WO2022260085A1 - 多孔質樹脂シート、金属層付き多孔質樹脂シート、電子回路基板、多孔質樹脂シートの製造方法、金属層付き多孔質樹脂シートの製造方法、及び、電子回路基板の製造方法 - Google Patents
多孔質樹脂シート、金属層付き多孔質樹脂シート、電子回路基板、多孔質樹脂シートの製造方法、金属層付き多孔質樹脂シートの製造方法、及び、電子回路基板の製造方法 Download PDFInfo
- Publication number
- WO2022260085A1 WO2022260085A1 PCT/JP2022/023134 JP2022023134W WO2022260085A1 WO 2022260085 A1 WO2022260085 A1 WO 2022260085A1 JP 2022023134 W JP2022023134 W JP 2022023134W WO 2022260085 A1 WO2022260085 A1 WO 2022260085A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin sheet
- porous resin
- sheet
- metal layer
- porous
- Prior art date
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 470
- 239000011347 resin Substances 0.000 title claims abstract description 469
- 229910052751 metal Inorganic materials 0.000 title claims description 158
- 239000002184 metal Substances 0.000 title claims description 158
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 110
- 239000011148 porous material Substances 0.000 claims abstract description 70
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 55
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 53
- 239000010410 layer Substances 0.000 claims description 173
- 238000000034 method Methods 0.000 claims description 78
- 239000007787 solid Substances 0.000 claims description 77
- 239000003795 chemical substances by application Substances 0.000 claims description 66
- 230000035699 permeability Effects 0.000 claims description 46
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims description 24
- 125000003118 aryl group Chemical group 0.000 claims description 20
- 229920001225 polyester resin Polymers 0.000 claims description 20
- 239000004645 polyester resin Substances 0.000 claims description 20
- 239000002344 surface layer Substances 0.000 claims description 16
- 238000002834 transmittance Methods 0.000 claims description 16
- 238000003860 storage Methods 0.000 claims description 15
- KAUQJMHLAFIZDU-UHFFFAOYSA-N 6-Hydroxy-2-naphthoic acid Chemical compound C1=C(O)C=CC2=CC(C(=O)O)=CC=C21 KAUQJMHLAFIZDU-UHFFFAOYSA-N 0.000 claims description 14
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 claims description 12
- 230000003746 surface roughness Effects 0.000 claims description 12
- 229920001577 copolymer Polymers 0.000 claims description 4
- 239000012260 resinous material Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 8
- 239000004020 conductor Substances 0.000 description 69
- 239000011229 interlayer Substances 0.000 description 68
- 239000007789 gas Substances 0.000 description 44
- 239000000155 melt Substances 0.000 description 32
- 238000005259 measurement Methods 0.000 description 20
- 229920000106 Liquid crystal polymer Polymers 0.000 description 18
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 18
- 238000000465 moulding Methods 0.000 description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 17
- 229910000679 solder Inorganic materials 0.000 description 17
- 229910052802 copper Inorganic materials 0.000 description 15
- 239000010949 copper Substances 0.000 description 15
- 238000002844 melting Methods 0.000 description 14
- 230000008018 melting Effects 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 11
- 238000000605 extraction Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 230000000704 physical effect Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 229920005992 thermoplastic resin Polymers 0.000 description 7
- 239000002994 raw material Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 239000004696 Poly ether ether ketone Substances 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920002530 polyetherether ketone Polymers 0.000 description 4
- 239000009719 polyimide resin Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000004813 Perfluoroalkoxy alkane Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000010128 melt processing Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000005143 pyrolysis gas chromatography mass spectroscopy Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000000194 supercritical-fluid extraction Methods 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/09—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/26—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
Definitions
- the present invention relates to a porous resin sheet, a porous resin sheet with a metal layer, an electronic circuit board, a method for manufacturing a porous resin sheet, a method for manufacturing a porous resin sheet with a metal layer, and a method for manufacturing an electronic circuit board.
- a porous resin sheet in which pores are provided inside the resin sheet has air with a dielectric constant of 1 in the pores, so that the dielectric properties of the electronic circuit board, especially in the high frequency range, are improved. It can be used as an insulating material for
- Patent Literature 1 and Patent Literature 2 disclose a method for producing a porous resin sheet, in which a porosifying agent is extracted from a porous body precursor containing a porosifying agent using a medium in a supercritical state. .
- Patent Literature 1 and Patent Literature 2 describe that carbon dioxide is preferably used as a supercritical medium.
- a varnish (mixed liquid) of a precursor for a porous body containing a porosity agent is blended and coated on a substrate.
- supercritical extraction is performed to make the resin sheet porous by extracting a porosifying agent from the resin sheet before being made porous using a medium such as carbon dioxide in a supercritical state. If necessary, the porous resin sheet is cured under vacuum conditions, and a metal layer is laminated thereon to produce a porous resin sheet. According to the methods described in Patent Documents 1 and 2, it is believed that a porous resin sheet with a low dielectric constant can be produced industrially at low cost.
- the porous resin sheet is used as an insulating material for an electronic circuit board, depending on the type of resin composing the porous resin sheet, there is a risk that the dielectric properties may vary in an environment near room temperature in which it is actually used.
- the present invention has been made to solve the above problems, and provides a porous resin sheet in which variations in dielectric properties are suppressed during use and from which a porosifying agent is efficiently discharged during manufacture. With the goal. Furthermore, the present invention provides a porous resin sheet with a metal layer comprising the porous resin sheet, an electronic circuit board comprising the porous resin sheet with the metal layer, a method for producing the porous resin sheet, and the porous resin sheet with the metal layer. It aims at providing the manufacturing method of a resin sheet, and the manufacturing method of the said electronic circuit board.
- the porous resin sheet of the present invention has a carbon dioxide gas permeability of 1 cm 3 /m 2 ⁇ 24 hr ⁇ atm or less at 25° C. at a sheet thickness of 50 ⁇ m, and a carbon dioxide gas permeability of 5 cm 3 /m 2 at 100° C. It is composed of a resin sheet containing a resin having a viscosity of 24 hr ⁇ atm or more, and holes are provided inside the resin sheet.
- the porous resin sheet with a metal layer of the present invention comprises the porous resin sheet of the present invention and a metal layer arranged on at least one main surface of the porous resin sheet.
- the electronic circuit board of the present invention comprises the porous resin sheet with a metal layer of the present invention.
- the carbon dioxide gas permeability at 25° C. at a sheet thickness of 50 ⁇ m is 1 cm 3 /m 2 ⁇ 24 hr ⁇ atm or less, and the carbon dioxide gas permeability at 100° C. is 5 cm 3 /.
- the method for producing a porous resin sheet with a metal layer of the present invention includes the steps of producing a porous resin sheet by the above-described production method, and disposing a metal layer on at least one main surface of the porous resin sheet. Prepare.
- the method for producing an electronic circuit board of the present invention includes the steps of producing a porous resin sheet with a metal layer by the above-mentioned production method, and forming a circuit pattern on the metal layer of the porous resin sheet with a metal layer. Prepare.
- a porous resin sheet in which variations in dielectric properties are suppressed during use, and the porosity agent is efficiently discharged during manufacture.
- a porous resin sheet with a metal layer comprising the porous resin sheet, an electronic circuit board comprising the porous resin sheet with the metal layer, a method for producing the porous resin sheet, and the porous resin sheet with the metal layer.
- a method for producing a porous resin sheet and a method for producing the electronic circuit board can be provided.
- FIG. 1 is a schematic cross-sectional view showing an example of the porous resin sheet of the present invention.
- FIG. 2 is a schematic cross-sectional view showing an example of a porous resin sheet having different porosities and pore diameters between the inside and the surface of the resin sheet.
- FIG. 3 is a schematic cross-sectional view showing another example of a porous resin sheet having different porosities and pore diameters between the inside and the surface of the resin sheet.
- FIG. 4 is a schematic cross-sectional view showing an example of a porous resin sheet having an anisotropic pore shape.
- FIG. 5 is a schematic cross-sectional view showing an example of the porous resin sheet with a metal layer of the present invention.
- FIG. 6 is a schematic cross-sectional view showing an example of the electronic circuit board of the present invention.
- the porous resin sheet, the porous resin sheet with a metal layer, the electronic circuit board, the method for producing the porous resin sheet, the method for producing the porous resin sheet with a metal layer, and the method for producing the electronic circuit board of the present invention are not limited to the following configurations, and can be appropriately modified and applied without changing the gist of the present invention.
- a combination of two or more of the individual preferred configurations of the present invention described below is also the present invention.
- sheet is synonymous with “film”, and the two are not distinguished by thickness.
- FIG. 1 is a schematic cross-sectional view showing an example of the porous resin sheet of the present invention.
- the porous resin sheet 1 shown in FIG. 1 consists of a resin sheet 1s containing resin. Holes 1h are provided inside the resin sheet 1s.
- the porous resin sheet 1 has a first main surface 1a and a second main surface 1b facing each other in the thickness direction.
- the porous resin sheet of the present invention is characterized in that the carbon dioxide gas permeability of the resin contained in the resin sheet has temperature dependence. Specifically, the carbon dioxide gas permeability at a sheet thickness of 50 ⁇ m at 25° C. is 1 cm 3 /m 2 ⁇ 24 hr ⁇ atm or less, and the carbon dioxide gas permeability at 100° C. is 5 cm 3 /m 2 ⁇ 24 hr ⁇ atm or more. It is characterized by
- the porous resin sheet When a porous resin sheet is used as an insulating material for an electronic circuit board, if water vapor penetrates into the porous resin sheet, the moisture absorption deteriorates the dielectric properties. Therefore, it is desirable for the porous resin sheet to have a low gas permeability, particularly a low water vapor permeability, in an environment near room temperature in which it is actually used.
- the gas permeability of the porous resin sheet varies depending on the type of resin, but does not depend on the type of gas such as water vapor, oxygen, or carbon dioxide. rate will also increase.
- the porous resin sheet of the present invention since a resin having a low carbon dioxide gas permeability of 1 cm 3 /m 2 ⁇ 24 hr ⁇ atm or less at 25° C. is used, the water vapor permeability is also low. Therefore, it is possible to suppress fluctuations in dielectric properties due to moisture absorption.
- a porous resin sheet is produced using a method of extracting a porosifying agent using carbon dioxide in a supercritical state as a medium
- the porosifying agent is extracted.
- the conditions are generally a temperature of about 25 to 200° C. and a pressure of about 10 to 50 MPa.
- the temperature condition is often 80 to 120°C.
- the present inventors evaluated the productivity of the porous resin sheet by measuring the carbon dioxide gas permeability at 100°C.
- the carbon dioxide gas permeability is measured at 1 atm (0.1 MPa), which is practically measurable. decided to Since the gas permeability of the porous resin sheet is proportional to the pressure, for example, if the gas permeability at 1 atm is high, the gas permeability at a pressure such as 30 MPa is also high.
- the porous resin sheet of the present invention since a resin having a high carbon dioxide gas permeability of 5 cm 3 /m 2 ⁇ 24 hr ⁇ atm or more at 100° C. is used, porosification is performed using carbon dioxide in a supercritical state. The porosity agent can be efficiently discharged in the process of discharging the agent. Therefore, productivity of the porous resin sheet can be improved.
- the carbon dioxide gas permeability at 25° C. at a sheet thickness of 50 ⁇ m is 1 cm 3 /m 2 ⁇ 24 hr ⁇ atm or less, preferably 0.7 cm 3 /m 2 ⁇ 24 hr ⁇ atm or less. is.
- the carbon dioxide gas permeability at 25° C. with a sheet thickness of 50 ⁇ m may be 0 cm 3 /m 2 ⁇ 24 hr ⁇ atm.
- a sheet thickness of 50 ⁇ m may be greater than 0 cm 3 /m 2 ⁇ 24 hr ⁇ atm, for example, 0.3 cm 3 /m 2 ⁇ 24 hr ⁇ atm or more, 0.5 cm 3 /m 2 ⁇ 24 hr ⁇ atm or more.
- the carbon dioxide gas permeability at 100° C. at a sheet thickness of 50 ⁇ m is 5 cm 3 /m 2 ⁇ 24 hr ⁇ atm or more, preferably 7 cm 3 /m 2 ⁇ 24 hr ⁇ atm or more.
- the carbon dioxide gas permeability at 100° C. at a sheet thickness of 50 ⁇ m is preferably as large as possible , so the upper limit is not particularly limited. It is 2 ⁇ 24 hr ⁇ atm or less, more preferably 30 cm 3 /m 2 ⁇ 24 hr ⁇ atm or less.
- Gas permeability is measured in accordance with JIS K 7126-1 (plastic/film and sheet/gas permeability test method (differential pressure method)).
- test method of the differential pressure method either the pressure sensor method or the gas chromatography method may be used.
- the thickness of the porous resin sheet of the present invention is not limited to 50 ⁇ m, preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 20 ⁇ m or more and 100 ⁇ m or less.
- the porosity tends to increase on the main surface of the porous resin sheet, and smoothness tends to decrease.
- pattern defects tend to occur due to the pores present on the main surface of the sheet. .
- the thickness of the porous resin sheet is greater than 200 ⁇ m, when the porous resin sheet is used to manufacture an electronic circuit board having interlayer connection conductors, the via holes in which the interlayer connection conductors are formed are not formed through the porous resin sheet. It can be difficult to form through.
- the resin contained in the resin sheet is preferably a thermoplastic resin.
- thermoplastic resins include aromatic polyester resins such as liquid crystal polymer (LCP) and aromatic polyetherketone resins such as polyetheretherketone resin (PEEK).
- LCP liquid crystal polymer
- PEEK polyetheretherketone resin
- a resin sheet may contain 1 type of resin, and may contain 2 or more types of resin.
- the resin sheet preferably contains a liquid crystal polymer as a main component. Since the liquid crystal polymer has a low dielectric constant among thermoplastic resins, the dielectric properties of the electronic circuit board can be easily improved in a high frequency band. In addition, since the liquid crystal polymer has a low hygroscopicity, fluctuations in dielectric properties due to moisture absorption are less likely to occur.
- the main component means the component with the highest content (weight percentage).
- Aromatic polyester resins such as liquid crystal polymers generally have high intermolecular packing properties because they are composed of rod-like molecules, and have low gas permeability at low and high temperatures compared to other resins.
- the packing property tends to loosen at relatively high temperatures, and if the gas permeability at high temperatures is about ten times higher than the gas permeability at low temperatures, carbon dioxide in a supercritical state is selected. can increase the discharge efficiency of the porosity agent in the process of discharging the porosity agent.
- the resin contained in the resin sheet is preferably a wholly aromatic polyester resin.
- the wholly aromatic polyester resin preferably contains a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid.
- a wholly aromatic polyester resin is more resistant to hydrolysis than a partially aromatic polyester resin, and is therefore preferable as a constituent material for an electronic circuit board manufactured using a porous resin sheet.
- the copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid has a small dielectric loss tangent due to the naphthalene ring, it can be used in electronic circuit boards to reduce electrical energy loss in porous resin sheets. contribute.
- the wholly aromatic polyester resin contains a copolymer of p-hydroxybenzoic acid (HBA) and 6-hydroxy-2-naphthoic acid (HNA), the ratio of p-hydroxybenzoic acid to 6-hydroxy-2-naphthoic acid
- HBA/HNA molar ratio
- the molar ratio (HBA/HNA) is preferably 0.20 or more (16.7/83.3 or more), 5 or less (83.3/16.7 or less), and 0.25 or more (20/80 or more), and more preferably 4 or less (80/20 or less).
- the packing property between rod-like molecules is loosened at the kink portion of HNA, so the gas barrier property at high temperatures is relatively low. easier.
- the porosity agent can be efficiently discharged during the discharge process of the porosity agent using supercritical carbon dioxide.
- the content and ratio of each monomer that constitutes an aromatic polyester resin such as a wholly aromatic polyester resin can be analyzed by reactive pyrolysis gas chromatography-mass spectrometry.
- the porous resin sheet of the present invention preferably has closed cells as pores.
- the porous resin sheet has a closed-cell structure, compared with a case having an open-cell structure, the paths for the air in the pores to escape to the outside are likely to be reduced, and compressive strength is likely to be ensured. The pores are less likely to be crushed when pressure-bonded to the high-quality resin sheet.
- close cell refers to a structure in which the wall surfaces of cells are all surrounded by resin. is not connected to other bubbles.
- the porous resin sheet of the present invention When the porous resin sheet of the present invention is subjected to laser drilling, if the resin near the pores provided inside the resin sheet can be melted, a structure in which the pores are blocked by the resin can be obtained. are easier to form. Specifically, by using a resin that easily absorbs laser light, the thermal processing of the resin by the laser light is actively caused rather than the ablation effect of the resin due to laser light irradiation, and laser drilling is performed. The resin melts during this process, and the melted resin tends to clog the pores. Therefore, by using a resin that does not easily transmit laser light, the resin is actively thermally processed by the laser light, and the resin melts during laser drilling, and the melted resin creates holes. Easier to get clogged.
- the interlayer connection conductor Since there are no holes on the wall surface of the laser drilling part, when the interlayer connection conductor is formed by filling the hole with a conductive paste or by metal plating, the conductive paste or metal plating will not penetrate into the holes on the wall surface of the hole. Therefore, an interlayer connection conductor having an electrically and mechanically advantageous shape can be formed.
- the transmittance of the resin contained in the porous resin sheet at a sheet thickness of 50 ⁇ m at a wavelength of 200 nm or more and 500 nm or less is preferably 1% or less, and 0.8%. The following are more preferable.
- the resin contained in the porous resin sheet preferably has a light transmittance of 0.1% or more at a wavelength of 200 nm or more and 500 nm or less at a sheet thickness of 50 ⁇ m.
- the light transmittance was obtained by measuring the light transmittance at wavelengths of 200 nm to 500 nm using a spectrophotometer and calculating the average transmittance at wavelengths of 200 nm to 500 nm. Specific measurement conditions are shown below.
- the resin contained in the porous resin sheet of the present invention has a storage elastic modulus of 200 MPa or more at 245° C. or higher and 260° C. or lower at a sheet thickness of 50 ⁇ m.
- the storage elastic modulus of the resin contained in the porous resin sheet at 245° C. or higher and 260° C. or lower at a sheet thickness of 50 ⁇ m is preferably 500 MPa or lower.
- the storage elastic modulus (E') was measured using a viscoelasticity measuring device (rheometer). Specific measurement conditions are shown below.
- the porosity and pore size may be the same or different between the inside and the surface of the resin sheet.
- the regions at both ends are the surface layers of the resin sheet, and the central region (the fifth region) area) is defined as the inside of the resin sheet.
- FIG. 2 is a schematic cross-sectional view showing an example of a porous resin sheet having different porosities and pore diameters between the inside and the surface of the resin sheet.
- the surface layer of the resin sheet may have a smaller porosity and a smaller pore size than the inside of the resin sheet.
- the porosity of the surface layer of the resin sheet is smaller than that of the inside of the resin sheet, and the pore diameter is made smaller, thereby reducing the dielectric constant of the sheet. Even when the porosity is increased, the size of the pores on the sheet surface can be kept small, so the flatness of the sheet surface can be easily maintained. As a result, when the metal layer arranged on the surface of the sheet is etched to form a circuit pattern, pattern defects can be made less likely to occur. In addition, since the porosity of the surface layer portion is reduced, the hardness of the sheet surface can be ensured, and there is an effect that the mountability of surface-mounted components is improved. This tendency is remarkable when closed cells are provided as pores.
- the porosity of the surface layer of the resin sheet is preferably 2/3 or less of the porosity of the interior of the resin sheet. It is preferably two-thirds or less of the hole diameter inside the sheet.
- the porosity and pore size of the surface layer of the resin sheet can be made smaller than those of the inside of the resin sheet. Furthermore, the surface roughness is reduced in the portion where the surface of the resin sheet is melted. Therefore, the surface roughness of the surface layer portion may be 1.5 ⁇ m or less. On the other hand, the surface roughness of the surface layer portion is greater than 0 ⁇ m, for example, 0.5 ⁇ m or more.
- surface roughness means ten-point average roughness Rz jis defined in JIS B 0601:2001.
- FIG. 3 is a schematic cross-sectional view showing another example of a porous resin sheet having different porosities and pore sizes between the inside and the surface of the resin sheet.
- the porosity inside the resin sheet may be smaller and the pore diameter may be smaller than that of the surface layer of the resin sheet.
- the porosity of the inside of the resin sheet is smaller than that of the surface layer of the resin sheet, and the pore diameter is made smaller. Even when the porosity is increased, the size of the pores inside the sheet can be kept small. It becomes difficult to bend. This can also prevent the circuit pattern formed on the sheet surface from buckling. This tendency is remarkable when closed cells are provided as pores.
- the porosity inside the resin sheet is preferably 2/3 or less of the porosity of the surface layer of the resin sheet.
- the diameter of the internal pores is preferably two-thirds or less of the diameter of the pores of the surface layer of the resin sheet.
- the porous resin sheet includes a first resin layer forming one main surface of the resin sheet, a second resin layer forming the other main surface of the resin sheet, and a layer between the first resin layer and the second resin layer. and a third resin layer provided in the third resin layer, and the third resin layer may have a lower porosity and a smaller pore diameter than those of the first resin layer and the second resin layer.
- the porous resin sheet of the present invention may have anisotropic pore shape.
- FIG. 4 is a schematic cross-sectional view showing an example of a porous resin sheet having an anisotropic pore shape.
- the diameter of the pores in the in-plane direction is preferably larger than the diameter in the thickness direction.
- the shape of the pores is anisotropic, and in particular, the diameter of the pores in the in-plane direction is larger than the diameter in the thickness direction.
- the volume increases and the mechanical strength increases.
- the diameter of the pores in the in-plane direction is preferably at least twice the diameter in the thickness direction.
- the diameter of the pores in the in-plane direction is preferably as large as possible, so the upper limit is not particularly limited.
- the porous resin sheet of the present invention preferably has a melt viscosity of 12 Pa ⁇ s or more under the conditions of a measurement temperature of 20° C. higher than the melting point of the resin and a shear rate of 1000 s ⁇ 1 .
- the melt viscosity of the porous resin sheet under the above conditions is 12 Pa s or more
- the porous resin sheet when used to manufacture an electronic circuit board, when the metal layer is pressure-bonded to the porous resin sheet, an empty Pores are less likely to collapse under high temperature and pressure during crimping. Therefore, in an electronic circuit board manufactured using a porous resin sheet, the effect of reducing the dielectric constant of the porous resin sheet is likely to be exhibited, and the dielectric characteristics are likely to be improved particularly in a high frequency region.
- melt viscosity of the porous resin sheet under the above conditions is lower than 12 Pa ⁇ s, the pores will easily collapse under high temperature and pressure.
- the melt viscosity of the porous resin sheet under the above conditions is preferably 500 Pa ⁇ s or less.
- the melt viscosity under the above conditions is more preferably 20 Pa ⁇ s or more, more preferably 30 Pa ⁇ s or more.
- the melt viscosity of the porous resin sheet under the above conditions is more preferably 200 Pa s or less, further preferably 100 Pa s or less, particularly preferably 50 Pa s or less, and particularly preferably 40 Pa s.
- melt viscosity is specified at a measurement temperature 20°C higher than the melting point of the resin is to accurately measure the melt viscosity while suppressing deterioration of the resin.
- the melting point of the resin is determined as follows. First, for example, using a differential scanning calorimeter such as a differential scanning calorimeter "DSC7000X" manufactured by Hitachi High-Tech Science Co., Ltd., the temperature of the resin is raised and completely melted. In this temperature rising process, the temperature rising rate is, for example, 20° C./min. The resulting melt is then cooled and then heated again. At this time, the temperature is lowered to 175° C. at a temperature drop rate of 20° C./min in the temperature drop process, and the temperature is raised at a temperature rise rate of 20° C./min in the temperature rise process, for example. Then, the temperature corresponding to the endothermic peak observed during this temperature rising process is defined as the melting point of the resin. If the endothermic peak is difficult to observe by the method described above, the melting point of the resin is determined by texture observation under crossed Nicols conditions with a polarizing microscope.
- the melt viscosity of the porous resin sheet under the above conditions can be adjusted, for example, by performing solid phase polymerization during production of the porous resin sheet.
- solid-state polymerization When solid-state polymerization is performed, the molecular chain length of the polymer is elongated, and the polymers having the elongated molecular chain length are entangled with each other, and the melt viscosity of the porous resin sheet tends to increase.
- the melt viscosity of the porous resin sheet can be increased by irradiating the polymer with electron beams.
- the melt viscosity of the porous resin sheet can be adjusted also by the polymerization conditions such as the polymerization temperature and the polymerization time of the polymer.
- the porous resin sheet of the present invention is produced by preparing a solid sheet containing a resin and a porosity agent, and then extracting the porosity agent from the solid sheet by a supercritical method using carbon dioxide as a medium.
- the resin has a carbon dioxide gas permeability of 1 cm 3 /m 2 ⁇ 24 hr ⁇ atm or less at 25° C. and a carbon dioxide gas permeability of 5 cm 3 /m 2 ⁇ 24 hr ⁇ atm or more at 100° C. at a sheet thickness of 50 ⁇ m.
- a resin is used. Only one kind of resin may be used, or two or more kinds thereof may be used in combination.
- porosity agent for example, polyalkylene glycols such as polyethylene glycol and polypropylene glycol are used. Porosity agents may be used alone or in combination of two or more.
- Examples of methods for producing a solid sheet include a melt molding method and the like.
- a co-extrusion method may be used for melt processing.
- the supercritical carbon dioxide comes into contact with the surface of the solid sheet and permeates into the inside, so that the porosity agent in the solid sheet becomes supercritical carbon dioxide. dissolves in The dissolved porosity agent diffuses and moves together with carbon dioxide in a supercritical state, and is then discharged out of the resin sheet.
- porous resin sheet with metal layer comprises the porous resin sheet of the present invention and a metal layer arranged on at least one main surface of the porous resin sheet.
- FIG. 5 is a schematic cross-sectional view showing an example of the porous resin sheet with a metal layer of the present invention.
- a porous resin sheet 10 with a metal layer shown in FIG. 1 A porous resin sheet 10 with a metal layer shown in FIG. 1
- the porous resin sheet 11 has the same configuration as the porous resin sheet 1 shown in FIG. 5
- the metal layer 12 may be arranged on at least one main surface of the porous resin sheet 11 . That is, the metal layer 12 may be arranged on either one of the first principal surface 1a and the second principal surface 1b of the porous resin sheet 11, or may be arranged on both principal surfaces.
- the metal layer 12 may have a patterned shape such as wiring, or may have a planar shape that spreads all over.
- Examples of the constituent material of the metal layer 12 include copper, silver, aluminum, stainless steel, nickel, gold, and alloys containing at least one of these metals.
- the metal layer 12 is preferably made of copper foil.
- the thickness of the metal layer 12 is preferably 1 ⁇ m or more and 35 ⁇ m or less, more preferably 6 ⁇ m or more and 18 ⁇ m or less.
- the porous resin sheet with a metal layer of the present invention is produced by disposing a metal layer on at least one main surface of the porous resin sheet of the present invention.
- the porous resin sheet with a metal layer of the present invention is produced by pressing a metal layer onto at least one main surface of the porous resin sheet.
- the metal layer pressed onto the porous resin sheet may be etched into a pattern.
- the porous resin sheet with a metal layer of the present invention may be produced by pressing a pre-patterned metal layer onto at least one main surface of the porous resin sheet.
- the electronic circuit board of the present invention comprises the porous resin sheet with a metal layer of the present invention.
- the electronic circuit board of the present invention may comprise at least one layer of the porous resin sheet with a metal layer of the present invention. Moreover, the electronic circuit board of the present invention may comprise at least one layer of the porous resin sheet of the present invention. When the electronic circuit board of the present invention comprises two or more layers of the porous resin sheet of the present invention, the structure of the porous resin sheet of the present invention may be the same or different.
- FIG. 6 is a schematic cross-sectional view showing an example of the electronic circuit board of the present invention.
- the porous resin sheet 10A with the metal layer, the porous resin sheet 10B with the metal layer, and the porous resin sheet 10C with the metal layer are laminated in the stacking direction (vertical direction in FIG. 6).
- the porous resin sheet 10A with a metal layer, the porous resin sheet 10B with a metal layer, and the porous resin sheet 10C with a metal layer are laminated in this order.
- the porous resin sheet 10A with a metal layer has a porous resin sheet 11A and a metal layer 12A.
- the porous resin sheet 11A is composed of a resin sheet 1s containing resin, and holes 1h are provided inside the resin sheet 1s.
- the porous resin sheet 11A has a first principal surface 1Aa and a second principal surface 1Ab facing each other in the thickness direction.
- the metal layer 12A is provided on the first main surface 1Aa of the porous resin sheet 11A. Also, the metal layer 12A is adjacent to the second main surface 1Bb side of the porous resin sheet 11B, which will be described later.
- the porous resin sheet 10B with a metal layer has a porous resin sheet 11B, a metal layer 12B, a metal layer 12B', and a metal layer 12B''.
- the porous resin sheet 11B is composed of a resin sheet 1s containing a resin, and holes 1h are provided inside the resin sheet 1s.
- the porous resin sheet 11B has a first main surface 1Ba and a second main surface 1Bb facing each other in the thickness direction.
- the metal layer 12B, the metal layer 12B' and the metal layer 12B'' are provided on the first main surface 1Ba of the porous resin sheet 11B. Also, the metal layer 12B, the metal layer 12B', and the metal layer 12B'' are adjacent to the second main surface 1Cb side of the porous resin sheet 11C, which will be described later.
- the porous resin sheet 10C with a metal layer has a porous resin sheet 11C and a metal layer 12C.
- the porous resin sheet 11C is composed of a resin sheet 1s containing resin, and holes 1h are provided inside the resin sheet 1s.
- the porous resin sheet 11C has a first principal surface 1Ca and a second principal surface 1Cb facing each other in the thickness direction.
- the metal layer 12C is provided on the first main surface 1Ca of the porous resin sheet 11C.
- the metal layer 12B is preferably provided across the interface between the porous resin sheet 11B and the porous resin sheet 11C.
- the interface between the metal layer 12B and the porous resin sheet 11B and the interface between the metal layer 12B and the porous resin sheet 11C extend in the stacking direction from the interface between the porous resin sheet 11B and the porous resin sheet 11C. Due to the displacement, peeling at the interface between the metal layer 12B and the porous resin sheet 11B and peeling at the interface between the metal layer 12B and the porous resin sheet 11C are suppressed.
- the metal layer 12B' and the metal layer 12B'' are also provided across the interface between the porous resin sheet 11B and the porous resin sheet 11C, similarly to the metal layer 12B.
- the thicknesses of the porous resin sheet 11A, the porous resin sheet 11B, and the porous resin sheet 11C may be the same as each other, may be different from each other, or may be partially different as shown in FIG. good too.
- the electronic circuit board 50 includes an interlayer connection conductor provided so as to be connected to the metal layer without penetrating the metal layer in the stacking direction while penetrating the porous resin sheet in the stacking direction. Further, it is preferable to have.
- the electronic circuit board 50 further includes an interlayer connection conductor 20A, an interlayer connection conductor 20B, an interlayer connection conductor 20C, and an interlayer connection conductor 20D.
- the interlayer connection conductor 20A penetrates the porous resin sheet 11B in the stacking direction, but does not penetrate the metal layer 12B' in the stacking direction, and is provided so as to be connected to the metal layer 12B'. More specifically, the interlayer connection conductor 20A penetrates the porous resin sheet 11B in the stacking direction and is connected to the metal layer 12B' on the first main surface 1Ba side of the porous resin sheet 11B. Further, the interlayer connection conductor 20A is connected to the metal layer 12A on the second main surface 1Bb side of the porous resin sheet 11B. That is, the metal layer 12A and the metal layer 12B' are electrically connected via the interlayer connection conductor 20A.
- the interlayer connection conductor 20B penetrates the porous resin sheet 11B in the stacking direction, but does not penetrate the metal layer 12B'' in the stacking direction, and is connected to the metal layer 12B''.
- the interlayer connection conductor 20B penetrates the porous resin sheet 11B in the stacking direction at a position separated from the interlayer connection conductor 20A, and the metal layer is formed on the first main surface 1Ba side of the porous resin sheet 11B. 12B''.
- the interlayer connection conductor 20B is connected to the metal layer 12A on the second main surface 1Bb side of the porous resin sheet 11B at a position separated from the interlayer connection conductor 20A. That is, the metal layer 12A and the metal layer 12B'' are electrically connected via the interlayer connection conductor 20B.
- the interlayer connection conductor 20C penetrates the porous resin sheet 11C in the stacking direction, but does not penetrate the metal layer 12C in the stacking direction, and is provided so as to be connected to the metal layer 12C. More specifically, the interlayer connection conductor 20C penetrates the porous resin sheet 11C in the stacking direction and is connected to the metal layer 12C on the first main surface 1Ca side of the porous resin sheet 11C. Also, the interlayer connection conductor 20C is connected to the metal layer 12B' on the second main surface 1Cb side of the porous resin sheet 11C. That is, the metal layer 12B' and the metal layer 12C are electrically connected via the interlayer connection conductor 20C.
- the interlayer connection conductor 20D is provided at a position separated from the interlayer connection conductor 20C so as to penetrate the porous resin sheet 11C in the stacking direction, but not penetrate the metal layer 12C in the stacking direction, and be connected to the metal layer 12C. It is More specifically, the interlayer connection conductor 20D penetrates the porous resin sheet 11C in the stacking direction at a position spaced apart from the interlayer connection conductor 20C, and the metal layer is formed on the first main surface 1Ca side of the porous resin sheet 11C. 12C. Further, the interlayer connection conductor 20D is connected to the metal layer 12B'' on the second main surface 1Cb side of the porous resin sheet 11C at a position separated from the interlayer connection conductor 20C. That is, the metal layer 12B'' and the metal layer 12C are electrically connected via the interlayer connection conductor 20D.
- the metal layer 12A and the metal layer 12C are electrically connected via the interlayer connection conductor 20A, the metal layer 12B' and the interlayer connection conductor 20C.
- the metal layers 12A and 12C are also electrically connected via the interlayer connection conductors 20B, the metal layers 12B'' and the interlayer connection conductors 20D.
- the interlayer connection conductor 20A is provided on the inner wall of the via hole provided so as to penetrate the porous resin sheet 11B in the thickness direction but not penetrate the metal layer 12B′ in the thickness direction and reach the metal layer 12B′. It is formed by performing a plating process or performing a heat treatment after filling the conductive paste.
- the interlayer connection conductor 20B, the interlayer connection conductor 20C, and the interlayer connection conductor 20D are also formed in the same manner as the interlayer connection conductor 20A, except that the formation positions are different.
- interlayer connection conductor 20A, the interlayer connection conductor 20B, the interlayer connection conductor 20C, and the interlayer connection conductor 20D are formed by plating
- metals that constitute the interlayer connection conductors include copper, tin, and silver. copper is preferred.
- each interlayer connection conductor includes copper, tin, and silver. etc.
- each interlayer connection conductor preferably contains copper, more preferably copper and tin.
- the interlayer connection conductor 20A and the metal layer 12B' undergo an alloying reaction at a low temperature, so that they are easily conductive. The same applies to other combinations of interlayer connection conductors and metal layers.
- the resin contained in each interlayer connection conductor is an epoxy resin, a phenol resin, or a polyimide resin. , silicone resin or its modified resin, and at least one thermosetting resin selected from the group consisting of acrylic resin, or polyamide resin, polystyrene resin, polymethacrylic resin, polycarbonate resin, and cellulose resin It preferably contains at least one thermoplastic resin selected from the group.
- the electronic circuit board 50 may have the metal layer 12B as a signal line for transmitting signals.
- the electronic circuit board 50 constitutes a transmission line.
- the electronic circuit board 50 may have the metal layer 12B as a signal line for transmitting signals, and the metal layers 12A and 12C as ground electrodes. In this case, the electronic circuit board 50 constitutes a stripline type transmission line.
- the metal layer 12B may be a signal line for transmitting high frequency signals.
- the porous resin sheet 11B and the porous resin sheet 11C having a small dielectric constant are in contact with the metal layer 12B, that is, the signal line, so that the transmission characteristics of the electronic circuit board 50 is easier to improve.
- the electronic circuit board of the present invention is produced by forming a circuit pattern on the metal layer of the porous resin sheet with a metal layer of the present invention.
- a circuit pattern can be formed by etching a metal layer.
- the electronic circuit board 50 shown in FIG. 6 is manufactured, for example, by the following method.
- a porous resin sheet 10A with a metal layer a porous resin sheet 10B with a metal layer, and a porous resin sheet 10C with a metal layer are produced.
- the metal layer 12B' or the metal layer 12B penetrates the porous resin sheet 11B in the thickness direction but does not penetrate the metal layer 12B' or the metal layer 12B'' in the thickness direction.
- a via hole is formed to reach ''.
- a via hole is formed in the porous resin sheet 10C with a metal layer so as to penetrate the porous resin sheet 11C in the thickness direction but reach the metal layer 12C without penetrating the metal layer 12C in the thickness direction.
- the via holes of the porous resin sheet 10B with a metal layer and the porous resin sheet 10C with a metal layer are filled with a conductive paste.
- Methods for filling the conductive paste include, for example, a screen printing method and a vacuum filling method.
- a porous resin sheet 10A with a metal layer, a porous resin sheet 10B with a metal layer filled with a conductive paste, and a porous resin sheet 10C with a metal layer filled with a conductive paste are sequentially laminated in the stacking direction. do. Then, a heat press is performed by applying pressure in the stacking direction while heating the obtained laminate. Thereby, the porous resin sheet 10A with a metal layer and the porous resin sheet 10B with a metal layer are pressure-bonded, and thereby the porous resin sheet 10B with a metal layer and the porous resin sheet 10C with a metal layer are pressure-bonded. . Further, the conductive paste is solidified at the time of hot pressing to form an interlayer connection conductor 20A, an interlayer connection conductor 20B, an interlayer connection conductor 20C, and an interlayer connection conductor 20D, respectively.
- the electronic circuit board 50 shown in FIG. 6 is manufactured.
- interlayer connection conductors 20A, the interlayer connection conductors 20B, the interlayer connection conductors 20C, and the interlayer connection conductors 20D instead of filling the via holes with a conductive paste, a metal such as copper, tin, or silver is used.
- the inner wall of the via hole may be plated.
- polyethylene glycol was used as the porosity agent, and 100 parts by weight of the porosity agent was added to 100 parts by weight of the resin. Then, only the porosifying agent was extracted from this solid sheet by a supercritical method (100° C., 30 MPa) using carbon dioxide as a medium to obtain a porous resin sheet having a closed cell structure and a thickness of 50 ⁇ m.
- Example 1 it was confirmed that the extraction of the porosity agent from the solid sheet could be completed in 10 minutes, and sufficient productivity could be obtained.
- the permeability of CO2 gas at 25°C and 100°C was measured.
- the carbon dioxide (CO 2 ) gas permeability of the solid sheet with a thickness of 50 ⁇ m was 0.75 cm 3 /m 2 ⁇ 24 hr ⁇ atm at 25 °C and 7.5 cm 3 /m 2 ⁇ 24 hr ⁇ atm at 100 °C. .
- Light transmittance was measured at a wavelength of 200 nm or more and 500 nm or less.
- the average transmittance of the solid sheet having a thickness of 50 ⁇ m at a wavelength of 200 nm or more and 500 nm or less was 0.5%.
- Sheet Thickness Using a dial gauge, the initial thickness of the obtained porous resin sheet and the thickness of the sample after passing through a solder reflow device (260° C., 20 seconds) were measured. The sheet thickness was 50.1 ⁇ m at the initial stage and 50.3 ⁇ m for the sample heated by the solder reflow apparatus, and it was confirmed that the sheet thickness did not change due to the expansion or contraction of the pores.
- the CO 2 gas permeability of the solid sheet was 0.75 cm 3 /m 2 .24 hr.atm at 25°C and 10 cm 3 /m 2 .24 hr.atm at 100°C.
- the solid sheet had an average transmittance of 0.5% at a wavelength of 200 nm or more and 500 nm or less.
- the minimum storage elastic modulus of the solid sheet at 245° C. or higher and 260° C. or lower was 50 MPa.
- the dielectric constant of the porous resin sheet is 1.97 in the normal state and 2.00 after absorbing moisture, and the dielectric loss tangent is 0.0012 in the normal state and 0.0013 after absorbing moisture. was confirmed.
- the state of the wall surface of a hole that has been laser-processed in a porous resin sheet is that the resin on the hole wall surface is melted by the heat of the laser, and the surface of the hole is covered with resin, so that the surface of the hole wall surface has unevenness or is caused by the pores. No holes were found.
- the initial surface roughness (Rz jis ) was 1.0 ⁇ m, while the surface roughness (Rz jis ) of the sample after passing through the solder reflow device was 2 ⁇ m. 0.4 ⁇ m, and although the flatness of the sheet surface was slightly impaired, it was at a level that could be used as an electronic circuit board.
- the initial thickness of the porous resin sheet was 49.8 ⁇ m, while the thickness of the sample after passing through the solder reflow device was 52.8 ⁇ m. The level was such that it could be used as a substrate.
- the CO 2 gas permeability of the solid sheet was 0.6 cm 3 /m 2 .24 hr.atm at 25°C and 6 cm 3 /m 2 .24 hr.atm at 100°C.
- the solid sheet had an average transmittance of 0.4% at a wavelength of 200 nm or more and 500 nm or less.
- the minimum storage elastic modulus of the solid sheet at 245°C or higher and 260°C or lower was 800 MPa.
- the relative dielectric constant of the porous resin sheet is 1.87 in the normal state and 1.89 after absorbing moisture, and the dielectric loss tangent is 0.0010 in the normal state and 0.0011 after absorbing moisture. was confirmed.
- the state of the wall surface of a hole that has been laser-processed in a porous resin sheet is that the resin on the hole wall surface is melted by the heat of the laser, and the surface of the hole is covered with resin, so that the surface of the hole wall surface has unevenness or is caused by the pores. No holes were found.
- the surface roughness (Rz jis ) was 1.1 ⁇ m at the initial stage and 1.2 ⁇ m for the sample heated with a solder reflow device. It was confirmed that it was not damaged.
- the initial thickness of the porous resin sheet was 50.2 ⁇ m, and the thickness of the sample heated by the solder reflow apparatus was 50.3 ⁇ m.
- the CO 2 gas permeability of the solid sheet was 0.7 cm 3 /m 2 .24 hr.atm at 25°C and 15 cm 3 /m 2 .24 hr.atm at 100°C.
- the solid sheet had an average transmittance of 0.5% at a wavelength of 200 nm or more and 500 nm or less.
- the minimum storage elastic modulus of the solid sheet at 245°C or higher and 260°C or lower was 5 MPa.
- the relative permittivity of the porous resin sheet is 1.98 in the normal state and 2.01 after moisture absorption, and the dielectric loss tangent is 0.0014 in the normal state and 0.0015 after moisture absorption, and the variation in dielectric properties before and after moisture absorption is sufficiently small. was confirmed.
- the state of the wall surface of a hole that has been laser-processed in a porous resin sheet is that the resin on the hole wall surface is melted by the heat of the laser, and the surface of the hole is covered with resin, so that the surface of the hole wall surface has unevenness or is caused by the pores. No holes were found.
- the initial surface roughness (Rz jis ) was 1.1 ⁇ m, while the surface roughness (Rz jis ) of the sample after passing through the solder reflow device was 3 ⁇ m. 0.7 ⁇ m.
- the level was not suitable for use as a solder-mounted type board or a sheet for a multilayer circuit board, it was at a level that could be used for a non-solder-mounted type single-layer flexible board.
- the initial thickness of the porous resin sheet was 49.5 ⁇ m, while the thickness of the sample after passing through the solder reflow device was 55.2 ⁇ m.
- the level was not suitable for use as a solder-mounted type board or a sheet for a multilayer circuit board, it was at a level that could be used for a non-solder-mounted type single-layer flexible board.
- Example 5 A porosity agent was added to PEEK (thermoplastic resin), and a solid sheet having a thickness of 50 ⁇ m was produced by a melt molding method. Then, only the porosifying agent was extracted from this solid sheet by a supercritical method (100° C., 30 MPa) using carbon dioxide as a medium to obtain a porous resin sheet having a closed cell structure and a thickness of 50 ⁇ m. In Example 5, it was confirmed that the extraction of the porosity agent from the solid sheet could be completed in 6 minutes, and sufficient productivity could be obtained.
- PEEK thermoplastic resin
- the CO 2 gas permeability of the solid sheet was 0.9 cm 3 /m 2 .24 hr.atm at 25°C and 23 cm 3 /m 2 .24 hr.atm at 100°C.
- the solid sheet had an average transmittance of 35% at a wavelength of 200 nm or more and 500 nm or less.
- the minimum storage elastic modulus of the solid sheet at 245°C or higher and 260°C or lower was 500 MPa.
- the sample heated by the solder reflow equipment did not deform the sheet shape or change the thickness due to the expansion or contraction of the pores. rice field.
- the electronic circuit of the type that uses a substrate processing method that uses a laser to open a via hole and fill it with copper plating or conductive paste, where unevenness or holes derived from pores remain on the surface of the wall surface of the hole processed by laser processing.
- the level was sufficient for use as a sheet for an electronic circuit board in which via holes were not formed.
- the surface roughness (Rz jis ) was 0.8 ⁇ m at the initial stage and 1.0 ⁇ m for the sample heated with a solder reflow device. It was also confirmed that the flatness of the sheet surface was maintained.
- a copper film (0.2 ⁇ m) was formed on the porous resin sheet having a closed cell structure by sputtering, and a copper thick film was further formed by electroplating (copper film total thickness: 12 ⁇ m) to form a circuit pattern. processed.
- the circuit pattern was formed by heating to 50° C. using an aqueous solution of ferric chloride to form wiring with a conductor width of 60 ⁇ m. When the wiring pattern was observed with a stereoscopic microscope at a magnification of 50 times, it was confirmed that there was no pattern defective portion of 1/3 or more of the wiring width of 60 ⁇ m.
- the co-extruded sheet was made up of a three-layered sheet with a total thickness of 50 ⁇ m, with the upper layer having a thickness of 10 ⁇ m, the central layer having a thickness of 30 ⁇ m, and the lower layer having a thickness of 10 ⁇ m. Then, only the porosifying agent was extracted from this solid sheet by a supercritical method using carbon dioxide as a medium to obtain a porous resin sheet having a closed-cell structure and a thickness of 50 ⁇ m. In Example 7, it was confirmed that the extraction of the porosity agent from the solid sheet could be completed in 11 minutes, and sufficient productivity could be obtained.
- This sheet was embedded in the embedding resin, and a cross section of the sample was observed with a SEM at a magnification of 500 times. It was confirmed that the thick portion had a porosity of 30% and an average pore diameter of 1 ⁇ m.
- porous resin sheet of Example 7 Using the porous resin sheet of Example 7 and the porous resin sheet of Example 1, a bending test with a curvature radius of 0.5 mm or more and 5 mm or less was performed.
- the porous resin sheet of Example 1 which has a structure in which the porosity and pore diameter are uniform in the thickness direction, buckled when bent with a curvature radius of 1 mm. It was confirmed that the porous resin sheet having a tilted structure does not buckle up to a radius of curvature of 0.6 mm.
- a solid sheet having a thickness of 120 ⁇ m was produced by using the Next, this 120 ⁇ m-thick sheet was crushed by a hot press to form a 50 ⁇ m-thick solid sheet. Further, only the porosifying agent was extracted from this solid sheet by a supercritical method using carbon dioxide as a medium to obtain a porous resin sheet having a closed-cell structure and a thickness of 50 ⁇ m. In Example 8, it was confirmed that the extraction of the porosity agent from the solid sheet could be completed in 9 minutes, and sufficient productivity could be obtained.
- the sample was observed with a SEM at a magnification of 500 times.
- the diameter of the pores in the in-plane direction is 2.2 ⁇ m
- the diameter in the thickness direction is 1 ⁇ m
- the diameter in the in-plane direction is 2.2 times the diameter in the thickness direction. I found out.
- the elastic modulus in the thickness direction was measured. was 300 MPa, and the porous resin sheet of Example 1 having an isotropic pore shape was 230 MPa. From this result, it was confirmed that the elastic modulus in the thickness direction is increased by making the diameter of the pores in the in-plane direction larger than the diameter in the thickness direction.
- a copper film (0.2 ⁇ m) was formed by sputtering, and further a copper thick film was formed by electroplating (copper film total thickness: 12 ⁇ m), and circuit pattern processing was performed. gone.
- a surface mounting component was mounted on the sheet on which the circuit pattern was formed, and a component mounting test was performed using a solder reflow furnace. As a result, it was confirmed that the external terminals of the component and the external terminals of the substrate were soldered. This is thought to be because the increased elastic modulus in the thickness direction of the sheet reduces the amount of sinking of the sheet against the stress in the thickness direction during mounting, thereby further improving component mountability.
- Comparative Example 1 A porosity agent was added to a polyimide resin (non-thermoplastic polyimide resin), and a solid sheet (before cross-linking and curing) having a thickness of 50 ⁇ m was produced by a casting method. Then, only the porosifying agent was extracted from this solid sheet by a supercritical method using carbon dioxide as a medium to obtain a porous resin sheet having a closed-cell structure and a thickness of 50 ⁇ m. In Comparative Example 1, it was possible to complete the extraction of the porosity agent from the solid sheet in 5 minutes, confirming sufficient productivity.
- Example 1 Using only the polyimide resin used, a solid sheet with a thickness of 50 ⁇ m was produced by a casting method, and the following physical properties were evaluated under the same method and conditions as in Example 1.
- the CO 2 gas permeability of the solid sheet was 150 cm 3 /m 2 .24 hr.atm at 25°C and 780 cm 3 /m 2 .24 hr.atm at 100°C.
- the solid sheet had an average transmittance of 30% at a wavelength of 200 nm or more and 500 nm or less.
- the minimum storage elastic modulus of the solid sheet at 245° C. or higher and 260° C. or lower was 2500 MPa.
- this porous resin sheet (before cross-linking and curing) was cross-linked and cured in an oven at 350°C to obtain a porous polyimide sheet.
- the properties of the obtained porous polyimide sheet were evaluated by the same method and under the same conditions as in Example 1.
- Comparative Example 2 A porosity agent was added to perfluoroalkoxyalkane (PFA, thermoplastic resin), and a solid sheet with a thickness of 50 ⁇ m was produced by melt molding. Next, only the porosifying agent was extracted from this solid sheet by a supercritical method using carbon dioxide as a medium, thereby obtaining a porous resin sheet having a closed cell structure and a thickness of 50 ⁇ m. In Comparative Example 2, as a result of trying to extract the porosity agent from the solid sheet, it was found that the extraction of the porosity agent could be completed in 35 minutes, but the productivity was poor.
- PFA perfluoroalkoxyalkane
- the CO 2 gas permeability of the solid sheet was 0.45 cm 3 /m 2 .24 hr.atm at 25°C and 3.5 cm 3 /m 2 .24 hr.atm at 100°C.
- the solid sheet had an average transmittance of 40% at a wavelength of 200 nm or more and 500 nm or less.
- the minimum storage elastic modulus of the solid sheet at 245° C. or higher and 260° C. or lower was 60 MPa.
- the sample heated by the solder reflow device showed deformation of the sheet shape and thickness change due to the expansion of the pores.
- the sheet was unsuitable for use as an electronic circuit board because unevenness or holes derived from pores remained on the surface of the wall surface of the laser-processed holes.
- Comparative Example 3 A porosity agent was added to polyethylene terephthalate (PET, thermoplastic resin), and a solid sheet having a thickness of 50 ⁇ m was produced by a melt molding method. Then, only the porosifying agent was extracted from this solid sheet by a supercritical method using carbon dioxide as a medium to obtain a porous resin sheet having a closed-cell structure and a thickness of 50 ⁇ m. In Comparative Example 3, the extraction of the porosity agent from the solid sheet could be completed in 7 minutes, confirming sufficient productivity.
- PET polyethylene terephthalate
- Example 1 Using only the PET used, a solid sheet with a thickness of 50 ⁇ m was produced by a melt molding method, and the following physical properties were evaluated under the same method and conditions as in Example 1.
- the CO 2 gas permeability of the solid sheet was 135 cm 3 /m 2 .24 hr.atm at 25°C and 810 cm 3 /m 2 .24 hr.atm at 100°C.
- the solid sheet had an average transmittance of 45% at a wavelength of 200 nm or more and 500 nm or less.
- the minimum storage elastic modulus of the solid sheet at 245° C. or higher and 260° C. or lower was 10 MPa.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Laminated Bodies (AREA)
Abstract
多孔質樹脂シート1は、シート厚み50μmにおける25℃での二酸化炭素ガス透過率が1cm3/m2・24hr・atm以下、100℃での二酸化炭素ガス透過率が5cm3/m2・24hr・atm以上である樹脂を含有する樹脂シート1sからなり、かつ、樹脂シート1sの内部に空孔1hが設けられている。
Description
本発明は、多孔質樹脂シート、金属層付き多孔質樹脂シート、電子回路基板、多孔質樹脂シートの製造方法、金属層付き多孔質樹脂シートの製造方法、及び、電子回路基板の製造方法に関する。
樹脂シートの内部に空孔が設けられている多孔質樹脂シートは、誘電率が1である空気を空孔内に有することから、電子回路基板の誘電特性、特に高周波領域における誘電特性を向上させるための絶縁材料として用いることができる。
特許文献1及び特許文献2には、多孔化剤を含む多孔質体用前駆体から、超臨界状態の媒体を用いて多孔化剤を抽出する、多孔質樹脂シートの製造方法が開示されている。特許文献1及び特許文献2には、超臨界状態の媒体として、二酸化炭素が好適に用いられることが記載されている。
特許文献1及び特許文献2に記載されている多孔質樹脂シートの製造方法では、多孔化剤を含む多孔質体用前駆体のワニス(混合液)を配合し、これを基材に塗工して乾燥して多孔化前の樹脂シートとした後、超臨界状態の二酸化炭素等の媒体を用いて多孔化前の樹脂シートから多孔化剤を抽出して樹脂シートを多孔化する超臨界抽出を行い、必要に応じて真空条件下で多孔化後の樹脂シートを硬化させ、その上に金属層を積層することにより多孔質樹脂シートを製造する。特許文献1及び特許文献2に記載されているような方法によれば、低誘電率の多孔質樹脂シートを、工業的に低コストで製造することができるとされている。
しかしながら、多孔質樹脂シートを構成する樹脂の種類によっては、超臨界状態の二酸化炭素等の媒体を用いて多孔化剤を抽出することが困難である。また、多孔質樹脂シートを電子回路基板の絶縁材料として使用する場合には、多孔質樹脂シートを構成する樹脂の種類によっては、実際に使用される室温付近の環境下において誘電特性が変動するおそれがある。
本発明は、上記の問題を解決するためになされたものであり、使用時には誘電特性の変動が抑えられ、かつ、製造時には多孔化剤が効率的に排出される多孔質樹脂シートを提供することを目的とする。さらに、本発明は、上記多孔質樹脂シートを備える金属層付き多孔質樹脂シート、上記金属層付き多孔質樹脂シートを備える電子回路基板、上記多孔質樹脂シートの製造方法、上記金属層付き多孔質樹脂シートの製造方法、及び、上記電子回路基板の製造方法を提供することを目的とする。
本発明の多孔質樹脂シートは、シート厚み50μmにおける25℃での二酸化炭素ガス透過率が1cm3/m2・24hr・atm以下、100℃での二酸化炭素ガス透過率が5cm3/m2・24hr・atm以上である樹脂を含有する樹脂シートからなり、かつ、上記樹脂シートの内部に空孔が設けられている。
本発明の金属層付き多孔質樹脂シートは、本発明の多孔質樹脂シートと、上記多孔質樹脂シートの少なくとも一方主面に配置された金属層と、を備える。
本発明の電子回路基板は、本発明の金属層付き多孔質樹脂シートを備える。
本発明の多孔質樹脂シートの製造方法は、シート厚み50μmにおける25℃での二酸化炭素ガス透過率が1cm3/m2・24hr・atm以下、100℃での二酸化炭素ガス透過率が5cm3/m2・24hr・atm以上である樹脂及び多孔化剤を含む充実シートを作製する工程と、上記充実シートから、二酸化炭素を媒体とした超臨界法により上記多孔化剤を抽出する工程と、を備える。
本発明の金属層付き多孔質樹脂シートの製造方法は、上記の製造方法により多孔質樹脂シートを作製する工程と、上記多孔質樹脂シートの少なくとも一方主面に金属層を配置する工程と、を備える。
本発明の電子回路基板の製造方法は、上記の製造方法により金属層付き多孔質樹脂シートを作製する工程と、上記金属層付き多孔質樹脂シートの金属層に回路パターンを形成する工程と、を備える。
本発明によれば、使用時には誘電特性の変動が抑えられ、かつ、製造時には多孔化剤が効率的に排出される多孔質樹脂シートを提供することができる。さらに、本発明によれば、上記多孔質樹脂シートを備える金属層付き多孔質樹脂シート、上記金属層付き多孔質樹脂シートを備える電子回路基板、上記多孔質樹脂シートの製造方法、上記金属層付き多孔質樹脂シートの製造方法、及び、上記電子回路基板の製造方法を提供することができる。
以下、本発明の多孔質樹脂シート、金属層付き多孔質樹脂シート、電子回路基板、多孔質樹脂シートの製造方法、金属層付き多孔質樹脂シートの製造方法、及び、電子回路基板の製造方法について説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の好ましい構成を2つ以上組み合わせたものもまた本発明である。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の好ましい構成を2つ以上組み合わせたものもまた本発明である。
本明細書中、「シート」は「フィルム」と同義であり、厚みによって両者を区別しない。
[多孔質樹脂シート]
図1は、本発明の多孔質樹脂シートの一例を示す断面模式図である。
図1は、本発明の多孔質樹脂シートの一例を示す断面模式図である。
図1に示す多孔質樹脂シート1は、樹脂を含有する樹脂シート1sからなる。樹脂シート1sの内部には空孔1hが設けられている。多孔質樹脂シート1は、厚み方向に対向する第1主面1a及び第2主面1bを有している。
本発明の多孔質樹脂シートでは、樹脂シートに含有される樹脂の二酸化炭素ガス透過率に温度依存性があることを特徴としている。具体的には、シート厚み50μmにおける25℃での二酸化炭素ガス透過率が1cm3/m2・24hr・atm以下、100℃での二酸化炭素ガス透過率が5cm3/m2・24hr・atm以上であることを特徴としている。
多孔質樹脂シートを電子回路基板の絶縁材料として使用する場合、多孔質樹脂シート中に水蒸気が侵入すると、吸湿により誘電特性が悪化する。そのため、多孔質樹脂シートには、実際に使用される室温付近の環境下でのガス透過率が低いこと、特に水蒸気の透過率が低いことが望ましい。なお、多孔質樹脂シートのガス透過率は、樹脂の種類により異なるが、水蒸気、酸素、二酸化炭素等のガスの種類にはよらず、例えば、二酸化炭素のガス透過率が大きいものは水蒸気の透過率も大きくなる。本発明の多孔質樹脂シートでは、25℃での二酸化炭素ガス透過率が1cm3/m2・24hr・atm以下と小さい樹脂が用いられているため、水蒸気の透過率も小さくなる。したがって、吸湿による誘電特性の変動を抑えることができる。
一方、特許文献1及び特許文献2に記載されているように超臨界状態の二酸化炭素を媒体として多孔化剤を抽出する方法を用いて多孔質樹脂シートを製造する場合、多孔化剤を抽出する条件としては、一般に、温度25~200℃程度、圧力10~50MPa程度である。例えば、多孔化剤として使用されることが多いポリプロピレングリコール等の多孔化剤を抽出する際には、温度条件は80~120℃で行われることが多い。本発明者らは、100℃での二酸化炭素ガス透過率を測定することで、多孔質樹脂シートの生産性を評価することにした。また、二酸化炭素ガス透過率を測定する圧力については、30MPa等の条件で測定することが不可能であるため、現実的に測定可能な1atm(0.1MPa)での二酸化炭素ガス透過率を測定することにした。多孔質樹脂シートのガス透過率は圧力に比例するので、例えば1atmでのガス透過率が大きければ、30MPa等の圧力でのガス透過率も大きくなる。本発明の多孔質樹脂シートでは、100℃での二酸化炭素ガス透過率が5cm3/m2・24hr・atm以上と大きい樹脂が用いられているため、超臨界状態の二酸化炭素を使用した多孔化剤の排出過程において多孔化剤を効率的に排出することができる。したがって、多孔質樹脂シートの生産性を向上させることができる。
本発明の多孔質樹脂シートでは、シート厚み50μmにおける25℃での二酸化炭素ガス透過率が1cm3/m2・24hr・atm以下であり、好ましくは0.7cm3/m2・24hr・atm以下である。一方、シート厚み50μmにおける25℃での二酸化炭素ガス透過率は、0cm3/m2・24hr・atmであってもよい。また、シート厚み50μmにおける25℃での二酸化炭素ガス透過率は、0cm3/m2・24hr・atmより大きくてもよく、例えば、0.3cm3/m2・24hr・atm以上、0.5cm3/m2・24hr・atm以上等であってもよい。
本発明の多孔質樹脂シートでは、シート厚み50μmにおける100℃での二酸化炭素ガス透過率が5cm3/m2・24hr・atm以上であり、好ましくは7cm3/m2・24hr・atm以上である。一方、シート厚み50μmにおける100℃での二酸化炭素ガス透過率は、大きいほど好ましいため上限は特に限定されないが、好ましくは100cm3/m2・24hr・atm以下であり、より好ましくは50cm3/m2・24hr・atm以下であり、さらに好ましくは30cm3/m2・24hr・atm以下である。
ガス透過率の測定は、JIS K 7126-1(プラスチック/フィルム及びシート/ガス透過度試験方法(差圧法))に沿って行う。差圧法の試験方法については、圧力センサ法及びガスクロマトグラフ法のどちらの方法を用いてもよい。
後述の実施例においては、液晶ポリマーを含有する多孔質樹脂シートのガスバリア性が高いことから、微小なガス透過率の測定がしやすい、ガスクロマトグラフ法を用いて測定を行った。具体的な測定条件を以下に示す。
<測定装置>
ジーエルサイエンス製 GTME2510
<測定条件>
測定ガス:CO2
測定温度:25℃、100℃
透過面積:20cm2(50mmφ)
<測定する試料>
原材料樹脂で製膜した充実シート
厚み:50μm、シートサイズ:80mm角
<測定装置>
ジーエルサイエンス製 GTME2510
<測定条件>
測定ガス:CO2
測定温度:25℃、100℃
透過面積:20cm2(50mmφ)
<測定する試料>
原材料樹脂で製膜した充実シート
厚み:50μm、シートサイズ:80mm角
本発明の多孔質樹脂シートの厚みは、50μmに限定されるものではなく、好ましくは10μm以上、200μm以下であり、より好ましくは20μm以上、100μm以下である。
多孔質樹脂シートの厚みが10μmよりも小さいと、多孔質樹脂シートの主面において空孔率が高まりやすくなるため、平滑性が低下しやすくなる。この場合、多孔質樹脂シートの主面に金属層を圧着した後、回路パターンを形成するために金属層をエッチングすると、シートの主面に存在する空孔に起因してパターン欠損が生じやすくなる。
多孔質樹脂シートの厚みが200μmよりも大きいと、多孔質樹脂シートを用いて、層間接続導体を有する電子回路基板を製造する場合に、層間接続導体が形成されるビアホールを、多孔質樹脂シートを貫通するように形成することが困難になることがある。
本発明の多孔質樹脂シートにおいて、樹脂シートに含有される樹脂は、熱可塑性樹脂であることが好ましい。熱可塑性樹脂としては、例えば、液晶ポリマー(LCP)等の芳香族ポリエステル樹脂、ポリエーテルエーテルケトン樹脂(PEEK)等の芳香族ポリエーテルケトン樹脂等が挙げられる。樹脂シートは、1種の樹脂を含有してもよいし、2種以上の樹脂を含有してもよい。
本発明の多孔質樹脂シートにおいて、樹脂シートは、液晶ポリマーを主成分として含むことが好ましい。液晶ポリマーは、熱可塑性樹脂の中でも誘電率が低いため、電子回路基板の高周波帯域における誘電特性が向上しやすくなる。また、液晶ポリマーは吸湿性が低いため、吸湿による誘電特性の変動が生じにくくなる。
本明細書中、主成分とは、含有量(重量百分率)が最も多い成分を意味する。
液晶ポリマー等の芳香族ポリエステル樹脂は、棒状分子より構成されることから分子間のパッキング性が高く、他の樹脂に比べて低温及び高温におけるガス透過率が低いのが一般的である。芳香族ポリエステル樹脂の中でも、比較的、高温になるとパッキング性が緩みやすく、高温でのガス透過率が低温でのガス透過率よりも十倍程度高くなるものを選べば、超臨界状態の二酸化炭素を使用した多孔化剤の排出過程において多孔化剤の排出効率を高くすることができる。
以上より、樹脂シートに含有される樹脂は、全芳香族ポリエステル樹脂であることが好ましい。その場合、全芳香族ポリエステル樹脂は、p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸との共重合体を含むことが好ましい。
全芳香族ポリエステル樹脂は、一部芳香族ポリエステル樹脂よりも加水分解を起こしにくいため、多孔質樹脂シートを用いて製造された電子回路基板の構成材料として好ましい。また、p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸との共重合体は、ナフタレン環由来により誘電正接が小さいため、電子回路基板において、多孔質樹脂シートでの電気エネルギー損失の低減に寄与する。
全芳香族ポリエステル樹脂がp-ヒドロキシ安息香酸(HBA)と6-ヒドロキシ-2-ナフトエ酸(HNA)との共重合体を含む場合、6-ヒドロキシ-2-ナフトエ酸に対するp-ヒドロキシ安息香酸のモル比率(HBA/HNA)は、0.20以上(16.7/83.3以上)、5以下(83.3/16.7以下)であることが好ましく、0.25以上(20/80以上)、4以下(80/20以下)であることがより好ましい。全芳香族ポリエステル樹脂を構成するモノマーとしてキンク骨格を持つHNAの分率を高くすることで、HNAのキンク部分で棒状分子間のパッキング性が緩むため、高温下でのガスバリア性が比較的低下しやすくなる。その結果、超臨界状態の二酸化炭素を使用した多孔化剤の排出過程において多孔化剤を効率的に排出することができる。
全芳香族ポリエステル樹脂等の芳香族ポリエステル樹脂を構成する各々のモノマーの含有割合及び比率は、反応熱分解ガスクロマトグラフィー質量分析法により分析可能である。
本発明の多孔質樹脂シートでは、空孔として独立気泡が設けられていることが好ましい。多孔質樹脂シートが独立気泡構造を有する場合、連続気泡構造を有する場合と比較して、空孔中の空気が外部へ抜ける経路が少なくなりやすく、圧縮強度が確保されやすいため、金属層を多孔質樹脂シートに圧着する際に、空孔が潰れにくくなる。
本明細書において、独立気泡とは、気泡の壁面全てが樹脂で囲まれた構造のものを意味し、多孔質樹脂シートの面内方向とその垂直方向の断面観察をした際に、気泡の壁面が他の気泡と連結していないものを指す。
本発明の多孔質樹脂シートに対してレーザー穴開け加工を行う際に、樹脂シートの内部に設けられている空孔近傍の樹脂を融かすことができれば、空孔が樹脂で塞がれた構造が形成されやすくなる。具体的には、レーザー光を吸収しやすい樹脂を使用することで、レーザー光の照射による樹脂のアブレーション効果よりも、レーザー光による樹脂の熱加工を積極的に起こさせて、レーザー穴開け加工を行う際に樹脂が融けて、融けた樹脂で空孔が塞がれやすくなる。そこで、レーザー光を透過し難い樹脂を使用することで、レーザー光による樹脂の熱加工を積極的に起こさせて、レーザー穴開け加工を行う際に樹脂が融けて、融けた樹脂で空孔が塞がれやすくなる。レーザー穴開け部の穴壁面に空孔がなくなることで、導電性ペーストの充填又は金属めっきにより層間接続導体を形成する際に、穴部の壁面の空孔に導電性ペースト又は金属めっきが侵入されにくくなるため、電気的、機械的に有利な形状の層間接続導体を形成できる。
以上より、本発明の多孔質樹脂シートでは、多孔質樹脂シートに含有される樹脂の、シート厚み50μmにおける波長200nm以上500nm以下の光透過率が1%以下であることが好ましく、0.8%以下であることがより好ましい。一方、多孔質樹脂シートに含有される樹脂の、シート厚み50μmにおける波長200nm以上500nm以下の光透過率は、0.1%以上であることが好ましい。
後述の実施例においては、分光光度計を用いて波長200nm以上500nm以下での光透過率を測定し、波長200nm以上500nm以下での平均透過率を算出することにより光透過率を求めた。具体的な測定条件を以下に示す。
<測定装置>
島津製作所製 UV-3100PC(測定波長:190~3200nm)
<測定する試料>
原材料樹脂で製膜した充実シート
厚み:50μm
<測定装置>
島津製作所製 UV-3100PC(測定波長:190~3200nm)
<測定する試料>
原材料樹脂で製膜した充実シート
厚み:50μm
本発明の多孔質樹脂シートは、はんだ実装工程で高温に曝されると、空孔内の空気が膨張することによって、多孔質樹脂シートが膨張してしまい、シートの平坦性が損なわれてしまうおそれがある。この傾向は、空孔として独立気泡が設けられる場合に顕著である。そこで、高温下での貯蔵弾性率が高い樹脂を使用することで、多孔質樹脂シートの膨張を抑制し、シートの平坦性が保たれやすくなる。シートの平坦性が保たれることで、シート厚み及び誘電率の変動がなくなり、インピーダンス整合を取りやすくなるといった利点、表面実装部品の搭載性が良くなるといった利点を得ることができる。
以上より、本発明の多孔質樹脂シートでは、多孔質樹脂シートに含有される樹脂の、シート厚み50μmにおける245℃以上260℃以下の貯蔵弾性率が200MPa以上であることが好ましい。一方、多孔質樹脂シートに含有される樹脂の、シート厚み50μmにおける245℃以上260℃以下の貯蔵弾性率は、500MPa以下であることが好ましい。
後述の実施例においては、粘弾性測定器(レオメーター)を用いて貯蔵弾性率(E’)を測定した。具体的な測定条件を以下に示す。
<測定装置>
Rheometric製 RSA II
<測定条件>
温度範囲:25~300℃
Frequency:1Hz
Initial Force:10g
Ramp Rate:10℃/min
strain:0.10%
<測定する試料>
原材料樹脂で製膜した充実シート
厚み:50μm(20μm以上100μm以下の範囲内であればよい)
試験片幅:10mm
<測定装置>
Rheometric製 RSA II
<測定条件>
温度範囲:25~300℃
Frequency:1Hz
Initial Force:10g
Ramp Rate:10℃/min
strain:0.10%
<測定する試料>
原材料樹脂で製膜した充実シート
厚み:50μm(20μm以上100μm以下の範囲内であればよい)
試験片幅:10mm
本発明の多孔質樹脂シートにおいては、樹脂シートの内部と表層部で空孔率及び孔径が同じでもよく、異なってもよい。
本明細書においては、多孔質樹脂シートを厚み方向に9等分に分割したとき、両端の領域(1番目の領域及び9番目の領域)を樹脂シートの表層部、中央の領域(5番目の領域)を樹脂シートの内部と定義する。
図2は、樹脂シートの内部と表層部で空孔率及び孔径が異なる多孔質樹脂シートの一例を示す断面模式図である。
図2に示す多孔質樹脂シート2のように、本発明の多孔質樹脂シートでは、樹脂シートの内部よりも樹脂シートの表層部の空孔率が小さく、かつ孔径が小さくてもよい。
本発明の多孔質樹脂シートでは、樹脂シートの内部よりも樹脂シートの表層部の空孔率が小さく、かつ孔径が小さくなるようにすることで、シートの誘電率を下げる目的でシート全体の空孔率を大きくする場合であっても、シート表面の空孔のサイズを小さく抑えることができるため、シート表面の平坦性を保ちやすくすることができる。これにより、シート表面に配置した金属層をエッチングして回路パターンを形成する際に、パターン欠損を起こり難くすることができる。また、表層部の空孔率が小さくなることから、シート表面の硬さを担保でき、表面実装部品の搭載性が良くなる効果がある。この傾向は、空孔として独立気泡が設けられる場合に顕著である。
シート表面の平坦性及び硬さの観点から、樹脂シートの表層部の空孔率は樹脂シートの内部の空孔率の2/3以下であることが好ましく、樹脂シートの表層部の孔径は樹脂シートの内部の孔径の2/3以下であることが好ましい。
例えば、多孔質樹脂シートを構成する樹脂シートの表面を融かすことで、樹脂シートの内部よりも樹脂シートの表層部の空孔率及び孔径を小さくすることができる。さらに、樹脂シートの表面が融けた部分では、表面粗さが小さくなる。そのため、表層部の表面粗さは、1.5μm以下であってもよい。一方、表層部の表面粗さは、0μmより大きく、例えば0.5μm以上である。
本明細書において、表面粗さとは、JIS B 0601:2001で規定される十点平均粗さRzjisを意味する。
図3は、樹脂シートの内部と表層部で空孔率及び孔径が異なる多孔質樹脂シートの別の一例を示す断面模式図である。
図3に示す多孔質樹脂シート3のように、本発明の多孔質樹脂シートでは、樹脂シートの表層部よりも樹脂シートの内部の空孔率が小さく、かつ孔径が小さくてもよい。
本発明の多孔質樹脂シートでは、樹脂シートの表層部よりも樹脂シートの内部の空孔率が小さく、かつ孔径が小さくなるようにすることで、シートの誘電率を下げる目的でシート全体の空孔率を大きくする場合であっても、シート内部の空孔のサイズを小さく抑えることができるため、多孔質樹脂シートを曲げ加工した際にシート内部が圧縮変形し難く、多孔質樹脂シートの座屈が起こり難くなる。これにより、シート表面に形成した回路パターンが座屈してしまうことも抑制できる。この傾向は、空孔として独立気泡が設けられる場合に顕著である。
曲げ加工した際の多孔質樹脂シートの座屈を抑制する観点から、樹脂シートの内部の空孔率は樹脂シートの表層部の空孔率の2/3以下であることが好ましく、樹脂シートの内部の孔径は樹脂シートの表層部の孔径の2/3以下であることが好ましい。
例えば、共押出し法を用いて、空孔率及び孔径が異なるシートを少なくとも3層重ねることで、樹脂シートの表層部よりも樹脂シートの内部の空孔率及び孔径を小さくすることができる。そのため、多孔質樹脂シートは、樹脂シートの一方主面を形成する第1樹脂層と、樹脂シートの他方主面を形成する第2樹脂層と、第1樹脂層と第2樹脂層との間に設けられる第3樹脂層と、を備え、第1樹脂層及び第2樹脂層よりも第3樹脂層の空孔率が小さく、かつ孔径が小さくてもよい。
本発明の多孔質樹脂シートは、空孔の形状に異方性を有してもよい。
図4は、空孔の形状に異方性を有する多孔質樹脂シートの一例を示す断面模式図である。
図4に示す多孔質樹脂シート4のように、本発明の多孔質樹脂シートでは、空孔の面内方向の径が厚み方向の径よりも大きいことが好ましい。
本発明の多孔質樹脂シートでは、空孔の形状に異方性を持たせ、特に、空孔の面内方向の径が厚み方向の径よりも大きい形状とすることで、厚み方向における樹脂の体積が増えて機械強度が上がる。その結果、電子回路基板の材料として、表面実装部品の実装性の面から特に重要となる厚み方向に掛かる応力に対して強いシートにすることができる。
多孔質樹脂シートの厚み方向における耐荷重を上げる観点から、空孔の面内方向の径は、厚み方向の径の2倍以上であることが好ましい。一方、空孔の面内方向の径は、大きいほど好ましいため上限は特に限定されないが、厚み方向の径の10倍以下であることが好ましく、5倍以下であることがより好ましい。
本発明の多孔質樹脂シートにおいては、樹脂の融点よりも20℃高い温度を測定温度とし、かつ、せん断速度を1000s-1とした条件における溶融粘度が12Pa・s以上であることが好ましい。
多孔質樹脂シートの上記条件における溶融粘度が12Pa・s以上であることにより、多孔質樹脂シートを用いて電子回路基板を製造する場合で、金属層を多孔質樹脂シートに圧着する際に、空孔が、圧着時の高温高圧下で潰れにくくなる。よって、多孔質樹脂シートを用いて製造された電子回路基板では、多孔質樹脂シートによる誘電率の低減効果が発揮されやすくなるため、特に高周波領域における誘電特性が向上しやすくなる。
多孔質樹脂シートの上記条件における溶融粘度が12Pa・sよりも低いと、高温高圧下で空孔が潰れやすくなる。
一方、多孔質樹脂シートの上記条件における溶融粘度が高過ぎると、金属層を多孔質樹脂シートに圧着する際に、多孔質樹脂シートが変形しにくいため、多孔質樹脂シートと金属層との密着性が向上しにくいことがある。このような観点から、多孔質樹脂シートの上記条件における溶融粘度は、好ましくは500Pa・s以下である。
本発明の多孔質樹脂シートにおいて、上記条件における溶融粘度は、20Pa・s以上であることがより好ましく、30Pa・s以上であることがさらに好ましい。一方、多孔質樹脂シートの上記条件における溶融粘度は、200Pa・s以下であることがより好ましく、100Pa・s以下であることがさらに好ましく、50Pa・s以下であることが特に好ましく、40Pa・s以下であることが最も好ましい。
溶融粘度を、樹脂の融点よりも20℃高い測定温度で規定したのは、樹脂の劣化を抑制しつつ正確に溶融粘度を測定するためである。
溶融粘度の測定方法及び測定条件を以下に示す。
<測定方法>
フローテスター(キャピラリーレオメーター)を用いた測定
<測定装置>
東洋精機製作所製 キャピログラフ F-1
<測定条件>
測定温度:樹脂の融点+20℃
せん断速度:1000s-1
シリンダーのバレル径:9.55mmφ
キャピラリーの直径:1mmφ
<測定する試料>
原材料樹脂(樹脂ペレット)、原材料樹脂で製膜した充実シート、原材料樹脂を用いて製膜した多孔質シートのいずれでもよい。
<測定方法>
フローテスター(キャピラリーレオメーター)を用いた測定
<測定装置>
東洋精機製作所製 キャピログラフ F-1
<測定条件>
測定温度:樹脂の融点+20℃
せん断速度:1000s-1
シリンダーのバレル径:9.55mmφ
キャピラリーの直径:1mmφ
<測定する試料>
原材料樹脂(樹脂ペレット)、原材料樹脂で製膜した充実シート、原材料樹脂を用いて製膜した多孔質シートのいずれでもよい。
樹脂の融点は、以下のようにして定められる。まず、例えば、日立ハイテクサイエンス社製の示差走査熱量計「DSC7000X」等の示差走査熱量計を用いて、樹脂を昇温させて完全に溶融させる。この昇温過程では、昇温速度を、例えば、20℃/分とする。次に、得られた溶融物を降温させた後、再び昇温させる。この際、降温過程では、例えば、20℃/分の降温速度で175℃まで降温させ、昇温過程では、例えば、20℃/分の昇温速度で昇温させる。そして、この昇温過程で観測される吸熱ピークに対応する温度を、樹脂の融点と定める。なお、上述した方法で吸熱ピークが観測されにくい場合は、偏光顕微鏡のクロスニコル条件下でのテクスチャー観察により、樹脂の融点を定める。
多孔質樹脂シートの上記条件における溶融粘度は、例えば、多孔質樹脂シートの製造時に、固相重合を行うことによって調整可能である。固相重合を行うと、ポリマーの分子鎖長が伸長するため、分子鎖長が伸長したポリマー同士が絡み合うことにより、多孔質樹脂シートの溶融粘度が高まりやすくなる。あるいは、ポリマーへの電子線照射を行うことによっても、多孔質樹脂シートの溶融粘度を高めることができる。また、多孔質樹脂シートの溶融粘度は、ポリマーの重合温度、重合時間等の重合条件によっても調整可能である。
[多孔質樹脂シートの製造方法]
本発明の多孔質樹脂シートは、樹脂及び多孔化剤を含む充実シートを作製し、その後、充実シートから、二酸化炭素を媒体とした超臨界法により多孔化剤を抽出することにより製造される。
本発明の多孔質樹脂シートは、樹脂及び多孔化剤を含む充実シートを作製し、その後、充実シートから、二酸化炭素を媒体とした超臨界法により多孔化剤を抽出することにより製造される。
樹脂としては、シート厚み50μmにおける25℃での二酸化炭素ガス透過率が1cm3/m2・24hr・atm以下、100℃での二酸化炭素ガス透過率が5cm3/m2・24hr・atm以上である樹脂が使用される。樹脂は、1種のみを使用してもよく、2種以上を併用してもよい。
多孔化剤としては、例えば、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール等が使用される。多孔化剤は、1種のみを使用してもよく、2種以上を併用してもよい。
充実シートを作製する方法としては、例えば、溶融成形法等が挙げられる。溶融加工に共押出し法を用いてもよい。
二酸化炭素を媒体とした超臨界法では、超臨界状態の二酸化炭素が充実シートの表面に接触したり、内部に浸透したりすることで、充実シート中の多孔化剤が超臨界状態の二酸化炭素に溶解する。溶解した多孔化剤は、超臨界状態の二酸化炭素とともに拡散移動し、その後、樹脂シート外に排出される。
このように、超臨界状態の二酸化炭素を用いて多孔化剤の抽出を行うことにより、所望の空孔率及び孔径を有する多孔質樹脂シートを得ることができる。
[金属層付き多孔質樹脂シート]
本発明の金属層付き多孔質樹脂シートは、本発明の多孔質樹脂シートと、上記多孔質樹脂シートの少なくとも一方主面に配置された金属層と、を備える。
本発明の金属層付き多孔質樹脂シートは、本発明の多孔質樹脂シートと、上記多孔質樹脂シートの少なくとも一方主面に配置された金属層と、を備える。
図5は、本発明の金属層付き多孔質樹脂シートの一例を示す断面模式図である。
図5に示す金属層付き多孔質樹脂シート10は、多孔質樹脂シート11と、多孔質樹脂シート11の第1主面1aに配置された金属層12と、を備える。
図5に示す例では、多孔質樹脂シート11は、図1に示す多孔質樹脂シート1と同様の構成を有している。
金属層12は、多孔質樹脂シート11の少なくとも一方主面に配置されていればよい。すなわち、金属層12は、多孔質樹脂シート11の第1主面1a及び第2主面1bのいずれか一方の主面に配置されてもよく、両方の主面に配置されてもよい。
金属層12は、配線等にパターン化されたパターン形状であってもよいし、一面に広がった面状であってもよい。
金属層12の構成材料としては、例えば、銅、銀、アルミニウム、ステンレス、ニッケル、金、これらの金属の少なくとも1種を含有する合金等が挙げられる。金属層12は、銅箔からなることが好ましい。
金属層12の厚みは、好ましくは1μm以上、35μm以下であり、より好ましくは6μm以上、18μm以下である。
[金属層付き多孔質樹脂シートの製造方法]
本発明の金属層付き多孔質樹脂シートは、本発明の多孔質樹脂シートの少なくとも一方主面に金属層を配置することにより製造される。
本発明の金属層付き多孔質樹脂シートは、本発明の多孔質樹脂シートの少なくとも一方主面に金属層を配置することにより製造される。
例えば、本発明の金属層付き多孔質樹脂シートは、多孔質樹脂シートの少なくとも一方主面に金属層を圧着することにより製造される。多孔質樹脂シートに圧着された金属層は、パターン形状になるようにエッチングされてもよい。あるいは、本発明の金属層付き多孔質樹脂シートは、予めパターン化された金属層を多孔質樹脂シートの少なくとも一方主面に圧着することにより製造されてもよい。
[電子回路基板]
本発明の電子回路基板は、本発明の金属層付き多孔質樹脂シートを備える。
本発明の電子回路基板は、本発明の金属層付き多孔質樹脂シートを備える。
本発明の電子回路基板は、本発明の金属層付き多孔質樹脂シートを少なくとも1層備えていればよい。また、本発明の電子回路基板は、本発明の多孔質樹脂シートを少なくとも1層備えていればよい。本発明の電子回路基板が本発明の多孔質樹脂シートを2層以上備える場合、本発明の多孔質樹脂シートの構成は、同じでもよく、異なってもよい。
図6は、本発明の電子回路基板の一例を示す断面模式図である。
図6に示す電子回路基板50は、金属層付き多孔質樹脂シート10Aと、金属層付き多孔質樹脂シート10Bと、金属層付き多孔質樹脂シート10Cと、を積層方向(図6では上下方向)に順に備える。つまり、電子回路基板50では、金属層付き多孔質樹脂シート10Aと、金属層付き多孔質樹脂シート10Bと、金属層付き多孔質樹脂シート10Cとが、順に積層されている。
金属層付き多孔質樹脂シート10Aは、多孔質樹脂シート11Aと、金属層12Aと、を有している。多孔質樹脂シート11Aは、樹脂を含有する樹脂シート1sからなり、樹脂シート1sの内部に空孔1hが設けられている。多孔質樹脂シート11Aは、厚み方向に対向する第1主面1Aa及び第2主面1Abを有している。
金属層12Aは、多孔質樹脂シート11Aの第1主面1Aaに設けられている。また、金属層12Aは、後述する多孔質樹脂シート11Bの第2主面1Bb側に隣接している。
金属層付き多孔質樹脂シート10Bは、多孔質樹脂シート11Bと、金属層12Bと、金属層12B’と、金属層12B’’と、を有している。多孔質樹脂シート11Bは、樹脂を含有する樹脂シート1sからなり、樹脂シート1sの内部に空孔1hが設けられている。多孔質樹脂シート11Bは、厚み方向に対向する第1主面1Ba及び第2主面1Bbを有している。
金属層12B、金属層12B’及び金属層12B’’は、多孔質樹脂シート11Bの第1主面1Baに設けられている。また、金属層12B、金属層12B’及び金属層12B’’は、後述する多孔質樹脂シート11Cの第2主面1Cb側に隣接している。
金属層付き多孔質樹脂シート10Cは、多孔質樹脂シート11Cと、金属層12Cと、を有している。多孔質樹脂シート11Cは、樹脂を含有する樹脂シート1sからなり、樹脂シート1sの内部に空孔1hが設けられている。多孔質樹脂シート11Cは、厚み方向に対向する第1主面1Ca及び第2主面1Cbを有している。
金属層12Cは、多孔質樹脂シート11Cの第1主面1Caに設けられている。
金属層12Bは、図6に示すように、多孔質樹脂シート11Bと多孔質樹脂シート11Cとの界面にまたがって設けられていることが好ましい。これにより、金属層12Bと多孔質樹脂シート11Bとの界面、及び、金属層12Bと多孔質樹脂シート11Cとの界面が、多孔質樹脂シート11Bと多孔質樹脂シート11Cとの界面から積層方向にずれるため、金属層12Bと多孔質樹脂シート11Bとの界面での剥離、及び、金属層12Bと多孔質樹脂シート11Cとの界面での剥離が抑制される。
金属層12B’及び金属層12B’’も、金属層12Bと同様に、多孔質樹脂シート11Bと多孔質樹脂シート11Cとの界面にまたがって設けられていることが好ましい。
なお、図6では、多孔質樹脂シート11Bと多孔質樹脂シート11Cとの界面が示されているが、実際にはこの界面が明瞭に現れていなくてもよい。多孔質樹脂シート11Bと多孔質樹脂シート11Cとの界面が明瞭に現れていない場合、図6に示すような積層方向に沿う断面において、金属層12Bの断面の積層方向における中心を通り、かつ、積層方向に直交する方向に沿う面を、多孔質樹脂シート11Bと多孔質樹脂シート11Cとの界面とみなす。
多孔質樹脂シート11A、多孔質樹脂シート11B及び多孔質樹脂シート11Cの厚みは、互いに同じであってもよいし、互いに異なっていてもよいし、図6に示すように一部で異なっていてもよい。
電子回路基板50は、図6に示すように、多孔質樹脂シートを積層方向に貫通するが金属層を積層方向に貫通せずに、金属層に接続されるように設けられた層間接続導体を更に備えることが好ましい。図6に示す例では、電子回路基板50は、層間接続導体20Aと、層間接続導体20Bと、層間接続導体20Cと、層間接続導体20Dと、を更に有している。
層間接続導体20Aは、多孔質樹脂シート11Bを積層方向に貫通するが金属層12B’を積層方向に貫通せずに、金属層12B’に接続されるように設けられている。より具体的には、層間接続導体20Aは、多孔質樹脂シート11Bを積層方向に貫通しつつ、多孔質樹脂シート11Bの第1主面1Ba側で金属層12B’に接続されている。また、層間接続導体20Aは、多孔質樹脂シート11Bの第2主面1Bb側で金属層12Aに接続されている。つまり、金属層12Aと金属層12B’とは、層間接続導体20Aを介して電気的に接続されている。
層間接続導体20Bは、層間接続導体20Aと離隔した位置において、多孔質樹脂シート11Bを積層方向に貫通するが金属層12B’’を積層方向に貫通せずに、金属層12B’’に接続されるように設けられている。より具体的には、層間接続導体20Bは、層間接続導体20Aと離隔した位置において、多孔質樹脂シート11Bを積層方向に貫通しつつ、多孔質樹脂シート11Bの第1主面1Ba側で金属層12B’’に接続されている。また、層間接続導体20Bは、層間接続導体20Aと離隔した位置において、多孔質樹脂シート11Bの第2主面1Bb側で金属層12Aに接続されている。つまり、金属層12Aと金属層12B’’とは、層間接続導体20Bを介して電気的に接続されている。
層間接続導体20Cは、多孔質樹脂シート11Cを積層方向に貫通するが金属層12Cを積層方向に貫通せずに、金属層12Cに接続されるように設けられている。より具体的には、層間接続導体20Cは、多孔質樹脂シート11Cを積層方向に貫通しつつ、多孔質樹脂シート11Cの第1主面1Ca側で金属層12Cに接続されている。また、層間接続導体20Cは、多孔質樹脂シート11Cの第2主面1Cb側で金属層12B’に接続されている。つまり、金属層12B’と金属層12Cとは、層間接続導体20Cを介して電気的に接続されている。
層間接続導体20Dは、層間接続導体20Cと離隔した位置において、多孔質樹脂シート11Cを積層方向に貫通するが金属層12Cを積層方向に貫通せずに、金属層12Cに接続されるように設けられている。より具体的には、層間接続導体20Dは、層間接続導体20Cと離隔した位置において、多孔質樹脂シート11Cを積層方向に貫通しつつ、多孔質樹脂シート11Cの第1主面1Ca側で金属層12Cに接続されている。また、層間接続導体20Dは、層間接続導体20Cと離隔した位置において、多孔質樹脂シート11Cの第2主面1Cb側で金属層12B’’に接続されている。つまり、金属層12B’’と金属層12Cとは、層間接続導体20Dを介して電気的に接続されている。
このように、電子回路基板50では、金属層12Aと金属層12Cとが、層間接続導体20A、金属層12B’及び層間接続導体20Cを介して電気的に接続されている。また、電子回路基板50では、金属層12Aと金属層12Cとが、層間接続導体20B、金属層12B’’及び層間接続導体20Dを介しても電気的に接続されている。
層間接続導体20Aは、例えば、多孔質樹脂シート11Bを厚み方向に貫通するが金属層12B’を厚み方向に貫通せずに金属層12B’に達するように設けられたビアホールに対して、内壁にめっき処理を行ったり、導電性ペーストを充填した後に熱処理を行ったりすることにより形成される。
層間接続導体20B、層間接続導体20C及び層間接続導体20Dも、形成位置が異なること以外、層間接続導体20Aと同様にして形成される。
層間接続導体20A、層間接続導体20B、層間接続導体20C及び層間接続導体20Dがめっき処理で形成される場合、各々の層間接続導体を構成する金属としては、例えば、銅、錫、銀等が挙げられ、中でも銅が好ましい。
層間接続導体20A、層間接続導体20B、層間接続導体20C及び層間接続導体20Dが導電性ペーストの熱処理で形成される場合、各々の層間接続導体に含まれる金属としては、例えば、銅、錫、銀等が挙げられる。中でも、各々の層間接続導体は、銅を含むことが好ましく、銅及び錫を含むことがより好ましい。例えば、層間接続導体20Aが銅及び錫を含み、金属層12B’が銅箔からなる場合、層間接続導体20Aは金属層12B’と低温で合金化反応を起こすため、両者が導通しやすくなる。層間接続導体と金属層との他の組み合わせについても、同様である。
層間接続導体20A、層間接続導体20B、層間接続導体20C及び層間接続導体20Dが導電性ペーストの熱処理で形成される場合、各々の層間接続導体に含まれる樹脂は、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、シリコン樹脂若しくはその変性樹脂、及び、アクリル樹脂からなる群より選択される少なくとも1種の熱硬化性樹脂、又は、ポリアミド樹脂、ポリスチレン樹脂、ポリメタクリル樹脂、ポリカーボネート樹脂、及び、セルロース系樹脂からなる群より選択される少なくとも1種の熱可塑性樹脂を含むことが好ましい。
電子回路基板50は、信号を伝送する信号線として金属層12Bを有していてもよい。この場合、電子回路基板50は、伝送線路を構成する。
電子回路基板50は、信号を伝送する信号線として金属層12Bを有し、かつ、グランド電極として金属層12A及び金属層12Cを有していてもよい。この場合、電子回路基板50は、ストリップライン型の伝送線路を構成する。
電子回路基板50が上述した伝送線路を構成する場合、金属層12Bは、高周波信号を伝送する信号線であってもよい。
電子回路基板50が伝送線路を構成する場合、誘電率が小さい多孔質樹脂シート11B及び多孔質樹脂シート11Cが、金属層12B、すなわち、信号線に接しているため、電子回路基板50の伝送特性が向上しやすくなる。
[電子回路基板の製造方法]
本発明の電子回路基板は、本発明の金属層付き多孔質樹脂シートの金属層に回路パターンを形成することにより製造される。例えば、金属層のエッチングにより回路パターンを形成することができる。
本発明の電子回路基板は、本発明の金属層付き多孔質樹脂シートの金属層に回路パターンを形成することにより製造される。例えば、金属層のエッチングにより回路パターンを形成することができる。
図6に示す電子回路基板50は、例えば、以下の方法で製造される。
まず、金属層付き多孔質樹脂シート10Aと、金属層付き多孔質樹脂シート10Bと、金属層付き多孔質樹脂シート10Cと、を作製する。
金属層付き多孔質樹脂シート10Bに対して、多孔質樹脂シート11Bを厚み方向に貫通するが金属層12B’又は金属層12B’’を厚み方向に貫通せずに金属層12B’又は金属層12B’’に達するようにビアホールを形成する。また、金属層付き多孔質樹脂シート10Cに対して、多孔質樹脂シート11Cを厚み方向に貫通するが金属層12Cを厚み方向に貫通せずに金属層12Cに達するようにビアホールを形成する。ビアホールを形成する際、金属層付き多孔質樹脂シートに対して、多孔質樹脂シート側からレーザー光を照射することが好ましい。
金属層付き多孔質樹脂シート10B及び金属層付き多孔質樹脂シート10Cに対して、導電性ペーストをビアホールに充填する。導電性ペーストを充填する方法としては、例えば、スクリーン印刷法、真空充填法等が挙げられる。
金属層付き多孔質樹脂シート10Aと、導電性ペーストが充填された金属層付き多孔質樹脂シート10Bと、導電性ペーストが充填された金属層付き多孔質樹脂シート10Cとを、積層方向に順に積層する。そして、得られた積層体に対して、加熱しつつ積層方向に圧力を加えることにより、加熱プレスを行う。これにより、金属層付き多孔質樹脂シート10Aと金属層付き多孔質樹脂シート10Bとが圧着され、これにより、金属層付き多孔質樹脂シート10Bと金属層付き多孔質樹脂シート10Cとが圧着される。また、導電性ペーストは、加熱プレス時に固化することにより、各々、層間接続導体20A、層間接続導体20B、層間接続導体20C及び層間接続導体20Dとなる。
以上により、図6に示す電子回路基板50が製造される。
なお、層間接続導体20A、層間接続導体20B、層間接続導体20C及び層間接続導体20Dを形成する際、導電性ペーストをビアホールに充填するのではなく、銅、錫、銀等の金属を用いて、ビアホールの内壁にめっき処理を行ってもよい。
以下、本発明の多孔質樹脂シートをより具体的に開示した実施例を示す。なお、本発明は、以下の実施例に限定されるものではない。
[実施例1]
1.5型LCP(HBA/HNA=60/40(モル比)の全芳香族ポリエステル樹脂、融点Tm=335℃)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。実施例及び比較例では、多孔化剤としてポリエチレングリコールを使用し、樹脂100重量部に対して多孔化剤を100重量部添加した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法(100℃、30MPa)で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例1では、充実シートからの多孔化剤の抽出を10分で完了させることができ、十分な生産性が得られることが確認できた。
1.5型LCP(HBA/HNA=60/40(モル比)の全芳香族ポリエステル樹脂、融点Tm=335℃)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。実施例及び比較例では、多孔化剤としてポリエチレングリコールを使用し、樹脂100重量部に対して多孔化剤を100重量部添加した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法(100℃、30MPa)で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例1では、充実シートからの多孔化剤の抽出を10分で完了させることができ、十分な生産性が得られることが確認できた。
使用した1.5型LCPのみを用いて、溶融成形法にて厚み50μmの充実シートを作製し、以下の物性評価を行った。
1.ガス透過率の測定
25℃及び100℃のCO2ガスの透過率を測定した。厚み50μmの充実シートの二酸化炭素(CO2)ガスの透過率は、25℃で0.75cm3/m2・24hr・atm、100℃で7.5cm3/m2・24hr・atmであった。
25℃及び100℃のCO2ガスの透過率を測定した。厚み50μmの充実シートの二酸化炭素(CO2)ガスの透過率は、25℃で0.75cm3/m2・24hr・atm、100℃で7.5cm3/m2・24hr・atmであった。
2.光透過率の測定
波長200nm以上500nm以下の光透過率を測定した。厚み50μmの充実シートの波長200nm以上500nm以下の平均透過率は、0.5%であった。
波長200nm以上500nm以下の光透過率を測定した。厚み50μmの充実シートの波長200nm以上500nm以下の平均透過率は、0.5%であった。
3.貯蔵弾性率の測定
動的粘弾性測定(DMA)装置を用いて、引張モードで、245℃以上260℃以下の貯蔵弾性率を測定した。厚み50μmの充実シートの245℃以上260℃以下での貯蔵弾性率の最小値は250MPaであった。
動的粘弾性測定(DMA)装置を用いて、引張モードで、245℃以上260℃以下の貯蔵弾性率を測定した。厚み50μmの充実シートの245℃以上260℃以下での貯蔵弾性率の最小値は250MPaであった。
次に、独立気泡構造を持つ厚み50μmの多孔質樹脂シートの特性評価を行った。
1.比誘電率及び誘電正接の測定
誘電体共振器摂動法(TE011)を用いて、12GHzで、得られた多孔質樹脂シートの常態と吸湿後の比誘電率及び誘電正接を測定した。吸湿条件はJIS C6471(23℃、24時間、水中浸漬)とし、サンプルを水槽から取り出し、表面の水分を拭き取った後、直ちに測定を行った。多孔質樹脂シートの比誘電率は常態で1.98、吸湿後で2.00、誘電正接は常態で0.0011、吸湿後で0.0012となり、吸湿前後の誘電特性の変動が十分小さいことが確認できた。
誘電体共振器摂動法(TE011)を用いて、12GHzで、得られた多孔質樹脂シートの常態と吸湿後の比誘電率及び誘電正接を測定した。吸湿条件はJIS C6471(23℃、24時間、水中浸漬)とし、サンプルを水槽から取り出し、表面の水分を拭き取った後、直ちに測定を行った。多孔質樹脂シートの比誘電率は常態で1.98、吸湿後で2.00、誘電正接は常態で0.0011、吸湿後で0.0012となり、吸湿前後の誘電特性の変動が十分小さいことが確認できた。
2.レーザー加工した穴の壁面の状態
UVレーザー(YAGレーザー、波長250nm)を用いて、得られた厚み50μmの多孔質樹脂シートに直径100μmの穴開けをして、穴壁面の表面を金属顕微鏡(100倍)で観察した。穴壁面の樹脂がレーザーの熱で融けて、空孔の表面が樹脂で覆われることで、穴壁面の表面に凹凸又は空孔由来の穴は認められなかった。
UVレーザー(YAGレーザー、波長250nm)を用いて、得られた厚み50μmの多孔質樹脂シートに直径100μmの穴開けをして、穴壁面の表面を金属顕微鏡(100倍)で観察した。穴壁面の樹脂がレーザーの熱で融けて、空孔の表面が樹脂で覆われることで、穴壁面の表面に凹凸又は空孔由来の穴は認められなかった。
3.シート表面の平坦性
触針式粗さ計を用いて、得られた多孔質樹脂シートの初期の粗さと、はんだリフロー装置(260℃、20秒)を通した後のサンプルの粗さとを測定した。表面粗さ(Rzjis)は、初期1.0μm、はんだリフロー装置で加熱したサンプル1.2μmであり、空孔の膨張又は収縮によりシート表面の平坦性が損なわれることがないことが確認できた。
触針式粗さ計を用いて、得られた多孔質樹脂シートの初期の粗さと、はんだリフロー装置(260℃、20秒)を通した後のサンプルの粗さとを測定した。表面粗さ(Rzjis)は、初期1.0μm、はんだリフロー装置で加熱したサンプル1.2μmであり、空孔の膨張又は収縮によりシート表面の平坦性が損なわれることがないことが確認できた。
4.シート厚み
ダイヤルゲージを用いて、得られた多孔質樹脂シートの初期の厚みと、はんだリフロー装置(260℃、20秒)を通した後のサンプルの厚みとを測定した。シート厚みは、初期50.1μm、はんだリフロー装置で加熱したサンプル50.3μmであり、空孔の膨張又は収縮によりシート厚みが変わっていないことが確認できた。
ダイヤルゲージを用いて、得られた多孔質樹脂シートの初期の厚みと、はんだリフロー装置(260℃、20秒)を通した後のサンプルの厚みとを測定した。シート厚みは、初期50.1μm、はんだリフロー装置で加熱したサンプル50.3μmであり、空孔の膨張又は収縮によりシート厚みが変わっていないことが確認できた。
[実施例2]
II型LCP(全芳香族ポリエステル樹脂、融点Tm=285℃)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法を用いて、実施例1と同じ条件(100℃、30MPa)で、多孔化剤のみを抽出して、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例2では、充実シートからの多孔化剤の抽出を8分で完了させることができ、十分な生産性が得られることが確認できた。
II型LCP(全芳香族ポリエステル樹脂、融点Tm=285℃)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法を用いて、実施例1と同じ条件(100℃、30MPa)で、多孔化剤のみを抽出して、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例2では、充実シートからの多孔化剤の抽出を8分で完了させることができ、十分な生産性が得られることが確認できた。
使用したII型LCPのみを用いて、溶融成形法にて厚み50μmの充実シートを作製し、以下の物性評価を実施例1と同じ方法、条件で行った。
1.充実シートのCO2ガスの透過率は、25℃で0.75cm3/m2・24hr・atm、100℃で10cm3/m2・24hr・atmであった。
2.充実シートの波長200nm以上500nm以下の平均透過率は、0.5%であった。
3.充実シートの245℃以上260℃以下での貯蔵弾性率の最小値は、50MPaであった。
次に、独立気泡構造を持つ厚み50μmの多孔質樹脂シートの特性評価を実施例1と同じ方法、条件で行った。
1.多孔質樹脂シートの比誘電率は常態で1.97、吸湿後で2.00、誘電正接は常態で0.0012、吸湿後で0.0013となり、吸湿前後の誘電特性の変動が十分小さいことが確認できた。
2.多孔質樹脂シートにレーザー加工した穴の壁面の状態は、穴壁面の樹脂がレーザーの熱で融けて、空孔の表面が樹脂で覆われることで、穴壁面の表面に凹凸又は空孔由来の穴は認められなかった。
3.多孔質樹脂シート表面の平坦性について、初期の表面粗さ(Rzjis)は1.0μmであったのに対して、はんだリフロー装置を通した後のサンプルの表面粗さ(Rzjis)は2.4μmとなり、シート表面の平坦性が少し損なわれていたが、電子回路基板として使用できるレベルであった。
4.多孔質樹脂シートの厚みは、初期は49.8μmであったのに対して、はんだリフロー装置を通した後のサンプルは52.8μmとなり、シート厚みが変わっていることが分かったが、電子回路基板として使用できるレベルであった。
[実施例3]
I型LCP(全芳香族ポリエステル樹脂、融点Tm=355℃、高結晶性樹脂)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法を用いて、実施例1と同じ条件(100℃、30MPa)で、多孔化剤のみを抽出して、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例3では、充実シートからの多孔化剤の抽出を試みた結果、30分で多孔化剤の抽出を完了させることができ、実施例1及び実施例2と比べて生産性は良くないが、多孔質樹脂シートを作製することができることが分かった。
I型LCP(全芳香族ポリエステル樹脂、融点Tm=355℃、高結晶性樹脂)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法を用いて、実施例1と同じ条件(100℃、30MPa)で、多孔化剤のみを抽出して、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例3では、充実シートからの多孔化剤の抽出を試みた結果、30分で多孔化剤の抽出を完了させることができ、実施例1及び実施例2と比べて生産性は良くないが、多孔質樹脂シートを作製することができることが分かった。
使用したI型LCPのみを用いて、溶融成形法にて厚み50μmの充実シートを作製し、以下の物性評価を実施例1と同じ方法、条件で行った。
1.充実シートのCO2ガスの透過率は、25℃で0.6cm3/m2・24hr・atm、100℃で6cm3/m2・24hr・atmであった。
2.充実シートの波長200nm以上500nm以下の平均透過率は、0.4%であった。
3.充実シートの245℃以上260℃以下での貯蔵弾性率の最小値は、800MPaであった。
次に、独立気泡構造を持つ厚み50μmの多孔質樹脂シートの特性評価を実施例1と同じ方法、条件で行った。
1.多孔質樹脂シートの比誘電率は常態で1.87、吸湿後で1.89、誘電正接は常態で0.0010、吸湿後で0.0011となり、吸湿前後の誘電特性の変動が十分小さいことが確認できた。
2.多孔質樹脂シートにレーザー加工した穴の壁面の状態は、穴壁面の樹脂がレーザーの熱で融けて、空孔の表面が樹脂で覆われることで、穴壁面の表面に凹凸又は空孔由来の穴は認められなかった。
3.多孔質樹脂シート表面の平坦性について、表面粗さ(Rzjis)は、初期1.1μm、はんだリフロー装置で加熱したサンプル1.2μmであり、空孔の膨張又は収縮によりシート表面の平坦性が損なわれることがないことが確認できた。
4.多孔質樹脂シートの厚みは、初期50.2μm、はんだリフロー装置で加熱したサンプル50.3μmであり、空孔の膨張又は収縮によりシート厚みが変わっていないことが確認できた。
[実施例4]
III型LCP(半芳香族ポリエステル樹脂、融点Tm=250℃)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法を用いて、実施例1と同じ条件(100℃、30MPa)で、多孔化剤のみを抽出して、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例4では、充実シートからの多孔化剤の抽出を6分で完了させることができ、十分な生産性が得られることが確認できた。
III型LCP(半芳香族ポリエステル樹脂、融点Tm=250℃)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法を用いて、実施例1と同じ条件(100℃、30MPa)で、多孔化剤のみを抽出して、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例4では、充実シートからの多孔化剤の抽出を6分で完了させることができ、十分な生産性が得られることが確認できた。
使用したIII型LCPのみを用いて、溶融成形法にて厚み50μmの充実シートを作製し、以下の物性評価を実施例1と同じ方法、条件で行った。
1.充実シートのCO2ガスの透過率は、25℃で0.7cm3/m2・24hr・atm、100℃で15cm3/m2・24hr・atmであった。
2.充実シートの波長200nm以上500nm以下の平均透過率は、0.5%であった。
3.充実シートの245℃以上260℃以下での貯蔵弾性率の最小値は、5MPaであった。
次に、独立気泡構造を持つ厚み50μmの多孔質樹脂シートの特性評価を実施例1と同じ方法、条件で行った。
1.多孔質樹脂シートの比誘電率は常態で1.98、吸湿後で2.01、誘電正接は常態で0.0014、吸湿後で0.0015となり、吸湿前後の誘電特性の変動が十分小さいことが確認できた。
2.多孔質樹脂シートにレーザー加工した穴の壁面の状態は、穴壁面の樹脂がレーザーの熱で融けて、空孔の表面が樹脂で覆われることで、穴壁面の表面に凹凸又は空孔由来の穴は認められなかった。
3.多孔質樹脂シート表面の平坦性について、初期の表面粗さ(Rzjis)は1.1μmであったのに対して、はんだリフロー装置を通した後のサンプルの表面粗さ(Rzjis)は3.7μmであった。はんだ実装するタイプの基板又は多層回路基板用のシートとして使用するには適さないレベルであるが、はんだ実装しないタイプでかつ単層のフレキシブル基板には使用できるレベルであった。
4.多孔質樹脂シートの厚みは、初期は49.5μmであったのに対して、はんだリフロー装置を通した後のサンプルは55.2μmであった。はんだ実装するタイプの基板又は多層回路基板用のシートとして使用するには適さないレベルであるが、はんだ実装しないタイプでかつ単層のフレキシブル基板には使用できるレベルであった。
[実施例5]
PEEK(熱可塑性樹脂)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法(100℃、30MPa)で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例5では、充実シートからの多孔化剤の抽出を6分で完了させることができ、十分な生産性が得られることが確認できた。
PEEK(熱可塑性樹脂)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法(100℃、30MPa)で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例5では、充実シートからの多孔化剤の抽出を6分で完了させることができ、十分な生産性が得られることが確認できた。
使用したPEEKのみを用いて、溶融成形法にて厚み50μmの充実シートを作製し、以下の物性評価を実施例1と同じ方法、条件で行った。
1.充実シートのCO2ガスの透過率は、25℃で0.9cm3/m2・24hr・atm、100℃で23cm3/m2・24hr・atmであった。
2.充実シートの波長200nm以上500nm以下の平均透過率は、35%であった。
3.充実シートの245℃以上260℃以下での貯蔵弾性率の最小値は、500MPaであった。
次に、独立気泡構造を持つ厚み50μmの多孔質樹脂シートの特性評価を実施例1と同じ方法、条件で行った。
はんだリフロー装置で加熱したサンプルでの、空孔の膨張又は収縮によるシート形状の変形及び厚み変化はなく、また、常態と吸湿後の比誘電率、誘電正接の変動が小さく良好であることが分かった。
一方、レーザー加工した穴の壁面の表面に凹凸又は空孔由来の穴が残っていた、レーザーを用いてビア穴を開けて銅めっき又は導電性ペーストを充填する基板加工方法を用いるタイプの電子回路基板用シートしては不適であるが、ビア穴を形成しないタイプの電子回路基板用シートとしては十分使用できるレベルであった。
[実施例6]
実施例1で使用した樹脂(1.5型LCP、HBA/HNA=60/40(モル比)の全芳香族ポリエステル樹脂、融点Tm=335℃)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例6では、充実シートからの多孔化剤の抽出を10分で完了させることができ、十分な生産性が得られることが確認できた。
実施例1で使用した樹脂(1.5型LCP、HBA/HNA=60/40(モル比)の全芳香族ポリエステル樹脂、融点Tm=335℃)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例6では、充実シートからの多孔化剤の抽出を10分で完了させることができ、十分な生産性が得られることが確認できた。
次に、この多孔質樹脂シートの表面に、ホットメルト法の手法で高温の熱風を当てて、シート表面の近傍(2μm)の樹脂のみを融かして、表面近傍のみ、空孔率を下げ、かつ孔径を小さくした。シートを包埋樹脂に埋め込み、断面を出したサンプルを、走査型電子顕微鏡(SEM)を用いて500倍の倍率で観察したところ、初期状態では厚み方向全面に、空孔率70%、平均孔径2μmであったが、ホットメルト法で表面を融かしたシートでは、表面近傍の2μm厚み部分のみ、空孔率30%、平均孔径0.5μmになっていることが確認できた。
この独立気泡構造を持つ多孔質樹脂シートの特性評価を実施例1と同じ方法、条件で行った。
多孔質樹脂シート表面の平坦性について、表面粗さ(Rzjis)は、初期0.8μm、はんだリフロー装置で加熱したサンプル1.0μmであり、初期の平坦性が高く、高温に曝された後もシート表面の平坦性が保たれていることが確認できた。
次に、この独立気泡構造を持つ多孔質樹脂シート上に、スパッタリングにより銅膜(0.2μm)を形成し、更に電気めっきにより銅厚膜を形成して(銅膜総厚12μm)、回路パターン加工を行った。回路パターン形成は、塩化第二鉄水溶液を用いて、50℃に加温して行い、導体幅60μmの配線を形成した。配線パターンを実体顕微鏡で50倍の倍率で観察したところ、配線幅60μmに対して1/3以上のパターン欠損部がないことが確認できた。
また、この回路パターンを形成したシートに表面実装部品を搭載して、はんだリフロー炉を用いて部品実装試験を行ったところ、部品の外部端子と基板外部端子とがはんだ接合できていることが確認できた。
[実施例7]
実施例1で使用した樹脂(1.5型LCP、HBA/HNA=60/40(モル比)の全芳香族ポリエステル樹脂、融点Tm=335℃)に多孔化剤を添加し、溶融成形法にて充実シートを作製した。溶融加工は共押出し法を用いて行った。また、主材料である樹脂に添加する多孔化剤の分量は、上下押出シートでは75vol%、中央押出シートでは30vol%とした。共押出シートは、上層は厚み10μm、中央層は厚み30μm、下層は厚み10μmとなるようにして、総厚み50μmの3層構造のシートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例7では、充実シートからの多孔化剤の抽出を11分で完了させることができ、十分な生産性が得られることが確認できた。
実施例1で使用した樹脂(1.5型LCP、HBA/HNA=60/40(モル比)の全芳香族ポリエステル樹脂、融点Tm=335℃)に多孔化剤を添加し、溶融成形法にて充実シートを作製した。溶融加工は共押出し法を用いて行った。また、主材料である樹脂に添加する多孔化剤の分量は、上下押出シートでは75vol%、中央押出シートでは30vol%とした。共押出シートは、上層は厚み10μm、中央層は厚み30μm、下層は厚み10μmとなるようにして、総厚み50μmの3層構造のシートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例7では、充実シートからの多孔化剤の抽出を11分で完了させることができ、十分な生産性が得られることが確認できた。
このシートを包埋樹脂に埋め込み、断面を出したサンプルを、SEMを用いて500倍の倍率で観察したところ、表面から10μm厚み部分は、空孔率75%、平均孔径2μm、中央部分の30μm厚み部分は、空孔率30%、平均孔径1μmになっていることが確認できた。
実施例7の多孔質樹脂シートと実施例1の多孔質樹脂シートとを用いて、曲率半径0.5mm以上5mm以下の折り曲げ試験を行った。厚み方向で空孔率及び孔径が均一な構造を持つ実施例1の多孔質樹脂シートが曲率半径1mmの曲げで座屈したのに対し、中央部の空孔率及び孔径を小さくして厚み方向に傾斜構造を持つ多孔質樹脂シートは、曲率半径0.6mmまで座屈しないことが確認できた。
[実施例8]
実施例1で使用した樹脂(1.5型LCP、HBA/HNA=60/40(モル比)の全芳香族ポリエステル樹脂、融点Tm=335℃)に多孔化剤を添加し、溶融成形法にて厚み120μmの充実シートを作製した。次に、この厚み120μmシートを熱プレスで潰して、厚み50μmの充実シートに成形した。更に、この充実シートから、二酸化炭素を媒体とした超臨界法で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例8では、充実シートからの多孔化剤の抽出を9分で完了させることができ、十分な生産性が得られることが確認できた。
実施例1で使用した樹脂(1.5型LCP、HBA/HNA=60/40(モル比)の全芳香族ポリエステル樹脂、融点Tm=335℃)に多孔化剤を添加し、溶融成形法にて厚み120μmの充実シートを作製した。次に、この厚み120μmシートを熱プレスで潰して、厚み50μmの充実シートに成形した。更に、この充実シートから、二酸化炭素を媒体とした超臨界法で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。実施例8では、充実シートからの多孔化剤の抽出を9分で完了させることができ、十分な生産性が得られることが確認できた。
このシートを包埋樹脂に埋め込み、断面を出したサンプルを、SEMを用いて500倍の倍率で観察したところ、厚み方向全面に、形状に異方性を有する空孔を確認できた。具体的には、空孔の面内方向の径が2.2μm、厚み方向の径が1μmになっており、面内方向の径が厚み方向の径に比べ2.2倍になっていることが分かった。
実施例8の多孔質樹脂シートと実施例1の多孔質樹脂シートとを用いて、厚み方向の弾性率を測定したところ、空孔の形状に異方性を有する実施例8の多孔質樹脂シートでは300MPa、等方的な空孔形状を有する実施例1の多孔質樹脂シートでは230MPaであった。この結果から、空孔の面内方向の径を厚み方向の径に比べて大きくすることで、厚み方向の弾性率が高くなることが確認できた。
次に、実施例8の多孔質樹脂シート上に、スパッタリングにより銅膜(0.2μm)を形成し、更に電気めっきにより銅厚膜を形成して(銅膜総厚12μm)、回路パターン加工を行った。この回路パターンを形成したシートに表面実装部品を搭載して、はんだリフロー炉を用いて部品実装試験を行った。その結果、部品の外部端子と基板外部端子とがはんだ接合できていることが確認できた。これは、シートの厚み方向の弾性率が上がることで、実装時の厚み方向の応力に対してシートの沈み込み量が減り、より部品実装性が向上したためと考えられる。
[比較例1]
ポリイミド樹脂(非熱可塑性ポリイミド樹脂)に多孔化剤を添加し、キャスト法にて厚み50μmの充実シート(架橋硬化前)を作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。比較例1では、充実シートからの多孔化剤の抽出を5分で完了させることができ、十分な生産性であることが確認できた。
ポリイミド樹脂(非熱可塑性ポリイミド樹脂)に多孔化剤を添加し、キャスト法にて厚み50μmの充実シート(架橋硬化前)を作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。比較例1では、充実シートからの多孔化剤の抽出を5分で完了させることができ、十分な生産性であることが確認できた。
使用したポリイミド樹脂のみを用いて、キャスト法にて厚み50μmの充実シートを作製し、以下の物性評価を実施例1と同じ方法、条件で行った。
1.充実シートのCO2ガスの透過率は、25℃で150cm3/m2・24hr・atm、100℃で780cm3/m2・24hr・atmであった。
2.充実シートの波長200nm以上500nm以下の平均透過率は、30%であった。
3.充実シートの245℃以上260℃以下での貯蔵弾性率の最小値は、2500MPaであった。
次に、この多孔質樹脂シート(架橋硬化前)を、350℃のオーブンで架橋硬化させて、多孔質ポリイミドシートを得た。得られた多孔質ポリイミドシートの特性評価を実施例1と同じ方法、条件で行った。
はんだリフロー装置で加熱したサンプルでの、空孔の膨張又は収縮によるシート形状の変形及び厚み変化はなかったが、常態と吸湿後の比誘電率、誘電正接の変動が大きいことが確認できた。さらに、レーザー加工した穴の壁面の表面に凹凸又は空孔由来の穴が残っており、電子回路基板用のシートとして不適切であることが分かった。
[比較例2]
パーフルオロアルコキシアルカン(PFA、熱可塑性樹脂)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。比較例2では、充実シートからの多孔化剤の抽出を試みた結果、35分で多孔化剤の抽出を完了させることができたが、生産性が悪いことが分かった。
パーフルオロアルコキシアルカン(PFA、熱可塑性樹脂)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。比較例2では、充実シートからの多孔化剤の抽出を試みた結果、35分で多孔化剤の抽出を完了させることができたが、生産性が悪いことが分かった。
使用したPFAのみを用いて、溶融成形法にて厚み50μmの充実シートを作製し、以下の物性評価を実施例1と同じ方法、条件で行った。
1.充実シートのCO2ガスの透過率は、25℃で0.45cm3/m2・24hr・atm、100℃で3.5cm3/m2・24hr・atmであった。
2.充実シートの波長200nm以上500nm以下の平均透過率は、40%であった。
3.充実シートの245℃以上260℃以下での貯蔵弾性率の最小値は、60MPaであった。
次に、独立気泡構造を持つ厚み50μmの多孔質樹脂シートの特性評価を実施例1と同じ方法、条件で行った。
常態と吸湿後の比誘電率、誘電正接の変動は小さかったが、はんだリフロー装置で加熱したサンプルで、空孔の膨張によるシート形状の変形及び厚み変化が認められた。また、レーザー加工した穴の壁面の表面に凹凸又は空孔由来の穴が残っており、電子回路基板用のシートとして不適切であることが分かった。
[比較例3]
ポリエチレンテレフタレート(PET、熱可塑性樹脂)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。比較例3では、充実シートからの多孔化剤の抽出を7分で完了させることができ、十分な生産性であることが確認できた。
ポリエチレンテレフタレート(PET、熱可塑性樹脂)に多孔化剤を添加し、溶融成形法にて厚み50μmの充実シートを作製した。次に、この充実シートから、二酸化炭素を媒体とした超臨界法で多孔化剤のみを抽出することで、独立気泡構造を持つ厚み50μmの多孔質樹脂シートを得た。比較例3では、充実シートからの多孔化剤の抽出を7分で完了させることができ、十分な生産性であることが確認できた。
使用したPETのみを用いて、溶融成形法にて厚み50μmの充実シートを作製し、以下の物性評価を実施例1と同じ方法、条件で行った。
1.充実シートのCO2ガスの透過率は、25℃で135cm3/m2・24hr・atm、100℃で810cm3/m2・24hr・atmであった。
2.充実シートの波長200nm以上500nm以下の平均透過率は、45%であった。
3.充実シートの245℃以上260℃以下での貯蔵弾性率の最小値は、10MPaであった。
次に、独立気泡構造を持つ厚み50μmの多孔質樹脂シートの特性評価を実施例1と同じ方法、条件で行った。
常態と吸湿後の比誘電率、誘電正接の変動が大きいこと、及び、はんだリフロー装置で加熱したサンプルで、空孔の膨張によるシート形状の変形及び厚み変化が認められた。また、レーザー加工した穴の壁面の表面に凹凸又は空孔由来の穴が残っており、電子回路基板用のシートとして不適切であることが分かった。
1、2、3、4、11、11A、11B、11C 多孔質樹脂シート
1a、1Aa、1Ba、1Ca 多孔質樹脂シートの第1主面
1b、1Ab、1Bb、1Cb 多孔質樹脂シートの第2主面
1h 空孔
1s 樹脂シート
10、10A、10B、10C 金属層付き多孔質樹脂シート
12、12A、12B、12B’、12B’’、12C 金属層
20A、20B、20C、20D 層間接続導体
50 電子回路基板
1a、1Aa、1Ba、1Ca 多孔質樹脂シートの第1主面
1b、1Ab、1Bb、1Cb 多孔質樹脂シートの第2主面
1h 空孔
1s 樹脂シート
10、10A、10B、10C 金属層付き多孔質樹脂シート
12、12A、12B、12B’、12B’’、12C 金属層
20A、20B、20C、20D 層間接続導体
50 電子回路基板
Claims (18)
- シート厚み50μmにおける25℃での二酸化炭素ガス透過率が1cm3/m2・24hr・atm以下、100℃での二酸化炭素ガス透過率が5cm3/m2・24hr・atm以上である樹脂を含有する樹脂シートからなり、かつ、前記樹脂シートの内部に空孔が設けられている、多孔質樹脂シート。
- 前記空孔として独立気泡が設けられている、請求項1に記載の多孔質樹脂シート。
- 前記樹脂の、シート厚み50μmにおける波長200nm以上500nm以下の光透過率が1%以下である、請求項1又は2に記載の多孔質樹脂シート。
- 前記樹脂の、シート厚み50μmにおける245℃以上260℃以下の貯蔵弾性率が200MPa以上である、請求項1~3のいずれか1項に記載の多孔質樹脂シート。
- 前記樹脂シートの内部よりも前記樹脂シートの表層部の空孔率が小さく、かつ孔径が小さい、請求項1~4のいずれか1項に記載の多孔質樹脂シート。
- 前記表層部の表面粗さが1.5μm以下である、請求項5に記載の多孔質樹脂シート。
- 前記樹脂シートの表層部よりも前記樹脂シートの内部の空孔率が小さく、かつ孔径が小さい、請求項1~4のいずれか1項に記載の多孔質樹脂シート。
- 前記樹脂シートの一方主面を形成する第1樹脂層と、
前記樹脂シートの他方主面を形成する第2樹脂層と、
前記第1樹脂層と前記第2樹脂層との間に設けられる第3樹脂層と、を備え、
前記第1樹脂層及び前記第2樹脂層よりも前記第3樹脂層の空孔率が小さく、かつ孔径が小さい、請求項7に記載の多孔質樹脂シート。 - 前記空孔の形状に異方性を有する、請求項1~8のいずれか1項に記載の多孔質樹脂シート。
- 前記空孔の面内方向の径が厚み方向の径よりも大きい、請求項9に記載の多孔質樹脂シート。
- 前記樹脂が、全芳香族ポリエステル樹脂である、請求項1~10のいずれか1項に記載の多孔質樹脂シート。
- 前記全芳香族ポリエステル樹脂は、p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸との共重合体を含む、請求項11に記載の多孔質樹脂シート。
- 前記6-ヒドロキシ-2-ナフトエ酸に対する前記p-ヒドロキシ安息香酸のモル比率は、0.25以上、4以下である、請求項12に記載の多孔質樹脂シート。
- 請求項1~13のいずれか1項に記載の多孔質樹脂シートと、
前記多孔質樹脂シートの少なくとも一方主面に配置された金属層と、を備える、金属層付き多孔質樹脂シート。 - 請求項14に記載の金属層付き多孔質樹脂シートを備える、電子回路基板。
- シート厚み50μmにおける25℃での二酸化炭素ガス透過率が1cm3/m2・24hr・atm以下、100℃での二酸化炭素ガス透過率が5cm3/m2・24hr・atm以上である樹脂及び多孔化剤を含む充実シートを作製する工程と、
前記充実シートから、二酸化炭素を媒体とした超臨界法により前記多孔化剤を抽出する工程と、を備える、多孔質樹脂シートの製造方法。 - 請求項16に記載の製造方法により多孔質樹脂シートを作製する工程と、
前記多孔質樹脂シートの少なくとも一方主面に金属層を配置する工程と、を備える、金属層付き多孔質樹脂シートの製造方法。 - 請求項17に記載の製造方法により金属層付き多孔質樹脂シートを作製する工程と、
前記金属層付き多孔質樹脂シートの金属層に回路パターンを形成する工程と、を備える、電子回路基板の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-096550 | 2021-06-09 | ||
JP2021096550 | 2021-06-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022260085A1 true WO2022260085A1 (ja) | 2022-12-15 |
Family
ID=84426073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/023134 WO2022260085A1 (ja) | 2021-06-09 | 2022-06-08 | 多孔質樹脂シート、金属層付き多孔質樹脂シート、電子回路基板、多孔質樹脂シートの製造方法、金属層付き多孔質樹脂シートの製造方法、及び、電子回路基板の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022260085A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63122194A (ja) * | 1986-11-11 | 1988-05-26 | 旭化成株式会社 | 回路基板 |
JP2002361661A (ja) * | 2001-06-05 | 2002-12-18 | Nitto Denko Corp | 配線基板用多孔質膜の製造方法 |
JP2005194406A (ja) * | 2004-01-08 | 2005-07-21 | Sumitomo Chemical Co Ltd | 樹脂含浸基材 |
JP2010100934A (ja) * | 2008-09-24 | 2010-05-06 | Du Pont Toray Co Ltd | 導電性高強力繊維糸及びその製造方法 |
WO2018186486A1 (ja) * | 2017-04-06 | 2018-10-11 | 日東電工株式会社 | ミリ波アンテナ用フィルム |
JP2019046980A (ja) * | 2017-09-01 | 2019-03-22 | 信越ポリマー株式会社 | 電磁波シールドフィルム及びその製造方法、並びに電磁波シールドフィルム付きプリント配線板及びその製造方法 |
WO2020066145A1 (ja) * | 2018-09-28 | 2020-04-02 | 日東電工株式会社 | 低誘電基板材 |
JP2020055935A (ja) * | 2018-10-01 | 2020-04-09 | 日東電工株式会社 | 多孔質体の製造方法 |
JP2020190639A (ja) * | 2019-05-22 | 2020-11-26 | ポリプラスチックス株式会社 | 遮音シート及び積層体 |
JP2021075030A (ja) * | 2019-05-10 | 2021-05-20 | Agc株式会社 | 積層体、積層体の製造方法、シート、及びプリント回路基板 |
-
2022
- 2022-06-08 WO PCT/JP2022/023134 patent/WO2022260085A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63122194A (ja) * | 1986-11-11 | 1988-05-26 | 旭化成株式会社 | 回路基板 |
JP2002361661A (ja) * | 2001-06-05 | 2002-12-18 | Nitto Denko Corp | 配線基板用多孔質膜の製造方法 |
JP2005194406A (ja) * | 2004-01-08 | 2005-07-21 | Sumitomo Chemical Co Ltd | 樹脂含浸基材 |
JP2010100934A (ja) * | 2008-09-24 | 2010-05-06 | Du Pont Toray Co Ltd | 導電性高強力繊維糸及びその製造方法 |
WO2018186486A1 (ja) * | 2017-04-06 | 2018-10-11 | 日東電工株式会社 | ミリ波アンテナ用フィルム |
JP2019046980A (ja) * | 2017-09-01 | 2019-03-22 | 信越ポリマー株式会社 | 電磁波シールドフィルム及びその製造方法、並びに電磁波シールドフィルム付きプリント配線板及びその製造方法 |
WO2020066145A1 (ja) * | 2018-09-28 | 2020-04-02 | 日東電工株式会社 | 低誘電基板材 |
JP2020055935A (ja) * | 2018-10-01 | 2020-04-09 | 日東電工株式会社 | 多孔質体の製造方法 |
JP2021075030A (ja) * | 2019-05-10 | 2021-05-20 | Agc株式会社 | 積層体、積層体の製造方法、シート、及びプリント回路基板 |
JP2020190639A (ja) * | 2019-05-22 | 2020-11-26 | ポリプラスチックス株式会社 | 遮音シート及び積層体 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6499584B2 (ja) | 熱可塑性液晶ポリマーフィルム、回路基板、およびそれらの製造方法 | |
TWI775830B (zh) | 毫米波天線用薄膜 | |
KR101366906B1 (ko) | 열가소성 액정 폴리머 필름으로 피복한 배선판의 제조 방법 | |
CN101277816B (zh) | 铜箔层叠板、印刷线路板和多层印刷线路板以及它们的制造方法 | |
KR102473255B1 (ko) | 열가소성 액정 폴리머 필름 및 회로 기판의 제조 방법 | |
US8152950B2 (en) | Multi-layer circuit board and method of making the same | |
JP5611355B2 (ja) | 金属張積層板 | |
JP2000038464A (ja) | 耐熱性積層体用フィルムとこれを用いたプリント配線基板用素板および基板の製造方法 | |
CN104704027A (zh) | 挠性金属层压板及其制备方法 | |
JP2008124370A (ja) | 多層プリント配線板の製造方法 | |
JP7082932B2 (ja) | 低誘電基板材 | |
CN105393647A (zh) | 射频印刷电路板和布线材料 | |
TW202014064A (zh) | 低介電基板材 | |
WO2021193385A1 (ja) | 多層回路基板の製造方法 | |
JP2004111942A (ja) | 多層回路基板およびその製造方法 | |
WO2022260085A1 (ja) | 多孔質樹脂シート、金属層付き多孔質樹脂シート、電子回路基板、多孔質樹脂シートの製造方法、金属層付き多孔質樹脂シートの製造方法、及び、電子回路基板の製造方法 | |
JP3514646B2 (ja) | フレキシブルプリント配線基板およびその製造方法 | |
JP5226035B2 (ja) | 積層配線基板の製造法 | |
JP2006179609A (ja) | 配線基板およびその製造方法 | |
JP2004237596A (ja) | フレキシブル銅張積層板およびその製造方法 | |
JP2007258697A (ja) | 多層プリント配線板の製造方法 | |
JP6443927B2 (ja) | センサ | |
JP2008244325A (ja) | プリント配線基板およびボールグリッドアレイパッケージ | |
JP2002171046A (ja) | 回路基板及びその製造方法 | |
TW202012159A (zh) | 低介電基板材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22820264 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22820264 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |