WO2022244481A1 - ブロモフルオロメタンの製造方法 - Google Patents

ブロモフルオロメタンの製造方法 Download PDF

Info

Publication number
WO2022244481A1
WO2022244481A1 PCT/JP2022/015079 JP2022015079W WO2022244481A1 WO 2022244481 A1 WO2022244481 A1 WO 2022244481A1 JP 2022015079 W JP2022015079 W JP 2022015079W WO 2022244481 A1 WO2022244481 A1 WO 2022244481A1
Authority
WO
WIPO (PCT)
Prior art keywords
producing
fluorinating agent
raw material
compound
reaction
Prior art date
Application number
PCT/JP2022/015079
Other languages
English (en)
French (fr)
Inventor
一真 松井
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2023522293A priority Critical patent/JPWO2022244481A1/ja
Priority to KR1020237039687A priority patent/KR20240009418A/ko
Publication of WO2022244481A1 publication Critical patent/WO2022244481A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/204Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being a halogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/125Halogens; Compounds thereof with scandium, yttrium, aluminium, gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/14Acyclic saturated compounds containing halogen atoms containing fluorine and bromine

Definitions

  • the present invention relates to a method for producing bromofluoromethane.
  • Bromofluoromethanes such as tribromofluoromethane (CBr 3 F) and dibromodifluoromethane (CBr 2 F 2 ) are highly versatile and can be used as raw materials for fluororesins, active pharmaceutical ingredients, and etching gases for semiconductor manufacturing. is a compound.
  • An object of the present invention is to provide a method for producing bromofluoromethane capable of selectively synthesizing at least one of tribromofluoromethane and dibromodifluoromethane.
  • one aspect of the present invention is as follows [1] to [9].
  • [1] At least one of carbon tetrabromide and tribromofluoromethane in the presence of an element or a salt of a metal belonging to period 3 or 4 of the periodic table and belonging to any one of groups 3 to 13
  • At least one of tribromofluoromethane and dibromodifluoromethane can be selectively synthesized.
  • FIG. 2 is a diagram illustrating the structure of an example of an analysis device that analyzes generated bromofluoromethane
  • the method for producing bromofluoromethane according to the present embodiment at least one of tribromofluoromethane and dibromodifluoromethane, which is the target compound, can be selectively synthesized (with high selectivity).
  • the production amounts of bromotrifluoromethane and carbon tetrafluoride, which are by-products in the fluorination step of the method for producing bromofluoromethane according to the present embodiment can each be 1% by mass or less.
  • the amount of bromotrifluoromethane and carbon tetrafluoride produced is the amount of carbon tetrabromide, tribromofluoromethane, dibromodifluoromethane, bromotrifluoromethane, and carbon tetrafluoride contained in the product of the fluorination reaction. Percentage of total mass.
  • fluorination can be performed without requiring high temperature conditions and high pressure conditions, so the method for producing bromofluoromethane according to the present embodiment is safe. It has advantages such as high energy consumption, low energy consumption, and low environmental impact.
  • tribromofluoromethane and dibromodifluoromethane have the property of generating plasma by dissociating even with weak energy, and are not regulated substances under the Montreal Protocol, so they are suitable as etching gases. is a controlled substance under the Montreal Protocol and cannot be used as an etching gas. Moreover, since carbon tetrafluoride can be produced at a lower cost by a general production method, it is not preferable to produce it in the method for producing bromofluoromethane according to the present embodiment.
  • a simple substance or salt of these metals has a chemical formula of the fluorinating agent present in the reaction system and [MF A ] + [ZF B ] ⁇ (M is a metal, F is a fluorine atom, Z is a bromine atom or an iodine atom, A and B each represent an arbitrary coefficient.)
  • M is a metal
  • F is a fluorine atom
  • Z is a bromine atom or an iodine atom
  • a and B each represent an arbitrary coefficient.
  • metals aluminum (Al), scandium (Sc), iron (Fe), cobalt (Co), and nickel (Ni) are preferable as simple metals from the viewpoint of availability and safety.
  • Halides of aluminum, scandium, iron, cobalt and nickel are preferred as metal salts.
  • metal fluorides are more preferable. More preferred are aluminum fluoride (AlF 3 ), scandium fluoride (ScF 3 ), iron fluoride (FeF 2 , FeF 3 ), cobalt fluoride (CoF 2 , CoF 3 ), and nickel fluoride (NiF 2 ). . These simple metals may be used singly or in combination of two or more. Also, the metal salts may be used singly or in combination of two or more. Furthermore, a single metal and a metal salt may be used in combination.
  • the amount of the elemental metal or salt to be subjected to fluorination is not particularly limited, but from the viewpoint of ease of treatment after the completion of the reaction, the amount is 1 mol % or more and 50 mol % or less with respect to the amount of the raw material compound. more preferably 5 mol % or more and 50 mol % or less.
  • the shape of the metal simple substance and metal salt when subjected to fluorination is not particularly limited, and may be, for example, film-like, foil-like, pellet-like, block-like, spherical, granular, or powdery. Elemental metals and metal salts may react with the fluorinating agent to be partially or wholly converted to metal fluorides, but this does not pose a major problem for the fluorination of the raw material compound.
  • a fluorinating agent is used to replace the bromine atoms in the raw material compound with fluorine atoms for fluorination.
  • a fluorinating agent an interhalogen compound having a bromine atom or an iodine atom and having 3 or more fluorine atoms is preferable.
  • Bromine trifluoride (BrF 3 ), bromine pentafluoride (BrF 5 ), iodine pentafluoride (IF 5 ), and iodine heptafluoride (IF 7 ) are more preferred from the viewpoint of availability and ease of handling. preferable.
  • the fluorinating agents may be used singly or in combination of two or more.
  • the amount of the fluorinating agent used is preferably 0.7 to 1.5 times the stoichiometric amount.
  • the reaction of fluorinating carbon tetrabromide to obtain dibromodifluoromethane is represented, for example, by the following formula (1)
  • the reaction of fluorinating carbon tetrabromide to obtain tribromofluoromethane is represented, for example, by the following formula (2).
  • carbon tetrabromide reacts with (2/3) molar equivalents of bromine trifluoride to form dibromodifluoromethane
  • carbon tetrabromide reacts with (1/3 ) with a molar equivalent of bromine trifluoride to give tribromofluoromethane.
  • the amount of bromine trifluoride as the fluorinating agent is 0.7 times or more the stoichiometric ratio (2/3 molar equivalents) in formula (1). It is preferable to make it 1.5 times or less. That is, when the raw material compound is carbon tetrabromide and two of the four bromine atoms of the carbon tetrabromide are substituted with fluorine atoms to synthesize the target compound,
  • the ratio of the total molar amount of fluorine atoms in the fluorinating agent is preferably 1.4 or more and 3.0 or less.
  • the ratio of the total molar amount of fluorine atoms in the fluorinating agent is more preferably 2.0 or more and 2.8 or less, more preferably 2.2 or more and 2.6 or less.
  • the amount of bromine trifluoride as the fluorinating agent is 0.7 times the stoichiometric ratio (1/3 molar equivalent) in formula (2). It is preferable to set the amount to 1.5 times or less. That is, when the target compound is synthesized by substituting one of the plurality of bromine atoms of the raw material compound with a fluorine atom, the ratio of the total molar amount of fluorine atoms of the fluorinating agent to the molar amount of the raw material compound is It is preferable to make it 0.7 or more and 1.5 or less.
  • the ratio of the total molar amount of fluorine atoms of the fluorinating agent to the molar amount of the raw material compound is It is more preferably 1.0 or more and 1.4 or less, and further preferably 1.1 or more and 1.3 or less.
  • Fluorination in which a raw material compound is reacted with a fluorinating agent, is preferably carried out in a liquid phase reaction. That is, it is preferable to use a solvent capable of dissolving at least one of the raw material compound and the fluorinating agent, and carry out the fluorination reaction in a reaction solution in which at least one of the raw material compound and the fluorinating agent is dissolved in the solvent.
  • the raw material compound may be first supplied into the reaction system and then the fluorinating agent may be supplied into the reaction system, or the raw material compound and the fluorinating agent may be simultaneously supplied into the reaction system. may be supplied.
  • a method for supplying the fluorinating agent into the reaction system for example, a liquid fluorinating agent or a fluorinating agent solution obtained by dissolving a fluorinating agent in a solvent is added using a dropping funnel or a liquid mass flow controller.
  • a method of supplying the fluorinating agent into the reaction system and a method of supplying the fluorinating agent vaporized using a vaporizer into the reaction system are exemplified.
  • the temperature of the liquid fluorinating agent or fluorinating agent solution when supplied into the reaction system is the temperature at which the liquid fluorinating agent or fluorinating agent solution does not solidify (for example, if the liquid fluorinating agent is , a temperature equal to or higher than the melting point of the fluorinating agent) and a temperature at which the mass flow controller operates.
  • the temperature of the liquid fluorinating agent or fluorinating agent solution when supplied into the reaction system is preferably about ⁇ 5° C. of the reaction temperature.
  • the fluorination reaction may be performed while performing a reflux operation of cooling and liquefying the vaporized raw material compound and fluorinating agent with a cooling device and returning the liquefied raw material compound and fluorinating agent to the reaction solution.
  • Solvents that can be used in the fluorination reaction include those that can dissolve the raw material compound, the target compound and the fluorinating agent and that do not or hardly react chemically with the raw material compound, the target compound and the fluorinating agent. be done.
  • perfluoroalkanes, perfluoroethers, perfluoropolyethers, chlorinated fluorinated hydrocarbons, chlorinated hydrocarbons, perfluoroalkylamines, 1-ethoxy-1,1,2,2,3,3,4,4,4- Nonafluorobutane (C 6 H 5 F 9 O) can be mentioned.
  • solvents from the viewpoint of availability, perfluoroalkanes, perfluoroethers, chlorinated hydrocarbons, 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane are preferred, and carbon tetrachloride (CCl 4 ), dichloromethane (CH 2 Cl 2 ) and 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane are more preferred.
  • the amount of solvent used in the fluorination reaction is not particularly limited, but may be appropriately determined depending on the solubility of the raw material compound, target compound, and fluorinating agent in the solvent.
  • the reaction temperature and reaction pressure of the fluorination reaction are not particularly limited as long as the liquid phase reaction is possible and the excessive progress of fluorination is suppressed, but the reaction temperature is ⁇ 80. C. to 200.degree. C., more preferably 0.degree. C. to 100.degree. C., and even more preferably 10.degree. If the reaction temperature is ⁇ 80° C. or higher, the reaction solution is less likely to solidify, and if it is 200° C. or lower, excessive progress of fluorination is suppressed, the yield of the target compound is improved, and the target compound is obtained with high selectivity. be able to.
  • the reaction pressure is preferably atmospheric pressure or higher and 1 MPaG or lower from the viewpoint of the yield of the target compound, selectivity, and ease of industrial implementation. In this specification, pressure is represented by gauge pressure unless otherwise specified.
  • the fluorination reaction may be performed in an inert gas atmosphere.
  • inert gases include nitrogen gas (N 2 ), helium (He), and argon (Ar).
  • the reaction vessel for carrying out the fluorination reaction may be made of any material as long as it has corrosion resistance to the fluorinating agent.
  • suitable materials for the reaction vessel include nickel-based alloys such as Inconel (registered trademark), Hastelloy (registered trademark), and Monel (registered trademark), nickel, aluminum, alumina, stainless steel, and platinum (Pt). etc.
  • the inner surface of the reaction vessel made of these materials may be lined with a fluorine resin.
  • the reaction vessel may be made of a material having no corrosion resistance to the fluorinating agent as long as the inner surface is lined with a fluororesin.
  • the reaction solution may be post-treated as necessary to extract the target compound from the reaction solution.
  • post-treatment methods include washing, distillation, and filtration of the reaction solution. These post-treatments may be performed by one method alone, or may be performed by appropriately combining two or more methods.
  • the present invention will be described more specifically below with reference to examples and comparative examples.
  • Example 1 A raw material compound was fluorinated using the reactor shown in FIG. First, the configuration of the reactor shown in FIG. 1 will be described.
  • the reaction apparatus of FIG. 1 includes a reaction vessel 20 made of Monel (registered trademark) with a capacity of 50 mL that can accommodate a reaction solution 25 and in which a fluorination reaction of a raw material compound is performed, and a pressure that measures the pressure inside the reaction vessel 20.
  • Monel registered trademark
  • thermometer 22 for measuring the temperature of the reaction solution 25; a stirrer 24 for stirring the reaction solution 25; a constant temperature bath 26 for controlling the temperature of the reaction solution 25;
  • a dropping device 23 for dropping a fluorinating agent or a fluorinating agent solution, and a dropping speed control valve for adjusting the dropping speed of the liquid fluorinating agent or fluorinating agent solution supplied from the dropping device 23 to the inside of the reaction vessel 20.
  • a gas phase extraction port 27 for extracting the gas phase inside the reaction vessel 20
  • liquid phase extraction port 29 for extracting the liquid phase (reaction solution 25) inside the reaction vessel 20 and the liquid
  • a phase extracting pipe 30 and a vaporizer 1 are provided.
  • a fluorinating agent solution prepared by dissolving 3.3 g (24 mmol) of bromine trifluoride in 10 mL of carbon tetrachloride was placed in the dropping device 23 .
  • 0.2 g of nickel powder with a purity of 99% manufactured by Hayashi Junyaku Kogyo Co., Ltd.
  • 9.9 g (30 mmol) of carbon tetrabromide, and 15 mL of carbon tetrachloride were put into the reaction vessel 20 .
  • the carbon tetrabromide was dissolved in the carbon tetrachloride by stirring with the stirrer 24 to obtain a reaction solution 25 .
  • the fluorinating agent solution was dropped into the reaction solution 25 by the dropping device 23 to carry out the fluorination reaction of carbon tetrabromide.
  • the dropping speed of the fluorinating agent solution was adjusted by adjusting the opening degree of the dropping speed control valve 28, and 10 mL of the fluorinating agent solution was dropped over 1 hour. Then, the fluorination reaction was continued for one hour after the dropwise addition of the fluorinating agent solution was completed.
  • reaction solution 25 is allowed to stand still, and the reaction solution 25 is transferred to the vaporizer 1 through a liquid phase extraction port 29 and a liquid phase extraction pipe 30 to a gauge pressure of ⁇ 0.1 MPaG. extracted some of the Then, the vaporizer 1 containing the reaction solution 25 was removed from the reactor and connected to the analyzer shown in FIG.
  • the analyzer shown in FIG. 2 a carrier gas flow control device 3 for controlling the flow rate of , a sample flow control device 4 for controlling the flow rate of the sample supplied from inside the vaporizer 1, and a fluorinating agent removed from the sample supplied from the vaporizer 1
  • the carrier gas is supplied from the carrier gas cylinder 2 through the carrier gas pressure control device 5 and the carrier gas flow rate control device 3 so that the carrier gas is circulating in the analyzer.
  • the reaction solution 25 in the vaporizer 1 was vaporized (hereinafter, the gas of the reaction solution 25 is referred to as "sample gas").
  • Nitrogen gas with a purity of 99.99995% or higher was used as the carrier gas.
  • the sample gas was sent to the fluorinating agent removal tank 6 by carrier gas to remove unreacted fluorinating agent from the sample gas.
  • the inside of the fluorinating agent removing tank 6 is filled with porous nickel manufactured by The Nilaco Corporation (specific surface area: 7500 m 2 /m 3 ).
  • the inner diameter of the fluorinating agent removing tank 6 is 1 inch and the length is 15 cm.
  • the sample gas from which the fluorinating agent has been removed is passed through the gas measuring tube 8, and after measuring the amount of the gas, the flow path switching valve 9 is operated to obtain the sample gas from which the fluorinating agent has been removed. was introduced into the gas chromatograph 7 for analysis.
  • the composition of the components contained in the reaction solution 25 liquid phase
  • ratios of carbon tetrabromide, tribromofluoromethane, dibromodifluoromethane, bromotrifluoromethane, and carbon tetrafluoride were obtained. . Table 1 shows the results.
  • Examples 2 to 18 Same as Example 1 except that the type and amount of fluorinating agent, the type and amount of elemental metal or salt, the type of solvent, and the reaction temperature in the fluorination reaction were as shown in Tables 1 and 2, respectively. Fluorination reaction and analysis were carried out. Tables 1 and 2 show the results.
  • Example 19 to 23 Except that the raw material compound was changed from carbon tetrabromide to tribromofluoromethane, and that the type and amount of the fluorinating agent in the fluorination reaction and the reaction temperature were as shown in Table 2, The fluorination reaction and analysis were carried out in the same manner as in Example 1. Table 2 shows the results.
  • the raw material compound is carbon tetrabromide, and the reaction in which tribromofluoromethane is produced (reaction of formula (2) above)
  • reaction of formula (2) This is an example using a fluorinating agent in an amount 1.20 to 1.28 times the stoichiometric ratio.
  • the raw material compound was tribromofluoromethane, and the stoichiometric ratio in the reaction to produce dibromodifluoromethane was 1.20 to 1.28. This is an example using twice the amount of fluorinating agent.
  • the raw material compound is The desired compound, dibromodifluoromethane, was obtained with high selectivity from carbon tetrabromide or tribromofluoromethane.
  • Examples 5 and 6 are examples using dichloromethane or 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane as a solvent instead of carbon tetrachloride. . Even when the raw material compound was fluorinated under such conditions, the target compound dibromodifluoromethane was selectively obtained in the same manner as in Examples 1-4.
  • Examples 7 and 8 are examples in which the amount of nickel added is 5 mol % or 20 mol %. Even when the raw material compounds were fluorinated under such conditions, the desired compounds of tribromofluoromethane and dibromodifluoromethane were obtained without any problem. In particular, when the amount of nickel to be added is 5 mol%, the ratio of dibromodifluoromethane in the composition of the components contained in the reaction solution is improved, and when the amount of nickel to be added is 20 mol%, The proportion of tribromofluoromethane in the composition of components contained in the reaction solution was improved. From these facts, it can be seen that the composition of the target compound to be produced can be controlled by the amount of nickel added.
  • Examples 9 to 12 are examples in which aluminum fluoride, cobalt, iron, or scandium was used as the elemental metal or salt to be added. Even when the raw material compound was fluorinated under such conditions, the desired compound, dibromodifluoromethane, was obtained with high selectivity.
  • Examples 13-18 are examples of using 1.20-1.28 times the stoichiometric amount of fluorinating agent in the reaction to produce tribromofluoromethane. Even when the raw material compound was fluorinated under such conditions, the target compound, tribromofluoromethane, was obtained with high selectivity. In particular, from the results of Example 17, it can be seen that the fluorination reaction proceeds without problems even when metal fluorides are added, and tribromofluoromethane can be obtained with high selectivity.
  • Comparative Examples 1 to 6 are examples in which the fluorination reaction was performed without adding a metal element or salt.
  • the raw material compound is fluorinated under such conditions, at least one of bromotrifluoromethane and carbon tetrafluoride, which are not the target compound, is by-produced, and the composition of the target compound tribromofluoromethane and dibromodifluoromethane ratio decreased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

トリブロモフルオロメタン及びジブロモジフルオロメタンの少なくとも一方を選択的に合成することができるブロモフルオロメタンの製造方法を提供する。ブロモフルオロメタンの製造方法は、周期表の第3周期又は第4周期に属し且つ第3族から第13族のいずれかに属する金属の単体又は塩の存在下で、四臭化炭素及びトリブロモフルオロメタンの少なくとも一方である原料化合物にフッ素化剤を反応させてフッ素化して、トリブロモフルオロメタン及びジブロモジフルオロメタンの少なくとも一方である目的化合物を合成するフッ素化工程を備える。ただし、原料化合物と目的化合物は同一ではない。

Description

ブロモフルオロメタンの製造方法
 本発明はブロモフルオロメタンの製造方法に関する。
 トリブロモフルオロメタン(CBr3F)、ジブロモジフルオロメタン(CBr22)等のブロモフルオロメタンは、フッ素樹脂の原料、医薬品原体、半導体製造用のエッチングガス等として利用可能な汎用性の高い化合物である。
中国特許出願公開第106278808号明細書
 ブロモフルオロメタンの製造方法が種々提案されているが(例えば特許文献1を参照)、トリブロモフルオロメタンやジブロモジフルオロメタンを選択的に合成することは容易ではなかった。
 本発明は、トリブロモフルオロメタン及びジブロモジフルオロメタンの少なくとも一方を選択的に合成することができるブロモフルオロメタンの製造方法を提供することを課題とする。
 前記課題を解決するため、本発明の一態様は以下の[1]~[9]の通りである。
[1] 周期表の第3周期又は第4周期に属し且つ第3族から第13族のいずれかに属する金属の単体又は塩の存在下で、四臭化炭素及びトリブロモフルオロメタンの少なくとも一方である原料化合物にフッ素化剤を反応させてフッ素化して、トリブロモフルオロメタン及びジブロモジフルオロメタンの少なくとも一方である目的化合物を合成するフッ素化工程を備え、前記原料化合物と前記目的化合物は同一ではないブロモフルオロメタンの製造方法。
[2] 前記フッ素化剤が、臭素原子又はヨウ素原子を有し且つ3個以上のフッ素原子を有するハロゲン間化合物である[1]に記載のブロモフルオロメタンの製造方法。
[3] 前記ハロゲン間化合物が、三フッ化臭素、五フッ化臭素、五フッ化ヨウ素、及び七フッ化ヨウ素から選ばれる少なくとも1種である[2]に記載のブロモフルオロメタンの製造方法。
[4] 前記フッ素化工程におけるフッ素化の反応温度が0℃以上100℃以下である[1]~[3]のいずれか一項に記載のブロモフルオロメタンの製造方法。
[5] 前記金属の単体が、アルミニウム、スカンジウム、鉄、コバルト、及びニッケルから選ばれる少なくとも1種である[1]~[4]のいずれか一項に記載のブロモフルオロメタンの製造方法。
[6] 前記金属の塩が、フッ化アルミニウム、フッ化スカンジウム、フッ化鉄、フッ化コバルト、及びフッ化ニッケルから選ばれる少なくとも1種である[1]~[4]のいずれか一項に記載のブロモフルオロメタンの製造方法。
[7] 前記金属の単体又は塩の量が前記原料化合物の量の1モル%以上50モル%以下である[1]~[6]のいずれか一項に記載のブロモフルオロメタンの製造方法。
[8] 前記原料化合物が有する複数の臭素原子のうち1個をフッ素原子に置換して前記目的化合物を合成する場合は、前記原料化合物のモル量に対する前記フッ素化剤が有するフッ素原子の総モル量の比を0.7以上1.5以下とする[1]~[7]のいずれか一項に記載のブロモフルオロメタンの製造方法。
[9] 前記原料化合物が四臭化炭素であり、その四臭化炭素が有する4個の臭素原子のうち2個をフッ素原子に置換して前記目的化合物を合成する場合は、前記原料化合物のモル量に対する前記フッ素化剤が有するフッ素原子の総モル量の比を1.4以上3.0以下とする[1]~[7]のいずれか一項に記載のブロモフルオロメタンの製造方法。
 本発明によれば、トリブロモフルオロメタン及びジブロモジフルオロメタンの少なくとも一方を選択的に合成することができる。
本発明の一実施形態に係るブロモフルオロメタンの製造方法を実施可能な反応装置の一例の構造を説明する図である。 生成したブロモフルオロメタンを分析する分析装置の一例の構造を説明する図である。
 本発明の一実施形態について以下に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 本発明の一実施形態に係るブロモフルオロメタンの製造方法は、周期表の第3周期又は第4周期に属し且つ第3族から第13族のいずれかに属する金属の単体又は塩の存在下で、四臭化炭素(CBr4)及びトリブロモフルオロメタン(CBr3F)の少なくとも一方である原料化合物にフッ素化剤を反応させてフッ素化して、トリブロモフルオロメタン(CBr3F)及びジブロモジフルオロメタン(CBr22)の少なくとも一方である目的化合物を合成するフッ素化工程を備える。ただし、原料化合物と目的化合物は同一ではない。
 本実施形態に係るブロモフルオロメタンの製造方法によって四臭化炭素をフッ素化すると、トリブロモフルオロメタン及びジブロモジフルオロメタンの少なくとも一方が得られる。また、本実施形態に係るブロモフルオロメタンの製造方法によってトリブロモフルオロメタンをフッ素化すると、ジブロモジフルオロメタンが得られる。四臭化炭素、トリブロモフルオロメタンをフッ素化すると、ブロモトリフルオロメタン(CBrF3)、四フッ化炭素(CF4)が生成する可能性があるが、本実施形態に係るブロモフルオロメタンの製造方法によって四臭化炭素及びトリブロモフルオロメタンの少なくとも一方である原料化合物をフッ素化しても、ブロモトリフルオロメタン及び四フッ化炭素はほとんど生成しない。
 よって、本実施形態に係るブロモフルオロメタンの製造方法によれば、目的化合物であるトリブロモフルオロメタン及びジブロモジフルオロメタンの少なくとも一方を選択的に(高い選択率で)合成することができる。例えば、本実施形態に係るブロモフルオロメタンの製造方法のフッ素化工程における副生成物であるブロモトリフルオロメタン及び四フッ化炭素の生成量を、それぞれ1質量%以下とすることができる。なお、ブロモトリフルオロメタン及び四フッ化炭素の生成量は、フッ素化反応による生成物中に含有される四臭化炭素、トリブロモフルオロメタン、ジブロモジフルオロメタン、ブロモトリフルオロメタン、及び四フッ化炭素の合計質量に対する割合である。
 また、本実施形態に係るブロモフルオロメタンの製造方法によれば、高温条件や高圧条件を必要とせずフッ素化を行うことができるので、本実施形態に係るブロモフルオロメタンの製造方法は、安全性が高い、消費エネルギーが少ない、環境に対する負荷が小さいなどの利点を有している。
 なお、トリブロモフルオロメタン及びジブロモジフルオロメタンは、弱いエネルギーでも解離してプラズマを発生する性質を有するとともに、モントリオール議定書の規制対象物質から外れているので、エッチングガスとして好適であるが、ブロモトリフルオロメタンはモントリオール議定書の規制対象物質であるため、エッチングガスとして使用できない。また、四フッ化炭素は、一般的な製造方法でより安価に製造することができるので、本実施形態に係るブロモフルオロメタンの製造方法において生成することは、好ましくない。
 本実施形態に係るブロモフルオロメタンの製造方法について、以下にさらに詳細に説明する。
〔金属〕
 本実施形態に係るブロモフルオロメタンの製造方法においては、フッ素化の反応性及び目的化合物の選択率の向上のために、周期表の第3周期又は第4周期に属し且つ第3族から第13族のうちいずれかの族に属する金属の単体又は塩の存在下でフッ素化を行う。これらの金属の単体又は塩が、反応系中に存在するフッ素化剤と[MFA+[ZFB-との化学式(Mは金属、Fはフッ素原子、Zは臭素原子又はヨウ素原子、A及びBは任意の係数をそれぞれ示す。)で表される錯体を形成することにより、フッ素化したときに特定の構造の化合物が生成しやすくなり、つまり生成する化合物の選択性が向上することになると考えられる。
 これらの金属の中では、入手容易性や安全性の観点から、金属の単体としては、アルミニウム(Al)、スカンジウム(Sc)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)が好ましく、金属の塩としては、アルミニウム、スカンジウム、鉄、コバルト、ニッケルのハロゲン化物が好ましい。
 また、金属のハロゲン化物の中では、金属のフッ化物がより好ましい。すなわち、フッ化アルミニウム(AlF3)、フッ化スカンジウム(ScF3)、フッ化鉄(FeF2、FeF3)、フッ化コバルト(CoF2、CoF3)、フッ化ニッケル(NiF2)がより好ましい。
 これら金属の単体は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、金属の塩は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。さらに、金属の単体と金属の塩を組み合わせて用いてもよい。
 フッ素化に供する金属の単体又は塩の量は特に限定されるものではないが、反応終了後の処理の容易さの観点から、原料化合物の量に対して1モル%以上50モル%以下とすることが好ましく、5モル%以上50モル%以下とすることがより好ましい。
 また、フッ素化に供する際の金属の単体、金属の塩の形状は特に限定されるものではなく、例えば、膜状、箔状、ペレット状、塊状、球状、粒状、粉末状でもよい。金属の単体及び金属の塩は、フッ素化剤と反応して、その一部又は全部が金属のフッ化物に転化する場合があるが、原料化合物のフッ素化に対して大きな問題にはならない。
〔フッ素化剤〕
 本実施形態に係るブロモフルオロメタンの製造方法においては、原料化合物が有する臭素原子をフッ素原子に置換してフッ素化するために、フッ素化剤が用いられる。フッ素化剤としては、臭素原子又はヨウ素原子を有し、且つ、3個以上のフッ素原子を有するハロゲン間化合物が好ましい。そして、入手容易性や取り扱い容易性の観点から、三フッ化臭素(BrF3)、五フッ化臭素(BrF5)、五フッ化ヨウ素(IF5)、七フッ化ヨウ素(IF7)がより好ましい。フッ素化剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 フッ素化剤の使用量は、化学量論量の0.7倍以上1.5倍以下とすることが好ましい。四臭化炭素をフッ素化してジブロモジフルオロメタンを得る反応は、例えば下記(1)式で表され、四臭化炭素をフッ素化してトリブロモフルオロメタンを得る反応は、例えば下記(2)式で表されるが、(1)式では四臭化炭素は(2/3)モル当量の三フッ化臭素と反応してジブロモジフルオロメタンとなり、(2)式では四臭化炭素は(1/3)モル当量の三フッ化臭素と反応してトリブロモフルオロメタンとなる。
 CBr4 + (2/3)BrF3 → CBr22 + (4/3)Br2・・・(1)
 CBr4 + (1/3)BrF3 → CBr3F + (2/3)Br2・・・(2)
 よって、ジブロモジフルオロメタンを選択的に生成させるためには、フッ素化剤の三フッ化臭素の量は、(1)式における化学量論比(2/3モル当量)の0.7倍量以上1.5倍量以下とすることが好ましい。すなわち、原料化合物が四臭化炭素であり、その四臭化炭素が有する4個の臭素原子のうち2個をフッ素原子に置換して目的化合物を合成する場合には、原料化合物のモル量に対するフッ素化剤が有するフッ素原子の総モル量の比を1.4以上3.0以下とすることが好ましい。
 なお、原料化合物が四臭化炭素であり、その四臭化炭素が有する4個の臭素原子のうち2個をフッ素原子に置換して目的化合物を合成する場合には、原料化合物のモル量に対するフッ素化剤が有するフッ素原子の総モル量の比を2.0以上2.8以下とすることがより好ましく、2.2以上2.6以下とすることがさらに好ましい。
 一方、トリブロモフルオロメタンを選択的に生成させるためには、フッ素化剤の三フッ化臭素の量は、(2)式における化学量論比(1/3モル当量)の0.7倍量以上1.5倍量以下とすることが好ましい。すなわち、原料化合物が有する複数の臭素原子のうち1個をフッ素原子に置換して目的化合物を合成する場合には、原料化合物のモル量に対するフッ素化剤が有するフッ素原子の総モル量の比を0.7以上1.5以下とすることが好ましい。
 なお、原料化合物が有する複数の臭素原子のうち1個をフッ素原子に置換して目的化合物を合成する場合には、原料化合物のモル量に対するフッ素化剤が有するフッ素原子の総モル量の比を1.0以上1.4以下とすることがより好ましく、1.1以上1.3以下とすることがさらに好ましい。
〔フッ素化工程〕
 原料化合物にフッ素化剤を反応させるフッ素化は、液相反応にて行うことが好ましい。すなわち、原料化合物及びフッ素化剤の少なくとも一方を溶解可能な溶剤を用い、該溶剤に原料化合物及びフッ素化剤の少なくとも一方が溶解してなる反応溶液中でフッ素化反応を行うことが好ましい。
 フッ素化工程のフッ素化反応においては、まず原料化合物を反応系内に供給し、その後にフッ素化剤を反応系内に供給してもよいし、原料化合物とフッ素化剤を反応系内に同時に供給してもよい。
 フッ素化剤を反応系内へ供給する方法としては、例えば、滴下漏斗や液体用のマスフローコントローラーを用いて、液体状のフッ素化剤又はフッ素化剤を溶剤に溶解してなるフッ素化剤溶液を反応系内へ供給する方法や、気化器を用いて気化させたフッ素化剤を反応系内へ供給する方法が挙げられる。
 反応系内へ供給する際の液体状のフッ素化剤やフッ素化剤溶液の温度は、液体状のフッ素化剤やフッ素化剤溶液が固化しない温度(例えば、液体状のフッ素化剤であれば、フッ素化剤の融点以上の温度)であればよく、また、マスフローコントローラーが動作する温度であればよい。特に、フッ素化反応を制御する観点からは、反応系内へ供給する際の液体状のフッ素化剤やフッ素化剤溶液の温度は、反応温度の±5℃程度の温度とすることが好ましい。
 また、気化した原料化合物やフッ素化剤を冷却装置によって冷却して液化し、液化した原料化合物やフッ素化剤を反応溶液に戻す還流操作を行いながらフッ素化反応を行ってもよい。
 フッ素化反応に使用可能な溶剤としては、原料化合物、目的化合物、フッ素化剤を溶解可能であり、且つ、原料化合物、目的化合物、フッ素化剤と化学的に反応しない又は殆ど反応しないものが挙げられる。例えば、ペルフルオロアルカン、ペルフルオロエーテル、ペルフルオロポリエーテル、塩素化フッ素化炭化水素、塩素化炭化水素、ペルフルオロアルキルアミン、1-エトキシ-1,1,2,2,3,3,4,4,4-ノナフルオロブタン(C659O)が挙げられる。
 これらの溶剤の中では、入手容易性の観点から、ペルフルオロアルカン、ペルフルオロエーテル、塩素化炭化水素、1-エトキシ-1,1,2,2,3,3,4,4,4-ノナフルオロブタンが好ましく、四塩化炭素(CCl4)、ジクロロメタン(CH2Cl2)、1-エトキシ-1,1,2,2,3,3,4,4,4-ノナフルオロブタンがより好ましい。
 フッ素化反応に使用する溶剤の量は特に限定されるものではないが、溶剤に対する原料化合物、目的化合物、フッ素化剤の溶解性によって適宜決定すればよい。
 フッ素化反応の反応温度及び反応圧力は、液相反応が可能であり、且つ、フッ素化の過剰な進行が抑制される条件であれば特に限定されるものではないが、反応温度は、-80℃以上200℃以下であることが好ましく、0℃以上100℃以下であることがより好ましく、10℃以上70℃以下であることがさらに好ましい。反応温度が-80℃以上であれば反応溶液が固化しにくく、200℃以下であればフッ素化の過剰な進行が抑制され、目的化合物の収率が向上すると共に目的化合物を高い選択率で得ることができる。また、反応圧力は、目的化合物の収率、選択率、工業的な実施のしやすさの点から、大気圧以上1MPaG以下であることが好ましい。なお、本明細書においては、圧力は、特に断りが無い限りゲージ圧で表す。
 また、フッ素化反応は、不活性ガス雰囲気下で行ってもよい。不活性ガスとしては、例えば、窒素ガス(N2)、ヘリウム(He)、アルゴン(Ar)が挙げられる。
 さらに、フッ素化反応を実施する反応容器は、フッ素化剤に対する耐食性を有する材質であれば、どのような材質で形成されていても差し支えない。反応容器の材質として好適なものとしては、例えば、インコネル(登録商標)、ハステロイ(登録商標)、モネル(登録商標)等のニッケル基合金や、ニッケル、アルミニウム、アルミナ、ステンレス鋼、白金(Pt)等が挙げられる。これらの材質で形成された反応容器の内面には、フッ素樹脂ライニングが施されていてもよい。なお、フッ素樹脂ライニングが内面に施されていれば、フッ素化剤に対する耐食性を有しない材質で反応容器が形成されていてもよい。
 フッ素化工程が終了したら、必要に応じて反応溶液に後処理を施して、反応溶液から目的化合物を取り出してもよい。後処理の方法としては、反応溶液の洗浄、蒸留、ろ過等が挙げられる。これらの後処理は、1つの方法を単独で行ってもよいし、2つ以上の方法を適宜組み合わせて行ってもよい。
 以下に実施例及び比較例を示して、本発明をより具体的に説明する。
〔実施例1〕
 図1に示す反応装置を用いて、原料化合物のフッ素化を行った。まず、図1の反応装置の構成について説明する。図1の反応装置は、反応溶液25を収容可能で且つ原料化合物のフッ素化反応が行われる容量50mLのモネル(登録商標)製の反応容器20と、反応容器20の内部の圧力を測定する圧力計21と、反応溶液25の温度を測定する温度計22と、反応溶液25を撹拌する撹拌機24と、反応溶液25の温度を制御する恒温槽26と、反応容器20の内部に液体状のフッ素化剤又はフッ素化剤溶液を滴下する滴下装置23と、滴下装置23から反応容器20の内部に供給される液体状のフッ素化剤又はフッ素化剤溶液の滴下速度を調節する滴下速度調節バルブ28と、反応容器20の内部の気相部を抜き出すための気相部抜き出し口27と、反応容器20の内部の液相部(反応溶液25)を抜き出すための液相部抜き出し口29及び液相部抜き出し用配管30と、気化器1と、を備えている。
 次に、図1の反応装置を用いて行ったフッ素化反応について説明する。三フッ化臭素3.3g(24mmol)を四塩化炭素10mLに溶解してなるフッ素化剤溶液を、滴下装置23に収容した。また、純度99%のニッケル粉末(林純薬工業株式会社製)0.2gと、四臭化炭素9.9g(30mmol)と、四塩化炭素15mLとを、反応容器20に投入した。そして、撹拌機24により撹拌して四臭化炭素を四塩化炭素に溶解させ、反応溶液25を得た。
 反応溶液25の温度を恒温槽26により20℃に制御しながら、滴下装置23によりフッ素化剤溶液を反応溶液25へ滴下して、四臭化炭素のフッ素化反応を行った。滴下速度調節バルブ28の開度を調節することによりフッ素化剤溶液の滴下速度を調整し、10mLのフッ素化剤溶液を1時間かけて滴下した。そして、フッ素化剤溶液の滴下が終了してからさらに1時間、フッ素化反応を行った。
 フッ素化反応が終了したら反応溶液25を静置し、液相部抜き出し口29及び液相部抜き出し用配管30を介して、内圧をゲージ圧で-0.1MPaGとした気化器1へ反応溶液25の一部を抜き出した。そして、反応溶液25を収容した気化器1を反応装置から取り外して、図2に示す分析装置へ接続した。
 ここで、図2に示す分析装置の構成について説明する。図2の分析装置は、キャリアガスを収容しているキャリアガスボンベ2と、キャリアガスボンベ2から供給されるキャリアガスの圧力を制御するキャリアガス圧力制御装置5と、キャリアガスボンベ2から供給されるキャリアガスの流量を制御するキャリアガス流量制御装置3と、気化器1の内部から供給されるサンプルの流量を制御するサンプル流量制御装置4と、気化器1より供給されたサンプルからフッ素化剤を除去するフッ素化剤除去槽6と、ガスの量を計量するガス計量管8と、ガスの流路を切り替える流路切り替えバルブ9と、気化器1より供給されたサンプルの分析をガスクロマトグラフィーにより行うガスクロマトグラフ7と、を備えている。
 次に、図2の分析装置を用いて行ったガスクロマトグラフィーについて説明する。まず、キャリアガスボンベ2からキャリアガス圧力制御装置5及びキャリアガス流量制御装置3を介してキャリアガスを供給して、分析装置内をキャリアガスが流通している状態とし、その状態で気化器1を加熱して、気化器1内の反応溶液25を気化させた(以下、反応溶液25のガスを「サンプルガス」と記す。)。なお、キャリアガスとしては、純度99.99995%以上の窒素ガス(東京高圧山崎株式会社製)を使用した。
 次に、サンプルガスをキャリアガスによってフッ素化剤除去槽6へ送り、サンプルガスから未反応のフッ素化剤を除去した。なお、フッ素化剤除去槽6の内部には、株式会社ニラコ製の多孔質ニッケル(比表面積7500m2/m3)が充填されている。また、フッ素化剤除去槽6の内径は1インチであり、長さは15cmである。
 続いて、フッ素化剤が除去されたサンプルガスをガス計量管8へ流通して、ガスの量を計量した後に、流路切り替えバルブ9を操作することにより、フッ素化剤が除去されたサンプルガスをガスクロマトグラフ7へ導入して分析を行った。これにより、反応溶液25(液相部)に含有されている成分の組成(四臭化炭素、トリブロモフルオロメタン、ジブロモジフルオロメタン、ブロモトリフルオロメタン、及び四フッ化炭素の各割合)を求めた。結果を表1に示す。
 また、気化器1に替えて反応装置の気相部抜き出し口27を分析装置のサンプル流量制御装置4に接続することにより、反応容器20の内部の気相部を抜き出して分析装置に導入し、反応溶液25(液相部)と同様に分析を行った。これにより、気相部に含有されている成分の組成を求めた。結果を表1に示す。
 なお、ガスクロマトグラフィーにおける四臭化炭素、トリブロモフルオロメタン、ジブロモジフルオロメタン、ブロモトリフルオロメタン、及び四フッ化炭素の定量は、絶対検量線法によって行った。
 また、ガスクロマトグラフィーの分析条件は以下のとおりである。
   使用機器 :株式会社島津製作所製のガスクロマトグラフGC-2014
   カラム  :株式会社島津製作所製のガスクロマトグラフィー用キャピラリカラムPoraPLOT(登録商標) Q-HT
   キャリアガス:窒素ガス(流量:2mL/min)
   サンプルループの容量:5mL
   注入口温度:200℃
   カラム温度:120℃
   検出器  :熱伝導度検出器(TCD)
   検出器温度:200℃
   電流値  :150mA
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
〔実施例2~18〕
 フッ素化反応におけるフッ素化剤の種類及び量、金属単体又は塩の種類及び量、溶剤の種類、反応温度を、それぞれ表1、2に示すとおりとした点を除いては、実施例1と同様にしてフッ素化反応及び分析を行った。結果を表1、2に示す。
〔実施例19~23〕
 原料化合物を四臭化炭素からトリブロモフルオロメタンに変更した点と、フッ素化反応におけるフッ素化剤の種類及び量、並びに反応温度を、それぞれ表2に示すとおりとした点を除いては、実施例1と同様にしてフッ素化反応及び分析を行った。結果を表2に示す。
〔比較例1~5〕
 フッ素化反応において金属単体又は塩を使用しない点と、フッ素化反応におけるフッ素化剤の種類及び量、並びに反応温度を、それぞれ表2に示すとおりとした点を除いては、実施例1と同様にしてフッ素化反応及び分析を行った。結果を表2に示す。
〔比較例6〕
 原料化合物を四臭化炭素からトリブロモフルオロメタンに変更した点を除いては、比較例5と同様にしてフッ素化反応及び分析を行った。結果を表2に示す。
 表1から分かるように、実施例1~12及び比較例1~4は、原料化合物が四臭化炭素であり、ジブロモジフルオロメタンを生成する反応(上記(1)式の反応)における化学量論比の1.20~1.25倍量のフッ素化剤を使用した例である。
 また、表1、2から分かるように、実施例13~18及び比較例5は、原料化合物が四臭化炭素であり、トリブロモフルオロメタンを生成する反応(上記(2)式の反応)における化学量論比の1.20~1.28倍量のフッ素化剤を使用した例である。
 さらに、表2から分かるように、実施例19~23及び比較例6は、原料化合物がトリブロモフルオロメタンであり、ジブロモジフルオロメタンを生成する反応における化学量論比の1.20~1.28倍量のフッ素化剤を使用した例である。
 実施例1~4及び実施例19~22は、フッ素化剤として三フッ化臭素、五フッ化臭素、五フッ化ヨウ素、又は七フッ化ヨウ素を用い、溶剤として四塩化炭素を用い、原料化合物に対して10モル%のニッケルを添加した条件で、原料化合物のフッ素化を行った例である。
 このような条件で原料化合物のフッ素化を行った場合は、ジブロモジフルオロメタンを生成する反応における化学量論比の1.20~1.28倍量のフッ素化剤を使用することによって、原料化合物である四臭化炭素又はトリブロモフルオロメタンから目的化合物であるジブロモジフルオロメタンが高選択的に得られた。そして、目的化合物ではないブロモトリフルオロメタン及び四フッ化炭素の生成量は、それぞれ1質量%未満であった。
 実施例5及び実施例6は、四塩化炭素に代えてジクロロメタン又は1-エトキシ-1,1,2,2,3,3,4,4,4-ノナフルオロブタンを溶媒として用いた例である。このような条件で原料化合物のフッ素化を行った場合でも、目的化合物であるジブロモジフルオロメタンが実施例1~4と同様に選択的に得られた。
 実施例7及び実施例8は、添加するニッケルの量を5モル%又は20モル%とした例である。このような条件で原料化合物のフッ素化を行った場合でも、目的化合物であるトリブロモフルオロメタン及びジブロモジフルオロメタンが問題なく得られた。特に、添加するニッケルの量を5モル%とした場合は、反応溶液に含有されている成分の組成におけるジブロモジフルオロメタンの割合が向上し、添加するニッケルの量を20モル%とした場合は、反応溶液に含有されている成分の組成におけるトリブロモフルオロメタンの割合が向上した。これらのことから、添加するニッケルの量によって、生成する目的化合物の組成を制御できることが分かる。
 実施例9~12は、添加する金属の単体又は塩をフッ化アルミニウム、コバルト、鉄、又はスカンジウムとした例である。このような条件で原料化合物のフッ素化を行った場合でも、目的化合物であるジブロモジフルオロメタンが高選択的に得られた。
 実施例13~18は、トリブロモフルオロメタンを生成する反応における化学量論比の1.20~1.28倍量のフッ素化剤を使用した例である。このような条件で原料化合物のフッ素化を行った場合でも、目的化合物であるトリブロモフルオロメタンが高選択的に得られた。特に、実施例17の結果から、金属のフッ化物を添加した場合でもフッ素化反応は問題なく進行し、トリブロモフルオロメタンが高選択的に得られることが分かる。
 比較例1~6は、金属の単体又は塩を添加せずにフッ素化反応を行った例である。このような条件で原料化合物のフッ素化を行った場合は、目的化合物ではないブロモトリフルオロメタン及び四フッ化炭素の少なくとも一方が副生し、目的化合物であるトリブロモフルオロメタン及びジブロモジフルオロメタンの組成比が低下した。
    1・・・気化器
    2・・・キャリアガスボンベ
    3・・・キャリアガス流量制御装置
    4・・・サンプル流量制御装置
    5・・・キャリアガス圧力制御装置
    6・・・フッ素化剤除去槽
    7・・・ガスクロマトグラフ
    8・・・ガス計量管
    9・・・流路切り替えバルブ
   20・・・反応容器
   21・・・圧力計
   22・・・温度計
   23・・・滴下装置
   24・・・撹拌機
   25・・・反応溶液
   26・・・恒温槽
   27・・・気相部抜き出し口
   28・・・滴下速度調節バルブ
   29・・・液相部抜き出し口
   30・・・液相部抜き出し用配管

Claims (9)

  1.  周期表の第3周期又は第4周期に属し且つ第3族から第13族のいずれかに属する金属の単体又は塩の存在下で、四臭化炭素及びトリブロモフルオロメタンの少なくとも一方である原料化合物にフッ素化剤を反応させてフッ素化して、トリブロモフルオロメタン及びジブロモジフルオロメタンの少なくとも一方である目的化合物を合成するフッ素化工程を備え、前記原料化合物と前記目的化合物は同一ではないブロモフルオロメタンの製造方法。
  2.  前記フッ素化剤が、臭素原子又はヨウ素原子を有し且つ3個以上のフッ素原子を有するハロゲン間化合物である請求項1に記載のブロモフルオロメタンの製造方法。
  3.  前記ハロゲン間化合物が、三フッ化臭素、五フッ化臭素、五フッ化ヨウ素、及び七フッ化ヨウ素から選ばれる少なくとも1種である請求項2に記載のブロモフルオロメタンの製造方法。
  4.  前記フッ素化工程におけるフッ素化の反応温度が0℃以上100℃以下である請求項1~3のいずれか一項に記載のブロモフルオロメタンの製造方法。
  5.  前記金属の単体が、アルミニウム、スカンジウム、鉄、コバルト、及びニッケルから選ばれる少なくとも1種である請求項1~4のいずれか一項に記載のブロモフルオロメタンの製造方法。
  6.  前記金属の塩が、フッ化アルミニウム、フッ化スカンジウム、フッ化鉄、フッ化コバルト、及びフッ化ニッケルから選ばれる少なくとも1種である請求項1~4のいずれか一項に記載のブロモフルオロメタンの製造方法。
  7.  前記金属の単体又は塩の量が前記原料化合物の量の1モル%以上50モル%以下である請求項1~6のいずれか一項に記載のブロモフルオロメタンの製造方法。
  8.  前記原料化合物が有する複数の臭素原子のうち1個をフッ素原子に置換して前記目的化合物を合成する場合は、前記原料化合物のモル量に対する前記フッ素化剤が有するフッ素原子の総モル量の比を0.7以上1.5以下とする請求項1~7のいずれか一項に記載のブロモフルオロメタンの製造方法。
  9.  前記原料化合物が四臭化炭素であり、その四臭化炭素が有する4個の臭素原子のうち2個をフッ素原子に置換して前記目的化合物を合成する場合は、前記原料化合物のモル量に対する前記フッ素化剤が有するフッ素原子の総モル量の比を1.4以上3.0以下とする請求項1~7のいずれか一項に記載のブロモフルオロメタンの製造方法。
PCT/JP2022/015079 2021-05-20 2022-03-28 ブロモフルオロメタンの製造方法 WO2022244481A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023522293A JPWO2022244481A1 (ja) 2021-05-20 2022-03-28
KR1020237039687A KR20240009418A (ko) 2021-05-20 2022-03-28 브로모플루오로메탄의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021085304 2021-05-20
JP2021-085304 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022244481A1 true WO2022244481A1 (ja) 2022-11-24

Family

ID=84141225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015079 WO2022244481A1 (ja) 2021-05-20 2022-03-28 ブロモフルオロメタンの製造方法

Country Status (4)

Country Link
JP (1) JPWO2022244481A1 (ja)
KR (1) KR20240009418A (ja)
TW (1) TWI816355B (ja)
WO (1) WO2022244481A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB805503A (en) * 1956-03-15 1958-12-10 Dow Chemical Co Improved fluorination catalyst and process
JPS5024202A (ja) * 1973-03-30 1975-03-15
JPS58203924A (ja) * 1982-05-24 1983-11-28 Kanto Denka Kogyo Kk 四フツ化炭素の製造法
JPH07179373A (ja) * 1993-12-21 1995-07-18 Chichibu Onoda Cement Corp 1−ブロモ−2−フルオロエタンの製造方法
JP2000505082A (ja) * 1996-02-23 2000-04-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ジハロジフルオロメタンおよびその同族体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB805503A (en) * 1956-03-15 1958-12-10 Dow Chemical Co Improved fluorination catalyst and process
JPS5024202A (ja) * 1973-03-30 1975-03-15
JPS58203924A (ja) * 1982-05-24 1983-11-28 Kanto Denka Kogyo Kk 四フツ化炭素の製造法
JPH07179373A (ja) * 1993-12-21 1995-07-18 Chichibu Onoda Cement Corp 1−ブロモ−2−フルオロエタンの製造方法
JP2000505082A (ja) * 1996-02-23 2000-04-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ジハロジフルオロメタンおよびその同族体の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BURTON DONALD J., QUI WEIMING, TAYLOR RICHARD J. K., MCALLISTER GRAEME D.: "Dibromodifluoromethane", ENCYCLOPEDIA OF REAGENTS FOR ORGANIC SYNTHESIS, Chichester , pages 1 - 7, XP093007797, ISBN: 978-0-470-84289-8, DOI: 10.1002/047084289X.rd036.pub2 *
LEMONNIER GÉRALD: "Tribromofluoromethane", ENCYCLOPEDIA OF REAGENTS FOR ORGANIC SYNTHESIS, Chichester , pages 1 - 4, XP093007793, ISBN: 978-0-470-84289-8, DOI: 10.1002/047084289X.rn01425 *

Also Published As

Publication number Publication date
JPWO2022244481A1 (ja) 2022-11-24
KR20240009418A (ko) 2024-01-22
TW202308969A (zh) 2023-03-01
TWI816355B (zh) 2023-09-21

Similar Documents

Publication Publication Date Title
EP2165973B1 (en) Method for production of iodine heptafluoride
JP6792151B2 (ja) 三フッ化塩素の製造方法
WO2012033644A1 (en) Method for preparing a trihalosilane
WO2019110710A1 (en) Process for preparing fluorohalogenoethers
CN113474319A (zh) 卤化丁烯化合物的制造方法
WO2022244481A1 (ja) ブロモフルオロメタンの製造方法
JP4983972B2 (ja) 五フッ化リンの製造方法
CN109071385B (zh) 制备1,2-二氯六氟环戊烯的方法
JP3130656B2 (ja) 1,1−ジクロロ−1,3,3,3− テトラフルオロプロパンの製造法
WO2021070550A1 (ja) 五フッ化臭素の製造方法
US6984366B2 (en) Method for nitrogen trifluoride production
JP3105321B2 (ja) フッ素含有エタン誘導体の製法
US20120164060A1 (en) Method for production of sulfur hexafluoride from sulfur tetrafluoride
WO2024048486A1 (ja) 七フッ化ヨウ素の製造方法
JP2017197390A (ja) 五フッ化臭素の製造方法
JP4122277B2 (ja) 三フッ素化窒素の製造方法
CN113272268A (zh) 环丁烷的制造方法
JP6730605B2 (ja) 五フッ化酸化ヨウ素の製造方法
JP2019532993A (ja) フッ素化シクロブタンを生成するためのプロセス
WO2023210729A1 (ja) 3-クロロ-1,1,1,5,5,5-ヘキサフルオロ-2-ペンテンの製造方法
JP2023056213A (ja) 1,1-ジクロロ-3,3,3-トリフルオロプロペンの製造方法
JP2024054626A (ja) カルボニルフロライドの製造方法および製造装置
US8163262B1 (en) Method for production of nitrogen trifluoride from trimethylsilylamines
JP2023539393A (ja) パーフルオロメチルビニルエーテル及び2-フルオロ-1,2-ジクロロ-トリフルオロメトキシエチレンの工業的合成の新規プロセス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804398

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522293

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18562141

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804398

Country of ref document: EP

Kind code of ref document: A1