1, a control method, a dual-clutch transmission cooling system 2 and a vehicle.
  • the working process includes:
  • the driving member 14 drives the spool 12 to move in the valve casing 11, so that the second block 122 blocks the first oil outlet 113, so that the first oil inlet 111, the second The second oil inlet 112 communicates with the second oil outlet 114 respectively through the oil passage 123, so as to provide a sufficient amount of cooling oil to the second oil outlet 114 to realize sufficient cooling of the clutch;
  • the driving member 14 drives the spool 12 to move in the reverse direction in the valve casing 11, so that the first stopper 121 blocks the second oil outlet 114, so that the first oil inlet 111.
  • the second oil inlet 112 communicates with the first oil outlet 113 respectively through the oil passage 123, so as to provide a sufficient amount of cooling oil to the first oil outlet 113 and realize sufficient cooling of the shafting;
  • the cooling control valve 1 provided by the present application can realize simultaneous control of the shafting and clutch cooling circuits, simplify the structure and control process, and save costs, and the cooling flow can be adjusted according to different working conditions without the need for additional cooling.
  • Large oil pump with 26 specifications realizes adjustment, reduces pressure loss and ensures transmission efficiency.
  • Fig. 4 is a schematic diagram of the principle of a cooling control valve 1 provided in the second embodiment.
  • the cooling control valve 1 provided in the present embodiment has the following difference: the driving member 14 is the pilot The solenoid valve, the pilot solenoid valve is connected with the valve core 12, and the cooling flow can be adjusted by controlling the current of the pilot solenoid valve, and the adjustment principle is the same as that of the electromagnet, which will not be repeated here.
  • the structure of the pilot solenoid valve reference may be made to related technologies, which will not be repeated here.
  • Fig. 5 is a schematic diagram of the principle of a dual-clutch transmission cooling system 2 provided in the second embodiment. As shown in Fig. 5, the dual-clutch transmission cooling system 2 in this embodiment adopts The valve core 12 is driven to also realize the adjustment of the cooling flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)

Abstract

提供了冷却控制阀(1)、控制方法、双离合变速器冷却系统(2)及车辆,冷却控制阀(1)包括:阀壳(11),设有第一进油口(111)、第二进油口(112)、第一出油口(113)和第二出油口(114),第一进油口(111)和第二进油口(112)连通,第一进油口(111)、第二进油口(112)设置为分别与第一出油口(113)、第二出油口(114)连通;阀芯(12),可移动插接于阀壳(11)内,阀芯(12)上设有第一挡块(121)和第二挡块(122),第一挡块(121)和第二挡块(122)间设有与第一进油口(111)和第二进油口(112)连通的过油通道(123),第一出油口(113)、第二出油口(114)分别设置为与过油通道(123)连通;驱动件(14),与外部电源连接,驱动件(14)与阀芯(12)传动连接,驱动件(14)能驱动阀芯(12)移动以使第一挡块(121)、第二挡块(122)分别对第二出油口(114)与第一出油口(113)进行遮挡或避让。

