WO2021244479A1 - 车辆液压控制系统及方法 - Google Patents

车辆液压控制系统及方法 Download PDF

Info

Publication number
WO2021244479A1
WO2021244479A1 PCT/CN2021/097307 CN2021097307W WO2021244479A1 WO 2021244479 A1 WO2021244479 A1 WO 2021244479A1 CN 2021097307 W CN2021097307 W CN 2021097307W WO 2021244479 A1 WO2021244479 A1 WO 2021244479A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
oil circuit
valve
low
oil
Prior art date
Application number
PCT/CN2021/097307
Other languages
English (en)
French (fr)
Inventor
杨洋
周家豪
何汉清
鲁宜国
张维明
刘鹏
Original Assignee
广州汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州汽车集团股份有限公司 filed Critical 广州汽车集团股份有限公司
Priority to US17/926,167 priority Critical patent/US11913542B2/en
Publication of WO2021244479A1 publication Critical patent/WO2021244479A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0262Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic
    • F16H61/0265Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic for gearshift control, e.g. control functions for performing shifting or generation of shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0402Cleaning of lubricants, e.g. filters or magnets
    • F16H57/0404Lubricant filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0412Cooling or heating; Control of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0446Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control the supply forming part of the transmission control unit, e.g. for automatic transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0251Elements specially adapted for electric control units, e.g. valves for converting electrical signals to fluid signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0262Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic
    • F16H61/0265Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic for gearshift control, e.g. control functions for performing shifting or generation of shift signals
    • F16H61/0267Layout of hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H2061/0037Generation or control of line pressure characterised by controlled fluid supply to lubrication circuits of the gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • This application relates to the field of hybrid vehicle control technology, and in particular to a vehicle hydraulic control system and method.
  • the engine and the electric motor jointly provide the vehicle power.
  • Good vehicle power and economy not only depend on the engine and the electric motor itself, but also need to be ensured by an excellent power matching relationship.
  • the automatic transmission needs to switch between different operating modes through the engagement of the clutch or brake.
  • the stability and rapid response of the clutch engagement control directly affect the shift quality of the whole machine.
  • the engagement of the clutch in the automobile automatic transmission is generally controlled by the vehicle hydraulic control system.
  • the hydraulic control system has the function of combining large torque and providing buffer damping and cooling lubrication for the engagement of the clutch. Since there are many working modes of hybrid electric vehicles (such as pure electric working mode or hybrid working mode), the control requirements for the clutch are also higher during the switching process of different working modes; in addition, due to the existence of the drive motor and engine, The demand for the cooling and lubricating flow of the motor is also relatively large, so it is particularly important to design the hydraulic control system reasonably.
  • the technical problem to be solved by this application is the problem of low stability of clutch control in the automatic transmission of the current hybrid electric vehicle in the process of switching between different working modes.
  • an embodiment of the present application provides a vehicle hydraulic control system, which is connected to a transmission controller, and includes: a mechanical pump, an electronic pump, a high and low pressure decoupling valve, a high pressure control oil circuit, and a low pressure cooling lubricating oil circuit;
  • the mechanical pump is in communication with the high pressure control oil circuit;
  • the electronic pump is in communication with the high pressure control oil circuit or the low pressure cooling lubricating oil circuit through the high and low pressure decoupling valve;
  • the high pressure control oil circuit includes a main pressure regulating pilot The solenoid valve and the main pressure regulating mechanical valve;
  • the main pressure regulating pilot solenoid valve is connected to the transmission controller and is used to adjust the main oil pressure according to the instructions of the transmission controller;
  • the main pressure regulating mechanical valve is used to adjust the main oil pressure according to the instructions of the transmission controller
  • the main pressure regulating first conducts the control of the magnetic valve to direct the flow output of the electronic pump and/or the mechanical pump connected with the high-pressure control oil circuit to the low
  • the electronic pump When the high and low pressure decoupling valve is in a coupled state, the electronic pump is in communication with the high pressure control oil circuit to supply oil to the high pressure control oil circuit and the low pressure cooling lubricating oil circuit;
  • the electronic pump When the high and low pressure decoupling valve is in a decoupling state, the electronic pump is in communication with the low pressure cooling lubricating oil circuit to supply oil to the low pressure cooling lubricating oil circuit.
  • the high-pressure control oil circuit includes a main oil circuit and at least one branch oil circuit communicating with the main oil circuit, the branch oil circuit is connected with an actuator, and the main oil circuit is provided with a main pressure filter, so The main pressure filter is used to filter the flow into the branch oil passage.
  • the branch oil circuit is provided with a direct drive solenoid valve and a pressure accumulator; the direct drive solenoid valve is used to control the coupling of the branch oil circuit with the actuator; the pressure accumulator is used to maintain the The oil pressure of the branch oil circuit is stable.
  • the high-pressure control oil circuit further includes a pilot switch solenoid valve; the pilot switch solenoid valve is connected to a transmission controller and the high and low pressure decoupling valve for controlling the The working state of the high and low pressure decoupling valve.
  • a vehicle hydraulic control system disclosed in the present application is connected to a transmission controller, and includes a mechanical pump, an electronic pump, a high and low pressure decoupling valve, a high pressure control oil circuit, and a low pressure cooling lubricating oil circuit;
  • the mechanical pump is connected with the high pressure control oil circuit;
  • the electronic pump is connected with the high-pressure control oil circuit or the low-pressure cooling lubricating oil circuit through the high and low pressure decoupling valve;
  • the high pressure control oil circuit includes the main pressure regulating pilot solenoid valve and the main pressure regulating mechanical valve;
  • the main pressure regulating pilot solenoid valve is connected with the transmission controller , Used to adjust the main oil pressure according to the instructions of the transmission controller to meet the oil pressure requirements in various working modes;
  • the main pressure regulating mechanical valve adjusts the spool opening according to the control of the main pressure regulating pilot solenoid valve to match
  • the output flow of the electronic pump and/or mechanical pump connected with the high-pressure control oil circuit is directed to the low-pressure cooling lub
  • the embodiment of the present application provides a vehicle hydraulic control method, including the following steps executed by a transmission controller:
  • the working state of the vehicle hydraulic control system is dynamically adjusted.
  • executing a hydraulic control strategy corresponding to the target working mode to control the operation of the vehicle hydraulic control system includes:
  • the target working mode is a pure electric working mode
  • the high and low pressure decoupling valve is controlled to be in a coupled state, so that the electronic pump communicates with the high pressure control oil circuit, and supplies oil to the high pressure control oil circuit and the low pressure cooling lubricating oil circuit.
  • executing a hydraulic control strategy corresponding to the target working mode to control the operation of the vehicle hydraulic control system includes:
  • the target working mode is a mixed working mode, which adjusts the current of the main pressure regulating pilot solenoid valve on the high-pressure control oil circuit, controls the cooling and lubrication reversing valve to be in the on-position state, and allows the generator connected to the cooling and lubricating reversing valve to enter Working status
  • the high-low pressure decoupling valve is controlled to be in a decoupling state, so that the electronic pump is connected with the low-pressure cooling lubricating oil circuit to supply oil to the low-pressure cooling lubricating oil circuit.
  • the hydraulic pressure state data is the rotational speed data of the mechanical pump in the mixed working mode
  • the dynamically adjusting the working state of the vehicle hydraulic control system according to the preset adjustment strategy according to the hydraulic state data includes:
  • the high and low pressure decoupling valve is controlled to be in a decoupling state.
  • the hydraulic state data includes first oil pressure data of the high-pressure control oil circuit in the mixed working mode
  • the dynamically adjusting the working state of the vehicle hydraulic control system according to the preset adjustment strategy according to the hydraulic state data includes:
  • the rotation speed of the mechanical pump, the rotation speed of the electronic pump, or the current of the main pressure regulating pilot solenoid valve is adjusted.
  • the hydraulic state data includes oil temperature data of a low-pressure cooling lubricating oil circuit
  • the dynamically adjusting the working state of the vehicle hydraulic control system according to the preset adjustment strategy according to the hydraulic state data includes:
  • the rotation speed of the electronic pump is adjusted.
  • a vehicle hydraulic control method disclosed in the present application controls the operation of the vehicle hydraulic control system by executing a hydraulic control strategy corresponding to the target working mode in the target working mode to meet the hydraulic requirements of each working mode and then collect the vehicle hydraulic control
  • the hydraulic state data of the system can dynamically adjust the working state of the vehicle hydraulic control system according to the hydraulic state data in real time according to the preset adjustment strategy, so as to effectively ensure the stability of the system, thereby ensuring the stability of the clutch control, and improving the quality of shifting.
  • Fig. 1 is a schematic diagram of a vehicle hydraulic control system in an embodiment of the present application
  • Figure 2 is a schematic diagram of a vehicle hydraulic control system in an embodiment of the present application.
  • Figure 3 is a schematic diagram of a vehicle hydraulic control system in an embodiment of the present application.
  • Figure 4 is a schematic diagram of a vehicle hydraulic control system in an embodiment of the present application.
  • Fig. 5 is a flowchart of a vehicle hydraulic control method in an embodiment of the present application.
  • FIG. 6 is a specific flowchart of step S501 in FIG. 5;
  • FIG. 7 is a specific flowchart of step S501 in FIG. 5;
  • FIG. 8 is a specific flowchart of step S503 in FIG. 5;
  • FIG. 9 is a specific flowchart of step S503 in FIG. 5;
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • This application provides a vehicle hydraulic control system, as shown in Figure 1, Figure 2, Figure 3 and Figure 4, connected to a transmission controller, including a mechanical pump 1, an electronic pump 2, a high and low pressure decoupling valve 3, and a high pressure control oil
  • the mechanical pump 1 is connected with the high pressure control oil circuit
  • the electronic pump 2 is connected with the high pressure control oil circuit or the low pressure cooling lubricant circuit through the high and low pressure decoupling valve 3
  • the high pressure control oil circuit includes the main pressure regulating pilot
  • the main pressure regulating pilot solenoid valve 4 is connected to the transmission controller and is used to adjust the main oil pressure according to the instructions of the transmission controller
  • the main pressure regulating mechanical valve 5 is used for the main pressure regulating pilot
  • the solenoid valve 4 is controlled to direct the output flow of the electronic pump 2 and/or the mechanical pump 1 connected with the high-pressure control oil circuit to the low-pressure cooling lubricating oil circuit;
  • the electronic pump 2 When the high and low pressure decoupling valve 3 is in the coupled state, the electronic pump 2 is connected with the high pressure control oil circuit to supply oil for the high pressure control oil circuit and the low pressure cooling lubricating oil circuit;
  • the electronic pump 2 When the high and low pressure decoupling valve 3 is in the decoupling state, the electronic pump 2 is in communication with the low pressure cooling lubricating oil circuit to supply oil to the low pressure cooling lubricating oil circuit.
  • the transmission controller is connected to the vehicle control system, and is used to control the operation of the vehicle hydraulic control system according to the working mode indicated by the vehicle control system.
  • the main oil pressure specifically refers to the oil pressure of the main oil circuit in the figure, that is, the pressure of the oil circuit where the main pressure sensor 131 is located in the figure.
  • the low-pressure cooling lubricating oil circuit mainly cools and lubricates the EM1 motor, EM2 motor and the clutch gear.
  • the high-pressure control oil circuit mainly provides the required flow for the control of the actuator.
  • the actuator includes C0 clutch, C1 clutch, B clutch (ie brake) and parking mechanism.
  • the input shaft of the gearbox is connected to the mechanical pump 1 to provide the power for the mechanical pump 1 to work; the oil outlet of the mechanical pump 1 is connected to the high-pressure control oil circuit, when the mechanical pump 1 and EM1 When the motor is working, it directly provides flow for the high-pressure control oil circuit.
  • the electronic pump 2 communicates with the high-pressure control oil circuit or the low-pressure cooling lubricating oil circuit through the high and low pressure decoupling valve 3.
  • the high pressure control oil circuit includes the main pressure regulating pilot solenoid valve 4 and the main pressure regulating mechanical valve 5; the main pressure regulating pilot solenoid valve 4 It is connected with the transmission controller and is used to adjust the coil current according to the instruction of the transmission controller, and then adjust the main oil pressure to realize the pilot control of the main oil pressure.
  • the main pressure regulating mechanical valve 5 will adjust the spool opening according to the change of the current of the main pressure regulating pilot solenoid valve 4, that is, the change of the main oil pressure, and then connect the electronic
  • the output flow of pump 2 and/or mechanical pump 1 is guided to the low-pressure cooling lubricating oil circuit through the low-pressure guiding oil circuit, so that when the mechanical pump 1 is working, the flow rate of the high-pressure control oil circuit is satisfied and the low-pressure cooling lubricating oil circuit is supplemented with flow. , Effectively reduce the load of the electronic pump 2, thereby improving the efficiency and service life of the electronic pump 2.
  • the mechanical pump and the EM1 motor are not in working state at this time.
  • the electronic pump 2 can communicate with the high pressure control oil circuit through the high and low pressure decoupling valve 3, and
  • the low-pressure guiding oil circuit provides flow for the low-pressure cooling lubricating oil circuit to meet the flow demand in various working modes, ensure the hydraulic demand of the vehicle hydraulic control system, improve the stability of the vehicle hydraulic control system, and effectively improve the clutch control performance. Stability, improve the quality of shifting.
  • the normal working state of the high and low pressure decoupling valve 3 is the coupling state, that is, the high and low pressure decoupling valve 3 shown in FIG. Valve 3 will switch to different working states according to different needs.
  • the electronic pump 2 when the high and low pressure decoupling valve 3 is in the coupled state, that is, when the high and low pressure decoupling valve 3 in Figure 3 is in the right working state, the electronic pump 2 is in communication with the high pressure control oil circuit, and the mechanical pump 1, EM1 When the electric motor and the EM2 motor work, the electronic pump 2 and the mechanical pump 1 are coupled to work.
  • the dual pumps supply oil to the high-pressure control oil circuit while supplying oil to the low-pressure cooling lubricating oil circuit to quickly respond to the hydraulic demand in different working modes.
  • the electronic pump 2 separately supplies oil for the high-pressure control oil circuit and the low-pressure cooling lubricating oil circuit. Ensure the hydraulic demand of the vehicle hydraulic control system.
  • the high and low pressure decoupling valve 3 When the high and low pressure decoupling valve 3 is in the decoupling state, that is, the high and low pressure decoupling valve 3 in Figure 4 is in the left working state. At this time, the electronic pump 2 is connected with the low pressure cooling lubricating oil circuit and directly supplies the low pressure cooling lubricating oil circuit. The oil can effectively reduce the load of the electronic pump 2 and increase the service life of the electronic pump 2.
  • the electronic pump 2 is in communication with the high and low pressure decoupling valve 3, and a pressure limiting valve 6 is provided on the pipeline connecting the electronic pump 2 and the high and low pressure decoupling valve 3, and the pressure limiting valve 6 is used to adjust the output of the electronic pump 2.
  • the pressure of the flow rate guarantees the stability of the pressure of the output flow rate.
  • the system also includes an overflow valve 7 connected to the oil inlet of the mechanical pump 1 and the low-pressure guide oil path.
  • the overflow valve 7 can be used when the output flow of the mechanical pump 1 is large The load of the low-pressure cooling lubricating oil circuit is constant, then the overflow valve 7 is opened at this time, and the redundant flow is flowed into the oil inlet of the mechanical pump 1 through the overflow valve 7 to ensure the stability of the oil pressure of the system.
  • the system also includes an oil pump check valve 8 which is arranged on the pipeline connecting the oil outlet of the mechanical pump 1 and the main pressure regulating mechanical valve 5 to avoid flow backflow.
  • the low-pressure cooling lubricating oil circuit includes a hydraulic oil cooler 9, an external pressure filter 10 connected to the hydraulic oil cooler 9, and a cooling and lubricating reversing valve 11 connected to the external pressure filter 10.
  • the hydraulic oil cooler 9 is used to cool the amount of oil flowing into the low-pressure cooling lubricating oil circuit.
  • the low-pressure cooling lubricating oil circuit directly communicates with the EM2 motor and the clutch shaft teeth to cool and lubricate the EM2 motor and the clutch shaft teeth.
  • the EM1 motor realizes communication with the low-pressure cooling lubricating oil circuit through the control of the cooling and lubricating reversing valve 11.
  • the EM1 motor specifically refers to an engine
  • the EM2 motor specifically refers to a driving motor.
  • the external pressure filter 10 can affect the flow of the entire system. Filter to protect the hydraulic components of the entire system.
  • the vehicle hydraulic control system includes at least one orifice (R1-R17 as shown in FIG. 1), so as to realize a reasonable distribution of the flow of each oil passage through the orifices of different aperture sizes.
  • the vehicle hydraulic control system is connected to the transmission controller and includes a mechanical pump 1, an electronic pump 2, a high and low pressure decoupling valve 3, a high pressure control oil circuit and a low pressure cooling lubricating oil circuit; the mechanical pump 1 and high pressure control The oil circuit is connected; the electronic pump 2 is connected with the high pressure control oil circuit or the low pressure cooling lubricating oil circuit through the high and low pressure decoupling valve 3; the high pressure control oil circuit includes the main pressure regulating pilot solenoid valve 4 and the main pressure regulating mechanical valve 5;
  • the pilot solenoid valve 4 is connected to the transmission controller, and is used to adjust the main oil pressure according to the instructions of the transmission controller to meet the oil pressure requirements in various working modes; the main pressure regulating mechanical valve 5 is based on the main pressure regulating pilot solenoid valve 4 Control and adjust the spool opening to direct the flow output of the electronic pump 2 and/or mechanical pump 1 connected with the high-pressure control oil circuit to the low-pressure cooling lubricating oil circuit, so that the flow of the high-pressure
  • the electronic pump 2 is connected to the high pressure control oil circuit or the low pressure
  • the cooling lubricating oil circuit is connected to meet the flow demand in various working modes, ensure the hydraulic demand of the vehicle hydraulic control system, and improve the stability of the vehicle hydraulic control system, thereby effectively ensuring the stability of the clutch control and improving the quality of shifting.
  • the high-pressure control oil circuit includes a main oil circuit and at least one branch oil circuit connected to the main oil circuit, and the branch oil circuit is connected to the actuator.
  • a main pressure filter 12 is provided on the main oil path, and the main pressure filter 12 is used to filter the flow into the branch oil path.
  • the main pressure filter 12 refers to a pressure filter with high filtration efficiency arranged on the high-pressure control oil circuit.
  • the flow into the branch oil circuit can be filtered, thereby reducing the jamming probability of the hydraulic components on the branch oil circuit, increasing the service life of the hydraulic components, and ensuring The reliability and stability of hydraulic components.
  • the vehicle hydraulic control system can greatly reduce the jamming probability of hydraulic components, increase the service life of the hydraulic components, and thereby ensure the reliability of the hydraulic components.
  • the arrangement of the main pressure filter 12 and the external pressure filter 10 can also effectively reduce the power loss of the system.
  • the vehicle hydraulic control system is also provided with a sensor component that collects system hydraulic state data.
  • the sensor component includes but is not limited to a temperature sensor, a speed sensor, and a pressure sensor.
  • the hydraulic state data collected by the sensor component is fed back to the transmission. Controller, so that the transmission controller and the working state of the system are adjusted according to the hydraulic state data to ensure the stability of the system.
  • the temperature sensor is set on the low-pressure cooling lubricating oil circuit to collect oil temperature data of the low-pressure cooling lubricating oil circuit;
  • the speed sensor can be set on the input shaft of the gearbox connected to the mechanical pump 1 to collect the mechanical pump 1 speed data;
  • the pressure sensor is used to collect the pressure data of the main oil circuit and the branch oil circuit, which includes the main pressure sensor 131 arranged on the main oil circuit and the first pressure sensor 132 and the second pressure arranged on the branch oil circuit The sensor 133 and the third pressure sensor 134.
  • a direct drive solenoid valve 14 and a pressure accumulator 15 are provided on the branch oil circuit; the direct drive solenoid valve 14 is used to connect the branch oil circuit with the actuator; the pressure accumulator 15 is used to maintain stable oil pressure in the branch oil circuit.
  • the branch oil circuit is also provided with a direct drive solenoid valve 14 and a pressure accumulator 15.
  • the direct drive solenoid valve 14 can be controlled by the main pressure regulating pilot solenoid valve 4 to meet the required engagement pressure of the actuator. , Directly engage with the actuator required by the working mode to complete the actuator's engagement action.
  • the pressure accumulator 15 on the branch oil circuit the pressure fluctuation of the branch oil circuit can be effectively alleviated, thereby reducing the shift shock and ensuring the stability of the shift.
  • the high-pressure control oil circuit further includes a pilot switch solenoid valve 16; the pilot switch solenoid valve 16 is connected to the transmission controller and the high and low pressure decoupling valve 3. , Used to control the working state of the high and low pressure decoupling valve 3 according to the instructions of the transmission controller.
  • the high pressure control oil circuit also includes a pilot switch solenoid valve 16 for controlling the working state of the high and low pressure decoupling valve 3.
  • the pilot switch solenoid valve 16 can control the high and low pressure decoupling valve 3 according to the instructions of the transmission controller. Working status.
  • the normal working state of the high and low pressure decoupling valve 3 in this embodiment is the coupling state, that is, the high and low pressure decoupling valve 3 in Figure 1, Figure 2 or Figure 3 is in the right working state, when the pilot switch solenoid valve When 16 is energized, the pilot switch solenoid valve 16 will control the high and low pressure decoupling valve 3 at this time to be in the decoupling state, that is, the high and low pressure decoupling valve 3 in Figure 4 is in the left working state; when the pilot switch solenoid valve 16 is off When it is electrically powered, the pilot switch solenoid valve 16 will control the high and low pressure decoupling valve 3 to be in the coupled state at this time.
  • the pilot switch solenoid valve 16 can switch the working state of the high and low pressure decoupling valve 3 in real time according to the instructions of the transmission controller. Meet the hydraulic requirements of different working modes, effectively improve the stability of the hydraulic system, thereby reducing the flow leakage of the hydraulic system.
  • the vehicle hydraulic control system in this embodiment has a fail-safe mechanism, which can make the system in a controllable state when any oil pump fails; understandably, when the electronic pump 2 fails, the mechanical The pump 1 is driven by a motor or an engine to maintain the oil pressure of the main oil circuit and provide flow to the low-pressure cooling lubricating oil circuit through the main pressure regulating mechanical valve 5.
  • the mechanical pump 1 fails, the high and low pressure decoupling valve 3 can be controlled to be in the coupled state, and the electronic pump 2 is in communication with the high pressure control oil circuit.
  • the electronic pump 2 is in the working state shown in Figure 1, Figure 2 or Figure 3. Make the electronic pump 2 provide flow for the high-pressure control oil circuit and the low-pressure cooling lubricating oil circuit, and the basic performance of the hydraulic system can also be met when the main oil pressure increases.
  • pilot switch solenoid valve 16 fails, since the high and low pressure decoupling valve 3 in this embodiment is in a coupled state, the basic performance of the system can still be maintained, thereby ensuring the reliability of the system and meeting the requirements of the whole machine. Security requirements.
  • the present application provides a vehicle hydraulic control method, as shown in FIG. 5, including the following steps executed by a transmission controller:
  • S501 In the target working mode, execute a hydraulic control strategy corresponding to the target working mode to control the operation of the vehicle hydraulic control system.
  • the hydraulic control strategy is a control strategy set in advance according to different working modes for controlling the work of the vehicle hydraulic control system.
  • the target working mode includes pure electric working mode and mixed working mode.
  • the pure electric working mode refers to the working mode in which the mechanical pump and the EM1 motor are not working, and the electronic pump and the EM2 motor are working.
  • the mixed working mode refers to the working mode in which the electronic pump, mechanical pump, EM1 motor and EM2 motor all work.
  • S502 Collect hydraulic state data of the vehicle hydraulic control system.
  • the sensor assembly is arranged in the operation of the vehicle hydraulic control system to collect the hydraulic state data in the vehicle hydraulic control system.
  • the hydraulic status data includes, but is not limited to, the pressure data of the high-pressure control oil circuit, the oil temperature data of the low-pressure cooling lubricating oil circuit, and the rotational speed data of the mechanical pump.
  • the temperature sensor is set on the low-pressure cooling lubricating oil circuit to collect oil temperature data of the low-pressure cooling lubricating oil circuit;
  • the speed sensor can be set on the input shaft of the gearbox connected to the mechanical pump for collecting mechanical The speed data of the pump;
  • the pressure sensor is used to collect the pressure data of the main oil circuit and the branch oil circuit. It includes the main pressure sensor arranged on the main oil circuit and the first pressure sensor, the second pressure sensor and the branch oil circuit. The third pressure sensor.
  • S503 According to the hydraulic state data, according to the preset adjustment strategy, dynamically adjust the working state of the vehicle hydraulic control system.
  • the preset adjustment strategy is a preset adjustment strategy used for real-time analysis according to hydraulic data in different working modes and dynamically adjusting the working state of the vehicle hydraulic control system. Specifically, real-time analysis is performed according to the hydraulic status data to determine whether the hydraulic status data meets the demand. If not, the working status of the vehicle hydraulic control system is dynamically adjusted according to the preset adjustment strategy to ensure the stability of the hydraulic pressure in the system. Thereby reducing the leakage of the hydraulic system.
  • the vehicle hydraulic control system by executing the hydraulic control strategy corresponding to the target working mode in the target working mode, the vehicle hydraulic control system is controlled to work to meet the hydraulic requirements of each working mode, and then by collecting the hydraulic state data of the vehicle hydraulic control system, In order to dynamically adjust the working state of the vehicle hydraulic control system according to the hydraulic state data in real time according to the preset adjustment strategy, so as to effectively ensure the stability of the system, thereby ensuring the stability of the clutch control, and improving the quality of shifting.
  • step S501 that is, in the target operating mode, executing the hydraulic control strategy corresponding to the target operating mode to control the operation of the vehicle hydraulic control system, specifically includes the following steps:
  • the current of the main voltage regulating pilot solenoid valve on the high-voltage control oil circuit needs to be adjusted so that the high-voltage control oil circuit establishes the main oil pressure that meets the pure electric working mode, so as to meet the parking requirements.
  • the oil pressure requirements of the organization are the only electric working mode.
  • S602 Control the high and low pressure decoupling valve to be in a coupling state, so that the electronic pump is connected with the high pressure control oil circuit, and supplies oil for the high pressure control oil circuit and the low pressure cooling lubricating oil circuit.
  • the pilot switch solenoid valve is in the de-energized state, and the high and low pressure decoupling valve is in the coupled state, that is, the right working state, so that the electronic pump and the high pressure control
  • the oil circuit is connected, the flow output of the electronic pump enters the high pressure control oil circuit through the high and low pressure decoupling valve, and the flow entering the high pressure control oil circuit is filtered by the main pressure filter, which can effectively improve the oil flow into the direct drive solenoid valve at the back end. Cleanliness level to avoid jamming of the spool.
  • the flow enters the low-pressure cooling lubricating oil circuit through the main pressure regulating mechanical valve, so that the electronic pump supplies oil to the low-pressure cooling lubricating oil circuit.
  • the low-pressure cooling lubricating oil circuit can be Cooling and lubricating the EM2 motor and clutch gears.
  • the low-pressure cooling lubricating oil circuit includes a hydraulic oil cooler and an external pressure filter connected to the hydraulic oil cooler.
  • the flow into the low-pressure cooling lubricating oil circuit is cooled and lubricated by the hydraulic oil cooler and output to the external pressure filter for filtering, and then the flow output from the external pressure filter is passed through the orifice R1 and the orifice R4 for distribution Different flow rates provide cooling and lubrication for the EM2 motor and clutch gears.
  • the electronic pump in the pure electric working mode, by controlling the high and low pressure decoupling valve to be in the coupled state, the electronic pump is connected to the high pressure control oil circuit, and the flow output of the electronic pump enters the high pressure control oil circuit through the high and low pressure decoupling valve. Then enter the low-pressure cooling lubricating oil circuit through the main pressure regulating mechanical valve, so that the electronic pump supplies oil to the low-pressure cooling lubricating oil circuit to cool and lubricate the EM2 motor and the clutch gears to meet the hydraulic demand in the pure electric working mode.
  • step S501 that is, in the target operating mode, executing the hydraulic control strategy corresponding to the target operating mode to control the operation of the vehicle hydraulic control system, specifically includes the following steps:
  • S701 If the target working mode is the mixed working mode, adjust the current of the main pressure control pilot solenoid valve on the high-pressure control oil circuit, control the cooling and lubrication reversing valve to be in the on-position state, and make the generator connected to the cooling and lubricating reversing valve enter into operation state.
  • the target operating mode is the hybrid operating mode, that is, the vehicle operating mode at this time has entered the hybrid operating mode from the pure electric operating mode. It is necessary to first adjust the current of the main voltage regulating pilot solenoid valve on the high-voltage control oil circuit to increase the main The oil pressure makes the cooling and lubrication reversing valve in the on-position state under the action of the main oil pressure, so that the low-pressure cooling lubricating oil circuit is connected with the generator connected to the cooling and lubricating reversing valve, and the generator enters the working state.
  • the low-pressure cooling lubricating oil circuit passes through the orifice R1, orifice R4, and orifice R5 to distribute different flows for cooling and lubricating the EM1 motor (ie, generator), EM2 motor and clutch gears.
  • the low-pressure cooling lubricating oil circuit includes a hydraulic oil cooler, an external pressure filter connected to the hydraulic oil cooler, and a cooling and lubricating reversing valve connected to the external pressure filter.
  • the low-pressure cooling lubricating oil circuit does not provide cooling and lubrication for the EM1 motor (ie, generator) at this time.
  • S702 Adjust the current of the main pressure regulating pilot solenoid valve, and control the direct drive solenoid valve in the high-pressure control oil circuit to engage with the clutch corresponding to the mixed working mode.
  • the mechanical pump when the engine starts to work, the mechanical pump also enters the working state. At this time, if the corresponding clutch needs to be engaged (that is, there is a shift demand), the current of the main pressure regulating pilot solenoid valve on the high pressure control oil circuit needs to be adjusted again.
  • S703 Control the high and low pressure decoupling valve to be in a decoupling state, so that the electronic pump is connected with the low pressure cooling lubricating oil circuit to supply oil to the low pressure cooling lubricating oil circuit.
  • the flow output of the mechanical pump at this time can satisfy the main oil pressure of the high-pressure control oil circuit in a stable state, and the pilot switch solenoid valve can be energized to control the high and low pressure decoupling valve
  • the electronic pump is connected with the low-pressure cooling lubricating oil circuit, and the flow output of the electronic pump directly flows into the low-pressure cooling lubricating oil circuit through the high and low pressure decoupling valve, supplying oil for the low-pressure cooling lubricating oil circuit, effectively reducing the load of the electronic pump , Can greatly improve the working efficiency of the electronic pump.
  • the electronic pump can supply flow to the high pressure control oil circuit when multiple clutches are working at the same time, so as to avoid For the problem of oil pressure drop, timely replenishment measures can be taken to effectively ensure the stability of the system oil pressure.
  • the high and low pressure decoupling valve is controlled to be in a decoupling state, and the flow output of the electronic pump directly passes through the high and low pressure decoupling valve Flow into the low-pressure cooling lubricating oil circuit, effectively reducing the load of the electronic pump, and greatly improving the working efficiency of the electronic pump.
  • the hydraulic state data is the rotational speed data of the mechanical pump in the hybrid working mode; as shown in FIG. 8, in step S503, according to the hydraulic state data, the hydraulic control system of the vehicle is dynamically adjusted according to a preset adjustment strategy.
  • Working status specifically including the following steps:
  • the rotational speed data of the mechanical pump is compared with a reasonable range to determine whether the rotational speed data of the mechanical pump is reasonable.
  • the lower limit of the reasonable range is the first preset rotational speed threshold; the upper limit of the reasonable range is the second preset rotational speed threshold.
  • the high and low pressure decoupling valve can be controlled to be in the coupled state at this time, that is, enter the right working state, so that the electronic pump is connected with the high pressure control oil circuit, and the electronic pump and the mechanical pump are coupled to work to supplement the flow of the high pressure control oil circuit in time , To ensure the stability of the system.
  • the rotational speed data of the mechanical pump is not less than the first preset rotational speed threshold and less than the second preset rotational speed threshold, it is considered that the rotational speed data of the mechanical pump at this time is within a reasonable range, that is, the flow output of the mechanical pump can meet the high pressure control
  • the flow required by the oil circuit can be energized by the pilot switch solenoid valve to control the high and low pressure decoupling valve to be in a decoupling state, so that the electronic pump is connected to the low pressure cooling lubricating oil circuit, and the electronic pump and the mechanical pump are decoupled.
  • the electronic pump provides flow for low-pressure cooling and lubrication
  • the mechanical pump provides flow for the high-pressure control oil circuit and the low-pressure cooling lubricating oil circuit, reducing the load of the electronic pump and effectively improving the working efficiency of the system.
  • the rotational speed of the mechanical pump is too high, that is, the rotational speed data of the mechanical pump is greater than the second preset rotational speed threshold.
  • the flow is large and exceeds the requirements of the high-pressure control oil circuit and the low-pressure cooling lubricating oil circuit.
  • the main oil pressure can meet the opening pressure of the overflow valve, so the redundant flow can be returned to the oil inlet of the mechanical pump through the overflow valve to ensure the stability of the system oil pressure.
  • the working state of the high and low pressure decoupling valve is controlled in time according to the rotational speed data, so that when the flow of the mechanical pump does not meet the requirements of the high-pressure control oil circuit, the The electronic pump is connected with the high-pressure control oil circuit to replenish the oil pressure of the high-pressure control oil circuit, so as to quickly respond to different oil pressure requirements, thereby ensuring the stability of the system.
  • the electronic The pump is connected with the low-pressure cooling lubricating oil circuit to reduce the load of the electronic pump and effectively improve the working efficiency of the system.
  • the hydraulic state data includes the first oil pressure data of the high-pressure control oil circuit in the hybrid working mode; as shown in FIG. 9, in step S503, according to the hydraulic state data, the dynamic adjustment is performed according to a preset adjustment strategy.
  • the working status of the vehicle hydraulic control system includes the following steps:
  • the first oil pressure data refers to the oil pressure data of the high-pressure control oil circuit.
  • the second oil pressure data refers to the oil pressure data of the high pressure control oil circuit when the high and low pressure decoupling valve is in the coupled state. Specifically, if the first oil pressure data of the high-pressure control oil circuit does not meet the preset oil pressure data, it is considered that the oil pressure provided by the mechanical pump at this time is insufficient to meet the oil pressure required by the high-pressure control oil circuit, and the high and low pressure solutions are controlled.
  • the coupling valve is in a coupled state to connect the electronic pump with the high-pressure control oil circuit to quickly supplement the oil pressure required by the high-pressure control oil circuit, thereby ensuring the stability of the oil pressure and the stability of the clutch control.
  • the oil pressure data of the high-pressure control oil circuit is analyzed and judged in real time, and countermeasures are taken in time, so as to ensure the stability of the oil pressure in real time, thereby ensuring the stability of the system operation.
  • the hydraulic status data includes oil temperature data of the low-pressure cooling lubricating oil circuit.
  • step S503 that is, dynamically adjusting the working state of the vehicle hydraulic control system according to the preset adjustment strategy according to the hydraulic state data, includes: if the oil temperature data does not meet the preset oil temperature data, adjusting the speed of the electronic pump.
  • the preset oil temperature data is oil temperature data determined according to the cooling and lubrication requirements of the low-pressure cold lubricating oil circuit.
  • a temperature sensor is provided in the vehicle hydraulic control system for collecting oil temperature data of the low-pressure cold lubricating oil circuit.
  • the oil temperature data collected by the temperature sensor is analyzed in real time to determine whether the oil temperature meets the requirements of cooling and lubrication. That is, if the oil temperature data does not meet the preset oil temperature data, the electronic The speed of the pump increases the output flow of the electronic pump to ensure that the oil temperature of the flow in the low-pressure cold lubricating oil circuit always meets the cooling and lubrication requirements and ensures the stability of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

公开了一种车辆液压控制系统,包括机械泵(1)、电子泵(2)、高低压解耦阀(3)、高压控制油路和低压冷却润滑油路;机械泵(1)与高压控制油路连通;电子泵(2)通过高低压解耦阀(3)与高压控制油路或低压冷却润滑油路连通;高压控制油路包括主调压先导电磁阀(4)和主调压机械阀(5);主调压先导电磁阀(4)与变速器控制器相连,用于根据变速器控制器的指示调节主油压;主调压机械阀(5)用于根据主调压先导电磁阀的控制,将与高压控制油路连通的电子泵(2)和/或机械泵(1)输出的流量导向至低压冷却润滑油路;车辆液压控制系统与变速器控制器相连,能够有效提高车辆液压控制系统的稳定性,从而有效保证离合器控制的稳定性,提升换挡品质;还公开了一种车辆液压控制方法。

Description

车辆液压控制系统及方法
本申请要求于2020年06月02日提交中国专利局、申请号为202010490549.9,发明名称为“车辆液压控制系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及混合动力车辆控制技术领域,尤其涉及一种车辆液压控制系统及方法。
背景技术
目前,混合动力汽车中主要是由发动机和电机共同提供车辆动力,良好的车辆动力性和经济性不仅取决于发动机和电机本身,还需要通过优良的动力匹配关系来保证。对于混合动力汽车来说,其自动变速器需要通过离合器或制动器的接合来实现不同工作模式的切换,离合器接合控制的稳定性和快速响应性直接影响到整机的换挡品质。
汽车自动变速器中离合器的接合一般是通过车辆液压控制系统来控制,液压控制系统对于离合器的接合具有能结合大扭矩并提供缓冲阻尼和冷却润滑的作用。而由于混合动力汽车的工作模式较多(如纯电工作模式或混合动力工作模式),在不同工作模式的切换过程中对离合器的控制要求也较高;此外,由于驱动电机和发动机的存在,对电机的冷却润滑流量需求量也较大,因此合理的设计液压控制系统则显得尤为重要。
申请内容
本申请所要解决的技术问题是:当前混合动力汽车在不同工作模式切换的过程中,汽车自动变速器中离合器控制的稳定性较低的问题。
为解决上述技术问题,本申请实施例提供一种车辆液压控制系统,与变速器控制器相连,包括:机械泵、电子泵、高低压解耦阀、高压控制油路和低压冷却润滑油路;所述机械泵与所述高压控制油路连通;所述电子泵通过所述高低压解耦阀与所述高压控制油路或低压冷却润滑油路连通;所述高压控制油路包括主调压先导电磁阀和主调压机械阀;所述主调压先导电磁阀与所述变速器控制器相连,用于根据所述变速器控制器的指示调节主油 压;所述主调压机械阀用于根据所述主调压先导电磁阀的控制,将与所述高压控制油路连通的电子泵和/或机械泵输出的流量导向至所述低压冷却润滑油路;
当所述高低压解耦阀处于耦合状态时,所述电子泵与所述高压控制油路连通,为所述高压控制油路和所述低压冷却润滑油路供油;
当所述高低压解耦阀处于解耦状态时,所述电子泵与所述低压冷却润滑油路连通,为所述低压冷却润滑油路供油。
优选地,所述高压控制油路包括主油路以及与所述主油路连通的至少一个分支油路,所述分支油路与执行器相连,所述主油路上设有主压滤器,所述主压滤器用于对流入所述分支油路的流量进行过滤。
优选地,所述分支油路上设有直驱电磁阀和蓄压器;所述直驱电磁阀用于控制将所述分支油路与所述执行器接合;所述蓄压器用于维持所述分支油路的油压稳定。
优选地,所述高压控制油路还包括先导开关电磁阀;所述先导开关电磁阀与变速器控制器和所述高低压解耦阀相连,用于根据所述变速器控制器的指示,控制所述高低压解耦阀的工作状态。
本申请公开的一种车辆液压控制系统,与变速器控制器相连,包括机械泵、电子泵、高低压解耦阀、高压控制油路和低压冷却润滑油路;机械泵与高压控制油路连通;电子泵通过高低压解耦阀与高压控制油路或低压冷却润滑油路连通;高压控制油路包括主调压先导电磁阀和主调压机械阀;主调压先导电磁阀与变速器控制器相连,用于根据变速器控制器的指示调节主油压,以满足各种工作模式下的油压需求;主调压机械阀根据主调压先导电磁阀的控制,调节阀芯开度,以将与高压控制油路连通的电子泵和/或机械泵输出的流量导向至低压冷却润滑油路,使高压控制油路的流量也可同时为低压冷却润滑油路补给,减小电子泵的负载,进而提高电子泵的使用效率和使用寿命;同时,通过切换高低压解耦阀的工作状态,使电子泵与高压控制油路或低压冷却润滑油路连通,满足各种工作模式下的流量需求,保证车辆液压控制系统的液压需求,提高车辆液压控制系统的稳定性,从而可有效提升离合器控制的稳定性,提升换挡品质。
本申请实施例提供一种车辆液压控制方法,包括变速器控制器执行的如下步骤:
在目标工作模式下,执行与所述目标工作模式对应的液压控制策略,控制车辆液压控制系统工作;
采集车辆液压控制系统的液压状态数据;
根据所述液压状态数据,按照预设调整策略,动态调整所述车辆液压控制系统的工作状态。
优选地,所述在目标工作模式下,执行与所述目标工作模式对应的液压控制策略,控制车辆液压控制系统工作,包括:
若所述目标工作模式为纯电工作模式,则调节高压控制油路上的主调压先导电磁阀的电流,使高压控制油路建立满足所述纯电工作模式的主油压;
控制高低压解耦阀处于耦合状态,使电子泵与所述高压控制油路连通,为所述高压控制油路和低压冷却润滑油路供油。
优选地,所述在目标工作模式下,执行与所述目标工作模式对应的液压控制策略,控制车辆液压控制系统工作,包括:
所述目标工作模式为混合工作模式,调节高压控制油路上的主调压先导电磁阀的电流,控制冷却润滑换向阀处于通位状态,使与所述冷却润滑换向阀连接的发电机进入工作状态;
调节所述主调压先导电磁阀的电流,控制高压控制油路中的直驱电磁阀与所述混合工作模式对应的离合器接合,使机械泵为所述高压控制油路和低压冷却润滑油路供油;
控制高低压解耦阀处于解耦状态,使电子泵与低压冷却润滑油路连通,为所述低压冷却润滑油路供油。
优选地,所述液压状态数据为所述混合工作模式下的机械泵的转速数据;
所述根据所述液压状态数据,按照预设调整策略,动态调整所述车辆液压控制系统的工作状态,包括:
若所述机械泵的转速数据小于第一预设转速阈值,则控制所述高低压解耦阀处于耦合状态;
若所述机械泵的转速数据不小于第一预设转速阈值且小于第二预设转速阈值,则控制所述高低压解耦阀处于解耦状态。
优选地,所述液压状态数据包括所述混合工作模式下的高压控制油路的第一油压数据;
所述根据所述液压状态数据,按照预设调整策略,动态调整所述车辆液压控制系统的工作状态,包括:
若所述高压控制油路的第一油压数据不满足预设油压数据,则控制所述高低压解耦阀处于耦合状态,采集所述耦合状态下的第二油压数据;
若所述第二油压数据不满足预设油压数据,则调节所述机械泵的转速、电子泵的转速或者所述主调压先导电磁阀的电流。
优选地,所述液压状态数据包括低压冷却润滑油路的油液温度数据;
所述根据所述液压状态数据,按照预设调整策略,动态调整所述车辆液压控制系统的工作状态,包括:
若所述油液温度数据不满足预设油温数据,则调节所述电子泵的转速。
本申请公开的一种车辆液压控制方法,通过在目标工作模式下,执行与目标工作模式对应的液压控制策略,控制车辆液压控制系统工作,以满足各工作模式的液压需求再通过采集车辆液压控制系统的液压状态数据,以便实时根据液压状态数据,按照预设调整策略,动态调整车辆液压控制系统的工作状态,从而有效保证系统的稳定性,进而保证离合器控制的稳定性,提升换挡品质。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例中车辆液压控制系统的一示意图;
图2是本申请一实施例中车辆液压控制系统的一示意图;
图3是本申请一实施例中车辆液压控制系统的一示意图;
图4是本申请一实施例中车辆液压控制系统的一示意图;
图5是本申请一实施例中车辆液压控制方法的一流程图;
图6是图5中步骤S501的一具体流程图;
图7是图5中步骤S501的一具体流程图;
图8是图5中步骤S503的一具体流程图;
图9是图5中步骤S503的一具体流程图;
其中,1、机械泵;2、电子泵;3、高低压解耦阀;4、主调压先导电磁阀;5、主调压机械阀;6、限压阀;7、溢流阀;8、油泵单向阀;9、液压油冷却器;10、外部压滤器;11、冷却润滑换向阀;12、主压滤器;131、主压力传感器;132、第一压力传感器;133、第二压力传感器;134、第三压力传感器;14、直驱电磁阀;15、蓄压器;16、先导开关 电磁阀。
具体实施方式
为了使本申请所解决的技术问题、技术方案及有益效果更加清楚明白,以下附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,需要理解的是,术语“纵向”、“径向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请提供一种车辆液压控制系统,如图1、图2、图3和图4所示,与变速器控制器相连,包括机械泵1、电子泵2、高低压解耦阀3、高压控制油路和低压冷却润滑油路;机械泵1与高压控制油路连通;电子泵2通过高低压解耦阀3与高压控制油路或低压冷却润滑油路连通;高压控制油路包括主调压先导电磁阀4和主调压机械阀5;主调压先导电磁阀4与变速器控制器相连,用于根据变速器控制器的指示调节主油压;主调压机械阀5用于根据主调压先导电磁阀4的控制,将与高压控制油路连通的电子泵2和/或机械泵1输出的流量导向至低压冷却润滑油路;
当高低压解耦阀3处于耦合状态时,电子泵2与高压控制油路连通,为高压控制油路和低压冷却润滑油路供油;
当高低压解耦阀3处于解耦状态时,电子泵2与低压冷却润滑油路连通,为低压冷却润滑油路供油。
其中,变速器控制器与车辆控制系统相连,用于根据车辆控制系统指示的工作模式控制车辆液压控制系统工作。主油压具体指图中主油路的油压,即图中主压力传感器131所 在油路的压力。低压冷却润滑油路主要为EM1电机、EM2电机以及离合器轴齿进行冷却润滑。高压控制油路主要为执行器的控制提供所需的流量。该执行器包括C0离合器、C1离合器、B离合器(即制动器)以及驻车机构。
具体地,该车辆液压控制系统中,变速箱的输入轴与机械泵1相连,以为机械泵1提供工作的动力;机械泵1的出油口与高压控制油路连通,当机械泵1和EM1电机工作时,直接为高压控制油路提供流量。电子泵2通过高低压解耦阀3与高压控制油路或低压冷却润滑油路连通,高压控制油路包括主调压先导电磁阀4和主调压机械阀5;主调压先导电磁阀4与变速器控制器相连,用于根据变速器控制器的指示调节线圈电流,进而调节主油压,实现对主油压的先导控制。
具体地,如图3所示,此时机械泵与EM1电机均进入工作状态,机械泵1的出油口与主调压机械阀5的一端连通,主调压机械阀5的另一端与一低压导向油路连通,该主调压机械阀5会随着主调压先导电磁阀4的电流的变化即主油压的变化,调节阀芯开度,进而将与高压控制油路连通的电子泵2和/或机械泵1输出的流量通过低压导向油路导向至低压冷却润滑油路,以在机械泵1工作的情况下,满足高压控制油路流量的同时为低压冷却润滑油路补给流量,有效减轻电子泵2的负载,进而提高电子泵2的使用效率和使用寿命。
进一步地,如图2所示,此时机械泵与EM1电机未进入工作状态,在机械泵1不工作的情况下,电子泵2可通过高低压解耦阀3与高压控制油路连通,并同时经低压导向油路为低压冷却润滑油路提供流量,满足各种工作模式下的流量需求,保证车辆液压控制系统的液压需求,提高车辆液压控制系统的稳定性,从而可有效提升离合器控制的稳定性,提升换挡品质。
需要说明的是,该高低压解耦阀3工作常态是耦合状态,即如图1所示的高低压解耦阀3位于右位工作状态,当不同的工作模式切换时,该高低压解耦阀3会根据不同的需求切换不同的的工作状态。
可以理解地,当高低压解耦阀3处于耦合状态,即图3中的高低压解耦阀3位于右位工作状态时,电子泵2与高压控制油路连通,此时机械泵1、EM1电机以及EM2电机工作,则电子泵2与机械泵1耦合工作,双泵在为高压控制油路供油的同时,为低压冷却润滑油路供油,以快速响应不同工作模式下的液压需求,提高车辆液压控制系统的稳定性,从而可有效提升离合器控制的稳定性,提升换挡品质;若机械泵1不工作,则电子泵2单独为高压控制油路和低压冷却润滑油路供油,保证车辆液压控制系统的液压需求。
当高低压解耦阀3处于解耦状态,即图4中的高低压解耦阀3位于左位工作状态,此 时电子泵2与低压冷却润滑油路连通,直接为低压冷却润滑油路供油,有效减轻电子泵2的负载,提高电子泵2的使用寿命。
进一步地,该电子泵2与高低压解耦阀3连通,在电子泵2与高低压解耦阀3连通的管路上设有一限压阀6,该限压阀6用于调节电子泵2输出流量的压力,保证输出流量的压力的稳定性。
进一步地,如图4所示,该系统还包括与机械泵1入油口以及低压导向油路连通的溢流阀7,该溢流阀7可在机械泵1的输出流量较大时,由于低压冷却润滑油路的负载一定,则此时溢流阀7被打开,将冗余流量通过溢流阀7流入机械泵1入油口,保证系统油压的稳定性。
进一步地,该系统还包括油泵单向阀8,该油泵单向阀8设置在机械泵1出油口与主调压机械阀5连通的管路上,避免流量回流。
进一步地,低压冷却润滑油路包括液压油冷却器9、与液压油冷却器9相连的外部压滤器10以及与外部压滤器10相连的冷却润滑换向阀11。
其中,液压油冷却器9用于对流入低压冷却润滑油路的油量进行冷却。具体地,该低压冷却润滑油路与EM2电机以及离合器轴齿直接连通,以对EM2电机以及离合器轴齿进行冷却润滑。而EM1电机则通过冷却润滑换向阀11的控制实现与低压冷却润滑油路的连通。本实施例中,该EM1电机具体指代发动机,该EM2电机具体指代驱动电机。
可以理解地,由于流入外部压滤器10的流量包括通过低压导向油路流入的流量以及高低压解耦阀3在解耦状态下输出的流量,因此,该外部压滤器10可对整个系统的流量进行过滤,保护整个系统的液压元件。
进一步地,该车辆液压控制系统包括至少一个节流孔(如图1所示的R1-R17),以通过不同孔径大小的节流孔实现对各油路流量的合理分配。
本实施例中,该车辆液压控制系统,与变速器控制器相连,包括机械泵1、电子泵2、高低压解耦阀3、高压控制油路和低压冷却润滑油路;机械泵1与高压控制油路连通;电子泵2通过高低压解耦阀3与高压控制油路或低压冷却润滑油路连通;高压控制油路包括主调压先导电磁阀4和主调压机械阀5;主调压先导电磁阀4与变速器控制器相连,用于根据变速器控制器的指示调节主油压,以满足各种工作模式下的油压需求;主调压机械阀5根据主调压先导电磁阀4的控制,调节阀芯开度,以将与高压控制油路连通的电子泵2和/或机械泵1输出的流量导向至低压冷却润滑油路,使高压控制油路的流量也可同时为低压冷却润滑油路补给,减小电子泵2的负载,进而提高电子泵2的使用效率和使用寿命; 同时,通过切换高低压解耦阀3的工作状态,使电子泵2与高压控制油路或低压冷却润滑油路连通,满足各种工作模式下的流量需求,保证车辆液压控制系统的液压需求,提高车辆液压控制系统的稳定性,从而可有效保证离合器控制的稳定性,提升换挡品质。
在一实施例中,如图1、图2、图3和图4所示,高压控制油路包括主油路以及与主油路连通的至少一个分支油路,分支油路与执行器相连,主油路上设有主压滤器12,主压滤器12用于对流入分支油路的流量进行过滤。
其中,主压滤器12即指设置在高压控制油路上的具有高过滤效率的压滤器。
具体地,通过在主油路上设有主压滤器12,可对流入分支油路的流量进行过滤,进而减小分支油路上的各液压元件的卡滞概率,提高液压元件的使用寿命,进而保证液压元件工作的可靠性和稳定性。
本实施例中,该车辆液压控制系统在主压滤器12和外部压滤器10的同时作用下,可大大减小液压元件的卡滞概率,提高液压元件的使用寿命,进而保证液压元件工作的可靠性和稳定性;此外,该主压滤器12和外部压滤器10的布置方式,也可有效降低系统的功率损失。
进一步地,该车辆液压控制系统中还设置有采集系统液压状态数据的传感器组件,该传感器组件包括但不限于温度传感器、转速传感器以及压力传感器,通过将该传感器组件采集的液压状态数据反馈给变速器控制器,以使变速器控制器与根据液压状态数据调整系统的工作状态,保证系统工作的稳定性。
其中,该温度传感器设置在低压冷却润滑油路上,用于采集低压冷却润滑油路的油液温数据;转速传感器可设置在与机械泵1相连的变速箱的输入轴上,用于采集机械泵1的转速数据;该压力传感器,用于采集主油路和分支油路的压力数据,其包括设置在主油路上主压力传感器131以及设置在分支油路上的第一压力传感器132、第二压力传感器133、第三压力传感器134。
在一实施例中,如图3和图4所示,分支油路上设有直驱电磁阀14和蓄压器15;直驱电磁阀14用于将分支油路与执行器接合;蓄压器15用于维持分支油路的油压稳定。
本实施例中,该分支油路上还设有直驱电磁阀14和蓄压器15,该直驱电磁阀14可根据主调压先导电磁阀4的控制在满足执行器所需的接合压力时,直接与工作模式所需的执行器接合,完成执行器的接合动作。此外,通过在分支油路上设有蓄压器15,可有效缓解分支油路的压力波动,进而减小换挡冲击,保证换挡的稳定性。
在一实施例中,如图1、图2、图3和图4所示,高压控制油路还包括先导开关电磁 阀16;先导开关电磁阀16与变速器控制器和高低压解耦阀3相连,用于根据变速器控制器的指示,控制高低压解耦阀3的工作状态。
具体地,该高压控制油路还包括用于控制高低压解耦阀3工作状态的先导开关电磁阀16,该先导开关电磁阀16可根据变速器控制器的指示,控制高低压解耦阀3的工作状态。
可以理解地,本实施例中的高低压解耦阀3的工作常态为耦合状态,即图1、图2或图3中的高低压解耦阀3位于右位工作状态,当先导开关电磁阀16通电时,该先导开关电磁阀16会控制此时的高低压解耦阀3处于解耦状态,即图4中的高低压解耦阀3位于左位工作状态;当先导开关电磁阀16断电时,则该先导开关电磁阀16会控制此时的高低压解耦阀3处于耦合状态,该先导开关电磁阀16可根据变速器控制器的指示实时切换高低压解耦阀3的工作状态,满足不同工作模式的液压需求,有效提升液压系统的稳定性,从而可减小液压系统的流量泄漏。
进一步地,本实施例中的车辆液压控制系统具有失效保护机制,即可实现在任一油泵失效的情况下均可使系统处于可控状态;可以理解地,当电子泵2失效时,此时机械泵1由电机或发动机拖动,维持主油路油压,并通过主调压机械阀5给低压冷却润滑油路提供流量。当机械泵1失效时,可通过控制高低压解耦阀3处于耦合状态,电子泵2与高压控制油路连通,此时电子泵2为图1、图2或图3所示的工作状态,使电子泵2为高压控制油路和低压冷却润滑油路提供流量,当主油压提高时也能满足液压系统的基本性能。
进一步地,当先导开关电磁阀16失效时,由于本实施例中的高低压解耦阀3的工作常态为耦合状态,因此仍能保持系统的基本性能,从而保证系统的可靠性,满足整机的安全需求。
本申请提供一种车辆液压控制方法,如图5所示,包括变速器控制器执行的如下步骤:
S501:在目标工作模式下,执行与目标工作模式对应的液压控制策略,控制车辆液压控制系统工作。
其中,液压控制策略是预先根据不同的工作模式设置好的用于控制车辆液压控制系统工作的控制策略。该目标工作模式包括纯电工作模式和混合工作模式。其中,纯电工作模式是指机械泵和EM1电机不工作,电子泵和EM2电机工作的工作模式。混合工作模式是指电子泵、机械泵、EM1电机和EM2电机均工作的工作模式,通过执行与目标工作模式对应的液压控制策略,以满足不同模式的液压需求,保证车辆液压控制系统的液压需求提高车辆液压控制系统的稳定性,从而可有效提升离合器控制的稳定性,提升换挡品质。
S502:采集车辆液压控制系统的液压状态数据。
具体地,通过设置在车辆液压控制系统工作中的传感器组件,以采集车辆液压控制系统中的液压状态数据。其中,液压状态数据包括但不限于高压控制油路的压力数据、低压冷却润滑油路的油液温度数据以及机械泵的转速数据。作为一示例,该温度传感器设置在低压冷却润滑油路上,用于采集低压冷却润滑油路的油液温数据;转速传感器可设置在与机械泵相连的变速箱的输入轴上,用于采集机械泵的转速数据;该压力传感器,用于采集主油路和分支油路的压力数据,其包括设置在主油路上主压力传感器以及设置在分支油路上的第一压力传感器、第二压力传感器和第三压力传感器。
S503:根据液压状态数据,按照预设调整策略,动态调整车辆液压控制系统的工作状态。
其中,预设调整策略是预先设置好的用于根据不同工作模式下的液压数据进行实时分析,并动态调整车辆液压控制系统的工作状态的调整策略。具体地,根据液压状态数据进行实时分析,以判断液压状态数据是否满足需求,若不满足,则根据预设调整策略,动态调整车辆液压控制系统的工作状态,以保证系统内液压的稳定性,从而减小液压系统的泄漏量。
本实施例中,通过在目标工作模式下,执行与目标工作模式对应的液压控制策略,控制车辆液压控制系统工作,以满足各工作模式的液压需求再通过采集车辆液压控制系统的液压状态数据,以便实时根据液压状态数据,按照预设调整策略,动态调整车辆液压控制系统的工作状态,从而有效保证系统的稳定性,进而保证离合器控制的稳定性,提升换挡品质。
在一实施例中,如图6所示,步骤S501中,即在目标工作模式下,执行与目标工作模式对应的液压控制策略,控制车辆液压控制系统工作,具体包括如下步骤:
S601:若目标工作模式为纯电工作模式,则调节高压控制油路上的主调压先导电磁阀的电流,使高压控制油路建立满足纯电工作模式的主油压。
具体地,若目标工作模式为纯电工作模式,则需要调节高压控制油路上的主调压先导电磁阀的电流,使高压控制油路建立满足纯电工作模式的主油压,从而满足驻车机构的油压需求。
可以理解地,在纯电工作模式下,无换挡需求,此时需要先调节主油压,以满足驻车机构的油压需求,以进行后续工作。
S602:控制高低压解耦阀处于耦合状态,使电子泵与高压控制油路连通,为高压控制油路和低压冷却润滑油路供油。
具体地,在纯电工作模式下,由于此时机械泵不工作,故先导开关电磁阀处于断电状态,该高低压解耦阀处于耦合状态即右位工作状态,以使电子泵与高压控制油路连通,电子泵输出的流量经过高低压解耦阀进入高压控制油路,进入高压控制油路的流量经主压滤器的过滤作用,可有效提高后端进入各直驱电磁阀油液的清洁度水平,避免阀芯卡滞。
在高压控制油路建立完所需的油压后,流量经过主调压机械阀进入低压冷却润滑油路,以使电子泵为低压冷却润滑油路供油,此时该低压冷却润滑油路可对EM2电机和离合器轴齿进行冷却润滑。作为一示例,低压冷却润滑油路包括液压油冷却器以及与液压油冷却器相连的外部压滤器。
可以理解地,流入低压冷却润滑油路的流量经液压油冷却器进行冷却润滑并输出至外部压滤器进行过滤,再将外部压滤器输出的流量通过节流孔R1和节流孔R4,以分配不同的流量为EM2电机和离合器轴齿进行冷却润滑。
本实施例中,在纯电工作模式下,通过控制高低压解耦阀处于耦合状态,使电子泵与高压控制油路连通,电子泵输出的流量经过高低压解耦阀进入高压控制油路,再经过主调压机械阀进入低压冷却润滑油路,以使电子泵为低压冷却润滑油路供油,以对EM2电机和离合器轴齿进行冷却润滑,满足纯电工作模式下的液压需求。
在一实施例中,如图7所示,步骤S501中,即在目标工作模式下,执行与目标工作模式对应的液压控制策略,控制车辆液压控制系统工作,具体包括如下步骤:
S701:若目标工作模式为混合工作模式,调节高压控制油路上的主调压先导电磁阀的电流,控制冷却润滑换向阀处于通位状态,使与冷却润滑换向阀连接的发电机进入工作状态。
具体地,目标工作模式为混合工作模式,即此时的车辆工作模式已从纯电工作模式进入混合工作模式,则需要先调节高压控制油路上的主调压先导电磁阀的电流,以提高主油压,使冷却润滑换向阀在主油压压力的作用下处于通位状态,以使低压冷却润滑油路与冷却润滑换向阀连接的发电机连通,使发电机进入工作状态。此时,低压冷却润滑油路通过节流孔R1、节流孔R4以及节流孔R5,以分配不同的流量为EM1电机(即发电机)、EM2电机和离合器轴齿进行冷却润滑。作为一示例,低压冷却润滑油路包括液压油冷却器、与液压油冷却器相连的外部压滤器以及与外部压滤器相连的冷却润滑换向阀。
可以理解地,若在纯电工作模式下,该冷却润滑换向阀处于止位状态,此时低压冷却润滑油路不为EM1电机(即发电机)进行冷却润滑。
S702:调节主调压先导电磁阀的电流,控制高压控制油路中的直驱电磁阀与混合工作 模式对应的离合器接合。
具体地,在发动机开始工作时,机械泵也进入工作状态,此时若需接合对应的离合器(即有换挡需求),则需再次调节高压控制油路上的主调压先导电磁阀的电流,使主油压满足所需接合的离合器的接合需求,以控制高压控制油路中的直驱电磁阀与当前所需接合的离合器即混合工作模式对应的离合器进行接合,为机械泵提供动力,使机械泵输出的流量通过油泵单向阀进入高压控制油路,为高压控制油路供油,维持各离合器所需压力,再通过主调压机械阀进入低压冷却润滑油路供油,以为低压冷却润滑油路补给流量,保证液压系统的稳定性,满足换挡需求。
可以理解地,该混合工作模式下,可能会存在多个离合器同时需要工作的情况,可能会由于瞬时流量不足,造成油压下降,此时由于高低压解耦阀处于耦合状态,电子泵与高压控制油路连通,可为高压控制油路补给流量,以避免油压下降的问题,可及时采取补给措施,有效保证系统油压的稳定。
S703:控制高低压解耦阀处于解耦状态,使电子泵与低压冷却润滑油路连通,为低压冷却润滑油路供油。
具体地,由于此时离合器已完成接合,则认为此时机械泵输出的流量可满足高压控制油路的主油压处于稳定状态,则可给先导开关电磁阀通电,以控制高低压解耦阀处于解耦状态,使电子泵与低压冷却润滑油路连通,电子泵输出的流量直接通过高低压解耦阀流入低压冷却润滑油路,为低压冷却润滑油路供油,有效减轻电子泵的负载,可大幅提高电子泵的工作效率。
本实施例中,通过在混合工作模式下,控制高低压解耦阀的耦合和解耦状态,以使电子泵可在多个离合器同时工作的情况下,为高压控制油路补给流量,以避免油压下降的问题,可及时采取补给措施,有效保证系统油压的稳定,并在离合器接合完成后,控制高低压解耦阀处于解耦状态,电子泵输出的流量直接通过高低压解耦阀流入低压冷却润滑油路,有效减轻电子泵的负载,可大幅提高电子泵的工作效率。
在一实施例中,液压状态数据为混合工作模式下的机械泵的转速数据;如图8所示,步骤S503中,即根据液压状态数据,按照预设调整策略,动态调整车辆液压控制系统的工作状态,具体包括如下步骤:
S801:若机械泵的转速数据小于第一预设转速阈值,则控制高低压解耦阀处于耦合状态。
其中,在判定机械泵的转速数据是否合理时,是通过将机械泵的转速数据与一合理范 围进行比对,即可确定机械泵的转速数据是否合理。该合理范围的下限值即为第一预设转速阈值;该合理范围的上限值即为第二预设转速阈值。
具体地,若机械泵的转速数据小于第一预设转速阈值,则认为此时机械泵的输出流量过小,不能满足高压控制油路所需的流量,会出现主油压降低或者油压波动的情况,此时可控制高低压解耦阀处于耦合状态,即进入右位工作状态,使电子泵与高压控制油路连通,电子泵和机械泵耦合工作,以及时补充高压控制油路的流量,保证系统的稳定性。
S802:若机械泵的转速数据不小于第一预设转速阈值且小于第二预设转速阈值,则控制高低压解耦阀处于解耦状态。
具体地,若机械泵的转速数据不小于第一预设转速阈值且小于第二预设转速阈值,则认为此时机械泵的转速数据在合理范围内,即机械泵输出的流量可满足高压控制油路所需的流量,则可通过给先导开关电磁阀通电,以控制高低压解耦阀处于解耦状态,使电子泵与低压冷却润滑油路连通,电子泵和机械泵解耦工作,即此时电子泵为低压冷却润滑提供流量,机械泵为高压控制油路和低压冷却润滑油路提供流量,减轻电子泵负载,有效提高系统的工作效率。
需要说明的是,若机械泵转速过高,即机械泵的转速数据大于第二预设转速阈值,此时流量较大,超出高压控制油路和低压冷却润滑油路的需求,则此时的主油压可满足溢流阀的开启压力,因此该冗余的流量可通过溢流阀回流至机械泵入油口,以保证系统油压的稳定。
本实施例中,通过对机械泵的转速数据进行实时分析判断,以及时根据转速数据控制高低压解耦阀的工作状态,从而在机械泵的流量不满足高压控制油路所需时,及时将电子泵与高压控制油路连通,补给高压控制油路的油压,从而可快速响应不同的油压需求,进而保证系统工作的稳定性,同时在机械泵的转速在合理范围内时,使电子泵与低压冷却润滑油路连通,以减轻电子泵负载,有效提高系统的工作效率。
在一实施例中,液压状态数据包括混合工作模式下的高压控制油路的第一油压数据;如图9所示,步骤S503中,即根据液压状态数据,按照预设调整策略,动态调整车辆液压控制系统的工作状态,具体包括如下步骤:
S901:若高压控制油路的第一油压数据不满足预设油压数据,则控制高低压解耦阀处于耦合状态,采集耦合状态下的第二油压数据。
其中,第一油压数据是指高压控制油路的油压数据。第二油压数据是指高低压解耦阀处于耦合状态下的高压控制油路的油压数据。具体地,若高压控制油路的第一油压数据不 满足预设油压数据,则认为此时机械泵提供的油压不足以满足高压控制油路所需的油压,则控制高低压解耦阀处于耦合状态,使电子泵与高压控制油路连通,以快速补充高压控制油路所需的油压,从而保证油压的稳定性,进而保证离合器控制的稳定性。
S902:若第二油压数据不满足预设油压数据,则调节机械泵的转速、电子泵的转速或者主调压先导电磁阀的电流。
具体地,在控制高低压解耦阀处于耦合状态后,继续采集耦合状态下的第二油压数据,若第二油压数据不满足预设油压数据,则认为电子泵和机械泵耦合工作的情况下也仍然不能满足高压控制油路所需的油压,则可通过提高机械泵的转速、电子泵的转速或者主调压先导电磁阀的电流,以提升油压,保证系统油压的稳定性。
本实施例中,通过对高压控制油路的油压数据进行实时分析判断,及时采取应对措施,从而可实时保证油压的稳定性,进而保证系统工作的稳定性。
在一实施例中,液压状态数据包括低压冷却润滑油路的油液温度数据。相应地,步骤S503,即根据液压状态数据,按照预设调整策略,动态调整车辆液压控制系统的工作状态,包括:若油液温度数据不满足预设油温数据,则调节电子泵的转速。
其中,预设油温数据是根据低压冷润滑油路的冷却润滑需求确定的油液温度数据。具体地,该车辆液压控制系统中设有温度传感器,用于采集低压冷润滑油路的油液温度数据。
本实施例中,通过实时对温度传感器采集到的油液温度数据进行分析,以判断油液温度是否满足冷却润滑的需求,即若油液温度数据不满足预设油温数据,则需提高电子泵的转速,从而提高电子泵的输出流量,以保证低压冷润滑油路中的流量的油液温度始终满足冷却润滑需求,保证系统工作的稳定性。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种车辆液压控制系统,与变速器控制器相连,其中,包括机械泵、电子泵、高低压解耦阀、高压控制油路和低压冷却润滑油路;所述机械泵与所述高压控制油路连通;所述电子泵通过所述高低压解耦阀与所述高压控制油路或低压冷却润滑油路连通;所述高压控制油路包括主调压先导电磁阀和主调压机械阀;所述主调压先导电磁阀与所述变速器控制器相连,用于根据所述变速器控制器的指示调节主油压;所述主调压机械阀用于根据所述主调压先导电磁阀的控制,将与所述高压控制油路连通的电子泵和/或机械泵输出的流量导向至所述低压冷却润滑油路;
    当所述高低压解耦阀处于耦合状态时,所述电子泵与所述高压控制油路连通,为所述高压控制油路和所述低压冷却润滑油路供油;
    当所述高低压解耦阀处于解耦状态时,所述电子泵与所述低压冷却润滑油路连通,为所述低压冷却润滑油路供油。
  2. 如权利要求1所述的车辆液压控制系统,其中,所述高压控制油路包括主油路以及与所述主油路连通的至少一个分支油路,所述分支油路与执行器相连,所述主油路上设有主压滤器,所述主压滤器用于对流入所述分支油路的流量进行过滤。
  3. 如权利要求2所述的车辆液压控制系统,其中,所述分支油路上设有直驱电磁阀和蓄压器;所述直驱电磁阀用于控制将所述分支油路与所述执行器接合;所述蓄压器用于维持所述分支油路的油压稳定。
  4. 如权利要求1所述的车辆液压控制系统,其中,所述高压控制油路还包括先导开关电磁阀;所述先导开关电磁阀与变速器控制器和所述高低压解耦阀相连,用于根据所述变速器控制器的指示,控制所述高低压解耦阀的工作状态。
  5. 一种车辆液压控制方法,其中,包括变速器控制器执行的如下步骤:
    在目标工作模式下,执行与所述目标工作模式对应的液压控制策略,控制车辆液压控制系统工作;
    采集车辆液压控制系统的液压状态数据;
    根据所述液压状态数据,按照预设调整策略,动态调整所述车辆液压控制系统的工作状态。
  6. 如权利要求5所述的车辆液压控制方法,其中,所述在目标工作模式下,执行与所述目标工作模式对应的液压控制策略,控制车辆液压控制系统工作,包括:
    若所述目标工作模式为纯电工作模式,则调节高压控制油路上的主调压先导电磁阀的电流,使高压控制油路建立满足所述纯电工作模式的主油压;
    控制高低压解耦阀处于耦合状态,使电子泵与所述高压控制油路连通,为所述高压控制油路和低压冷却润滑油路供油。
  7. 如权利要求5所述的车辆液压控制方法,其中,所述在目标工作模式下,执行与所述目标工作模式对应的液压控制策略,控制车辆液压控制系统工作,包括:
    所述目标工作模式为混合工作模式,调节高压控制油路上的主调压先导电磁阀的电流,控制冷却润滑换向阀处于通位状态,使与所述冷却润滑换向阀连接的发电机进入工作状态;
    调节所述主调压先导电磁阀的电流,控制高压控制油路中的直驱电磁阀与所述混合工作模式对应的离合器接合,使机械泵为所述高压控制油路和低压冷却润滑油路供油;
    控制高低压解耦阀处于解耦状态,使电子泵与低压冷却润滑油路连通,为所述低压冷却润滑油路供油。
  8. 如权利要求7所述的车辆液压控制方法,其中,所述液压状态数据为所述混合工作模式下的机械泵的转速数据;
    所述根据所述液压状态数据,按照预设调整策略,动态调整所述车辆液压控制系统的工作状态,包括:
    若所述机械泵的转速数据小于第一预设转速阈值,则控制所述高低压解耦阀处于耦合状态;
    若所述机械泵的转速数据不小于第一预设转速阈值且小于第二预设转速阈值,则控制所述高低压解耦阀处于解耦状态。
  9. 如权利要求8所述的车辆液压控制方法,其中,所述液压状态数据包括所述混合工作模式下的高压控制油路的第一油压数据;
    所述根据所述液压状态数据,按照预设调整策略,动态调整所述车辆液压控制系统的工作状态,包括:
    若所述高压控制油路的第一油压数据不满足预设油压数据,则控制所述高低压解耦阀处于耦合状态,采集所述耦合状态下的第二油压数据;
    若所述第二油压数据不满足预设油压数据,则调节所述机械泵的转速、电子泵的转速或者所述主调压先导电磁阀的电流。
  10. 如权利要求5所述的车辆液压控制方法,其中,所述液压状态数据包括低压冷却 润滑油路的油液温度数据;
    所述根据所述液压状态数据,按照预设调整策略,动态调整所述车辆液压控制系统的工作状态,包括:
    若所述油液温度数据不满足预设油温数据,则调节电子泵的转速。
PCT/CN2021/097307 2020-06-02 2021-05-31 车辆液压控制系统及方法 WO2021244479A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/926,167 US11913542B2 (en) 2020-06-02 2021-05-31 Vehicle hydraulic control system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010490549.9 2020-06-02
CN202010490549.9A CN113757356B (zh) 2020-06-02 2020-06-02 车辆液压控制系统及方法

Publications (1)

Publication Number Publication Date
WO2021244479A1 true WO2021244479A1 (zh) 2021-12-09

Family

ID=78782903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097307 WO2021244479A1 (zh) 2020-06-02 2021-05-31 车辆液压控制系统及方法

Country Status (3)

Country Link
US (1) US11913542B2 (zh)
CN (1) CN113757356B (zh)
WO (1) WO2021244479A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114427599A (zh) * 2022-01-27 2022-05-03 蜂巢传动科技河北有限公司 旋翼航空器主减速器的电液控制系统
CN114483281A (zh) * 2022-01-29 2022-05-13 重庆长安汽车股份有限公司 一种发动机的水泵布置结构、发动机及汽车
CN116538291A (zh) * 2023-05-08 2023-08-04 蜂巢传动科技邳州有限公司 变速箱电液控制系统的控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118030810A (zh) * 2022-11-01 2024-05-14 比亚迪股份有限公司 变速器液压系统及其控制方法和混合动力车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792019A (en) * 1996-07-02 1998-08-11 Kia Motors Corporation Continuously variable transmission with torque converter for a vehicle and hydraulic control system for controlling the same
US20060070475A1 (en) * 2004-09-30 2006-04-06 Jatco Ltd Hydraulic control apparatus and method for automatic transmission
CN102310761A (zh) * 2010-07-06 2012-01-11 财团法人工业技术研究院 复合动力系统无段变速器的液压控制装置控制方法与系统
CN105229346A (zh) * 2013-05-23 2016-01-06 奥迪股份公司 用于双离合变速器的液压系统的方法
CN109282028A (zh) * 2018-11-22 2019-01-29 广州汽车集团股份有限公司 混合动力车辆液压控制系统及其控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012214831A1 (de) * 2012-08-21 2014-05-22 Robert Bosch Gmbh Hydrostatischer Antrieb mit zwei Hydromotoren
CN106956586B (zh) * 2016-01-08 2019-06-07 广州汽车集团股份有限公司 混合动力汽车耦合机构冷却润滑装置及其控制方法
CN208153452U (zh) * 2018-05-15 2018-11-27 吉泰车辆技术(苏州)有限公司 混合动力汽车变速器液压控制系统
CN110285210B (zh) * 2018-08-28 2021-10-26 长城汽车股份有限公司 液压控制系统和车辆
CN209212951U (zh) * 2018-11-22 2019-08-06 广州汽车集团股份有限公司 混合动力车辆液压控制系统
CN209856328U (zh) * 2018-11-30 2019-12-27 广州汽车集团股份有限公司 一种机电耦合器液压控制装置和混合动力汽车
CN110319181B (zh) * 2019-06-20 2024-02-09 无锡明恒混合动力技术有限公司 一种用于混合动力变速箱的液压换挡及冷却润滑系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792019A (en) * 1996-07-02 1998-08-11 Kia Motors Corporation Continuously variable transmission with torque converter for a vehicle and hydraulic control system for controlling the same
US20060070475A1 (en) * 2004-09-30 2006-04-06 Jatco Ltd Hydraulic control apparatus and method for automatic transmission
CN102310761A (zh) * 2010-07-06 2012-01-11 财团法人工业技术研究院 复合动力系统无段变速器的液压控制装置控制方法与系统
CN105229346A (zh) * 2013-05-23 2016-01-06 奥迪股份公司 用于双离合变速器的液压系统的方法
CN109282028A (zh) * 2018-11-22 2019-01-29 广州汽车集团股份有限公司 混合动力车辆液压控制系统及其控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114427599A (zh) * 2022-01-27 2022-05-03 蜂巢传动科技河北有限公司 旋翼航空器主减速器的电液控制系统
CN114427599B (zh) * 2022-01-27 2024-02-06 蜂巢传动科技河北有限公司 旋翼航空器主减速器的电液控制系统
CN114483281A (zh) * 2022-01-29 2022-05-13 重庆长安汽车股份有限公司 一种发动机的水泵布置结构、发动机及汽车
CN116538291A (zh) * 2023-05-08 2023-08-04 蜂巢传动科技邳州有限公司 变速箱电液控制系统的控制方法

Also Published As

Publication number Publication date
CN113757356A (zh) 2021-12-07
US20230193992A1 (en) 2023-06-22
US11913542B2 (en) 2024-02-27
CN113757356B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
WO2021244479A1 (zh) 车辆液压控制系统及方法
CN109237013B (zh) 一种dct变速器液压控制系统、方法及汽车
CN201992053U (zh) 具有冷却润滑流量调节机构的双离合自动变速器液压系统
CN109282028B (zh) 混合动力车辆液压控制系统及其控制方法
CN110285210A (zh) 液压控制系统和车辆
US20110120568A1 (en) Hydraulic system of a transmission unit, comprising a main transmission pump and an auxiliary pump
JP5445045B2 (ja) 自動変速機の油圧制御装置
CN109826948B (zh) 液压控制系统
CN110319181B (zh) 一种用于混合动力变速箱的液压换挡及冷却润滑系统
CN107097628B (zh) 混合动力总成及其液压控制系统
CN103975180A (zh) 动力传动系冷却装置及其运行方法
CN106481794B (zh) 一种冷却润滑控制系统
CN110469663A (zh) 一种变速器液压控制系统及车辆
CN216643067U (zh) 用于湿式双离合器混动变速系统的液压控制装置
WO2022262430A1 (zh) 冷却控制阀、控制方法、双离合变速器冷却系统及车辆
CN101915304A (zh) 自动变速器液压控制装置
CN208885929U (zh) 双离合自动变速箱液压控制系统及车辆
WO2024051800A1 (zh) 用于混动变速箱的液压系统及汽车
WO2024051798A1 (zh) 用于混动变速箱的液压系统及汽车
CN213017371U (zh) 汽车变速箱双泵耦合液压控制系统
CN113124152A (zh) 混合动力专用变速箱液压系统
CN114658843B (zh) 一种混合动力自动变速器液压控制系统
CN108779851A (zh) 油压控制装置
CN218440578U (zh) 自动变速箱液压控制系统及车辆
CN217762005U (zh) 混合动力变速器冷却润滑系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21818758

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21818758

Country of ref document: EP

Kind code of ref document: A1