WO2022242730A1 - 一锅法催化转化生物质制备2,5-己二酮的方法 - Google Patents
一锅法催化转化生物质制备2,5-己二酮的方法 Download PDFInfo
- Publication number
- WO2022242730A1 WO2022242730A1 PCT/CN2022/094002 CN2022094002W WO2022242730A1 WO 2022242730 A1 WO2022242730 A1 WO 2022242730A1 CN 2022094002 W CN2022094002 W CN 2022094002W WO 2022242730 A1 WO2022242730 A1 WO 2022242730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hexanedione
- organic solvent
- water
- mass ratio
- glucose
- Prior art date
Links
- OJVAMHKKJGICOG-UHFFFAOYSA-N 2,5-hexanedione Chemical compound CC(=O)CCC(C)=O OJVAMHKKJGICOG-UHFFFAOYSA-N 0.000 title claims abstract description 159
- 239000002028 Biomass Substances 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000005580 one pot reaction Methods 0.000 title claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 88
- 229910001868 water Inorganic materials 0.000 claims abstract description 85
- 238000006243 chemical reaction Methods 0.000 claims abstract description 79
- 239000003960 organic solvent Substances 0.000 claims abstract description 72
- 239000003054 catalyst Substances 0.000 claims abstract description 70
- 239000001257 hydrogen Substances 0.000 claims abstract description 54
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 54
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 48
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 40
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910017053 inorganic salt Inorganic materials 0.000 claims abstract description 16
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 14
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 11
- 239000002904 solvent Substances 0.000 claims abstract description 5
- 230000002051 biphasic effect Effects 0.000 claims abstract description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 84
- 239000008103 glucose Substances 0.000 claims description 84
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 62
- 229910052763 palladium Inorganic materials 0.000 claims description 25
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 23
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 19
- 239000012071 phase Substances 0.000 claims description 17
- 229910052697 platinum Inorganic materials 0.000 claims description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 15
- 239000002253 acid Substances 0.000 claims description 11
- 150000001450 anions Chemical class 0.000 claims description 11
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 10
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 8
- 230000003197 catalytic effect Effects 0.000 claims description 8
- 239000008346 aqueous phase Substances 0.000 claims description 7
- 150000001768 cations Chemical class 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 229930091371 Fructose Natural products 0.000 claims description 6
- 239000005715 Fructose Substances 0.000 claims description 6
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 6
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 claims description 5
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 claims description 5
- 240000008042 Zea mays Species 0.000 claims description 5
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 5
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 5
- 239000001913 cellulose Substances 0.000 claims description 5
- 229920002678 cellulose Polymers 0.000 claims description 5
- 235000005822 corn Nutrition 0.000 claims description 5
- 241000609240 Ambelania acida Species 0.000 claims description 4
- 229920001202 Inulin Polymers 0.000 claims description 4
- 229920002472 Starch Polymers 0.000 claims description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 4
- 229930006000 Sucrose Natural products 0.000 claims description 4
- 239000010905 bagasse Substances 0.000 claims description 4
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 claims description 4
- 229940029339 inulin Drugs 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 239000008107 starch Substances 0.000 claims description 4
- 235000019698 starch Nutrition 0.000 claims description 4
- 239000005720 sucrose Substances 0.000 claims description 4
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 claims description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 3
- 229910052794 bromium Inorganic materials 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 claims 2
- 239000003377 acid catalyst Substances 0.000 abstract description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 96
- 239000011780 sodium chloride Substances 0.000 description 48
- 239000007789 gas Substances 0.000 description 21
- 239000012074 organic phase Substances 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 238000003760 magnetic stirring Methods 0.000 description 18
- 239000012159 carrier gas Substances 0.000 description 16
- 238000004817 gas chromatography Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 11
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 10
- 238000005470 impregnation Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000001354 calcination Methods 0.000 description 6
- 238000004587 chromatography analysis Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 5
- 239000001103 potassium chloride Substances 0.000 description 5
- GSNUFIFRDBKVIE-UHFFFAOYSA-N 2,5-dimethylfuran Chemical compound CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- MWVFCEVNXHTDNF-UHFFFAOYSA-N hexane-2,3-dione Chemical compound CCCC(=O)C(C)=O MWVFCEVNXHTDNF-UHFFFAOYSA-N 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000003912 environmental pollution Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- NOEGNKMFWQHSLB-UHFFFAOYSA-N 5-hydroxymethylfurfural Chemical compound OCC1=CC=C(C=O)O1 NOEGNKMFWQHSLB-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical group 0.000 description 2
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 229960003750 ethyl chloride Drugs 0.000 description 2
- -1 halide anions Chemical class 0.000 description 2
- 238000003837 high-temperature calcination Methods 0.000 description 2
- RJGBSYZFOCAGQY-UHFFFAOYSA-N hydroxymethylfurfural Natural products COC1=CC=C(C=O)O1 RJGBSYZFOCAGQY-UHFFFAOYSA-N 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 125000005594 diketone group Chemical group 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N hexane Substances CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000012051 hydrophobic carrier Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000012450 pharmaceutical intermediate Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/56—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds
- C07C45/57—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom
- C07C45/60—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom in six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/17—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/56—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds
- C07C45/57—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom
- C07C45/59—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom in five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/04—Saturated compounds containing keto groups bound to acyclic carbon atoms
- C07C49/12—Ketones containing more than one keto group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/18—Carbon
Definitions
- the invention relates to the field of catalytic chemistry, in particular to a method for catalytically transforming biomass to prepare 2,5-hexanedione.
- HDO 2,5-hexanedione
- the platform compound 5-hydroxymethylfurfural prepared from biomass is hydrolyzed and hydrogenated to prepare 2,5-hexanedione (Green Chemistry.2016, 18, 3075-3081; Green Chemistry.2016, 18, 2956-2960; ChemSusChem 2014, 7, 96-100; CN105693486A), the hydrolysis of 2,5-dimethylfuran to prepare 2,5-hexane Diketones (CN105348056A; CN101423467B) and the like.
- the raw materials 5-hydroxymethylfurfural and 2,5-dimethylfuran used in the above preparation method are expensive, which leads to high preparation cost of 2,5-hexanedione and low economic benefit.
- the research group (ChemSusChem 2014, 7, 96-100) reported the use of Pd/C as a hydrogenation catalyst and high-pressure CO 2 as an acid catalyst to prepare 2,5-hexanedione from fructose by one-step catalysis, but 2,5-hexanedione The diketone yield was only 28%, and the raw material was also limited to fructose. Subsequently, the Essayem research group (Applied Catalysis A: General, 2015, 504, 664-671) reported the preparation of 2,5-hexanedione using ZrW as a catalyst and cellulose as a raw material, and the highest yield of 2,5-hexanedione The yield is only 24.5%, and the yield is low.
- CN109896938A uses raw biomass as raw material, liquid acid and supported noble metal as catalyst, and the yield of 2,5-hexanedione can reach 65%.
- the above reaction uses liquid acid as a catalyst, which will cause a certain degree of equipment corrosion, and the used liquid acid will bring problems such as environmental pollution and high treatment costs, which will bring great problems to industrial practical applications. Therefore, an efficient and green method is needed to realize the one-pot efficient catalytic conversion of biomass to prepare 2,5-hexanedione.
- the technical problem to be solved by the present invention is the problem of low catalytic efficiency or environmental pollution caused by liquid acid in the prior art, and provides a method for preparing 2,5-hexanedione by catalytic conversion of biomass in one pot.
- the method can realize high-efficiency conversion of biomass under the condition that no acid catalyst participates, and the selectivity of the product 2,5-hexanedione is very high.
- the present invention provides a dual-phase solvent system for converting biomass to prepare 2,5-hexanedione, which comprises an organic solvent phase and an aqueous solution phase, wherein: the aqueous solution phase comprises anion of a Group VIIA element; the aqueous phase has a pH of about 6.5-8.5, preferably 7-8; and comprises a hydrophobic hydrogenation catalyst for the production of 2,5-hexanedione from biomass.
- the organic solvent phase and the aqueous phase form a biphasic solvent system, as an example, in one embodiment, the organic solvent phase may have a lower density than the aqueous phase, in the range of about 0.8-0.95 Kg/m 3 .
- the aqueous phase further comprises an equimolar amount of a cation of a Group IA element to the anion of the Group VIIA element capable of forming an inorganic salt with the anion of the Group VIIA element.
- the Group VIIA elements are halogen elements, and the Group IA elements are alkali metal elements; correspondingly, the inorganic salts formed between their anions and cations are typically neutral, and can exhibit a pH of about 7.
- the inorganic salt is chloride or bromide.
- the inorganic salt may be LiCl, NaCl, KCl, LiBr, NaBr or KBr.
- liquid acid or acid salt is often added to the reaction system, so as to play a catalytic role together with the supported noble metal. That is, in known conventional processes, an acidic reaction environment is often maintained. Without being bound by any known theory, the inventors found through in-depth discovery that when introducing and maintaining a certain concentration of halide anions into the reaction system, and making the reaction start from a roughly neutral pH, it can show excellent reactions with supported noble metals active.
- a method for preparing 2,5-hexanedione by one-pot catalytic conversion of biomass comprising: in a heterogeneous system formed by organic solvent, inorganic salt and water, hydrogen is used as hydrogen source, biomass raw material and hydrogenation catalyst Contact reaction to obtain 2,5-hexanedione; the hydrogenation catalyst includes a hydrogenation active component and a carrier, wherein the carrier is selected from one or more of hydrophobic activated carbon and graphene.
- the organic solvent is one of tetrahydrofuran, toluene, methyl isobutyl ketone, 1,4-dioxane, ⁇ -valerolactone, chloroform, and 1,2-dichloroethane or a mixture of several.
- the anions and cations in the inorganic salt are from Group VIIA elements and Group IA elements respectively, wherein the Group VIIA elements are selected from at least one of Cl and Br, and the Group IA elements are selected from Li, At least one of Na and K.
- the ratio of the mass of the organic solvent to the sum of the mass of the inorganic salt and water is 2-16, preferably 3-10; and/or, the ratio of the mass of the inorganic salt to the mass of water is 0.10-0.70 , such as but not limited to 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70 and any range between the two, preferably 0.20-0.70, more preferably 0.40-0.70.
- the ratio of the mass of the inorganic salt to the mass of water reaches more than 0.40, and in the presence of the hydrophobic catalyst of the present invention, the selectivity of the 2,5-hexanedione product has a more prominent effect. .
- the mass ratio of the organic solvent to the biomass raw material is 5-60, preferably 15-40.
- the hydrogenation active component is selected from one or more of ruthenium, platinum and palladium, preferably platinum and/or palladium. Based on the dry mass of the hydrogenation catalyst, the mass content of the hydrogenation active component in terms of atoms is 0.5%-10%, preferably 2%-6%.
- the mass content of the carrier is 90%-99.5%, preferably 94%-98%.
- the contact angle between the hydrogenation catalyst and water is greater than 50°, preferably 55°-90°, more preferably 60-90°, for example but not limited to the following values: 55°, 60°, 65°, 70°, 75°, 80°, 85°, 90°.
- the biomass raw material is one or more of cellulose, glucose, fructose, sucrose, inulin, starch, corn stalks, corncobs, bagasse and the like.
- the hydrogen pressure is 0.2-6MPa, preferably 0.5-3MPa.
- the mass ratio of the biomass raw material to the hydrogenation catalyst is 8-0.5:1, preferably 4-1:1; and/or, the reaction temperature is 160-240°C, preferably 180-220°C; And/or, the reaction time is 2-16 hours, preferably 4-12 hours.
- the carrier can be prepared by a high-temperature calcination method, which specifically includes:
- Inert gas is used as the carrier gas, and activated carbon and/or graphene are selected to be calcined at high temperature to obtain a hydrophobic carrier.
- the conditions of the high-temperature calcination are as follows: the calcination temperature is 400-900° C., and the calcination time is 3-12 hours.
- the hydrogenation catalyst can be prepared by an impregnation method (preferably an equal volume impregnation method), specifically comprising:
- the hydrogenation catalyst is obtained by impregnating the aqueous solution containing the hydrogenation active metal on the carrier, drying, calcining and reducing.
- the solution containing hydrogenation active metals can be prepared by using soluble metal compounds, such as nitrates, chlorides, acetates, chloroplatinic acid and the like.
- the present invention has no special limitation on the dipping conditions, such as dipping at room temperature for 1-10 hours.
- the drying can be carried out in a conventional manner, preferably: the drying temperature is 40-90° C., and the drying time is 4-12 hours.
- the calcination can be carried out in a conventional manner, preferably: the calcination temperature is 300-550° C., and the calcination time is 3-8 hours.
- the reduction can be carried out with hydrogen, and the reduction conditions are preferably as follows: the reduction temperature is 300-450° C., and the reduction time is 3-6 hours.
- the reaction product is centrifuged to obtain an organic phase containing 2,5-hexanedione, that is, it mainly contains 2,5-hexanedione and an organic solvent, which can then be separated by conventional methods to obtain 2,5-hexanedione Ketones, such as distillation separation and other methods.
- a method for preparing 2,5-hexanedione by one-pot catalytic conversion of biomass comprising: in a heterogeneous system formed by organic solvent, inorganic salt and water, hydrogen is used as hydrogen source, biomass raw material and added
- the hydrogenation catalyst is contacted and reacted to obtain 2,5-hexanedione;
- the hydrogenation catalyst includes a hydrogenation active component and a carrier, wherein the carrier is selected from one or more of hydrophobic activated carbon and graphene.
- ratio of the mass of the organic solvent to the sum of the mass of the inorganic salt and water is 2-16, preferably 3-10; and/or, the inorganic salt
- the ratio of the mass of water to the mass of water is 0.10-0.70, preferably 0.20-0.70, more preferably 0.40-0.70.
- the hydrogenation active component is selected from one or more of ruthenium, platinum, and palladium, preferably platinum and/or palladium;
- the mass content of the hydrogenation active component in terms of atoms is 0.5%-10%, preferably 2%-6%.
- biomass raw material is one or more of cellulose, glucose, fructose, sucrose, inulin, starch, corn stalks, corncobs, and bagasse. kind.
- the present invention uses raw biomass as raw material, which is cheap and has a wide range of sources.
- the reaction process does not use an acid catalyst, which avoids the problems of corrosion of equipment, environmental pollution, and high treatment costs caused by acid. Moreover, the process is simple and can efficiently convert biomass.
- the prepared 2,5-hexanedione product has very high selectivity, the cycle stability of the reaction system is very good, and has good industrial application prospect.
- Fig. 1 is the measurement result figure of embodiment 1 gained hydrogenation catalyst and water contact angle
- FIG. 2 is a graph showing the measurement results of the contact angle between the hydrogenation catalyst obtained in Comparative Example 1 and water.
- the reaction product 2,5-hexanedione is qualitatively analyzed by gas chromatography-mass chromatography (GC-MS), and the yield of the product 2,5-hexanedione is analyzed by gas chromatography (GC).
- the gas spectrometer is Agilent 7890A of Agilent Corporation of the United States
- the chromatographic column is a HP-INNOWax capillary column (30m, 0.53mm)
- the gas chromatograph is Agilent 7890B
- the detector is a hydrogen flame ionization detector (FID)
- the chromatographic column is HP-INNOWax capillary column (30m, 0.53mm).
- the yield % of the product 2,5-hexanedione (the molar amount of 2,5-hexanedione produced by the reaction)/(the molar amount of the six-carbon sugar unit in the reactant) ⁇ 100%.
- the six-carbon sugar unit is C 6 H 10 O 5 .
- the model of the contact angle measuring instrument is DSA100 from KRUSS Company of Germany.
- the tangent to the gas-liquid interface is drawn from the intersection point of gas, liquid and solid, and the angle ⁇ between the tangent and the solid-liquid boundary passing through the three-phase contact point is the contact angle of the liquid on the solid surface.
- the gas is air
- the solid is the hydrogenation catalyst
- the liquid is water
- the measured contact angle is the contact angle between the hydrogenation catalyst and water, and the larger the contact angle, the better the relative hydrophobicity of the hydrogenation catalyst.
- the present invention enumerates the following examples, but the examples are only used to help understand the present invention, and should not be regarded as specific limitations to the present invention.
- Preparation of catalyst 3% Pd/Gr: palladium nitrate is impregnated on the above-mentioned hydrophobic graphene by equal volume impregnation method, and the impregnation amount is calculated according to the ratio of precious metal Pd:Gr mass ratio of 3:100. After being treated in an oven at 90°C for 8 hours, it was transferred to a high-temperature tube furnace, fed with nitrogen as a carrier gas, and the gas volume space velocity was 2h -1 , and raised to 500°C at a heating rate of 10°C, kept for 4 hours, and dropped to After room temperature PdO/Gr is subsequently obtained.
- the carrier gas was switched to hydrogen, the gas volume space velocity was 2h -1 , and the temperature was raised to 400°C at a heating rate of 10°C and kept for 4 hours.
- the carrier gas was switched to nitrogen again and cooled to room temperature to obtain 3% Pd/Gr. Afterwards, the contact angle between the catalyst and water was measured to be 64°, as shown in Figure 1, which indicated that the material had good hydrophobicity.
- the carrier gas was switched to hydrogen, the gas volume space velocity was 2h -1 , and the temperature was raised to 400°C at a heating rate of 10°C and kept for 4 hours.
- the carrier gas was switched to nitrogen again and cooled to room temperature to obtain 3% Pd/C. Afterwards, the contact angle between the catalyst and water was measured to be 57°, which is similar to that in Figure 1, indicating that the material has good hydrophobicity.
- catalyst 5% Pt/Gr impregnate chloroplatinic acid on the above-mentioned hydrophobic graphene by equal volume impregnation method, and the impregnation amount is calculated according to the ratio of precious metal Pt:Gr mass ratio of 5:100.
- the gas volume space velocity was 2h -1 , and raised to 500°C at a heating rate of 10°C, kept for 4 hours, and dropped to After room temperature PtO/Gr was subsequently obtained.
- the carrier gas was switched to hydrogen, the gas volume space velocity was 2h -1 , and the temperature was raised to 350°C at a heating rate of 10°C and kept for 5 hours.
- the carrier gas was switched to nitrogen again and cooled to room temperature to obtain 5% Pt/Gr. After the measurement, the contact angle is 76°, which is similar to Figure 1, indicating that the material has good hydrophobicity.
- Glucose is used as a biomass feedstock.
- the mass ratio of glucose and 3% Pd/Gr catalyst in Example 1 is 2: 1, the mass ratio of organic solvent and glucose is 20: 1, the mass ratio of organic solvent and NaCl and water is 8, and the mass ratio of NaCl and water is 0.50 .
- Glucose is used as a biomass feedstock.
- Glucose and the 3%Pd/C catalyst mass ratio in embodiment 2 are 2: 1, and organic solvent and glucose mass ratio are 15: 1, and the mass ratio of organic solvent and NaCl and water is 6, and the mass ratio of NaCl and water is 0.42 .
- Glucose is used as a biomass feedstock.
- Glucose and the 5%Pt/Gr catalyst mass ratio in embodiment 3 are 2: 1, and the mass ratio of organic solvent and glucose is 20: 1, and the mass ratio of organic solvent and NaCl and water is 8, and the mass ratio of NaCl and water is 0.25 .
- Glucose is used as a biomass feedstock.
- the mass ratio of glucose and 3% Pd/C catalyst in Example 2 is 2: 1, the mass ratio of organic solvent to glucose is 35: 1, the mass ratio of organic solvent to NaCl and water is 5, and the mass ratio of NaCl and water is 0.28 .
- Glucose is used as a biomass feedstock.
- the mass ratio of 5% Pt/Gr catalyst in glucose and embodiment 3 is 2: 1, and the mass ratio of organic solvent and glucose is 40: 1, and the mass ratio of organic solvent and NaCl and water is 7, and the mass ratio of NaCl and water is 0.26 .
- Glucose is used as a biomass feedstock.
- Glucose and the 3%Pd/Gr catalyst mass ratio in embodiment 1 are 2: 1, and the mass ratio of organic solvent and glucose is 18: 1, and the mass ratio of organic solvent and KCl and water is 4, and the mass ratio of KCl and water is 0.55 .
- Glucose is used as a biomass feedstock.
- Glucose and the 5%Pt/Gr catalyst mass ratio in embodiment 3 are 2: 1, and the mass ratio of organic solvent and glucose is 18: 1, and the mass ratio of organic solvent and KBr and water is 8, and the mass ratio of KBr and water is 0.24 .
- Glucose is used as a biomass feedstock.
- Glucose and the 3%Pd/Gr catalyst mass ratio in embodiment 1 are 2: 1, and organic solvent and glucose mass ratio are 25: 1, and the mass ratio of organic solvent and NaCl and water is 5, and the mass ratio of NaCl and water is 0.20 .
- Glucose is used as a biomass feedstock.
- Glucose and the 3%Pd/C catalyst mass ratio in embodiment 2 are 2: 1, organic solvent and glucose mass ratio are 25: 1, the concentrated seawater mass ratio of organic solvent and NaCl and water is 8, the mass ratio of NaCl and water is 0.25.
- Glucose is used as a biomass feedstock.
- the mass ratio of 5% Pt/Gr catalyst in glucose and embodiment 3 is 2: 1, and the mass ratio of organic solvent and glucose is 20: 1, and the mass ratio of organic solvent and NaCl and water is 8, and the mass ratio of NaCl and water is 0.28 .
- Glucose is used as a biomass feedstock.
- the mass ratio of glucose and 3% Pd/C catalyst in Example 2 is 2: 1, the mass ratio of organic solvent to glucose is 20: 1, the mass ratio of organic solvent to NaCl and water is 8, and the mass ratio of NaCl and water is 0.30 .
- Glucose is used as a biomass feedstock.
- the mass ratio of glucose and 3% Pd/C catalyst in Example 2 is 2: 1, the mass ratio of organic solvent to glucose is 20: 1, the mass ratio of organic solvent to NaCl and water is 8, and the mass ratio of NaCl and water is 0.55 .
- the carrier gas was switched to hydrogen, the gas volume space velocity was 2h -1 , and the temperature was raised to 400°C at a heating rate of 10°C and kept for 4 hours.
- the carrier gas was switched to nitrogen again and cooled to room temperature to obtain 3% Pd/DC. Afterwards, the contact angle was measured to be about 28°, as shown in Figure 2, which indicated that the hydrophobicity of the material was poor.
- Glucose is used as a biomass feedstock.
- the mass ratio of glucose to 3% Pd/DC catalyst in Comparative Example 1 is 2: 1, the mass ratio of organic solvent to glucose is 25: 1, the mass ratio of organic solvent to NaCl and water is 8, and the mass ratio of NaCl to water is 0.25 .
- Glucose is used as a biomass feedstock.
- the mass ratio of glucose to the 3% Pd/Gr catalyst in Example 1 is 2:1, the mass ratio of organic solvent to glucose is 20:1, the water phase is deionized water, and the mass ratio of organic solvent to deionized water is 8.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
实施例 | 原料 | 2,5-己二酮收率/% |
25 | 纤维素 | 52 |
26 | 果糖 | 52 |
27 | 蔗糖 | 54 |
28 | 菊糖 | 52 |
29 | 淀粉 | 53 |
30 | 玉米秸秆 | 60 |
31 | 玉米芯 | 58 |
32 | 甘蔗渣 | 54 |
套用次数 | 葡萄糖转化率/% | 2,5-己二酮收率/% |
1 | >99 | 62 |
2 | >99 | 60 |
3 | >99 | 60 |
4 | >99 | 59 |
5 | >99 | 58 |
Claims (15)
- 一种用于转化生物质制备2,5-己二酮的双相溶剂体系,其包含有机溶剂相和水溶液相,其中:所述水溶液相包含选自第VIIA族元素的阴离子;室温条件25℃下,该水溶液相的pH为大约6.5-8.5,优选7-8,和所述有机溶剂相包含用于生物质制备2,5-己二酮的疏水性加氢催化剂。
- 根据权利要求1所述的体系,其特征在于,所述水溶液相还包含与所述第VIIA族元素的阴离子等摩尔量的第IA族元素的阳离子,其能够与所述第VIIA族元素的阴离子形成无机盐。
- 根据权利要求2所述的体系,其特征在于,所述第VIIA族元素选自Cl和Br中的至少一种,和/或所述第IA族元素选自Li、Na、K中的至少一种。
- 根据权利要求1所述的体系,其特征在于,所述疏水性加氢催化剂包括加氢活性组分和载体,其中所述载体选自具有疏水性的活性炭和石墨烯中的一种或多种。
- 根据权利要求1-4中任一项所述的体系,其特征在于,所述有机溶剂相的有机溶剂为四氢呋喃、甲苯、甲基异丁基酮、1,4-二氧六环、γ-戊内酯中、氯仿、1,2-二氯乙烷中的一种或几种的混合物。
- 根据权利要求5所述的体系,其特征在于,所述第VIIA族元素的阴离子和第IA族元素的阳离子通过加入包含所述阴离子和所述阳离子的无机盐加入;其中所述有机溶剂相中有机溶剂的质量与所述水溶液相中无机盐和水的质量之和的比值为2-16,优选为3-10;和/或,无机盐的质量与水的质量的比值为0.10-0.70,优选为0.20-0.70,进一步优选为0.40-0.70。
- 根据权利要求1所述的体系,其特征在于,所述加氢活性组分选自钌、铂、钯中的一种或几种,优选为铂和/或钯;优选地,以加氢催化剂的干基质量为基准,加氢活性组分以原子计的质量含量为0.5%-10%,优选为2%-6%。
- 根据权利要求1或7所述的体系,其特征在于,所述加氢催化剂与水的接触角大于50°,优选为55°-90°,还优选60-90°。
- 根据权利要求1-4中任一项所述的体系,其特征在于,所述有机溶剂相具有比所述水溶液相更低的密度,例如所述有机溶剂相的密度为大约0.8-0.95Kg/m 3。
- 一种一锅法催化转化生物质制备2,5-己二酮的方法,包括:在权利要求1-9中任一项所述的双相溶剂反应体系中,以氢气为氢源,使生物质原料与加氢催化剂接触反应,得到2,5-己二酮。
- 根据权利要求10所述的方法,其特征在于,在该方法过程中,不向所述反应体系中加入酸,以及优选不加入酸性盐。
- 根据权利要求10所述的体系,其特征在于,所述有机溶剂与生物质原料的质量比为5-60,优选为15-40。
- 根据权利要求10所述的方法,其特征在于,所述生物质原料为纤维素、葡萄糖、果糖、蔗糖、菊糖、淀粉、玉米秸秆、玉米芯、甘蔗渣中的一种或几种。
- 根据权利要求10所述的方法,其特征在于,反应体系中,氢气压力为0.2-6MPa,优选为0.5-3MPa。
- 根据权利要求10-14任一所述的方法,其特征在于,所述生物质原料与加氢催化剂的质量比为8-0.5∶1,优选为4-1∶1;和/或,反应温度为160-240℃,优选为180-220℃;和/或,反应时间为2-16小时,优选为4-12小时。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/562,876 US20240262771A1 (en) | 2021-05-21 | 2022-05-20 | One-pot process for catalytically converting biomass to prepare 2,5-hexanedione |
JP2023571945A JP2024519095A (ja) | 2021-05-21 | 2022-05-20 | バイオマスを触媒変換して2,5-ヘキサンジオンを調製するワンポット合成 |
EP22804050.7A EP4342875A1 (en) | 2021-05-21 | 2022-05-20 | Method for preparing 2, 5-hexanedione by catalyzing and converting biomass by one-pot synthesis |
BR112023024011A BR112023024011A2 (pt) | 2021-05-21 | 2022-05-20 | Processo one-pot para a conversão catalítica de biomassa para preparar 2,5-hexanodiona. |
KR1020237044064A KR20240012489A (ko) | 2021-05-21 | 2022-05-20 | 원포트 합성에 의한 바이오매스 촉매화 및 전환에 의한 2,5-헥산디온의 제조 방법 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110557880.2A CN115368228B (zh) | 2021-05-21 | 2021-05-21 | 一锅法催化转化生物质制备2,5-己二酮的方法 |
CN202110557880.2 | 2021-05-21 | ||
CN202110559517.4A CN115368200B (zh) | 2021-05-21 | 2021-05-21 | 一种生物质转化制备对二甲苯的方法 |
CN202110559517.4 | 2021-05-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022242730A1 true WO2022242730A1 (zh) | 2022-11-24 |
Family
ID=84140253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/094002 WO2022242730A1 (zh) | 2021-05-21 | 2022-05-20 | 一锅法催化转化生物质制备2,5-己二酮的方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240262771A1 (zh) |
EP (1) | EP4342875A1 (zh) |
JP (1) | JP2024519095A (zh) |
KR (1) | KR20240012489A (zh) |
BR (1) | BR112023024011A2 (zh) |
TW (1) | TW202302512A (zh) |
WO (1) | WO2022242730A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024164914A1 (zh) * | 2023-02-10 | 2024-08-15 | 厦门大学 | 利用5-氯甲基糠醛制备2,5-己二酮的方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101423467B (zh) | 2008-11-14 | 2012-03-07 | 河北科技大学 | 一种合成2,5-己二酮的方法 |
CN105348056A (zh) | 2015-12-11 | 2016-02-24 | 中国科学院山西煤炭化学研究所 | 一种两相法合成2,5-己二酮的方法 |
CN105439836A (zh) * | 2015-12-11 | 2016-03-30 | 中国科学院山西煤炭化学研究所 | 一种固体酸催化制备2,5-己二酮的方法 |
CN105693486A (zh) | 2016-01-19 | 2016-06-22 | 上海交通大学 | 利用5-羟甲基糠醛制备2,5-己二酮和3-甲基环戊烯酮的方法 |
CN106220485A (zh) * | 2016-08-29 | 2016-12-14 | 吴琦琪 | 一种催化制备2,5‑己二酮的方法 |
CN107445925A (zh) * | 2017-09-15 | 2017-12-08 | 华东理工大学 | 一种原生生物质全利用制备呋喃类化合物和液态环烷烃的方法 |
CN109896938A (zh) | 2017-12-07 | 2019-06-18 | 中国科学院大连化学物理研究所 | 一种制备2,5-己二酮的方法 |
CN111218308A (zh) * | 2018-11-27 | 2020-06-02 | 中国科学院大连化学物理研究所 | 一种由生物质原料制备高密度燃料的方法 |
CN112047907A (zh) * | 2020-09-22 | 2020-12-08 | 浙江大学 | 一种甲酸供氢、金属卤化物协同催化下葡萄糖一锅法制备2,5-呋喃二甲醇的方法 |
CN113968776A (zh) * | 2021-11-15 | 2022-01-25 | 中国科学院大连化学物理研究所 | 一种生物质原料制备环戊酮的方法 |
-
2022
- 2022-05-20 BR BR112023024011A patent/BR112023024011A2/pt unknown
- 2022-05-20 JP JP2023571945A patent/JP2024519095A/ja active Pending
- 2022-05-20 KR KR1020237044064A patent/KR20240012489A/ko active Search and Examination
- 2022-05-20 US US18/562,876 patent/US20240262771A1/en active Pending
- 2022-05-20 WO PCT/CN2022/094002 patent/WO2022242730A1/zh active Application Filing
- 2022-05-20 EP EP22804050.7A patent/EP4342875A1/en active Pending
- 2022-05-20 TW TW111118892A patent/TW202302512A/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101423467B (zh) | 2008-11-14 | 2012-03-07 | 河北科技大学 | 一种合成2,5-己二酮的方法 |
CN105348056A (zh) | 2015-12-11 | 2016-02-24 | 中国科学院山西煤炭化学研究所 | 一种两相法合成2,5-己二酮的方法 |
CN105439836A (zh) * | 2015-12-11 | 2016-03-30 | 中国科学院山西煤炭化学研究所 | 一种固体酸催化制备2,5-己二酮的方法 |
CN105693486A (zh) | 2016-01-19 | 2016-06-22 | 上海交通大学 | 利用5-羟甲基糠醛制备2,5-己二酮和3-甲基环戊烯酮的方法 |
CN106220485A (zh) * | 2016-08-29 | 2016-12-14 | 吴琦琪 | 一种催化制备2,5‑己二酮的方法 |
CN107445925A (zh) * | 2017-09-15 | 2017-12-08 | 华东理工大学 | 一种原生生物质全利用制备呋喃类化合物和液态环烷烃的方法 |
CN109896938A (zh) | 2017-12-07 | 2019-06-18 | 中国科学院大连化学物理研究所 | 一种制备2,5-己二酮的方法 |
CN111218308A (zh) * | 2018-11-27 | 2020-06-02 | 中国科学院大连化学物理研究所 | 一种由生物质原料制备高密度燃料的方法 |
CN112047907A (zh) * | 2020-09-22 | 2020-12-08 | 浙江大学 | 一种甲酸供氢、金属卤化物协同催化下葡萄糖一锅法制备2,5-呋喃二甲醇的方法 |
CN113968776A (zh) * | 2021-11-15 | 2022-01-25 | 中国科学院大连化学物理研究所 | 一种生物质原料制备环戊酮的方法 |
Non-Patent Citations (3)
Title |
---|
APPLIED CATALYSIS A: GENERAL, vol. 504, 2015, pages 664 - 671 |
CHEMSUSCHEM, vol. 7, 2014, pages 96 - 100 |
GREEN CHEMISTRY, vol. 18, 2016, pages 2956 - 2960 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024164914A1 (zh) * | 2023-02-10 | 2024-08-15 | 厦门大学 | 利用5-氯甲基糠醛制备2,5-己二酮的方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4342875A1 (en) | 2024-03-27 |
US20240262771A1 (en) | 2024-08-08 |
JP2024519095A (ja) | 2024-05-08 |
TW202302512A (zh) | 2023-01-16 |
KR20240012489A (ko) | 2024-01-29 |
BR112023024011A2 (pt) | 2024-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tan et al. | Complete aqueous hydrogenation of 5-hydroxymethylfurfural at room temperature over bimetallic RuPd/graphene catalyst | |
US9663426B2 (en) | Composite metal catalyst composition, and method and apparatus for preparing 1,4-cyclohexanedimethanol using same | |
US9561991B2 (en) | Process and apparatus for co-producing cyclohexanol and alkanol | |
WO2017060922A1 (en) | An eco-friendly process for hydrogenation or/and hydrodeoxygenation of organic compound using hydrous ruthenium oxide catalyst | |
JP2017520511A (ja) | アルケノールの製造方法および1,3−ブタジエンの製造のためのその使用 | |
CN104785250B (zh) | 一种加氢催化剂、制备方法及其在制备六氢苯酐中的应用 | |
CN106866360B (zh) | 一种5-羟甲基糠醛催化转化制备1,6-己二醇的方法 | |
Niu et al. | Highly efficient and selective N-Alkylation of amines with alcohols catalyzed by in situ rehydrated titanium hydroxide | |
JP4953195B2 (ja) | プロパンジオールの製造方法 | |
WO2022242730A1 (zh) | 一锅法催化转化生物质制备2,5-己二酮的方法 | |
JP2019526588A (ja) | 1,3−シクロヘキサンジメタノールの製造方法 | |
CN108067304A (zh) | 一种介孔功能杂化材料及其制备方法与应用 | |
CN109999907B (zh) | 一种磺酸功能化无机有机杂化聚合物催化剂的制备方法及其应用 | |
JP4979230B2 (ja) | テトラヒドロピラン化合物の製造方法及び該製造方法で製造されるテトラヒドロピラン化合物 | |
CN109748777B (zh) | 一种1,2,6-己三醇催化氢解制备1,6-己二醇的方法 | |
JP2019501193A5 (zh) | ||
KR101639487B1 (ko) | 공정 단순화를 위한 트랜스-1,4-사이클로헥산디메탄올 제조장치 | |
JP5152895B2 (ja) | 環状アルキレンイミンの製造方法 | |
CN106892807A (zh) | 一种异佛尔酮的制备方法 | |
CN115368228B (zh) | 一锅法催化转化生物质制备2,5-己二酮的方法 | |
CN106632370A (zh) | 一种葡萄糖制备异山梨醇的方法 | |
CN109970501B (zh) | 一种1,2-二苯乙烷的新制备方法 | |
CN113058652B (zh) | 没食子酸锆催化剂及其在巴豆醛选择性加氢反应中的应用 | |
CN111925267B (zh) | 一种2-甲基-1,3-戊二烯的制备方法 | |
WO2022242731A1 (zh) | 一种生物质转化制备对二甲苯的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22804050 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023571945 Country of ref document: JP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023024011 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202347086341 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20237044064 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237044064 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022804050 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022804050 Country of ref document: EP Effective date: 20231221 |
|
ENP | Entry into the national phase |
Ref document number: 112023024011 Country of ref document: BR Kind code of ref document: A2 Effective date: 20231116 |