WO2022255586A1 - 초고순도 불화수소의 정제방법 및 장치 - Google Patents

초고순도 불화수소의 정제방법 및 장치 Download PDF

Info

Publication number
WO2022255586A1
WO2022255586A1 PCT/KR2022/001423 KR2022001423W WO2022255586A1 WO 2022255586 A1 WO2022255586 A1 WO 2022255586A1 KR 2022001423 W KR2022001423 W KR 2022001423W WO 2022255586 A1 WO2022255586 A1 WO 2022255586A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen fluoride
gas
distillation column
high purity
ultra
Prior art date
Application number
PCT/KR2022/001423
Other languages
English (en)
French (fr)
Inventor
길준잉
장용수
이환평
Original Assignee
램테크놀러지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 램테크놀러지 주식회사 filed Critical 램테크놀러지 주식회사
Priority to JP2023571429A priority Critical patent/JP2024520334A/ja
Priority to US18/561,983 priority patent/US20240239656A1/en
Priority to CN202280039633.6A priority patent/CN117500749A/zh
Publication of WO2022255586A1 publication Critical patent/WO2022255586A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • C01B7/196Separation; Purification by distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/343Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas
    • B01D3/346Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas the gas being used for removing vapours, e.g. transport gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification

Definitions

  • the present invention discloses a purification method and apparatus capable of producing ultra-high purity hydrogen fluoride.
  • Hydrogen fluoride is used in various industrial fields.
  • the hydrogen fluoride is most commonly produced among fluorine compounds and is supplied in the form of hydrogen fluoride in anhydrous form and hydrofluoric acid in the form of an aqueous solution containing ultrapure water.
  • Hydrofluoric acid is produced through various purification processes such as distillation using a hydrogen fluoride raw material, electrolysis, adsorption, and membrane separation (Patent Documents 1 to 3), among which distillation using a fractional distillation process is widely used.
  • Hydrogen fluoride is prepared by adding sulfuric acid to fluorite (CaF 2 ) and simultaneously heating it. Crude hydrogen fluoride produced through the above reaction includes SO 2 and trace amounts of various impurities such as AsF 3 , BF 3 , PF 5 , SiF 4 , FeF 3 , and SF 6 in addition to hydrogen fluoride. The impurities are removed through various purification processes including a pretreatment process, so that industrial hydrofluoric acid can be produced using hydrogen fluoride of 99.9% purity.
  • Low-purity hydrofluoric acid such as industrial hydrofluoric acid is used for industrial purposes, and ultra-high purity hydrofluoric acid is required for etching and cleaning of semiconductors and displays.
  • ultra-high purity hydrofluoric acid used for etching and cleaning
  • hydrofluoric acid diluted with ultrapure water at a certain ratio is used, and if impurities exist in such hydrofluoric acid for the semiconductor manufacturing process, they remain on the wafer during etching and cleaning, resulting in pattern formation defects. (Defect) causes the semiconductor production yield to decrease. Therefore, in order to lower the defect rate, ultra-high purity hydrogen fluoride, in particular, ultra-high purity hydrogen fluoride whose metal impurity concentration is controlled to several ppt is used.
  • purification costs increase, attention to contamination during storage and handling is required, and production efficiency and product conversion rate to high-purity hydrogen fluoride are low.
  • impurities contained in hydrogen fluoride can be removed through distillation and purification, but among the impurities, impurities such as arsenic (As) exist as arsenic trifluoride (AsF 3 ) in anhydrous hydrofluoric acid, and these impurities have a boiling point of 57.13 ° C. HF) is not very different from the boiling point of 19.5 ° C, and it is not easy to separate through distillation and purification as it forms an azeopropic.
  • Ars arsenic
  • AsF 3 arsenic trifluoride
  • arsenic fluoride causes adverse effects on semiconductor device characteristics as well as equipment corrosion and environmental problems, it is desirable to remove it during the manufacturing process of ultra-high purity hydrogen fluoride.
  • the pretreatment process of removing impurities such as arsenic is performed before the production process of hydrofluoric acid from hydrogen fluoride, resulting in the addition of equipment and an increase in process cost according to the pretreatment process.
  • impurities remaining in hydrogen fluoride are not easily removed in a purification process, it is difficult to produce high-purity, particularly ultra-high-purity hydrogen fluoride.
  • Patent Document 1 Korean Patent Publication No. 10-2006-0014138
  • Patent Document 2 Republic of Korea Patent Publication No. 10-2013-0141402
  • Patent Document 3 Japanese Unexamined Patent Publication No. 1994-144805
  • Hydrogen fluoride is produced from fluorite (CaF 2 ) in the existing technology, but research on the production of ultra-high purity hydrogen fluoride has been continued to solve the problem that production costs can greatly increase due to the generation of a large amount of environmental waste.
  • the process for producing ultra-high purity hydrogen fluoride proceeds in the order of the pretreatment process and purification process of crude hydrogen fluoride. suggest a way to In addition, the present invention is the result of various studies to produce ultra-high purity hydrogen fluoride without a pretreatment process.
  • the present invention is to provide a purification method and apparatus capable of producing ultra-high purity hydrogen fluoride using crude hydrogen fluoride as a raw material.
  • the gas stream has a concentration adjusted according to the content of AsF 3 contained in the hydrogen fluoride passing through the multi-stage distillation column, and a method for purifying ultra-high purity hydrogen fluoride is provided.
  • gas stream containing the F 2 gas and the inert gas is injected into another multi-stage distillation column into which crude hydrogen fluoride is not introduced.
  • a distillation purification unit having a plurality of multi-stage distillation columns for performing a continuous distillation process
  • a gas supply unit for supplying a gas stream containing F 2 gas and an inert gas in the multi-stage distillation column
  • a recovery unit for recovering ultra-high purity hydrogen fluoride and
  • an ultra-high purity hydrogen fluoride purifier for supplying a gas stream whose concentration is adjusted according to the content of AsF 3 contained in the hydrogen fluoride passed through the multi-stage distillation column by the advanced process control unit to the multi-stage distillation column into which crude hydrogen fluoride is introduced.
  • the ultra-high purity hydrogen fluoride purification process according to the present invention is performed by continuous supply, and when inspection of production equipment or PM (preventive maintenance) is required, the flow of hydrogen fluoride needs to be stopped and the process is continuously repeated until it is stopped. can be performed
  • This method enables the economical and efficient production of ultra-high purity hydrogen fluoride by simplifying the purification process.
  • 1 is a schematic diagram used for the purification of ultra-high purity hydrogen fluoride according to the present invention.
  • FIG. 2 is a schematic diagram showing an apparatus for purifying hydrogen fluoride according to an embodiment of the present invention.
  • FIG 3 shows the sequence of control of the F 2 gas concentration by the APC module.
  • FIG. 4 is a schematic diagram showing an apparatus for purifying hydrogen fluoride according to another embodiment of the present invention.
  • the present invention comprises the steps of providing crude hydrogen fluoride from a raw material supply;
  • the gas stream relates to a method for purifying ultra-high purity hydrogen fluoride in which the concentration is adjusted according to the content of AsF 3 contained in hydrogen fluoride that has passed through the multi-stage distillation column.
  • the present invention provides a raw material supply unit for supplying crude hydrogen fluoride raw material
  • a distillation purification unit having a plurality of multi-stage distillation columns for performing a continuous distillation process
  • a gas supply unit for supplying a gas stream containing F 2 gas and an inert gas in the multi-stage distillation column
  • a recovery unit for recovering ultra-high purity hydrogen fluoride and
  • It relates to an ultra-high purity hydrogen fluoride purifier that supplies a gas stream whose concentration is adjusted according to the content of AsF 3 contained in hydrogen fluoride passed through the multi-stage distillation column by the advanced process control unit to a multi-stage distillation column into which crude hydrogen fluoride is introduced. .
  • ultra-high purity hydrogen fluoride is recognized in the art to mean a gas having a purity of 99.9999% (6N) or higher.
  • the ultra-high purity hydrogen fluoride is one billionth (ppb, part per billion, 10 9 ) or less, preferably one trillion (ppt, part per trillion, 10 12 ), one thousand trillion (ppq, part per quadrillion) , 10 15 ) to remove specific impurities.
  • ultra-high purity hydrogen fluoride' referred to in the present invention means all compositions other than HF, and major impurities include SO 2 , AsF 3 , BF 3 , SiF 4 , FeF 3 , SF 6 , and PF 5 .
  • the impurity to be reduced through the present invention may actually be AsF 3 .
  • the substantial impurity in the removal of impurities using the gas stream of the present invention can be regarded as AsF 3 .
  • AsF 3 is trivalent arsenic fluoride, and its oxidized form, AsF 5 , is pentavalent arsenic fluoride.
  • the present invention is a purification process that can be continuously purified for 24 hours by introducing crude hydrogen fluoride as a raw material, and can produce ultra-high purity hydrogen fluoride from which impurities are removed to a ppt or less, preferably ppq level, through automatic control A method and purification apparatus are presented.
  • 1 is a schematic diagram used for the purification of ultra-high purity hydrogen fluoride according to the present invention.
  • ultra-high purity hydrogen fluoride purification includes a raw material supply unit 100 for supplying crude hydrogen fluoride raw material, a distillation purification unit 200 having a plurality of multi-stage distillation columns for performing a continuous distillation process, the above A gas supply unit 300 for supplying a gas stream to the multi-stage distillation column, a recovery unit 400 for recovering ultra-high purity hydrogen fluoride, and an advanced process control unit 500 for process control to enable a continuous process are provided.
  • the raw material supply unit 100 is a device for supplying crude hydrogen fluoride, which is a raw material of ultra-high purity hydrogen fluoride, and includes a storage tank containing crude hydrogen fluoride produced by a reaction between fluorspar and sulfuric acid.
  • hydrogen fluoride as a raw material for hydrogen fluoride purification uses a raw material from which impurities are removed to a ppm level through pretreatment, but in the present invention, crude hydrogen fluoride is used as a raw material input into the raw material supply unit 100 for hydrogen fluoride purification.
  • the crude hydrogen fluoride includes crude hydrogen fluoride obtained by the reaction of fluorspar and sulfuric acid and excessive impurities (% level), and is a raw material that has not been subjected to separate pretreatment.
  • Crude hydrogen fluoride in the raw material supply unit 100 may be directly supplied in a liquid state to the next distillation and purification unit 200 in a liquid state, or vaporized and supplied in a gaseous state. At this time, the supply in the gaseous state has only a property change, and the term of a separate pretreatment process is not included.
  • the distillation and purification unit 200 is a device for removing impurities in crude hydrogen fluoride and obtaining ultra-high purity hydrogen fluoride through a fractional distillation process.
  • the fractional distillation process can be a batch distillation process and a continuous distillation process, among which a continuous distillation process, among them, a continuous distillation process having two or more distillation stages and passing through a continuous multi-stage distillation column capable of continuous distillation. .
  • the continuous distillation process includes a multi-stage distillation column for vaporizing crude hydrogen fluoride to perform concentration and purification, and a reboiler for generating hydrogen fluoride vapor by heating the crude hydrogen fluoride.
  • the multi-stage distillation column has 2 to 50 theoretical stages, for example, 3 to 40 theoretical stages.
  • crude liquid hydrogen fluoride and gaseous hydrogen fluoride and impurities coexist in the multi-stage distillation column, and the gaseous composition is separated into a top region, a middle region, and a bottom region of the multi-stage distillation column.
  • Impurities with a low boiling point are transferred to the top region and discharged, and impurities with a high boiling point are transferred to the column bottom region and discharged.
  • Hydrogen fluoride is located in the middle zone and is continuously transferred to the next multi-stage distillation column.
  • the distillation and purification unit 200 two or more, 3 to 40, and 4 to 25 multi-stage distillation columns are connected, and ultra-high purity hydrogen fluoride can be produced through continuous passage of the multi-stage distillation columns.
  • the multi-stage distillation columns are pipe-connected to each other, and they may be arranged in series, parallel, or in a mixed state, preferably connected in series.
  • the gas supply unit 300 is a device for supplying a gas stream for removing impurities in crude hydrogen fluoride, particularly AsF 3 .
  • the gas stream contains F 2 gas and an inert gas for conveying and diluting it.
  • F 2 gas fluorinated gas
  • fluorinated gas is a very expensive gas produced by electrolysis of hydrogen fluoride, and the cost of ultra-high purity hydrogen fluoride varies depending on how effectively it is used.
  • JP2005-281048 proposed a method of purifying hydrogen fluoride after mixing hydrogen fluoride with F 2 gas for 5 minutes or more, but this method is limited to a batch type and is not suitable for purifying hydrogen fluoride through a continuous process. There is a possibility of excessive use of F 2 gas.
  • the F 2 gas is applied to a continuous process through the application of the APC module of the advanced process control unit 500 to be described below, but the most effective input method is designed.
  • the F 2 gas is mixed with an inert gas, and the amount of the F 2 gas is determined according to the concentration of AsF 3 in the crude hydrogen fluoride to be purified.
  • the F 2 gas supplied from the gas supply unit 300 oxidizes with the high-boiling point AsF 3 in crude hydrogen fluoride to be converted to low-boiling AsF 5 and removed to the top of the tower in the form of a gas.
  • AsF 5 additionally exists. It is converted into HAsF 6 with a high boiling point through an ionic reaction with HF, which can be easily removed to the bottom of the tower.
  • AsF 3 which is trivalent arsenic fluoride, reacts with F 2 gas to be converted into AsF 5 , which is pentavalent arsenic fluoride.
  • This pentavalent arsenic fluoride has a bp of -52.8°C, which is different from hydrogen fluoride's bp (19.5°C) in boiling point, so it can be separated in the distillation process. It happens.
  • the content of AsF 3 in the crude hydrogen fluoride introduced into the first multi-stage distillation column is at the ppm level.
  • 100% pure F 2 gas it is difficult to meet sufficient reaction conditions due to the severe difference in boiling point from that of hydrogen fluoride, resulting in high process costs. It increases. Therefore, in the present invention, in order to obtain low cost and high efficiency, a mixed gas obtained by diluting F 2 gas with an inert gas is used.
  • the F 2 gas may be introduced into a multi-stage distillation column into which crude hydrogen fluoride is introduced or additionally into all other multi-stage distillation columns. Since there is a difference in the content of arsenic fluoride in each multi-stage distillation column, in order to secure the best effect with a small amount, the F 2 gas is diluted to a predetermined concentration corresponding to the content of the remaining arsenic fluoride and introduced into the multi-stage distillation column.
  • the inert gas of the gas stream of the present invention is any one or more of He, N 2 , and Ar, preferably N 2 is used.
  • the concentration of the F 2 gas:inert gas in the gas stream can be varied within the range of 10:90 to 90:10 wt %. As the content of F 2 gas increases, the possibility of participating in the oxidation reaction of AsF 3 to AsF 5 increases, but considering the residence time of crude hydrogen fluoride in the multi-stage distillation column, there is a limit to the contact between AsF 3 and F 2 gas. Therefore, considering the cost aspect, it is preferable to adjust the F 2 gas according to the impurity concentration of the crude hydrogen fluoride.
  • the F 2 gas and the inert gas of the gas stream may be simultaneously introduced into the multi-stage distillation column or may be mixed before being introduced in the form of a mixed gas.
  • the concentration of the F 2 gas introduced is 0.1 to 0.2%, and in the case of 10 to 100 ppb, 0.005 to 0.01 to a concentration of %.
  • the recovery unit 400 is a device for recovering ultra-high purity hydrogen fluoride purified by passing through the distillation and purification unit 200.
  • Ultra-high purity hydrogen fluoride can be recovered in a gaseous state after passing through the last multi-stage distillation column or in a liquefied liquid state through a condenser.
  • Purification of ultra-high purity hydrogen fluoride from crude hydrogen fluoride through the raw material supply unit 100, the distillation and purification unit 200, the gas supply unit 300 and the recovery unit 400 is an advanced process for process control to enable a continuous process. It is automatically controlled by the controller 500.
  • the advanced process controller 500 is a device including an Advanced Process Control (hereinafter referred to as 'APC') module.
  • 'APC' Advanced Process Control
  • the APC module is a multi-variable predictive control technology that consists of a mathematical model that simultaneously considers the relationship between dynamic characteristics among many process operation variables and controls to maintain stable and economical optimal operating conditions.
  • the APC module is a technology that enhances the efficiency of the entire plant and the convenience of operation by using software rather than reinforcing plant facilities.
  • a dynamic characteristic model that expresses this correlation is included inside the APC module, and it is a multi-variable predictive control technology using a computer that controls the process to maintain it more stably and economically.
  • the multi-variable predictive control technique simultaneously controls control variables so as to satisfy respective target values of the control variables by simultaneously considering influences of several control variables on other control variables.
  • the biggest variable in process control through the APC module can be said to be the concentration of impurities.
  • the raw material supply unit 100 receives an opening/closing signal from the advanced process control unit 500 and supplies crude hydrogen fluoride to the multi-stage distillation column in an open state of the distillation and purification unit 200. Hydrogen fluoride purified by the multi-stage distillation column is continuously transferred to the next multi-stage distillation column through a transfer line. A gas stream is supplied from the gas supply unit 300 to the multi-stage distillation column to remove impurities.
  • whether or not to treat the gas stream, the concentration of the gas stream to be treated, the injection amount of the gas stream, and the like vary according to the content of crude hydrogen fluoride present in the multi-stage distillation column and impurities in the hydrogen fluoride.
  • the content of the impurities may be obtained by measuring the concentration of impurities present in the multi-stage distillation column.
  • each of them is equipped with a sensor for measuring the concentration, which is displayed on a display connected to the advanced process controller 500 through the analysis device.
  • the concentration analysis method is classified according to the type of impurity and measured with one or more analytical instruments, and is not particularly limited in the present invention.
  • Metal impurities are analyzed through special equipment that can be pretreated with uniform concentration without impurity contamination in consideration of equipment damage of inductively coupled plasma mass spectrometry. Moisture and ionic impurities are analyzed through FT-IR and gaseous impurities through GC. Analyze precisely.
  • a gas stream suitable for the impurity concentration is designed, the measured impurity concentration is sent to the APC module, and the gas stream is input when the first gas stream is input, the second gas stream is input, and the nth gas stream is input according to the set value of the impurity concentration.
  • the composition of the composition, the amount of injection during treatment, etc. are changed. Through this modification method, even if the quality of crude hydrogen fluoride used as a raw material is different, the finally obtained hydrogen fluoride can be obtained as an ultra-high purity material of uniform quality.
  • the purification method and purification apparatus can perform a continuous process, and can operate 24 hours by automatic control as the process is controlled by an APC module, thereby improving the production and throughput of ultra-high purity hydrogen fluoride at low cost.
  • each of the above devices is a flow controller, a pressure controller, a compressor, a cooler, a condenser, a storage tank, a supply control valve, a gas-liquid separator, a flowmeter, an analysis device, an analysis sample collection device, a leak preventer, a liquid or gas transfer pump, An exhaust device, an overpressure prevention device, an automation device, various sensors, a thermometer, a mass gauge, a pressure gauge, a volume gauge, and the like may additionally be included.
  • FIG. 2 is a schematic diagram showing an apparatus for producing ultra-high purity hydrogen fluoride according to an embodiment of the present invention. At this time, three multi-stage distillation columns are shown, but this is only an example for explanation, and the number and arrangement of multi-stage distillation columns for application to actual processes can be variously modified.
  • Crude hydrogen fluoride which is a raw material, is transferred from the crude hydrogen fluoride storage tank 110 to the bottom of the first distillation column 210 via the transfer line 122 by pumping a transfer pump (not shown) or pressurizing an inert gas.
  • Crude hydrogen fluoride in the crude hydrogen fluoride storage tank 110 may be introduced into the first distillation column 210 in a liquid state or passed through an evaporator 600 into the first distillation column 210 in a gaseous state.
  • the introduction of crude hydrogen fluoride in a gaseous state using the evaporator 600 has an effect of removing impurities as high-concentration impurities remain in the lower portion of the evaporator 600.
  • the crude hydrogen fluoride introduced into the first distillation column 210 is subjected to fractional distillation, and low boiling point and high boiling point impurities are discharged along discharge lines 218 and 219 of the column top and bottom regions, respectively.
  • the gas discharged from the first distillation column 210 passes through the cooler C1 and the recovery unit R1, and then the hydrogen fluoride from which impurities are primarily removed is transferred to the second distillation column 220 along the transfer line 212. do.
  • the impurities supplied from the first distillation column 210 may be discharged through the discharge line 218 at the top of the column after passing through the cooler C1 and the recovery unit R1.
  • an oxidation reaction is performed by injecting a mixed gas of F 2 gas/inert gas, ie, a gas stream, from the gas stream storage tank 310 .
  • the injection of the gas stream may be either a downward injection method injecting from the top to the bottom side or an upward injection method injecting from the bottom to the top side. This method may vary depending on the facility process, and may be performed in a manner that increases the chance of contact between crude hydrogen fluoride and F 2 gas. In FIG. 2, for convenience, a downward injection method is shown.
  • the input of the F 2 gas/inert gas into the gas stream can be made by measuring the removal concentration of AsF 3 contained in the crude hydrogen fluoride in the first distillation column by the APC module.
  • the concentration of AsF 3 contained in the hydrogen fluoride that has passed through the first distillation column 210 is measured and the concentration of the F 2 gas introduced into the first distillation column is controlled to minimize it.
  • FIG 3 shows the sequence of control of the F 2 gas concentration by the APC module.
  • crude hydrogen fluoride and F 2 gas are introduced into the first distillation column 210.
  • the operating variable is the concentration of F 2 gas introduced into the first distillation column 210
  • the control variable is set to the content of AsF 3 passing through the first distillation column 210. They calculate a set of optimized steady state values through simulation or the like.
  • the AsF 3 content in the hydrogen fluoride passing through the first distillation column 210 is measured.
  • the AsF 3 content may be measured at any one point of the discharge port or the transfer line 212 located at the connection between the first distillation column 210 and the transfer line 212 .
  • the measurement can be performed with an inductively coupled plasma mass spectrometer or the like through pretreatment for analysis.
  • the measured AsF 3 content is returned to the APC module and the process continues if it is below the set value (YES).
  • the concentration of the F 2 gas introduced into the first distillation column 210 is adjusted by the APC module.
  • a flow controller (not shown) controls the flow rate of the F 2 gas storage tank 301 and the inert gas storage tank 302 connected to the gas stream mixing device 310 introduced into the first distillation column 210 by a signal from the APC module. It is adjusted to and introduced into the gas stream mixing device 310.
  • a data table obtained through an experiment or simulation, an algorithm for calculating a flow control value, and the like may be previously stored in the APC module until the concentration value is received and input to the flow control value.
  • parameters including setpoints, hi/lo limits, and system disturbances of control variables are taken into account by the APC module to be compatible with the set of normal values of the manipulated variables. is optimized to perform the distillation process in the first distillation column.
  • the operating conditions of the first distillation column 210 are performed at a pressure of 0.1 to 3 bar, a temperature of 10 to 60, and a residence time of 1 to 30 minutes.
  • process conditions in the first distillation column 210 are performed under conditions different from process conditions in other distillation columns.
  • Oxidation reactions by gas-gas contact and liquid-gas contact occur between crude hydrogen fluoride and F 2 gas in the first distillation column 210 by the F 2 gas input, and the effect of the F 2 gas input can be maximized. have.
  • liquid-gas contact can occur simultaneously, maximizing the oxidation reaction, unlike the oxidation reaction only by gas-gas contact when F 2 gas is introduced to remove AsF 3 in gaseous hydrogen fluoride.
  • an injection nozzle (not shown) is disposed so that a gas stream can be injected from the bottom to the top.
  • the gas stream injected from the spray nozzle increases from the bottom to the top, there is an advantage in that the spray pressure is high.
  • the F 2 gas in the gas stream injected from the injection nozzle increases the trajectory of the injection from the bottom to the top and the chance of contact with crude hydrogen fluoride in liquid state falling by gravity from the top to the bottom, so that the F 2 gas The purification effect by gas input can be further enhanced.
  • Hydrogen fluoride introduced into the second distillation column 220 is subjected to fractional distillation, and high boiling point impurities are discharged along the discharge line 229 in the bottom region of the column.
  • the purified hydrogen fluoride passes through the cooler (C2) and the recovery unit (R2), the purified hydrogen fluoride is introduced into the second distillation column 230, and low-boiling impurities are passed through the discharge line 228 at the top of the column. may be discharged. At this time, some of the hydrogen fluoride is recovered and circulated to the second distillation column 220.
  • the hydrogen fluoride after the secondary distillation process is injected into the central region of the third distillation column 230 to perform the tertiary distillation.
  • Hydrogen fluoride introduced into the third distillation column 230 is subjected to fractional distillation, and high boiling point impurities are discharged along the discharge line 239 in the bottom region of the column.
  • the hydrogen fluoride is finally transferred to the ultra-high purity hydrogen fluoride storage tank 410 through the storage line 422, and the low-boiling point Impurities of may be discharged through the discharge line 238 at the top of the column.
  • some of the hydrogen fluoride is recovered and circulated to the third distillation tower (230).
  • Hydrogen fluoride in an ultra-high purity state from which impurities in the third distillation column 230 are removed is transferred to the ultra-high purity hydrogen fluoride storage tank 410 along the storage line 422 using gravity through a drop.
  • the ultra-high-purity hydrogen fluoride storage tank 410 is filled with ultra-high-purity hydrogen fluoride containing impurities at a ppq level, and the ultra-high-purity hydrogen fluoride is stored in a liquid state at a storage temperature below its boiling point.
  • the injection of F 2 gas can be performed not only in the first multi-stage distillation column into which crude hydrogen fluoride is introduced, but also in the rest of the multi-stage distillation column to further enhance the purification effect of hydrogen fluoride.
  • a method and apparatus for purifying ultra-high purity hydrogen fluoride according to another embodiment of the present invention are presented.
  • FIG. 4 is a schematic diagram showing an apparatus for producing ultra-high purity hydrogen fluoride according to another embodiment of the present invention.
  • additional gas stream mixing devices 310 , 320 , and 330 are connected to the first distillation column 210 , the second distillation column 220 , and the third distillation column 230 , respectively. As shown in FIG. 2, these are piped to an F 2 gas storage tank (not shown) and an inert gas storage tank (not shown), respectively. Each of the storage tanks of the F 2 gas/inert gas is connected to the APC module along with a respective flow valve and flow controller for flow control.
  • the supply of the F 2 gas and the inert gas may be connected independently or to one storage tank, and these inert gases are supplied through respective supply lines L1, L2, and L3, and the F 2 gas It can be supplied through each supply line (M1, M2, M3).
  • the hydrogen fluoride passed from the first distillation column 210 is subjected to a distillation process through the second distillation column 220 through the transfer line 212, and is transferred to the third distillation column 230 through the transfer line 222. transported to carry out a continuous distillation process.
  • the first distillation column 210 measures the content of AsF 3 in the crude hydrogen fluoride supplied from the transfer line 212, applies a signal to the APC module, and when the AsF 3 content exceeds the set value, F 2 gas
  • the concentration of the F 2 gas in the first gas stream mixing device 310 is adjusted by adjusting the flow rate valves of the supply line M1 and the inert gas supply line L1.
  • the gas stream having the adjusted concentration is introduced into the first distillation column 210 to perform a reaction process.
  • This process is performed in the same way in the second distillation column 220 and the third distillation column 230.
  • the F 2 gas input causes an oxidation reaction by gaseous hydrogen fluoride gas and gas-gas contact reaction.
  • a vortex generator (not shown) capable of forming a vortex is installed in the first distillation column 210, the second distillation column 220, and the third distillation column 230, or a gas stream injection method is used. Otherwise, the oxidation reaction can be maximized.
  • the ultra-high purity hydrogen fluoride purification process according to the present invention consists of continuous supply of raw materials and gas streams, and the process is continuously performed until it is stopped because the flow of hydrogen fluoride needs to be stopped when production facility inspection or PM is required. can be repeated.
  • ultra-high purity hydrogen fluoride can be produced with high efficiency.
  • concentration of water of the ultra-high purity hydrogen fluoride thus prepared is minimized and the stability is very excellent.
  • ultra-high purity hydrogen fluoride having a ppq level of hydrogen fluoride impurities (particularly, arsenic fluoride) recovered according to the present invention it is preferable for fields requiring high purity hydrogen fluoride and hydrofluoric acid, such as etching and cleaning of semiconductors and displays. can be applied
  • FIG. 1 As shown in FIG. 1 as a continuous multi-stage distillation column, a device in which three multi-stage distillation columns are connected in series was used.
  • Crude hydrogen fluoride supplied from Chinese company A was purchased as a raw material, continuously supplied to the first distillation column at 2.19 tons/hour, and fractional distillation was performed.
  • the temperature at the bottom of the column was designed to be 32° C. and the temperature at the top of the column was designed to be 30° C., and distillation was continuously performed under conditions of a pressure of 0.5 bar at the top of the column and a reflux ratio of 1:3.
  • a mixed gas containing 90:10% of F 2 /N 2 gas was continuously supplied to the bottom of the distillation column at a rate of 1 kg/hour to perform an oxidation reaction, and low-boiling and high-boiling point impurities were continuously extracted at 0.066 ton/hour. did
  • Hydrogen fluoride cooled after being oxidized and purified at the top of the tower was transferred to the second distillation column through the transfer line at a rate of 2.124 tons/hour.
  • the operating conditions of the second distillation column were the same as those of the first distillation column, and low-boiling and high-boiling point impurities were continuously extracted at 0.044 ton/hour.
  • the hydrogen fluoride that passed through the second distillation column was supplied to the third distillation column at a rate of 2.08 tons/hour, and fractional distillation was performed. At this time, the operating conditions of the distillation column were the same as those of the first distillation column, and low-boiling and high-boiling point impurities were continuously extracted at 0.043 ton/hour.
  • Hydrogen fluoride passing through the third distillation column was continuously stored in a storage tank at a rate of 2.037 tons/hour through a transfer line.
  • Hydrogen fluoride was purified in the same manner as in Example 1 without F 2 /N 2 gas injection.
  • ultra-high purity hydrogen fluoride having a ppq level of impurities (particularly, arsenic fluoride) in the hydrogen fluoride recovered according to the present invention it is used in fields requiring high purity hydrogen fluoride and hydrofluoric acid, such as etching and cleaning of semiconductors and displays. can be preferably applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

본 발명은 불화수소 대신 조 불화수소를 그대로 다단 증류탑에 투입하여 연속 증류 공정을 통해 정제하되, 불순물인 비소 불화물의 함량에 따라 F2가스의 농도가 자동 제어된 불소 가스와의 접촉을 통해 불화수소 내 불순물을 제거하는 초고순도 불화수소의 정제방법 및 장치를 개시한다.

Description

초고순도 불화수소의 정제방법 및 장치
본 발명은 초고순도 불화수소를 제조할 수 있는 정제방법 및 장치를 개시한다.
불화수소(HF)는 다양한 산업 분야에서 사용되고 있다. 상기 불화수소는 불소 화합물 중에서 가장 보편적으로 생산되고 있으며 무수(anhydrous) 형태인 불화수소 및 초순수가 포함된 수용액(hydrous) 상태인 불산 상태로 공급된다.
불산은 불화수소 원료를 이용한 증류법, 전기 분해법, 흡착법, 그리고 막분리법 등의 다양한 정제 공정을 통해 생산되고(특허문헌 1 내지 3), 이 중에서도 분별 증류 공정을 이용한 증류법이 널리 사용되고 있다.
불화수소는 형석(CaF2)에 황산을 첨가함과 동시에 가열하는 과정을 통해 제조한다. 상기 반응을 통해 생산된 조(crude) 불화수소는 불화수소 이외에 SO2와 극미량의 AsF3, BF3, PF5, SiF4, FeF3, SF6 등의 다양한 불순물을 포함한다. 상기 불순물들은 전처리 공정을 포함하는 다양한 정제 공정을 통해 제거되어 통상 99.9% 순도의 불화수소를 이용하여 공업용 불산의 생산이 가능하다.
공업용 불산과 같은 저순도 불산은 공업 용도로서 사용되고 있으며 반도체와 디스플레이의 식각 및 세정 용도에서는 초고순도의 불산이 필요하다.
식각 및 세정 용도에 사용되는 초고순도 불산의 경우 무수불산을 일정 비율로 초순수에 희석된 불산을 사용하며, 이러한 반도체 제조 공정용 불산에 불순물이 존재하게 되면 식각 및 세정 시 웨이퍼에 잔류하여 패턴 형성 결함 (Defect) 발생의 원인이 되어 반도체 생산 수율을 저하시킨다. 이에 불량률을 낮추기 위해 초고순도 불화수소, 그 중에서도 금속불순물 농도가 수 ppt로 제어된 초고순도 불화수소를 사용하고 있다. 그러나 불화수소의 순도를 높일수록 정제 비용이 증가하고 보관 및 취급 중 오염에 대한 주의가 요구되며, 생산 효율 및 고순도 불화수소로 제품 전환율이 낮다는 단점이 있다.
불화수소 내 함유된 불순물은 대부분 증류 정제를 통해 제거가 가능하나, 불순물 중 비소(As)와 같은 불순물은 무수불산 내 삼불화비소(AsF3)로 존재하며 이러한 불순물은 끓는점이 57.13℃로 불산(HF)의 끓는점인 19.5℃와 차이가 크지 않으며 공비점(azeopropic)을 형성함에 따라 증류정제를 통한 분리가 용이하지 않다.
비소 불화물은 반도체 소자 특성의 악영향뿐만 아니라 장비 부식 및 환경적인 측면에서 문제를 유발하므로, 초고순도 불화수소 제조 공정 중에 반드시 제거하는 것이 바람직하다.
예전부터 과산화수소나 과망간칼륨 등의 산화제 수용액을 불화수소와 혼합하여, 상기 불화수소 내 비소 불화물을 제거하여 고순도 불화수소를 제조하는 방법이 제안되었다. 그러나 이러한 방법은 사용되는 산화제 수용액의 물에 불화수소가 일부 용해되어 생산량의 로스(loss) 및 대량의 반응 부산물이 발생하고, 상기 수분이 포함된 불화수소는 부식성이 불화수소 대비 급격히 증가하여 생산설비의 PM(preventive maintenance) 주기가 빨라져 공정의 생산성이 저하되는 등, 공정상의 문제 및 불화수소에 의한 안정성 문제가 함께 야기된다.
더욱이, 비소와 같은 불순물 제거의 전처리 공정은 불화수소에서 불산의 생산 공정 전에 수행하고, 전처리 공정에 따른 장치의 추가 및 공정 비용의 증가를 가져온다. 또한, 전처리를 수행하더라도 불화수소 내 잔류하는 불순물은 정제 공정에서 쉽게 제거되지 않기 때문에 고순도, 특히 초고순도의 불화수소의 생산이 어렵다.
(특허문헌 1) 대한민국 공개특허 제10-2006-0014138호
(특허문헌 2) 대한민국 공개특허 제10-2013-0141402호
(특허문헌 3) 일본 공개특허 제1994-144805호
기존 기술에서 불화수소의 경우 형석(CaF2)으로부터 제조하나 대량의 환경성 폐기물의 발생으로 생산 비용이 크게 증가할 수 있다는 문제점을 해결하고자 초고순도 불화수소의 생산과 관련한 연구를 지속하였다.
초고순도 불화수소를 생산하기 위한 공정은 조 불화수소의 전처리 공정 및 정제 공정 순으로 진행되나, 본 발명에서는 전처리 공정을 제외하고 조 불화수소를 원료로 정제 공정을 수행함으로써 초고순도 불화수소를 제조할 수 있는 방법을 제안한다. 또한, 본 발명은 전처리 공정 없이도 초고순도 불화수소를 생산하기 위해 다각적인 연구를 수행한 결과물이다.
그 결과, 기체상과 액체상에 공존하는 다단 증류탑 내부의 조 불화수소 내 불순물을 산화시켜 제거할 수 있는 가스 스트림을 투입하되, 투입 공정 프로세서로 고급 공정 제어(Advanced Process Control, APC) 모듈을 적용하여 원재료인 조 불화수소의 품질에 따라 즉각적으로 정제 공정에 적용하여 초고순도 불화수소를 높은 양산 전환율로 연속적으로 제조할 수 있었다.
따라서, 본 발명은 조 불화수소를 원료로 하여 초고순도 불화수소를 제조할 수 있는 정제방법 및 장치를 제공하는데 있다.
상기 목적을 달성하기 위해, 본 발명은
원료 공급부로부터 조(crude) 불화수소를 제공하는 단계;
상기 조 불화수소는 다단 증류탑에 공급하여 분별 증류 후 상기 증류탑 내 불순물을 추출 제거하고, 증류된 불화수소는 다음 다단 증류탑으로 이송하는 연속식 증류 공정을 수행하는 단계; 및
상기 조 불화수소가 투입된 다단 증류탑에 불순물 내 AsF3의 제거를 위한 F2가스와 불활성 가스를 포함하는 가스 스트림을 주입하는 단계;를 포함하고,
상기 가스 스트림은 상기 다단 증류탑을 통과한 불화수소 내 함유된 AsF3의 함량에 따라 농도가 조절된 것을 사용하는, 초고순도 불화수소의 정제방법을 제공한다.
추가로, 상기 F2가스와 불활성 가스를 포함하는 가스 스트림은 조 불화수소가 미투입되는 다른 다단 증류탑에도 주입된다.
또한, 본 발명은
조(crude) 불화수소 원료 공급을 위한 원료 공급부,
연속식 증류 공정을 수행하기 위한 복수 개의 다단 증류탑을 구비한 증류 정제부,
상기 다단 증류탑 내 F2가스와 불활성 가스를 포함하는 가스 스트림을 공급을 위한 가스 공급부,
초고순도 불화수소를 회수하기 위한 회수부, 및
연속적인 공정이 가능하도록 공정 제어를 위한 고급 공정 제어부를 구비하고,
상기 고급 공정 제어부에 의해 상기 다단 증류탑을 통과한 불화수소 내 함유된 AsF3의 함량에 따라 농도가 조절된 가스 스트림을 조 불화수소가 투입된 다단 증류탑에 공급하는, 초고순도 불화수소 정제장치를 제공한다.
본 발명에 따른 초고순도 불화수소 정제 공정은 연속 공급으로 이루어지며, 생산 설비의 점검이나 PM(preventive maintenance)이 필요할 경우 불화수소의 흐름이 정지될 필요가 있어 중단될 때까지 상기 공정은 연속적으로 반복 수행될 수 있다.
또한, 원료로 사용하는 불화수소의 전처리 없이 조 불화수소를 사용함으로써 공정이 간소화됨과 동시에 전처리 비용이 저감된다. 특히, 조 불화수소가 도입되는 첫번째 다단 증류탑 내에 가스 스트림을 도입하여 불순물을 최소화할 수 있다.
또한, 조 불화수소 내 불순물의 조성이나 함량이 일정하지 않더라도 높은 효율로 품질이 균일한 초고순도 불화수소 제조가 가능하다.
이러한 방법은 정제 공정이 간소화되어 경제적이면서도 효율적으로 초고순도 불화수소의 생산을 가능케 한다.
도 1은 본 발명에 따른 초고순도 불화수소 정제를 위해 사용하는 모식도이다.
도 2는 본 발명의 일 구현예에 따른 불화수소 정제를 위한 장치를 보여주는 모식도이다.
도 3은 APC 모듈에 의한 F2가스 농도의 제어의 순서를 보여준다.
도 4는 본 발명의 다른 구현예에 따른 불화수소 정제를 위한 장치를 보여주는 모식도이다.
본 발명은 원료 공급부로부터 조(crude) 불화수소를 제공하는 단계;
상기 조 불화수소는 다단 증류탑에 공급하여 분별 증류 후 상기 증류탑 내 불순물을 추출 제거하고, 증류된 불화수소는 다음 다단 증류탑으로 이송하는 연속식 증류 공정을 수행하는 단계; 및
상기 조 불화수소가 투입된 다단 증류탑에 불순물 내 AsF3의 제거를 위한 F2가스와 불활성 가스를 포함하는 가스 스트림을 주입하는 단계;를 포함하고,
상기 가스 스트림은 상기 다단 증류탑을 통과한 불화수소 내 함유된 AsF3의 함량에 따라 농도가 조절된 것을 사용하는, 초고순도 불화수소의 정제방법에 관한 것이다.
또한, 본 발명은 조(crude) 불화수소 원료 공급을 위한 원료 공급부,
연속식 증류 공정을 수행하기 위한 복수 개의 다단 증류탑을 구비한 증류 정제부,
상기 다단 증류탑 내 F2가스와 불활성 가스를 포함하는 가스 스트림을 공급을 위한 가스 공급부,
초고순도 불화수소를 회수하기 위한 회수부, 및
연속적인 공정이 가능하도록 공정 제어를 위한 고급 공정 제어부를 구비하고,
상기 고급 공정 제어부에 의해 상기 다단 증류탑을 통과한 불화수소 내 함유된 AsF3의 함량에 따라 농도가 조절된 가스 스트림을 조 불화수소가 투입된 다단 증류탑에 공급하는, 초고순도 불화수소 정제장치에 관한 것이다.
본 명세서에서 용어 "초고순도 불화수소"는 99.9999%(6N) 이상의 순도인 기체를 의미하는 것으로 당업계에서 인식된다. 상기 초고순도 불화수소는 십억분의 일(ppb, part per billion, 109) 이하, 바람직하기로 일조분의 일(ppt, part per trillion, 1012), 천조분의 일(ppq, part per quadrillion, 1015) 수준으로 특정 불순물을 제거한다.
본 발명에서 언급하는 ‘초고순도 불화수소 내 불순물’은 HF 이외의 모든 조성을 의미하며, 주요 불순물로는 SO2, AsF3, BF3, SiF4, FeF3, SF6, 및 PF5를 포함한다.
이때 다단 증류를 통해 불화수소 내 AsF3을 제외한 불순물들은 제거가 용이하기 때문에 해당 발명을 통해 줄이고자 하는 불순물은 실질적으로 AsF3일 수 있다.
즉, 본 발명의 가스 스트림을 이용한 불순물의 제거에서 실질적인 불순물은 AsF3으로 간주될 수 있다. 이때 AsF3는 3가 비소 불화물이며, 이의 산화 형태인 AsF5는 5가 비소 불화물이다.
본 발명은 원료로서 조(crude) 불화수소를 투입하여 24시간 연속적으로 정제 공정이 가능하고, 자동 제어를 통해 ppt 이하, 바람직하기로 ppq 수준으로 불순물이 제거된 초고순도 불화수소를 생산할 수 있는 정제방법 및 정제장치를 제시한다.
이하, 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 실시예의 설명 중 동일한 구성에 대해서는 동일한 참조부호를 부여하도록 하며, 경우에 따라 동일한 참조부호에 대한 설명은 생략하도록 한다.
도 1은 본 발명에 따른 초고순도 불화수소 정제를 위해 사용하는 모식도이다.
도 1을 보면, 초고순도 불화수소 정제는 조(crude) 불화수소 원료 공급을 위한 원료 공급부(100), 연속식 증류 공정을 수행하기 위한 복수 개의 다단 증류탑을 구비한 증류 정제부(200), 상기 다단 증류탑에 가스 스트림을 공급하기 위한 가스 공급부(300), 초고순도 불화수소를 회수하기 위한 회수부(400), 및 연속적인 공정이 가능하도록 공정 제어를 위한 고급 공정 제어부(500)를 구비한다.
원료 공급부(100)는 초고순도 불화수소의 원료가 되는 조(crude) 불화수소를 공급하기 위한 장치로, 형석과 황산의 반응에 의해 생산된 조 불화수소를 포함하는 저장 탱크를 구비한다.
종래 불화수소 정제를 위한 원료의 불화수소는 전처리를 통해 불순물이 ppm 수준으로 제거된 원료를 사용하나, 본 발명에서는 불화수소 정제를 위해 원료 공급부(100) 내 투입된 원료는 조 불화수소를 사용한다. 상기 조 불화수소는 형석과 황산의 반응에 의해 얻어진 조 불화수소 및 과량의 불순물(% 수준)을 포함하는 것으로, 별도의 전처리를 수행하지 않은 원료이다. 이러한 조 불화수소의 사용을 통해 종래 불화수소 대비 원료 수급 비용을 크게 낮추고, 전처리 공정을 배제함에 따라 공정의 단순화 및 생산 원가를 낮출 수 있다.
원료 공급부(100)의 조 불화수소는 액체 상태로 다음의 증류 정제부(200)에 액체 상태로 직접 공급되거나, 기체 상태로 기화시켜 공급될 수 있다. 이때 기체 상태로의 공급은 성상 변화만 있는 것으로, 별도의 전처리 공정의 용어는 포함되지 않는다.
증류 정제부(200)는 분별 증류 공정을 통해 조 불화수소 내 불순물을 제거하고 초고순도 불화수소를 얻기 위한 장치이다.
분별 증류 공정은 회분식 증류 공정과 연속식 증류 공정이 가능하며, 이 중에서도 연속식 증류 공정, 그 중에서도 2개 이상의 증류단을 가지며, 연속 증류가 가능한 연속 다단 증류탑을 통과시키는 연속식 증류 공정으로 수행한다.
연속식 증류 공정은 조 불화수소를 기화시켜 농축 정제를 수행하는 다단 증류탑, 및 조 불화수소를 가열하여 불화수소 증기를 발생시키기는 재비기(reboiler)를 구비한다.
다단 증류탑은 2 내지 50개의 이론단(theoretical stage)을 가지며, 일례로 3 내지 40단의 이론단을 갖는다. 재비기에 의해 가열되면 다단 증류탑 내에는 액체 상태의 조 불화수소와 함께 기체 상태의 불화수소 및 불순물이 공존하며, 상기 기체 상태의 조성은 다단 증류탑의 탑정 영역, 중간 영역 및 탑저 영역으로 분리된다. 저비점의 불순물은 탑정 영역으로 이송하여 배출되고, 고비점의 불순물은 탑저 영역으로 이송되어 배출된다. 불화수소는 중간 영역에 위치하여, 연속적으로 다음 다단 증류탑으로 이송된다.
증류 정제부(200)는 2개 이상, 3 내지 40개, 4 내지 25개의 다단 증류탑이 연결되며, 상기 다단 증류탑의 연속적인 통과를 통해 초고순도 불화수소의 제조가 가능하다. 상기 다단 증류탑은 서로 배관 연결되며, 이들은 직렬, 병렬 또는 이들이 혼합된 상태로 정렬될 수 있으며, 바람직하기로 직렬 상태로 연결된 것일 수 있다.
가스 공급부(300)는 조 불화수소 내 불순물, 특히 AsF3을 제거하기 위한 가스 스트림을 공급하기 위한 장치이다. 가스 스트림은 F2가스와 이를 이송 및 희석하기 위한 불활성 가스를 포함한다.
F2가스(불화 가스)는 불화수소의 전기 분해에 의해 제조되어 가격이 매우 고가인 가스로, 이를 사용 시 얼마나 효과적인 방법으로 사용하는지에 따라 초고순도 불화수소의 원가가 달라진다.
종래 JP2005-281048호에서 불화수소에 F2가스를 5분 이상 혼합 후 불화수소를 정제하는 방식이 제시되었으나, 이 방법은 배치식에 한정된 것으로 연속 공정을 통한 불화수소 정제에 적합하지 않고, 적용하더라도 F2가스를 과도하게 사용할 우려가 있다.
본 발명은 하기 설명할 고급 공정 제어부(500)의 APC 모듈 적용을 통해 F2가스를 연속 공정에 적용하되, 가장 효과적인 투입 방식을 설계하였다. F2가스는 불활성 가스와 혼합하여 사용하고, 정제하고자 하는 대상인 조 불화수소 내 AsF3의 농도에 따라 상기 F2가스의 투입량을 결정하는 방식으로 수행한다.
가스 공급부(300)에서 공급되는 F2가스는 조 불화수소 내 고비점의 AsF3와 산화 반응하여 저비점의 AsF5로 변환되어 가스 형태로 탑정부로 제거되며, 이러한 반응 외에도 추가적으로 AsF5와 함께 존재하는 HF와의 이온 반응을 통해 끓는점이 높은 HAsF6로 변환되어 탑하부로 쉽게 제거할 수 있다.
조 불화수소 내 함유된 불순물의 대부분은 불화수소 대비 저비점 및 고비점으로 나뉘며, 이로 인해 다단 증류탑에서의 증류 공정에서 대부분 제거되나 3가의 비소 불화물(AsF3)의 경우 그 제거가 매우 어렵다. 즉, 고순도 불화수소 중에 극미량 포함된 AsF3(bp= 62.8℃) 등은 그 자체의 끓는점이 높으나, 불화수소와 착화물을 형성하여 비점이 낮아져 불화수소와 유사하거나 이와 공비점(azeopropic)을 형성하여, 분리가 매우 까다롭다.
불화수소 내 함유된 불순물 중 가장 문제시되는 3가의 비소 불화물을 제거하기 위해 F2가스를 주입할 경우 하기 반응식과 같은 산화 반응이 일어난다.
[반응식 1]
AsF3 + F2 → AsF5
[반응식 2]
AsF5 + HF → HAsF6
상기 산화 반응에 의해 3가의 비소 불화물인 AsF3는 F2가스와 반응하여 5가의 비소 불화물인 AsF5로 전환된다. 이 5가의 비소 불화물은 bp가 -52.8℃로 불화수소의 bp(19.5℃)와 끓는점에 차이가 있어 증류 공정에서 분리가 가능하며, 또한 HF와 반응하여 고비점 착화물을 형성하여 분리가 더욱 용이해진다.
실질적으로 첫번째 다단 증류탑에 투입되는 조 불화수소 내 AsF3의 함량은 ppm 수준으로, 순수한 100%의 F2가스를 사용할 경우 불화수소와 끓는점 차이가 심해 충분한 반응 조건을 갖추기 힘들며 이로 인해 공정 비용이 크게 증가한다. 이에 본 발명에서는 저비용 고효율을 얻기 위해 F2가스를 불활성 가스로 희석시킨 혼합 가스를 사용한다.
첫번째 다단 증류탑에 액체 상태 또는 기체 상태의 조 불화수소가 투입되면 재비기에 의해 기체 상태로 전환되고, 이때 기체 상태의 조 불화수소와 F2가스와의 접촉, 즉 기체-기체 접촉에 의한 산화 반응이 일어난다. 또한, 액체 상태의 조 불화수소와 F2가스와의 접촉, 즉 액체-기체 접촉에 의한 산화 반응이 일어난다. 이러한 두 가지 반응이 동시에 일어나 상기 반응식 1과 같은 산화 반응을 극대화할 수 있다.
F2가스의 투입은 조 불화수소가 투입되는 다단 증류탑, 또는 추가로 나머지 모든 다단 증류탑에 투입될 수 있다. 각 다단 증류탑 내 비소 불화물의 함량에 차이가 있어, 적은 양으로 최상의 효과를 확보하기 위해 상기 잔류하는 비소 불화물의 함량에 대응하여 F2가스를 소정 농도로 희석시킨 상태로 다단 증류탑에 투입한다.
본 발명의 가스 스트림의 불활성 가스는 He, N2, 및 Ar 중 어느 하나 이상의 가스이고, 바람직하기로는 N2를 사용한다.
가스 스트림의 F2가스:불활성 가스는 10:90 내지 90:10 중량%의 범위 내에서 다양하게 농도를 조절할 수 있다. F2가스의 함량이 증가할수록 AsF3의 AsF5로의 산화 반응 참여 가능성이 높아지나, 다단 증류탑에 조 불화수소의 체류 시간을 고려해볼 때 AsF3와 F2가스의 접촉에 제한이 있다. 이에, 비용적인 면을 고려할 때 F2가스는 조 불화수소의 불순물 농도에 따라 조절하는 것이 바람직하다.
상기 가스 스트림의 F2가스와 불활성 가스는 다단 증류탑에 동시에 투입하거나, 그 이전에 혼합하여 혼합 가스 형태로 투입될 수 있다.
일 구현예로 첫번째 다단 증류탑을 통과한 불화수소 내 AsF3의 함량이 100 ppm 이상일 경우 투입되는 F2가스의 농도는 0.1 내지 0.2 %의 함량이 되도록 한고, 10 내지 100 ppb일 경우에는 0.005 내지 0.01 %의 농도가 되도록 한다.
회수부(400)는 증류 정제부(200)를 통과하여 정제된 초고순도 불화수소를 회수하기 위한 장치이다. 초고순도 불화수소는 마지막 다단 증류탑을 통과한 이후 기체 상태로 회수되거나, 응축기를 거쳐 액화된 액체 상태로 회수될 수 있다.
상기 원료 공급부(100), 증류 정제부(200), 가스 공급부(300) 및 회수부(400)를 통한 조 불화수소에서 초고순도 불화수소의 정제는 연속적인 공정이 가능하도록 공정 제어를 위해 고급 공정 제어부(500)에서 자동 제어된다.
고급 공정 제어부(500)는 고급 공정 제어(Advanced Process Control, 이하 ‘APC’라 한다) 모듈을 포함하는 장치이다.
APC 모듈이란 많은 공정 운전 변수들 간의 동특성 관계를 동시에 고려한 수학적 모델로 구성되어, 안정적이고 경제적인 최적 운전 조건을 유지하도록 제어하는 다변수 예측 제어 기술을 의미한다. 상기 APC 모듈은 공장의 설비 보강이 아닌 Software를 이용하여 공장 전체의 효율성 및 운전의 편의성을 높이는 기술이다.
조 불화수소에서 초고순도 불화수소의 정제 공정을 APC 모듈로 제어함에 따라 제품의 수율 향상 및 업그레이드가 이루어지고, 운전 비용 및 Giveway가 감소한다. 또한, 원료로 사용하는 조 불화수소의 품질이 서로 다르더라도 최종 얻어지는 초고순도 불화수소의 품질을 균일화할 수 있고, 운전 상의 유연성(Flexibility)을 향상시킬 수 있다. 더불어, 공정의 효율성을 증대시킴으로 해서 생산량과 처리량을 높이면서도 에너지 사용량의 감소와 같은 이익을 창출할 수 있다.
화학공정은 공정의 특성상 하나의 조절 변수를 움직일 때 하나의 목적 변수만을 고려하는 것이 아니라 여러 가지의 상황들을 동시에 고려하여야 하며, 이를 위해 운전에 필요한 조절 변수와 목적 변수와의 상관관계를 알고 있어야 한다. 이 상관관계를 표현하는 동특성 모델이 APC 모듈 내부에 포함되어 있고, 공정을 보다 안정적이고 경제적으로 유지할 수 있도록 제어하는 Computer를 이용한 다변수 예측 제어(Multi-Variable Predictive Control) 기술이다. 상기 다변수 예측 제어 기술은 여러 조절변수들이 다른 제어변수들에 미치는 영향들을 동시에 고려하여 상기 제어변수들의 각각의 목표 값을 만족할 수 있도록 조절변수들을 동시에 제어하는 기술이다. 실제 운전 Data를 이용하여 공정의 조작변수(입력변수, 조절변수, 외란변수)들과 제어변수(출력변수)들의 관계를 표현하는 Dynamic Model을 구성하고, 이 Dynamic Model을 활용하여 조작변수와 제어변수들의 미래 움직임을 예측하여 제어하는 것이 가능해진다.
본 발명의 정제방법 및 장치를 구성함에 있어서 APC 모듈을 통한 공정 제어의 가장 큰 변수는 불순물의 농도라 할 수 있다.
원료 공급부(100)는 고급 공정 제어부(500)에 의해 개폐 신호를 받고 증류 정제부(200)의 열림 상태에서 조 불화수소를 다단 증류탑에 공급한다. 상기 다단 증류탑에 의해 정제 처리된 불화수소는 연속적으로 이송 라인을 거쳐 다음 다단 증류탑에 이송한다. 상기 다단 증류탑에 가스 공급부(300)로부터 가스 스트림을 공급하여 불순물을 제거한다.
이 공정에서, 다단 증류탑에 존재하는 조 불화수소, 및 불화수소 내 불순물의 함량에 따라 가스 스트림의 처리 여부, 처리되는 가스 스트림의 농도, 가스 스트림의 분사량 등이 달라진다. 상기 불순물의 함량은 다단 증류탑 내 존재하는 불순물의 농도 측정을 통해 얻어질 수 있다.
농도 분석을 위해, 이들 각각에 농도 측정을 위한 센서가 장착되고, 이는 분석 장치를 통해 고급 공정 제어부(500)에 연결된 디스플레이에 표시된다.
농도 분석 방법은 불순물 종류에 따라 구분되어 하나 이상의 분석기기로 측정되며 본 발명에서 특별히 한정하지 않는다.
금속불순물은 유도 결합 플라즈마 질량 분석기의 설비 Damage를 고려하여 불순물 오염이 없고 균일한 농도로 전처리할 수 있는 특수 장비를 통해 분석되며, 수분과 이온 불순물은 FT-IR 그리고 가스 형태의 불순물은 GC를 통해 정밀하게 분석한다.
불순물의 농도에 적절한 가스 스트림을 설계하고, 상기 측정된 불순물의 농도를 APC 모듈에 보내고, 불순물 농도의 설정 값에 따라 1차 가스 스트림 투입, 2차 가스 스트림 투입 및 n차 가스 스트림 투입시 가스 스트림의 조성, 처리시 분사량 등을 변경한다. 이러한 변경 방식을 통해 원료로 사용하는 조 불화수소의 품질이 다르더라도 최종 얻어지는 불화수소는 균일한 품질의 초고순도 물질로 얻을 수 있다.
특히, 본 발명에 따른 정제방법 및 정제장치는 연속 공정이 가능하고, APC 모듈로 공정을 제어함에 따라 자동 제어에 의한 24시간 운전이 가능하여, 저비용으로 초고순도 불화수소의 생산량 및 처리량을 향상시킬 수 있는 장점이 있다.
전술한 바의 구성을 이용하여, 본 발명에 따른 초고순도 불화수소의 생산 공정을 도면을 참조하여 자세히 설명한다.
상기 각각의 장치는 도시하지 않았으나, 유량 조절기, 압력 제어기, 압축기, 냉각기, 응축기, 저장 탱크, 공급량 조절 밸브, 기액 분리기, 유량계, 분석 장치, 분석 시료 채취 장치, 누설 방지기, 액체 또는 기체 이송 펌프, 배기 장치, 과압 방지 장치, 자동화 장치, 각종 센서, 온도계, 질량계, 압력계, 부피 계측기 등을 추가적으로 포함할 수 있다.
도 2는 본 발명의 일구현예에 따른 초고순도 불화수소의 생산을 위한 장치를 보여주는 모식도이다. 이때 다단 증류탑은 3개를 도시하였으나, 이는 설명을 위한 하나의 예시일 뿐, 실제 공정에 적용하기 위한 다단 증류탑의 개수 및 배열 방식은 다양하게 변형 가능하다.
이하 공정을 설명한다.
원료인 조 불화수소는 조 불화수소 저장 탱크(110)로부터 이송 펌프(미도시)의 펌핑 또는 불활성 가스 가압을 통해 이송 라인(122)을 거쳐 제1증류탑(210)의 저부로 이송한다.
조 불화수소 저장 탱크(110) 내 조 불화수소는 액체 상태로 제1증류탑(210)에 투입되거나, 증발기(600)를 거쳐 기체 상태로 제1증류탑(210)에 투입될 수 있다. 상기 증발기(600)를 이용한 조 불화수소의 기체 상태의 도입은, 증발기(600)의 하부에 고농도 불순물이 잔류됨에 따라 불순물 제거 효과가 있다.
제1증류탑(210)에 투입된 조 불화수소는 분별 증류를 통해, 저비점 및 고비점의 불순물은 각각 탑정 및 탑저 영역의 배출 라인(218, 219)을 따라 배출된다. 상기 제1증류탑(210)로부터 배출된 가스는 냉각기(C1) 및 회수부(R1)를 거친 후 불순물이 1차적으로 제거된 불화수소가 이송 라인(212)을 따라 제2증류탑(220)으로 이송된다. 이때 제1증류탑(210)으로부터 공급된 불순물은 냉각기(C1) 및 회수부(R1)를 거친 후 탑정의 배출라인(218)을 통해 배출될 수 있다.
제1증류탑(210) 내에서 분별 증류를 통해 조 불화수소 내 SO2를 비롯 AsF3, BF3, PF5, SiF4, FeF3, SF6 등의 불순물 대부분이 제거된다.
이중에서 분리가 까다로운 AsF3를 제거하기 위해, 가스 스트림 저장 탱크(310)으로부터 F2가스/불활성 가스의 혼합 가스, 즉 가스 스트림를 주입하여 산화 반응을 수행한다.
가스 스트림의 주입은 상부에서 하부 측으로 분사하는 하향 분사식 방식, 또는 하부에서 상부 측으로 분사하는 상향 분사식 방식 모두 사용될 수 있다. 이러한 방식은 설비 공정에 따라 달라질 수 있으며, 조 불화수소와 F2가스와의 접촉 기회를 높일 수 있는 방식으로 진행될 수 있다. 도 2에서는 편의상 하향 분사식 방식을 도시하였다.
가스 스트림 내 F2가스/불활성 가스의 투입은 APC 모듈에 의해 첫번째 증류탑에서 조 불화수소 내 함유된 AsF3의 제거 농도의 측정을 통해 이루어질 수 있다.
즉, 제1증류탑(210)을 통과한 불화수소 내 함유된 AsF3의 농도를 측정하여 이를 최소화하는 방향으로 첫번째 증류탑에 투입되는 F2가스의 농도를 제어한다.
도 3은 APC 모듈에 의한 F2가스 농도의 제어의 순서를 보여준다.
도 3을 보면, 제1증류탑(210)에 조 불화수소와 F2가스를 투입한다.
본 공정에서의 APC 모듈의 설정에서 조작변수는 제1증류탑(210)에 투입되는 F2가스의 농도가 되고, 제어변수는 제1증류탑(210)을 통과하는 AsF3의 함량으로 설정되며, 이 둘이 최적화된 정상값(steady state values)의 세트를 시뮬레이션 등을 통해 계산한다.
이어, 제1증류탑(210)을 통과한 불화수소 내 AsF3 함량을 측정한다. 상기 AsF3 함량의 측정은 제1증류탑(210)과 이송 라인(212)의 연결 부위에 위치한 배출구 또는 이송 라인(212) 중 어느 하나의 지점에서 측정될 수 있다. 이때 측정은 분석을 위한 전처리를 통한 유도 결합 플라즈마 질량 분석기 등으로 측정이 가능하다.
측정된 AsF3 함량은 APC 모듈에 회신하고 설정값 이하(YES)인 경우 공정을 지속한다.
측정치가 설정값보다 높은 경우(NO) APC 모듈에 의해 제1증류탑(210)에 투입되는 F2가스의 농도를 조절한다. 상기 APC 모듈의 신호에 의해 제1증류탑(210)에 투입하는 가스 스트림 혼합장치(310)와 연결된 F2가스 저장 탱크(301) 및 불활성 가스 저장 탱크(302)의 유량을 유량 제어기(미도시)로 조절하여 가스 스트림 혼합장치(310)에 투입한다. 이때 농도값을 전달받아 유량 제어값에 입력되기까지 APC 모듈에는 실험 또는 시뮬레이션을 통해 얻은 데이터 테이블, 유량 제어값 계산을 위한 알고리즘 등이 기 저장되어 있을 수 있다.
이와 같이, APC 모듈에 의해 제어변수의 설정치(setpoints), 상한치/하한치(hi/lo limits), 및 시스템 교란(system disturbances)을 포함하는 파라미터를 고려하여 상기 정상값의 세트와 호환 가능하도록 조작변수를 최적화하여 제1증류탑에서의 증류 공정을 수행한다.
그 결과 APC 모듈을 통해 공정 중 불화수소 내 AsF3의 지속적인 농도 변화에 대해 투입되는 F2가스의 농도와 관련된 즉각적이면서도 능동적인 빠른 대처가 가능하다.
제1증류탑(210)의 운전 조건은 0.1 내지 3 bar의 압력에서 10 내지 60 의 온도 조건에서 수행하며, 체류 시간은 1 내지 30 분 동안 수행한다. 본 발명에서는 전처리 없이 조 불화수소를 직접 증류탑에 투입하므로, 제1증류탑(210)에서의 공정 조건은 다른 증류탑의 공정 조건과는 다른 조건 하에서 수행한다.
F2가스 투입에 의해 제1증류탑(210) 내에서는 조 불화수소와 F2가스가 기체-기체 접촉 및 액체-기체 접촉에 의한 산화 반응이 일어나, 상기 F2가스 투입에 의한 효과를 극대화할 수 있다. 이러한 기술은 기체 상태의 불화수소 내 AsF3의 제거를 위해 F2가스를 투입할 경우 기체-기체 접촉에 의한 산화 반응만 수행하는 것과 달리, 액체-기체 접촉이 동시에 일어날 수 있어, 산화 반응을 극대화할 수 있다는 장점이 있다.
한편, 도 3에 도시하지 않았으나, 상향 분사식 방식을 사용할 경우 분사 노즐(미도시)은 하부에서 상부측으로 가스 스트림이 분사될 수 있도록 배치한다. 상기 분사 노즐(미도시)에서 분사된 가스 스트림은 하부에서 상부로 증가함에 따라 분사 압력이 높은 이점이 있다. 상기 분사 노즐(미도시)에서 분사된 가스 스트림 내 F2가스는 하부에서 상부로 분사하는 궤적과 상부에서 하부로 중력에 의해 떨어지는 액체 상태의 조 불화수소와의 접촉 기회가 증가하여, 상기 F2가스 투입에 의한 정제 효과를 더욱 높일 수 있다.
다음으로, 1차 증류 및 산화 공정이 완료된 불화수소는 2차 증류를 수행하기 위해, 제2증류탑(220)에 투입된다.
제2증류탑(220)에 투입된 불화수소는 분별 증류를 통해, 고비점의 불순물은 탑저 영역의 배출 라인(229)을 따라 배출된다. 또한, 정제된 불화수소는 냉각기(C2) 및 회수부(R2)를 거친 후, 상기 정제된 불화수소는 제2증류탑(230)에 투입되고, 저비점의 불순물은 탑정의 배출라인(228)을 통해 배출될 수 있다. 이때 불화수소 중 일부는 제2증류탑(220)으로 회수되어 순환된다.
다음으로, 2차 증류공정이 완료된 불화수소는 3차 증류를 수행하기 위해, 제3증류탑(230)의 중앙 영역에 투입된다.
제3증류탑(230)에 투입된 불화수소는 분별 증류를 통해, 고비점의 불순물은 탑저 영역의 배출 라인(239)을 따라 배출된다. 또한, 불화수소 및 저비점의 불순물은 냉각기(C3) 및 회수부(R3)를 거친 후, 상기 불화수소는 저장 라인(422)을 통해 최종적으로 초고순도 불화수소 저장 탱크(410)로 이송되고, 저비점의 불순물은 탑정의 배출라인(238)을 통해 배출될 수 있다. 이때 불화수소 중 일부는 제3증류탑(230)으로 회수되어 순환된다.
상기 제3증류탑(230)의 불순물이 제거된 초고순도 상태의 불화수소는 낙차를 통한 중력을 이용하여 저장 라인(422)을 따라 초고순도 불화수소 저장 탱크(410)로 이송된다.
초고순도 불화수소 저장 탱크(410) 내에는 불순물이 ppq 수준으로 함유된 초고순도 불화수소가 충전되고, 이때 상기 초고순도 불화수소는 보관 온도를 끓는점 이하로 하여 액체 상태로 보관한다.
F2가스 주입은 상기에서 설명한 바와 같이, 조 불화수소가 투입되는 첫번째 다단 증류탑뿐만 아니라 나머지 다단 증류탑에서도 투입하여 불화수소의 정제 효과를 더욱 높일 수 있다.
본 발명의 다른 구현예에 따른 초고순도 불화수소의 정제방법 및 장치를 제시한다.
도 4는 본 발명의 다른 구현예에 따른 초고순도 불화수소의 생산을 위한 장치를 보여주는 모식도이다.
도 4를 참조하면, 추가의 가스 스트림 혼합장치(310, 320, 330)가 제1증류탑(210), 제2증류탑(220)과 제3증류탑(230)에 각각 연결된다. 이들은 도 2와 같이 F2가스 저장 탱크(미도시) 및 불활성 가스 저장 탱크(미도시)와 각각 배관 연결된다. 상기 각각의 F2가스/불활성 가스의 저장 탱크들은 유량 제어를 위한 각각의 유량 밸브 및 유량 제어기와 함께 APC 모듈과 연결된다. 별도로 도시하지 않았으나, F2가스 및 불활성 가스의 공급은 각각 독립적으로, 또는 하나의 저장 탱크로 연결될 수 있으며, 이들 불활성 가스는 각각의 공급 라인(L1, L2, L3)을 통해, F2가스는 각각의 공급 라인(M1, M2, M3)을 통해 공급될 수 있다.
도 4에서 제1증류탑(210)으로부터 통과한 불화수소는 이송 라인(212)을 통해 제2증류탑(220)을 거쳐 증류 공정을 수행하고, 이송 라인(222)을 통해 제3증류탑(230)에 이송되어 연속적인 증류 공정을 수행한다.
이때 제1증류탑(210)은 이송 라인(212)으로부터 공급된 조 불화수소 내 AsF3의 함량을 측정하여, APC 모듈에 신호를 인가하여 상기 AsF3의 함량이 설정 값을 초과하는 경우 F2가스 공급 라인(M1) 및 불활성 가스 공급 라인(L1)의 유량 밸브를 조절하여 제1가스 스트림 혼합장치(310) 내 F2가스의 농도를 조절한다. 이렇게 조절된 농도를 갖는 가스 스트림을 제1증류탑(210)에 투입하여 반응 공정을 수행한다.
이러한 공정은 제2증류탑(220) 및 제3증류탑(230)에서도 동일하게 수행한다.
제1증류탑(210), 제2증류탑(220) 및 제3증류탑(230)에서의 F2가스 투입은 기체 상태의 불화수소 가스와 기체-기체 접촉 반응에 의한 산화 반응이 일어난다. 이때 산화 반응을 높이기 위해 제1증류탑(210), 제2증류탑(220) 및 제3증류탑(230) 내부는 와류를 형성할 수 있는 와류 발생기(미도시)를 설치하거나, 가스 스트림의 분사 방식을 달리하여, 상기 산화 반응을 최대화할 수 있도록 한다.
본 발명에 따른 초고순도 불화수소 정제 공정은 원료 및 가스 스트림의 연속 공급으로 이루어지며, 생산 설비의 점검이나 PM이 필요할 경우 불화수소의 흐름이 정지될 필요가 있어 중단될 때까지 상기 공정은 연속적으로 반복 수행될 수 있다.
또한, 종래 원료로 사용하는 불화수소의 전처리 없이 형석과 황산의 반응에 의해 제조된 조 불화수소를 사용함으로써 공정이 간소화됨과 동시에 전처리 비용이 저감된다.
더불어, 조 불화수소 내 불순물의 조성이나 함량이 일정하지 않더라도 높은 효율로 초고순도 불화수소의 제조가 가능하다. 이렇게 제조된 초고순도 불화수소 수분의 농도가 최소화되어 안정도가 매우 우수하다는 이점이 있다.
본 발명에 따라 회수되는 불화수소 불순물(특히, 비소 불화물)의 함량이 ppq 수준을 갖는 초고순도 불화수소로서, 반도체와 디스플레이의 식각 및 세정 용도와 같은 고순도의 불화수소와 불산이 요구되는 분야에 바람직하게 적용이 가능하다.
[실시예]
이하, 본 발명의 실시예에 대해 상세하게 설명하겠지만, 본 발명은 이것으로 한정되는 것은 아니다.
실시예 1
연속 다단 증류탑으로 도 1에 도시한 바와 같이, 3개의 다단 증류탑이 직렬 연결된 장치를 사용하였다.
원료로 중국 A사에서 납품된 조 불화수소를 구입하여, 제1증류탑에 연속적으로 2.19 톤/시간으로 공급하고, 분별 증류를 수행하였다
탑저부의 온도는 32℃, 탑정부의 온도는 30℃가 되도록 설계하고, 탑정부의 압력은 0.5 bar, 환류비 1:3의 조건 하에 연속적으로 증류를 수행하였다. 이때 제1증류탑에서 F2/N2 가스가 90:10 %인 혼합 가스를 1kg/시간으로 증류탑 하단에 연속적으로 공급하여 산화 반응 수행하였으며, 저비점 및 고비점 불순물은 0.066 톤/시간으로 연속적으로 추출하였다.
탑정부에서 산화 반응 및 정제되어 냉각된 불화수소는 2.124 톤/시간의 속도로 이송 라인을 거쳐 제2증류탑 측으로 이송하였다.
이때 제2증류탑의 운전 조건은 제1증류탑과 동일하게 수행하였으며, 저비점 및 고비점 불순물은 0.044 톤/시간으로 연속적으로 추출하였다.
제2증류탑을 통과한 불화수소는 2.08 톤/시간의 속도로 제3증류탑에 공급하여 분별 증류를 수행하였다. 이때 증류탑의 운전 조건은 제1증류탑과 동일하게 수행하였으며, 저비점 및 고비점 불순물은 0.043 톤/시간으로 연속적으로 추출하였다.
제3증류탑을 통과한 불화수소는 이송 라인을 통해 2.037 톤/시간의 속도로 연속적으로 저장 탱크에 저장하였다.
이러한 조건으로 장기간의 연속운전을 수행하였으며, 500 시간 후, 2000 시간 후, 4000 시간 후, 5000 시간 후, 6000시간 후의 1 시간당 초고순도 불화수소의 제조량은 2.037톤, 2.037톤, 2.037톤, 2.037톤, 2.037톤으로 매우 안정적이었다.
실시예 2
상기 실시예 1과 동일한 공정으로 수행하되, 조 불화수소는 제1증류탑에 투입하기 전 증발기를 통과시켜 기체 상태로 제1증류탑에 투입하였다.
실시예 3
상기 실시예 1과 동일한 공정으로 수행하되, 제2증류탑 및 제3증류탑에 F2/N2 가스가 4:6 %, 2:8 %인 혼합 가스를 각각 1kg/시간으로 공급하였다.
비교예 1
F2/N2 가스 주입 없이 실시예 1과 동일한 방법으로 수행하여 불화수소를 정제하였다.
비교예 2
실시예 3과 동일하게 수행하되, F2/N2 가스를 제1증류탑을 제외한 제2증류탑 및 제3증류탑에만 주입하여 불화수소를 정제하였다.
시험예 1
실시예 및 비교예에서 정제된 불화수소 내 불순물의 함량을 측정하였으며, 그 결과를 하기 표 1에 나타내었다. 이때 불순물은 전처리 후 초순수에 희석하여 불산 49 % 상태로 이온크로마토그래피 질량분석법 유도결합플라즈마 질량분석방법으로 측정하였다.
농도(ppt) 불순물 실시예 1 실시예 2 실시예 3 비교예 1 비교예 2
제1증류탑
정제 후
As 2.42 3.71 2.77 300489534 280001289
B 13.72 16.28 14.22 145557210 128633001
Ti 16.18 14.31 11.84 651374 598251
Ca 18.92 18.14 19.45 2210 2001
Fe 13.48 12.88 10.95 1732 1914
제2 증류탑
정제 후
As 0.94 1.25 0.45 185533120 6452190
B 7.54 9.82 4.42 21682 608
Ti 8.69 8.44 2.22 45.22 14.62
Ca 5.37 7.28 3.63 32.81 28.47
Fe 6.95 7.31 3.98 27.05 17.39
최종
제3 증류탑 정제 후
As 0.31 0.68 < 0.10 48289002 2048
B 0.46 0.67 < 0.10 3,081 102
Ti 0.18 0.22 < 0.10 7.41 2.87
Ca 0.28 0.42 < 0.10 20.37 7.92
Fe 0.35 0.71 < 0.10 14.91 4.77
상기 표를 참조하면, 본 발명에 따라 조 불화수소가 투입된 다단 증류탑에 F2가스/불활성 가스의 가스 스트림을 주입하여 처리하는 경우, 최종 불화수소 내 ppt 이하의 수준, 즉 ppq 수준으로 포함됨을 알 수 있다.
또한, 비교예 1 및 2의 경우 제3 증류탑 정제 후 결과를 보면, B, Ti, Ca 및 Fe의 함량은 어느 정도 낮출 수 있었으나, As의 함량이 매우 높아 As의 제거를 위해선 실시예 1 내지 3의 공정으로 진행하는 것이 바람직함을 알 수 있다.
특히, 실시예 1 내지 3의 경우 첫 번째 다단 증류탑에서 F2가스/불활성 가스를 투입함에 따라 As의 함량이 비교예 1 및 2 대비 큰 수치로 낮아짐을 알 수 있었다. 더불어, 실시예 3과 같이, 제2 및 제3증류탑에 가스 스트림을 주입할 경우 가장 우수한 시험 결과를 나타내었다.
[부호의 설명]
100: 원료 공급부
200: 증류 정제부
300: 가스 공급부
400: 회수부
500: 고급 공정 제어부
600: 증발기
110: 조 불화수소 저장 탱크
122: 원료 이송 라인
210: 제1증류탑
220: 제2증류탑
230: 제3증류탑
218, 219, 228, 229, 238, 239: 배출 라인
301: F2가스 저장 탱크
302: 불활성 가스 저장 탱크
310: 제1가스 스트림 혼합 장치
320: 제2가스 스트림 혼합 장치
330: 제3가스 스트림 혼합 장치
410: 초고순도 불화수소 저장 탱크
422: 저장 라인
C1,C2,C3: 냉각기
R1,R2,R2:회수기
L1,L2,L3: 불활성 가스 공급 라인
M1,M2,M3: F2가스 공급 라인
본 발명에 따라 회수되는 불화수소 내 불순물(특히, 비소 불화물)의 함량이 ppq 수준을 갖는 초고순도 불화수소로서, 반도체와 디스플레이의 식각 및 세정 용도와 같은 고순도의 불화수소 및 불산이 요구되는 분야에 바람직하게 적용이 가능하다.

Claims (9)

  1. 원료 공급부로부터 조(crude) 불화수소를 제공하는 단계;
    상기 조 불화수소를 다단 증류탑에 공급하여 분별 증류 후 상기 증류탑 내 불순물을 추출 제거하고, 증류된 불화수소는 다음 다단 증류탑으로 이송하는 연속식 증류 공정을 수행하는 단계; 및
    상기 조 불화수소가 투입된 다단 증류탑에 불순물 내 AsF3의 제거를 위한 F2가스와 불활성 가스를 포함하는 가스 스트림을 주입하는 단계;를 포함하고,
    상기 가스 스트림은 상기 다단 증류탑을 통과한 불화수소 가스 내 함유된 AsF3의 함량에 따라 농도가 조절된 것을 사용하는, 초고순도 불화수소의 정제방법.
  2. 제1항에 있어서,
    상기 조 불화수소는 전처리 공정이 미수행된 것인, 초고순도 불화수소의 정제방법.
  3. 제1항에 있어서,
    상기 조 불화수소는 액체 또는 기체 상태로 투입되는, 초고순도 불화수소의 정제방법.
  4. 제1항에 있어서,
    상기 가스 스트림은 F2가스:불활성 가스는 10:90 내지 90:10 중량%로 포함되는, 초고순도 불화수소의 정제방법.
  5. 제1항에 있어서,
    상기 불활성 가스는 He, N2, 및 Ar로 이루어진 군에서 선택된 1종 이상인, 초고순도 불화수소의 정제방법.
  6. 제1항에 있어서,
    추가로 상기 F2가스와 불활성 가스를 포함하는 가스 스트림은 조 불화수소가 미투입되는 다른 다단 증류탑에도 주입되는, 초고순도 불화수소의 정제방법.
  7. 제1항에 있어서,
    상기 초고순도 불화수소 내 AsF3가 ppt 이하로 존재하는, 초고순도 불화수소의 정제방법.
  8. 제1항에 있어서,
    추가로 상기 가스 스트림은 나머지 다단 증류탑에도 투입하는, 초고순도 불화수소의 정제방법.
  9. 조(crude) 불화수소 원료 공급을 위한 원료 공급부,
    연속식 증류 공정을 수행하기 위한 복수 개의 다단 증류탑을 구비한 증류 정제부,
    상기 다단 증류탑 내 F2가스와 불활성 가스를 포함하는 가스 스트림을 공급을 위한 가스 공급부,
    초고순도 불화수소를 회수하기 위한 회수부, 및
    연속적인 공정이 가능하도록 공정 제어를 위한 고급 공정 제어부를 구비하고,
    상기 고급 공정 제어부에 의해 상기 다단 증류탑을 통과한 불화수소 가스 내 함유된 AsF3의 함량에 따라 농도가 조절된 가스 스트림을 조 불화수소가 투입된 다단 증류탑에 공급하는, 초고순도 불화수소 정제장치.
PCT/KR2022/001423 2021-06-03 2022-01-27 초고순도 불화수소의 정제방법 및 장치 WO2022255586A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023571429A JP2024520334A (ja) 2021-06-03 2022-01-27 超高純度フッ化水素の精製方法および装置
US18/561,983 US20240239656A1 (en) 2021-06-03 2022-01-27 Method and apparatus for purifying ultra-high purity hydrogen fluoride
CN202280039633.6A CN117500749A (zh) 2021-06-03 2022-01-27 超高纯度氟化氢的提纯方法及装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210072104A KR102310763B1 (ko) 2021-06-03 2021-06-03 초고순도 불화수소의 정제방법 및 장치
KR10-2021-0072104 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022255586A1 true WO2022255586A1 (ko) 2022-12-08

Family

ID=78115626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001423 WO2022255586A1 (ko) 2021-06-03 2022-01-27 초고순도 불화수소의 정제방법 및 장치

Country Status (5)

Country Link
US (1) US20240239656A1 (ko)
JP (1) JP2024520334A (ko)
KR (1) KR102310763B1 (ko)
CN (1) CN117500749A (ko)
WO (1) WO2022255586A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117208852A (zh) * 2023-10-07 2023-12-12 福建天甫电子材料有限公司 用于电子级氢氟酸制备的纯化控制系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102310763B1 (ko) * 2021-06-03 2021-10-08 램테크놀러지 주식회사 초고순도 불화수소의 정제방법 및 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151002A (ja) * 1984-12-25 1986-07-09 Hashimoto Kasei Kogyo Kk フツ化水素酸の精製法
US4668497A (en) * 1984-12-25 1987-05-26 Hashimoto Chemical Industries Co., Ltd. Process for purifying hydrogen fluoride
US5411726A (en) * 1993-02-10 1995-05-02 Bayer Ag Process for purifying hydrogen fluoride
JP2005281048A (ja) * 2004-03-29 2005-10-13 Stella Chemifa Corp フッ化水素酸の精製法及び精製装置
KR20140001262A (ko) * 2012-06-22 2014-01-07 램테크놀러지 주식회사 불산 용액에서의 휘발성 물질의 정제 방법
KR102310763B1 (ko) * 2021-06-03 2021-10-08 램테크놀러지 주식회사 초고순도 불화수소의 정제방법 및 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4135918A1 (de) * 1991-10-31 1993-05-06 Solvay Fluor Und Derivate Gmbh, 3000 Hannover, De Herstellung von hochreinem fluorwasserstoff
JPH06144805A (ja) 1992-10-30 1994-05-24 Daikin Ind Ltd フツ化水素の回収方法
KR20060014138A (ko) 2004-08-10 2006-02-15 엘지전자 주식회사 김치냉장고용 공기 청정기
KR20130141402A (ko) 2012-06-15 2013-12-26 오씨아이 주식회사 불산의 정제 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151002A (ja) * 1984-12-25 1986-07-09 Hashimoto Kasei Kogyo Kk フツ化水素酸の精製法
US4668497A (en) * 1984-12-25 1987-05-26 Hashimoto Chemical Industries Co., Ltd. Process for purifying hydrogen fluoride
US5411726A (en) * 1993-02-10 1995-05-02 Bayer Ag Process for purifying hydrogen fluoride
JP2005281048A (ja) * 2004-03-29 2005-10-13 Stella Chemifa Corp フッ化水素酸の精製法及び精製装置
KR20140001262A (ko) * 2012-06-22 2014-01-07 램테크놀러지 주식회사 불산 용액에서의 휘발성 물질의 정제 방법
KR102310763B1 (ko) * 2021-06-03 2021-10-08 램테크놀러지 주식회사 초고순도 불화수소의 정제방법 및 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117208852A (zh) * 2023-10-07 2023-12-12 福建天甫电子材料有限公司 用于电子级氢氟酸制备的纯化控制系统及方法
CN117208852B (zh) * 2023-10-07 2024-02-13 福建天甫电子材料有限公司 用于电子级氢氟酸制备的纯化控制系统及方法

Also Published As

Publication number Publication date
JP2024520334A (ja) 2024-05-24
KR102310763B1 (ko) 2021-10-08
CN117500749A (zh) 2024-02-02
US20240239656A1 (en) 2024-07-18

Similar Documents

Publication Publication Date Title
WO2022255586A1 (ko) 초고순도 불화수소의 정제방법 및 장치
WO2010085072A2 (ko) 고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법
WO2010107284A2 (ko) 고순도 아크릴산 생산을 위한 분리벽형 증류탑 및 이를 이용한 분별증류방법
WO2010107283A2 (ko) 고순도 2-에틸헥산올 생산을 위한 분리벽형 증류탑 및 이를 이용한 분별증류방법
WO2016159707A1 (ko) 증류 장치
EP3050866B1 (en) Method for preparing butadiene through oxidative dehydrogenation
WO2020027625A1 (ko) 황산리튬 제조장치 및 그 제조방법
WO2017003247A1 (ko) 증류 장치
WO2017188538A1 (ko) 6불화우라늄 실린더 세척공정에서 발생한 세척폐액의 처리공정에 의한 우라늄 회수방법
WO2011081385A2 (ko) 트리클로로실란의 정제 방법 및 정제 장치
US4668497A (en) Process for purifying hydrogen fluoride
US4568427A (en) Continuous isolation of phthalic anhydride and maleic anhydride from reaction gases
WO2018124579A1 (ko) 부타디엔 제조방법
WO2018124575A1 (ko) 부타디엔 제조방법
WO2021015541A1 (en) Method of recovering unreacted ethylene in ethylene oligomerization process
WO2023177133A1 (ko) Pgme, pgmea, 물의 혼합물로부터 물을 분리하는 방법
WO2015178718A1 (ko) 큐멘의 정제 장치 및 정제 방법
WO2018012847A1 (ko) 글리세롤의 전기촉매 반응장치와 바이오매스의 화학적촉매 반응장치를 포함하는 통합 시스템
WO2022080905A1 (ko) 젖산 기화 방법, 젖산 기화 장치, 및 아크릴산 제조 방법
WO2022146092A1 (ko) 이소시아네이트 화합물의 제조 방법
WO2024122941A1 (ko) 사불화에틸렌 수지의 상압 열분해 반응 장치 및 이를 이용한 사불화에틸렌의 제조방법
WO2022146091A1 (ko) 이소시아네이트 화합물의 제조 방법
WO2022146090A1 (ko) 이소시아네이트 화합물의 제조 방법
WO2022169165A1 (ko) 1,4-사이클로헥산디메탄올 조성물 및 이의 정제 방법
WO2022146088A1 (ko) 이소시아네이트 화합물의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816250

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023571429

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18561983

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280039633.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816250

Country of ref document: EP

Kind code of ref document: A1