WO2024051800A1 - 用于混动变速箱的液压系统及汽车 - Google Patents

用于混动变速箱的液压系统及汽车 Download PDF

Info

Publication number
WO2024051800A1
WO2024051800A1 PCT/CN2023/117635 CN2023117635W WO2024051800A1 WO 2024051800 A1 WO2024051800 A1 WO 2024051800A1 CN 2023117635 W CN2023117635 W CN 2023117635W WO 2024051800 A1 WO2024051800 A1 WO 2024051800A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
cooling
valve
pressure
control valve
Prior art date
Application number
PCT/CN2023/117635
Other languages
English (en)
French (fr)
Inventor
张恒先
李双銮
周之光
耿丽珍
Original Assignee
奇瑞汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇瑞汽车股份有限公司 filed Critical 奇瑞汽车股份有限公司
Publication of WO2024051800A1 publication Critical patent/WO2024051800A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/025Pressure reducing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/027Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/041Removal or measurement of solid or liquid contamination, e.g. filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • F15B21/0423Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0473Friction devices, e.g. clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0476Electric machines and gearing, i.e. joint lubrication or cooling or heating thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present disclosure belongs to the field of automobile structural components, and particularly relates to a hydraulic system of a hybrid transmission and an automobile.
  • hybrid transmission The transmission of a hybrid vehicle is referred to as a hybrid transmission, and is used to provide the transmission needs of the hybrid vehicle.
  • a hybrid transmission is a transmission system that couples the power of the engine and the motor in a certain way and can achieve speed and torque changes.
  • it is often necessary to forcefully cool or lubricate the components to be lubricated in the hybrid transmission (such as overheated motors or gear components, etc.) through the hydraulic system.
  • high-voltage drive components Such as clutch or parking structure, etc.
  • the hydraulic system of the hybrid transmission includes: a hydraulic pump and a hydraulic control valve.
  • the hydraulic pump is driven by the engine to pump hydraulic oil.
  • the hydraulic pump converts its own mechanical energy into the pressure energy of hydraulic oil.
  • the hydraulic control valve controls the pressure, flow and flow direction of the hydraulic oil, and transmits the hydraulic oil output by the hydraulic pump to the high-pressure driving parts of the car and the parts to be lubricated at the same time.
  • the high-pressure drive The components convert the pressure energy of the hydraulic oil into mechanical energy to complete the driving operation, and the components to be lubricated are cooled and lubricated by the hydraulic oil.
  • the car's engine and motor work together as a power source to drive the car.
  • the hydraulic pump is driven by the engine at a high speed, causing the supply of hydraulic oil to exceed demand, affecting the car's fuel saving rate.
  • the car mainly relies on the motor as the power source, and the engine speed is greatly reduced.
  • the speed of the hydraulic pump in the hydraulic system is also greatly reduced, and the flow of hydraulic oil is reduced, which is very likely to be difficult to meet the cooling requirements. , the demand for lubricating oil quantity can easily cause the motor to overheat, limit the power, and affect the drivability.
  • Embodiments of the present disclosure provide a hydraulic system for a hybrid gearbox and a car, which can enable the hybrid gearbox to reasonably supply oil according to the actual working conditions of the car.
  • the technical solutions are as follows:
  • Embodiments of the present disclosure provide a hydraulic system for a hybrid transmission.
  • the hydraulic system includes a power assembly, a high-pressure drive unit and a cooling lubrication unit.
  • the power assembly includes a first drive pump and a second drive pump.
  • the first drive pump is used to connect with the drive motor of the car, and the second drive pump is used to connect with the engine of the car;
  • the high-pressure drive unit includes a high-pressure drive valve group and a high-pressure oil circuit, and the high-pressure drive valve
  • the groups are respectively connected to the second drive pump and the high-pressure oil circuit, and the high-pressure oil circuit is used to supply oil to the high-pressure drive components in the hybrid gearbox;
  • the cooling and lubrication unit includes a cooling and lubrication valve group, A first cooling oil circuit and a second cooling oil circuit.
  • the first cooling oil circuit is connected to the first drive pump.
  • the cooling lubrication valve group is connected to the second drive pump and the first cooling oil circuit respectively.
  • the cooling and lubricating valve group is used to control whether the first cooling oil circuit and the second cooling oil circuit are connected and to control whether the hydraulic oil output by the second drive pump is delivered.
  • the first cooling oil passage and the second cooling oil passage are respectively used to supply oil to different components to be lubricated in the hybrid gearbox.
  • the cooling and lubrication valve group includes a first cooling control valve and a second cooling control valve; the first oil port of the first cooling control valve and the first cooling oil path connection, the second oil port of the first cooling control valve is connected to the second cooling oil circuit, and the control oil port of the first cooling control valve is connected to the oil outlet of the second drive pump; The first oil port of the second cooling control valve is connected to the oil outlet of the second drive pump, and the second oil port of the second cooling control valve is connected to the first cooling oil line.
  • both the first cooling control valve and the second cooling control valve are hydraulic control valves
  • the cooling lubrication valve group further includes a first cooling regulating valve; the first The first oil port of the cooling control valve is connected to the oil outlet of the second drive pump, and the second oil port of the first cooling control valve is connected to the control oil port of the first cooling control valve and the third oil port respectively.
  • the control oil ports of the two cooling control valves are connected; or, the first oil port of the first cooling control valve is connected to the oil outlet of the second drive pump, and the second oil port of the first cooling control valve is connected to The control oil port of the second cooling control valve is connected, and the control oil port of the first cooling control valve is connected with the oil outlet of the second drive pump.
  • the cooling and lubrication valve group further includes a first pressure reducing valve, the first pressure reducing valve is connected between the second oil port of the second cooling control valve and the third Between a cooling oil circuit, the first oil port of the first pressure reducing valve is connected to the second oil port of the second cooling control valve, and the second oil port of the first pressure reducing valve is connected to the oil tank, The control port of the first pressure reducing valve is connected to its first Oil port connection.
  • the cooling lubrication unit further includes a protection valve group connected between the first drive pump and the first cooling oil circuit; the protection valve The group includes a second pressure reducing valve, or a third pressure reducing valve; the first oil port of the second pressure reducing valve is connected to the oil outlet of the first drive pump, and the second pressure reducing valve has a The second oil port is connected to the first cooling oil circuit and the second oil port of the second cooling control valve respectively, and the control oil port of the second pressure reducing valve is connected to the first oil port of the second pressure reducing valve.
  • Oil port connection; the first oil port of the third pressure reducing valve is connected to the oil outlet of the first drive pump, and the second oil port of the third pressure reducing valve is connected to the first cooling oil circuit , the control oil port of the third pressure reducing valve is connected to the first oil port of the third pressure reducing valve.
  • the cooling lubrication valve group further includes a cooling check valve connected between the second cooling control valve and the second pressure reducing valve, The oil inlet of the cooling check valve is connected to the second oil port of the second cooling control valve, and the oil outlet of the cooling check valve is connected to the first oil port of the second pressure reducing valve.
  • the high-pressure drive valve group includes a high-pressure control valve, the first oil port of the high-pressure control valve is connected to the oil outlet of the second drive pump, and the high-pressure control valve The second oil port is connected to the high-pressure oil circuit.
  • the high-pressure drive valve group further includes a high-pressure regulating valve, the first oil port of the high-pressure regulating valve is connected to the oil outlet of the second drive pump respectively, and the high-pressure regulating valve The second oil port of the regulating valve is connected with the control oil port of the high-pressure control valve.
  • the high-pressure drive unit further includes an accumulator, and the oil outlet of the accumulator is respectively connected to the high-pressure oil circuit and the second oil port of the high-pressure control valve. .
  • an automobile in yet another implementation manner of the present disclosure, includes a motor, an engine, a gearbox and the above-mentioned hydraulic system, and the motor and the engine are both connected to the gearbox,
  • the hydraulic system is connected to the box of the gearbox.
  • Figure 1 is a schematic connection diagram of a hydraulic system for a hybrid transmission provided by an embodiment of the present disclosure
  • Figure 2 is a schematic connection diagram of another hydraulic system for a hybrid transmission provided by an embodiment of the present disclosure
  • Figure 3 is a schematic connection diagram of yet another hydraulic system for a hybrid transmission provided by an embodiment of the present disclosure
  • Figure 4 is a schematic connection diagram of yet another hydraulic system for a hybrid transmission provided by an embodiment of the present disclosure
  • Figure 5 is a schematic connection diagram of another hydraulic system for a hybrid transmission provided by an embodiment of the present disclosure.
  • Figure 6 is an oil circuit diagram corresponding to another hydraulic system provided by an embodiment of the present disclosure when the car has no high pressure demand;
  • Figure 7 is an oil circuit diagram when another hydraulic system provided by an embodiment of the present disclosure corresponds to a vehicle having high pressure requirements
  • Figure 8 is an oil circuit diagram when a car has a high pressure demand for another hydraulic system provided by an embodiment of the present disclosure
  • Figure 9 is an oil path diagram of another hydraulic system provided by an embodiment of the present disclosure when the car is in reverse gear
  • Fig. 10 is an oil path diagram of another hydraulic system provided by an embodiment of the present disclosure when the car has no high pressure demand;
  • Figure 11 is an oil path diagram when another hydraulic system provided by an embodiment of the present disclosure corresponds to a vehicle having high pressure requirements
  • Figure 12 is an oil circuit diagram when a car has a high pressure demand for another hydraulic system provided by an embodiment of the present disclosure
  • FIG. 13 is an oil path diagram of another hydraulic system provided by an embodiment of the present disclosure when the automobile is in reverse gear.
  • the embodiment of the present disclosure provides a hydraulic system for a hybrid transmission.
  • the hydraulic system includes a power component 1, a high-pressure drive unit 2 and a cooling and lubricating unit 3.
  • the power assembly 1 includes a first driving pump 11 and a second driving pump 12.
  • the first driving pump 11 is used to connect with the driving motor 100 of the automobile
  • the second driving pump 12 is used to connect with the engine 200 of the automobile.
  • the high-pressure drive unit 2 includes a high-pressure drive valve group 21 and a high-pressure oil line 22.
  • the high-pressure drive valve group 21 is connected to the second drive pump 12 and the high-pressure oil line 22 respectively.
  • the high-pressure oil line 22 is used to drive the high-pressure in the hybrid gearbox. Oil supply to components.
  • the cooling and lubricating unit 3 includes a cooling and lubricating valve group 31, a first cooling oil path 32 and a second cooling oil path 33.
  • the first cooling oil path 32 is connected to the first driving pump 11, and the cooling and lubricating valve group 31 is connected to the second driving pump respectively. 12.
  • the first cooling oil circuit 32 and the second cooling oil circuit 33 are connected.
  • the cooling and lubricating valve group 31 is used to control whether the first cooling oil circuit 32 and the second cooling oil circuit 33 are connected and to control the hydraulic pressure output by the second drive pump 12 Whether the oil is delivered to the first cooling oil passage 32, the first cooling oil passage 32 and the second cooling oil passage 33 are respectively used to supply oil to different components to be lubricated in the hybrid gearbox.
  • the hydraulic system includes a first driving pump 11 and a second driving pump 12, and the first driving pump 11 is driven by the driving motor 100, the second driving pump 12 is driven by the engine. 200 drive, so that the operating conditions of the first drive pump 11 and the second drive pump 12 can be controlled correspondingly according to the different operating conditions of the car, and then whether the first drive pump 11 and the second drive pump 12 pump out hydraulic pressure. Oil.
  • the hydraulic system includes a cooling and lubricating valve group 31 and a high-pressure driving valve group 21, the cooling and lubricating valve group 31 and the high-pressure driving valve group 21 can be manipulated to cause the first driving pump 11 and the second driving pump 12 to pump.
  • the output hydraulic oil can be delivered to the components to be lubricated and the high-pressure drive components according to the different working conditions of the car, ultimately meeting the hydraulic oil needs of the components to be lubricated and the high-pressure drive components under different working conditions.
  • the hydraulic system can pump hydraulic oil to the parts to be lubricated for cooling according to the actual working conditions of the car. At the same time, it can pump hydraulic oil to the high-pressure driving parts according to the needs of the high-pressure driving parts to meet the needs of the high-pressure driving parts. demand, which increases the transmission requirements of the gearbox and the fuel saving rate of the car, and reduces Reduces the loss of the motor in the gearbox.
  • the oil circuit in this embodiment can be a pipeline, such as a hose and/or a hard pipe, or the oil circuit can be a channel integrated in other components; or one part of the oil circuit is a pipeline, and the other part is a pipeline. Channels integrated in other components, etc.
  • the oil circuit may also include various joints.
  • the high-voltage driving component 201 mentioned above may be a clutch or the like. After the hydraulic oil drives the clutch, the engine and the hybrid gearbox can be coupled together, so that the engine can be used as the power source of the car.
  • the components to be lubricated can be shaft tooth components, drive motors (also called electric motors), auxiliary motors, clutches and other components in the gearbox.
  • the components to be lubricated may include a first component to be lubricated 101 , a second component to be lubricated 102 , a third component to be lubricated 103 and a fourth component to be lubricated 104 .
  • the first component 101 to be lubricated is a tooth component
  • the second component 102 to be lubricated is a clutch
  • the third component 103 to be lubricated is a driving motor
  • the fourth component 104 to be lubricated is an auxiliary motor (also called a generator).
  • the working conditions of the car mentioned above can be divided based on the driving speed of the car. For example, when the car is driving at high speed, the drive motor and the engine are used as power at the same time, that is, the car has high voltage demand. When the car is running at low speed, only the drive motor is used as the power source of the car, that is, the car has no high voltage demand. When the car is at a low speed, but needs to accelerate to a high speed, at this time, the engine needs to be ready to provide power to the car at any time. The engine starts to work but has not yet provided power to the car, and the clutch needs to be ready for engagement, that is, the car has high-pressure preparation requirements. At this time, the drive motor provides power and the engine starts to work, but does not provide power.
  • the speed of a car is determined by the speed of the car itself.
  • the maximum driving speed of a car is 100km/h.
  • the car is driving at no more than 30% of the maximum driving speed, such as 30km/h, it can be understood that the car is driving at a low speed.
  • the car is driving at a speed of not less than 60% of the maximum driving speed of 60km/h, it can be understood that the car is driving at a high speed, and when the car is driving at a speed of 30%-60% of the maximum driving speed of 60km/h , which can be understood as the car driving at medium speed.
  • the above speed description is only an example, and the low speed, medium and high speed of the automobile provided by the embodiments of the present disclosure are not limited thereto.
  • FIG. 2 is a schematic connection diagram of another hydraulic system for a hybrid transmission provided by an embodiment of the present disclosure.
  • the cooling and lubricating valve group 31 includes a first cooling control valve 311 and a second cooling control valve 312 .
  • the first oil port of the first cooling control valve 311 is connected to the first cooling oil passage 32
  • the second oil port of the first cooling control valve 311 is connected to the second cooling oil passage 33 .
  • the first oil port of the second cooling control valve 312 and the second drive The oil outlet of the dynamic pump 12 is connected, and the second oil port of the second cooling control valve 312 is connected with the first cooling oil passage 32 .
  • the cooling and lubricating valve group 31 is set to the above structure, so that the hydraulic oil pumped by the first driving pump 11 can be controlled by controlling the first cooling control valve 311 to control whether the hydraulic oil pumped by the first driving pump 11 flows to the fourth cooling oil passage 33 through the second cooling oil passage 33 . in the component 104 to be lubricated.
  • the second driving pump 12 can be connected to the first cooling oil passage 32 through the second cooling control valve 312, thereby controlling whether to supply oil to the first cooling oil passage 32 by controlling the second cooling control valve 312, and then Control whether the second drive pump 12 supplies oil to the first component to be lubricated 101 , the second component to be lubricated 102 , and the third component to be lubricated 103 .
  • both the first cooling control valve 311 and the second cooling control valve 312 are hydraulic control valves
  • the cooling and lubricating valve group 31 further includes a first cooling regulating valve 313 .
  • the first oil port of the first cooling control valve 313 is connected to the oil outlet of the second drive pump 12
  • the second oil port of the first cooling control valve 313 is connected to the control oil port of the first cooling control valve 311 and the second cooling port respectively.
  • the control oil port of the control valve 312 is connected.
  • the first cooling regulating valve 313 is used to adjust the opening of the first cooling control valve 311 and the second cooling control valve 312 to control the inflow of the second cooling oil passage 33 and the first cooling oil passage 32 Adjust the flow rate and oil pressure of the hydraulic oil inside.
  • the first cooling control valve 311 and the second cooling control valve 312 may both be hydraulically controlled three-position two-way proportional directional valves. In this way, stepless speed regulation can be achieved through the first cooling regulating valve 313.
  • the first cooling control valve 311 and the second cooling control valve 312 may not be proportional directional valves.
  • the first cooling control valve 311 and the second cooling control valve 312 serve as on-off valves and can control their own second oil. Whether the port is connected to the second cooling oil passage 33 or the first cooling oil passage 32 respectively, so as to control whether to supply oil to different components to be lubricated.
  • the first cooling regulating valve 313 may be an electromagnetic two-position four-way proportional directional valve.
  • the opening of the first cooling control valve 313 can be controlled by controlling the size of the current, so as to continuously adjust the valve core position of the first cooling control valve 313, and finally control the first cooling control valve 311 and the second cooling control.
  • the cooling and lubricating valve group 31 further includes a first pressure reducing valve 314 , which is connected between the second oil port of the second cooling control valve 312 and the first cooling oil passage 32 .
  • the first oil port of the first pressure reducing valve 314 is connected to the second oil port of the second cooling control valve 312.
  • the second oil port of the first pressure reducing valve 314 is connected to the oil tank.
  • the control oil port of the first pressure reducing valve 314 Connected to the first oil port of the first pressure reducing valve 314.
  • the first pressure reducing valve 314 is a two-position three-way pressure reducing valve and a normally open pressure reducing valve.
  • the second oil port is not connected to the fuel tank. Since the control oil port is connected to its first oil port, in the working state, it can be connected to the oil tank through the second oil port, so that excess oil overflows in the oil tank, thereby ensuring that the oil at the first oil port is The pressure is a constant value.
  • the arrangement of the first pressure reducing valve 314 can reduce the pressure of the lubricating oil entering the first cooling oil passage 32 .
  • the oil pressure entering the high-pressure oil line 22 is equal to the second oil pressure. Cool the oil pressure at the first oil port of the control valve 312.
  • the oil pressure of the first oil port of the second cooling control valve 312 needs to be increased. Since the oil pressure at the first oil port of the second cooling control valve 312 has a positive one-to-one correspondence with the oil pressure at the second oil port, the first oil port of the second cooling control valve 312 is pre-increased, That is, it is necessary to increase the oil pressure at the second oil port of the second cooling control valve 312.
  • the first pressure reducing valve 314 can be used to limit the oil pressure of the hydraulic oil entering the first cooling oil passage 32 .
  • the cooling and lubricating unit 3 also includes a protection valve group 34 connected between the first drive pump 11 and the first cooling oil circuit 32 .
  • the protection valve group 34 includes a second pressure reducing valve 341 .
  • the first oil port of the second pressure reducing valve 341 is connected to the oil outlet of the first drive pump 11 .
  • the second oil port of the second pressure reducing valve 341 is connected to the first cooling oil line 32 .
  • the control oil port is connected to the first oil port of the second pressure reducing valve 341.
  • the second pressure reducing valve 341 is used to reduce the oil pressure pumped by the first driving pump 11 .
  • the above second pressure reducing valve 341 is a normally closed pressure reducing valve.
  • the first oil port is connected to the second oil port. Since the control oil port is connected with its second oil port, the oil pressure at the second oil port can be guaranteed to be constant during the working state.
  • the cooling lubrication valve group 31 also includes a cooling one-way valve 317.
  • the cooling one-way valve 317 is connected between the second cooling control valve 312 and the second pressure reducing valve 341.
  • the oil inlet of the cooling one-way valve 317 is connected to The second oil port of the second cooling control valve 312 is connected, and the oil outlet of the cooling check valve 317 is connected with the first oil port of the second pressure reducing valve 341 .
  • the cooling one-way valve 317 is used to prevent the hydraulic oil flowing out of the first drive pump 11 from entering the second cooling control valve 312, that is, the cooling one-way valve 317 limits the hydraulic oil or can only flow from the second cooling control valve 312 to the first cooling Oil line 32 without backflow.
  • the cooling lubrication unit 3 also includes an oil cooler 35.
  • the oil cooler 35 is connected to the oil path between the first cooling oil path 32 and the first drive pump 11.
  • the oil inlet of the oil cooler 35 is connected to the first oil path.
  • the oil outlet of the drive pump 11 is connected, and the oil outlet of the oil cooler 35 is connected with the first cooling oil passage 32 .
  • the oil cooler 35 is used to reduce the temperature of the hydraulic oil entering the parts to be lubricated, and to provide good lubrication and cooling of the parts to be lubricated.
  • the oil cooler 35 is connected in parallel with the second pressure reducing valve 341 , and the oil inlet and oil outlet of the oil cooler 35 are connected to the first oil outlet of the second pressure reducing valve 341 respectively.
  • port is connected to the second oil port.
  • the oil cooler 35 can be protected through the second pressure reducing valve 341, that is, when the oil cooler 35 is blocked, the hydraulic oil pumped from the first drive pump 11 cannot pass through the oil cooler 35. At this time, , will gradually suppress the pressure until the oil pressure of the hydraulic oil pumped out from the first drive pump 11 is greater than the spring setting value of the second pressure reducing valve 341, the second pressure reducing valve 341 will open, and the first drive pump 11 The pumped hydraulic oil will smoothly enter the first cooling oil passage 32 through the second pressure reducing valve 341, thus preventing the oil cooler 35 from bursting.
  • the high-pressure drive valve group 21 includes a high-pressure control valve 211.
  • the first oil port of the high-pressure control valve 211 is connected to the oil outlet of the second drive pump 12.
  • the second oil port of the high-pressure control valve 211 Connected to high pressure oil line 22.
  • the high-pressure drive unit 2 also includes an accumulator 23, and the oil outlet of the accumulator 23 is connected to the high-pressure oil line 22 and the second oil port of the high-pressure control valve 211 respectively.
  • the accumulator 23 is provided to buffer the high-pressure oil in the high-pressure oil circuit 22 .
  • the accumulator 23 is provided to buffer the high-pressure oil in the high-pressure oil circuit 22 .
  • the oil pressure entering the high-pressure oil circuit 22 is greater than the maximum oil pressure that the clutch can withstand, part of the lubricating oil in the high-pressure oil circuit will enter the accumulator 23 for buffering, thereby protecting the clutch. .
  • the hydraulic system also includes a first one-way valve 4, the oil inlet of the first one-way valve 4 is connected with the oil inlet of the first drive pump 11, and the oil outlet of the first one-way valve 4 is connected with the first The oil outlet of the drive pump 11 is connected.
  • the first drive pump 11 is driven by the drive motor. Therefore, at this time, the drive motor follows the wheels of the car in reverse rotation, that is, the first drive pump 11 also reverses. By arranging the first one-way valve 4, the first drive pump can be avoided. Vacuuming occurs within 11 seconds, damaging the pipeline.
  • the hydraulic system also includes a filter 5.
  • the filter 5 is connected on the oil path between the first drive pump 11, the second drive pump 12 and the oil tank.
  • the oil inlet of the filter 5 is connected to the oil outlet of the oil tank.
  • the oil outlet of the filter 5 is connected to the oil inlet of the first drive pump 11 and the second drive pump 12 respectively.
  • impurities in the hydraulic oil can be filtered to prevent impurities from entering the first driving pump 11 and the second driving pump 12 and clogging the first driving pump 11 and the second driving pump 12 , affecting the operation of the car.
  • the hydraulic system also includes a second one-way valve 6.
  • the second one-way valve 6 is connected on the oil line between the first drive pump 11 and the oil cooler 35.
  • the oil inlet of the second one-way valve 6 The oil outlet of the second check valve 6 is connected with the oil inlet of the oil cooler 35 .
  • the second one-way valve 6 can restrict the oil pumped from the first driving pump 11 to only flow to the oil cooler 35 and not flow back from the oil cooler 35 to the first driving pump 11 .
  • FIG. 3 is a connection schematic diagram of another hydraulic system for a hybrid transmission provided by an embodiment of the present disclosure.
  • the difference from the hydraulic system shown in FIG. 2 is that: the connection method of the protection valve group 34 is different.
  • the connection method of the first cooling regulating valve 313 is different, the cooling one-way valve 317 is omitted, and the high-pressure regulating valve 212 is added.
  • the first cooling regulating valve 313 can also be connected in the manner shown in FIG. 3 .
  • the first oil port of the first cooling regulating valve 313 is connected to the oil outlet of the second driving pump 12, and the second oil port of the first cooling regulating valve 313 is connected to the control oil port of the second cooling control valve 312.
  • the control oil port of the first cooling control valve 311 is connected with the oil outlet of the second drive pump 12 .
  • the opening of the first cooling control valve 311 can be directly controlled by the operating state of the second driving pump 12 , that is, the higher the rotation speed of the second driving pump 12 , the greater the opening of the outlet of the first cooling control valve 311 .
  • the auxiliary motor can be automatically cooled and lubricated based on the vehicle's operating conditions.
  • the first cooling control valve 313 can directly control the opening of the second cooling control valve 312, thereby reasonably controlling the flow of lubricating oil pumped from the second driving pump 12 to other components to be lubricated.
  • the protection valve group 34 includes a third pressure reducing valve 342 .
  • the first oil port of the third pressure reducing valve 342 is connected to the oil outlet of the first driving pump 11 .
  • the third pressure reducing valve 342 The second oil ports of are connected to the first cooling oil passage 32 and the second oil port of the second cooling control valve 312 respectively.
  • the control valve of the third pressure reducing valve 342 The oil control port is connected to the first oil port of the third pressure reducing valve 342.
  • the structure of the third pressure reducing valve 342 is the same as that of the second pressure reducing valve 341. They are both normally open pressure reducing valves. That is, when they are in the working state, they can ensure that the oil pressure of the second oil port is constant value. With the above connection method, the pressure of the lubricating oil entering the first cooling oil passage 32 can still be limited.
  • the high-pressure drive valve group 21 also includes a high-pressure regulating valve 212 .
  • the first oil port of the high-pressure regulating valve 212 is connected to the oil outlet of the second drive pump 12 respectively.
  • the second oil port of the high-pressure regulating valve 212 is connected to the high-pressure regulating valve 212 .
  • the control oil port of the control valve 211 is connected.
  • the high-pressure regulating valve 212 is used to adjust the opening of the high-pressure control valve 211 to adjust the flow rate and oil pressure of the hydraulic oil entering the high-pressure oil circuit 22 .
  • the high-pressure control valves 211 may all be hydraulically controlled three-position two-way proportional directional valves. In this way, stepless speed regulation can be achieved through the high-pressure regulating valve 212.
  • the high-pressure regulating valve 212 may not be a proportional reversing valve.
  • the high-pressure regulating valve 212 serves as a switching valve and can control whether its second oil port is connected to the high-pressure oil line 22 to control whether to supply oil to the high-pressure driving components. .
  • the high-pressure control valve 211 can be omitted, and the high-pressure regulating valve 212 is directly connected to the high-pressure oil line 22, see the structure shown in FIG. 4 .
  • the oil pressure of the hydraulic oil entering the high-pressure oil circuit 22 can be adjusted in real time by directly controlling the opening of the high-pressure regulating valve 212 .
  • connection mode of the first pressure reducing valve 314 may also be of other types.
  • the cooling and lubricating valve group 31 may also include a third cooling regulating valve 310 .
  • the first oil of the third cooling regulating valve 310 The port is connected to the oil outlet of the first drive pump 11, the second oil port of the third cooling regulating valve 310 is connected to the control oil port of the first pressure reducing valve 314, and the first oil port of the first pressure reducing valve 314 is connected to The oil outlet of the cooling check valve 317 is connected, and the second oil port of the first pressure reducing valve 314 is connected to the oil tank.
  • the movement of the valve core of the first pressure reducing valve 314 can be controlled by introducing the third cooling regulating valve 310, so that the first pressure reducing valve 314 can be opened or closed.
  • the third cooling regulating valve 310 may be an electromagnetic two-position four-way proportional directional valve.
  • the opening of the first pressure reducing valve 314 can be accurately controlled by controlling the size of the current, so as to accurately adjust the valve core position of the first pressure reducing valve 314, and ultimately improve the regulation efficiency.
  • the hydraulic system further includes a damping hole 300 .
  • a damping hole 300 is provided in the oil path between the second oil port of the high-pressure regulating valve 212 and the control oil port of the high-pressure control valve 211 .
  • the outlet size of the high-pressure control valve 211 is adjusted through the high-pressure control valve 212, it can be ensured that the outlet opening of the high-pressure control valve 211 changes slowly to avoid serious oil pressure jumps due to excessive changes, which may affect the car. travel.
  • the oil path between the control oil port of the second cooling control valve 312 and the second oil port of the first cooling regulating valve 313 is also provided with a damping hole 300 .
  • the oil path between the control oil port of the second cooling control valve 312 and the second oil port of the first cooling regulating valve 313 is also provided with a damping hole 300 .
  • the oil path between the control oil port of the first cooling control valve 311 and the second drive pump 12 is also provided with a damping hole 300, or the oil path between the control oil port of the first cooling control valve 311 and the first cooling regulating valve 313
  • the oil circuit is also provided with a damping hole 300.
  • a damping hole 300 is also provided on the oil path between the first oil port of the first pressure reducing valve 314 and the control oil port of the first pressure reducing valve 314, so that the third oil port of the first pressure reducing valve 314 can be The oil pressure at the first oil port changes slowly.
  • the first cooling oil passage 32 can also be provided with damping holes 300 respectively on the oil passages that supply oil to the first component to be lubricated 101, the second component to be lubricated 102, and the third component to be lubricated 103 to control the flow to the first component to be lubricated.
  • the flow rate of hydraulic oil of the lubricating component 101, the second component to be lubricated 102, and the third component to be lubricated 103 can also be provided with damping holes 300 respectively on the oil passages that supply oil to the first component to be lubricated 101, the second component to be lubricated 102, and the third component to be lubricated 103 to control the flow to the first component to be lubricated.
  • the flow rate of hydraulic oil of the lubricating component 101, the second component to be lubricated 102, and the third component to be lubricated 103 can also be provided with damping holes 300 respectively on the oil passages that supply oil to the first component to be lubricated
  • the second cooling oil passage 33 may also be provided with a damping hole 300 on the oil passage that supplies oil to the fourth component to be lubricated 104 to control the flow of hydraulic oil to the fourth component to be lubricated 104 .
  • FIG. 6 is an oil path diagram corresponding to another hydraulic system provided by an embodiment of the present disclosure when the automobile has no high pressure demand, combined with FIG. 6 .
  • the first drive pump 11 works alone, that is, the hydraulic system does not need to supply oil to the high-pressure drive components. Since the rotation speed of the car is low, the rotation speed of the first driving pump 11 is correspondingly low, and the hydraulic oil provided by the first driving pump 11 is in a low pressure state.
  • the flow path of the hydraulic oil is as follows: the first driving pump 11 sucks the hydraulic oil out of the oil tank, and the high-pressure regulating valve 212 and the second cooling control valve 312 are not energized. After the hydraulic oil passes through the third pressure reducing valve 342, it then enters the first cooling oil passage 32, and the hydraulic oil is transported to the first component to be lubricated 101, the second component to be lubricated 102, and the third component to be lubricated 103, so that the hydraulic oil The system cools and lubricates the above components.
  • FIG. 7 is an oil path diagram of another hydraulic system provided by an embodiment of the present disclosure when a car is preparing for high-pressure requirements, combined with FIG. 7 .
  • the engine needs to intervene at any time. Work to speed up the car.
  • the engine starts running (the auxiliary motor is required to work), and the second drive pump 12 also runs accordingly.
  • the first driving pump 11 and the second driving pump 12 operate simultaneously.
  • the flow path of the hydraulic oil is as follows: the first driving pump 11 sucks the hydraulic oil out of the oil tank, and the hydraulic oil provided by the first driving pump 11 passes through the third pressure reducing valve 342 and then enters the first cooling oil passage 32 . In this way, the hydraulic oil is transported to the first component to be lubricated 101, the second component to be lubricated 102, and the third component to be lubricated 103, so that the hydraulic system cools and lubricates the above components.
  • the second driving pump 12 sucks the hydraulic oil out of the oil tank.
  • the hydraulic oil provided by the second driving pump 12 enters the first cooling regulating valve 313 and the second cooling control valve 312.
  • the first cooling regulating valve 313 controls the second cooling control.
  • the opening of the valve 312 is used to control the oil pressure and flow rate of the hydraulic oil pumped out by the second drive pump 12 .
  • the hydraulic oil provided by the second drive pump 12 passes through the second cooling control valve 312, and then merges with the hydraulic oil pumped out by the first pressure reducing valve 314 and enters the first cooling oil passage 32.
  • the hydraulic oil flowing out of the first cooling oil passage 32 enters the second cooling oil passage 33 through the first cooling control valve 311 and enters the fourth component to be lubricated 104, so that the hydraulic system cools and lubricates the auxiliary motor.
  • the flow of hydraulic oil distributed to the drive motor and auxiliary motor can also be adjusted through real-time feedback of the stator temperature of the drive motor and auxiliary motor to meet the cooling requirements of the drive motor and auxiliary motor. At the same time, it also meets the cooling and lubrication requirements of gears, bearings and clutches. For example, when the temperature of the auxiliary motor is high or the temperature of the driving motor is high, the rotation speed of the second driving pump 12 can be increased (but the engine may or may not provide power), so that the second driving pump 12 pumps out The flow of hydraulic oil increases.
  • FIG. 8 is an oil path diagram of another hydraulic system provided by an embodiment of the present disclosure when a car has a high pressure demand, combined with FIG. 8 .
  • the car needs engine access, that is, the hydraulic system needs to supply oil to the high-pressure drive components.
  • the flow path of the hydraulic oil is as follows: the first driving pump 11 sucks the hydraulic oil out of the oil tank, and the hydraulic oil provided by the first driving pump 11 passes through the third pressure reducing valve 342 and then enters the first cooling oil passage 32 . In this way, the hydraulic oil is transported to the first component to be lubricated 101, the second component to be lubricated 102, and the third component to be lubricated 103, so that the hydraulic system cools and lubricates the above components.
  • the hydraulic oil provided by the second driving pump 12 enters the first cooling regulating valve 313 and the second cooling control valve 312, and the outlet opening of the second cooling control valve 312 is controlled through the first cooling regulating valve 313 to control the second The oil pressure and flow rate of the hydraulic oil pumped out by the drive pump 12, etc.
  • the hydraulic pressure provided by the second drive pump 12 The oil passes through the second cooling control valve 312 and merges with the hydraulic oil pumped out by the first driving pump 11 to enter the first cooling oil passage 32 in order to supply the first component to be lubricated 101, the second component to be lubricated 102, and the third component to be lubricated. 103 for cooling and lubrication.
  • the hydraulic oil flowing out of the first cooling oil passage 32 enters the second cooling oil passage 33 through the first cooling control valve 311 and enters the fourth component to be lubricated 104, so that the hydraulic system cools and lubricates the auxiliary motor.
  • the hydraulic oil pumped out by the second driving pump 12 passes through the high-pressure control valve 211 and the high-pressure regulating valve 212, and enters the high-pressure oil line 22 through the high-pressure control valve 211 to provide pressure oil for the high-pressure driving component 201 to drive The high voltage drives the component 201 into motion.
  • the high-pressure regulating valve 212 regulates the oil pressure and flow rate of the hydraulic oil flowing out of the high-pressure control valve 211 so as to control the oil pressure and flow rate of the hydraulic oil entering the high-pressure oil passage 22 .
  • FIG. 9 is an oil path diagram corresponding to another hydraulic system provided by an embodiment of the present disclosure when the car is in reverse gear, combined with FIG. 9 .
  • the drive motor needs to follow the car in reverse rotation.
  • the drive motor does not provide power for the car, but the engine needs to provide power for the car.
  • the second drive pump 12 sucks the hydraulic oil out of the oil tank and supplies oil to the components to be lubricated through the second cooling control valve 312 and the like.
  • oil circuit please refer to the corresponding description in Figure 8 above, and will not be repeated here.
  • Figure 10 is an oil circuit diagram corresponding to another hydraulic system provided by the embodiment of the present disclosure when the car does not have high pressure demand.
  • the first drive pump 11 works alone, and the hydraulic system does not need to Supply oil to high-pressure drive components.
  • the flow path of the hydraulic oil is: the first drive pump 11 sucks the hydraulic oil out of the oil tank. After the hydraulic oil passes through the oil cooler 35, it then enters the first cooling oil circuit 32 to lubricate the first component 101 and the second component to be lubricated.
  • the component 102 and the third component to be lubricated 103 are cooled and lubricated.
  • FIG. 11 is an oil path diagram of another hydraulic system provided by an embodiment of the present disclosure when a car is preparing for high pressure requirements, combined with FIG. 11 .
  • the engine needs to intervene at any time to speed up the car.
  • the auxiliary motor needs to work, and the second drive pump 12 also runs accordingly.
  • the first driving pump 11 and the second driving pump 12 operate simultaneously.
  • the flow path of the hydraulic oil is: the first driving pump 11 sucks the hydraulic oil out of the oil tank, and the hydraulic oil provided by the first driving pump 11 enters the first cooling oil passage 32 .
  • the hydraulic oil is transported to the first component to be lubricated 101, the second component to be lubricated 102, and the third component to be lubricated 103 to cool and lubricate them.
  • the second driving pump 12 sucks the hydraulic oil out of the oil tank.
  • the hydraulic oil provided by the second driving pump 12 passes through the second cooling control valve 312, the cooling check valve 317, the first pressure reducing valve 314 and the third pressure reducing valve 314.
  • the hydraulic oil pumped out by a driving pump 11 merges into the first cooling oil passage 32 to supply the first component to be lubricated. 101 and the second component 102 to be lubricated for cooling and lubrication.
  • FIG. 12 is an oil path diagram of another hydraulic system provided by an embodiment of the present disclosure when a car has a high pressure demand, combined with FIG. 12 .
  • the car needs engine access at this time, that is, the hydraulic system needs to supply oil to the high-pressure drive components, and the car is in the second mode.
  • the flow path of the hydraulic oil is: the first driving pump 11 sucks the hydraulic oil out of the oil tank, and the hydraulic oil provided by the first driving pump 11 enters the first cooling oil passage 32 through the oil cooler 35 .
  • the hydraulic oil is transported to the first to-be-lubricated component 101 , the second to-be-lubricated component 102 , and the third to-be-lubricated component 103 to cool and lubricate them.
  • the first cooling oil passage 32 enters the first cooling control valve 311 through the first cooling control valve 311 . Inside the fourth component 104 to be lubricated.
  • the hydraulic oil provided by the second driving pump 12 enters the first cooling regulating valve 313 , the second cooling control valve 312 and the high pressure control valve 211 . After the hydraulic oil provided by the second drive pump 12 passes through the second cooling control valve 312 and the cooling check valve 317, it merges with the hydraulic oil pumped out by the first drive pump 11 and enters the first cooling oil passage 32, so as to supply the first cooling oil to the first cooling oil circuit 32.
  • the component to be lubricated 101 and the second component to be lubricated 102 are cooled and lubricated.
  • the hydraulic oil passes through the high-pressure control valve 211 and enters the high-pressure oil line 22 to drive the high-pressure driving components to move.
  • FIG. 13 is an oil path diagram corresponding to another hydraulic system provided by an embodiment of the present disclosure when the car is in reverse gear, combined with FIG. 13 .
  • the drive motor needs to follow the car in reverse rotation.
  • the drive motor does not provide power for the car, but the engine needs to provide power for the car.
  • the second drive pump 12 sucks the hydraulic oil out of the oil tank and supplies oil to the components to be lubricated through the second cooling control valve 312 and the like.
  • oil circuit please refer to the corresponding description in Figure 12 above, and will not be repeated here.
  • a car includes a motor, engine, gearbox and the hydraulic system mentioned above.
  • the motor and engine are connected to the gearbox, and the hydraulic system is connected to the box of the gearbox.

Abstract

本公开提供了一种用于混动变速箱的液压系统及汽车,属于汽车结构部件领域。所述液压系统包括动力组件、高压驱动单元和冷却润滑单元,所述动力组件包括第一驱动泵和第二驱动泵,所述高压驱动单元包括高压驱动阀组和高压油路,所述冷却润滑单元包括冷却润滑阀组、第一冷却油路和第二冷却油路,所述冷却润滑阀组用于控制所述第一冷却油路和所述第二冷却油路是否连接以及控制所述第二驱动泵输出的液压油是否输送至所述第一冷却油路,所述第一冷却油路和所述第二冷却油路用于向所述混动变速箱中的不同的待润滑部件供油。本公开通过液压系统可以使得混动变速箱根据汽车的实际工况,提供合适的液压油。

Description

用于混动变速箱的液压系统及汽车
本公开要求于2022年09月09日提交的申请号为202211104814.0、发明名称为“用于混动变速箱的液压系统及汽车”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于汽车结构部件领域,特别涉及一种于混动变速箱的液压系统及汽车。
背景技术
混合动力汽车的变速箱简称为混动变速箱,用于为混合动力汽车提供变速需求。混动变速箱是一种将发动机与电机的动力以一定的方式耦合在一起并能实现变速、变扭的传动系统。为了确保混动变速箱的正常使用,往往需要通过液压系统对混动变速箱中待润滑部件(比如过热的电机或者轴齿部件等)进行强制冷却或者进行润滑,同时也需要对高压驱动部件(比如离合器或者驻车结构等)进行驱动。
相关技术中,混动变速箱的液压系统包括:液压泵和液压控制阀。其中,液压泵通过发动机驱动以泵送液压油。液压泵将自身的机械能转换成液压油的压力能,液压控制阀控制液压油的压力、流量和流动方向,将液压泵输出的液压油同时传给汽车的高压驱动部件和待润滑部件,高压驱动部件将液压油的压力能转换为机械能完成驱动作业,待润滑部件通过液压油完成冷却、润滑。
然而,在中高速工况时,汽车的发动机与电机一起作为动力源对汽车进行驱动,此时,液压泵在发动机的驱动下,转速高,使得液压油供大于求,影响汽车的节油率。相反,在低速工况时,汽车主要依靠电机作为动力源,发动机的转速大大降低,相应的,液压系统中的液压泵的转速也大大降低,液压油的流量减少,这样极有可能难以满足冷却、润滑油量的需求,容易使电机过热限制功率,影响驾驶性。
发明内容
本公开实施例提供了一种用于混动变速箱的液压系统及汽车,可以使得混动变速箱根据汽车的实际工况,合理供油。所述技术方案如下:
本公开实施例提供了一种用于混动变速箱的液压系统,所述液压系统包括动力组件、高压驱动单元和冷却润滑单元,所述动力组件包括第一驱动泵和第二驱动泵,所述第一驱动泵用于与汽车的驱动电机连接,所述第二驱动泵用于与所述汽车的发动机连接;所述高压驱动单元包括高压驱动阀组和高压油路,所述高压驱动阀组分别与所述第二驱动泵和所述高压油路连接,所述高压油路用于为所述混动变速箱中的高压驱动部件供油;所述冷却润滑单元包括冷却润滑阀组、第一冷却油路和第二冷却油路,所述第一冷却油路与所述第一驱动泵连接,所述冷却润滑阀组分别与所述第二驱动泵、所述第一冷却油路和所述第二冷却油路连接,所述冷却润滑阀组用于控制所述第一冷却油路和所述第二冷却油路是否连接以及控制所述第二驱动泵输出的液压油是否输送至所述第一冷却油路,所述第一冷却油路和所述第二冷却油路分别用于为所述混动变速箱中的不同的待润滑部件供油。
在本公开的又一种实现方式中,所述冷却润滑阀组包括第一冷却控制阀和第二冷却控制阀;所述第一冷却控制阀的第一油口与所述第一冷却油路连接,所述第一冷却控制阀的第二油口与所述第二冷却油路连接,所述第一冷却控制阀的控制油口与所述第二驱动泵的出油口连接;所述第二冷却控制阀的第一油口与所述第二驱动泵的出油口连接,所述第二冷却控制阀的第二油口与所述第一冷却油路连接。
在本公开的又一种实现方式中,所述第一冷却控制阀和所述第二冷却控制阀均为液压控制阀,所述冷却润滑阀组还包括第一冷却调节阀;所述第一冷却调节阀的第一油口与所述第二驱动泵的出油口连接,所述第一冷却调节阀的第二油口分别与所述第一冷却控制阀的控制油口和所述第二冷却控制阀的控制油口连接;或者,所述第一冷却调节阀的第一油口与所述第二驱动泵的出油口连接,所述第一冷却调节阀的第二油口与所述第二冷却控制阀的控制油口连接,所述第一冷却控制阀的控制油口与所述第二驱动泵的出油口连接。
在本公开的又一种实现方式中,所述冷却润滑阀组还包括第一减压阀,所述第一减压阀连接在所述第二冷却控制阀的第二油口与所述第一冷却油路之间,所述第一减压阀的第一油口与所述第二冷却控制阀的第二油口连接,所述第一减压阀的第二油口与油箱连接,所述第一减压阀的控制油口与自身的第一 油口连接。
在本公开的又一种实现方式中,所述冷却润滑单元还包括保护阀组,所述保护阀组连接在所述第一驱动泵与所述第一冷却油路之间;所述保护阀组包括第二减压阀,或者,包括第三减压阀;所述第二减压阀的第一油口与所述第一驱动泵的出油口连接,所述第二减压阀的第二油口分别与所述第一冷却油路和所述第二冷却控制阀的第二油口连接,所述第二减压阀的控制油口与所述第二减压阀的第一油口连接;所述第三减压阀的第一油口与所述第一驱动泵的出油口连接,所述第三减压阀的第二油口与所述第一冷却油路连接,所述第三减压阀的控制油口与所述第三减压阀的第一油口连接。
在本公开的又一种实现方式中,所述冷却润滑阀组还包括冷却单向阀,所述冷却单向阀连接在所述第二冷却控制阀与所述第二减压阀之间,所述冷却单向阀的进油口与所述第二冷却控制阀的第二油口连接,所述冷却单向阀的出油口与所述第二减压阀的第一油口连接。
在本公开的又一种实现方式中,所述高压驱动阀组包括高压控制阀,所述高压控制阀的第一油口与所述第二驱动泵的出油口连接,所述高压控制阀的第二油口与所述高压油路连接。
在本公开的又一种实现方式中,所述高压驱动阀组还包括高压调节阀,所述高压调节阀的第一油口分别与所述第二驱动泵的出油口连接,所述高压调节阀的第二油口与所述高压控制阀的控制油口连接。
在本公开的又一种实现方式中,所述高压驱动单元还包括蓄能器,所述蓄能器的出油口分别与所述高压油路和所述高压控制阀的第二油口连接。
在本公开的又一种实现方式中,还提供一种汽车,所述汽车包括电机、发动机、变速箱和以上所述的液压系统,所述电机和所述发动机均与所述变速箱连接,所述液压系统与所述变速箱的箱体连接。
附图说明
图1是本公开实施例提供的一种用于混动变速箱的液压系统的连接示意图;
图2是本公开实施例提供的另一种用于混动变速箱的液压系统的连接示意图;
图3是本公开实施例提供的又一种用于混动变速箱的液压系统的连接示意图;
图4是本公开实施例提供的再一种用于混动变速箱的液压系统的连接示意图;
图5是本公开实施例提供的还一种用于混动变速箱的液压系统的连接示意图;
图6是本公开实施例提供的又一种液压系统对应的汽车无高压需求时油路走向图;
图7是本公开实施例提供的又一种液压系统对应的汽车有高压需求准备时的油路走向图;
图8是本公开实施例提供的又一种液压系统对应的汽车有高压需求时的油路走向图;
图9是本公开实施例提供的又一种液压系统对应的汽车倒挡时的油路走向图;
图10是本公开实施例提供的另一种液压系统对应的汽车无高压需求时的油路走向图;
图11是本公开实施例提供的另一种液压系统对应的汽车有高压需求准备时的油路走向图;
图12是本公开实施例提供的另一种液压系统对应的汽车有高压需求时的油路走向图;
图13是本公开实施例提供的另一种液压系统对应的汽车倒挡时的油路走向图。
图中各符号表示含义如下:
1、动力组件;11、第一驱动泵;12、第二驱动泵;
2、高压驱动单元;21、高压驱动阀组;211、高压控制阀;212、高压调节
阀;22、高压油路;23、蓄能器;
3、冷却润滑单元;31、冷却润滑阀组;311、第一冷却控制阀;312、第二
冷却控制阀;313、第一冷却调节阀;314、第一减压阀;310、第三冷却调节阀;317、冷却单向阀;32、第一冷却油路;33、第二冷却油路;34、保护阀组;341、第二减压阀;342、第三减压阀;35、油冷器;
4、第一单向阀;5、过滤器;6、第二单向阀;
101、第一待润滑部件;102、第二待润滑部件;103、第三待润滑部件;104、
第四待润滑部件;201、高压驱动部件;
100、驱动电机;200、发动机;300、阻尼孔。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
本公开实施例提供了一种用于混动变速箱的液压系统,如图1所示,液压系统包括动力组件1、高压驱动单元2和冷却润滑单元3。动力组件1包括第一驱动泵11和第二驱动泵12,第一驱动泵11用于与汽车的驱动电机100连接,第二驱动泵12用于与汽车的发动机200连接。高压驱动单元2包括高压驱动阀组21和高压油路22,高压驱动阀组21分别与第二驱动泵12和高压油路22连接,高压油路22用于为混动变速箱中的高压驱动部件供油。冷却润滑单元3包括冷却润滑阀组31、第一冷却油路32和第二冷却油路33,第一冷却油路32与第一驱动泵11连接,冷却润滑阀组31分别与第二驱动泵12、第一冷却油路32和第二冷却油路33连接,冷却润滑阀组31用于控制第一冷却油路32和第二冷却油路33是否连通以及控制第二驱动泵12输出的液压油是否输送至第一冷却油路32,第一冷却油路32和第二冷却油路33分别用于为混动变速箱中的不同的待润滑部件供油。
当将本公开实施例提供的液压系统进行使用时,由于该液压系统包括第一驱动泵11和第二驱动泵12,且第一驱动泵11通过驱动电机100驱动,第二驱动泵12通过发动机200驱动,这样便可结合汽车处于不同的运行工况,对应控制第一驱动泵11和第二驱动泵12的运转状态,进而控制第一驱动泵11和第二驱动泵12是否泵送出液压油。
又因为该液压系统中包括冷却润滑阀组31和高压驱动阀组21,所以便可通过操控冷却润滑阀组31和高压驱动阀组21,使得第一驱动泵11和第二驱动泵12泵送出的液压油能够根据汽车处于不同的工况而对应输送至待润滑部件以及高压驱动部件,最终满足不同工况下,待润滑部件以及高压驱动部件的液压油的需求。
综上,该液压系统能够根据汽车的实际工况,为待润滑部件泵送液压油以冷却,同时又可以根据高压驱动部件的需求,来为高压驱动部件泵送液压油,以便满足高压驱动部件需求,提高了变速箱的传输需求以及汽车的节油率,降 低了变速箱内电机的损耗。
另外,本实施例中所说的油路可以为管路,比如软管和/或硬管,或者油路可以为集成在其他部件中的通道;或者油路的一部分是管路,另一部分是集成在其他部件中的通道等。在一些实施例中,油路还可以包括各种接头。
以上所说的高压驱动部件201可以为离合器等。液压油驱动离合器动作之后,能够使得发动机与混动变速箱接合在一起,以便使得发动机作为汽车的动力源。
待润滑部件可以为变速箱内的轴齿部件、驱动电机(也被称为电动机)、辅助电机以及离合器等部件。
示例性地,待润滑部件可以包括第一待润滑部件101、第二待润滑部件102、第三待润滑部件103和第四待润滑部件104。其中,第一待润滑部件101为轴齿部件,第二待润滑部件102为离合器等,第三待润滑部件103为驱动电机,第四待润滑部件104为辅助电机(也被成为发电机)。
以上所说的汽车的工况可以结合汽车的行驶速度来划分。比如,当汽车处于高速行驶时,此时,驱动电机和发动机同时作为动力,即汽车有高压需求的工况。当汽车处于低速行驶时,此时,仅有驱动电机作为汽车的动力源,即汽车无高压需求的工况。当汽车处于低速,但是需要加速至高速时,此时,需要发动机随时准备向汽车提供动力发动机开始工作但是还未向汽车提供动力,需要离合器为接合做好准备,即汽车有高压准备需求的工况,此时,驱动电机提供动力,发动机开始工作,但是不提供动力。
汽车的行驶速度的大小以汽车自身行驶的速度为准。比如,以下作为一种示例,一个汽车的最大行驶速度为100km/h,当该汽车以不大于30%的最大行驶速,比如30km/h的速度行驶时,可以理解该汽车在低速下行驶。当该汽车以不小于60%的最大行驶速度60km/h的速度行驶时,可以理解为该汽车在高速下行驶,当该汽车以30%-60%的最大行驶速度60km/h的速度行驶时,可以理解为该汽车在中速下行驶。需要说明的是,上述的速度描述只是一种示例,本公开实施例提供的汽车低速、中高速的速度不限于此。
图2是本公开实施例提供的另一种用于混动变速箱的液压系统的连接示意图,结合图2,冷却润滑阀组31包括第一冷却控制阀311和第二冷却控制阀312。第一冷却控制阀311的第一油口与第一冷却油路32连接,第一冷却控制阀311的第二油口与第二冷却油路33连接。第二冷却控制阀312的第一油口与第二驱 动泵12的出油口连接,第二冷却控制阀312的第二油口与第一冷却油路32连接。
在上述实现方式中,将冷却润滑阀组31设置为以上结构,这样可以通过控制第一冷却控制阀311来控制第一驱动泵11泵送的液压油经过第二冷却油路33是否流向第四待润滑部件104中。
同样的,可以通过第二冷却控制阀312将第二驱动泵12与第一冷却油路32连通,以此通过控制第二冷却控制阀312来控制是否向第一冷却油路32供油,进而控制第二驱动泵12是否向第一待润滑部件101、第二待润滑部件102、第三待润滑部件103中供油。
可选地,第一冷却控制阀311和第二冷却控制阀312均为液压控制阀,冷却润滑阀组31还包括第一冷却调节阀313。第一冷却调节阀313的第一油口与第二驱动泵12的出油口连接,第一冷却调节阀313的第二油口分别与第一冷却控制阀311的控制油口和第二冷却控制阀312的控制油口连接。
在上述实现方式中,第一冷却调节阀313用于调整第一冷却控制阀311和第二冷却控制阀312的开度大小,以对进入到第二冷却油路33和第一冷却油路32内的液压油的流量以及油压进行调整。
示例性地,第一冷却控制阀311和第二冷却控制阀312可以均为液控二位三通比例换向阀。这样可以通过第一冷却调节阀313来实现无级调速。当然,第一冷却控制阀311和第二冷却控制阀312也可以不是比例换向阀,此时,第一冷却控制阀311和第二冷却控制阀312作为开关阀,可以控制自身的第二油口是否分别与第二冷却油路33或者第一冷却油路32连通,以便控制是否向不同的待润滑部件供油。
类似的,第一冷却调节阀313可以为电磁二位四通比例换向阀。这样可以通过控制电流的大小来控制第一冷却调节阀313的开度大小,以便无级调节第一冷却调节阀313的阀芯位置,最终调控进入到第一冷却控制阀311和第二冷却控制阀312中的液压油的油压和流量大小。
再次参见图2,冷却润滑阀组31还包括第一减压阀314,第一减压阀314连接在第二冷却控制阀312的第二油口与第一冷却油路32之间。
第一减压阀314的第一油口与第二冷却控制阀312的第二油口连接,第一减压阀314的第二油口与油箱连接,第一减压阀314的控制油口与第一减压阀314的第一油口连接。
第一减压阀314为两位三通减压阀,且为常开减压阀。该减压阀在不工作时,第二油口与油箱不连通。由于控制油口与自身的第一油口连通,所以,在工作状态时,可以通过第二油口与油箱连通,使得多余的油液溢流在油箱内,从而保证第一油口处的油压为恒定值。
在上述实现方式中,第一减压阀314的布置,能够对进入到第一冷却油路32内的润滑油进行减压。
由于进入到高压油路22的润滑油分别与第二冷却控制阀312的第一油口均与第二驱动泵12的出油口连通,所以进入到高压油路22处的油压等于第二冷却控制阀312的第一油口处的油压。当汽车有高压准备需求时,也就需要增大第二冷却控制阀312的第一油口的油压。由于第二冷却控制阀312的第一油口处的油压与第二油口处的油压呈正向一一对应关系,所以,预增大第二冷却控制阀312的第一油口处,也就需要增大第二冷却控制阀312的第二油口处的油压。当第二驱动泵12泵送的液压油通过第二冷却控制阀312后进入到第一减压阀314的第一油口的油压大于第一减压阀314的弹簧力设定值,第一减压阀314被打开,液压油其中一部分便可通过第一减压阀314回流至油箱中而进行使得压力减小。这样便可在汽车有高压准备需求时,通过第一减压阀314限制进入到第一冷却油路32中的液压油的油压大小。
继续参见图2,冷却润滑单元3还包括保护阀组34,保护阀组34连接在第一驱动泵11与第一冷却油路32之间,保护阀组34包括第二减压阀341。第二减压阀341的第一油口与第一驱动泵11的出油口连接,第二减压阀341的第二油口与第一冷却油路32连接,第二减压阀341的控制油口与第二减压阀341的第一油口连接。
在上述实现方式中,第二减压阀341用于对第一驱动泵11泵出的油压进行减压。
以上第二减压阀341为常闭减压阀。该减压阀在不工作时,第一油口与第二油口连通。由于该控制油口与自身的第二油口连通,所以,在工作状态时,可以保证第二油口的油压为恒定值。
可选地,冷却润滑阀组31还包括冷却单向阀317,冷却单向阀317连接在第二冷却控制阀312与第二减压阀341之间,冷却单向阀317的进油口与第二冷却控制阀312的第二油口连接,冷却单向阀317的出油口与第二减压阀341的第一油口连接。
冷却单向阀317用于防止第一驱动泵11流出的液压油进入到第二冷却控制阀312内,即冷却单向阀317限制液压油或只能从第二冷却控制阀312流向第一冷却油路32,而不会反流。
可选地,冷却润滑单元3还包括油冷器35,油冷器35连接在第一冷却油路32与第一驱动泵11之间的油路上,油冷器35的进油口与第一驱动泵11的出油口连接,油冷器35的出油口与第一冷却油路32连接。
油冷器35用于降低进入到待润滑部件中的液压油的温度,对待润滑部件进行良好的润滑和冷却。
示例性地,为了对油冷器35进行保护,油冷器35与第二减压阀341并联,油冷器35的进油口和出油口分别与第二减压阀341的第一油口和第二油口连接。
这样可以通过第二减压阀341对油冷器35进行保护,即当油冷器35发生堵塞时,从第一驱动泵11泵出的液压油经过油冷器35时,不能通过,此时,会逐渐憋压直至从第一驱动泵11泵出的液压油的油压大于第二减压阀341的弹簧设定值时,第二减压阀341的便会打开,第一驱动泵11泵出的液压油便会经过第二减压阀341而顺利进入到第一冷却油路32内,进而避免油冷器35发生爆裂。
继续参见图2,可选地,高压驱动阀组21包括高压控制阀211,高压控制阀211的第一油口与第二驱动泵12的出油口连接,高压控制阀211的第二油口与高压油路22连接。
在上述实现方式中,通过控制高压控制阀211可以控制第二驱动泵12泵送的液压油经过高压油路22是否流向高压驱动部件201中。
可选地,高压驱动单元2还包括蓄能器23,蓄能器23的出油口分别与高压油路22和高压控制阀211的第二油口连接。
蓄能器23的设置可以对高压油路22中的高压油进行缓冲。比如,当进入到高压油路22中的油压大于离合器所能承受的最大油压,此时,高压油路中的润滑油一部分便会进入到蓄能器23以缓冲,进而对离合器进行保护。
可选地,液压系统还包括第一单向阀4,第一单向阀4的进油口与第一驱动泵11的进油口连接,第一单向阀4的出油口与第一驱动泵11的出油口连接。
在上述实现方式中,通过布置第一单向阀4可以使得汽车在倒挡时,避免第一驱动泵11内出现吸空现象,损坏管路。
汽车在倒挡时,仅由发动机作为动力源。第一驱动泵11与驱动电机驱动,所以,此时,驱动电机跟随汽车的车轮反转,即第一驱动泵11也跟着反转,通过布置第一单向阀4,可以避免第一驱动泵11内出现吸空现象,损坏管路。
可选地,液压系统还包括过滤器5,过滤器5连接在第一驱动泵11、第二驱动泵12与油箱之间的油路上,过滤器5的进油口与油箱的出油口连接,过滤器5的出油口分别与第一驱动泵11和第二驱动泵12的进油口连接。
在上述实现方式中,通过设置过滤器5,可以将液压油中的杂质进行过滤,避免杂质进入第一驱动泵11以及第二驱动泵12中而堵塞第一驱动泵11以及第二驱动泵12,影响汽车的运行。
继续参见图2,该液压系统还包括第二单向阀6,第二单向阀6连接在第一驱动泵11与油冷器35之间的油路上,第二单向阀6的进油口与第一驱动泵11的出油口连接,第二单向阀6的出油口与油冷器35的进油口连接。
这样可以通过第二单向阀6限制从第一驱动泵11泵出的油液只能流向油冷器35而不能从油冷器35回流至第一驱动泵11中。
图3是本公开实施例提供的又一种用于混动变速箱的液压系统的连接示意图,结合图3,与图2所示的液压系统的区别在于:保护阀组34的连接方式不同、第一冷却调节阀313的连接方式不同、省去冷却单向阀317以及增加高压调节阀212等。
可选地,第一冷却调节阀313也可以按照图3中的连接方式。此时,第一冷却调节阀313的第一油口与第二驱动泵12的出油口连接,第一冷却调节阀313的第二油口与第二冷却控制阀312的控制油口连接,第一冷却控制阀311的控制油口与第二驱动泵12的出油口连接。
通过上述布置,可以直接通过第二驱动泵12的运转状态来控制第一冷却控制阀311的开度大小,即第二驱动泵12的转速越高,则第一冷却控制阀311的出口开度越大,进入到第四待润滑部件104中的润滑油也就越多。这样便可结合汽车的工况,自动对辅助电机进行冷却润滑。而第一冷却调节阀313则可以直接控制第二冷却控制阀312的开度大小,进而合理控制从第二驱动泵12泵出的润滑油流向其他待润滑部件的油液等。
继续参见图3,可选地,保护阀组34包括第三减压阀342,第三减压阀342的第一油口与第一驱动泵11的出油口连接,第三减压阀342的第二油口分别与第一冷却油路32和第二冷却控制阀312的第二油口连接,第三减压阀342的控 制油口与第三减压阀342的第一油口连接。
在上述实现方式中,第三减压阀342的结构与第二减压阀341的结构相同,均为常开减压阀,即其在工作状态时,可以保证第二油口的油压为恒定值。以上连接方式,依然可以对进入到第一冷却油路32中的润滑油进行限压。
继续参见图3,高压驱动阀组21还包括高压调节阀212,高压调节阀212的第一油口分别与第二驱动泵12的出油口连接,高压调节阀212的第二油口与高压控制阀211的控制油口连接。
在上述实现方式中,高压调节阀212用于调整高压控制阀211的开度大小,以对进入到高压油路22内的液压油的流量以及油压进行调整。
示例性地,高压控制阀211可以均为液控二位三通比例换向阀。这样可以通过高压调节阀212来实现无级调速。当然,高压调节阀212也可以不是比例换向阀,此时,高压调节阀212作为开关阀,可以控制自身的第二油口是否与高压油路22连通,以便控制是否向高压驱动部件供油。
另外,本实施例中,为了简化结构,也可以将高压控制阀211省去,而直接通过高压调节阀212与高压油路22连接,参见图4所示的结构。
这样可以也可以直接通过控制高压调节阀212的开度大小,来实时调整进入到高压油路22中的液压油的油压等。
另外,第一减压阀314连接方式也可以为其他类型,比如,参见图5,此时,冷却润滑阀组31还可以包括第三冷却调节阀310,第三冷却调节阀310的第一油口与第一驱动泵11的出油口连接,第三冷却调节阀310的第二油口与第一减压阀314的控制油口连接,且第一减压阀314的第一油口与冷却单向阀317的出油口连接,第一减压阀314的第二油口与油箱连接。
这样可以通过引入第三冷却调节阀310来控制第一减压阀314的阀芯移动,使得第一减压阀314能够打开或者闭合。
示例性地,第三冷却调节阀310可以为电磁二位四通比例换向阀。这样可以通过控制电流的大小来精准控制第一减压阀314的开度大小,以便精确调节第一减压阀314的阀芯位置,最终提高调节效率。
继续参见图2和图3,可选地,该液压系统还包括阻尼孔300。高压调节阀212的第二油口和高压控制阀211的控制油口之间的油路设有阻尼孔300。这样在通过高压调节阀212对高压控制阀211的出口大小进行调节时,可以保证高压控制阀211的出口开度缓慢变化,避免由于变化过急,造成油压跳窜严重,影响汽车 行驶。
第二冷却控制阀312的控制油口与第一冷却调节阀313的第二油口之间的油路也设有阻尼孔300。或者第二冷却控制阀312的控制油口与第一冷却调节阀313的第二油口之间的油路也设有阻尼孔300。这样在对第二冷却控制阀312的出口大小进行调节时,可以保证第二冷却控制阀312的出口开度缓慢变化,避免由于变化过急,造成油压跳窜严重,影响汽车行驶。
第一冷却控制阀311的控制油口与第二驱动泵12之间的油路也设有阻尼孔300,或者,第一冷却控制阀311的控制油口与第一冷却调节阀313之间的油路也设有阻尼孔300。这样在对第一冷却控制阀311的出口大小进行调节时,可以保证第一冷却控制阀311的出口开度缓慢变化,避免由于变化过急,造成油压跳窜严重,影响汽车行驶。
同样的道理,在第一减压阀314的第一油口与第一减压阀314的控制油口之间的油路上也设有阻尼孔300,这样可以使得第一减压阀314的第一油口处的油压缓慢变化。
当然,第一冷却油路32在向第一待润滑部件101、第二待润滑部件102、第三待润滑部件103供油的油路上,也可以分别设置阻尼孔300,以控制流向第一待润滑部件101、第二待润滑部件102、第三待润滑部件103的液压油的流量。
类似的,第二冷却油路33在向第四待润滑部件104供油的油路上,也可以设置阻尼孔300,以控制流向第四待润滑部件104的液压油的流量。
下面结合图6-9来说明该图3中液压系统在不同的工况下的工作过程:
图6是本公开实施例提供的又一种液压系统对应的汽车无高压需求时油路走向图,结合图6。汽车无高压需求时,仅有第一驱动泵11单独工作,即,液压系统无需向高压驱动部件供油。由于汽车的转速较低,相应的,第一驱动泵11的转速较低,第一驱动泵11提供的液压油处于低压状态。
液压油的流动路径为:第一驱动泵11将液压油由油箱吸出,高压调节阀212、第二冷却控制阀312不通电。液压油经过第三减压阀342后,然后进入到第一冷却油路32内,液压油输送至第一待润滑部件101、第二待润滑部件102、第三待润滑部件103内,使得液压系统对以上部件进行冷却、润滑。
图7是本公开实施例提供的又一种液压系统对应的汽车有高压需求准备时的油路走向图,结合图7。此时,汽车有高压准备需求时,需要发动机随时介入 工作,对汽车进行提速。发动机开始运转(需要辅助电机工作),第二驱动泵12也跟随运转。第一驱动泵11和第二驱动泵12同时工作。
液压油的流动路径为:第一驱动泵11将液压油由油箱吸出,第一驱动泵11提供的液压油经过第三减压阀342后,然后进入到第一冷却油路32内。这样,液压油输送至第一待润滑部件101、第二待润滑部件102、第三待润滑部件103内,使得液压系统对以上部件进行冷却、润滑。
第二驱动泵12将液压油由油箱吸出,第二驱动泵12提供的液压油进入到第一冷却调节阀313和第二冷却控制阀312中,通过第一冷却调节阀313控制第二冷却控制阀312的开度大小,以控制第二驱动泵12泵出的液压油的油压和流量等。第二驱动泵12提供的液压油经过第二冷却控制阀312后,并将该第一减压阀314后与第一驱动泵11泵出的液压油汇合进入到第一冷却油路32中,以便向第一待润滑部件101、第二待润滑部件102、第三待润滑部件103进行冷却润滑。第一冷却油路32中流出的液压油经过第一冷却控制阀311进入到第二冷却油路33中,并进入到第四待润滑部件104内,使得液压系统对辅助电机进行冷却、润滑。
另外,在对驱动电机和辅助电机进行冷却润滑时,也可以通过驱动电机和辅助电机的定子温度实时反馈以调节分配给驱动电机和辅助电机的液压油的流量,满足驱动电机和辅助电机降温的同时,也满足齿轮、轴承和离合器的冷却润滑。比如,当辅助电机的温度较高或者驱动电机的温度较高时,可以增加第二驱动泵12的转速(但是发动机可以提供动力也可以不提供),以便使得第二驱动泵12的泵出的液压油的流量增大。
图8是本公开实施例提供的又一种液压系统对应的汽车有高压需求时的油路走向图,结合图8。汽车有高压需求时,此时汽车需要发动机接入,即液压系统需要向高压驱动部件供油。
液压油的流动路径为:第一驱动泵11将液压油由油箱吸出,第一驱动泵11提供的液压油经过第三减压阀342后,然后进入到第一冷却油路32。这样,液压油输送至第一待润滑部件101、第二待润滑部件102、第三待润滑部件103内,使得液压系统对以上部件进行冷却、润滑。
第二驱动泵12提供的液压油进入到第一冷却调节阀313和第二冷却控制阀312中,通过第一冷却调节阀313控制第二冷却控制阀312的出口开度大小,以控制第二驱动泵12泵出的液压油的油压和流量等。第二驱动泵12提供的液压 油经过第二冷却控制阀312与第一驱动泵11泵出的液压油汇合进入到第一冷却油路32,以便向第一待润滑部件101、第二待润滑部件102、第三待润滑部件103进行冷却润滑。第一冷却油路32中流出的液压油经过第一冷却控制阀311进入到第二冷却油路33中,并进入到第四待润滑部件104内,使得液压系统对辅助电机进行冷却、润滑。
与此同时,第二驱动泵12泵出的液压油经过高压控制阀211和高压调节阀212,并通过高压控制阀211进入到高压油路22中,以便为高压驱动部件201提供压力油,驱动高压驱动部件201运动。高压调节阀212调节从高压控制阀211中流出的液压油的油压和流量等,以便控制进入到高压油路22的液压油的油压和流量。
图9是本公开实施例提供的又一种液压系统对应的汽车倒挡时的油路走向图,结合图9。当汽车在进行倒挡时,此时,驱动电机需要跟随汽车反转,驱动电机不为汽车提供动力,而需要发动机为汽车提供动力。
第二驱动泵12将液压油由油箱吸出,通过第二冷却控制阀312等对待润滑部件进行供油。以上油路可以参见上述图8对应的说明,这里不再赘述。
下面结合图10-13来说明图2中液压系统在不同的工况下的工作过程:
图10是本公开实施例提供的另一种液压系统对应的汽车无高压需求时的油路走向图,结合图10,汽车无高压需求时,仅有第一驱动泵11单独工作,液压系统无需向高压驱动部件供油。液压油的流动路径为:第一驱动泵11将液压油由油箱吸出,液压油经过油冷器35后,然后进入到第一冷却油路32内对第一待润滑部件101、第二待润滑部件102、第三待润滑部件103进行冷却、润滑。
图11是本公开实施例提供的另一种液压系统对应的汽车有高压需求准备时的油路走向图,结合图11。此时,汽车有高压准备需求时,需要发动机随时介入工作,对汽车进行提速。发动机开始运转需要辅助电机工作,第二驱动泵12也跟随运转。第一驱动泵11和第二驱动泵12同时工作。
液压油的流动路径为:第一驱动泵11将液压油由油箱吸出,第一驱动泵11提供的液压油进入到第一冷却油路32内。这样,液压油输送至第一待润滑部件101、第二待润滑部件102、第三待润滑部件103内,以对其进行冷却、润滑。与此同时,第二驱动泵12将液压油由油箱吸出,第二驱动泵12提供的液压油经过第二冷却控制阀312后、冷却单向阀317后、第一减压阀314后与第一驱动泵11泵出的液压油汇合进入到第一冷却油路32中,以便向第一待润滑部件 101和第二待润滑部件102进行冷却润滑。
图12是本公开实施例提供的另一种液压系统对应的汽车有高压需求时的油路走向图,结合图12。汽车有高压需求时,此时汽车需要发动机接入,即液压系统需要向高压驱动部件供油,汽车处于第二模式。
液压油的流动路径为:第一驱动泵11将液压油由油箱吸出,第一驱动泵11提供的液压油经过油冷器35进入到第一冷却油路32内。这样,液压油输送至第一待润滑部件101、第二待润滑部件102、第三待润滑部件103内对其进行冷却、润滑,同时第一冷却油路32经过第一冷却控制阀311进入到第四待润滑部件104内。
第二驱动泵12提供的液压油进入到第一冷却调节阀313、第二冷却控制阀312和高压控制阀211中。第二驱动泵12提供的液压油经过第二冷却控制阀312后、冷却单向阀317后与第一驱动泵11泵出的液压油汇合进入到第一冷却油路32中,以便向第一待润滑部件101和第二待润滑部件102进行冷却润滑。液压油通过高压控制阀211后进入到高压油路22内,驱动高压驱动部件移动。
图13是本公开实施例提供的另一种液压系统对应的汽车倒挡时的油路走向图,结合图13。当汽车在进行倒挡时,此时,驱动电机需要跟随汽车反转,驱动电机不为汽车提供动力,而需要发动机为汽车提供动力。
第二驱动泵12将液压油由油箱吸出,通过第二冷却控制阀312等对待润滑部件进行供油。以上油路可以参见上述图12对应的说明,这里不再赘述。
另一方面,汽车包括电机、发动机、变速箱和以上所说的液压系统,电机和发动机均与变速箱连接,液压系统与变速箱的箱体连接。
以上汽车具有与前述液压系统相同的有益效果,这里不再赘述。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (12)

  1. 一种用于混动变速箱的液压系统,所述液压系统包括动力组件(1)、高压驱动单元(2)和冷却润滑单元(3),
    所述动力组件(1)包括第一驱动泵(11)和第二驱动泵(12),所述第一驱动泵(11)用于与汽车的驱动电机(100)连接,所述第二驱动泵(12)用于与所述汽车的发动机(200)连接;
    所述高压驱动单元(2)包括高压驱动阀组(21)和高压油路(22),所述高压驱动阀组(21)分别与所述第二驱动泵(12)和所述高压油路(22)连接,所述高压油路(22)用于为所述混动变速箱中的高压驱动部件供油;
    所述冷却润滑单元(3)包括冷却润滑阀组(31)、第一冷却油路(32)和第二冷却油路(33),所述第一冷却油路(32)与所述第一驱动泵(11)连接,所述冷却润滑阀组(31)分别与所述第二驱动泵(12)、所述第一冷却油路(32)和所述第二冷却油路(33)连接,所述冷却润滑阀组(31)用于控制所述第一冷却油路(32)和所述第二冷却油路(33)是否连通以及控制所述第二驱动泵(12)输出的液压油是否输送至所述第一冷却油路(32),所述第一冷却油路(32)和所述第二冷却油路(33)分别用于为所述混动变速箱中的不同的待润滑部件供油。
  2. 根据权利要求1所述的液压系统,其中,所述冷却润滑阀组(31)包括第一冷却控制阀(311)和第二冷却控制阀(312);
    所述第一冷却控制阀(311)的第一油口与所述第一冷却油路(32)连接,所述第一冷却控制阀(311)的第二油口与所述第二冷却油路(33)连接,所述第一冷却控制阀(311)的控制油口与所述第二驱动泵(12)的出油口连接;
    所述第二冷却控制阀(312)的第一油口与所述第二驱动泵(12)的出油口连接,所述第二冷却控制阀(312)的第二油口与所述第一冷却油路(32)连接。
  3. 根据权利要求2所述的液压系统,其中,所述第一冷却控制阀(311)和所述第二冷却控制阀(312)均为液压控制阀,所述冷却润滑阀组(31)还包括第一冷却调节阀(313);
    所述第一冷却调节阀(313)的第一油口与所述第二驱动泵(12)的出油口 连接,所述第一冷却调节阀(313)的第二油口分别与所述第一冷却控制阀(311)的控制油口和所述第二冷却控制阀(312)的控制油口连接。
  4. 根据权利要求2所述的液压系统,其中,所述第一冷却控制阀(311)和所述第二冷却控制阀(312)均为液压控制阀,所述冷却润滑阀组(31)还包括第一冷却调节阀(313);
    所述第一冷却调节阀(313)的第一油口与所述第二驱动泵(12)的出油口连接,所述第一冷却调节阀(313)的第二油口与所述第二冷却控制阀(312)的控制油口连接,所述第一冷却控制阀(311)的控制油口与所述第二驱动泵(12)的出油口连接。
  5. 根据权利要求2至4任一项所述的液压系统,其特征在于,所述冷却润滑阀组(31)还包括第一减压阀(314),所述第一减压阀(314)连接在所述第二冷却控制阀(312)的第二油口与所述第一冷却油路(32)之间。
  6. 根据权利要求2至5任一项所述的液压系统,其中,所述冷却润滑单元(3)还包括保护阀组(34),所述保护阀组(34)连接在所述第一驱动泵(11)与所述第一冷却油路(32)之间;
    所述保护阀组(34)包括第二减压阀(341);
    所述第二减压阀(341)的第一油口与所述第一驱动泵(11)的出油口连接,所述第二减压阀(341)的第二油口分别与所述第一冷却油路(32)和所述第二冷却控制阀(312)的第二油口连接,所述第二减压阀(341)的控制油口与所述第二减压阀(341)的第一油口连接。
  7. 根据权利要求2至5任一项所述的液压系统,其中,所述冷却润滑单元(3)还包括保护阀组(34),所述保护阀组(34)连接在所述第一驱动泵(11)与所述第一冷却油路(32)之间;
    所述保护阀组(34)包括第三减压阀(342);
    所述第三减压阀(342)的第一油口与所述第一驱动泵(11)的出油口连接,所述第三减压阀(342)的第二油口与所述第一冷却油路(32)连接,所述第三 减压阀(342)的控制油口与所述第三减压阀(342)的第一油口连接。
  8. 根据权利要求6所述的液压系统,其中,所述冷却润滑阀组(31)还包括冷却单向阀(317),所述冷却单向阀(317)连接在所述第二冷却控制阀(312)与所述第二减压阀(341)之间,所述冷却单向阀(317)的进油口与所述第二冷却控制阀(312)的第二油口连接,所述冷却单向阀(317)的出油口与所述第二减压阀(341)的第一油口连接。
  9. 根据权利要求1至8任一项所述的液压系统,其中,所述高压驱动阀组(21)包括高压控制阀(211),
    所述高压控制阀(211)的第一油口与所述第二驱动泵(12)的出油口连接,所述高压控制阀(211)的第二油口与所述高压油路(22)连接。
  10. 根据权利要求9所述的液压系统,其中,所述高压驱动阀组(21)还包括高压调节阀(212),
    所述高压调节阀(212)的第一油口与所述第二驱动泵(12)的出油口连接,所述高压调节阀(212)的第二油口与所述高压控制阀(211)的控制油口连接。
  11. 根据权利要求9或10所述的液压系统,其中,所述高压驱动单元(2)还包括蓄能器(23),所述蓄能器(23)的出油口分别与所述高压油路(22)和所述高压控制阀(211)的第二油口连接。
  12. 一种汽车,所述汽车包括电机、发动机、变速箱和权利要求1至11任一项所述的液压系统,所述电机和所述发动机均与所述变速箱连接,所述液压系统与所述变速箱的箱体连接。
PCT/CN2023/117635 2022-09-09 2023-09-08 用于混动变速箱的液压系统及汽车 WO2024051800A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211104814.0A CN115450967B (zh) 2022-09-09 2022-09-09 用于混动变速箱的液压系统及汽车
CN202211104814.0 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024051800A1 true WO2024051800A1 (zh) 2024-03-14

Family

ID=84302479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117635 WO2024051800A1 (zh) 2022-09-09 2023-09-08 用于混动变速箱的液压系统及汽车

Country Status (2)

Country Link
CN (1) CN115450967B (zh)
WO (1) WO2024051800A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115450967B (zh) * 2022-09-09 2024-03-26 奇瑞汽车股份有限公司 用于混动变速箱的液压系统及汽车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180620A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp 車両用無段変速機の潤滑・冷却装置
CN111255874A (zh) * 2018-11-30 2020-06-09 广州汽车集团股份有限公司 一种机电耦合器液压控制系统及其控制方法
CN213472767U (zh) * 2020-09-04 2021-06-18 弗迪动力有限公司 动力总成和车辆
CN213734582U (zh) * 2020-11-16 2021-07-20 比亚迪股份有限公司 动力总成以及车辆
CN114001060A (zh) * 2021-11-15 2022-02-01 博格华纳汽车零部件(天津)有限公司 一种通过反馈控制的变速箱液压系统
CN115450967A (zh) * 2022-09-09 2022-12-09 奇瑞汽车股份有限公司 用于混动变速箱的液压系统及汽车

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472147B1 (en) * 2009-08-24 2015-02-25 Shanghai Maple Guorun Automobile Co., Ltd. Hydraulic control device for hybrid transmission
KR102371603B1 (ko) * 2017-05-26 2022-03-07 현대자동차주식회사 변속기용 유압 회로
CN108757607B (zh) * 2018-08-09 2023-11-07 江苏金润汽车传动科技有限公司 混动变速器液压系统
CN110285210B (zh) * 2018-08-28 2021-10-26 长城汽车股份有限公司 液压控制系统和车辆
CN109282028B (zh) * 2018-11-22 2023-09-01 广州汽车集团股份有限公司 混合动力车辆液压控制系统及其控制方法
CN110388452B (zh) * 2019-07-26 2021-07-30 奇瑞汽车股份有限公司 液压供给系统、控制方法及汽车
CN213419859U (zh) * 2020-05-27 2021-06-11 吉泰车辆技术(苏州)有限公司 双泵双离合器液压系统
CN112112956A (zh) * 2020-09-07 2020-12-22 吉泰车辆技术(苏州)有限公司 变速箱液压控制系统
CN213088564U (zh) * 2020-09-07 2021-04-30 中国第一汽车股份有限公司 混动变速器液压系统
CN112594372B (zh) * 2020-12-08 2022-01-28 浙江吉利控股集团有限公司 一种汽车混合动力变速器液压系统
CN215334389U (zh) * 2021-03-01 2021-12-28 奇瑞汽车股份有限公司 适用于混合动力的液压系统
CN113124152A (zh) * 2021-04-20 2021-07-16 坤泰车辆系统(常州)有限公司 混合动力专用变速箱液压系统
CN215980192U (zh) * 2021-08-31 2022-03-08 重庆长安汽车股份有限公司 一种混合动力车辆的液压系统
CN216643067U (zh) * 2021-10-20 2022-05-31 上海汽车变速器有限公司 用于湿式双离合器混动变速系统的液压控制装置
CN113883264A (zh) * 2021-10-25 2022-01-04 柳州赛克科技发展有限公司 一种混合动力车辆液压系统
CN216382530U (zh) * 2021-12-15 2022-04-26 北京海纳川汽车部件股份有限公司 用于混合动力专用变速器的液压控制系统及汽车
CN114593196A (zh) * 2022-01-28 2022-06-07 重庆青山工业有限责任公司 一种混合动力变速器的冷却润滑系统
CN114658843B (zh) * 2022-03-16 2023-11-07 陕西法士特齿轮有限责任公司 一种混合动力自动变速器液压控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180620A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp 車両用無段変速機の潤滑・冷却装置
CN111255874A (zh) * 2018-11-30 2020-06-09 广州汽车集团股份有限公司 一种机电耦合器液压控制系统及其控制方法
CN213472767U (zh) * 2020-09-04 2021-06-18 弗迪动力有限公司 动力总成和车辆
CN213734582U (zh) * 2020-11-16 2021-07-20 比亚迪股份有限公司 动力总成以及车辆
CN114001060A (zh) * 2021-11-15 2022-02-01 博格华纳汽车零部件(天津)有限公司 一种通过反馈控制的变速箱液压系统
CN115450967A (zh) * 2022-09-09 2022-12-09 奇瑞汽车股份有限公司 用于混动变速箱的液压系统及汽车

Also Published As

Publication number Publication date
CN115450967B (zh) 2024-03-26
CN115450967A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
CN107387598B (zh) 一种自动变速器高效油源系统
CN102077000A (zh) 变速器装置的具有变速器主泵和辅助泵的液压系统
KR101827102B1 (ko) 차량용 유량 공급 시스템 및 제어 방법
WO2024051800A1 (zh) 用于混动变速箱的液压系统及汽车
CN101761642B (zh) 变速器油冷却器中流速的控制
JP3182960B2 (ja) ハイブリット車輌における油圧制御装置
US11913542B2 (en) Vehicle hydraulic control system and method
WO2024051798A1 (zh) 用于混动变速箱的液压系统及汽车
US20200011410A1 (en) Oil supply device
CN110469663A (zh) 一种变速器液压控制系统及车辆
CN109515164B (zh) 一种混合动力车辆的液压控制装置
CN112943752A (zh) 一种混合动力专用变速箱液压油路
CN115574089A (zh) 一种混合动力液压控制系统、变速器及汽车
CN110388452B (zh) 液压供给系统、控制方法及汽车
CN216643067U (zh) 用于湿式双离合器混动变速系统的液压控制装置
CN213734582U (zh) 动力总成以及车辆
CN213017371U (zh) 汽车变速箱双泵耦合液压控制系统
CN110748637B (zh) 混合动力变速箱液压系统的压力控制方法
CN113565948A (zh) 一种混动变速箱冷却润滑系统以及混合动力车辆
CN213472769U (zh) 动力总成和车辆
CN106958645B (zh) 混合动力汽车耦合机构冷却润滑系统及其控制方法
CN209781593U (zh) 适于电动汽车的无级变速系统
CN107407410A (zh) 用于双离合器自动变速器的多压力液压控制系统
CN111255874A (zh) 一种机电耦合器液压控制系统及其控制方法
JP2019186989A (ja) 車両のオイル供給装置およびオイル供給方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862494

Country of ref document: EP

Kind code of ref document: A1