Description

冷却控制阀、控制方法、双离合变速器冷却系统及车辆
本申请要求申请日为2021年6月18日、申请号为202110676435.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆冷却控制技术领域,例如涉及一种冷却控制阀、控制方法、双离合变速器冷却系统及车辆。
背景技术
车辆内大多开始应用双离合自动变速器,采用双离合自动变速器可使得变速箱体整体结构较为紧凑,并具有较大的扭矩传递能力。但双离合变速器工作时,离合器和轴系均会产生大量热,需要用冷却油对离合器和轴系进行实时冷却,以确保正常工作。
相关技术中的一般采用的技术方案为:根据使用工况,通过一个电磁阀实时控制离合器的冷却油流量,而轴系的冷却流量通过一个节流孔限制,在不同工况下基本维持在一个相对稳定的值(即轴系冷却流量不可控制)。在进行液压油泵选型时,需要满足离合器冷却流量和轴系冷却流量的综合需求,但实际使用需求是,在离合器需要瞬时大冷却流量时,可以短暂关闭轴系冷却流量,而由于轴系冷却流量不可控制,这就导致选择的油泵规格过大以确保离合器具有足够的冷却流量,进而降低了变速器的效率。
发明内容
本申请提供了一种冷却控制阀、控制方法、双离合变速器冷却系统及车辆,能够实现对轴系及离合器冷却回路的同时控制,简化结构及控制流程,节省成本,减少功率损失、确保变速器效率。
一实施例提供了一种冷却控制阀,包括:阀壳,所述阀壳上设有第一进油口、第二进油口、第一出油口和第二出油口,所述第一进油口和所述第二进油口连通,所述第一进油口设置为与所述第一出油口连通,所述第二进油口设置为与所述第二出油口连通;阀芯,可移动地插接于所述阀壳内,所述阀芯上设有第一挡块和第二挡块,所述第一挡块和所述第二挡块之间设有过油通道,所 述过油通道分别与所述第一进油口和所述第二进油口连通,所述第一出油口、所述第二出油口分别设置为与所述过油通道连通;及驱动件,与外部电源连接,所述驱动件与所述阀芯传动连接,所述驱动件能够驱动所述阀芯移动以使所述第一挡块、所述第二挡块分别对所述第二出油口与所述第一出油口进行遮挡或避让。
一实施例还提供了一种控制方法,采用如上所述的冷却控制阀,所述控制方法包括:将驱动件的电流I调整为第一预设值,使阀芯处于初始位置,第一进油口和第一出油口不连通,第二进油口和第二出油口连通;将所述驱动件的电流I调整为第二预设值,第二预设值大于第一预设值,使所述阀芯在阀壳内移动,所述第一进油口和所述第一出油口连通,所述第二进油口和所述第二出油口连通;及将所述驱动件的电流I调整为第三预设值,第三预设值大于第二预设值,使所述阀芯在所述阀壳内继续移动,所述第一进油口和所述第一出油口连通,所述第二进油口和所述第二出油口不连通。
本申请还提供了一种双离合变速器冷却系统,包括供油油路、离合器冷却油路和轴系冷却油路,所述双离合变速器冷却系统还包括如上所述的冷却控制阀,所述供油油路分别与第一进油口和第二进油口连接,所述离合器冷却油路与第二出油口连接,所述轴系冷却油路与第一出油口连接。
本申请还提供了一种车辆,包括离合器和轴系,所述车辆还包括如上所述的双离合变速器冷却系统,所述离合器与离合器冷却油路连接,所述轴系与轴系冷却油路连接,从而实现对离合器及轴系的冷却。
附图说明
图1是本申请实施例一提供的冷却控制阀的原理示意图;
图2是本申请实施例一提供的冷却控制阀的结构示意图;
图3是本申请实施例一提供的双离合变速器冷却系统的原理示意图;
图4是本申请实施例二提供的冷却控制阀的原理示意图;
图5是本申请实施例二提供的双离合变速器冷却系统的原理示意图。
图中:
1、冷却控制阀;11、阀壳;111、第一进油口;112、第二进油口;113、第一出油口;114、第二出油口;12、阀芯;121、第一挡块;122、第二挡块;123、过油通道;124、限位槽;13、弹性复位件;14、驱动件;
2、双离合变速器冷却系统;21、供油油路;22、轴系冷却油路;23、离合器冷却油路;24、油箱;25、吸油滤清器;26、油泵;27、冷却器;28、压力滤清器;29、旁通阀;291、安全阀。
具体实施方式
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。
实施例一
本申请实施例公开了一种冷却控制阀1,如图1-图2所示,该冷却控制阀1包括阀壳11、阀芯12和驱动件14,阀壳11内设有阀芯12,阀芯12与驱动件14连接。在一实施例中,阀壳11上设有第一进油口111、第二进油口112、第一出油口113和第二出油口114,第一进油口111和第二进油口112连通,第一进油口111能与第一出油口113连通,第二进油口112能与第二出油口114连通。阀芯12可移动地插接于阀壳11内,阀芯12上设有第一挡块121和第二挡块122,第一挡块121和第二挡块122之间设有过油通道123,过油通道123分别与第一进油口111和第二进油口112连通,第一出油口113及第二出油口114能与过油通道123连通。驱动件14与外部电源电连接,驱动件14与阀芯12传动连接,驱动件14能够驱动阀芯12移动以使第一挡块121、第二挡块122分别对第二出油口114与第一出油口113进行遮挡或避让。
在普通工况下,驱动件14与阀芯12保持相对稳定,第一进油口111与第一出油口113连通,第二进油口112与第二出油口114连通,以同时对离合器和轴系进行冷却;当离合器需要瞬时大流量时,驱动件14驱动阀芯12在阀壳11内移动,使第二挡块122对第一出油口113遮挡,从而使第一进油口111、第二进油口112通过过油通道123与第二出油口114连通,以对第二出油口114处提供足量的冷却油,实现对离合器的充分冷却;当轴系需要瞬时大流量时,驱动件14驱动阀芯12在阀壳11内反向移动,使第一挡块121对第二出油口114遮挡,从而使第一进油口111、第二进油口112通过过油通道123与第一出油口113连通,以对第一出油口113处提供足量的冷却油,实现对轴系的充分冷却。
因此,本申请提供的冷却控制阀1能够实现对轴系及离合器冷却回路的同时控制,简化结构及控制流程,节省成本,且冷却流量可根据使用工况的不同进行相应的调节,无需通过增大油泵26规格实现调节,减少功率损失、确保变速器效率。
在一实施例中,阀壳11为一端封闭、一端开设开口的圆柱形壳体。阀壳11的内壁上设有多个间隔设置的弧形凹槽,多个弧形凹槽与过油通道123、第一进油口111、第二进油口112、第一出油口113、第二出油口114分别一一对应设置,以扩充过油量。本实施例中,第一进油口111与第二进油口112连通形成一个大的进油口,第一进油口111、第二进油口112、第一出油口113和第二出油口114设于阀壳11的同侧。在其他实施例中,第一进油口111、第二进油口112、第一出油口113和第二出油口114的设置位置可根据需要调整,不局限于本实施例。
本实施例中,第一进油口111与第二进油口112分别与供油油路21连接,第二出油口114与离合器冷却油路23对应,第一出油口113与轴系冷却油路22对应连接,从而实现通过一个冷却控制阀1即可对离合器和轴系共同冷却,简化结构、减少设置成本。在其他实施例中,也可将第一出油口113和第二出油口114分别与相应的设备连接实现冷却,不以本实施例为限。
如图2所示,在一实施例中,阀芯12通过开口插入阀壳11内,第一挡块121和第二挡块122与阀壳11的内壁抵接,以确保良好的密封性。第一挡块121和第二挡块122分别为环形凸块,第一挡块121和第二挡块122之间形成的环形凹槽即为过油油道。在一实施例中,阀芯12的一端设有限位槽124。
该冷却控制阀1还包括弹性复位件13,弹性复位件13设于阀壳11的内壁与阀芯12之间,设置为使阀芯12复位以确保阀芯12的往复运动。弹性复位件13抵接 设置于限位槽124内,以对弹性复位件13起到限位作用,减少运动中的歪斜。在一实施例中,弹性复位件13可以是弹簧,制造成本低。
本实施例中,驱动件14为电磁铁,电磁铁与阀芯12一端抵接,通过电磁铁通电产生磁力即可推动阀芯12在阀壳11内移动,使第一挡块121对第二出油口114进行遮挡或避让,第二挡块122对第一出油口113进行遮挡或避让,从而实现冷却油量的调节,以满足多种工况的使用需求。
设电磁铁的通电电流为I,通过对电磁铁通电电流大小的控制,即可控制阀芯12受到的磁力,控制其在阀壳11内的移动量,具体控制过程如下:
当电磁铁的电流I=I1时(例如设定I1的范围为:I1≤0.2A),电磁铁的电磁力小于或等于弹性复位件13的弹簧力,该冷却控制阀1处于初始位置,第一进油口111和第一出油口113不连通,第二进油口112和第二出油口114连通。此时,供油油路21提供的冷却油经第二进油口112和第二出油口114全部流入离合器冷却油路23,以对离合器进行冷却,适用于离合器需要瞬时大冷却流量的工况。
当电磁铁的电流I=I2(例如设定I2的范围为:0.2A<I2≤1.2A)时,电磁铁提供的电磁力大于弹性复位件13提供的弹簧力,阀芯12向右移动(以图1中左右方向为例),此时,第一进油口111和第一出油口113连通,第二进油口112和第二出油口114连通。此时,供油油路21提供的冷却油一部分经第二进油口112、第二出油口114流入离合器冷却油路23,对离合器进行冷却,另一部分经第一进油口111、第一出油口113进入轴系冷却油路22,对轴系进行冷却,通过控制施加于电磁铁的电流I2的大小,可以控制电磁铁作用于阀芯12的力大小,进而控制第一出油口113与第二出油口114的开度大小,进而控制离合器冷却流量和轴系冷却流量的大小,满足不同工况的使用需求。
当施加于电磁铁的电流I=I3(例如设定I3的范围为:1.2A<I3≤1.5A)时,阀芯12继续向右移动,第二进油口112与第二出油口114不连通,第一进油口111与第一出油口113连通。此时,供油油路21提供的冷却油经第一进油口111与第一出油口113全部流入轴系冷却油路22,对轴系进行冷却。
由此得出,通过对电磁铁的电流大小的控制,即可控制阀芯12在阀壳11内的移动量,从而实现不同冷却油量的调节,满足不同工况的使用需求。
需要说明的是,在其他实施例中,I1、I2和I3的数值可根据需要调整,不局限于本实施例中。
本实施例还公开了一种控制方法,采用如上所述的冷却控制阀1,该控制方 法包括如下步骤:
将驱动件14的电流I调整为第一预设值,使阀芯12处于初始位置,第一进油口111和第一出油口113不连通,第二进油口112和第二出油口114连通。此时,供油油路21提供的冷却油经第二进油口112和第二出油口114全部流入离合器冷却油路23,以对离合器进行冷却,适用于离合器需要瞬时大冷却流量的工况。
将驱动件14的电流I调整为第二预设值,第二预设值>第一预设值,使阀芯12在阀壳11内移动,第一进油口111和第一出油口113连通,第二进油口112和第二出油口114连通。此时,供油油路21提供的冷却油一部分经第二进油口112、第二出油口114流入离合器冷却油路23,对离合器进行冷却,另一部分经第一进油口111、第一出油口113进入轴系冷却油路22,对轴系进行冷却,适用于一般工况下需要对离合器及轴系同时进行冷却的情况。
将驱动件14的电流I调整为第三预设值,第三预设值>第二预设值,使阀芯12在阀壳11内继续移动,第一进油口111和第一出油口113连通,第二进油口112和第二出油口114不连通。此时,供油油路21提供的冷却油经第一进油口111与第一出油口113全部流入轴系冷却油路22,对轴系进行冷却,适用于轴系需要瞬时大冷却流量的工况。
本实施例中,驱动件14为电磁铁,通过控制施加于电磁铁的电流的大小,可以控制电磁铁作用于阀芯12的力大小,进而控制第一出油口113与第二出油口114的开度大小,进而控制离合器冷却流量和轴系冷却流量的大小,满足不同工况的使用需求。
本实施例中,第一预设值大于等于0.2A、第二预设值小于等于1.2A、第三预设值小于等于1.5A,在其他实施例中,第一预设值、第二预设值和第三预设值可根据需要设置,不以本实施例为限。
本实施例还公开了一种双离合变速器冷却系统2,如图3所示,该双离合变速器冷却系统2包括供油油路21、离合器冷却油路23、轴系冷却油路22和如上所述的冷却控制阀1,供油油路21分别与第一进油口111和第二进油口112连接,离合器冷却油路23与第二出油口114连接,轴系冷却油路22与第一出油口113连接,以同时满足离合器和轴系的冷却需求,简化结构、节省设置成本。
在一实施例中,供油油路21上依次设有油箱24、吸油滤清器25、油泵26、冷却器27和压力滤清器28,压力滤清器28分别与第一进油口111和第二进油口112连接,以实现对第一进油口111和第二进油口112的供油。在一实施例中,油 箱24储存有冷却油,吸油滤清器25设置为对冷却油进行过滤,油泵26为冷却油提供传输动力,冷却器27设置为对冷却油进行冷却以确保冷却油的冷却效果,压力滤清器28对冷却器27流出的冷却油进行再次过滤,减少杂质,经冷却、过滤后的冷却油通过第一进油口111和第二进油口112流入冷却控制阀1。
在一实施例中,该双离合变速器冷却系统2还包括旁通阀29,旁通阀29的第一端连接于油泵26与冷却器27之间的供油油路21上,旁通阀29的第二端分别与第一进油口111和第二进油口112连接。
按此设置,在冷却油处于低温时,由于冷却油粘度大,进而产生大的压降,此时打开旁通阀29,油泵26通过旁通阀29将冷却油泵送至供油油路21,以减少压力损失,进而减小油泵26负荷。
在冷却油常温及高温时,油箱24中的冷却油经吸油滤清器25过滤后,由油泵26经冷却器27冷却和压力滤清器28过滤后泵送至供油油路21,以确保冷却油的冷却效果。当然,冷却油的温度可通过温度传感器测量,冷却油处于低温、常温及高温的判断标准可根据需要设置,本实施例不做具体限制。
为对油泵26起到防护作用,该双离合变速器冷却系统2还包括安全阀291,安全阀291设于油泵26出口的供油管路上,用于限制油泵26的出口油压,防止油泵26损坏。
本实施例还公开了一种车辆,包括离合器和轴系,该车辆还包括如上所述的双离合变速器冷却系统2,离合器与离合器冷却油路23连接,轴系与轴系冷却油路22连接,从而实现对离合器及轴系的冷却。
综上,本申请实施例提供了一种冷却控制阀1、控制方法、双离合变速器冷却系统2及车辆,工作过程包括:
(1)在普通工况下,驱动件14与阀芯12保持相对稳定,第一进油口111与第一出油口113、第二进油口112与第二出油口114分别连通,以同时对轴系和离合器进行冷却;
(2)当离合器需要瞬时大流量时,驱动件14驱动阀芯12在阀壳11内移动,使第二挡块122对第一出油口113遮挡,从而使第一进油口111、第二进油口112通过过油通道123分别与第二出油口114连通,以对第二出油口114处提供足量的冷却油,实现对离合器的充分冷却;
(3)当轴系需要瞬时大流量时,驱动件14驱动阀芯12在阀壳11内反向移动,使第一挡块121对第二出油口114遮挡,从而使第一进油口111、第二进油口112 通过过油通道123分别与第一出油口113连通,以对第一出油口113处提供足量的冷却油,实现对轴系的充分冷却;
因此,本申请提供的冷却控制阀1能够实现对轴系及离合器冷却回路的同时控制,简化结构及控制流程,节省成本,且冷却流量可根据使用工况的不同进行相应的调节,无需通过增大油泵26规格实现调节,减少压力损失、确保变速器效率。
实施例二
在本实施例中,与实施例一相同的部分,给予相同的附图标记,并省略相同的文字说明。
图4是本实施例二提供的一种冷却控制阀1的原理示意图,如图4所示,相对于实施例一,本实施例提供的冷却控制阀1具有这样的区别:驱动件14为先导电磁阀,先导电磁阀与阀芯12连接,通过对先导电磁阀电流大小的控制即可实现对冷却流量的调节,且调节原理与电磁铁的调节原理相同此处不再赘述。此外,先导电磁阀的结构可参考相关技术,在此不再赘述。
在一实施例中,图5是本实施例二提供的一种双离合变速器冷却系统2的原理示意图,如图5所示,本实施例中的双离合变速器冷却系统2中采用先导电磁阀对阀芯12进行驱动,也能实现对冷却流量的调节。

Claims (10)

  1. 一种冷却控制阀,包括:
    阀壳(11),所述阀壳(11)上设有第一进油口(111)、第二进油口(112)、第一出油口(113)和第二出油口(114),所述第一进油口(111)和所述第二进油口(112)连通,所述第一进油口(111)设置为与所述第一出油口(113)连通,所述第二进油口(112)设置为与所述第二出油口(114)连通;
    阀芯(12),可移动地插接于所述阀壳(11)内,所述阀芯(12)上设有第一挡块(121)和第二挡块(122),所述第一挡块(121)和所述第二挡块(122)之间设有过油通道(123),所述过油通道(123)分别与所述第一进油口(111)和所述第二进油口(112)连通,所述第一出油口(113)、所述第二出油口(114)分别设置为与所述过油通道(123)连通;及
    驱动件(14),与外部电源连接,所述驱动件(14)与所述阀芯(12)传动连接,所述驱动件(14)能够驱动所述阀芯(12)移动以使所述第一挡块(121)、所述第二挡块(122)分别对所述第二出油口(114)与所述第一出油口(113)进行遮挡或避让。
  2. 根据权利要求1所述的冷却控制阀,其中,所述冷却控制阀(1)还包括弹性复位件(13),所述弹性复位件(13)设于所述阀壳(11)的内壁与所述阀芯(12)之间,使所述阀芯(12)复位。
  3. 根据权利要求2所述的冷却控制阀,其中,所述阀芯(12)的一端设有限位槽(124),所述弹性复位件(13)抵接于所述限位槽(124)内。
  4. 根据权利要求1-3任一项所述的冷却控制阀,其中,所述驱动件(14)为电磁铁。
  5. 根据权利要求1-3任一项所述的冷却控制阀,其中,所述驱动件(14)为先导电磁阀。
  6. 一种控制方法,采用如权利要求1-5任一项所述的冷却控制阀(1),所述控制方法包括:
    将驱动件(14)的电流I调整为第一预设值,使阀芯(12)处于初始位置,第一进油口(111)和第一出油口(113)不连通,第二进油口(112)和第二出油口(114)连通;
    将所述驱动件(14)的电流I调整为第二预设值,第二预设值大于第一预设值,使所述阀芯(12)在阀壳(11)内移动,所述第一进油口(111)和所述第一出油口(113)连通,所述第二进油口(112)和所述第二出油口(114)连通; 及
    将所述驱动件(14)的电流I调整为第三预设值,第三预设值大于第二预设值,使所述阀芯(12)在所述阀壳(11)内继续移动,所述第一进油口(111)和所述第一出油口(113)连通,所述第二进油口(112)和所述第二出油口(114)不连通。
  7. 一种双离合变速器冷却系统,包括供油油路(21)、离合器冷却油路(23)和轴系冷却油路(22),所述双离合变速器冷却系统(2)还包括如权利要求1-5任一项所述的冷却控制阀(1),所述供油油路(21)分别与第一进油口(111)和第二进油口(112)连接,所述离合器冷却油路(23)与第二出油口(114)连接,所述轴系冷却油路(22)与第一出油口(113)连接。
  8. 根据权利要求7所述的双离合变速器冷却系统,其中,所述供油油路(21)上依次设有油箱(24)、吸油滤清器(25)、油泵(26)、冷却器(27)和压力滤清器(28),所述压力滤清器(28)分别与所述第一进油口(111)和所述第二进油口(112)连接。
  9. 根据权利要求8所述的双离合变速器冷却系统,其中,所述双离合变速器冷却系统(2)还包括旁通阀(29),所述旁通阀(29)的第一端连接于所述油泵(26)与所述冷却器(27)之间的所述供油油路(21)上,所述旁通阀(29)的第二端分别与所述第一进油口(111)和所述第二进油口(112)连接。
  10. 一种车辆,包括离合器和轴系,其中,所述车辆还包括如权利要求7-9任一项所述的双离合变速器冷却系统(2),所述离合器与离合器冷却油路(23)连接,所述轴系与轴系冷却油路(22)连接。
PCT/CN2022/089178 2021-06-18 2022-04-26 冷却控制阀、控制方法、双离合变速器冷却系统及车辆 WO2022262430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110676435.8 2021-06-18
CN202110676435.8A CN113357352B (zh) 2021-06-18 2021-06-18 冷却控制阀、控制方法、双离合变速器冷却系统及车辆

Publications (1)

Publication Number Publication Date
WO2022262430A1 true WO2022262430A1 (zh) 2022-12-22

Family

ID=77534952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089178 WO2022262430A1 (zh) 2021-06-18 2022-04-26 冷却控制阀、控制方法、双离合变速器冷却系统及车辆

Country Status (2)

Country Link
CN (1) CN113357352B (zh)
WO (1) WO2022262430A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113357352B (zh) * 2021-06-18 2023-02-21 中国第一汽车股份有限公司 冷却控制阀、控制方法、双离合变速器冷却系统及车辆
CN113932006B (zh) * 2021-10-29 2022-12-27 蜂巢传动系统(江苏)有限公司保定研发分公司 Dht变速器液压控制系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314385A (en) * 1992-11-13 1994-05-24 Borg-Warner Automotive, Inc. System for cooling a starting clutch of a continuously variable transmission
JP2005114103A (ja) * 2003-10-09 2005-04-28 Honda Motor Co Ltd 無段変速機用オイルポンプ制御装置
KR100748761B1 (ko) * 2006-07-19 2007-08-13 현대자동차주식회사 하이브리드 무단변속기의 클러치 냉각용 윤활방향제어밸브
DE102011013234A1 (de) * 2011-03-07 2012-09-13 Schaeffler Technologies Gmbh & Co. Kg Kühlmediumventil für ein Doppelkupplungsgetriebe
CN203363612U (zh) * 2013-07-08 2013-12-25 安徽江淮汽车股份有限公司 一种润滑装置及双离合器自动变速箱齿轮的润滑系统
EP3196496A1 (de) * 2015-12-22 2017-07-26 GETRAG B.V. & Co. KG Hydraulikanordnung für einen kraftfahrzeugantriebsstrang
CN108223777A (zh) * 2016-12-12 2018-06-29 现代自动车株式会社 用于双离合器变速器的油控制系统和方法
CN108626366A (zh) * 2017-03-24 2018-10-09 博格华纳公司 用于自动变速器的包括三通电磁致动阀的冷却和润滑系统
CN208057559U (zh) * 2018-03-19 2018-11-06 上海汽车变速器有限公司 双泵液压系统工作模式切换装置
CN210371947U (zh) * 2019-03-14 2020-04-21 重庆青山工业有限责任公司 三离合器变速器的润滑和冷却液压系统
CN113357352A (zh) * 2021-06-18 2021-09-07 中国第一汽车股份有限公司 冷却控制阀、控制方法、双离合变速器冷却系统及车辆

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4371540B2 (ja) * 2000-06-05 2009-11-25 本田技研工業株式会社 スプール弁構造
CN1295441C (zh) * 2004-11-05 2007-01-17 宁波华液机器制造有限公司 一种比例压差控制阀
KR20060071791A (ko) * 2004-12-22 2006-06-27 현대자동차주식회사 3위치 조절형 액츄에이터 시스템
US7815016B2 (en) * 2008-02-25 2010-10-19 Gm Global Technology Operations, Inc. Lubrication control system for automatic transmissions
CN201246361Y (zh) * 2008-09-05 2009-05-27 薛国光 一种闭环控制的高精度数字式同步阀
CN201407301Y (zh) * 2009-05-07 2010-02-17 中国船舶重工集团公司第七一一研究所 带可调流量控制阀的调速离合器供油系统
CN102359621A (zh) * 2011-08-23 2012-02-22 湖南江麓容大车辆传动股份有限公司 变速器电子液压控制阀及包含其的无级变速器
CN203656261U (zh) * 2013-12-24 2014-06-18 上海立新液压有限公司 一种插装式电磁换向阀
US9982779B2 (en) * 2014-05-20 2018-05-29 Ford Global Technologies, Llc Transmission hydraulic control system including thermal valve
CN205350302U (zh) * 2015-12-29 2016-06-29 浦林成山(山东)轮胎有限公司 一种减速机润滑集中监管系统
US10077834B2 (en) * 2016-08-12 2018-09-18 GM Global Technology Operations LLC Hydraulic control system for a transmission
CN107965573B (zh) * 2017-10-31 2019-10-29 中国第一汽车股份有限公司 一种自动变速器的液压换挡控制系统及其控制方法
CN108050245B (zh) * 2017-12-29 2019-07-19 科力远混合动力技术有限公司 混合动力变速箱液压控制系统
CN108180280B (zh) * 2017-12-30 2021-04-30 盛瑞传动股份有限公司 润滑控制系统及液压控制系统
CN108252977B (zh) * 2018-02-05 2020-04-21 南通东海机床制造集团有限公司 一种用于大流量液压系统的油路分配阀
CN207906820U (zh) * 2018-03-06 2018-09-25 漯河安润设备有限公司 一种双路可独立控制给油装置
CN208007057U (zh) * 2018-03-28 2018-10-26 长城汽车股份有限公司 油泵控制阀、转向油泵及车辆
CN109442034B (zh) * 2018-11-29 2024-01-19 重庆青山工业有限责任公司 一种基于液压力控制的汽车自动变速器主压力控制阀
CN110469663B (zh) * 2019-07-26 2021-08-17 中国第一汽车股份有限公司 一种变速器液压控制系统及车辆
CN211778990U (zh) * 2019-12-05 2020-10-27 宁波上中下自动变速器有限公司 一种用于双离合变速器的润滑阀及车辆
CN211371902U (zh) * 2019-12-20 2020-08-28 漯河安润设备有限公司 一种双路可独立控制给油装置
CN111828438B (zh) * 2020-07-06 2021-05-07 江苏汇智高端工程机械创新中心有限公司 动力换挡变速箱过滤系统
CN212672375U (zh) * 2020-07-14 2021-03-09 中国第一汽车股份有限公司 一种油源装置及汽车
CN213088564U (zh) * 2020-09-07 2021-04-30 中国第一汽车股份有限公司 混动变速器液压系统
CN112096854A (zh) * 2020-09-30 2020-12-18 盛瑞传动股份有限公司 冷却控制阀启动系统
CN215059405U (zh) * 2020-11-30 2021-12-07 盛瑞传动股份有限公司 车辆自动变速器液压系统
CN216519746U (zh) * 2021-12-22 2022-05-13 河北沁鸿冶金设备有限公司 一种自带吹扫端口的三位四通换向阀

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314385A (en) * 1992-11-13 1994-05-24 Borg-Warner Automotive, Inc. System for cooling a starting clutch of a continuously variable transmission
JP2005114103A (ja) * 2003-10-09 2005-04-28 Honda Motor Co Ltd 無段変速機用オイルポンプ制御装置
KR100748761B1 (ko) * 2006-07-19 2007-08-13 현대자동차주식회사 하이브리드 무단변속기의 클러치 냉각용 윤활방향제어밸브
DE102011013234A1 (de) * 2011-03-07 2012-09-13 Schaeffler Technologies Gmbh & Co. Kg Kühlmediumventil für ein Doppelkupplungsgetriebe
CN203363612U (zh) * 2013-07-08 2013-12-25 安徽江淮汽车股份有限公司 一种润滑装置及双离合器自动变速箱齿轮的润滑系统
EP3196496A1 (de) * 2015-12-22 2017-07-26 GETRAG B.V. & Co. KG Hydraulikanordnung für einen kraftfahrzeugantriebsstrang
CN108223777A (zh) * 2016-12-12 2018-06-29 现代自动车株式会社 用于双离合器变速器的油控制系统和方法
CN108626366A (zh) * 2017-03-24 2018-10-09 博格华纳公司 用于自动变速器的包括三通电磁致动阀的冷却和润滑系统
CN208057559U (zh) * 2018-03-19 2018-11-06 上海汽车变速器有限公司 双泵液压系统工作模式切换装置
CN210371947U (zh) * 2019-03-14 2020-04-21 重庆青山工业有限责任公司 三离合器变速器的润滑和冷却液压系统
CN113357352A (zh) * 2021-06-18 2021-09-07 中国第一汽车股份有限公司 冷却控制阀、控制方法、双离合变速器冷却系统及车辆

Also Published As

Publication number Publication date
CN113357352A (zh) 2021-09-07
CN113357352B (zh) 2023-02-21

Similar Documents

Publication Publication Date Title
WO2022262430A1 (zh) 冷却控制阀、控制方法、双离合变速器冷却系统及车辆
CN102168754B (zh) 用于湿式双离合器自动变速器的液压控制系统
CN110319181B (zh) 一种用于混合动力变速箱的液压换挡及冷却润滑系统
JP5659223B2 (ja) 動力伝達装置
CN201992053U (zh) 具有冷却润滑流量调节机构的双离合自动变速器液压系统
CN109282028B (zh) 混合动力车辆液压控制系统及其控制方法
WO2021244479A1 (zh) 车辆液压控制系统及方法
CN111271450B (zh) 一种混合动力变速箱电液控制系统及控制方法
CN201973226U (zh) 用于湿式双离合器自动变速器的液压控制系统
MX2014007466A (es) Sistema y metodo para controlar la temperatura del componente de tren transmisor de potencia automotriz.
CN213088564U (zh) 混动变速器液压系统
CN216643067U (zh) 用于湿式双离合器混动变速系统的液压控制装置
CN101915304A (zh) 自动变速器液压控制装置
CN107131298A (zh) 液压控制系统
WO2024051798A1 (zh) 用于混动变速箱的液压系统及汽车
CN109681622A (zh) 用于三离合器变速器润滑冷却的液压系统
WO2024051800A1 (zh) 用于混动变速箱的液压系统及汽车
CN110748637B (zh) 混合动力变速箱液压系统的压力控制方法
CN114017450B (zh) 一种自动变速器液压控制装置
CN114658843B (zh) 一种混合动力自动变速器液压控制系统
CN216478189U (zh) 一种液压系统和车辆
CN205578555U (zh) 液压离合器控制装置及破碎机
CN217081182U (zh) 混动变速器液压系统
CN110529584A (zh) 动力系统冷却装置
CN111255874A (zh) 一种机电耦合器液压控制系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE