WO2022242017A1 - 一种低电阻率石榴石型改性llzo固体电解质的制备方法 - Google Patents

一种低电阻率石榴石型改性llzo固体电解质的制备方法 Download PDF

Info

Publication number
WO2022242017A1
WO2022242017A1 PCT/CN2021/123432 CN2021123432W WO2022242017A1 WO 2022242017 A1 WO2022242017 A1 WO 2022242017A1 CN 2021123432 W CN2021123432 W CN 2021123432W WO 2022242017 A1 WO2022242017 A1 WO 2022242017A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
llzo
preparation
llzo solid
low
Prior art date
Application number
PCT/CN2021/123432
Other languages
English (en)
French (fr)
Inventor
宫娇娇
陈军
黄建根
郑利峰
Original Assignee
万向一二三股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万向一二三股份公司 filed Critical 万向一二三股份公司
Publication of WO2022242017A1 publication Critical patent/WO2022242017A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium batteries, in particular to a method for preparing a low-resistivity garnet-type modified LLZO solid electrolyte.
  • the patent application number CN201910885634.2 discloses a low barrier garnet structure solid electrolyte for lithium batteries and its preparation method, which uses ion sputtering to prepare an amorphous layer on the surface of the material, reducing the Li7La 3-x Al x Zr The interface impedance of 2 O 12 in contact with the electrode.
  • the patent with the application number CN201710797774.5 discloses a method for preparing a nano-garnet solid electrolyte material. LLZO materials with specific shapes are prepared by adding graphene or graphene templates, which can be used for secondary solid lithium batteries.
  • the patent with the application number CN202010894341.3 discloses an organic/inorganic composite solid electrolyte with a bicontinuous structure and its preparation method.
  • the three-dimensional porous LLZO is used as the skeleton material and filled with organic materials and lithium salts with good ion-conducting properties. , providing bicontinuous ion-conducting pathways for lithium ions and improving the room-temperature conductivity.
  • the above scheme also has some disadvantages.
  • the nano-LLZO prepared in the patent CN201710797774.5 has a large specific surface area and a large interface impedance; in the patent CN201910885634.2, ion sputtering coating is used to reduce the interface resistance, and the operation cost is high, which cannot meet the scale.
  • Application requirements; patent CN202010894341.3 fills the three-dimensional pores of LLZO with flexible organic materials, but in order to achieve uniform filling of organic materials, the three-dimensional porous LLZO matrix used needs to maintain a certain porosity, the material cost is high, and lithium ions are in the interface. The molecular-level transport process is still limited, and the side reaction between water and LLZO materials cannot be avoided, which has certain technical limitations.
  • the present invention provides a method for preparing a low-resistivity garnet-type modified LLZO solid electrolyte.
  • the present invention improves the mixing efficiency of raw materials through a three-dimensional high-energy vibration ball milling method, and prepares Al/Ga doped electrolytes through high-temperature sintering.
  • Heterogeneously modified LLZO solid electrolyte; and the polymer salt-non-aqueous solvent is used to repair the grain boundary through low-temperature cold sintering technology, which improves the conductivity of the LLZO grain boundary and significantly reduces the actual resistivity of the LLZO solid electrolyte, which contributes to its use in solid batteries Applications.
  • the specific technical scheme of the present invention is: a kind of preparation method of low-resistivity garnet type modified LLZO solid electrolyte, comprises the following steps:
  • ingredients are prepared according to the element composition in LLZO, and Ga and Al-containing raw materials are added on this basis; all raw materials are added to a three-dimensional high-energy vibration ball mill for ball milling After ball milling, sinter in air at 300-400°C, cool, continue ball milling, and then anaerobically sinter at 300-500Mpa, 900-1100°C to prepare Al/Ga doped modified LLZO solid electrolyte.
  • step 2) in order to reduce the resistance of the LLZO solid electrolyte, the present invention uses a low-temperature cold sintering technology to modify the interface of the Al/Ga doped modified LLZO solid electrolyte to reduce the interface resistance.
  • the team of the present invention found that the LLZO solid electrolyte is very sensitive to moisture, and after contacting with water, a lithium carbonate layer is easily formed on the surface of the material, which increases the lithium ion transmission resistance.
  • the present invention adopts acetone and polypropylene carbonate nonaqueous solvent to carry out surface coating to solid electrolyte, avoids its contact with water solvent;
  • a small amount of lithium perchlorate can form salt bridge on LLZO material surface , the LLZO surface grain boundaries can be easily repaired in a non-aqueous solvent environment and low temperature, resulting in a LLZO solid electrolyte with low interfacial resistance.
  • the total doping amount of Ga and Al in LLZO is not more than 5wt%.
  • each raw material is Li 2 CO 3 , La 2 O 3 , ZrO 2 , Ga 2 O 3 and Al 2 O 3 .
  • step 1) the Li 2 CO 3 is additionally added with a balance of 5-15wt%.
  • the inner wall of the three-dimensional high-energy vibration ball mill is made of zirconia
  • the grinding balls are steel balls
  • the ball milling conditions are: the ball-to-material ratio is 20-50:40- 80, ball mill at room temperature for 5-10 minutes; after cooling, continue ball milling for 10-20 minutes.
  • step 1) sinter in air at 300-400°C for 1-3 hours, then cool to room temperature at a rate of 10-20°C/min, continue ball milling and mix at 300-500Mpa, at 900-1100°C Sinter for 6-12 hours.
  • the obtained Al/Ga-doped modified LLZO solid electrolyte has an average particle size of 0.2-1.0 ⁇ m.
  • step 2) the polypropylene carbonate and acetone are ultrasonically mixed at room temperature in a volume ratio of 1-3:2-5 for 5-15 minutes, lithium perchlorate is added and ultrasonically dissolved until the lithium perchlorate is completely dissolved, and the perchlorate
  • the concentration of lithium acid is 35-55wt%.
  • step 2) the mass ratio of the mixed solution to the Al/Ga-doped modified LLZO solid electrolyte is (2-8):(65-80).
  • step 2) after adding the Al/Ga doped modified LLZO solid electrolyte, continue ultrasonic mixing for 20-40 minutes, and sinter at low temperature for 1-3 hours.
  • the present invention has the following technical effects:
  • the invention improves the mixing efficiency of raw materials through a three-dimensional high-energy vibration ball milling method, and can prepare Al/Ga doped modified LLZO solid electrolyte in a short time after high-temperature sintering.
  • the polymer salt-nonaqueous solvent is used to repair the grain boundary of the LLZO solid electrolyte through low-temperature cold sintering technology, so as to improve the conductivity of the LLZO grain boundary and significantly reduce the lithium ion DC and AC resistivity of the LLZO.
  • a preparation method of low-resistivity garnet-type modified LLZO solid electrolyte comprising the following steps:
  • Low-temperature cold sintering modification firstly, ultrasonicate polypropylene carbonate and acetone at room temperature according to the volume ratio of 1-3:2-5 for 5-15 minutes, add lithium perchlorate (LiClO 4 ), and ultrasonically dissolve lithium perchlorate completely ( LiClO Mass fraction is 35-55%); Add Al/Ga doped modified LLZO solid electrolyte (the mass ratio of mixed solution and Al/Ga doped modified LLZO solid electrolyte is 2-8 in this mixed solution: 65-80), continue ultrasonic mixing for 20-40 minutes, then sinter at 300-400Mpa, 100-250°C for 1-3 hours at a low temperature to prepare a low-resistivity garnet-type modified LLZO solid electrolyte.
  • LiClO 4 lithium perchlorate
  • LiClO Mass fraction is 35-55%
  • Add Al/Ga doped modified LLZO solid electrolyte the mass ratio of mixed solution and Al/Ga doped
  • Example 2 The difference from Example 1 is that 2% Al doping is performed, and the Al-containing raw material is Al 2 O 3 (purity 99.9%).
  • Example 2 The difference from Example 1 is that 2% Ga doping is performed, and the Ga-containing raw material is Ga 2 O 3 (purity 99.9%).
  • Example 1 The difference from Example 1 is that 1% Ga and 1% Al are doped, the Ga-containing raw material is Ga 2 O 3 (purity 99.9%), and the Al-containing raw material is Al 2 O 3 (purity 99.9%).
  • Example 5 The difference from Example 5 is that the Al/Ga-doped modified LLZO solid electrolyte is modified by low-temperature cold sintering: first, polypropylene carbonate and acetone are ultrasonicated for 10 minutes at a volume ratio of 1.5:3 at room temperature, and lithium perchlorate is added (LiClO 4 ), sonicate until lithium perchlorate is completely dissolved (LiClO 4 mass fraction is 45%); add Al/Ga doped modified LLZO solid electrolyte to this mixed solution (mixed solution and Al/Ga doped modified LLZO The mass ratio of the solid electrolyte is 5:70), and after continuing the ultrasonic mixing for 40 minutes, sintering at 400Mpa and 100°C for 2.5 hours at a low temperature to prepare the LLZO solid electrolyte.
  • Example 7 The difference from Example 7 is that the low-temperature calcination temperature is 200°C.
  • Example 7 The difference from Example 7 is that the low-temperature calcination temperature is 250°C.
  • Raw materials used in the present invention, equipment, if not specified, are commonly used raw materials, equipment in this area; Method used in the present invention, if not specified, are conventional methods in this area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及锂电池领域,本发明公开了一种低电阻率石榴石型改性LLZO固体电解质的制备方法,包括:1)配料后将原料添加至混合球磨,球磨后于300-400℃空气中进行烧结,冷却,继续球磨,再于300-500Mpa、900-1100℃绝氧烧结,制得Al/Ga掺杂改性LLZO固体电解质;2)将碳酸聚丙烯和丙酮混合均匀,加入高氯酸锂充分溶解,加入Al/Ga掺杂改性LLZO固体电解质,继续超声混合均匀后,在300-400Mpa、100-250℃下低温烧结成品。本发明方法可显著降低LLZO固体电解质的实际电阻率,有助于其在固体电池中的应用。

Description

一种低电阻率石榴石型改性LLZO固体电解质的制备方法 技术领域
本发明涉及锂电池领域,尤其涉及一种低电阻率石榴石型改性LLZO固体电解质的制备方法。
背景技术
易燃易泄露是锂离子电池液体电解质的主要问题,用固体电解质代替液体电解质可以解决上述安全问题。石榴石型锆酸镧锂Li 7La 3Zr 2O 12(LLZO)由于在室温下具有较高的离子电导率、良好的热稳定性和化学稳定性,被认为是氧化物电解质最重要的候选材料之一。但是LLZO与电极之间的接触阻抗大,为满足固体锂电池的性能需求,需要进一步提高LLZO电导率。例如申请号为CN201910885634.2的专利公开了一种锂电池低界阻石榴石结构固态电解质及制备方法,其利用离子溅射在材料表面制备非晶态层,降低了Li7La 3-xAl xZr 2O 12与电极接触的界面阻抗。申请号为CN201710797774.5的专利公开了一种纳米石榴石型固体电解质材料的制备方法,通过加入石墨烯或石墨烯模板制备了特定形貌的LLZO材料,可用于二次固体锂电池。申请号为CN202010894341.3的专利公开了一种具有双连续结构的有机/无机复合固体电解质及其制备方法,以三维多孔LLZO为骨架材料,填充具有较好的导离子性能的有机材料和锂盐,为锂离子提供了双连续的离子导电通路,提高了室温电导率。
然而上述方案也存在一些缺点,例如专利CN201710797774.5中制备得到的纳米LLZO比表面积大,界面阻抗大;专利CN201910885634.2中为降低界面电阻采用离子溅射镀膜,操作成本高,无法满足规模化应用要求;专利CN202010894341.3将柔性较好的有机材料填充在LLZO三维孔隙中,但是为实现有机材料均匀填充,所用三维多孔LLZO基质需要维持一定的孔隙率,材料成本高,且锂离子在界面处分子级传输过程仍然受限,无法避免水分与LLZO材料发生副反应,具有一定的技术局限性。
发明内容
为了解决上述技术问题,本发明提供了一种低电阻率石榴石型改性LLZO固体电解质的制备方法,本发明通过三维高能振动球磨法提高原料混合效率,并经高温烧结制备得到Al/Ga掺杂改性LLZO固体电解质;以及将聚合物盐-非水溶剂通过低温冷烧结技术修复晶界,提高LLZO晶界电导性,显著降低LLZO固体电解质的实际电阻率,有助于其在固体电池中的应用。
本发明的具体技术方案为:一种低电阻率石榴石型改性LLZO固体电解质的制备方法,包括以下步骤:
1)Al/Ga掺杂改性LLZO固体电解质的制备:按照LLZO中的元素组成进行配料,在此基础上配加含Ga和含Al的原料;将所有原料添加至三维高能振动球磨机内进行球磨,球磨后于300-400℃空气中进行烧结,冷却,继续球磨,再于300-500Mpa、900-1100℃绝氧烧结,制得Al/Ga掺杂改性LLZO固体电解质。
2)低温冷烧结修饰:将碳酸聚丙烯和丙酮混合均匀,加入高氯酸锂充分溶解,向所得混合溶液中加入Al/Ga掺杂改性LLZO固体电解质,继续超声混合均匀后,在300-400Mpa、100-250℃下低温烧结,制得低电阻率石榴石型改性LLZO固体电解质。
在步骤1)中,本发明通过三维高能振动球磨法提高原料混合效率,并经高温烧结制备得到Al/Ga掺杂改性LLZO固体电解质。具体地,经过首次300-400℃空气烧结后,可促进不同原料之间界面相容性,在此温度范围内,可加速不同原材料之间的界面相容性,同时氧气反应活性低,难以和材料中各元素发生反应,可以在空气中进行,利于降低生产成本,经第二次的高压高温(300-500Mpa,900-1100℃)绝氧烧结,在该温度范围内,产物结晶度和致密度得到提高,由于氧气反应活性高,会与原材料发生不必要的副反应,导致产物中含有杂质,本步骤需在绝氧条件下进行。
在步骤2)中,为了降低LLZO固体电解质的电阻,本发明采用低温冷烧结技术修饰Al/Ga掺杂改性LLZO固体电解质的界面以降低界面电阻。具体地,本发明团队发现LLZO固体电解质对水分非常敏感,与水接触后在材料表面容易生成碳酸锂层,增加锂离子传输电阻。为此,一方面,本发明采用丙酮和碳酸聚丙烯非水溶剂对固体电解质进行表面包覆,避免其与水溶剂接触;另一方面,少量的高氯酸锂在LLZO材料表面可形成盐桥,在非水溶剂环境和低温下可以很容易修复LLZO表面晶界,从而得到低界面电阻的LLZO固体电解质。
作为优选,步骤1)中,Ga和Al在LLZO中的总掺杂量为不大于5wt%。
作为优选,步骤1)中,各原料分别为Li 2CO 3、La 2O 3、ZrO 2、Ga 2O 3和Al 2O 3
作为优选,步骤1)中,所述Li 2CO 3额外增加5-15wt%的余量。
作为优选,步骤1)中,所述三维高能振动球磨机的内壁为氧化锆材质,研磨球为钢球、碳化钨球或聚胺肽球,球磨条件为:球料比为20-50:40-80,在常温下球磨5-10分钟;冷却后继续球磨10-20分钟。
LLZO固体电解质的粒径主要通过球磨时间和球料比调控,球磨时间越长,球料比越高,材料粒径越小。
作为优选,步骤1)中,在300-400℃空气中烧结1-3小时,然后以10-20℃/分钟的速率冷却至室温,继续球磨混合,在300-500Mpa下,900-1100℃下烧结6-12小时。
作为优选,步骤1)中,所得Al/Ga掺杂改性LLZO固体电解质的平均粒径为0.2-1.0μm。
作为优选,步骤2)中,所述碳酸聚丙烯和丙酮在常温下按体积比1-3:2-5超声混合5-15分钟,加入高氯酸锂超声至高氯酸锂全部溶解,高氯酸锂的浓度为35-55wt%。
作为优选,步骤2)中,所述混合溶液与Al/Ga掺杂改性LLZO固体电解质的质量比为(2-8):(65-80)。
作为优选,步骤2)中,添加Al/Ga掺杂改性LLZO固体电解质后继续超声混合20-40分钟,低温烧结1-3小时。
与现有技术相比,本发明具有以下技术效果:
(1)本发明通过三维高能振动球磨法提高原料混合效率,并经高温烧结可在短时间内制备得到Al/Ga掺杂改性LLZO固体电解质。
(2)本发明将聚合物盐-非水溶剂通过低温冷烧结技术对LLZO固体电解质进行晶界修复,提高LLZO晶界电导性,显著降低LLZO的锂离子直流和交流电阻率。
具体实施方式
下面结合实施例对本发明作进一步的描述。
总实施例
一种低电阻率石榴石型改性LLZO固体电解质的制备方法,包括以下步骤:
1)Al/Ga掺杂改性LLZO固体电解质的制备:以Li 2CO 3(纯度99.9%,添加5-15%过量的Li 2CO 3以补偿烧结期间的Li损失),La 2O 3(纯度99.9%),ZrO 2(纯度99.9%),Ga 2O 3(纯度99.9%),Al 2O 3(纯度99.9%)为原料,按照所需化学计量比加入三维高能振动球磨机内(Ga和Al在LLZO中的总掺杂量为不大于5wt%),球磨机内壁氧化锆材质,研磨球为钢球、碳化钨球、聚胺肽球中的一种,球料比为20-50:40-80,在常温下球磨5-10分钟,在300-400℃空气中烧结1-3小时,促进不同原材料之间界面相容性,按照10-20℃/分钟的速度冷却至室温,继续球磨混合10-20分钟,在300-500Mpa下,900-1100℃绝氧烧结6-12小时,增加结晶度和致密度,制得Al/Ga掺杂改性LLZO固体电解质,平均粒径为0.2-1.0μm。
2)低温冷烧结修饰:首先将碳酸聚丙烯和丙酮常温下按照1-3:2-5的体积比超声5-15分钟,加入高氯酸锂(LiClO 4),超声至高氯酸锂全部溶解(LiClO 4质量分数为35-55%);向该混合溶液中加入Al/Ga掺杂改性LLZO固体电解质(混合溶液与Al/Ga掺杂改性LLZO固体电解质的质量比为2-8:65-80),继续超声混合20-40分钟后,在300-400Mpa,100-250℃下低温烧结1-3小时,制得低电阻率石榴石型改性LLZO固体电解质。
实施例1
Al/Ga掺杂改性LLZO固体电解质的制备:以Li 2CO 3(纯度99.9%,添加10%过量的Li 2CO 3以补偿烧结期间的Li损失),La 2O 3(纯度99.9%),ZrO 2(纯度99.9%),为原料,按照所需化学计量比加入三维高能振动球磨机内,球磨机内壁氧化锆材质,研磨球为碳化钨球,球料比为25:45,在常温下球磨10分钟,在400℃空气中烧结3小时,促进不同原材料之间界面相容性,按照10℃/分钟的速度冷却至室温,继续球磨混合10分钟,在400Mpa下,1000℃绝氧烧结8小时,增加结晶度和致密度,制得LLZO固体电解质,平均粒径为0.5-1.0μm。
实施例2
与实施例1的区别在于:进行2%的Al掺杂,含Al原料为Al 2O 3(纯度99.9%)。
实施例3
与实施例1的区别在于:进行2%的Ga掺杂,含Ga原料为Ga 2O 3(纯度99.9%)。
实施例4
与实施例1的区别在于:进行1%的Ga和1%的Al掺杂,含Ga原料为Ga 2O 3(纯度99.9%),含Al原料为Al 2O 3(纯度99.9%)。
实施例5
与实施例4的区别在于:Al和Ga的掺杂量分为2%。
实施例6
与实施例4的区别在于:Al和Ga的掺杂量分为2.5%。
实施例7
与实施例5的区别在于,对Al/Ga掺杂改性LLZO固体电解质经过低温冷烧结修饰:首先将碳酸聚丙烯和丙酮常温下按照1.5:3的体积比超声10分钟,加入高氯酸锂(LiClO 4),超声至高氯酸锂全部溶解(LiClO 4质量分数为45%);向该混合溶液中加入Al/Ga掺杂改性LLZO固体电解质(混合溶液与Al/Ga掺杂改性LLZO固体电解质的质量比为5:70),继续超声混合40分钟后,在400Mpa,100℃下低温烧结2.5小时,制得LLZO固体电解质。
实施例8
与实施例7的区别在于低温煅烧温度为200℃。
实施例9
与实施例7的区别在于低温煅烧温度为250℃。
性能检测
采用双探针法室温下进行交流和直流电阻率的测量,将实施例1-9(分别记载为1-9#)所得固体电解质在300-500Mpa下压缩成片状,测试之前在样品顶部和底部进行喷金,降低测量 误差;在1-10 6HZ范围内测量交流电导率;使用高电阻计测量直流电导率。具体结果如表1所示:
表1.不同条件制备LLZO固体电解质电阻率测试结果
Figure PCTCN2021123432-appb-000001
由表中数据可知,在其他条件保持不变的前提下,与1#相比,2-4#中掺入总量为2%的Al和/或Ga元素,LLZO的交流电阻率和直流电阻率均有所下降,并且下降幅度4#最低,说明在相同的掺杂量下,Al和Ga共掺杂更有利于降低材料电阻率,这主要与LLZO晶格内缺陷增加和机械应力改善导致晶格内电阻率下降有关,但是总掺杂量不宜超过5%。与5#相比,7-9#中的LLZO样品的交流电阻率和直流电阻率得到了显著下降,主要原因是低温烧结修饰晶界使得锂离子和电子传输通道更畅通,导致LLZO晶界电阻率降低。上述数据表明,本发明提出的方法可以有效降低LLZO固体电解质电阻率,所用原材料环保无毒,设备和操作成本低。
本发明中所用原料、设备,若无特别说明,均为本领域的常用原料、设备;本发明中所用方法,若无特别说明,均为本领域的常规方法。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效变换,均仍属于本发明技术方案的保护范围。

Claims (10)

  1. 一种低电阻率石榴石型改性LLZO固体电解质的制备方法,其特征在于:包括以下步骤:
    1)Al/Ga掺杂改性LLZO固体电解质的制备:按照LLZO中的元素组成进行配料,在此基础上配加含Ga和含Al的原料;将所有原料混合球磨,球磨后于300-400℃空气中进行烧结,冷却,继续球磨,再于300-500Mpa、900-1100℃绝氧烧结,制得Al/Ga掺杂改性LLZO固体电解质;
    2)低温冷烧结修饰:将碳酸聚丙烯和丙酮混合均匀,加入高氯酸锂充分溶解,向所得混合溶液中加入Al/Ga掺杂改性LLZO固体电解质,继续超声混合均匀后,在300-400Mpa、100-250℃下低温烧结,制得低电阻率石榴石型改性LLZO固体电解质。
  2. 如权利要求1所述的制备方法,其特征在于:步骤1)中,Ga和Al在LLZO中的总掺杂量为不大于5wt%。
  3. 如权利要求1或2所述的制备方法,其特征在于:步骤1)中,各原料分别为Li 2CO 3、La 2O 3、ZrO 2、Ga 2O 3和Al 2O 3
  4. 如权利要求3所述的制备方法,其特征在于:步骤1)中,所述Li 2CO 3额外增加5-15wt%的余量。
  5. 如权利要求1所述的制备方法,其特征在于:步骤1)中,所述球磨采用三维高能振动球磨机,其内壁为氧化锆材质,研磨球为钢球、碳化钨球或聚胺肽球,球磨条件为:球料比为20-50:40-80,在常温下球磨5-10分钟;冷却后继续球磨10-20分钟。
  6. 如权利要求1或5所述的制备方法,其特征在于:步骤1)中,在300-400℃空气中烧结1-3小时,然后以10-20℃/分钟的速率冷却至室温,继续球磨混合,在300-500Mpa下,900-1100℃下烧结6-12小时。
  7. 如权利要求1所述的制备方法,其特征在于:步骤1)中,所得Al/Ga掺杂改性LLZO固体电解质的平均粒径为0.2-1.0μm。
  8. 如权利要求1所述的制备方法,其特征在于:步骤2)中,所述碳酸聚丙烯和丙酮在常温下按体积比1-3:2-5超声混合5-15分钟,加入高氯酸锂超声至高氯酸锂全部溶解,高氯酸锂的浓度为35-55wt%。
  9. 如权利要求1或8所述的制备方法,其特征在于:步骤2)中,所述混合溶液与Al/Ga掺杂改性LLZO固体电解质的质量比为(2-8):(65-80)。
  10. 如权利要求1所述的制备方法,其特征在于:步骤2)中,添加Al/Ga掺杂改性LLZO固体电解质后继续超声混合20-40分钟,低温烧结1-3小时。
PCT/CN2021/123432 2021-05-19 2021-10-13 一种低电阻率石榴石型改性llzo固体电解质的制备方法 WO2022242017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110548876.X 2021-05-19
CN202110548876.XA CN113363562B (zh) 2021-05-19 2021-05-19 一种低电阻率石榴石型改性llzo固体电解质的制备方法

Publications (1)

Publication Number Publication Date
WO2022242017A1 true WO2022242017A1 (zh) 2022-11-24

Family

ID=77526995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123432 WO2022242017A1 (zh) 2021-05-19 2021-10-13 一种低电阻率石榴石型改性llzo固体电解质的制备方法

Country Status (2)

Country Link
CN (1) CN113363562B (zh)
WO (1) WO2022242017A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363562B (zh) * 2021-05-19 2022-09-30 万向一二三股份公司 一种低电阻率石榴石型改性llzo固体电解质的制备方法
CN114551987A (zh) * 2021-09-17 2022-05-27 万向一二三股份公司 一种循环寿命长的llzo固体电解质、固体锂电池的制备方法
CN114230342B (zh) * 2021-11-25 2022-12-20 哈尔滨工业大学 一种稀土氧化物掺杂改性Ga-LLZO固体电解质及其制备方法
CN114361577A (zh) * 2021-12-27 2022-04-15 武汉理工大学 一种纯立方相纳米锂镓镧锆氧粉体及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160049688A1 (en) * 2014-08-18 2016-02-18 Hyundai Motor Company Garnet powder, manufacturing method thereof, solid electrolyte sheet using hot press and manufacturing method thereof
CN107732298A (zh) * 2017-11-08 2018-02-23 天津工业大学 一种用于全固态锂离子电池的Gd掺杂Li7La3Zr2O12石榴石型固体电解质
CN109155428A (zh) * 2016-05-18 2019-01-04 肖特股份有限公司 包括至少一种聚合物和锂离子传导粒子的锂离子传导复合材料
CN110247108A (zh) * 2019-07-08 2019-09-17 光鼎铷业(广州)集团有限公司 一种铷掺杂石榴石型复合固态电解质膜的制备方法
CN111943635A (zh) * 2020-08-05 2020-11-17 中山大学 一种固态电解质的制备方法
CN112290082A (zh) * 2020-10-28 2021-01-29 贵州梅岭电源有限公司 一种石榴石型固态电解质的表面处理方法
CN112397776A (zh) * 2020-10-27 2021-02-23 广东东邦科技有限公司 一种Ga、Al共掺杂LLZO固态电解质、多元固态电池及其制备方法
WO2021060349A1 (ja) * 2019-09-26 2021-04-01 冨士色素株式会社 複合酸化物粉末、複合酸化物粉末の製造方法、固体電解質体の製造方法、並びにリチウムイオン二次電池の製造方法
CN112868122A (zh) * 2018-10-25 2021-05-28 罗伯特·博世有限公司 具有改进的化学稳定性的固体电解质材料
CN113363562A (zh) * 2021-05-19 2021-09-07 万向一二三股份公司 一种低电阻率石榴石型改性llzo固体电解质的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6233049B2 (ja) * 2014-01-24 2017-11-22 富士通株式会社 複合固体電解質、及び全固体電池
JP2019046721A (ja) * 2017-09-05 2019-03-22 トヨタ自動車株式会社 スラリー、固体電解質層の製造方法、及び、全固体電池の製造方法
CN107732295A (zh) * 2017-10-12 2018-02-23 燕山大学 一种基于卤化锂掺杂的氧化物固体电解质及其低温烧结方法
CN108963222A (zh) * 2018-07-13 2018-12-07 国联汽车动力电池研究院有限责任公司 固态复合电解质电极活性材料及其制备方法与应用
CN109830740B (zh) * 2019-02-14 2020-11-06 北京工业大学 一种固态电解质及全固态电池
CN109935901A (zh) * 2019-03-25 2019-06-25 武汉理工大学 一种Nb、Ta共掺石榴石型LLZO固体电解质及其制备方法
CN110620260A (zh) * 2019-09-19 2019-12-27 成都新柯力化工科技有限公司 一种锂电池低界阻石榴石结构固态电解质及制备方法
CN111072373A (zh) * 2019-11-29 2020-04-28 中国科学院青岛生物能源与过程研究所 一种提高氧化物电解质导电性能的改性方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160049688A1 (en) * 2014-08-18 2016-02-18 Hyundai Motor Company Garnet powder, manufacturing method thereof, solid electrolyte sheet using hot press and manufacturing method thereof
CN109155428A (zh) * 2016-05-18 2019-01-04 肖特股份有限公司 包括至少一种聚合物和锂离子传导粒子的锂离子传导复合材料
CN107732298A (zh) * 2017-11-08 2018-02-23 天津工业大学 一种用于全固态锂离子电池的Gd掺杂Li7La3Zr2O12石榴石型固体电解质
CN112868122A (zh) * 2018-10-25 2021-05-28 罗伯特·博世有限公司 具有改进的化学稳定性的固体电解质材料
CN110247108A (zh) * 2019-07-08 2019-09-17 光鼎铷业(广州)集团有限公司 一种铷掺杂石榴石型复合固态电解质膜的制备方法
WO2021060349A1 (ja) * 2019-09-26 2021-04-01 冨士色素株式会社 複合酸化物粉末、複合酸化物粉末の製造方法、固体電解質体の製造方法、並びにリチウムイオン二次電池の製造方法
CN111943635A (zh) * 2020-08-05 2020-11-17 中山大学 一种固态电解质的制备方法
CN112397776A (zh) * 2020-10-27 2021-02-23 广东东邦科技有限公司 一种Ga、Al共掺杂LLZO固态电解质、多元固态电池及其制备方法
CN112290082A (zh) * 2020-10-28 2021-01-29 贵州梅岭电源有限公司 一种石榴石型固态电解质的表面处理方法
CN113363562A (zh) * 2021-05-19 2021-09-07 万向一二三股份公司 一种低电阻率石榴石型改性llzo固体电解质的制备方法

Also Published As

Publication number Publication date
CN113363562B (zh) 2022-09-30
CN113363562A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2022242017A1 (zh) 一种低电阻率石榴石型改性llzo固体电解质的制备方法
Maleki Kheimeh Sari et al. Controllable cathode–electrolyte interface of Li [Ni0. 8Co0. 1Mn0. 1] O2 for lithium ion batteries: a review
CN109755637B (zh) 氧化物陶瓷复合固态电解质、其制备方法及其应用
US20170162902A1 (en) Composite solid electrolyte
WO2023087635A1 (zh) 固态电解质复合膜及其制备方法
KR101762275B1 (ko) 저온소결공정에 의한 고체전해질의 제조방법 및 그를 포함하는 전고체 리튬이차전지의 제조방법
CN110620259A (zh) 一种锂电池高晶界电导钙钛矿固态电解质及制备方法
CN111786013B (zh) 一种复合固体电解质及其制备方法
Shen et al. Low-temperature fabrication of NASICON-type LATP with superior ionic conductivity
CN110474098B (zh) 一种石榴石型固态电解质材料、其包覆的复合材料及制备方法和应用
JP7198170B2 (ja) 全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極活物質の製造方法及び全固体リチウムイオン電池
Li et al. Recent advances in the interfacial stability, design and in situ characterization of garnet-type Li7La3Zr2O12 solid-state electrolytes based lithium metal batteries
CN114678500A (zh) 一种复合包覆的富镍正极材料及其制备方法、应用
CN111354972A (zh) 一种复合固态电解质材料及其制备方法和应用
CN207719320U (zh) 一种改性锂电池电极结构、锂电池结构
EP1977996A1 (en) Phosphate-metal-containing complex and dense material comprising the same
KR101906901B1 (ko) 계면특성이 향상된 전고체 전지의 제조방법 및 이에 의해 제조된 전고체 전지
Zou et al. Ionic conductivity and interfacial stability of Li6PS5Cl–Li6. 5La3Zr1. 5Ta0. 5O12 composite electrolyte
US20230207802A1 (en) Positive electrode material and preparation method and use therefor, lithium-ion battery positive electrode pole piece, and lithium-ion battery
US11769873B2 (en) Ion conductor containing Li2B12H12 and LiBH4, method for producing same, and solid electrolyte for all-solid-state batteries, which contains said ion conductor
CN114361575B (zh) 一种有机-无机复合电解质及其制备方法
CN114552129B (zh) 一种双面差异化锂电池隔膜及含有该隔膜的锂电池
CN115911529A (zh) 一种复合型石榴石型固态电解质、二次电池以及制备方法
CN113178614B (zh) 复合固态电解质、固态锂电池及制备方法
CN113224378B (zh) 一种锂电池、固态电解质及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940463

Country of ref document: EP

Kind code of ref document: A1