WO2022250568A1 - Catalyseur d'oxydation de méthanol en formaldéhyde et procédé de production - Google Patents

Catalyseur d'oxydation de méthanol en formaldéhyde et procédé de production Download PDF

Info

Publication number
WO2022250568A1
WO2022250568A1 PCT/RU2022/000150 RU2022000150W WO2022250568A1 WO 2022250568 A1 WO2022250568 A1 WO 2022250568A1 RU 2022000150 W RU2022000150 W RU 2022000150W WO 2022250568 A1 WO2022250568 A1 WO 2022250568A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methanol
precipitate
iron
temperature
Prior art date
Application number
PCT/RU2022/000150
Other languages
English (en)
Russian (ru)
Inventor
Красимир Иванов ИВАНОВ
Аркадий Викторович ТАРАСЕВИЧ
Денис Челсуевич СЕН
Елена Владимировна ВОЛОСКОВА
Original Assignee
Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU2021114724A external-priority patent/RU2775226C1/ru
Application filed by Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" filed Critical Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор"
Publication of WO2022250568A1 publication Critical patent/WO2022250568A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/881Molybdenum and iron
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • C07C47/04Formaldehyde
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a composition and method for producing a catalyst for the oxidation of methanol to formaldehyde.
  • iron-molybdenum catalysts include the low content of formic acid, which is formed during the oxidation of the resulting formaldehyde.
  • the oxide catalyst for the oxidation of methanol to formaldehyde is a mixture of iron (III) b-molybdate Fe 2 (Mo0 4 ) 3 with molybdenum (VI) trioxide M0O3 (a and b phases).
  • mixtures with a ratio of components in terms of oxides (M0O3 and Fe 2 0 3 ) from 3.4 to 5.0 are most widely used as a catalyst (Ogorodnikov S.K., Formaldehyde, Leningrad, 1984; Nakrokhin B.G. , Nakrokhin V. B., Technology for the production of formalin from methanol, Novosibirsk, 1995).
  • the MoO3/Fe 2 O3 ratio can be as high as 5.3.
  • the main advantages of iron-molybdenum catalysts compared to silver ones are the possibility of producing formalin solutions with a low methanol content.
  • the process of oxidation of methanol to formaldehyde is exothermic. Under industrial conditions, the reaction proceeds in the external diffusion region of the process (B. G. Nakrokhin, V. B. Nakrokhin, Technology for the production of formalin from methanol, Novosibirsk, 1995).
  • Precipitation from solutions is known (GB patent 814073, IPC B01J21/00; ⁇ 07 ⁇ 47/04, publ.
  • This method made it possible to increase the specific surface, mechanical strength, but the method is characterized by high energy consumption.
  • the closest technical solution is a method (patent US 5939351, IPC B01J35/10; B01J35/02; B01J37/04; B01J37/08; B01J23/881, publ. 08/17/1999) of obtaining granules by pressure molding (tabletting) of a catalyst or carrier powder containing catalyst components or carrier, or starting materials for a catalyst or carrier, while the lubricant is not dispersed in the mass of the tableted powder, but the lubricant is applied to those parts of the equipment that come into contact with the powder that is formed (forming chamber and plungers or punches used to obtain through holes ).
  • the pelletized granules are then subjected to a heat-activated activation which forms the active components of the catalyst and creates the final porosity and pore distribution properties.
  • the porosity values are such that at least 70% of the pore volume has a radius corresponding to the maximum value on the pore distribution curve.
  • the method for obtaining formaldehyde includes the supply of gas to a tubular reactor (when loaded from top to bottom) at a linear velocity of 1.5 normal m/s and a total inlet pressure of 950 mm Hg. Art. (1.25 bar).
  • the concentration of methanol is 6 vol.%, oxygen - 10%, and the rest is nitrogen.
  • Catalyst shows:
  • the porosity is generally greater than 0.2 ml/g and the area is greater than 5 m 2 /g;
  • the percentage of pore volume having a radius of 100-200 nm exceeds 65-70%.
  • the disadvantages of the catalysts described above include insufficiently high strength, activity; additional introduction of elements is required that improve strength, but at the same time catalytic properties deteriorate.
  • the objective of the invention is to develop an iron-molybdenum catalyst for the production of formaldehyde with high strength, high catalytic properties.
  • a catalyst for the oxidation of methanol to formaldehyde including a mixture of Fe2(Mo04)3/MoO3 in the form of granules having a certain geometric shape, obtained by tableting, while the catalyst has a porous structure with a total pore volume of 0.15-0.35 cm 3 /g, and the proportion of mesopores with a radius of 50- 100 nm is 30-86%, the proportion of macropores with a radius of 100-200 nm is
  • the catalyst has a specific surface area of 4-10 m/g and a mass ratio of MoO3/FerO3 of 3.6-5.1 in terms of oxides.
  • the mechanical strength along the generatrix of the tableted catalyst is: not less than 6.8 N/granule, the mechanical strength along the end face is not less than 100 N/granule.
  • the average crystallite size in the catalyst is between 45 and 250 nm.
  • the catalyst has an average pore radius of 40-163 nm, a porosity of 38-53%.
  • the problem is also solved using the method for obtaining a catalyst for the oxidation of methanol to formaldehyde described above, including a mixture of Fe (MoC> )3 / MoO3, obtained by precipitation of solutions of iron and molybdenum compounds with stirring, filtering, washing the precipitate, drying, tableting and calcining, synthesis catalyst by precipitation of solutions of ferric iron salt and molybdenum salt is carried out at a mass ratio of MoO3 / PerO3 of 3.6-5.1 in terms of oxides, precipitation is carried out at a temperature of 50-60 ° C and a pH of 1.2-2.0, s subsequent maturation of the precipitate at a constant pH in the above range, followed by filtering and washing the precipitate, after drying the precipitate, it is mixed with a lubricant, heat treated at a temperature of 250-330°C, tableted, followed by calcination at a temperature of 460-500°C for 3 -5 h.
  • graphite, stearic and palmic acids, alkaline and alkaline earth salts of these acids magnesium, potassium and aluminum stearates
  • talc magnesium, potassium and aluminum stearates
  • mono- and triglycerides monoostearate, glycerol monooleate
  • paraffin oil simple perfluoropolyethers, in the amount of 0, 5-3 wt.%.
  • the tabletting pressure is 190-266 MPa.
  • the iron-molybdenum catalyst precipitate is washed until the content of chloride ions is not more than 0.2 g/l in the washing water.
  • the problem is solved using a method for obtaining formaldehyde by the oxidation of methanol, including the passage of gas, containing methanol and oxygen through a catalyst comprising a mixture of Fe(MoO4)3/MoO3, while using the catalyst described above, which is obtained by the method described above, methanol and oxygen are fed into the reactor at a concentration of 5-10% vol. and 9-13% vol. accordingly, the rest is nitrogen.
  • the technical result is the development of a catalyst with increased mechanical strength while maintaining high catalytic activity and catalyst selectivity.
  • a distinctive feature of the invention is the production of a catalyst with high strength properties, high catalytic properties, the catalyst has a porous structure with a total pore volume of 0.15-0.35 cm 3 /g, and the proportion of mesopores with a radius of 50-100 nm is 30-86%, the proportion of macropores with a radius of 100-200 nm is 5.5-68% and the catalyst has a specific surface area of 4-10 m/g.
  • the catalyst is obtained as follows.
  • the catalyst is synthesized by adding a solution of an iron (III) salt (chloride, nitrate) to a solution of ammonium heptamolybdate (sodium molybdate), with a mass ratio of MoO3 / e 2 03 from 3.6 to 5.1 in terms of oxide (MoO3 content from 78 up to 84%), filtering and washing the precipitate, drying the precipitate, mixing it with a lubricant, heat treatment of the intermediate at a temperature of 250-330°C, tableting and calcination at temperatures of 460-500°C.
  • an iron (III) salt chloride, nitrate
  • ammonium heptamolybdate sodium molybdate
  • An iron (III) salt solution is prepared (table 1), the solution is filtered, the pH is adjusted to 1.7 ⁇ 0.3.
  • the molybdenum salt solution is loaded into a reactor of the appropriate volume (the reaction mixture occupies 2/3 of the reactor), equipped with a stirrer and a temperature control system.
  • the molybdenum salt solution is heated to the synthesis temperature (table 1), then, using a peristaltic pump, the entire volume of the room temperature iron (III) salt solution is supplied for 1 hour.
  • the iron salt solution is added, the pH decreases, which maintain at a level of 1, 2-2.0 by adding an aqueous solution of ammonia.
  • the suspension was stirred for another 30 minutes.
  • a yellow suspension is formed, which is left to mature the precipitate at a constant pH, after the ripening period, the precipitate is filtered and washed (on the filter) until the concentration of chloride ions in the washing water is below 0.2 g/l .
  • the precipitate is dried, mixed with a lubricant (for example, graphite), heat treated at 250-330°C, tableted in the form of rings with an inner diameter of 2.5 mm, an outer diameter of 5.0 mm and a height of 4.4-4.5 mm ; calcined in a muffle furnace at a temperature of 460-500°C for 3-5 hours.
  • a lubricant for example, graphite
  • the specific surface area (S yfl ) was determined by the procedure for determining the specific surface area of porous materials on a gas meter GH-1 by thermal desorption.
  • the chemical composition of the synthesized iron-molybdenum catalysts was determined by the method of determining the mass fractions of chemical elements in catalysts by the X-ray fluorescence method on a Spectroscan MAKC-GV instrument.
  • the mechanical crushing strength along the generatrix and along the end was determined by the method for determining the mechanical crushing strength of catalysts according to the ASTM D4179 method on a Versatile Catalyst Crushing Strength Tester (Vinci Technologies, France).
  • the total pore volume, average pore diameter, and porosity of pelletized samples of iron-molybdenum catalysts were determined by the procedure for determining the parameters of the porous structure of materials by mercury porosimetry using an AutoPore IV 9510 automatic analyzer (manufactured by Micromeritics Instrument Corporation, USA).
  • Photographs of the microstructure for determining the size of crystallites were taken using a scanning electron microscope TASCANVEGA3.
  • Table 1 shows the conditions for the synthesis of the catalyst.
  • Table 2 presents data on the properties of the catalyst, depending on the conditions of receipt.
  • Table 3 shows the textural characteristics of the catalyst.
  • Table 4 shows the catalytic properties of the catalyst.
  • Figure 1 shows photographs of the microstructure of the catalyst.
  • Figure 2 shows the distribution of pores for examples 1, 2, 3.
  • the catalyst has a high mechanical strength at the end (table 2), compared with the closest analogue (patent US 5939351).
  • the pelletized calcined catalyst has both mesopores and macropores (Table 3).
  • the porous structure (table 3) is affected by the conditions for obtaining the catalyst.
  • the porous structure of the pelletized catalyst in the form of annular pellets with an outer diameter of 5 mm, an inner diameter of 2.5 mm and a height of 4.4 mm is suitable for industrial applications, since the catalyst has high strength and activity.
  • a catalyst fraction of 0.63-1.0 mm was taken. The tests were carried out under the same conditions at a temperature of 290°C. The concentration of methanol is 5-6%, the concentration of oxygen is 10%, the rest is nitrogen.
  • the resulting catalysts have a high catalytic activity (Table 4).
  • the catalyst has a narrow pore distribution - more than 70% is the volume of pores with a radius of 100-200 nm, which does not allow to obtain a catalyst with high strength.
  • the porous structure is represented by mesopores and macropores, the proportion of mesopores is 30-86%, the proportion of macropores is 5.5-68%.
  • the proposed method made it possible to obtain a catalyst with an optimal porous structure, while maintaining its high activity and selectivity, which led to a significant increase in the service life of the catalyst.
  • This invention describes the composition and methods for producing iron-molybdenum catalysts with a given porous structure, catalytic characteristics and increased mechanical crush strength by changing the catalyst preparation conditions without introducing additional elements into the catalyst composition.
  • the proposed catalyst and method for its production can be used in industry - oxidative conversion of methanol using metal catalysts (silver) or oxide systems (iron-molybdenum catalysts). Table 1. Conditions for the synthesis of the catalyst.

Abstract

L'invention concerne un catalyseur d'oxydation de méthanol en formaldéhyde comprenant un mélange Fе2(МоО4)3/МоО3 sous forme de granules produites par pastillage. Le catalyseur possède une structure poreuse avec un volume total des pores de 0,15-0,35 cm3/g; la part de mésopores d'un rayon de 50-100 nm représente 30-86%, et la part de macropores d'un rayon de 100-200 nm représente 5,5-68%. Le catalyseur possède une surface spécifique de 4-10 m2/g et un rapport massique МоО3/Fе2О3 de 3,6-5,1 en termes d'oxydes. Le catalyseur est obtenu par précipitation de solutions de composés de fer et de molybdène avec mélange, filtration, rinçage du précipité, séchage, pastillage et calcination, et synthèse du catalyseur par précipitation de sel de fer trivalent et de sel de molybdène selon un rapport en poids de МоО3/Fе2О3 3,6-5,1 en termes d'oxydes. La précipitation se fait à une température de 50-60°C et un pH de 1,2-2,0, suivie d'une maturation du précipité à un pH constant, d'une filtration et d'un rinçage du précipité qui est mélangé après séchage à un lubrifiant, soumis à un traitement thermique à 250-330°C puis mis en pastilles avant une calcination à une température de 460-500°C pendant 3-5 heures.
PCT/RU2022/000150 2021-05-24 2022-05-05 Catalyseur d'oxydation de méthanol en formaldéhyde et procédé de production WO2022250568A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2021114724 2021-05-24
RU2021114724A RU2775226C1 (ru) 2021-05-24 Катализатор окисления метанола до формальдегида и способ его получения

Publications (1)

Publication Number Publication Date
WO2022250568A1 true WO2022250568A1 (fr) 2022-12-01

Family

ID=84230105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2022/000150 WO2022250568A1 (fr) 2021-05-24 2022-05-05 Catalyseur d'oxydation de méthanol en formaldéhyde et procédé de production

Country Status (1)

Country Link
WO (1) WO2022250568A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB938648A (en) * 1961-04-18 1963-10-02 Houilleres Bassin Du Nord Oxide catalysts
RU2086299C1 (ru) * 1992-10-06 1997-08-10 Монтекатини Текнолоджи С.п.А. Гранула катализатора и способ окислительной дегидрогенизации метанола
RU2121872C1 (ru) * 1995-03-14 1998-11-20 Монтекатини Текнолоджи С.р.Л. Катализаторы и носители катализаторов и способ их получения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB938648A (en) * 1961-04-18 1963-10-02 Houilleres Bassin Du Nord Oxide catalysts
RU2086299C1 (ru) * 1992-10-06 1997-08-10 Монтекатини Текнолоджи С.п.А. Гранула катализатора и способ окислительной дегидрогенизации метанола
RU2121872C1 (ru) * 1995-03-14 1998-11-20 Монтекатини Текнолоджи С.р.Л. Катализаторы и носители катализаторов и способ их получения
EP1645332A1 (fr) * 1995-03-14 2006-04-12 Süd Chemie - Catalysts Italia S.R.L. Durch Tablettierung hergestellte Katalysatoren

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAO KIEN KYONG: "Poluchenie katalizatorov pererabotki metanola v formaldegid, metilformiat i dimetilovy efir", DISSERTATSIA NA SOISKANIE UCHENOI STEPENI KANDIDATA TEKHNICHESKIKH NAUK, IVANOVO, 2019, pages 69 - 70 *
HILL, JR. CHARLES G., WILSON III JAMES H.: "Raman spectroscopy of iron molybdate catalyst systems:: Part I. Preparation of unsupported catalysts", JOURNAL OF MOLECULAR CATALYSIS, vol. 63, no. 1, 1 January 1990 (1990-01-01), NL , pages 65 - 94, XP093012347, ISSN: 0304-5102, DOI: 10.1016/0304-5102(90)85170-M *

Similar Documents

Publication Publication Date Title
JP5837062B2 (ja) 混成マンガンフェライトがコートされた触媒の製造方法及びそれを用いた1,3−ブタジエンの製造方法
KR101902108B1 (ko) 페라이트계 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법
JP4813895B2 (ja) メタノールのホルムアルデヒドへの酸化用触媒の製造方法
CA2530702A1 (fr) Catalyseur pour l'oxydation du methanol en formaldehyde
CN108325549A (zh) 一种用于甲醛净化的过渡金属和氮共掺杂碳复合材料及其制备方法
US9061988B2 (en) Process for producing a catalytically active composition being a mixture of a multielement oxide comprising the elements Mo and V and at least one oxide of molybdenum
EP2922633B1 (fr) Procede de preparation de catalyseurs d'ammoxydation à base d'oxydes metalliques mixtes
US7208438B2 (en) Catalyst and method for the alkylation of hydroxyaromatic compounds
CN100413584C (zh) 甲醇氧化制甲醛铁钼催化剂及其制备方法
JPS62234548A (ja) 複合酸化物触媒の製造法
CN107970907A (zh) 一种纳米复合氧化物催化剂及其制备方法和应用
WO2006130196A2 (fr) Composition et procede d'amelioration de la densite et de la durete de catalyseurs a lit fluidise
EP1350566B1 (fr) Procédé de préparation d'aldéhydes et/ou acides carboxyliques insaturés par oxydation en phase gazeuse en présence d'un catalyseur à base de Mo, Bi et Fe
JP6812869B2 (ja) 複合酸化物触媒の製造方法
KR930008084B1 (ko) 복합산화물 촉매의 제조법
CN110743562A (zh) 一种催化甲苯燃烧Ni-α-MnO2催化剂的合成方法
RU2775226C1 (ru) Катализатор окисления метанола до формальдегида и способ его получения
WO2022250568A1 (fr) Catalyseur d'oxydation de méthanol en formaldéhyde et procédé de production
EP1350784A1 (fr) Procédé de préparation d'aldéhydes ou acides insaturés en présence d'un catalyseur à base de Mo, Bi et Fe
JP5831329B2 (ja) 複合酸化物触媒
CN107185525A (zh) 八面体Pt纳米粒子负载γ‑Al2O3型催化剂的制备方法
WO2005113139A1 (fr) Catalyseur d'oxyde composite et procédé de production de celui-ci
CN115487817B (zh) 丙烯酸合成用催化剂及制备方法、丙烯酸合成用成型催化剂及制备方法和丙烯酸合成方法
CN113546636B (zh) 一种异丁烯或叔丁醇制甲基丙烯醛的催化剂及其制备方法
CN114471592B (zh) 丙烯醛合成用催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE