WO2022257489A1 - 一种光学透镜双面抛光方法 - Google Patents

一种光学透镜双面抛光方法 Download PDF

Info

Publication number
WO2022257489A1
WO2022257489A1 PCT/CN2022/075429 CN2022075429W WO2022257489A1 WO 2022257489 A1 WO2022257489 A1 WO 2022257489A1 CN 2022075429 W CN2022075429 W CN 2022075429W WO 2022257489 A1 WO2022257489 A1 WO 2022257489A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
double
concave
tools
polishing
Prior art date
Application number
PCT/CN2022/075429
Other languages
English (en)
French (fr)
Inventor
郭江
潘博
张鹏飞
王康乐
Original Assignee
大连理工大学
大连理工大学宁波研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学, 大连理工大学宁波研究院 filed Critical 大连理工大学
Publication of WO2022257489A1 publication Critical patent/WO2022257489A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/01Specific tools, e.g. bowl-like; Production, dressing or fastening of these tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents

Definitions

  • the invention belongs to the field of ultra-precision processing, and relates to a double-sided polishing device for a curved lens, in particular to an efficient processing method for a spherical/aspheric lens.
  • polishing methods for optical components such as chemical mechanical polishing, free abrasive polishing, plasma polishing and ion beam polishing.
  • Free abrasive polishing started earlier because of its easy-to-control parameters and stable performance, and has been widely used in the engineering field.
  • a polishing abrasive tool matching its surface shape is made and polished with free abrasives.
  • it in order to realize its complete processing, it must be turned over during the polishing process. Because the polishing steps are cumbersome and need to be turned over continuously, it usually takes more manpower and is not efficient.
  • Patent CN201822194991.8 discloses a double-sided polishing device for lenses, and proposes a system for realizing double-sided polishing of lenses, which can perform double-sided polishing on some areas of the lens. Surface polished.
  • Patent CN201710958602.1 discloses a simple double-sided double-sided polishing machine suitable for irregular lenses, using a specific structure combined with a small grinding head to achieve double-sided polishing of irregular lenses.
  • Patent CN201610991703.4 discloses a magnetorheological double-sided polishing device, combined with the magnetorheological method, by changing the magnetic field, the size and shape of the area, the size of the magnetorheological conveyor belt, etc.
  • polishing but this method needs to make magnetic boxes and working magnets of different shapes according to the shape of the lens, and the realization conditions are harsh and the cost is high. To sum up, most of the above-mentioned devices or methods are biased toward devices or systems that realize double-sided polishing, which do not reflect the relationship between abrasive tools and lenses, and have a limited effect on improving the polishing efficiency of optical elements.
  • the invention provides a double-sided polishing method capable of efficiently polishing an optical lens.
  • the method proposed by the invention is simple, and corresponding polishing abrasive tools are respectively arranged on both sides of the lens, and high-efficiency ultra-precise polishing of the optical lens can be realized by controlling the surface shape of the abrasive tool and the movement track of the grinding head.
  • a double-sided polishing method for an optical lens In the double-sided polishing method, an abrasive tool is set at the upper and lower positions of the lens. During the polishing process, the abrasive tool fits the upper and lower surfaces of the lens and swings back and forth to generate relative motion to remove surface materials, thereby realizing simultaneous polishing of the upper and lower surfaces of the lens. .
  • the optical lens double-sided polishing method wherein the optical lens includes biconvex, biconcave and concave-convex lenses, specifically comprises the following steps:
  • Step 1 Select a lens to be polished with a radius of curvature greater than 514.92mm, and place the lens to be polished in the middle of the upper and lower abrasive tools.
  • the ends of the upper and lower grinding tools away from the lens are respectively connected with universal joints, and the universal joints are connected with swing rods.
  • Step 2 Adjust the position to ensure that the upper and lower surfaces of the lens fit or contact with the inner surfaces of the upper and lower abrasive tools, adjust the loading pressure on the upper and lower abrasive tools of the lens, press the lens tightly, and carry out swing processing.
  • Step 3 Set a certain speed for the upper and lower abrasive tools of the lens, and polish the upper and lower surfaces of the lens at the same time: the movement of the abrasive tools during the polishing process includes the self-rotation of the upper and lower abrasive tools and the overall reciprocating swing of the upper and lower abrasive tools, wherein the self-rotation of the upper and lower abrasive tools is driven by the motor After completion, the upper and lower swing rods drive the upper and lower grinding tools to swing in opposite directions through the universal joint (thereby completing its circular track swing relative to the lens to be polished).
  • the material removal rate in the middle of the abrasive tool is lower than that at the edge, and the upper and lower swing rods drive the swing of the upper and lower abrasive tools of the lens to increase the uniformity of material removal.
  • the polishing liquid is supplied through the center of the abrasive tool or the external dripping method.
  • Step 4 In order to reduce the inhomogeneity of material removal on the upper and lower surfaces of the lens caused by the different rotation speeds of the upper and lower grinding tools, under the condition that the curvature radii of the upper and lower surfaces are consistent, the lens can be turned over for processing or the rotation speed of the upper and lower grinding tools can be adjusted.
  • Step 5 Go through the above process until the polishing process is completed.
  • the type of contact between the abrasive tool and the lens surface includes surface contact or point contact.
  • the movement setting requirements of the abrasive tool relative to different types of lenses are different: For the upper and lower abrasive tools of the surface contact type (such as the upper and lower abrasive tools for biconvex spherical lenses), set the rotational speed of the upper abrasive tool to 8rpm, and set the rotational speed of the lower abrasive tool to 30rpm.
  • the distance between the center of the abrasive tool and the center of the lens to about 1/3 of the lens diameter.
  • the upper and lower abrasive tools of the point contact type (such as the spherical grinding head abrasive tool 10) set the rotation speed of the upper and lower abrasive tools to 250rpm, maintain a constant contact pressure during the swing process, and sweep the entire surface of the lens.
  • the lenses are divided into three types according to different surface shapes: biconvex, biconcave and concave-convex lenses. On this basis, they can be divided into spherical lenses and aspheric lenses according to the curvature characteristics of the lens surfaces.
  • the double-sided polishing method is aimed at spherical and aspheric lenses with a diameter of 50-300 mm, and a polishing abrasive tool adapted to the surface shape of the lens to be polished is provided: wherein, the aspheric lens can only use a spherical grinding head abrasive tool 10 , flat disc abrasive tool 18 for polishing; spherical lens can use arc surface disc abrasive tool 7, spherical grinding head abrasive tool 10 and flat disc abrasive tool 18, up and down covering type abrasive tool (up and down covering The type refers to the upper and lower abrasive tools to wrap the lens) for polishing.
  • the abrasive tools can adopt the upper and lower covering abrasive tools 4, 5, 12, 13, which fit the upper and lower surfaces of the lens and remove the lens surface material as a whole. 16, 17, and the curved disc grinding tool 7, the spherical grinding head grinding tool 10 and the flat disc grinding tool 18 can also be used in combination.
  • a double-sided polishing method for a double-convex lens can be divided into point contact or surface contact with the lens surface.
  • the abrasive used in the polishing process can be divided into point contact or surface contact with the lens surface.
  • point contact type abrasives such as spherical type
  • Grinding head grinding tool 10 and flat disc grinding tool 18 when the lens surface is spherical, point contact type grinding tool or surface contact type grinding tool can be used.
  • Step 1 Select a biconvex spherical lens 6 to be polished with a radius of curvature greater than 514.92 mm, and place the biconvex spherical lens 6 to be polished in the middle of the upper and lower abrasive tools 4 and 5 of the biconvex spherical lens.
  • the second step adjust the position to ensure that the upper and lower surfaces of the biconvex spherical lens 6 fit together with the inner surfaces of the two biconvex spherical lens abrasive tools 7, and adjust the loading pressure on the upper and lower abrasive tools 4 and 5 of the biconvex spherical lens.
  • Tight double-convex spherical lens 6, the distance between the center of the mold and the center of the lens is set to be about 1/3 of the lens diameter during the swing process.
  • the third step set the rotation speed of the upper grinding tool 4 of the biconvex spherical lens to 8rpm, the rotation speed of the lower grinding tool 5 of the biconvex spherical lens is 30rpm, and the upper and lower swing rods 1 and 3 drive the biconvex spherical lens to grind up and down through the universal joint 2
  • Tools 4 and 5 swing in opposite directions generally set the polishing time to 5 minutes, and simultaneously polish the upper and lower surfaces of the double-convex spherical lens 6 .
  • Step 4 During the polishing process, the material removal rate at the middle of the lens is lower than that at the edge of the lens.
  • the upper and lower swing rods 1 and 3 drive the swing of the upper and lower grinding tools 4 and 5 of the biconvex spherical lens to increase the uniformity of material removal.
  • the double spherical lens 6 can be turned over under the condition that the curvature radii of the upper and lower surfaces are consistent. Processing, generally when turning over and processing 6 times, the upper and lower surfaces can meet the uniformity requirements.
  • the upper abrasive tool 4 rotational speed of the biconvex spherical lens is set to be 30 rpm
  • the lower abrasive tool 5 rotational speed of the biconvex spherical lens is 8 rpm
  • the polishing time is set to 5 minutes to improve the uniformity of material removal on the upper and lower surfaces of the polished biconvex spherical lens 6 .
  • Step 5 Go through the above process until the polishing process is completed.
  • a double-sided polishing method for concave-convex lenses The abrasive tools used in the polishing process and the lens surface can be divided into point contact and surface contact.
  • point contact abrasive tools such as spherical abrasive Head grinding tool 10
  • point contact type grinding tool or surface contact type grinding tool can be used when the concave surface of the lens is a spherical surface.
  • the first step firstly, concentrically install the concave-convex lens 14 to be polished whose concave curvature radius is greater than the convex curvature radius in the circular retaining ring 8, and the outer ring of the retaining ring 8 and the inner ring of the bearing 9 have an interference fit to ensure that the retaining ring 8 And the concave-convex lens 14 rotates relative to the inner ring of the bearing 9 . Then the concave-convex lens 14 to be polished is placed in the middle of the upper and lower abrasive tools.
  • the second step adjust the position to ensure that the upper and lower surfaces of the concave-convex lens 14 are in contact or point contact with the inner surfaces of the two upper and lower abrasive tools, adjust the contact pressure on the upper and lower abrasive tools of the concave-convex lens, and maintain a constant contact pressure during the swing process.
  • Surface contact or point contact forms sweep across the entire surface of the lens.
  • the tangent between the axis of the abrasive tool and the contact point of the lens during the processing is 25°.
  • Step 3 Set the rotational speed of the upper mold to 8rpm, and the rotational speed of the lower mold to 30rpm.
  • the upper and lower swing rods 1 and 3 drive the upper and lower molds of the double-concave lens to swing in opposite directions through the universal joint 2.
  • the polishing time is set to 5 minutes.
  • the upper and lower surfaces of the concave-convex lens 14 are polished.
  • Step 4 During the polishing process, the material removal rate at the middle of the lens is lower than that at the edge of the lens, and the upper and lower swing rods 1 and 3 drive the swing of the upper and lower abrasive tools to increase the uniformity of material removal.
  • the upper and lower grinding tools 12 and 13 of the concave-convex spherical lens are adjusted on the contrary.
  • the rotational speed of the lower abrasive tool 13 of the spherical lens lens is 8 rpm, and the polishing time is set to 5 minutes, so as to improve the uniformity of material removal on the upper and lower surfaces of the concave-convex lens 14.
  • Step 5 Go through the above process until the polishing process is completed.
  • a double-sided polishing method for double-concave lenses The abrasive tools used in the polishing process and the lens surface can be divided into point contact and surface contact.
  • point contact type abrasive tools such as spherical abrasive Head grinding tool 10
  • point contact type grinding tool or surface contact type grinding tool can be used when the concave surface of the lens is a spherical surface.
  • the first step Firstly, install the biconcave lens 17 of a certain diameter concentrically in the circular retaining ring 8, and the outer ring of the retaining ring 8 is in interference fit with the inner ring of the bearing 9 to ensure that the retaining ring 8 and the biconcave lens 17 rotates with respect to bearing 9 inner rings. Then the biconcave lens 17 to be polished is placed in the middle of the upper and lower abrasive tools.
  • the second step adjust the position to ensure that the upper and lower surfaces of the double-concave lens 17 fit the inner surfaces of the two upper and lower abrasive tools, adjust the contact pressure on the upper and lower abrasive tools of the double-concave lens, and maintain a constant contact pressure during the swinging process.
  • Surface contact or The point contact forms sweep across the entire surface of the lens.
  • the tangent between the axis of the abrasive tool and the contact point of the lens during the processing is 25°.
  • Step 3 Set the rotational speed of the upper mold to 8rpm, and the rotational speed of the lower mold to 30rpm.
  • the upper and lower swing rods 1 and 3 drive the upper and lower molds of the double-concave lens to swing in opposite directions through the universal joint 2.
  • the polishing time is set to 5 minutes.
  • the upper and lower surfaces of the biconcave lens 17 are polished.
  • Step 4 During the polishing process, the material removal rate at the middle of the lens is lower than that at the edge of the lens, and the upper and lower swing rods 1 and 3 drive the swing of the upper and lower abrasive tools to increase the uniformity of material removal.
  • the double-concave lens 17 can be turned over for processing. The surface can meet the uniformity requirements.
  • Step 5 Go through the above process until the polishing process is completed.
  • the inner surfaces of the upper and lower abrasive tools are provided with polishing pads, which are in direct contact with the lens surface during the polishing process.
  • the beneficial effects of the present invention are: for the situation that the polishing process of the upper and lower surfaces of the non-planar lens has low efficiency, the present invention utilizes the upper and lower polishing abrasive tools to fit the upper and lower surfaces of the lens to polish simultaneously; at the same time, in order to eliminate the problem of uneven removal, the polishing process
  • the methods of grinding tool swinging processing and workpiece flipping polishing are used to realize high-efficiency double-sided high-precision processing of non-planar lenses, and this method can be applied to double-sided polishing of different types of lenses.
  • Figure 1(a) is a schematic diagram of the process of polishing a spherical lens
  • Figure 1(b) is a schematic diagram of the process of polishing a spherical lens 2;
  • Fig. 2 is a schematic diagram of a polished biconvex spherical lens
  • Fig. 3 is a schematic diagram of a polished biconvex aspheric lens
  • Fig. 4 is a schematic diagram of a polished concave-convex spherical lens
  • Fig. 5 is a schematic diagram of a polished double-concave spherical lens
  • Figure 6 is a schematic diagram of polishing a biconvex aspheric lens with a small combined abrasive tool
  • Figure 7 is a schematic diagram of polishing a concave-convex aspheric lens with a small combined abrasive tool
  • Figure 8 is a schematic diagram of polishing a double-concave aspheric lens with a small combined abrasive tool
  • the present invention proposes a double-sided polishing method for the optical lens in combination with the advantages and disadvantages of the existing polishing technology. Embodiments of the present invention will be described below in conjunction with the accompanying drawings.
  • a double-sided polishing method for an optical lens In the double-sided polishing method, an abrasive tool is set at the upper and lower positions of the lens. During the polishing process, the abrasive tool fits the upper and lower surfaces of the lens and swings back and forth to generate relative motion to remove surface materials, thereby realizing simultaneous polishing of the upper and lower surfaces of the lens. .
  • the abrasive tool includes an upper abrasive tool and a lower abrasive tool respectively connected to the motor, the lens to be polished is located in the middle of the upper abrasive tool and the lower abrasive tool, the upper and lower abrasive tools respectively fit the upper and lower surfaces of the lens to be polished, and the upper and lower abrasive tools
  • the ends far away from the lens are respectively connected with the upper and lower universal joints 2, and the universal joints 2 are connected with the upper and lower swing rods 1,3.
  • the movement of the grinding tools during the polishing process includes the self-rotation of the upper and lower grinding tools and the overall reciprocating swing of the upper and lower grinding tools.
  • the circular trajectory of the lens oscillates.
  • the polishing liquid is supplied through the center liquid supply mode of the abrasive tool or the external drop liquid mode.
  • the spherical lens polishing process is schematically shown.
  • the upper and lower grinding tools 4 and 5 of the biconvex spherical lens are used to polish the biconvex spherical lens on both sides.
  • the biconvex spherical lens 6 is directly placed on the middle position of the upper and lower abrasive tools 4 and 5 of the biconvex spherical lens, and the position is adjusted to ensure that the upper and lower surfaces of the biconvex spherical lens 6 and the inner surfaces of the upper and lower abrasive tools 4 and 5 of the biconvex spherical lens Then, through the rotation of the upper and lower grinding tools 4 and 5 of the biconvex spherical lens, the lens surface material is continuously removed to achieve double-sided polishing of the biconvex spherical lens 6 .
  • the movement in the polishing process includes the self-rotation of the upper and lower abrasive tools 4 and 5 of the biconvex spherical lens and the swing of the upper and lower abrasive tools 4 and 5 of the biconvex spherical lens driven by the upper and lower swing rods 1 and 3 through the universal joint 2, wherein the biconvex spherical lens
  • the self-rotation of the upper and lower grinding tools 4 and 5 of the spherical lens is driven by the motor, and the universal joint 2 is connected with the ends of the upper and lower grinding tools 4 and 5 of the double-convex spherical lens to complete the upper and lower grinding tools 4 and 5 of the double-convex spherical lens. Swing relative to the circular trajectory of the biconvex spherical lens 6.
  • the polishing process adopts a biconvex spherical lens to swing the upper and lower abrasives 4,5 in opposite directions.
  • the radius of curvature of the biconvex spherical lens there are certain requirements for the radius of curvature of the biconvex spherical lens to be processed, and the radius of curvature of the upper and lower surfaces of the lens must be greater than 514.92mm.
  • the inner surfaces of the upper and lower abrasive tools 4 and 5 of the biconvex spherical lens are provided with polishing pads, which are in direct contact with the lens surface during the polishing process.
  • the polishing liquid is supplied by means of liquid supply through the center of the abrasive tool and external dripping.
  • a flat disk grinding tool 18 can also be used for double-sided polishing.
  • the biconvex aspheric lens 11 can also be polished by using the spherical grinding head grinder 10 .
  • Step 1 Select a biconvex spherical lens 6 to be polished with a radius of curvature greater than 514.92 mm, and place the biconvex spherical lens 6 to be polished in the middle of the upper and lower abrasive tools 4 and 5 of the biconvex spherical lens.
  • the second step adjust the position to ensure that the upper and lower surfaces of the biconvex spherical lens 6 fit together with the inner surfaces of the two biconvex spherical lens abrasive tools 7, adjust the loading pressure on the upper and lower abrasive tools 4 and 5 of the biconvex spherical lens, and press them tightly
  • the distance between the center of the mold and the center of the lens is set to be about 1/3 of the lens diameter during the swinging process.
  • the third step set the rotation speed of the upper grinding tool 4 of the biconvex spherical lens to 8rpm, the rotation speed of the lower grinding tool 5 of the biconvex spherical lens is 30rpm, and the upper and lower swing rods 1 and 3 drive the biconvex spherical lens to grind up and down through the universal joint 2
  • Tools 4 and 5 swing in opposite directions generally set the polishing time to 5 minutes, and simultaneously polish the upper and lower surfaces of the double-convex spherical lens 6 .
  • Step 4 During the polishing process, the material removal rate at the middle of the lens is lower than that at the edge of the lens.
  • the upper and lower swing rods 1 and 3 drive the swing of the upper and lower grinding tools 4 and 5 of the biconvex spherical lens to increase the uniformity of material removal.
  • the double spherical lens 6 can be turned over under the condition that the curvature radii of the upper and lower surfaces are consistent. Processing, generally when turning over and processing 6 times, the upper and lower surfaces can meet the uniformity requirements.
  • adjust the rotation speed of the upper and lower grinding tools 4 and 5 of the biconvex spherical lens set the rotation speed of the upper grinding tool 4 of the biconvex spherical lens to 30rpm, the lower grinding tool 5 of the biconvex spherical lens to 8rpm, and set the polishing time to 5min to improve polishing Uniformity of material removal on the upper and lower surfaces of the biconvex spherical lens 6 .
  • Step 5 Go through the above process until the polishing process is completed.
  • the concave-convex spherical lens 14 As shown in Figure 4, for the concave-convex spherical lens 14, the upper and lower grinding tools 12, 13 of the concave-convex spherical lens are used for polishing, and the polishing process is similar to that of embodiment 1; the flat disk grinding tool 18 and the spherical grinding head grinding tool can also be used 10 Combination forms Polished concave-convex spherical lens 14.
  • the concave-convex spherical lens 14 needs to be installed concentrically in the circular retaining ring 8, and the retaining ring 8 and the inner ring of the bearing 9 have an interference fit.
  • the ring 8 and the concave-convex spherical lens 14 can rotate relative to the inner ring of the bearing 9 . Adjust the position to ensure that the upper and lower surfaces of the concave-convex spherical lens 14 are in point contact with the surface of the flat disc abrasive tool 18 and the spherical grinding head abrasive tool 10, and then through the rotation of the upper and lower abrasive tools 12 and 13 of the concave-convex spherical lens, the lens surface material is continuously cleaned. Removal to achieve double-sided polishing of the concave-convex spherical lens 14.
  • the concave-convex spherical lens 14 For the concave-convex spherical lens 14 , special attention should be paid to the curvature radius of the concave surface of the lens being greater than the curvature radius of the convex surface when using this method. Simultaneously, the concave-convex spherical lens 14 also can adopt the flat disc abrasive tool 18 , the spherical grinding head abrasive tool 10 and the arc surface disc abrasive tool 7 . As shown in FIG.
  • the convex surface of the concave-convex aspheric lens 19 is polished with a flat disk abrasive tool 18 , and the concave surface is polished with a spherical grinding head abrasive tool 10 .
  • Step 1 Select the concave-convex lens 14 to be polished whose concave curvature radius is greater than the convex curvature radius, and place the concave-convex lens 14 to be polished in the middle of the upper and lower abrasive tools.
  • the concave-convex lens 14 needs to be installed concentrically in the circular retaining ring 8 , this structure is to ensure that the retaining ring 8 and the concave-convex lens 14 can rotate relative to the inner ring of the bearing 9 .
  • Step 2 Adjust the position to ensure that the upper and lower surfaces of the concave-convex lens 14 are in contact with the inner surfaces of the upper and lower abrasive tools 12 and 13 of the concave-convex spherical lens, adjust the contact pressure on the upper and lower abrasive tools 12 and 13 of the concave-convex lens, and keep it constant during the swing process
  • Contact pressure in the form of surface contact or point contact, sweeps across the entire surface of the lens.
  • the tangent between the axis of the abrasive tool and the contact point of the lens during processing is 25°.
  • Step 3 Generally, the rotational speed of the upper abrasive tool for the concave-convex lens is set to 8 rpm, and the rotational speed of the lower abrasive tool for the concave-convex lens is 30 rpm. rpm, the upper and lower swing rods 1 and 3 drive the upper and lower grinding tools of the double-concave lens to swing in opposite directions through the universal joint 2. Generally, the polishing time is set to 5 minutes, and the upper and lower surfaces of the concave-convex lens 14 are polished at the same time.
  • Step 4 During the polishing process, the material removal rate at the middle of the lens is lower than that at the edge of the lens.
  • the upper and lower swing rods 1 and 3 drive the swing of the upper and lower grinding tools 12 and 13 of the concave-convex spherical lens to increase the uniformity of material removal.
  • the rotational speed of 12 is 30 rpm
  • the rotational speed of the concave-convex spherical lens lower abrasive tool 13 is 8 rpm
  • the polishing time is set to 5 minutes, so as to improve the material removal uniformity of polishing the upper and lower surfaces of the concave-convex lens 14 .
  • Step 5 Go through the above process until the polishing process is completed.
  • the upper and lower grinding tools 15, 16 of the biconcave spherical lens 18 can be used for polishing, and the polishing process is similar to that of Example 1; as shown in Figure 8, for the biconcave spherical lens 17,
  • the double-concave aspheric lens 20 can also be polished in the form of a combination of the upper and lower spherical grinding tools 10 .
  • the double-concave aspheric lens 20 needs to be installed concentrically in the circular retaining ring 8, and the retaining ring 8 and the inner ring of the bearing 9 have an interference fit.
  • This structure is to ensure that the retaining ring 8 and the double The concave aspheric lens 20 can rotate relative to the inner ring of the bearing 9 . Adjust the position to ensure that the upper and lower surfaces of the double-concave aspheric lens 20 are in point contact with the surface of the upper and lower spherical grinding tools 10, and then through the rotation of the upper and lower spherical grinding tools 10, the material on the lens surface is continuously removed to achieve a double-concave aspheric surface Double-sided polishing of the lens 20.
  • Step 1 Select a double-concave aspheric lens 20 of a certain diameter to be polished, and place the double-concave aspheric lens 20 to be polished in the middle of the upper and lower abrasive tools.
  • the biconcave aspherical lens 20 needs to be installed concentrically in the circular retaining ring 8 . This structure ensures that the retaining ring 8 and the biconcave aspheric lens 20 can rotate relative to the inner ring of the bearing 9 .
  • the second step adjust the position to ensure that the upper and lower surfaces of the double-concave aspheric lens 20 are in contact with the two upper and lower spherical grinding tools 10, adjust the contact pressure on the upper and lower spherical grinding tools 10 of the double-concave lens, during the swing process
  • the entire surface of the lens is swept in the form of surface point contact.
  • the tangent between the axis of the abrasive tool and the contact point of the lens during processing is 25°.
  • Step 3 Set the rotation speed of the upper and lower spherical grinding head abrasives 10 to 250rpm, and the rotating speed of the lens to 65rpm.
  • the upper and lower swing rods 1 and 3 drive the upper and lower spherical grinding head abrasive tools 10 to swing in opposite directions through the universal joint 2, and set the polishing time
  • the upper and lower surfaces of the biconcave aspheric lens 20 are polished at the same time for 5 minutes.
  • Step 4 During the polishing process, the sweeping time of the middle part of the spherical grinding head abrasive tool 10 on the lens surface is basically the same as that of the outer circle part, and the removal rate of the material in the middle part of the lens is higher than that of the edge of the lens.
  • the swing of the upper and lower spherical grinding head grinding tools 10 can increase the uniformity of material removal. Reducing the sweeping time of the spherical grinding head and abrasive tool 10 in the middle position can increase the polishing uniformity, and generally reduce the sweeping time of the spherical grinding head and abrasive tool 10 within 1/5 of the lens aperture.
  • Step 5 Go through the above process until the polishing process is completed.

Abstract

一种光学透镜双面抛光方法,通过在透镜上下位置设置磨具,在抛光过程中磨具贴合透镜上下表面往复摆动,产生相对运动去除表面材料,实现透镜上下表面同时抛光。抛光过程中磨具的运动包括上下磨具的自身转动和上下磨具整体往复摆动,其中上下磨具的自身转动由电机带动完成,摆杆通过万向节带动上下磨具完成其相对于待抛光透镜的圆轨迹摆动。抛光过程中的采用通过磨具中心供液方式或外部滴液方式进行抛光液供给。为了消除去除不均匀的问题,抛光过程中采用磨具摆动加工和工件翻面抛光的方法,能实现高效率的非平面透镜的双面高精度加工,可以应用于不同类型透镜的双面抛光。

Description

一种光学透镜双面抛光方法 技术领域
本发明属于超精密加工领域,涉及一种曲面透镜的双面抛光装置,具体涉及一种针对球面/非球面透镜的高效加工方法。
背景技术
近年来,随着激光聚变国家重大科学工程、高分辨对地观测重大科技专项及各种光机电产品需求日益增长的推动下,光学元件的超精密加工正向着高精度、高效率、低成本方向发展。尤其是智能手机及数码电子设备行业的飞速发展,其性能需求提升导致的光学镜头的精度需求也越来越高,作为光学镜头的核心零部件球面/非球面光学元件,其精度也往往要求达到纳米/亚纳米量级。
光学元件的抛光方法有很多,如化学机械抛光、游离磨料抛光、等离子体抛光及离子束抛光等。游离磨料抛光起步较早由于其具有的参数易控制,性能稳定的优点在工程领域有着广泛的应用。通常,传统方法中对于几十到几百口径的光学元件会制作与其面形相匹配的抛光磨具结合游离磨料进行抛光。但传统方法对于单个光学元件来说,要实现对其的完全加工必须在抛光过程中进行翻面。由于抛光步骤较繁琐需要不停的翻面,通常花费较多的人力且效率不高。
为提升光学元件的抛光效率,一些研究也进行了相关探索,比如:专利CN201822194991.8公开了一种透镜双面抛光装置,提出了一种实现透镜双面抛光的系统可以对透镜部分区域进行双面抛光。专利CN201710958602.1公开了一种简易双面适用于不规则透镜的双面抛光机使用特定的结构并结合小磨头实现了对不规则透镜的双面抛光。专利CN201610991703.4公开了一种磁流变双面抛光装置,结合磁流变方法,通过改变磁场作用和区域尺寸和形状、磁流变输送带尺寸等以适应不同口径平面或曲面元件的双面抛光,但此方法需要根据透镜面形制作不同形状的磁盒及工作磁铁,实现条件苛刻且成本较高。综上,上述装置或方法大多偏向于实现双面抛光的装置或系统,均未体现磨具和透镜之间的关系且对光学元件抛光效率的提升效果有限。
技术问题
针对上述方法存在的抛光方法复杂、抛光过程繁琐及抛光效率低的问题。本发明提出一种可高效抛光光学透镜的双面抛光方法。本发明提出的方法简单,在透镜双面分别布置相应的抛光磨具,通过控制磨具面形及磨头运动轨迹既即可实现光学透镜的高效超精密抛光。
技术解决方案
一种光学透镜双面抛光方法,该双面抛光方法通过在透镜上下位置设置磨具,在抛光过程中磨具贴合透镜上下表面往复摆动,产生相对运动去除表面材料,实现透镜上下表面同时抛光。所述的光学透镜双面抛光方法,其中光学透镜包括双凸型、双凹型和凹凸型透镜,具体包括以下步骤:
第一步:选取曲率半径大于514.92mm的待抛光透镜,将待抛光透镜放置于上下磨具中间位置。上下磨具远离透镜的端部分别与万向节连接,万向节与摆杆连接。
第二步:调整位置保证透镜上下表面与上下磨具内表面相贴合或接触,调节透镜上下磨具上的加载压力,压紧透镜,进行摆动加工。
第三步:设置透镜上下磨具一定转速,同时抛光透镜上下表面:抛光过程中磨具的运动包括上下磨具的自身转动和上下磨具整体往复摆动,其中上下磨具的自身转动由电机带动完成,上下摆杆通过万向节带动上下磨具以相反方向摆动(进而完成其相对于待抛光透镜的圆轨迹摆动)。抛光过程中,磨具中间部位去除材料的速率相对于边缘较低,上下摆杆带动透镜上下磨具的摆动可以增加材料去除的均匀性。另外,抛光过程中的采用通过磨具中心供液方式或外部滴液方式进行抛光液供给。
第四步:为减少上下磨具转速不同导致的透镜上下表面去除材料不均匀性,在上下表面曲率半径一致的条件下,可以将透镜翻面加工或调整上下磨具转速。
第五步:通过以上过程,直到完成抛光过程。
进一步的,所述的磨具与透镜表面接触类型包括面接触或点接触,为避免透镜表面材料去除布不均匀,抛光过程中针对不同接触类型,磨具相对不同类型透镜的运动设置要求不同:对于面接触类型的上下磨具(如双凸型球面透镜上下磨具),设置上磨具转速为8rpm,下磨具转速为30rpm,摆动加工过程中设置磨具中心与透镜中心的距离约为透镜口径的1/3。对于点接触类型的上下磨具(如球型磨头磨具10),设置上下磨具转速为250rpm,摆动加工过程中保持恒定接触压力,抛扫过透镜整体表面。
进一步的,所述的透镜根据表面形状不同,分为双凸型、双凹型和凹凸型透镜三种类型,在此基础之上根据透镜表面曲率特点可分为球面透镜和非球面透镜。所述双面抛光方法针对口径为50-300mm的球面及非球面透镜,设置有与待抛光透镜表面形状特点相适应的抛光磨具:其中,非球面透镜仅可以使用球型磨头磨具10、平面圆盘磨具18进行抛光;球面透镜根据面型特点可以分别使用弧面圆盘磨具7、球型磨头磨具10和平面圆盘磨具18、上下覆盖型磨具(上下覆盖型指上下磨具能够包裹住透镜)进行抛光。如双凸型球面透镜6、凹凸型球面透镜14,双凹型球面透镜17,磨具可采用全部贴合透镜上下表面,整体去除透镜表面材料的上下覆盖型磨具4、5、12、13、16、17,同时也可以组合使用弧面圆盘磨具7、球型磨头磨具10和平面圆盘磨具18。
一种双凸型透镜的双面抛光方法,抛光过程中使用的磨具与透镜表面可分为点接触或面接触,当透镜表面为非球面时只可使用点接触类型磨具(如球型磨头磨具10和平面圆盘磨具18),透镜表面为球面时点接触类型磨具或面接触类型磨具均可采用。包括以下步骤:
第一步:选取曲率半径大于514.92mm的待抛光双凸球面透镜6,将待抛光双凸球面透镜6放置于双凸型球面透镜上下磨具4、5的中间位置。
第二步:调整位置,保证双凸球面透镜6上下表面与两个双凸型球面透镜磨具7内表面相贴合,调节双凸型球面透镜上下磨具4、5上的加载压力,压紧双凸球面透镜6,摆动加工过程中设置磨具中心与透镜中心的距离约为透镜口径的1/3。
第三步:设置双凸型球面透镜上磨具4转速为8rpm,双凸型球面透镜下磨具5转速为30rpm,上下摆杆1、3通过万向节2带动双凸型球面透镜上下磨具4、5以相反方向摆动,一般设置抛光时间为5min,同时抛光双凸球面透镜6上下表面。
第四步:抛光过程中,透镜中间部位去除材料的速率相对于透镜边缘较低,上下摆杆1、3带动双凸型球面透镜上下磨具4、5的摆动可以增加材料去除的均匀性。为减少双凸型球面透镜上下磨具4、5转速不同导致的双凸型球面透镜6上下表面去除材料不均匀性,在上下表面曲率半径一致的条件下,可以将双型球面透镜6翻面加工,一般翻面加工6次时,上下表面就可以达到均匀性要求。另外,还可以相反调整双凸型球面透镜上下磨具4、5转速:设置双凸型球面透镜上磨具4转速为30rpm,双凸型球面透镜下磨具5转速为8rpm,设置抛光时间为5min,提高抛光双凸型球面透镜6上下表面的材料去除均匀性。
第五步:通过以上过程,直到完成抛光过程。
一种凹凸型透镜的双面抛光方法,抛光过程中使用的磨具与透镜表面可分为点接触和面接触,当透镜凹面为非球面时只可使用点接触类型磨具(如球型磨头磨具10),透镜凹面为球面时点接触类型磨具或面接触类型磨具均可采用。包括以下步骤:
第一步:首先将凹面曲率半径大于凸面曲率半径的待抛光凹凸型透镜14同心安装于圆形保持环8内,保持环8的外圈与轴承9内圈过盈配合用于保证保持环8和凹凸型透镜14相对于轴承9内圈转动。再将待抛光凹凸型透镜14放置于上下磨具中间位置。
第二步:调整位置,保证凹凸型透镜14上下表面与两个上下磨具的内表面相接触或点接触,调节凹凸型透镜上下磨具上的接触压力,摆动加工过程中保持恒定接触压力,面接触或点接触形式抛扫过透镜整体表面。其中,点接触加工时为保证一定材料去除速率和均匀性,加工过程中磨具轴线与透镜接触点切线呈25°。
第三步:设置上磨具转速为8rpm,下磨具转速为30rpm,上下摆杆1、3通过万向节2带动双凹型透镜上下磨具以相反方向摆动,一般设置抛光时间为5min,同时抛光凹凸型透镜14上下表面。
第四步:抛光过程中,透镜中间部位去除材料的速率相对于透镜边缘较低,上下摆杆1、3带动上下磨具的摆动可以增加材料去除的均匀性。为减少上下磨具转速不同导致的凹凸型透镜14上下表面去除材料不均匀性,相反调整凹凸型球面透镜上下磨具12、13转速,设置凹凸型球面透镜透镜上磨具12转速为30rpm,凹凸型球面透镜透镜下磨具13转速为8rpm,设置抛光时间为5min,提高抛光凹凸型透镜14上下表面的材料去除均匀性。
第五步:通过以上过程,直到完成抛光过程。
一种双凹型透镜的双面抛光方法,抛光过程中使用的磨具与透镜表面可分为点接触和面接触,当透镜表面为非球面时只可使用点接触类型磨具(如球型磨头磨具10),透镜凹面为球面时点接触类型磨具或面接触类型磨具均可采用。包括以下步骤:
第一步:首先将一定口径的待抛光双凹型透镜17同心安装于圆形保持环8内,保持环8的外圈与轴承9内圈过盈配合,用于保证保持环8和双凹型透镜17相对于轴承9内圈转动。再将待抛光双凹型透镜17放置于上下磨具中间位置。
第二步:调整位置,保证双凹型透镜17上下表面与两个上下磨具内表面相贴合,调节双凹型透镜上下磨具上的接触压力,摆动加工过程中保持恒定接触压力,面接触或点接触形式抛扫过透镜整体表面。其中,点接触加工时为保证一定材料去除速率和均匀性,加工过程中磨具轴线与透镜接触点切线呈25°。
第三步:设置上磨具转速为8rpm,下磨具转速为30rpm,上下摆杆1、3通过万向节2带动双凹型透镜上下磨具以相反方向摆动,一般设置抛光时间为5min,同时抛光双凹型透镜17上下表面。
第四步:抛光过程中,透镜中间部位去除材料的速率相对于透镜边缘较低,上下摆杆1、3带动上下磨具的摆动可以增加材料去除的均匀性。为减少上下磨具转速不同导致的双凹型透镜17上下表面去除材料不均匀性,在上下表面曲率半径一致的条件下,可以将双凹型透镜17翻面加工,一般翻面加工6次时,上下表面就可以达到均匀性要求。
第五步:通过以上过程,直到完成抛光过程。
进一步的,当透镜与上下磨具内表面为面接触时,上下磨具内表面设置抛光垫,抛光过程中与透镜表面直接接触。
有益效果
本发明的有益效果为:针对非平面透镜上下表面抛光加工存在效率较低的情况,本发明利用上下抛光磨具贴合透镜上下表面同时抛光的方法;同时为了消除去除不均匀的问题,抛光过程中采用磨具摆动加工和工件翻面抛光的方法,实现高效率的非平面透镜的双面高精度加工,且该方法可以应用于不同类型透镜的双面抛光。
附图说明
图1(a)为抛光球面透镜过程示意1;
图1(b)为抛光球面透镜过程示意2;
图2为抛光双凸型球面透镜示意;
图3为抛光双凸型非球面透镜示意;
图4为抛光凹凸型球面透镜示意;
图5为抛光双凹型球面透镜示意;
图6为小型组合磨具抛光双凸型非球面透镜示意;
图7为小型组合磨具抛光凹凸型非球面透镜示意;
图8为小型组合磨具抛光双凹型非球面透镜示意;
图中:1上摆杆;2万向节;3下摆杆;4双凸型球面透镜上磨具;5双凸球面透镜下磨具;6双凸型球面透镜;7弧面圆盘磨具; 8保持环;9轴承;10球型磨头磨具;11双凸型非球面透镜;12凹凸球面透镜上磨具;13凹凸球面透镜下磨具;14凹凸型球面透镜;15双凹型球面透镜上磨具;16双凹型球面透镜下磨具;17双凹型球面透镜;18平面圆盘磨具;19凹凸型非球面透镜;20双凹型非球面透镜。
本发明的实施方式
下面结合附图对本发明做进一步说明。为了提高光学透镜抛光效率,结合现有抛光技术的优缺点,本发明提出一种光学透镜双面抛光方法。下面结合说明书附图对本发明的实施方式进行描述。
一种光学透镜双面抛光方法,该双面抛光方法通过在透镜上下位置设置磨具,在抛光过程中磨具贴合透镜上下表面往复摆动,产生相对运动去除表面材料,实现透镜上下表面同时抛光。所述的磨具包括分别与电机连接的上磨具、下磨具,待抛光透镜位于上磨具和下磨具的中间位置,上下磨具分别贴合待抛光透镜上下表面,且上下磨具远离透镜的端部分别与上下万向节2连接,万向节2与上下摆杆1、3连接。抛光过程中磨具的运动包括上下磨具的自身转动和上下磨具整体往复摆动,其中上下磨具的自身转动由电机带动完成,摆杆通过万向节带动上下磨具完成其相对于待抛光透镜的圆轨迹摆动。且抛光过程中的采用通过磨具中心供液方式或外部滴液方式进行抛光液供给。
实施例 1
如图1抛光球面透镜过程示意所示,针对双凸型球面透镜6,采用双凸型球面透镜上下磨具4、5对其进行双面抛光。将双凸型球面透镜6直接放置于双凸型球面透镜上下磨具4、5的中间位置,调整位置保证双凸型球面透镜6上下表面与双凸型球面透镜上下磨具4、5内表面相贴合,再通过双凸型球面透镜上下磨具4、5的转动,对透镜表面材料进行连续去除,达到双凸球面透镜6的双面抛光。
如图2、3所示,当上下磨具采用弧面圆盘磨具7或球型磨头磨具10时,需要将双凸型球面透镜6同心安装于圆形保持环8中,所述保持环8与轴承9内圈过盈配合,此结构为保证保持环8和双凸球面透镜6可以相对于轴承9内圈转动。抛光过程中的运动包括双凸型球面透镜上下磨具4、5的自身转动和上下摆杆1、3通过万向节2带动双凸型球面透镜上下磨具4、5的摆动,其中双凸型球面透镜上下磨具4、5的自身转动由电机带动完成,万向节2与双凸型球面透镜上下磨具4、5端部连接,以完成双凸型球面透镜上下磨具4、5相对于双凸球面透镜6的圆轨迹摆动。
为防止上下抛光磨具4、5运动过程干涉,抛光过程采用双凸型球面透镜上下磨具4、5相反方向摆动。同时对于待加工双凸球面透镜的曲率半径有一定要求,该透镜上下表面曲率半径均需要大于514.92mm。其中双凸型球面透镜上下磨具4、5内表面设置有抛光垫,抛光过程中与透镜表面直接接触。采用在通过磨具中心供液方式和外部滴液方式进行抛光液供给。
如图6所示,针对双凸型非球面透镜11,还可以采用平面圆盘磨具18进行双面抛光。另外也可以使用球型磨头磨具10抛光双凸型非球面透镜11。
针对双凸型球面透镜的双面抛光方法,介绍详细步骤如下:
第一步:选取曲率半径大于514.92mm的待抛光双凸球面透镜6,将待抛光双凸球面透镜6放置于双凸型球面透镜上下磨具4、5中间位置。
第二步:调整位置保证双凸球面透镜6上下表面与两个双凸型球面透镜磨具7内表面相贴合,调节双凸型球面透镜上下磨具4、5上的加载压力,压紧双凸球面透镜6,摆动加工过程中设置磨具中心与透镜中心的距离约为透镜口径的1/3。
第三步:设置双凸型球面透镜上磨具4转速为8rpm,双凸型球面透镜下磨具5转速为30rpm,上下摆杆1、3通过万向节2带动双凸型球面透镜上下磨具4、5以相反方向摆动,一般设置抛光时间为5min,同时抛光双凸球面透镜6上下表面。
第四步:抛光过程中,透镜中间部位去除材料的速率相对于透镜边缘较低,上下摆杆1、3带动双凸型球面透镜上下磨具4、5的摆动可以增加材料去除的均匀性。为减少双凸型球面透镜上下磨具4、5转速不同导致的双凸型球面透镜6上下表面去除材料不均匀性,在上下表面曲率半径一致的条件下,可以将双型球面透镜6翻面加工,一般翻面加工6次时,上下表面就可以达到均匀性要求。相反调整双凸型球面透镜上下磨具4、5转速:设置双凸型球面透镜上磨具4转速为30rpm,双凸型球面透镜下磨具5转速为8rpm,设置抛光时间为5min,提高抛光双凸型球面透镜6上下表面的材料去除均匀性。
第五步:通过以上过程,直到完成抛光过程。
实施例 2
如图4所示,针对凹凸型球面透镜14,采用凹凸球面透镜上下磨具12、13进行抛光,抛光过程与实施例1相似;也可以采用平面圆盘磨具18和球型磨头磨具10组合形式抛光凹凸型球面透镜14。采用平面圆盘磨具18和球型磨头磨具10时,需要将凹凸球面透镜14同心安装于圆形保持环8中,保持环8与轴承9内圈过盈配合,此结构为保证保持环8和凹凸型球面透镜14可以相对于轴承9内圈转动。调整位置保证凹凸型球面透镜14上下表面与平面圆盘磨具18和球型磨头磨具10表面点接触,再通过凹凸型球面透镜上下磨具12、13的转动,对透镜表面材料进行连续去除,达到凹凸型球面透镜14的双面抛光。
针对凹凸型球面透镜14,采用该方法时需特殊注意透镜凹型表面的曲率半径需大于凸型表面曲率半径。同时凹凸型球面透镜14也可采用平面圆盘磨具18、球型磨头磨具10和弧面圆盘磨具7。如图7所示,在凹凸型非球面透镜19的凸面采用平面圆盘磨具18抛光,凹面采用球型磨头磨具10抛光。
针对凹凸型透镜的双面抛光,介绍详细步骤如下:
第一步:选取凹面曲率半径大于凸面曲率半径的待抛光凹凸型透镜14,将待抛光凹凸型透镜14放置于上下磨具中间位置。需要将凹凸型透镜14同心安装于圆形保持环8中,此结构为保证保持环8和凹凸型透镜14可以相对于轴承9内圈转动。
第二步:调整位置保证凹凸型透镜14上下表面与凹凸型球面透镜上下磨具12、13内表面相接触,调节凹凸型透镜上下磨具12、13上的接触压力,摆动加工过程中保持恒定接触压力,面接触或点接触形式抛扫过透镜整体表面,点接触加工时为保证一定材料去除速率和均匀性,加工过程中磨具轴线与透镜接触点切线呈25°。
第三步:一般设置凹凸型透镜上磨具转速为8rpm,凹凸型透镜下磨具转速为30 rpm,上下摆杆1、3通过万向节2带动双凹型透镜上下磨具以相反方向摆动,一般设置抛光时间为5min,同时抛光凹凸型透镜14上下表面。
第四步:抛光过程中,透镜中间部位去除材料的速率相对于透镜边缘较低,上下摆杆1、3带动凹凸型球面透镜上下磨具12、13的摆动可以增加材料去除的均匀性。为减少凹凸型球面透镜上下磨具12、13转速不同导致的凹凸型透镜14上下表面去除材料不均匀性,相反调整凹凸型球面透镜上下磨具12、13转速,设置凹凸型球面透镜上磨具12转速为30rpm,凹凸型球面透镜下磨具13转速为8rpm,设置抛光时间为5min,提高抛光凹凸型透镜14上下表面的材料去除均匀性。
第五步:通过以上过程,直到完成抛光过程。
实施例 3
如图5所示,针对双凹型球面透镜17,可以采用双凹型球面透镜18上下磨具15、16进行抛光,抛光过程与实施例1相似;如图8所示,针对双凹型球面透镜17,也可以采用看上下球型磨头磨具10组合形式抛光双凹型非球面透镜20。采用上下球型磨头磨具10时,需要将双凹型非球面透镜20同心安装于圆形保持环8中,保持环8与轴承9内圈过盈配合,此结构为保证保持环8和双凹型非球面透镜20可以相对于轴承9内圈转动。调整位置保证双凹型非球面透镜20上下表面与上下球型磨头磨具10表面点接触,再通过上下球型磨头磨具10的转动,对透镜表面材料进行连续去除,达到双凹型非球面透镜20的双面抛光。
针对双凹型透镜的双面抛光,介绍详细步骤如下:
第一步:选取一定口径的待抛光双凹型非透镜20,将待抛光双凹型非球面透镜20放置于上下磨具中间位置。需要将双凹型非球面透镜20同心安装于圆形保持环8中,此结构为保证保持环8和双凹型非球面透镜20可以相对于轴承9内圈转动。
第二步:调整位置保证双凹型非球面透镜20上下表面与两个上下球型磨头磨具10相接触,调节双凹型透镜上下球型磨头磨具10上的接触压力,摆动加工过程中保持恒定接触压力,面点接触形式抛扫过透镜整体表面,点接触加工时为保证一定材料去除速率和均匀性,加工过程中磨具轴线与透镜接触点切线呈25°。
第三步:设置上下球型磨头磨具10转速为250rpm,透镜转速为65rpm,上下摆杆1、3通过万向节2带动上下球型磨头磨具10以相反方向摆动,设置抛光时间为5min,同时抛光双凹型非球面透镜20上下表面。
第四步:抛光过程中,透镜表面球型磨头磨具10中间部分和外圆部分扫掠时间基本一致,透镜中间部位去除材料的速率相对于透镜边缘较高,上下摆杆1、3带动上下球型磨头磨具10的摆动可以增加材料去除的均匀性。减少中间位置球型磨头磨具10扫掠时间可增加抛光均匀性,一般在透镜口径1/5内减少球型磨头磨具10扫掠时间。
第五步:通过以上过程,直到完成抛光过程。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (5)

  1. 一种光学透镜双面抛光方法,其特征在于,所述的双面抛光方法通过在透镜上下位置均设置磨具,进而实现透镜上下表面同时抛光,其中光学透镜包括双凸型、双凹型和凹凸型透镜,包括以下步骤:
    第一步:将待抛光透镜放置于分别与电机连接的上下磨具中间位置;上下磨具均与万向节连接,万向节与摆杆连接;
    第二步:调整位置保证透镜上下表面与上下磨具内表面相贴合或点接触,调节透镜上下磨具上的加载压力,压紧透镜;
    第三步:设置透镜上下磨具一定转速,同时抛光透镜上下表面,抛光过程中磨具的运动包括上下磨具的自身转动和上下磨具整体往复摆动,其中上下磨具的自身转动由电机带动完成,上下摆杆通过万向节带动上下磨具以相反方向摆动,上下摆杆带动透镜上下磨具的摆动可以增加材料去除的均匀性;且抛光过程中的采用通过磨具中心供液方式或外部滴液方式进行抛光液供给;
    第四步:为减少上下磨具转速不同导致的透镜上下表面去除材料不均匀性,在上下表面曲率半径一致的条件下,将透镜翻面加工或对调上下磨具转速,完成抛光过程。
  2. 根据权利要求1所述的一种光学透镜双面抛光方法,其特征在于,所述的透镜根据表面形状不同,分为双凸型、双凹型和凹凸型透镜三种类型,在此基础之上根据透镜表面曲率特点可分为球面透镜和非球面透镜;其中,非球面透镜仅可以使用球型磨头磨具、平面圆盘磨具进行抛光;球面透镜根据面型特点可以分别使用弧面圆盘磨具、球型磨头磨具和平面圆盘磨具、上下覆盖型磨具进行抛光。
  3. .根据权利要求1所述的一种光学透镜双面抛光方法,其特征在于,所述的光学透镜为双凸型透镜,双凸型透镜的双面抛光方法包括以下步骤:
    第一步:将待抛光双凸球面透镜放置于双凸型球面透镜上下磨具的中间位置;
    第二步:调整位置,保证双凸球面透镜上下表面与两个双凸型球面透镜磨具内表面相贴合,调节双凸型球面透镜上下磨具上的加载压力,压紧双凸球面透镜,摆动加工过程中设置磨具中心与透镜中心的距离为透镜口径的1/3;
    第三步:设置双凸型球面透镜上磨具的转速为8rpm,双凸型球面透镜下磨具转速为30rpm,上下摆杆通过万向节带动双凸型球面透镜上下磨具以相反方向摆动,设置抛光时间为5min,同时抛光双凸球面透镜上下表面;
    第四步:为减少双凸型球面透镜上下磨具转速不同导致的双凸型球面透镜6上下表面去除材料不均匀性,在上下表面曲率半径一致的条件下,将双型球面透镜翻面加工达到均匀性要求;另外,还可以相反调整双凸型球面透镜上下磨具的转速,提高抛光双凸型球面透镜6上下表面的材料去除均匀性。
  4. 根据权利要求1所述的一种光学透镜双面抛光方法,其特征在于,所述的光学透镜为凹凸型透镜,凹凸型透镜的双面抛光方法包括以下步骤:
    第一步:首先将凹面曲率半径大于凸面曲率半径的待抛光凹凸型透镜同心安装于圆形保持环内,保持环的外圈与轴承内圈过盈配合,保证保持环和凹凸型透镜相对于轴承内圈转动;再将待抛光凹凸型透镜放置于上下磨具中间位置;
    第二步:调整位置,保证凹凸型透镜上下表面与两个上下磨具的内表面相接触或点接触,调节凹凸型透镜上下磨具上的接触压力,摆动加工过程中保持恒定接触压力,面接触或点接触形式抛扫过透镜整体表面;其中,点接触加工时为保证一定材料去除速率和均匀性,加工过程中磨具轴线与透镜接触点切线呈25°;
    第三步:设置上磨具转速为8rpm,下磨具转速为30rpm,上下摆杆通过万向节带动双凹型透镜上下磨具以相反方向摆动,抛光时间为5min,同时抛光凹凸型透镜上下表面;
    第四步:相反调整凹凸型球面透镜上下磨具的转速,提高抛光凹凸型透镜上下表面的材料去除均匀性。
  5. 根据权利要求1所述的一种光学透镜双面抛光方法,其特征在于,所述的光学透镜为双凹型透镜,双凹型透镜的双面抛光方法包括以下步骤:
    第一步:将待抛光双凹型透镜同心安装于圆形保持环内,保持环的外圈与轴承内圈过盈配合,保证保持环和双凹型透镜相对于轴承内圈转动;再将待抛光双凹型透镜放置于上下磨具中间位置;
    第二步:调整位置,保证双凹型透镜上下表面与两个上下磨具内表面相贴合,调节双凹型透镜上下磨具上的接触压力,摆动加工过程中保持恒定接触压力,面接触或点接触形式抛扫过透镜整体表面;其中,点接触加工时为保证一定材料去除速率和均匀性,加工过程中磨具轴线与透镜接触点切线呈25°;
    第三步:设置上磨具转速为8rpm,下磨具转速为30rpm,上下摆杆通过万向节带动双凹型透镜上下磨具以相反方向摆动,设置抛光时间为5min,同时抛光双凹型透镜上下表面;
    第四步:在上下表面曲率半径一致的条件下,将双凹型透镜翻面加工,翻面加工6次以上时,上下表面能够达到均匀性要求。
PCT/CN2022/075429 2021-06-08 2022-02-08 一种光学透镜双面抛光方法 WO2022257489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110638414.7A CN113458909B (zh) 2021-06-08 2021-06-08 一种光学透镜双面抛光方法
CN202110638414.7 2021-06-08

Publications (1)

Publication Number Publication Date
WO2022257489A1 true WO2022257489A1 (zh) 2022-12-15

Family

ID=77869302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075429 WO2022257489A1 (zh) 2021-06-08 2022-02-08 一种光学透镜双面抛光方法

Country Status (2)

Country Link
CN (1) CN113458909B (zh)
WO (1) WO2022257489A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113458909B (zh) * 2021-06-08 2022-06-07 大连理工大学 一种光学透镜双面抛光方法
CN114473718B (zh) * 2022-01-27 2023-06-16 江苏宇迪光学股份有限公司 一种光学透镜非接触抛光方法及装置
CN115008298B (zh) * 2022-06-30 2024-03-08 江西弘耀光学水晶有限公司 一种光学镜片智能打磨抛光磨边方法
CN115319590B (zh) * 2022-10-12 2023-01-31 常州市奥普泰克光电科技有限公司 一种加工光学透镜的装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB901596A (en) * 1958-11-06 1962-07-18 U K Optical Bausch & Lomb Ltd Improvements in the grinding of solid bifocal lenses
JP2000296448A (ja) * 1999-04-15 2000-10-24 Canon Inc 光学素子の製造方法
DE102007050470A1 (de) * 2007-03-01 2008-09-04 Optotech Optikmaschinen Gmbh Verfahren zum Herstellen von optisch aktiven Oberflächen durch Polieren von vorgeschliffenen Linsen und eine Vorrichtung zur Durchführung des Verfahrens
CN101804593A (zh) * 2009-02-13 2010-08-18 中村留精密工业株式会社 透镜的加工方法及磨削装置
CN106312778A (zh) * 2016-04-07 2017-01-11 东莞市兰光光学科技有限公司 一种大口径光学元件双面抛光机
CN211414657U (zh) * 2019-11-19 2020-09-04 湖北山鹰光电科技股份有限公司 一种镜片精磨机
CN113458909A (zh) * 2021-06-08 2021-10-01 大连理工大学 一种光学透镜双面抛光方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450966B2 (ja) * 1996-06-21 2003-09-29 株式会社永田製作所 研磨装置
JP2002144205A (ja) * 2000-11-14 2002-05-21 Nikon Corp 研磨装置及び光学部材の製造方法
JP2004098198A (ja) * 2002-09-06 2004-04-02 Sumitomo Heavy Ind Ltd ワーク保持装置及び両頭研削装置
JP2004098250A (ja) * 2002-09-11 2004-04-02 Sumitomo Heavy Ind Ltd 両頭研削装置
JP4319092B2 (ja) * 2004-06-03 2009-08-26 住友重機械工業株式会社 両面加工装置
CN206296758U (zh) * 2016-12-22 2017-07-04 江苏维福特科技发展股份有限公司 一种晶体高效抛光装置
CN108015639B (zh) * 2017-11-28 2019-05-10 宁波江北森壹机械制造有限公司 一种镜片加工设备
CN111002207A (zh) * 2019-12-23 2020-04-14 江苏欧达光学有限公司 一种光学玻璃抛光装置
CN112222954B (zh) * 2020-09-14 2022-04-01 天津津航技术物理研究所 一种带平台非球凸面硅透镜的加工方法
CN112405210A (zh) * 2020-11-12 2021-02-26 扬州创群网络科技有限公司 一种光学零件双面抛光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB901596A (en) * 1958-11-06 1962-07-18 U K Optical Bausch & Lomb Ltd Improvements in the grinding of solid bifocal lenses
JP2000296448A (ja) * 1999-04-15 2000-10-24 Canon Inc 光学素子の製造方法
DE102007050470A1 (de) * 2007-03-01 2008-09-04 Optotech Optikmaschinen Gmbh Verfahren zum Herstellen von optisch aktiven Oberflächen durch Polieren von vorgeschliffenen Linsen und eine Vorrichtung zur Durchführung des Verfahrens
CN101804593A (zh) * 2009-02-13 2010-08-18 中村留精密工业株式会社 透镜的加工方法及磨削装置
CN106312778A (zh) * 2016-04-07 2017-01-11 东莞市兰光光学科技有限公司 一种大口径光学元件双面抛光机
CN211414657U (zh) * 2019-11-19 2020-09-04 湖北山鹰光电科技股份有限公司 一种镜片精磨机
CN113458909A (zh) * 2021-06-08 2021-10-01 大连理工大学 一种光学透镜双面抛光方法

Also Published As

Publication number Publication date
CN113458909A (zh) 2021-10-01
CN113458909B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2022257489A1 (zh) 一种光学透镜双面抛光方法
CN101564824B (zh) 一种磁流变斜轴抛光方法及装置
KR100201791B1 (ko) 공작물에 블록 팁을 형성하는 방법 및 장치
CN107671605A (zh) 一种光学镜片抛光装置及抛光工艺
CN102049728A (zh) 一种激光陀螺镜片外圆研磨抛光方法
US3816997A (en) Apparatus for simultaneously performing rough and fine grinding operations
CN111215970B (zh) 一种微结构模具超声空化辅助超声磁力抛光方法
CN103537960B (zh) 一种用于加工回转面的磨光机
CN1064291C (zh) 球面零件轨迹成形加工方法及装置
CN101062547B (zh) 透镜加工方法
CN104889878A (zh) 一种适用于轮盘类零件的锥旋运动式光整加工装置及其方法
JPH0224063A (ja) カップ形砥石車
CN204954499U (zh) 可抑制光学元件中频误差的超声振动抛光磨头装置
CN210081434U (zh) 用于薄壁异形曲面的磁致固态流变效应抛光装置
CN116394113A (zh) 一种光学透镜的剪切增稠抛光装置及方法
CN111300162A (zh) 一种光学镜片的加工工艺
ES359168A1 (es) Un metodo y un aparato para generar, rectificar o pulir su-perficies asfericas de revolucion.
CN104400587A (zh) 一种旋流式光学镜片抛光设备
US20240123567A1 (en) Double-sided polishing method for optical lens
CN206632798U (zh) 一种流体动压抛光装置
CN115256233A (zh) 一种双面研磨机台的盘面修整工艺
CN208019952U (zh) 一种自动抛光机的砂带松紧调节机构
TWI635928B (zh) Lens centering method of ball center processing machine, lens processing method and ball center processing machine
JP2009166222A (ja) 研磨加工方法
KR20160054120A (ko) 자기유변유체 연마 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18007539

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE