WO2022259806A1 - 溶鋼の脱窒方法および鋼の製造方法 - Google Patents

溶鋼の脱窒方法および鋼の製造方法 Download PDF

Info

Publication number
WO2022259806A1
WO2022259806A1 PCT/JP2022/020009 JP2022020009W WO2022259806A1 WO 2022259806 A1 WO2022259806 A1 WO 2022259806A1 JP 2022020009 W JP2022020009 W JP 2022020009W WO 2022259806 A1 WO2022259806 A1 WO 2022259806A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
slag
denitrification
concentration
cao
Prior art date
Application number
PCT/JP2022/020009
Other languages
English (en)
French (fr)
Inventor
秀光 根岸
令 山田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202280041131.7A priority Critical patent/CN117460846A/zh
Priority to EP22819990.7A priority patent/EP4353843A1/en
Priority to KR1020237041299A priority patent/KR20240004778A/ko
Priority to BR112023025857A priority patent/BR112023025857A2/pt
Priority to CA3218994A priority patent/CA3218994A1/en
Publication of WO2022259806A1 publication Critical patent/WO2022259806A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method of removing nitrogen in molten steel by contacting molten steel filled in a reaction vessel such as a ladle with slag added and formed on the molten steel, and It relates to a method of manufacturing steel.
  • Nitrogen is a harmful component for metal materials.
  • nitrogen [N] in molten iron is removed by adsorbing it on the surfaces of carbon monoxide bubbles generated during decarburization of molten iron. Therefore, with regard to molten steel with a low carbon concentration, since the amount of carbon monoxide generated is limited, nitrogen cannot be removed to a low concentration by the same method.
  • Patent Document 1 discloses a method of denitrifying by holding the Al concentration in molten steel at a concentration of 0.7 mass% or more in a VOD furnace for at least 5 minutes to generate aluminum nitride (AlN). .
  • Patent Document 2 molten steel is melted in an electric furnace using iron scrap as the main iron source, tapped into another refining vessel, held, and then denitrifying flux containing an Al-containing substance is added. , AlN is transferred to slag, and then oxygen-containing gas is blown onto the molten steel to denitrify it.
  • Patent Document 3 molten metal is charged into a refining vessel having a gas top blowing function, and the surface of the molten metal is covered with slag containing CaO and Al 2 O 3 as main components.
  • a method of denitrifying by blowing an oxidizing gas onto the slag surface to such an extent that the gas does not come into direct contact with the molten metal is disclosed.
  • JP-A-5-320733 Japanese Patent Application Laid-Open No. 2007-211298 JP-A-8-246024
  • Patent Documents 1 and 2 utilize the generation of AlN for denitrification, and part of the generated AlN remains in the molten steel and becomes the starting point of cracks during casting in the subsequent process. There is a problem that
  • condition (1) Securing a slag amount of at least 15 kg per ton of molten steel (2) Controlling the slag amount, bottom blowing gas amount, top blowing gas composition and flow rate, lance height, atmospheric pressure, etc. within appropriate ranges. are listed.
  • Condition (1) is that the amount of slag increases depending on the size of the container filled with molten steel.
  • Condition (2) does not include specific control means or control ranges, and it is not clear how to check that gas and molten steel are shut off. Therefore, the compatibility conditions are not clear.
  • the present invention has been made in view of such circumstances, and its object is to stably perform short-term denitrification refining of molten steel using slag without using top-blown gas. It is to propose a denitrification method for molten steel that can reach an extremely low nitrogen concentration region with Furthermore, a method for manufacturing steel using molten steel produced by the method for denitrifying molten steel is proposed.
  • the reaction rate-limiting step in the denitrification treatment for removing nitrogen in molten steel to the gas phase through slag is , the mass transfer of nitrogen on the slag side and the metal side, that is, the denitrification reaction of molten steel using the three phases of metal, slag, and gas, among the reactions of the following formulas (1) and (2), Since the reaction of formula (2) progresses even if the oxygen partial pressure at the gas-slag interface is sufficiently low, it is necessary to give sufficient stirring to the slag and metal, and to control the rate at which the slag is molten (hereinafter referred to as slag It was found that it is important that the conversion rate) is high.
  • [M] represents the state in which element M is dissolved in molten steel
  • (R) is the form of element R in slag or the state in which chemical substance R is dissolved in slag.
  • the following notation in the present specification represents the state of being present.
  • a method for denitrification of molten steel according to the present invention comprises an Al addition step of adding a metal Al-containing substance to molten steel to deoxidize it to form an Al-containing molten steel, and adding a CaO-containing substance to the molten steel.
  • the method for denitrification of molten steel according to the present invention includes: (a) in the denitrification treatment, an atmosphere of 1.0 ⁇ 10 5 Pa or less on the surface of molten steel or slag; (b) in the denitrification treatment, the MgO concentration (MgO) in the slag is set to 5.0 mass% or less; (c) In the denitrification treatment, the molten steel temperature Tf during treatment is increased by 5°C or more each time the MgO concentration (MgO) in the slag exceeds 5.0 mass% and increases by 1.0 mass%.
  • the Al concentration [Al] (mass%) in the molten steel is calculated by the following formula (A) based on the stirring power density ⁇ (W / t) during denitrification treatment [ Al] e or more, etc. is considered to be a more preferable solution.
  • [Al] e ⁇ 0.072 ⁇ ln( ⁇ )+0.5822 (A)
  • the method of manufacturing steel according to the present invention which advantageously solves the above problems, is characterized by casting molten steel produced by any of the denitrification methods for molten steel, after arbitrarily adjusting the composition.
  • nitrogen when performing denitrification refining of molten steel using slag, nitrogen can be stably removed to an extremely low nitrogen concentration range in a short time without using top-blown gas.
  • FIG. 1 is a schematic diagram showing an example of an apparatus suitable for denitrifying molten steel according to an embodiment of the present invention
  • 4 is a graph showing the effect of stirring power density ⁇ of molten steel on the relationship between the pressure P in the furnace and the upper limit Max [N] f of the variation in the ultimate nitrogen concentration.
  • 4 is a graph showing the relationship between the stirring power density ⁇ and the ultimate nitrogen concentration [N] f .
  • 4 is a graph showing the effect of MgO concentration (MgO) in slag on the ultimate nitrogen concentration [N] f .
  • FIG. 4 is a graph showing the molten steel temperature T f for obtaining the same ultimate nitrogen concentration [N] f when the slag MgO concentration (MgO) is changed.
  • FIG. 1 shows a preferred apparatus configuration for carrying out the present invention.
  • a vessel 1 such as a ladle lined with refractory 2, is filled with molten steel 3 on which a slag 4 containing CaO and Al2O3 is formed.
  • a vacuum vessel 10 having an exhaust system 8 and an alloy addition system 9, an inert gas 7 for stirring is blown from a bottom blowing nozzle 5 connected to a gas pipe 6 while the surfaces of the molten steel 3 and slag 4 are in a reduced pressure atmosphere. Agitation is performed by As the inert gas for stirring 7, Ar gas or the like that does not contain nitrogen gas is preferable.
  • the step of adding a metal Al-containing substance to the molten steel 3 to deoxidize it into Al-containing molten steel (Al addition step) and the step of adding a CaO-containing substance to the molten steel 3 (CaO addition step) are performed using an alloy addition system 12. Alternatively, it may be performed in a process prior to entering the vacuum vessel 13 .
  • the step of deoxidizing the molten steel 3 (deoxidizing step) may be performed separately from the Al adding step.
  • the CaO addition step can be performed at any time. It is preferable to perform the CaO addition step after the deoxidation step, because the increase in molten steel temperature due to the deoxidation reaction can be used to turn the slag into slag. If the CaO addition step is performed after the Al addition step, it is possible to suppress poor deoxidation or variation in slag composition due to the added Al-containing substance being blocked by the thick slag and not reaching the molten steel. preferable.
  • the formation of the CaO- and Al 2 O 3 -containing slag 4 utilizes the Al 2 O 3 produced by the addition of the CaO-containing substance and the deoxidation of the molten steel. you can go Regarding the slag composition , the higher the slag rate, the more advantageous the denitrification reaction. It is more preferably in the range of ⁇ 1.7.
  • the stirring gas 7 may be supplied into the molten steel by, for example, injecting it into the molten steel via an injection lance for injecting an inert gas, in addition to the method described above.
  • injecting it into the molten steel via an injection lance for injecting an inert gas in addition to the method described above.
  • the first embodiment was discovered when studying a method for stably denitrifying to a low nitrogen concentration in a facility that does not have a gas top blowing facility.
  • a small high - frequency vacuum induction melting furnace that satisfies the structural requirements of FIG. It was formed in an amount that could not be confirmed by Then, after adjusting the atmospheric pressure in the furnace, the molten steel was denitrified while stirring the molten steel at a stirring power density of 200 W/t to 2000 W/t.
  • Pa degree of vacuum (atmospheric pressure) of the furnace atmosphere was changed, as shown in FIG. It changed according to the density ⁇ (W/t).
  • the initial nitrogen concentration [N] i in the molten steel is 50 mass ppm
  • the Al concentration [Al] is 0.7 mass %
  • the slag composition is 1.2 in mass ratio C/A of CaO and Al 2 O 3
  • slag The MgO concentration (MgO) inside was 5 mass%
  • the molten steel temperature Tf was 1600°C
  • the treatment time t was 30 minutes.
  • the upper limit value Max [N] f of variation in nitrogen concentration is stabilized up to an atmospheric pressure P of 1.0 ⁇ 10 5 Pa.
  • the atmospheric pressure P rises by several percent from the outside air due to the temperature rise in the closed space and the effect of the bottom-blown gas.
  • the atmospheric pressure P exceeds 0.7 ⁇ 10 5 Pa, the upper limit value Max [N] f of variation in the nitrogen concentration reached begins to increase, and the stirring power density ⁇ It was found that the upper limit value Max[N] f of variation in the nitrogen concentration reached after the treatment increases as the value increases. Therefore, in this embodiment, the atmospheric pressure P is preferably set to 1.0 ⁇ 10 5 Pa or less, more preferably 0.7 ⁇ 10 5 Pa or less. This is probably because the steel bath is stirred by the bottom-blown gas, and the surface of the molten steel swells and is partially exposed, from which nitrogen absorption occurs in the molten steel.
  • the MgO concentration (MgO) is constant at 5%
  • the furnace atmosphere pressure P is 0.7 ⁇ 10 5 Pa
  • the Al concentration [Al] is 1.0 mass%
  • the initial nitrogen concentration [N] i the slag composition C/A
  • molten steel temperature T f and treatment time t were the same as above
  • the denitrification test was performed by changing the stirring power density ⁇ from 20 to 1500 W/t.
  • a low nitrogen concentration region nitrogen concentration [N] f of 35 mass ppm or less
  • the first embodiment that is, is formed by combining an Al addition step of adding a metal Al-containing substance to molten steel to deoxidize it into Al-containing molten steel and a CaO addition step of adding a CaO-containing substance to the molten steel.
  • the upper limit of the stirring power density ⁇ is not particularly limited, but even if a large amount of bottom-blowing gas is blown in, it will be blown through without being effectively utilized, so the upper limit is about 5000 W / t, and the stirring power density ⁇ is increased. It is appropriately set within a range that does not cause problems that may occur depending on the conditions (for example, adhesion of base metal to the furnace lid). Moreover, since excessive pressure reduction causes an increase in equipment costs such as an exhaust system, the lower limit of the furnace atmosphere pressure P is preferably about 10 3 Pa.
  • MgO concentration (MgO) in the slag of 5 mass% or less reached the low nitrogen concentration region (nitrogen concentration [N] f of 35 mass ppm or less), but reached at a higher concentration Nitrogen concentration [N] f did not decrease and remained high.
  • a second embodiment that is, a method for denitrifying molten steel in which, in addition to the above-described first embodiment, the MgO concentration (MgO) in slag is further limited to 5 mass% or less, was obtained from the results of the above investigations. It is a thing.
  • the molten steel temperature Tf the molten steel temperature after the denitrification treatment is used, and although it depends on the subsequent casting process and transportation time, it is preferable to end the denitrification treatment at 1600° C. or higher.
  • the lower limit of the MgO concentration (MgO) in the slag is not particularly limited, but may be 0 mass%.
  • the third embodiment was found when considering measures to improve the decrease in denitrification rate when the MgO concentration must be increased from the viewpoint of refractory protection of a container filled with molten steel. .
  • MgO concentration (MgO) in the CaO- and Al 2 O 3 -containing slag was changed in the range of 0 mass% to the saturated concentration, the nitrogen [N] f in the molten steel was reduced to 25 mass ppm.
  • the molten steel temperature Tf required for lowering was investigated. As a result, as the MgO concentration (MgO) in the slag increased by 1.0 mass% as shown in Fig.
  • the furnace atmosphere pressure P which is the premise of the investigation, is 4 ⁇ 10 3 Pa
  • the Al concentration [Al] is 0.7 mass%
  • the initial nitrogen concentration [N] i is 50 mass ppm
  • the slag composition C/A is 1.2
  • stirring is performed.
  • the power density ⁇ was 60 W/t and the treatment time was 30 minutes.
  • This investigation quantitatively clarified the amount of increase in molten steel temperature that can compensate for the decrease in denitrification reaction due to the increase in MgO concentration.
  • the temperature of molten steel is increased by 5 ° C. or more each time the MgO concentration (MgO) in the slag exceeds 5.0 mass% and increases by 1.0 mass%.
  • the method for denitrification of molten steel was obtained from the above investigation results.
  • Patent Document 3 the Al concentration [Al] in molten steel required to increase the nitrogen distribution ratio between slag and metal is required to be 0.3 mass% to 2 mass%. It becomes high.
  • the fourth embodiment was found when examining whether denitrification can be performed by suppressing the Al concentration [Al] in molten steel to a lower concentration.
  • the minimum Al concentration [Al] e required to reduce nitrogen in molten steel to 25 mass ppm was investigated, as shown in FIG. ), the required Al concentration [Al] e (mass%) varies.
  • the MgO concentration (MgO) in the slag is 0 mass%
  • the molten steel temperature Tf is 1600° C.
  • the initial nitrogen concentration [N] i and C/A of the slag composition are the same as above.
  • the furnace atmosphere pressure P which is the premise of the investigation, was set to 0.7 ⁇ 10 5 Pa
  • the stirring power density ⁇ was controlled to be constant during the treatment within the range of 200 to 2000 W/t
  • the treatment time was set to 30 minutes.
  • the molten steel produced by the method for denitrifying molten steel is adjusted to have other predetermined components as necessary, and casting is performed after inclusions are morphologically controlled and floated and separated. It is possible to manufacture high-grade steel by adjusting various components in addition to low-nitrogen steel.
  • metal Al is added to the molten steel of 1600 ° C. or higher in the ladle to make the Al concentration in the molten steel 0.085 to 0.1 mass%, CaO and MgO for refractory protection to form CaO—Al 2 O 3 binary slag or CaO—Al 2 O 3 —MgO ternary slag, and then bottom-blown stirring gas so that the stirring power density ⁇ is 60 to 1000 W / t. supplied.
  • the test was conducted with a molten steel amount of 160 tons. In the slag composition, the mass ratio C/A between CaO and Al 2 O 3 was in the range of 0.4 to 1.8.
  • Table 1 shows test conditions and results. Treatment No. with sufficient agitation power density ⁇ . In 1 to 4, the post-treatment N concentration [N] f was 35 mass ppm or less, which was a good result. On the other hand, treatment No. with a low stirring power density ⁇ . 5 did not sufficiently denitrify in the same treatment time.
  • the method for denitrification of molten steel according to the present invention can be applied to a steelmaking process in which low-carbon scrap or reduced iron is melted in an electric furnace or the like to produce molten steel, and low-nitrogen steel can be stably mass-produced, thereby reducing CO2 emissions. It is industrially useful because it contributes to

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

上吹きガスを用いることなく安定して短時間で極低窒素濃度域まで到達し得る方法を提案する。溶鋼に金属Al含有物質を添加して脱酸しAl含有溶鋼とするAl添加ステップと、前記溶鋼にCaO含有物質を添加するCaO添加ステップと、を組み合わせて形成されたCaOおよびAlを含有するスラグと前記Al含有溶鋼とを接触させて溶鋼中の窒素を除去する脱窒処理であって、前記溶鋼を60W/t以上の攪拌動力密度εで攪拌する溶鋼の脱窒方法である。前記脱窒処理では、溶鋼ないしスラグの表面を1.0×10Pa以下の雰囲気にすることが好ましい。得られた溶鋼に対し成分調整後鋳造する鋼の製造方法である。

Description

溶鋼の脱窒方法および鋼の製造方法
 本発明は、取鍋などの反応容器に充填された溶鋼と、溶鋼上に添加・形成されたスラグとを接触させることにより溶鋼中の窒素を除去する方法、および、その方法により溶製された鋼の製造方法に関する。
 窒素は金属材料にとって有害成分である。従来の製鋼プロセスでは主に溶銑の脱炭処理時に発生する一酸化炭素の気泡表面に溶鉄中の窒素[N]を吸着させて除去している。そのため炭素濃度が低い溶鋼に関しては、一酸化炭素の発生量が限られているため、同様の手法では窒素を低濃度まで除去することができない。
 一方で、CO排出量低減のためには、製鋼プロセスは従来の高炉、転炉を用いる方法から、スクラップや還元鉄を溶解させる方法へと転換する必要がある。その場合、得られる溶融鉄は炭素濃度が低くなり、前記理由で低窒素鋼を溶製できないおそれがある。
 そこでスラグを用いた溶鋼からの脱窒方法がいくつか提案されている。たとえば、特許文献1には、VOD炉にて溶鋼中Al濃度を0.7mass%以上の濃度に少なくとも5分間保持し、アルミナイトライド(以下AlN)の生成により脱窒する方法が示されている。
 また、特許文献2には、電気炉で鉄スクラップを主鉄源として溶鋼を溶製し、別の精錬容器に出鋼、保持した後、Al含有物質を含む脱窒用のフラックスを添加して、AlNをスラグに移行させてから、溶鋼に酸素含有ガスを吹き付けて脱窒する方法が示されている。
 また、特許文献3には、ガス上吹き機能を有する精錬容器に溶融金属を装入し、この溶融金属の表面を、CaOおよびAlを主成分とするスラグで覆ったのち、この被覆スラグ面に対し酸化性ガスを、該ガスが溶融金属と直接接触しない程度に吹き付けることにより脱窒する方法が示されている。
特開平5-320733号公報 特開2007-211298号公報 特開平8-246024号公報
 しかしながら、前記従来技術には以下の問題点がある。
 すなわち、特許文献1や2に記載の技術は、脱窒のためにAlNの生成を利用しており、生成したAlNの一部が溶鋼中に残存し、後工程の鋳造時に割れの起点になってしまうという課題がある。
 また、AlNの生成を使用した脱窒方法を用いて、数十massppm程度の低窒素鋼を溶製するためにはAlとNの溶解度積から考えて少なくともAl濃度が数mass%~10mass%程度必要である。もしくは、脱窒反応を有効に利用するためには数百massppm程度の初期窒素濃度が必要である。特許文献1や2に記載の技術は、低窒素鋼を溶製するには工程的に用いるコストが非常に高くなりすぎ、ステンレス鋼等の溶解窒素量の高い鋼種にしか適用できないという課題がある。
 特許文献3に記載の技術は、溶鋼を酸化性ガスから遮断するための条件として、
(1)スラグ量を少なくとも溶鋼1トンあたり15kg確保すること
(2)スラグ量、底吹きガス量、上吹きガス組成やその流量、ランス高さおよび雰囲気圧力などを適当な範囲に制御すること
を挙げている。条件(1)は溶鋼を充填する容器のサイズによってスラグ量が増大すること、条件(2)は具体的な制御手段、制御範囲の記載がなく、ガスと溶鋼の遮断を確認する方法が明らかでないことから、適合条件が明確でない。特許文献3に記載の適合例と同一範囲で試験を行っても、実際は酸化性ガスによりスラグ-メタル界面のみかけの酸素分圧が増加することによるスラグ-メタル間での窒素移動抑制によって、脱窒速度が遅くなり、操業上実用的でないことを発明者らは確認している。
 本発明は、このような事情に鑑みてなされたものであって、その目的とするところは、スラグを用いた溶鋼の脱窒精錬を行うにあたり、上吹きガスを用いることなく安定して短時間で極低窒素濃度域まで到達し得る溶鋼の脱窒方法を提案することにある。さらに、その溶鋼の脱窒方法で溶製した溶鋼を用いた鋼の製造方法を提案する。
 発明者らはこれらの問題に鑑み鋭意研究を重ねた結果、先行特許文献で提案されているような、スラグを介して溶鋼中の窒素をガス相へ除去する脱窒処理における反応の律速工程は、スラグ側およびメタル側の窒素の物質移動であること、即ち、メタル、スラグ、ガス3相を用いた溶鋼の脱窒反応である、下記(1)式および(2)式の反応のうち、(2)式の反応はガス-スラグ界面の酸素分圧が十分に小さくても進行するため、スラグやメタルに十分な攪拌を付与すること、および、スラグが溶融している割合(以下、滓化率という)が高いことが重要であることを見出した。下記反応式において、[M]は、元素Mが溶鋼中に溶存含有している状態を表し、(R)は、元素Rのスラグ中での形態または化学物質Rがスラグ中に溶存含有している状態を表す、以下本明細書中での表記とする。
[Al]+[N]+3/2(O2-)=(N3-)+1/2(Al) ・・(1)
2(N3-)+2/3O=N+3(O2-)   ・・・・・・・・・・・・(2)
 前記課題を有利に解決する本発明にかかる溶鋼の脱窒方法は、溶鋼に金属Al含有物質を添加して脱酸しAl含有溶鋼とするAl添加ステップと、前記溶鋼にCaO含有物質を添加するCaO添加ステップと、を組み合わせて形成されたCaOおよびAlを含有するスラグと前記Al含有溶鋼とを接触させて溶鋼中の窒素を除去する脱窒処理であって、前記溶鋼を60W/t以上の攪拌動力密度εで攪拌することを特徴とする。
 また、本発明にかかる溶鋼の脱窒方法は、
(a)前記脱窒処理では、溶鋼ないしスラグの表面を1.0×10Pa以下の雰囲気にすること、
(b)前記脱窒処理では、前記スラグ中のMgO濃度(MgO)を5.0mass%以下にすること、
(c)前記脱窒処理では、前記のスラグ中のMgO濃度(MgO)が5.0mass%を超えて1.0mass%増加するごとに、処理中の溶鋼温度Tを5℃以上増加させること、
(d)前記Al添加ステップでは、脱窒処理時の攪拌動力密度ε(W/t)に基づき溶鋼中のAl濃度[Al](mass%)を下記の式(A)で計算される値[Al]以上にすること、
などが、より好ましい解決手段になり得るものと考えられる。
[Al]=-0.072×ln(ε)+0.5822 ・・・・(A)
 上記課題を有利に解決する本発明にかかる鋼の製造方法は、上記溶鋼の脱窒方法のいずれかで溶製した溶鋼に対し、任意に成分調整したのち、鋳造することを特徴とする。
 本発明によれば、スラグを用いた溶鋼の脱窒精錬を行うにあたり、上吹きガスを用いることなく安定して短時間で極低窒素濃度域まで窒素を除去できるようになる。
本発明の一実施形態にかかる溶鋼の脱窒方法に適した装置の一例を示す模式図である。 炉内圧力Pと到達窒素濃度バラツキの上限Max[N]との関係に与える溶鋼の攪拌動力密度εの影響を示すグラフである。 攪拌動力密度εと到達窒素濃度[N]の関係を示すグラフである。 到達窒素濃度[N]に及ぼすスラグ中MgO濃度(MgO)の影響を示すグラフである。 スラグMgO濃度(MgO)が変化した時、同一到達窒素濃度[N]を得るための溶鋼温度Tを示したグラフである。 到達窒素濃度[N]=25massppmを得るための、溶鋼中Al濃度[Al]と攪拌動力密度εの関係を示すグラフである。
 以下、本発明の実施の形態について具体的に説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
 図1に本発明を実施するにあたり好適な装置構成を示す。耐火物2が内張りされた取鍋などの容器1に溶鋼3を充填し、その上にCaOおよびAlを含有するスラグ4を形成する。排気系統8と合金添加系統9を有する真空容器10中で溶鋼3およびスラグ4表面を減圧雰囲気とした状態で、ガス配管6に接続された底吹きノズル5から攪拌用不活性ガス7を吹込むことで攪拌を行う。攪拌用不活性ガス7としては、窒素ガスを含まないArガスなどが好ましい。
 溶鋼3に金属Al含有物質を添加して脱酸しAl含有溶鋼とする工程(Al添加ステップ)、溶鋼3にCaO含有物質を添加する工程(CaO添加ステップ)は、合金添加系統12を用いて行ってもよいし、真空容器13に入る前工程で行っても良い。溶鋼3を脱酸する工程(脱酸ステップ)をAl添加ステップから分離して行ってもよい。CaO添加ステップは任意の時期に実施することができる。CaO添加ステップは、脱酸ステップ後に実施すれば、脱酸反応による溶鋼温度の上昇をスラグの滓化に利用できるので好ましい。CaO添加ステップは、Al添加ステップの後に実施すれば、添加したAl含有物質が厚みのあるスラグに阻害されて溶鋼に到達しないことによる脱酸不良またはスラグ組成のバラツキを抑制することができるためさらに好ましい。
 CaOおよびAl含有スラグ4の形成は、CaO含有物質の添加および溶鋼の脱酸で生じるAlを利用するが、例えばCaO含有物質としてプリメルトもしくはプレミックス品のカルシウムアルミネートを用いて行っても良い。スラグ組成は、滓化率が高いほど脱窒反応に有利であり、CaOとAlの質量比C/Aが0.4~1.8の範囲にあることが好ましく、さらに0.7~1.7の範囲にあることがより好ましい。
 攪拌用ガス7の溶鋼中への供給は、前記の方法以外にも、例えば不活性ガス吹込み用のインジェクションランスを介して溶鋼にインジェクションする形式でも良い。
 次に、本発明の好適な実施形態について、経緯を交え詳細に説明する。
(第1実施形態)
 第1の実施形態は、ガス上吹き設備を有さない設備において、安定して低窒素濃度まで脱窒する方法を検討する際に見出された。図1の構成要件を満たす小型高周波真空誘導溶解炉にて15kgの溶鋼3に対し15kg/t以上の、MgO濃度が0~17mass%含まれるCaOおよびAl含有スラグ4を溶鋼面が肉眼で確認できない程度の量で形成した。そして、炉内の雰囲気圧を調整した上で、攪拌動力密度で200W/t~2000W/tの攪拌を溶鋼に付与しながら溶鋼の脱窒処理を行った。まず、炉雰囲気の真空度(雰囲気圧)P(Pa)を変化させた脱窒試験において、図2に示すように処理後の窒素濃度のバラツキ上限値Max[N](massppm)は攪拌動力密度ε(W/t)に応じて変化した。このとき、溶鋼中の初期窒素濃度[N]は、50massppm、Al濃度[Al]は、0.7mass%、スラグ組成はCaOとAlの質量比C/Aで1.2、スラグ中のMgO濃度(MgO)は、5mass%、溶鋼温度Tは、1600℃、処理時間tは30分であった。低攪拌動力密度(ε~500W/t)では雰囲気圧P:1.0×10Paまで到達窒素濃度のバラツキ上限値Max[N]が安定する。なお、図1の設備構成の場合、密閉空間内の温度上昇や底吹きガスの影響で雰囲気圧Pは外気より数%圧力上昇することになる。一方、高攪拌動力密度(ε>500W/t)では、雰囲気圧P:0.7×10Pa超で到達窒素濃度のバラツキ上限値Max[N]が増加し始め、攪拌動力密度εが高いほど、処理後の到達窒素濃度のバラツキ上限値Max[N]が大きくなることが分かった。従って、本実施形態においては、好ましい雰囲気圧Pを1.0×10Pa以下と定め、さらに好ましくは0.7×10Pa以下とした。これは、底吹きガスによる鋼浴の攪拌により溶鋼表面が盛り上がって一部露出し、そこから溶鋼への吸窒が発生していると考えられる。
 次に、MgO濃度(MgO)を5%で一定とし、炉雰囲気圧Pを0.7×10Pa、Al濃度[Al]を1.0mass%とし、初期窒素濃度[N]、スラグ組成のC/A、溶鋼温度Tおよび処理時間tは上記とおなじとして、攪拌動力密度εを20~1500W/tに変化させて脱窒試験を行った。その結果、図3に示すように、攪拌動力密度εが60W/t以上の水準で低窒素濃度域(窒素濃度[N]が35massppm以下)に到達することができた。また、極低窒素濃度域(窒素濃度[N]が25massppm以下)は攪拌動力密度ε:200W/t以上の水準で達成できた。第1の実施形態、つまり、溶鋼に金属Al含有物質を添加して脱酸しAl含有溶鋼とするAl添加ステップと、前記溶鋼にCaO含有物質を添加するCaO添加ステップと、を組み合わせて形成されたCaOおよびAlを含有するスラグと前記Al含有溶鋼とを接触させて溶鋼中の窒素を除去する脱窒処理であって、前記溶鋼を60W/t以上の攪拌動力密度εで攪拌する溶鋼の脱窒方法、または、さらに前記脱窒処理では、溶鋼ないしスラグの表面を1.0×10Pa以下の雰囲気にする溶鋼の脱窒方法は、上記のような調査の結果から得られたものである。なお、攪拌動力密度εの上限は特に限定するものではないが、底吹きガスを大量に吹き込んでも有効に活用されずに吹き抜けてしまうので、5000W/t程度を上限とし、攪拌動力密度εの上昇に応じて起こり得る不具合(たとえば、炉蓋への地金付着等)が発生しない範囲で適宜設定する。また、過度の減圧は排気系など設備費の増加を招くので、炉雰囲気圧Pの下限は10Pa程度とすることが好ましい。
(第2実施形態)
 第2の実施形態は、CaOおよびAl含有スラグ中のMgO濃度(MgO)の影響について調査した際に見出されたものである。攪拌動力密度εを500W/t一定とし、炉雰囲気圧Pを0.7×10Paとし、初期窒素濃度[N]、Al濃度[Al]、スラグ組成のC/A、溶鋼温度Tおよび処理時間は上記とおなじとして、スラグ中のMgO濃度(MgO)を0~17mass%に変更して脱窒試験を行った。その結果、図4に示すように、スラグ中MgO濃度(MgO)が5mass%以下の水準は低窒素濃度域(窒素濃度[N]が35massppm以下)に到達したが、それより多い濃度では到達窒素濃度[N]が下がらず高止まりした。第2の実施形態、つまり、上記第1の実施形態に加え、さらにスラグ中のMgO濃度(MgO)を5mass%以下に制限する溶鋼の脱窒方法は、上記のような調査の結果から得られたものである。なお、溶鋼温度Tは、脱窒処理後の溶鋼温度を用い、後工程である鋳造工程や搬送時間にもよるが、1600℃以上で脱窒処理を終了するようにすることが好ましい。また、スラグ中のMgO濃度(MgO)の下限は特に限定しないが、0mass%であってもよい。
(第3実施形態)
 第3の実施形態は、溶鋼を充填する容器の耐火物保護の観点からMgO濃度を上げざるを得ない場合の脱窒速度の低下に対し、改善策を検討している際に見出された。前記小型高周波真空誘導溶解炉を用いて、CaOおよびAl含有スラグ中のMgO濃度(MgO)を0mass%から飽和濃度の範囲で変化させた際、溶鋼中窒素[N]を25massppmまで低下させるために必要な、溶鋼温度Tを調査した。その結果、図5に示すようにスラグ中のMgO濃度(MgO)が1.0mass%増加するにしたがって、溶鋼温度Tを約5℃増加させる必要があった。調査の前提となる炉雰囲気圧Pを4×10Pa、Al濃度[Al]を0.7mass%とし、初期窒素濃度[N]を50massppm、スラグ組成のC/Aを1.2、攪拌動力密度εを60W/tおよび処理時間を30分とした。この調査により、MgO濃度が増加することによる脱窒反応の低下を補償できる溶鋼温度の増加量が定量的に判明した。第3の実施形態、つまり、第1の実施形態に加えて、スラグ中のMgO濃度(MgO)が5.0mass%を超えて1.0mass%増加するごとに、溶鋼の温度を5℃以上増加させる、溶鋼の脱窒方法は、上記のような調査結果から得られたものである。
(第4実施形態)
 特許文献3ではスラグ-メタル間の窒素分配比を高めるために必要な溶鋼中Al濃度[Al]が0.3mass%から2mass%という濃度を要求されるため、普通鋼を溶製するにあたってはコスト高となってしまう。第4の実施形態は、この問題を解決するために、溶鋼中Al濃度[Al]を更に低い濃度に抑えて脱窒ができないか検討を行った際に見出されたものである。前記小型高周波真空誘導溶解炉にて、溶鋼中窒素を25massppmまで低下させるために最低限必要なAl濃度[Al]を調査した所、図6に示すように、攪拌動力密度ε(W/t)に応じて必要なAl濃度[Al](mass%)が変化することが分かった。ここで、スラグ中のMgO濃度(MgO)を0mass%、溶鋼温度Tを1600℃とし、初期窒素濃度[N]およびスラグ組成のC/Aは上記と同様である。調査の前提となる炉雰囲気圧Pを0.7×10Paとし、攪拌動力密度εを200~2000W/tの範囲で処理中一定になるように制御し、処理時間は30分とした。第3の実施形態、つまり、第1~第3の実施形態のうちのいずれか一つに加えて、Al添加ステップにおいて、脱窒処理時の攪拌動力密度ε(W/t)に基づき溶鋼中のAl濃度[Al](mass%)を下記の式(A)で計算される値[Al]以上にする、溶鋼の脱窒方法は、上記のような調査結果から得られたものである。
[Al]=-0.072×ln(ε)+0.5822 ・・・・(A)
(鋼の製造方法)
 上記溶鋼の脱窒方法で溶製した溶鋼に対し、必要に応じて、その他所定の成分に調整し、介在物の形態制御や浮上分離したのちに鋳造を行うことが好ましい。低窒素鋼としたうえで、各種成分を調整した高級鋼を製造することができる。
 以下に、発明の実施例について詳細に説明する。図1の構成の装置を用い、取鍋内の1600℃以上の溶鋼に金属Alを添加して、溶鋼中Al濃度を0.085~0.1mass%にするとともに、CaOや耐火物保護用MgOを添加してCaO-Al2元系スラグ、またはCaO-Al-MgO3元系スラグを形成した後、攪拌動力密度εで60~1000W/tとなるように底吹き攪拌ガスを供給した。溶鋼量は160tで試験を行った。スラグ組成でCaOとAlの質量比C/Aは0.4~1.8の範囲であった。
 表1に試験条件および結果を示す。十分な攪拌動力密度εである処理No.1~4では、処理後N濃度[N]が35massppm以下となり良好な結果であった。一方、攪拌動力密度εが低い処理No.5は同じ処理時間で十分な脱窒が行われなかった。
Figure JPOXMLDOC01-appb-T000001
 本発明にかかる溶鋼の脱窒方法は、電気炉等で低炭素のスクラップや還元鉄を溶解して溶鋼を製造する製鋼プロセスに適用して低窒素鋼を安定して量産できるので、CO削減に寄与し産業上有用である。
 1 容器
 2 耐火物
 3 溶鋼
 4 CaOおよびAl含有スラグ
 5 底吹きノズル
 6 ガス配管
 7 鋼浴攪拌用不活性ガス
 8 排気系統
 9 合金添加系統
 10 真空容器

Claims (6)

  1. 溶鋼に金属Al含有物質を添加して脱酸しAl含有溶鋼とするAl添加ステップと、前記溶鋼にCaO含有物質を添加するCaO添加ステップと、を組み合わせて形成されたCaOおよびAlを含有するスラグと前記Al含有溶鋼とを接触させて溶鋼中の窒素を除去する脱窒処理であって、
    前記溶鋼を60W/t以上の攪拌動力密度εで攪拌することを特徴とする、溶鋼の脱窒方法。
  2. 前記脱窒処理では、溶鋼ないしスラグの表面を1.0×10Pa以下の雰囲気にすることを特徴とする、請求項1に記載の溶鋼の脱窒方法。
  3. 前記脱窒処理では、前記スラグ中のMgO濃度(MgO)を5.0mass%以下にすることを特徴とする、請求項1または2に記載の溶鋼の脱窒方法。
  4. 前記脱窒処理では、前記のスラグ中のMgO濃度(MgO)が5.0mass%を超えて1.0mass%増加するごとに、処理中の溶鋼温度Tを5℃以上増加させることを特徴とする、請求項1または2に記載の溶鋼の脱窒方法。
  5. 前記Al添加ステップでは、脱窒処理時の攪拌動力密度ε(W/t)に基づき溶鋼中のAl濃度[Al](mass%)を下記の式(A)で計算される値[Al]以上にすることを特徴とする、請求項1~4のいずれか1項に記載の溶鋼の脱窒方法。
    [Al]=-0.072×ln(ε)+0.5822 ・・・・(A)
  6. 請求項1~5のいずれか1項に記載の溶鋼の脱窒方法で溶製した溶鋼に対し、任意に成分調整したのち、鋳造することを特徴とする、鋼の製造方法。
     
PCT/JP2022/020009 2021-06-11 2022-05-12 溶鋼の脱窒方法および鋼の製造方法 WO2022259806A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280041131.7A CN117460846A (zh) 2021-06-11 2022-05-12 钢液的脱氮方法及钢的制造方法
EP22819990.7A EP4353843A1 (en) 2021-06-11 2022-05-12 Molten steel denitrification method and steel production method
KR1020237041299A KR20240004778A (ko) 2021-06-11 2022-05-12 용강의 탈질 방법 및 강의 제조 방법
BR112023025857A BR112023025857A2 (pt) 2021-06-11 2022-05-12 Método de desnitrificação de aço fundido e método de produção de aço
CA3218994A CA3218994A1 (en) 2021-06-11 2022-05-12 Molten steel denitrification method and steel production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-098131 2021-06-11
JP2021098131A JP7480751B2 (ja) 2021-06-11 2021-06-11 溶鋼の脱窒方法および鋼の製造方法

Publications (1)

Publication Number Publication Date
WO2022259806A1 true WO2022259806A1 (ja) 2022-12-15

Family

ID=84424857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020009 WO2022259806A1 (ja) 2021-06-11 2022-05-12 溶鋼の脱窒方法および鋼の製造方法

Country Status (8)

Country Link
EP (1) EP4353843A1 (ja)
JP (1) JP7480751B2 (ja)
KR (1) KR20240004778A (ja)
CN (1) CN117460846A (ja)
BR (1) BR112023025857A2 (ja)
CA (1) CA3218994A1 (ja)
TW (1) TWI828175B (ja)
WO (1) WO2022259806A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320733A (ja) 1991-12-27 1993-12-03 Sumitomo Metal Ind Ltd ステンレス溶鋼の脱窒方法
JPH08246024A (ja) 1995-03-03 1996-09-24 Kawasaki Steel Corp 溶融金属の脱窒方法および脱窒・脱炭方法
JPH11279631A (ja) * 1998-03-27 1999-10-12 Kawasaki Steel Corp ステンレス溶鋼の精錬方法
JP2000129335A (ja) * 1998-10-20 2000-05-09 Nkk Corp 清浄性に優れた極低硫鋼の製造方法
JP2000345234A (ja) * 1999-05-31 2000-12-12 Kawasaki Steel Corp 溶鋼へのチタンの添加方法
JP2007211298A (ja) 2006-02-09 2007-08-23 Jfe Steel Kk 溶鋼の脱窒方法
JP2008240126A (ja) * 2007-03-28 2008-10-09 Jfe Steel Kk ステンレス溶鋼の精錬方法
JP2015086460A (ja) * 2013-11-01 2015-05-07 Jfeスチール株式会社 アルミニウム含有ステンレス鋼の精錬方法
JP2020180341A (ja) * 2019-04-25 2020-11-05 日本製鉄株式会社 極低窒素鋼の溶製方法
JP2021059759A (ja) * 2019-10-08 2021-04-15 Jfeスチール株式会社 極低硫ステンレス鋼の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4079097B2 (ja) 2004-02-19 2008-04-23 Jfeスチール株式会社 高清浄鋼の溶製方法
CN109252008B (zh) * 2018-10-10 2020-08-07 新疆八一钢铁股份有限公司 一种低碳低氮超低硫钢的生产方法
JP7224315B2 (ja) 2020-03-27 2023-02-17 Tis株式会社 情報処理装置、情報処理方法、および情報処理プログラム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320733A (ja) 1991-12-27 1993-12-03 Sumitomo Metal Ind Ltd ステンレス溶鋼の脱窒方法
JPH08246024A (ja) 1995-03-03 1996-09-24 Kawasaki Steel Corp 溶融金属の脱窒方法および脱窒・脱炭方法
JPH11279631A (ja) * 1998-03-27 1999-10-12 Kawasaki Steel Corp ステンレス溶鋼の精錬方法
JP2000129335A (ja) * 1998-10-20 2000-05-09 Nkk Corp 清浄性に優れた極低硫鋼の製造方法
JP2000345234A (ja) * 1999-05-31 2000-12-12 Kawasaki Steel Corp 溶鋼へのチタンの添加方法
JP2007211298A (ja) 2006-02-09 2007-08-23 Jfe Steel Kk 溶鋼の脱窒方法
JP2008240126A (ja) * 2007-03-28 2008-10-09 Jfe Steel Kk ステンレス溶鋼の精錬方法
JP2015086460A (ja) * 2013-11-01 2015-05-07 Jfeスチール株式会社 アルミニウム含有ステンレス鋼の精錬方法
JP2020180341A (ja) * 2019-04-25 2020-11-05 日本製鉄株式会社 極低窒素鋼の溶製方法
JP2021059759A (ja) * 2019-10-08 2021-04-15 Jfeスチール株式会社 極低硫ステンレス鋼の製造方法

Also Published As

Publication number Publication date
KR20240004778A (ko) 2024-01-11
CA3218994A1 (en) 2022-12-15
TW202313993A (zh) 2023-04-01
CN117460846A (zh) 2024-01-26
BR112023025857A2 (pt) 2024-02-27
TWI828175B (zh) 2024-01-01
EP4353843A1 (en) 2024-04-17
JP7480751B2 (ja) 2024-05-10
JP2022189514A (ja) 2022-12-22

Similar Documents

Publication Publication Date Title
JP5092245B2 (ja) 溶鋼の脱窒方法
JP3918568B2 (ja) 極低硫鋼の製造方法
JP2009249667A (ja) 溶鉄の脱硫精錬方法
JP3000864B2 (ja) 溶鋼の真空脱硫精錬方法
WO2022259806A1 (ja) 溶鋼の脱窒方法および鋼の製造方法
JP2776118B2 (ja) 無方向性電磁鋼板材の溶製方法
JP4765374B2 (ja) 含クロム溶銑の脱硫処理方法
JP3002593B2 (ja) 極低炭素鋼の溶製方法
JP3241910B2 (ja) 極低硫鋼の製造方法
WO2022259805A1 (ja) 溶鋼の脱窒方法および鋼の製造方法
JPH10140227A (ja) 高合金鋼の合わせ湯による製造方法
US5085691A (en) Method of producing general-purpose steel
WO2022259808A1 (ja) 溶鋼の脱窒方法、脱窒及び脱硫同時処理方法および鋼の製造方法
WO2022259807A1 (ja) 溶鋼の二次精錬方法および鋼の製造方法
JPH0153329B2 (ja)
JPH04318118A (ja) 極低炭・極低硫鋼の製造方法
KR101119022B1 (ko) 저 철손 무 방향성 전기강판 및 제조방법
JPH06228626A (ja) 脱硫前処理としてのスラグ改質方法
WO2022270346A1 (ja) 溶鋼の処理方法および鋼の製造方法
JP3918695B2 (ja) 極低硫鋼の製造方法
JPH0978119A (ja) 溶融金属の脱窒方法および脱窒用フラックス
JP2020105544A (ja) 溶銑脱硫方法
JP2001107132A (ja) ステンレス鋼の脱窒方法
JPH07316637A (ja) 極低炭素、極低硫鋼の溶製方法
JPH0568532B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819990

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18560737

Country of ref document: US

Ref document number: 3218994

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237041299

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280041131.7

Country of ref document: CN

Ref document number: MX/A/2023/014736

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2023132617

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023025857

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022819990

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022819990

Country of ref document: EP

Effective date: 20231220

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023025857

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231208