WO2022235015A1 - 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2022235015A1
WO2022235015A1 PCT/KR2022/006159 KR2022006159W WO2022235015A1 WO 2022235015 A1 WO2022235015 A1 WO 2022235015A1 KR 2022006159 W KR2022006159 W KR 2022006159W WO 2022235015 A1 WO2022235015 A1 WO 2022235015A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
material layer
sulfur
secondary battery
Prior art date
Application number
PCT/KR2022/006159
Other languages
English (en)
French (fr)
Inventor
김민수
한동협
홍경식
신동석
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220052596A external-priority patent/KR20220152141A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023524812A priority Critical patent/JP7497527B2/ja
Priority to EP22799058.7A priority patent/EP4203093A1/en
Priority to CN202280006660.3A priority patent/CN116457956A/zh
Priority to US18/028,480 priority patent/US20230361277A1/en
Publication of WO2022235015A1 publication Critical patent/WO2022235015A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0483Processes of manufacture in general by methods including the handling of a melt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same.
  • lithium-sulfur secondary batteries use a sulfur-based compound having a sulfur-sulfur bond as a positive electrode active material, and an alkali metal such as lithium or a carbon-based material or alloy with lithium in which insertion and deintercalation of metal ions such as lithium ions occur. It is a secondary battery that uses silicon or tin to form a negative electrode as an active material. Specifically, the oxidation number of sulfur decreases as the sulfur-sulfur bond is broken during discharge, which is a reduction reaction, and the oxidation number of sulfur increases during charging, which is an oxidation reaction, and the sulfur-sulfur bond is formed again. and create
  • sulfur used as a positive electrode active material in lithium-sulfur secondary batteries has a theoretical energy density of 1,675 mAh/g, which is about five times higher than that of a positive electrode active material used in conventional lithium secondary batteries. It is a battery capable of expressing density.
  • sulfur is attracting attention as an energy source for medium-to-large devices such as electric vehicles as well as portable electronic devices because of its low price, abundant reserves, and easy supply and demand, and environmental friendliness.
  • Sulfur has an electrical conductivity of 5 ⁇ 10 -30 S/cm and is an insulator with no electrical conductivity, so there is a problem in that it is difficult to move electrons generated by an electrochemical reaction. Accordingly, it is used as a sulfur-carbon composite by being complexed with an electrically conductive material such as carbon that can provide an electrochemical reaction site.
  • a method of manufacturing a positive electrode through a slurry process of preparing a slurry together with a conductive material and a binder and then applying the slurry to a current collector is generally used.
  • the positive electrode manufactured by the slurry process has a problem in that the loading amount of the positive electrode active material in the positive electrode is lowered due to the conductive material and the binder used in preparing the slurry, so that the energy density is also reduced.
  • the slurry process includes detailed processes such as mixing, coating, drying and rolling, there is a problem in that time and cost are increased.
  • Patent Document 1 Korean Patent Publication No. 2018-0055230
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2018-113142
  • a lithium secondary battery including a positive electrode in which a wet positive active material layer manufactured by a wet process and a dry positive active material layer manufactured by a dry process are laminated has a capacity, high rate It was confirmed that the characteristics, overvoltage and lifespan characteristics were excellent, and the present invention was completed.
  • an object of the present invention is to provide a positive electrode for a lithium secondary battery having improved battery capacity, high rate characteristics, overvoltage and lifespan characteristics, and a method for manufacturing the same.
  • Another object of the present invention is to provide a lithium secondary battery including the positive electrode for the lithium secondary battery.
  • the present invention is a positive electrode current collector
  • the wet positive active material layer includes a sulfur-carbon composite, a binder, and a conductive material,
  • the dry positive electrode active material layer provides a positive electrode for a lithium secondary battery that is composed of a carbon-containing sulfur melt.
  • the present invention comprises the steps of: (1) applying a positive electrode slurry including a sulfur-carbon composite, a binder, and a conductive material to one surface of a positive electrode current collector to form a wet positive electrode active material layer; and
  • the present invention is a positive electrode for a lithium secondary battery; a negative electrode comprising lithium metal or a lithium alloy; a separator positioned between the anode and the cathode; and an electrolyte impregnated with the positive electrode, the negative electrode and the separator.
  • the positive electrode for a lithium secondary battery according to the present invention has a laminated structure of a wet positive active material layer and a dry positive active material layer, capacity, overvoltage, high rate characteristics and lifespan characteristics are improved compared to a general positive electrode for lithium secondary batteries including only a wet positive electrode active material layer effect can be exhibited.
  • Example 1 shows a longitudinal cross-section of a positive electrode for a lithium-sulfur secondary battery prepared in Example 1, Comparative Example 1, and Comparative Example 2, respectively.
  • FIGS. 2A and 2B are graphs showing changes in specific capacity and voltage during charging and discharging of lithium-sulfur secondary batteries prepared in Example 1, Comparative Example 1, and Comparative Example 2, respectively.
  • Example 3 is a graph showing the lifespan characteristics of the lithium-sulfur secondary batteries prepared in Example 1, Comparative Example 1, and Comparative Example 2, respectively.
  • wet positive electrode active material layer refers to a general positive electrode active material layer for a lithium secondary battery, and a positive electrode slurry prepared by mixing and dispersing a positive electrode active material, a binder, and a conductive material in a solvent is applied on the positive electrode current collector. , may be prepared by a process comprising the steps of drying and rolling.
  • dry positive electrode active material layer refers to a positive electrode active material layer made of only sulfur and a porous carbon material, and may be formed in the form of a freestanding film by heat-treating sulfur and carbon material and then pressing.
  • the dry positive electrode active material layer may be composed of a carbon-containing sulfur melt having a form in which a porous carbon material is dispersed in a sulfur melt.
  • the term “porosity” refers to the ratio of the volume occupied by pores to the total volume in a structure, using % as its unit, and to be used interchangeably with terms such as porosity and porosity.
  • the method for measuring the porosity is not particularly limited, and according to an embodiment of the present invention, for example, the BET (Brunauer-Emmett-Teller) measurement method or the mercury penetration method (Hg porosimeter) is used to measure the pore size. and pore volume can be measured.
  • the present invention relates to a positive electrode for a lithium secondary battery comprising a wet positive electrode active material layer and a dry positive electrode active material layer
  • the positive electrode for a lithium secondary battery comprising: a positive electrode current collector; a wet positive active material layer formed on one surface of the positive electrode current collector; and a dry cathode active material layer formed on the wet cathode active material layer, wherein the wet cathode active material layer comprises a sulfur-carbon composite, a binder, and a conductive material, and the dry cathode active material layer is composed of a carbon-containing molten sulfur it could be
  • the dry electrode manufactured by the dry process does not include a binder as a resistive element, the internal resistance is lower than that of the wet electrode, and thus the overvoltage is small, and thus the capacity is superior.
  • the dry electrode has a lower moisture content than the wet electrode, and thus the probability of negative electrode degradation due to moisture is low, and thus is superior in terms of lifespan characteristics.
  • the conventional dry electrode has a problem in developing pouch cell performance due to a large contact resistance between the dry electrode and the current collector.
  • the positive electrode for a lithium secondary battery according to the present invention has a structure in which a current collector, a wet positive electrode active material layer, and a dry positive electrode active material layer are sequentially stacked, the problems of the conventional dry electrode can be improved.
  • the wet positive active material layer is coated on the current collector, resistance between the current collector and the wet positive active material layer may be reduced.
  • the dry positive electrode active material layer on the wet positive electrode active material layer sulfur is melted during pressurization, thereby maintaining connectivity between the wet positive active material layer and the dry positive electrode active material layer. If sulfur is not included in the wet positive active material layer, it is difficult to maintain connectivity between the active material layers.
  • the wet positive electrode active material layer may not only facilitate contact between the current collector and the active material layer, but also have a high porosity to facilitate material transfer.
  • the positive electrode current collector supports a positive electrode active material layer to be described later, and serves to transfer electrons between the external conductive wire and the positive electrode active material layer.
  • the positive electrode current collector is not particularly limited as long as it has high electronic conductivity without causing a chemical change in the lithium secondary battery.
  • copper, stainless steel, aluminum, nickel, titanium, palladium, calcined carbon, a copper or stainless steel surface treated with carbon, nickel, silver, etc., an aluminum-cadmium alloy, etc. may be used as the positive electrode current collector.
  • the positive electrode current collector may have a fine concavo-convex structure or a three-dimensional porous structure on the surface of the positive electrode current collector in order to strengthen the bonding force with the positive electrode active material layer.
  • the positive electrode current collector may include various forms such as a film, a sheet, a foil, a mesh, a net, a porous body, a foam, a nonwoven body, and the like.
  • the wet positive electrode active material layer may include a sulfur-carbon composite which is a positive electrode active material, a binder, and a conductive material.
  • the positive active material may be included in an amount of 40 to 80% by weight based on the total weight of the wet positive active material layer.
  • the content of the positive active material may be 40 wt% or more or 50 wt% or more, and may be 70 wt% or less or 80 wt% or less. If the content of the cathode active material is less than 40 wt%, the connectivity between the wet cathode active material layer and the dry cathode active material layer may be insufficient, and if the content of the cathode active material is more than 80 wt%, mass transfer resistance may increase.
  • the sulfur-carbon composite refers to a composite in which the sulfur is supported on the porous carbon material.
  • the sulfur-carbon composite may be in a state in which sulfur is attached or coated on the surface of the porous carbon material.
  • the sulfur is attached to, filled or coated with the internal pores of the porous carbon material; Alternatively, the sulfur may be infiltrated and attached to the inside of the porous carbon material.
  • the sulfur is inorganic sulfur (S 8 ), Li 2 S n (n ⁇ 1, n is an integer), organic sulfur compounds and carbon-sulfur polymers ((C 2 S x ) n , 2.5 ⁇ x ⁇ 50, n ⁇ 2, x and n are integers) may be at least one selected from the group consisting of.
  • the sulfur content may be 50 wt% or more, 55 wt% or more, or 60 wt% or more, and 70 wt% or less, 75 wt% or less, 80 wt% or less based on the total weight of the sulfur-carbon composite. If the content of sulfur is less than 50% by weight, the ratio of sulfur, which is an electrochemically active material, is reduced, so that the sulfur coating layer formed on the surface of the porous carbon material becomes thin, so that it is difficult to properly form the sulfur-carbon composite or included in the porous carbon material. The amount of sulfur used may be reduced, and thus battery capacity may be reduced. In addition, when the content of sulfur is more than 80% by weight, the non-conductive sulfur blocks the conductive structure of the porous carbon material to block the electrochemical activity, so battery operation may be limited.
  • the porous carbon material since the porous carbon material has pores or hollows therein, it may have a high non-target property, and any porous carbon material commonly used in the art may be used.
  • the porous carbon material is graphite (graphite); graphene; carbon black selected from Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, and Summer Black; a carbon nanotube (CNT) selected from single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT); carbon fibers selected from graphite nanofibers (GNF), carbon nanofibers (CNF) and activated carbon fibers (ACF); And it may be at least one selected from the group consisting of activated carbon, but is not limited thereto.
  • the porous carbon material may be a carbon nanotube.
  • the shape of the carbon nanotube is not particularly limited, and, for example, may have a specific surface area of 200 m 2 /g to 500 m 2 /g and a particle size of 10 ⁇ m to 30 ⁇ m.
  • the particle size may mean the length of the portion corresponding to the longest axis of the particle.
  • the content of the porous carbon material may be 20 wt% or more, 25 wt% or more, 30 wt% or more, or 35 wt% or more, based on the total weight of the sulfur-carbon composite, 40 wt% or less, 45 wt% or less or 50% by weight or less.
  • the amount of the porous carbon material is less than 20% by weight, the surface area and space to which sulfur can be filled, attached, or coated is not sufficiently provided, so that the electrochemical availability (reactivity) of sulfur may be reduced.
  • the porous carbon material is more than 50% by weight, the sulfur content is relatively lowered, so that when applied to a lithium secondary battery, the energy density of the battery may be excessively reduced.
  • the binder is a component that assists in bonding the positive electrode active material and the conductive material and the like to the current collector, styrene-butadiene rubber, acrylated styrene-butadiene rubber, acrylonitrile copolymer, acrylonitrile-butadiene rubber, nitrile butadiene rubber , acrylonitrile-styrene-butadiene copolymer, acrylic rubber, butyl rubber, fluorine rubber, polytetrafluoroethylene, polyethylene, polypropylene, ethylene/propylene copolymer, polybutadiene, polyethylene oxide, chlorosulfonated polyethylene, poly Vinylpyrrolidone, polyvinylpyridine, polyvinyl alcohol, polyvinyl acetate, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, polystyrene, latex, acrylic resin, phenolic resin, epoxy resin, carboxymethylcellulose, hydride
  • the binder may include at least one selected from the group consisting of styrene-butadiene rubber, polytetrafluoroethylene, carboxymethyl cellulose, polyacrylic acid, lithium polyacrylate, and polyvinylidene fluoride.
  • the binder may be included in an amount of 1 wt% to 30 wt% based on the total weight of the wet positive active material layer, specifically, the content of the binder may be 1 wt% or more or 3 wt% or more, and 15 wt% or less or 30% by weight or less. If the content of the binder is less than 1% by weight, the adhesive force between the positive electrode active material and the positive electrode current collector may be insufficient, and if it exceeds 30% by weight, the adhesive strength is improved, but the content of the positive electrode active material is reduced by that amount, thereby lowering the battery capacity.
  • the conductive material included in the positive electrode is not particularly limited as long as it does not cause side reactions in the internal environment of the lithium secondary battery and has excellent electrical conductivity without causing chemical changes in the battery.
  • graphite or conductive carbon may be used. and, for example, graphite such as natural graphite and artificial graphite; carbon black, such as carbon black, acetylene black, Ketjen black, Denka black, thermal black, channel black, furnace black, lamp black, and summer black; a carbon-based material having a crystal structure of graphene or graphite; conductive fibers such as carbon fibers and metal fibers; carbon fluoride; metal powders such as aluminum powder and nickel powder; Conductive whiskey, such as zinc oxide and potassium titanate; conductive oxides such as titanium oxide; and conductive polymers such as polyphenylene derivatives; may be used alone or in mixture of two or more, but is not necessarily limited thereto.
  • the conductive material may be typically included in an amount of 0.5 wt% to 30 wt% based on the total weight of the wet positive electrode active material layer, and specifically, the content of the conductive material may be 0.5 wt% or more or 1 wt% or more, and 20 wt% or less or 30% by weight or less. If the content of the conductive material is too small, less than 0.5% by weight, it is difficult to expect an effect of improving electrical conductivity or the electrochemical properties of the battery may be deteriorated. Capacity and energy density may be reduced.
  • a method of including the conductive material in the positive electrode is not particularly limited, and a conventional method known in the art, such as coating on the positive electrode active material, may be used. In addition, if necessary, since the second conductive coating layer is added to the positive electrode active material, the addition of the conductive material as described above may be substituted.
  • the term "porosity” means the ratio of the volume occupied by the pores to the total volume in a structure, and % is used as its unit, and is used interchangeably with terms such as porosity and porosity.
  • the measurement of the porosity is not particularly limited, and according to an embodiment of the present invention, for example, a BET (Brunauer-Emmett-Teller) measurement method or a mercury penetration method (Hg porosimeter) is used for micro). And meso pore volume (meso pore volume) can be measured.
  • the density of the wet cathode active material layer may be 0.2 to 1.4 g/cm 3 , and specifically, the density of the wet cathode active material layer may be 0.2 g/cm 3 or more, 0.3 g/cm 3 or more, or 0.5 g/cm 3 or more. , 1.0 g/cm 3 or less, 1.2 g/cm 3 or less, or 1.4 g/cm 3 or less.
  • the density is less than 0.2 g/cm 3 , the contact resistance may be increased, and if it is more than 1.4 g/cm 3 , the mass transfer resistance may be increased.
  • the loading amount of the wet positive active material layer may be 0.1 mAh/cm 2 to 0.5 mAh/cm 2 , specifically, the loading amount of the wet positive active material layer is 0.1 mAh/cm 2 or more, 0.2 mAh/cm 2 or more, or 0.3 mAh It may be /cm 2 or more, and may be 0.4 mAh/cm 2 or less or 0.5 mAh/cm 2 or less.
  • the holding power may be good for maintaining battery performance.
  • the loading amount of the wet positive electrode active material layer may be 0.2 to 20% based on the entire loading amount of the dry positive electrode active material layer as described below, specifically 0.2% or more, 1% or more. It may be 2% or more or 3% or more, and 10% or less, 15% or less, or 20% or less.
  • the porosity of the wet positive electrode active material layer may be 30% to 90%, specifically, 30% or more, 50% or more, 60% or more, or 70% or more, 80% or less, 85% or less, or 90% or more % or less, and when this porosity range is satisfied, battery performance retention may be good while maintaining battery durability.
  • the weight of the wet cathode active material layer may be 1 to 15 wt% based on the total weight of the wet cathode active material layer and the dry cathode active material layer, and specifically, 1 wt% or more, 3 wt% or more, or 5 wt% It may be greater than or equal to weight percent, and may be less than or equal to 10 weight percent, less than or equal to 13 weight percent, or less than or equal to 15 weight percent. If the weight of the wet positive active material layer is less than 1% by weight, the adhesive force between the current collector and the dry positive active material layer may decrease, and if it is more than 15% by weight, the binder included in the wet positive active material layer will act as battery resistance.
  • the thickness of the wet cathode active material layer may be 1 to 30% based on the total thickness of the wet cathode active material layer and the dry cathode active material layer, and specifically may be 1% or more, 5% or more, or 10% or more, , 20% or less, 25% or less, or 30% or less. If the thickness of the wet positive electrode active material layer is less than 1%, the adhesive force between the current collector and the dry positive electrode active material layer may decrease, and if it is more than 30%, it may act as battery resistance due to the binder included in the wet positive electrode active material layer. have.
  • the dry positive electrode active material layer may include a carbon-containing sulfur melt.
  • the carbon-containing sulfur melt may have a form in which a porous carbon material is dispersed in the sulfur melt.
  • the dry positive electrode active material layer may include a positive electrode material in the form of a free-standing film consisting only of a carbon-containing sulfur melt without a binder and a conductive material included in the wet positive electrode active material layer.
  • the cathode material in the form of a freestanding film is manufactured by a dry process using sulfur and a porous carbon material as raw materials, only sulfur and a porous carbon material are included in the cathode material.
  • the dry process can omit a series of processes such as mixing, defoaming, coating, drying, and rolling required in the conventional slurry process, thereby reducing process costs.
  • the binder is not included in the carbon-containing sulfur melt prepared by the dry process, so that deterioration in battery performance due to binder resistance can be fundamentally eliminated.
  • the carbon-containing sulfur melt prepared by the dry process does not contain a conductive material at all, the problem of deterioration in formability by the conductive material lacking cohesive force can be minimized.
  • the positive electrode material in the form of a free-standing film is connected by a sulfur melt formed on the surface of the carbon material in a state in which the porous carbon material forms the skeleton of the positive electrode material, thereby representing a free-standing film form.
  • the porous carbon materials carbon nanotubes may have more connection points due to structural characteristics, which may be more advantageous when forming a freestanding film.
  • the carbon nanotubes since the carbon nanotubes have a shape having an aspect ratio of more than 1, they may be advantageously connected to each other to form a freestanding film.
  • the positive electrode material in the form of a free-standing film may be a positive electrode material having an adhesive strength of 10 gf/cm or more in the positive electrode material after the electrode press-molding.
  • the adhesive strength is due to the property that sulfur is melted and aggregated with surrounding sulfur during the pressing process, and if the adhesive strength of the positive electrode material is less than 10 gf/cm, electrode molding may be difficult due to the lack of adhesive strength between the anodes.
  • the adhesive force may be 10 gf/cm or more, 15 gf/cm or more, 20 gf/cm or more, 25 gf/cm or more, 30 gf/cm or more, or 35 gf/cm or more.
  • the upper limit of the adhesive force may be 50 gf / cm or less, 60 gf / cm or less, 70 gf / cm or less, 80 gf / cm or less, 90 gf / cm or less, or 100 gf / cm or less, but is not limited thereto.
  • the higher the adhesion in the cathode material the better in terms of formability, durability and battery performance.
  • the carbon-containing sulfur melt included in the dry positive electrode active material layer may be composed of 50 wt% to 80 wt% sulfur and 20 wt% to 50 wt% of the porous carbon material.
  • the sulfur may be 50 wt% or more, 55 wt% or more, or 60 wt% or more, and 70 wt% or less, 75 wt% or less, 80 wt% or less, based on the total weight of the carbon-containing sulfur melt.
  • the sulfur When the sulfur is less than 50 wt%, the ratio of sulfur, which is an electrochemically active material, is reduced, and the thickness of the sulfur melt formed on the surface of the porous carbon material becomes thin, so that it is difficult to form the sulfur melt containing carbon properly, or the amount of sulfur is reduced and the battery capacity is reduced may be lowered.
  • the sulfur is more than 80% by weight, the non-conductive sulfur blocks the conductive structure of the porous carbon material to block the electrochemical activity, so battery driving may be limited.
  • the cathode material When 50 wt% to 80 wt% of sulfur is included in the carbon-containing sulfur melt, the cathode material may exhibit strong self-cohesion, and since the porous carbon material can be well dispersed in the sulfur melt, a free-standing cathode can be well formed. .
  • the porosity of the dry positive electrode active material layer may be 68% or less, 65% or less, 60% or less, or 55% or less, and may be 45% or more or 50% or more. If the porosity of the dry positive active material layer is more than 68%, the durability of the positive electrode may be reduced, and if it is less than 45%, the space in which the electrochemical reaction occurs in the pores is narrowed, so that normal cell driving may be difficult.
  • the loading amount of the dry positive electrode active material layer may be 2.5 mAh/cm 2 to 5.0 mAh/cm 2 , and when the loading amount of the dry positive electrode active material layer satisfies the above range, the retention of battery performance may be good.
  • the weight of the dry cathode active material layer may be 85 to 99 wt% based on the total weight of the wet cathode active material layer and the dry cathode active material layer, and specifically, 85 wt% or more, 87 wt% or more, or 90 wt% % by weight or more, 95% by weight or less, 97% by weight or less, or 99% by weight or less.
  • the weight of the dry positive electrode active material layer is less than 85% by weight, the weight of the wet positive active material layer is relatively large and may act as battery resistance due to the binder included in the wet positive active material layer, and when it exceeds 99% by weight, the current collector Adhesion between the and the dry positive electrode active material layer may be reduced.
  • the thickness of the dry positive electrode active material layer may be 70 to 99% based on the total thickness of the wet positive electrode active material layer and the dry positive electrode active material layer, specifically 70% or more, 75% or more, or 80% or more, , 90% or less, 95% or less, or 99% or less.
  • the thickness of the dry positive electrode active material layer is less than 70%, the weight of the wet positive electrode active material layer is relatively large and may act as battery resistance due to the binder included in the wet positive electrode active material layer. If it exceeds 99%, the current collector and Adhesion between the dry positive electrode active material layers may be reduced.
  • the present invention also relates to a method for manufacturing a positive electrode for a lithium secondary battery, wherein the method for manufacturing a positive electrode for a lithium secondary battery includes (1) applying a positive electrode slurry including a sulfur-carbon composite, a binder, and a conductive material to one surface of a positive electrode current collector to form a wet positive electrode active material layer; and (2) attaching a dry positive electrode active material layer, which is a free-standing film-type positive electrode material, to one surface of the wet positive electrode active material layer.
  • a positive electrode slurry including a sulfur-carbon composite, a binder, and a conductive material is applied to one surface of a positive electrode current collector to form a wet positive electrode active material layer.
  • the characteristics of the sulfur-carbon composite, the binder, the conductive material, and the positive electrode current collector are as described above.
  • the positive electrode slurry may be applied to a positive electrode current collector and vacuum dried to form a positive electrode for a lithium secondary battery.
  • the positive electrode slurry may be applied to the positive electrode current collector at an appropriate thickness according to the viscosity of the slurry and the thickness of the positive electrode to be formed, and may be appropriately selected within the range of 10 nm to 1 ⁇ m.
  • the method for coating the positive electrode slurry is not limited thereto, and for example, doctor blade coating, dip coating, gravure coating, slit die coating, spin coating. Spin coating, comma coating, bar coating, reverse roll coating, screen coating, cap coating, etc. .
  • the positive electrode slurry may be prepared by mixing and stirring the sulfur-carbon composite, the binder, and the conductive material with a solvent.
  • the solvent a solvent capable of uniformly dispersing the sulfur-carbon composite, the binder, and the conductive material is used.
  • water is most preferable as an aqueous solvent, and in this case, the water may be secondary distilled DW (Distilled Water) or tertiarily distilled DIW (Deionzied Water).
  • the present invention is not necessarily limited thereto, and if necessary, a lower alcohol that can be easily mixed with water may be used. Examples of the lower alcohol include methanol, ethanol, propanol, isopropanol, and butanol, and preferably these may be used by mixing with water.
  • the mixing for preparing the positive electrode slurry may be stirred in a conventional manner using a conventional mixer, such as a paste mixer, a high-speed shear mixer, a homo mixer, and the like.
  • a conventional mixer such as a paste mixer, a high-speed shear mixer, a homo mixer, and the like.
  • the prepared positive electrode slurry may be coated on the positive electrode current collector and dried to prepare a positive electrode, and if necessary, may be manufactured by compression molding on the positive electrode current collector in order to improve the electrode density.
  • the dry positive electrode active material layer which is a free-standing film-type positive electrode material, may be attached to one surface of the wet positive electrode active material layer.
  • the free-standing film-type cathode material comprises the steps of (a) mixing sulfur and a porous carbon material; (b) heat-treating the mixture formed in step (a); And (c) the sulfur-carbon composite formed in step (b) is filled in a container and then pressurized; it may be prepared by a process including.
  • step (a) a mixture of sulfur as a raw material and a porous carbon material may be formed.
  • the type and appropriate weight range of the sulfur and the porous carbon material are the same as described above.
  • step (b) the mixture formed in step (a) may be heat-treated to form a sulfur-carbon composite.
  • sulfur When the mixture of sulfur and the porous carbon material is heated, sulfur is changed to a liquid state, and sulfur in the liquid state enters the interior of the porous carbon material or is coated or attached to the surface so that sulfur is supported or filled in the porous carbon material and/or coated.
  • a sulfur-carbon complex may be formed.
  • the porous carbon material is a carbon nanotube
  • sulfur in a liquid state may be sucked into the carbon nanotube through a capillary phenomenon, and the sulfur may be supported on the carbon nanotube.
  • the heat treatment may be performed above the melting point of sulfur.
  • the heat treatment temperature may be 130 °C or higher, 140 °C or higher, or 150 °C or higher, and 160 °C or lower, 165 °C or lower, or 170 °C or lower. If the heat treatment temperature is less than 130 °C, sulfur does not melt, so it may be difficult to form a composite supported or coated on a carbon material. It may cause loss and deterioration of manufacturing equipment.
  • the heat treatment time is possible as long as it is an appropriate time enough that sulfur can be melted by heat treatment and supported on the porous carbon material, 25 minutes or more or 30 minutes or more, 40 minutes or less, 45 minutes or less, or 50 minutes or less .
  • the cathode material in the form of a free-standing film composed of a sulfur melt containing carbon may be prepared by filling a container with the sulfur-carbon composite formed in step (b) and then pressurizing it.
  • the sulfur-carbon composite has a property of exhibiting strong self-cohesion under pressure. Specifically, in a pressurized state, sulfur on the surface of the sulfur-carbon composite may be partially melted to give connectivity between the composites, thereby exhibiting a strong self-cohesive force. Accordingly, when a pressure is applied to the particulate sulfur-carbon composites, sulfur is melted to form a sulfur melt, and a carbon-containing sulfur melt in which carbon material is dispersed in the sulfur melt is formed. Cohesive force is generated between the dispersed carbon material particles, and the carbon material functions as a skeleton and has flexibility by itself, so that a free-standing film is formed.
  • the pressure at the time of pressing may be sufficient to form a free-standing film by sufficiently generating a cohesive force between the sulfur-carbon composites.
  • the pressure during the pressurization may be 0.8 Mpa or more, 0.9 Mpa or more, or 1 Mpa or more, and may be 5 Mpa or less, 8 Mpa or less, 10 Mpa or less, 13 Mpa or less, or 15 Mpa or less. If the pressure at the time of pressurization is less than 0.8 Mpa, the cohesive force between the sulfur-carbon composites is weak, so that a free-standing film made of a sulfur melt containing carbon may not be formed.
  • the present invention provides a lithium secondary battery including the positive electrode for the lithium secondary battery.
  • a lithium secondary battery according to the present invention includes a positive electrode; cathode; It includes an electrolyte interposed therebetween, and includes the positive electrode for a lithium secondary battery according to the present invention as the positive electrode.
  • the positive electrode is as described above, and the free-standing film-type positive electrode material is included in the positive electrode active material layer, and the positive electrode active material layer and the positive electrode current collector are bonded to each other through a binder layer.
  • the positive electrode of the present invention includes a free-standing film-type positive electrode material manufactured by a dry process that does not require a binder or a conductive material in the positive electrode active material layer, so that a greater amount of sulfur can be loaded than the conventional electrode.
  • the loading amount of sulfur in the positive electrode that is, the mass of sulfur per unit area of the positive electrode active material layer in the positive electrode may be 3.0 to 5.0 mAh/cm 2 .
  • the lithium secondary battery including the positive electrode according to the present invention may exhibit excellent discharge capacity and lifespan characteristics.
  • the negative electrode may form a negative electrode active material layer including a negative electrode active material on at least one surface of the negative electrode current collector, or a negative electrode active material layer (eg, lithium metal plate, lithium metal thin film, lithium foil) may be used alone.
  • a negative electrode active material layer eg, lithium metal plate, lithium metal thin film, lithium foil
  • the negative electrode current collector is for supporting the negative electrode active material layer, as described in the positive electrode current collector.
  • the anode active material layer includes an anode active material, and may further include a conductive material, a binder, and the like.
  • the negative active material is a material capable of reversibly intercalating or deintercalating lithium (Li + ), a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal or a lithium alloy.
  • Li + lithium
  • Li alloy a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal or a lithium alloy.
  • the material capable of reversibly intercalating or deintercalating lithium ions may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • the material capable of reversibly forming a lithium-containing compound by reacting with the lithium ions (Li + ) may be, for example, tin oxide, titanium nitrate, or silicon.
  • the lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and may be an alloy of a metal selected from the group consisting of tin (Sn).
  • the negative active material may be lithium metal, and specifically, may be in the form of a lithium metal thin film or lithium metal powder.
  • the method of forming the negative active material is not particularly limited, and a method of forming a layer or a film commonly used in the art may be used. For example, a method such as pressing, coating, or vapor deposition may be used. In addition, a case in which a metal lithium thin film is formed on a metal plate by initial charging after assembling the battery in a state in which there is no lithium thin film in the current collector is also included in the negative electrode of the present invention.
  • the conductive material electrically connects the anode active material and the electrolyte to serve as a path for electrons to move from the current collector to the anode active material, and may be used without limitation as long as it has conductivity.
  • the conductive material may include graphite such as natural graphite and artificial graphite; carbon black such as Super-P (Super-P), Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, and Summer Black; carbon derivatives such as carbon nanotubes and fullerenes; conductive fibers such as carbon fibers and metal fibers; carbon fluoride; A metal powder such as aluminum or nickel powder or a conductive polymer such as polyaniline, polythiophene, polyacetylene, or polypyrrole may be used alone or in combination.
  • graphite such as natural graphite and artificial graphite
  • carbon black such as Super-P (Super-P), Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, and Summer Black
  • carbon derivatives such as carbon nanotubes and fullerenes
  • conductive fibers such as carbon fibers and metal fibers
  • carbon fluoride A metal powder such as aluminum or nickel powder or
  • the binder is the same as described in the binder layer.
  • the electrolyte contains lithium ions, and is to cause an electrochemical oxidation or reduction reaction in the positive electrode and the negative electrode through this.
  • lithium salts that may be included as an electrolyte in the electrolyte may be used without limitation, those commonly used in electrolytes for lithium secondary batteries, for example, as an anion of the lithium salt, F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C -
  • lithium salt LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 (Lithium bis(perfluoroethylsulfonyl)imide, BETI), LiN(CF 3 SO 2 ) 2 (Lithium bis(Trifluoromethanesulfonyl)imide, LiTFSI), LiN(C a F 2a+1 SO 2 )(C b F 2b+1 SO 2 ) (provided that a and b are natural numbers, preferably 1 ⁇ a ⁇ 20, and 1 ⁇ b ⁇ 20), lithium poly[4,4'-(hexafluoro) loisopropylidene)diphenoxy]sulfonylimide (lithium poly(lithium poly[
  • an organic solvent included in the electrolyte those commonly used in electrolytes for lithium secondary batteries may be used without limitation, and representatively, propylene carbonate (PC), ethylene carbonate, EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), methylpropyl carbonate, dipropyl carbonate, tetraethylene glycol dimethyl ether (TEGDME), dioxolane (DOL) ), dimethylsulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, vinylene carbonate, sulfolane, gamma-butyrolactone, any one or two selected from the group consisting of propylene sulfite and tetrahydrofuran A mixture of the above may be typically used.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethylmethyl
  • ethylene carbonate and propylene carbonate which are cyclic carbonates
  • an electrolyte having a high electrical conductivity can be prepared, which can be more preferably used.
  • the electrolyte may further include nitric acid or a nitrite-based compound as an additive in addition to the lithium salt and the organic solvent described above.
  • the nitric acid or nitrite-based compound is not particularly limited in the present invention, but lithium nitrate (LiNO 3 ), potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), barium nitrate (Ba(NO 3 ) 2 ), ammonium nitrate inorganic nitric acid or nitrite compounds such as (NH 4 NO 3 ), lithium nitrite (LiNO 2 ), potassium nitrite (KNO 2 ), cesium nitrite (CsNO 2 ), and ammonium nitrite (NH 4 NO 2 ); Organic nitric acids such as methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, and oc
  • a separator may be additionally included between the anode and the cathode.
  • the separator separates or insulates the positive electrode and the negative electrode from each other, and enables lithium ion transport between the positive electrode and the negative electrode, and may be made of a porous non-conductive or insulating material. can be used without
  • the separator may be an independent member such as a film, or may be a coating layer added to the positive electrode and/or the negative electrode.
  • the electrolyte has low resistance to ion movement and has excellent moisture content to the electrolyte.
  • the separator may be made of a porous substrate.
  • the porous substrate can be used as long as it is a porous substrate commonly used in secondary batteries, and a porous polymer film can be used alone or by laminating them, for example, a high melting point.
  • a nonwoven fabric made of glass fiber, polyethylene terephthalate fiber, or the like, or a polyolefin-based porous membrane may be used, but the present invention is not limited thereto.
  • the material of the porous substrate is not particularly limited in the present invention, and any porous substrate commonly used in electrochemical devices may be used.
  • the porous substrate may include a polyolefin such as polyethylene and polypropylene, a polyester such as polyethyleneterephthalate, a polybutyleneterephthalate, and a polyamide.
  • polyamide polyacetal, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfide ( polyphenylenesulfide, polyethylenenaphthalate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyacrylonitrile, cellulose, nylon (nylon), polyparaphenylenebenzobisoxazole (poly(p-phenylene benzobisoxazole) and polyarylate (polyarylate) may include at least one material selected from the group consisting of.
  • the thickness of the porous substrate is not particularly limited, but may be 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the thickness range of the porous substrate is not limited to the above-mentioned range, when the thickness is too thin than the above-described lower limit, mechanical properties are deteriorated and the separator may be easily damaged during use of the battery.
  • the average diameter and pore size of the pores present in the porous substrate are also not particularly limited, but may be 0.001 to 50 ⁇ m and 10 to 95%, respectively.
  • the form of the lithium secondary battery as described above is not particularly limited, and may be, for example, a jelly-roll type, a stack type, a stack-folding type (including a stack-Z-folding type), or a lamination-stack type, preferably It may be stack-folding.
  • a lithium secondary battery may be manufactured by sequentially stacking the negative electrode, the separator and the positive electrode, manufacturing an electrode assembly in which electrolyte is injected, putting it in a battery case, and sealing it with a cap plate and a gasket to assemble.
  • lithium secondary batteries can be classified into various batteries, such as lithium-sulfur secondary batteries, lithium-air batteries, lithium-oxide batteries, and lithium all-solid-state batteries, depending on the anode/cathode material used. It can be classified into a doll, a pouch type, etc., and can be divided into a bulk type and a thin film type according to the size. Since the structure and manufacturing method of these batteries are well known in the art, a detailed description thereof will be omitted.
  • the lithium secondary battery since the lithium secondary battery uses a cathode material in the form of a freestanding film including a sulfur-carbon composite as a cathode, it may be a lithium-sulfur secondary battery.
  • the lithium-sulfur secondary battery may use lithium metal as an anode active material.
  • an oxidation reaction of lithium occurs at the negative electrode and a reduction reaction of sulfur occurs at the positive electrode.
  • the reduced sulfur is combined with lithium ions that have moved from the negative electrode, is converted into lithium polysulfide, and finally accompanied by a reaction to form lithium sulfide.
  • the present invention provides a battery module including the lithium secondary battery as a unit battery.
  • the battery module may be used as a power source for medium or large devices requiring high temperature stability, long cycle characteristics, and high capacity characteristics.
  • Examples of the medium-to-large device include a power tool powered by an omniscient motor; electric vehicles, including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooter); electric golf carts; and a power storage system, but is not limited thereto.
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooter)
  • E-scooter electric bicycles
  • electric scooters E-scooter
  • electric golf carts and a power storage system, but is not limited thereto.
  • S and CNT were uniformly mixed in a solid state at a weight ratio of 65:35, and ball milled at 100 rpm for 1 hour to prepare a mixture.
  • the mixture was heat-treated at 155° C. for 35 minutes to allow sulfur to be loaded into the pores of CNTs and coated on the surface to prepare a sulfur-carbon composite (S-CNT).
  • S-CNT sulfur-carbon composite
  • the CNTs having a specific surface area of 350 m 2 /g were used.
  • the sulfur-carbon composite (S-CNT) obtained in Preparation Example 1 a conductive material, and a binder were mixed in a weight ratio of 90:5:5 to prepare a slurry, then coated on an aluminum current collector having a thickness of 20 ⁇ m, dried and rolled Thus, a wet positive electrode active material layer was formed.
  • the conductive material had a specific surface area of 300 m 2
  • CNT having a particle size of 20 ⁇ m was used
  • the binder was styrene-butadiene rubber (SBR).
  • the free-standing film-type positive electrode material was laminated on one surface of the wet positive electrode active material layer and then pressed to form a dry positive electrode active material layer.
  • a positive electrode for a lithium secondary battery in which an aluminum current collector, a wet positive electrode active material layer, and a dry positive electrode active material layer were sequentially stacked was prepared.
  • the prepared positive electrode and lithium metal having a thickness of 150 ⁇ m were prepared as negative electrodes.
  • the electrolyte solution is lithium bis(trifluoromethanesulfonyl) at a concentration of 1 M in an organic solvent mixed with tetraethylene glycol dimethyl ether (TEGDME)/dioxolane (DOL)/dimethoxyethane (DME) in a volume ratio of 1:1:1. ) It was prepared by dissolving imide (LiTFSI) and lithium nitrate (LiNO 3 ) at a concentration of 0.1 M.
  • TEGDME tetraethylene glycol dimethyl ether
  • DOL dioxolane
  • DME diimethoxyethane
  • An electrode assembly is prepared by interposing a porous polyethylene separator having a thickness of 20 ⁇ m and a porosity of 45% between the positive electrode and the negative electrode, and after placing the electrode assembly inside the case, the electrolyte is injected into the case to form a pouch cell.
  • a lithium-sulfur secondary battery was prepared.
  • a positive electrode and a lithium-sulfur secondary battery were manufactured in the same manner as in Example 1, except that only a wet positive electrode active material layer was formed without forming a dry positive electrode active material layer.
  • a positive electrode and a lithium-sulfur secondary battery were manufactured in the same manner as in Example 1, except that a wet positive electrode active material layer was not formed and a dry positive electrode active material layer was formed on one surface of the aluminum current collector. At this time, after applying SBR (Styrene Butadiene Rubber) as a binder on the aluminum current collector, the dry positive electrode active material layer was adhered.
  • SBR Styrene Butadiene Rubber
  • a dry active material layer was adhered to the aluminum current collector in the same manner as in Comparative Example 2, except that no binder was used.
  • the capacity was measured at 25°C and 45°C under conditions of 0.1C charge/0.1C discharge 2.5 cycles, 0.2C charge/0.2C discharge 3 cycles, and 0.2C charge/0.3C discharge conditions.
  • the nominal voltage is a nominal voltage value for calling a given voltage system in the power system, generally has a value slightly lower than the electromotive force, and usually means the mean value of discharge voltage.
  • the nominal voltage was obtained as the center value of the discharge curve as shown in FIGS. 2A and 2B.
  • Moisture content was measured using a moisture measuring instrument (Metrohm 901 KF Tirando).
  • Example 1 shows a longitudinal cross-section of a positive electrode for a lithium-sulfur secondary battery prepared in Example 1, Comparative Example 1, and Comparative Example 2, respectively.
  • the positive electrode prepared in Example 1 has a structure in which a current collector 10 , a wet positive electrode active material layer 20 , and a dry positive electrode active material layer 30 are stacked.
  • the wet cathode active material layer 20 exhibits relatively high porosity compared to the dry cathode active material layer 30
  • the dry cathode active material layer 30 has a relatively high density compared to the wet cathode active material layer 20 . indicates
  • resistance displayed when the current collector 10 and the dry positive electrode active material layer 30 are directly laminated due to the wet positive electrode active material layer 20 may be improved.
  • durability of the positive electrode may be improved.
  • the positive electrode manufactured in Comparative Example 1 has a structure in which a current collector 10 and a wet positive electrode active material layer 20 are stacked. Since a binder is included in the wet cathode active material layer 20 , there is a problem in that resistance increases.
  • the positive electrode manufactured in Comparative Example 2 has a structure in which a current collector 10 and a dry positive electrode active material layer 30 are stacked. Since a binder is applied between the current collector 10 and the dry positive electrode active material layer 30 , there may be a problem in that the contact resistance by the binder increases and the high rate characteristic decreases.
  • Example 1 Lithium-sulfur secondary battery including a positive electrode having a dry and wet positive electrode active material layer formed
  • Comparative Example 1 Weight positive electrode active material
  • Example 1 has superior high rate characteristics, overvoltage and lifespan characteristics compared to Comparative Example 2 (a lithium-sulfur secondary battery including a positive electrode having a dry positive electrode active material layer formed thereon).
  • Comparative Example 2 a lithium-sulfur secondary battery including a positive electrode having a dry positive electrode active material layer formed thereon.
  • the reason that the difference in capacity between Example 1 and Comparative Example 2 at 0.1C was not large is due to the low charge/discharge rate in which the resistance does not act significantly. That is, as shown in Fig. 2b, when the discharge rate is 0.2C, it can be seen that the capacity is rapidly reduced due to the resistance of Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것으로, 보다 상세하게는, 상기 리튬 이차전지용 양극은 전지 내의 수분 함량을 증가시키지 않을 정도의 저로딩인 습식 양극 활물질층과 건식 공정에 의해 제조된 건식 양극 활물질층을 포함하는 구조를 가지므로, 습식 양극 활물질층만을 포함하거나, 건식 양극 활물질층만을 포함하는 양극이 구비된 전지에 비해 용량, 과전압 및 수명 특성이 개선된 리튬 이차전지를 제조할 수 있다.

Description

리튬 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
본 출원은 2021년 05월 07일자 한국 특허출원 제2021-0058926호 및 2022년 04월 28일자 한국 특허출원 제2022-0052596호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.
본 발명은 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 전자기기 분야와 전기 자동차 분야의 급속한 발전에 따라 이차전지의 수요가 증가하고 있다. 특히, 휴대용 전자기기의 소형화 및 경량화 추세에 따라 그에 부응할 수 있는 고에너지 밀도를 갖는 이차전지에 대한 요구가 커지고 있다.
이차전지 중 리튬-황 이차전지는 황-황 결합을 갖는 황계 화합물을 양극 활물질로 사용하고, 리튬과 같은 알칼리 금속 또는 리튬 이온과 같은 금속 이온의 삽입 및 탈삽입이 일어나는 탄소계 물질 또는 리튬과 합금을 형성하는 실리콘이나 주석 등을 음극 활물질로 사용하는 이차전지다. 구체적으로, 환원 반응인 방전시 황-황 결합이 끊어지면서 황의 산화수가 감소하고, 산화 반응인 충전시 황의 산화수가 증가하면서 황-황 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장하고 생성한다.
특히, 리튬-황 이차전지에 양극 활물질로 사용되는 황은 이론 에너지 밀도가 1,675 mAh/g으로, 기존의 리튬 이차전지에 사용되는 양극 활물질에 비해 5배 정도 높은 이론 에너지 밀도를 가지고 있어 고출력, 고에너지 밀도의 발현이 가능한 전지이다. 이에 더해서 황은 값이 저렴하고 매장량이 풍부해 수급이 용이하며 환경친화적이라는 이점 때문에 휴대용 전자기기뿐만 아니라 전기 자동차와 같은 중대형 장치의 에너지원으로 주목받고 있다.
황은 전기 전도도가 5Х10-30 S/㎝로 전기 전도성이 없는 부도체이므로 전기화학 반응으로 생성된 전자의 이동이 어려운 문제가 있다. 이에 전기화학적 반응 사이트를 제공할 수 있는 탄소와 같은 전기전도성 물질과 함께 복합화되어 황-탄소 복합체로 사용되고 있다.
상기 황-탄소 복합체를 양극 활물질로 사용하기 위해서 도전재 및 바인더와 함께 슬러리를 제조한 후, 상기 슬러리를 집전체에 도포하는 슬러리 공정을 통해 양극을 제조하는 방식이 일반적으로 사용되고 있다.
그러나, 이러한 슬러리 공정에 의해 제조되는 양극은 슬러리 제조시 사용되는 도전재 및 바인더로 인하여 양극 내 양극 활물질의 로딩량이 저하되어 에너지 밀도도 감소되는 문제가 있다. 또한, 슬러리 공정은 혼합, 코팅, 건조 및 압연과 같은 세부 공정들을 포함하기 때문에 소요되는 시간과 비용이 증가되는 문제가 있다.
이에, 간소한 공정으로 고로딩의 리튬 이차전지용 양극을 제조할 수 있는 기술 개발이 필요하다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국공개특허 제2018-0055230호
(특허문헌 2) 일본공개특허 제2018-113142호
이에 본 발명자들은 상기 문제를 해결하고자 다각적으로 연구를 수행한 결과, 습식 공정으로 제조된 습식 양극 활물질층과 건식 공정으로 제조된 건식 양극 활물질층이 적층된 양극을 포함하는 리튬 이차전지는 용량, 고율특성, 과전압 및 수명 특성이 우수하다는 것을 확인하고 본 발명을 완성하였다.
따라서, 본 발명의 목적은 전지의 용량, 고율특성, 과전압 및 수명 특성이 개선된 리튬 이차전지용 양극 및 이의 제조방법을 제공하는 데 있다.
본 발명의 또 다른 목적은 상기 리튬 이차전지용 양극을 포함하는 리튬 이차전지를 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은 양극 집전체;
상기 양극 집전체의 일 면에 형성된 습식 양극 활물질층; 및
상기 습식 양극 활물질층 상에 형성된 건식 양극 활물질층;을 포함하되,
상기 습식 양극 활물질층은 황-탄소 복합체, 바인더 및 도전재를 포함하고,
상기 건식 양극 활물질층은 탄소 포함 황 용융물로 구성된 것인, 리튬 이차전지용 양극을 제공한다.
또한, 본 발명은 (1) 황-탄소 복합체, 바인더 및 도전재를 포함하는 양극 슬러리를 양극 집전체에 일면에 도포하여, 습식 양극 활물질층을 형성하는 단계; 및
(2) 상기 습식 양극 활물질층의 일면에 프리스탠딩 필름형 양극재인 건식 양극 활물질층 양극 활물질층을 부착하는 단계;를 포함하는 리튬 이차전지용 양극의 제조방법을 제공한다.
또한, 본 발명은 상기 리튬 이차전지용 양극; 리튬 금속 또는 리튬 합금을 포함하는 음극; 상기 양극과 음극 사이에 위치하는 분리막; 및 상기 양극, 음극 및 분리막이 함침된 전해질을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 리튬 이차전지용 양극은 습식 양극 활물질층과 건식 양극 활물질층이 적층된 구조로 인하여, 습식 양극 활물질층 만을 포함하는 일반적인 리튬 이차전지용 양극에 비해 용량, 과전압, 고율 특성 및 수명 특성이 개선된 효과를 나타낼 수 있다.
도 1은 실시예 1, 비교예 1 및 비교예 2에서 각각 제조된 리튬-황 이차전지용 양극의 종단면을 나타낸 것이다.
도 2a 및 도 2b는 실시예 1, 비교예 1 및 비교예 2에서 각각 제조된 리튬-황 이차전지의 충방전시 비용량과 전압의 변화를 나타낸 그래프이다.
도 3은 실시예 1, 비교예 1 및 비교예 2에서 각각 제조된 리튬-황 이차전지의 수명 특성을 나타낸 그래프이다.
이하, 본 발명을 더욱 상세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 '가지다'등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 사용된 용어 “습식 양극 활물질층”은 일반적인 리튬 이차전지용 양극 활물질층을 의미하는 것으로, 양극 활물질, 바인더 및 도전재를 용매에 혼합 및 분산시켜 제조된 양극 슬러리를 양극 집전체 상에 도포, 건조 및 압연하는 단계를 포함하는 공정에 의해서 제조될 수 있다.
본 명세서에서 사용된 용어 “건식 양극 활물질층”은 황과 다공성 탄소재만으로 이루어진 양극 활물질층을 의미하는 것으로, 황과 탄소재를 열처리한 후 가압하여 프리스탠딩 필름 형태로 형성될 수 있다. 구체적으로, 상기 건식 양극 활물질층은 황 용용물 내부에 다공성 탄소재가 분산된 형태를 가지는 탄소 포함 황 용융물로 구성된 것일 수 있다.
본 명세서에서 사용된 용어 "기공도(porosity)"는 어느 구조체에서 전체 부피에 대해 기공이 차지하는 부피의 비율을 의미하고, 그의 단위로서 %를 사용하며, 공극률, 다공도 등의 용어와 상호 교환하여 사용할 수 있다. 본 발명에 있어서, 상기 기공도의 측정 방법은 특별히 한정되지 않으며, 본 발명의 일 실시예에 따라 예를 들어 BET(Brunauer-Emmett-Teller) 측정법 또는 수은 침투법 (Hg porosimeter)에 의해 기공의 크기와 기공의 부피를 측정할 수 있다.
리튬 이차전지용 양극
본 발명은 습식 양극 활물질층 및 건식 양극 활물질층을 포함하는 리튬 이차전지용 양극에 관한 것으로, 상기 리튬 이차전지용 양극은, 양극 집전체; 상기 양극 집전체의 일 면에 형성된 습식 양극 활물질층; 및 상기 습식 양극 활물질층 상에 형성된 건식 양극 활물질층;을 포함하되, 상기 습식 양극 활물질층은 황-탄소 복합체, 바인더 및 도전재를 포함하고, 상기 건식 양극 활물질층은 탄소 포함 황융융물로 구성된 것일 수 있다.
일반적으로, 상기 건식 공정으로 제조된 건식 전극은 저항 요소인 바인더를 포함하고 있지 않으므로, 상기 습식 전극에 비해 내부 저항이 낮아 과전압이 적으므로 용량이 우위에 있다. 또한, 상기 건식 전극은 습식 전극 대비 수분 함량이 적어 수분에 의한 음극 퇴화 발생 확률이 낮으므로 수명 특성의 측면에서도 우위에 있다. 그러나 종래 건식 전극은 상기 건식 전극과 집전체 사이의 접촉 저항이 커 파우치셀 성능 발현에 문제가 있다.
본 발명에 따른, 리튬 이차전지용 양극은 집전체, 습식 양극 활물질층 및 건식 양극 활물질층이 순차적으로 적층된 구조를 가지므로, 이와 같은 종래 건식 전극의 문제점을 개선시킬 수 있다.
우선, 습식 양극 활물질층이 집전체에 코팅됨으로써 집전체와 습식 양극 활물질층 사이의 저항이 감소될 수 있다. 또한, 상기 습식 양극 활물질층 상에 건식 양극 활물질층을 도입함으로써 가압 시 황이 용융되어 습식 양극 활물질층과 건식 양극 활물질층 사이의 연결성을 유지해 줄 수 있다. 만약, 습식 양극 활물질층 내에 황이 포함되어 있지 않으면, 활물질층 간의 연결성이 유지되기가 어렵다.
상기 습식 양극 활물질층은 이와 같은 집전체와 활물질층 간의 접촉을 원활하게 해줄 뿐만 아니라 높은 기공도를 가져 물질 전달을 원활하게 해주는 역할을 할 수 있다.
본 발명에 있어서, 상기 양극 집전체는 후술하는 양극 활물질층을 지지하며, 외부 도선과 양극 활물질층 사이에서 전자를 전달하는 역할을 하는 것이다.
상기 양극 집전체는 리튬 이차전지에 화학적 변화를 유발하지 않으면서 높은 전자 전도성을 가지는 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 상기 양극 집전체로 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 표면에 카본, 니켈, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 양극 집전체는 양극 활물질층과의 결합력을 강화시키 위해 양극 집전체의 표면에 미세한 요철 구조를 가지거나 3차원 다공성 구조를 채용할 수 있다. 이에 따라, 상기 양극 집전체는 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 포함할 수 있다.
본 발명에 있어서, 상기 습식 양극 활물질층은 양극 활물질인 황-탄소 복합체, 바인더 및 도전재를 포함할 수 있다.
상기 양극 활물질은 상기 습식 양극 활물질층 전체 중량을 기준으로 40 내지 80 중량%로 포함될 수 있다. 구체적으로, 상기 양극 활물질의 함량은 40 중량% 이상 또는 50 중량% 이상일 수 있고, 70 중량% 이하 또는 80 중량% 이하일 수 있다. 상기 양극 활물질의 함량이 40 중량% 미만이면 습식 양극 활물질층과 건식 양극 활물질층의 연결성이 부족해질 수 있고, 80 중량% 초과이면 물질 전달 저항이 커질 수 있다.
상기 황-탄소 복합체는 상기 황이 상기 다공성 탄소재에 담지되어 있는 형태의 복합체를 의미한다. 예컨대, 상기 황-탄소 복합체는 상기 다공성 탄소재의 표면에 황이 부착 또는 코팅되어 있는 상태일 수 있다. 또한, 상기 황-탄소 복합체는 상기 황은 상기 다공성 탄소재의 내부 기공에 부착, 충진 또는 코팅된 상태; 또는 상기 다공성 탄소재의 내부에 상기 황이 침투되어 부착된 상태일 수도 있다.
또한, 상기 황은 무기 황(S8), Li2Sn(n ≥ 1, n은 정수임), 유기황 화합물 및 탄소-황 폴리머((C2Sx)n, 2.5 ≤ x ≤ 50, n ≥ 2, x 및 n은 정수임)로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
또한, 상기 황의 함량은 상기 황-탄소 복합체 전체 중량을 기준으로 50 중량% 이상, 55 중량% 이상 또는 60 중량% 이상일 수 있고, 70 중량% 이하, 75 중량% 이하, 80 중량% 이하일 수 있다. 상기 황의 함량이 50 중량% 미만이면 전기화학적 활물질인 황의 비율이 줄어들어 다공성 탄소재의 표면에 형성되는 황 코팅층이 얇아지게 되어 황-탄소 복합체가 제대로 성형되기 어렵거나 또는 상기 다공성 탄소재의 내부에 포함되는 황의 양이 감소되어 전지 용량이 저하될 수 있다. 또한, 상기 황의 함량이 80 중량% 초과이면 비전도성인 황이 다공성 탄소재의 도전 구조를 차단하여 전기화학적 활성이 차단되므로 전지 구동이 제한적일 수 있다.
또한, 상기 다공성 탄소재는 내부에 기공 또는 중공이 형성되어 있어, 비표적이 높은 특성을 가질 수 있으며, 당업계에서 통상적으로 사용되는 다공성 탄소재라면 어느 것이든 무방하다.
상기 다공성 탄소재는 그라파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙 및 서머 블랙 중 선택되는 카본 블랙; 단일벽 탄소나노튜브(SWCNT) 및 다중벽 탄소나노튜브(MWCNT) 중 선택되는 탄소나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF) 및 활성화 탄소 파이버(ACF) 중 선택되는 탄소 섬유; 및 활성탄소로 이루어진 군으로부터 선택되는 1종 이상일 수 있으나 이에 제한되지 않는다. 바람직하게는, 상기 다공성 탄소재는 탄소나노튜브일 수 있다.
또한, 상기 탄소나노튜브의 형태는 특별히 제한되는 것은 아니며, 예를 들어, 비표면적 200 ㎡/g 내지 500 ㎡/g 및 입자크기 10 ㎛ 내지 30 ㎛인 것일 수 있다. 이때, 상기 입자크기는 입자의 최장축에 해당하는 부분의 길이를 의미하는 것일 수 있다.
또한, 상기 다공성 탄소재의 함량은 상기 황-탄소 복합체 전체 중량을 기준으로 20 중량% 이상, 25 중량% 이상, 30 중량% 이상 또는 35 중량% 이상일 수 있고, 40 중량% 이하, 45 중량% 이하 또는 50 중량% 이하일 수 있다. 상기 다공성 탄소재가 20 중량% 미만이면 황이 충진, 부착 또는 코팅될 수 있는 표면적과 공간의 제공이 충분치 않아 황의 전기화학 활용성(반응성)이 저하될 수 있다. 상기 다공성 탄소재가 50 중량% 초과이면 황의 함량이 상대적으로 저하되어 리튬 이차전지에 적용 시 전지의 에너지 밀도가 지나치게 저하될 수 있다.
상기 바인더는 양극 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분으로서, 스티렌-부타디엔 고무, 아크릴화 스티렌-부타디엔 고무, 아크릴로니트릴 공중합체, 아크릴로니트릴-부타디엔 고무, 니트릴 부타디엔 고무, 아크릴로니트릴-스티렌-부타디엔 공중합체, 아크릴 고무, 부틸 고무, 플루오린 고무, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌/프로필렌 공중합체, 폴리부타디엔, 폴리에틸렌 옥사이드, 클로로설폰화 폴리에틸렌, 폴리비닐피롤리돈, 폴리비닐피리딘, 폴리비닐 알코올, 폴리비닐 아세테이트, 폴리에피클로로하이드린, 폴리포스파젠, 폴리아크릴로니트릴, 폴리스티렌, 라텍스, 아크릴 수지, 페놀수지, 에폭시 수지, 카복시메틸셀룰로오스, 하이드록시프로필 셀룰로오스, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부티레이트, 셀룰로오스 아세테이트 프로피오네이트, 시아노에틸셀룰로오스, 시아노에틸수크로스, 폴리에스테르, 폴리아미드, 폴리에테르, 폴리이미드, 폴리카복실레이트, 폴리카복시산, 폴리아크릴산, 폴리아크릴레이트, 리튬 폴리아크릴레이트, 폴리메타크릴산, 폴리메타크릴레이트, 폴리아크릴아미드, 폴리우레탄, 폴리비닐리덴 플루오라이드 및 폴리(비닐리덴 플루오라이드)-헥사플루오로프로펜으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 바람직하기로, 상기 바인더는 스티렌-부타디엔 고무, 폴리테트라플루오로에틸렌, 카복시메틸셀룰로오스, 폴리아크릴산, 리튬 폴리아크릴레이트 및 폴리비닐리덴 플루오라이드으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
또한, 상기 바인더는 습식 양극 활물질층 전체 중량을 기준으로 1 중량% 내지 30 중량%로 포함될 수 있고, 구체적으로는, 상기 바인더의 함량은 1 중량% 이상 또는 3 중량% 이상일 수 있고, 15 중량% 이하 또는 30 중량% 이하일 수 있다. 상기 바인더의 함량이 1 중량% 미만이면 양극 활물질과 양극 집전체와의 접착력이 불충분해질 수 있고, 30 중량%를 초과하면 접착력은 향상되지만 그만큼 양극 활물질의 함량이 감소하여 전지 용량이 낮아질 수 있다.
상기 양극에 포함되는 도전재는 리튬 이차전지의 내부 환경에서 부반응을 유발하지 않고 당해 전지에 화학적 변화를 유발하지 않으면서 우수한 전기전도성을 가지는 것이라면 특별히 제한되지 않으며, 대표적으로는 흑연 또는 도전성 탄소를 사용할 수 있으며, 예컨대, 천연 흑연, 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 덴카 블랙, 써멀 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 결정구조가 그라펜이나 그라파이트인 탄소계 물질; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄 분말, 니켈 분말 등의 금속 분말; 산화 아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 산화물; 및 폴리페닐렌 유도체 등의 도전성 고분자;를 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 도전재는 통상적으로 습식 양극 활물질층 전체 중량을 기준으로 0.5 중량% 내지 30 중량%로 포함될 수 있으며, 구체적으로 상기 도전재의 함량은 0.5 중량% 이상 또는 1 중량% 이상일 수 있고, 20 중량% 이하 또는 30 중량% 이하일 수 있다. 상기 도전재의 함량이 0.5 중량% 미만으로 너무 적으면 전기전도성 향상 효과를 기대하기 어렵거나 전지의 전기화학적 특성이 저하될 수 있으며, 30 중량%를 초과하여 너무 많으면 상대적으로 양극 활물질의 양이 적어져 용량 및 에너지 밀도가 저하될 수 있다. 양극에 도전재를 포함시키는 방법은 크게 제한되지 않으며, 양극 활물질에의 코팅 등 당분야에 공지된 통상적인 방법을 사용할 수 있다. 또한, 필요에 따라, 양극 활물질에 도전성의 제2 피복층이 부가됨으로 인해 상기와 같은 도전재의 첨가를 대신할 수도 있다.
본 발명에 있어서, 용어 "기공도(porosity)"는 어느 구조체에서 전체 부피에 대해 기공이 차지하는 부피의 비율을 의미하고, 그의 단위로서 %를 사용하며, 공극률, 다공도 등의 용어와 상호 교환하여 사용할 수 있다. 본 발명에 있어서, 상기 기공도의 측정은 특별히 한정되지 않으며, 본 발명의 일 실시예에 따라 예를 들어 BET(Brunauer-Emmett-Teller) 측정법 또는 수은 침투법 (Hg porosimeter)에 의해 마이크로(micro) 및 메소 세공 부피(meso pore volume)를 측정할 수 있다.
또한, 상기 습식 양극 활물질층의 밀도는 0.2 내지 1.4 g/㎤일 수 있으며, 구체적으로, 상기 습식 양극 활물질층의 밀도는 0.2 g/㎤이상, 0.3 g/㎤이상 또는 0.5 g/㎤이상일 수 있고, 1.0 g/㎤이하, 1.2 g/㎤이하 또는 1.4 g/㎤이하일 수 있다. 상기 밀도가 0.2 g/㎤ 미만이면 접촉저항이 커질 수 있고, 1.4 g/㎤ 초과이면 물질전달저항이 커질 수 있다.
또한, 상기 습식 양극 활물질층의 로딩량은 0.1 mAh/㎠ 내지 0.5 mAh/㎠ 일 수 있으며, 구체적으로, 상기 습식 양극 활물질층의 로딩량은 0.1 mAh/㎠ 이상, 0.2 mAh/㎠ 이상 또는 0.3 mAh/㎠ 이상일 수 있고, 0.4 mAh/㎠ 이하 또는 0.5 mAh/㎠ 이하일 수 있다. 상기 습식 양극 활물질층의 로딩량이 상기 범위를 만족할 경우 전지 성능 유지에 유지력이 좋을 수 있다. 상기 습식 양극 활물질층의 로딩량은 후술하는 바와 같은 건식 양극 활물질층의 로딩량 전체를 기준으로 0.2 내지 20%일 수 있으며, 구체적으로 0.2% 이상, 1% 이상. 2% 이상 또는 3% 이상일 수 있고, 10% 이하, 15% 이하 또는 20% 이하일 수 있다.
또한, 상기 습식 양극 활물질층의 기공도는 30% 내지 90% 일 수 있으며, 구체적으로는, 30% 이상, 50% 이상, 60% 이상 또는 70% 이상이거나, 80% 이하, 85% 이하 또는 90% 이하일 수 있으며, 이와 같은 기공도 범위를 만족할 경우, 전지의 내구성을 유지하면서 전지 성능 유지력이 좋을 수 있다.
또한, 상기 습식 양극 활물질층의 중량은, 습식 양극 활물질층 및 건식 양극 활물질층의 전체 중량을 기준으로 1 내지 15 중량% 일 수 있으며, 구체적으로는, 1 중량% 이상, 3 중량% 이상 또는 5 중량% 이상일 수 있고, 10 중량% 이하, 13 중량% 이하 또는 15 중량% 이하일 수 있다. 상기 습식 양극 활물질층의 중량이 1 중량% 미만이면, 집전체와 건식 양극 활물질층 간의 접착력이 저하될 수 있고, 15 중량% 초과이면 상기 습식 양극 활물질층 내부에 포함된 바인더로 인하여 전지 저항으로 작용할 수 있다.
또한, 상기 습식 양극 활물질층의 두께는, 습식 양극 활물질층 및 건식 양극 활물질층의 전체 두께를 기준으로 1 내지 30% 일 수 있으며, 구체적으로는 1% 이상, 5% 이상 또는 10% 이상일 수 있고, 20% 이하, 25% 이하 또는 30% 이하일 수 있다. 상기 습식 양극 활물질층의 두께가 1% 미만이면, 집전체와 건식 양극 활물질층 간의 접착력이 저하될 수 있고, 30% 초과이면, 상기 습식 양극 활물질층 내부에 포함된 바인더로 인하여 전지 저항으로 작용할 수 있다.
본 발명에 있어서, 상기 건식 양극 활물질층은 탄소 포함 황 용융물을 포함하는 것일 수 있다. 상기 탄소 포함 황 용융물은 황 용융물 내에 다공성 탄소재가 분산된 형태를 가지는 것일 수 있다.
상기 건식 양극 활물질층은 습식 양극 활물질층에 포함된 바인더와 도전재 없이 오직 탄소 포함 황 용융물로만 이루어져 있는 프리스탠딩 필름 형태의 양극재를 포함하는 것일 수 있다.
상기 프리스탠딩 필름 형태의 양극재는 황과 다공성 탄소재를 원료로 건식 공정에 의해 제조되므로, 양극재에 내에 황과 다공성 탄소재 만이 포함되어 있어 양극으로 사용시 로딩량이 높은 장점이 있다. 또한, 상기 건식 공정은 종래 슬러리 공정시 요구되는 혼합, 탈포, 코팅, 건조 및 압연과 같은 일련의 공정을 생략할 수 있어, 공정 비용 절감이 가능하다. 또한, 상기 건식 공정은 슬러리를 사용하지 않으므로 상기 건식 공정에 의해 제조된 탄소 포함 황 용융물에 바인더가 전혀 포함되어 있지 않아 바인더 저항에 의한 전지 성능 저하를 근본적으로 제거할 수 있다. 또한, 상기 건식 공정에 의해 제조된 탄소 포함 황 용융물에는 도전재가 전혀 포함되어 있지 않으므로, 응집력이 부족한 도전재에 의해 성형성이 저하되는 문제가 최소화될 수 있다.
또한, 상기 프리스탠딩 필름 형태의 양극재는 다공성 탄소재가 양극재의 골격을 이룬 상태에서, 상기 탄소재의 표면에 형성된 황 용융물에 의해 연결되어 프리스탠딩 필름 형태를 나타낸다. 상기 다공성 탄소재 중 탄소나노튜브는 구조적인 특징으로 인하여 연결점이 더 많아 프리스탠딩 필름 성형 시 더 유리할 수 있다. 구체적으로 상기 탄소나노튜브는 종횡비가 1 초과인 형태를 가지므로, 서로 연결되어 프리스탠딩 필름을 형성하기에 유리할 수 있다.
또한, 상기 프리스탠딩 필름 형태의 양극재는 전극 가압 성형 후 양극재 내의 접착력이 10 gf/cm 이상인 양극재일 수 있다. 상기 접착력은 가압 공정 시 황이 용융되어 주변의 황과 결집되는 성질에 기인한 것이며, 상기 양극재의 접착력이 10 gf/cm 미만이면 양극간 접착력 부족으로 전극 성형이 어려워질 수 있다. 구체적으로 상기 접착력은 10 gf/cm 이상, 15 gf/cm 이상, 20 gf/cm 이상, 25 gf/cm 이상, 30 gf/cm 이상 또는 35 gf/cm 이상일 수 있다. 또한, 상기 접착력의 상한은 50 gf/cm 이하, 60 gf/cm 이하, 70 gf/cm 이하, 80 gf/cm 이하, 90 gf/cm 이하 또는 100 gf/cm 이하일 수 있으나, 이에 제한되는 것은 아니며, 양극재 내의 접착력은 높을수록 성형성, 내구성 및 전지 성능 측면에서 좋을 수 있다.
또한, 상기 건식 양극 활물질층에 포함된 탄소 포함 황 용융물은 황 50 중량% 내지 80 중량% 및 다공성 탄소재 20 중량% 내지 50 중량%로 구성된 것일 수 있다. 황은 상기 탄소 포함 황 용융물 전체 중량을 기준으로 50 중량% 이상, 55 중량% 이상 또는 60 중량% 이상 가능하고, 70 중량% 이하, 75 중량% 이하, 80 중량% 이하 가능하다. 상기 황이 50 중량% 미만이면 전기화학적 활물질인 황의 비율이 줄어들어 다공성 탄소재의 표면에 형성되는 황 용융물의 두께가 얇아지게 되어 탄소 포함 황 용융물이 제대로 성형되기 어렵거나 또는 황의 양이 감소되어 전지 용량이 저하될 수 있다. 또한, 상기 황이 80 중량% 초과이면 비전도성인 황이 다공성 탄소재의 도전 구조를 차단하여 전기화학적 활성이 차단되므로 전지 구동이 제한적일 수 있다. 상기 탄소 포함 황 용융물에서 황이 50 중량% 내지 80 중량% 포함될 때 양극재가 강한 자체 응집력을 나타낼 수 있고, 상기 다공성 탄소재가 황 용융물 내에서 잘 분산될 수 있으므로 프리스탠딩 형태의 양극이 잘 형성될 수 있다.
또한, 상기 건식 양극 활물질층의 기공도는 68% 이하, 65% 이하, 60% 이하 또는 55% 이하일 수 있고, 45% 이상 또는 50% 이상일 수 있다. 상기 건식 양극 활물질층의 기공도가 68% 초과이면 양극의 내구성이 저하될 수 있고, 45% 미만이면 기공 내에서 전기화학반응이 일어나는 공간이 좁아지므로 정상적인 셀 구동이 어려워질 수 있다.
또한, 상기 건식 양극 활물질층의 로딩량은 2.5 mAh/㎠ 내지 5.0 mAh/㎠ 일 수 있으며, 상기 건식 양극 활물질층의 로딩량이 상기 범위를 만족할 경우 전지 성능 유지에 유지력이 좋을 수 있다.
또한, 상기 건식 양극 활물질층의 중량은, 습식 양극 활물질층 및 건식 양극 활물질층의 전체 중량을 기준으로 85 내지 99 중량% 일 수 있으며, 구체적으로는, 85 중량% 이상, 87 중량% 이상 또는 90 중량% 이상일 수 있고, 95 중량% 이하, 97 중량% 이하 또는 99 중량% 이하일 수 있다. 상기 건식 양극 활물질층의 중량이 85 중량% 미만이면, 습식 양극 활물질층의 중량이 상대적으로 커져 상기 습식 양극 활물질층 내부에 포함된 바인더로 인하여 전지 저항으로 작용할 수 있고, 99 중량% 초과이면 집전체와 건식 양극 활물질층 간의 접착력이 저하될 수 있다.
또한, 상기 건식 양극 활물질층의 두께는, 습식 양극 활물질층 및 건식 양극 활물질층의 전체 두께를 기준으로 70 내지 99% 일 수 있으며, 구체적으로는 70% 이상, 75% 이상 또는 80% 이상일 수 있고, 90% 이하, 95% 이하 또는 99% 이하일 수 있다. 상기 건식 양극 활물질층의 두께가 70% 미만이면, 습식 양극 활물질층의 중량이 상대적으로 커져 상기 습식 양극 활물질층 내부에 포함된 바인더로 인하여 전지 저항으로 작용할 수 있고, 99% 초과이면, 집전체와 건식 양극 활물질층 간의 접착력이 저하될 수 있다.
리튬 이차전지용 양극의 제조방법
본 발명은 또한, 리튬 이차전지용 양극의 제조방법에 관한 것으로, 상기 리튬 이차전지용 양극의 제조방법은 (1) 황-탄소 복합체, 바인더 및 도전재를 포함하는 양극 슬러리를 양극 집전체에 일면에 도포하여, 습식 양극 활물질층을 형성하는 단계; 및 (2) 상기 습식 양극 활물질층의 일면에 프리스탠딩 필름형 양극재인 건식 양극 활물질층을 부착하는 단계;를 포함하는 것일 수 있다.
이하, 각 단계별로 본 발명을 보다 상세히 설명한다.
본 발명에 있어서, 상기 (1) 단계에서는 황-탄소 복합체, 바인더 및 도전재를 포함하는 양극 슬러리를 양극 집전체에 일면에 도포하여, 습식 양극 활물질층을 형성할 수 있다. 이때, 상기 황-탄소 복합체, 바인더, 도전재 및 양극 집전체의 특성에 대해서는 앞서 설명한 바와 같다.
구체적으로, 상기 양극 슬러리를 양극 집전체에 도포하고, 진공 건조하여 리튬 이차전지용 양극을 형성할 수 있다. 상기 양극 슬러리는 슬러리의 점도 및 형성하고자 하는 양극의 두께에 따라 적절한 두께로 양극 집전체에 도포할 수 있으며, 바람직하게는 10 nm 내지 1 ㎛ 범위 내에서 적절히 선택할 수 있다.
이때 상기 양극 슬러리를 코팅하는 방법으로 그 제한은 없으며, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating) 방법 등을 수행하여 제조할 수 있다.
또한, 상기 양극 슬러리는 상기 황-탄소 복합체, 바인더 및 도전재를 용매와 혼합 및 교반하여 제조할 수 있다.
상기 용매로는 상기 황-탄소 복합체, 바인더 및 도전재를 균일하게 분산시킬 수 있는 것을 사용한다. 이러한 용매로는 수계 용매로서 물이 가장 바람직하며, 이때 물은 2차 증류한 DW(Distilled Water), 3차 증류한 DIW(Deionzied Water)일 수 있다. 다만 반드시 이에 한정하는 것은 아니며, 필요한 경우 물과 쉽게 혼합이 가능한 저급 알코올이 사용될 수 있다. 상기 저급 알코올로는 메탄올, 에탄올, 프로판올, 이소프로판올, 및 부탄올 등이 있으며, 바람직하기로 이들은 물과 함께 혼합하여 사용될 수 있다.
또한, 상기 양극 슬러리 제조를 위한 혼합은 통상의 혼합기, 예컨대 페이스트 믹서, 고속 전단 믹서, 호모 믹서 등을 이용하여 통상의 방법으로 교반할 수 있다.
제조된 상기 양극 슬러리를 양극 집전체 상에 도포한 후 건조하여 양극을 제조할 수 있으며, 필요에 따라 전극 밀도의 향상을 위하여 양극 집전체에 압축 성형하여 제조할 수 있다.
본 발명에 있어서, 상기 (2) 단계에서는 상기 습식 양극 활물질층의 일면에 프리스탠딩 필름형 양극재인 건식 양극 활물질층 양극 활물질층을 부착할 수 있다.
본 발명에 있어서, 상기 프리스탠딩 필름형 양극재는 (a) 황과 다공성 탄소재를 혼합하는 단계; (b) 상기 (a) 단계에서 형성된 혼합물을 열처리하는 단계; 및 (c) 상기 (b) 단계에서 형성된 황-탄소 복합체를 용기에 충진 후 가압하는 단계;를 포함하는 공정에 의해 제조될 수 있다.
상기 (a) 단계에서는, 원료물질인 황과 다공성 탄소재를 혼합한 혼합물을 형성할 수 있다. 이때, 상기 황과 다공성 탄소재의 종류 및 적정 중량 범위를 상술한 바와 같다.
또한, 상기 (b) 단계에서는, 상기 (a) 단계에서 형성된 혼합물을 열처리하여 황-탄소 복합체를 형성할 수 있다.
상기 황과 다공성 탄소재의 혼합물을 가열하면 황은 액체 상태로 변하게 되고, 액체 상태의 황이 다공성 탄소재의 내부로 들어가거나 표면에 코팅 또는 부착되어 황이 다공성 탄소재에 담지 또는 충진되거나 및/또는 코팅된 황-탄소 복합체가 형성될 수 있다. 예를 들어, 상기 다공성 탄소재가 탄소나노튜브일 경우, 액체 상태의 황이 모세관 현상을 통해 탄소나노튜브 내부로 빨려 들어가 황이 탄소나노튜브에 담지될 수 있다.
상기 열처리는 황의 녹는점 이상에서 수행될 수 있다. 예를 들어, 상기 열처리 온도는 130℃ 이상, 140℃ 이상 또는 150℃ 이상일 수 있고, 160℃ 이하, 165℃ 이하 또는 170℃ 이하일 수 있다. 상기 열처리 온도가 130℃ 미만이면 황이 녹지 않아 탄소재에 담지되거나 코팅된 형태의 복합체를 형성하기가 어려울 수 있고, 170℃ 초과이면 황-탄소 복합체가 제조될 수는 있으나, 황의 휘발이 발생하여 황의 손실과 제조장비의 열화를 유발할 수 있다.
또한, 상기 열처리 시간은 황이 열처리에 의해 녹아 다공성 탄소재에 담지 될 수 있을 정도의 적정 시간이면 가능하고, 25분 이상 또는 30분 이상 가능하고, 40분 이하, 45분 이하 또는 50분 이하 가능하다.
또한, 상기 (c) 단계에서는 상기 (b) 단계에서 형성된 황-탄소 복합체를 용기에 충진 후 가압하여 탄소 포함 황 용융물로 이루어진 프리스탠딩 필름 형태의 양극재를 제조할 수 있다.
황-탄소 복합체는 가압 상태에서 강한 자체 응집력을 나타내는 특성이 있다. 구체적으로, 가압 상태에서 상기 황-탄소 복합체 표면의 황이 부분적으로 용융되어 복합체간의 연결성을 주어 강한 자체 응집력을 나타낼 수 있다. 따라서, 입자 상태의 황-탄소 복합체들에 대하여 압력을 가하게 되면, 황이 용융되어 황 용융물이 형성되고 상기 황 용융물 내부에 탄소재가 분산된 형태의 탄소 포함 황 용융물이 형성된다. 상기 분산된 탄소재 입자들 사이에서는 응집력이 발생하고, 또한, 탄소재는 골격의 기능을 하며 그 자체로 유연성을 가지므로 프리스탠딩 필름이 형성되게 된다.
상기 가압시 압력은 황-탄소 복합체들 간에 응집력이 충분히 발생하여 프리스탠딩 필름을 형성할 정도의 압력일 수 있다. 예를 들어, 상기 가압시 압력은 0.8 Mpa 이상, 0.9 Mpa 이상 또는 1 Mpa 이상 일 수 있고, 5 Mpa 이하, 8 Mpa 이하, 10 Mpa 이하, 13 Mpa 이하 또는 15 Mpa 이하 가능하다. 상기 가압시 압력이 0.8 Mpa 미만이면 황-탄소 복합체들 간에 응집력이 약하여 탄소 포함 황 용융물로 이루어진 프리스탠딩 필름이 형성되지 않을 수 있고, 15 Mpa 초과이면 양극재의 기공도가 너무 낮아 전극의 구조가 무너질 수 있다.
리튬 이차전지
또한, 본 발명은 상기 리튬 이차전지용 양극을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 리튬 이차전지는 양극; 음극; 이들 사이에 개재되는 전해질을 포함하며, 상기 양극으로서 본 발명에 따른 리튬 이차전지용 양극을 포함한다.
상기 양극은 전술한 바를 따르며, 상기 프리스탠딩 필름형 양극재를 양극 활물질층에 포함하며, 바인더층을 통해 상기 양극 활물질층과 양극 집전체를 접합하는 것을 특징으로 한다.
특히, 본 발명의 양극은 양극 활물질층에 바인더나 도전재가 필요 없는 건식 공정에 의해 제조된 프리스탠딩 필름형 양극재를 포함함으로써 기존 전극 대비 보다 많은 양의 황을 로딩할 수 있다. 이에 따라, 본 발명에서 상기 양극은 황의 로딩량, 즉 양극 내 양극 활물질층의 단위 면적당 황의 질량은 3.0 내지 5.0 mAh/㎠일 수 있다. 이와 같이 높은 황 로딩량을 가짐에 따라 본 발명에 따른 양극을 포함하는 리튬 이차전지는 우수한 방전 용량 및 수명 특성을 나타낼 수 있다.
상기 음극은 음극 집전체의 적어도 일면 상에 음극 활물질을 포함하는 음극 활물질층을 형성하거나, 음극 활물질층(예를 들어, 리튬 금속판, 리튬 금속 박막, 리튬 호일)을 단독으로 사용할 수 있다.
상기 음극 집전체는 음극 활물질층의 지지를 위한 것으로, 양극 집전체에서 설명한 바와 같다.
상기 음극 활물질층은 음극 활물질을 포함하며, 도전재, 바인더 등을 더 포함할 수 있다.
상기 음극 활물질은 리튬 (Li+)을 가역적으로 삽입(intercalation) 또는 탈삽입(deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 포함할 수 있다.
상기 리튬 이온(Li+)을 가역적으로 삽입 또는 탈삽입할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
바람직하게 상기 음극 활물질은 리튬 금속일 수 있으며, 구체적으로, 리튬 금속 박막 또는 리튬 금속 분말의 형태일 수 있다.
상기 음극 활물질의 형성방법은 특별히 제한되지 않으며, 당업계에서 통상적으로 사용되는 층 또는 막의 형성방법을 이용할 수 있다. 예컨대 압착, 코팅, 증착 등의 방법을 이용할 수 있다. 또한, 집전체에 리튬 박막이 없는 상태로 전지를 조립한 후 초기 충전에 의해 금속판 상에 금속 리튬 박막이 형성되는 경우도 본 발명의 음극에 포함된다.
상기 도전재는 음극 활물질과 전해질을 전기적으로 연결시켜 주어 집전체(current collector)로부터 전자가 음극 활물질까지 이동하는 경로의 역할을 하는 물질로서, 도전성을 갖는 것이라면 제한없이 사용할 수 있다.
예를 들어, 상기 도전재로는 천연 흑연, 인조 흑연 등의 흑연; 슈퍼 P(Super-P), 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 탄소 나노튜브, 플러렌 등의 탄소 유도체; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자를 단독 또는 혼합하여 사용할 수 있다.
상기 바인더는 바인더층에서 설명한 바와 같다.
상기 전해질은 리튬 이온을 포함하며, 이를 매개로 양극과 음극에서 전기 화학적인 산화 또는 환원 반응을 일으키기 위한 것이다.
상기 전해질은 리튬 이차전지에 통상적으로 사용되던 것들이 모두 사용될 수 있다.
예를 들어, 상기 전해질에서 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -,SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다. 구체적으로 상기 리튬염으로는 LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2(Lithium bis(perfluoroethylsulfonyl)imide, BETI), LiN(CF3SO2)2(Lithium bis(Trifluoromethanesulfonyl)imide, LiTFSI), LiN(CaF2a+1SO2)(CbF2b+1SO2)(단, a 및 b는 자연수, 바람직하게는 1≤a≤20이고, 1≤b≤20임), 리튬 폴리[4,4'-(헥사플루오로이소프로필리덴)디페녹시]술포닐이미드(lithium poly[4,4'-(hexafluoroisopropylidene)diphenoxy]sulfonylimide, LiPHFIPSI), LiCl, LiI, LiB(C2O4)2, LiNO3 등이 사용될 수 있으며, 이중에서도 LiTFSI, BETI 또는 LiPHFIPSI 등과 같은 술포닐기-함유 이미드 리튬 화합물이 보다 바람직할 수 있다.
본 발명에서 사용되는 전해질에 있어서, 전해질에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 대표적으로 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트, 디프로필 카보네이트, 테트라에틸렌글리콜 디메틸에테르(TEGDME), 디옥솔란(DOL), 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌 카보네이트, 설포란, 감마-부티로락톤, 프로필렌 설파이트 및 테트라하이드로푸란으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있다. 특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 전해질은 전술한 리튬염과 유기 용매 이외에 첨가제로서 질산 또는 아질산계 화합물을 더 포함할 수 있다.
이러한 질산 또는 아질산계 화합물로는 본 발명에서 특별히 한정하지는 않으나, 질산리튬(LiNO3), 질산칼륨(KNO3), 질산세슘(CsNO3), 질산바륨(Ba(NO3)2), 질산암모늄(NH4NO3), 아질산리튬(LiNO2), 아질산칼륨(KNO2), 아질산세슘(CsNO2), 아질산암모늄(NH4NO2) 등의 무기계 질산 또는 아질산 화합물; 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트 등의 유기계 질산 또는 아질산 화합물; 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔 등의 유기 니트로 화합물 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하며, 바람직하게는 질산리튬을 사용한다.
상기 양극과 음극 사이에는 추가적으로 분리막이 포함될 수 있다.
상기 분리막은 상기 양극과 음극을 서로 분리 또는 절연시키고, 양극과 음극 사이에 리튬이온 수송을 가능하게 하는 것으로 다공성 비전도성 또는 절연성 물질로 이루어질 수 있고, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용가능하다. 이러한 분리막은 필름과 같은 독립적인 부재일 수도 있고, 양극 및/또는 음극에 부가된 코팅층일 수도 있다.
상기 분리막으로는 전해질의 이온 이동에 대하여 저저항이면서 전해질에 대한 함습 능력이 우수한 것이 바람직하다.
상기 분리막은 다공성 기재로 이루어질 수 있는데 상기 다공성 기재는 통상적으로 이차전지에 사용되는 다공성 기재라면 모두 사용이 가능하고, 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 예를 들어, 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포 또는 폴리올레핀계 다공성 막을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 다공성 기재의 재질로는 본 발명에서 특별히 한정하지 않고, 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하다. 예를 들어, 상기 다공성 기재는 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene) 등의 폴리올레핀(polyolefin), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate) 등의 폴리에스테르(polyester), 폴리아미드(polyamide), 폴리아세탈(polyacetal), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalate), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리염화비닐(polyvinyl chloride), 폴리아크릴로니트릴(polyacrylonitrile), 셀룰로오스(cellulose), 나일론(nylon), 폴리파라페닐렌벤조비스옥사졸(poly(p-phenylene benzobisoxazole) 및 폴리아릴레이트(polyarylate)로 이루어진 군에서 선택된 1종 이상의 재질을 포함할 수 있다.
상기 다공성 기재의 두께는 특별히 제한되지 않으나, 1 내지 100 ㎛, 바람직하게는 5 내지 50 ㎛일 수 있다. 상기 다공성 기재의 두께 범위가 전술한 범위로 한정되는 것은 아니지만, 두께가 전술한 하한보다 지나치게 얇을 경우에는 기계적 물성이 저하되어 전지 사용 중 분리막이 쉽게 손상될 수 있다.
상기 다공성 기재에 존재하는 기공의 평균 직경 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 95 %일 수 있다.
전술한 바의 리튬 이차전지의 형태는 특별히 제한되지 않으며, 예를 들어 젤리-롤형, 스택형, 스택-폴딩형(스택-Z-폴딩형 포함), 또는 라미네이션-스택 형일 수 있으며, 바람직하기로 스택-폴딩형일 수 있다.
이러한 상기 음극, 분리막 및 양극이 순차적으로 적층시키고 전해질을 주입한 전극 조립체를 제조한 후, 이를 전지 케이스에 넣은 다음, 캡 플레이트 및 가스켓으로 밀봉하여 조립하여 리튬 이차전지를 제조할 수 있다.
이때 리튬 이차전지는 사용하는 양극/음극 재질에 따라 리튬-황 이차전지, 리튬-공기 전지, 리튬-산화물 전지, 리튬 전고체 전지 등 다양한 전지로 분류가 가능하고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
본 발명에 있어서, 리튬 이차전지는 양극으로서 황-탄소 복합체를 포함하는 프리스탠딩 필름 형태의 양극재를 사용하므로, 리튬-황 이차전지일 수 있다. 상기 리튬-황 이차전지는 음극 활물질로 리튬 금속을 사용할 수 있다. 리튬-황 이차전지의 방전시 음극에서는 리튬의 산화 반응이 일어나고, 양극에서는 황의 환원 반응이 발생한다. 이때 환원된 황은 음극으로부터 이동되어 온 리튬 이온과 결합하여 리튬 폴리설파이드로 변환되고 최종적으로 리튬 설파이드를 형성하는 반응을 수반한다.
또한, 본 발명은 상기 리튬 이차전지를 단위전지로 포함하는 전지모듈을 제공한다.
상기 전지모듈은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.
상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(electric vehicle, EV), 하이브리드 전기자동차(hybrid electric vehicle, HEV), 플러그-인 하이브리드 전기자동차(plug-in hybrid electric vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
제조예 1: 황-탄소 복합체 제조
황(S)과 탄소나노튜브(CNT)를 고체 상태에서 65:35의 중량비로 균일하게 혼합하고, 100 rpm의 조건에서 1시간 동안 볼밀링하여 혼합물을 제조하였다.
상기 혼합물을 155℃에서 35분 동안 열처리하여 황을 CNT의 기공 내로 담지 및 표면에 코팅되게 하여 황-탄소 복합체(S-CNT)를 제조하였다. 이때, 상기 CNT는 비표면적 350 ㎡/g인 것을 사용하였다.
실시예 1
(1)양극 제조
상기 제조예 1에서 얻은 황-탄소 복합체(S-CNT), 도전재 및 바인더를 90:5:5의 중량비로 혼합하여 슬러리를 제조한 후, 20 ㎛ 두께의 알루미늄 집전체 위에 코팅 후 건조 및 압연하여 습식 양극 활물질층을 형성하였다. 이때, 상기 도전재는 비표면적 300㎡이고, 입자크기 20㎛인 CNT를 사용하고, 상기 바인더는 스티렌-부타디엔 고무(styrene butadiene rubber; SBR)을 사용하였다.
상기 제조예 1의 황-탄소 복합체(S-CNT)를 몰드에 충진시킨 후, 유압프레스를 이용하여 10 MPa의 압력으로 가압하여 탄소 포함 황 용융물로 이루어진 프리스탠딩 필름형 양극재를 제조하였다.
상기 프리스탠딩 필름형 양극재를 상기 습식 양극 활물질층의 일면에 적층(lamination)한 후 가압하여 건식 양극 활물질층을 형성하였다.
알루미늄 집전체, 습식 양극 활물질층 및 건식 양극 활물질층이 순차적으로 적층된 리튬 이차전지용 양극을 제조하였다.
(2)리튬-황 이차전지 제조
상기 제조된 양극과 두께 150㎛의 리튬 금속을 음극으로 준비하였다.
전해액은 테트라에틸렌글리콜 디메틸에테르(TEGDME)/디옥솔란(DOL)/디메톡시에탄(DME)를 1:1:1의 부피비로 혼합한 유기용매에 1 M 농도의 리튬비스(트리플루오로메탄설포닐)이미드(LiTFSI)와 0.1 M 농도의 리튬나이트레이트(LiNO3)를 용해시켜 제조하였다.
상기 양극과 음극 사이에 두께 20 ㎛ 및 기공도 45%의 다공성 폴리에틸렌 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 상기 전해액을 주입하여 파우치 셀 형태의 리튬-황 이차전지를 제조하였다.
비교예 1
건식 양극 활물질층을 형성하지 않고, 습식 양극 활물질층만을 형성한 것을 제외하고 실시예 1과 동일한 방법으로 양극 및 리튬-황 이차전지를 제조하였다.
비교예 2
습식 양극 활물질층을 형성하지 않고, 건식 양극 활물질층을 알루미늄 집전체의 일 면에 형성한 것을 제외하고 실시예 1과 동일한 방법으로 양극 및 리튬-황 이차전지를 제조하였다. 이때, 상기 알루미늄 집전체 상에 바인더인 SBR(Styrene Butadiene Rubber) 도포한 후, 상기 건식 양극 활물질층을 접착시켰다.
비교예 3
바인더를 사용하지 않은 것을 제외하고, 비교예 2와 동일하게 실시하여, 알루미늄 집전체 상에 건식 활물질층을 접착시켰다.
실험예 1: 전지 물성 평가
상기 실시예 및 비교예에서 제조된 파우치 셀 형태의 리튬 이차전지에 대하여, 아래와 같은 방법으로, 용량, 공칭전압, 수분함량 및 수명 특성을 측정하였으며, 그 결과를 하기 표 1에 기재하였다.
비교예 3은 건식 양극 활물질층 자체의 접착력이 없어, 별도의 바인더를 사용하지 않고는 집전체 상에 접착되지 않으므로, 양극을 제조할 수 없으므로, 물성 평가를 실시하지 않았다.
(1) 용량
25℃ 에서, 0.1C 충전/ 0.1C 방전 2.5 사이클 후, 0.2C 충전/ 0.2C 방전 3 사이클 후, 0.2C 충전/ 0.3C 방전 조건으로 하여, 25℃ 및 45℃의 온도에서 용량을 측정하였다.
(2) 공칭전압(normal voltage)
공칭전압이란 전력 계통에서 주어진 전압 계통을 부르기 위한 호칭 전압 값으로서, 일반적으로 기전력보다 약간 낮은 값을 가지며 통상 방전 곡선의 중심 값(mean value of discharge voltage)을 의미한다.
본 실험예에서 공칭전압은 도 2a 및 도 2b에 나타난 바와 같은 방전 곡선의 중심값으로 하여 구하였다.
(3) 수분함량
수분측정기기(Metrohm 901 KF Tirando)를 이용하여 수분함량을 측정하였다.
(4) 수명 특성
용량 보존율이 초기 용량의 80%가 되는 지점을 수명의 마지막 사이클로 하였다.
실시예 1 비교예 1 비교예 2
용량 0.1C 초기 용량
(mAh/gs)
1154 1145 1232
전극당 용량
(mAh/gactive)
1154 1088 1232
0.2C 초기 용량(mAh/gs) 1101 1017 1001
공칭전압 0.1C 방전
공칭전압(V)
2.133 2.110 2.124
0.2C 방전
공칭전압(V)
2.096 2.040 2.040
수분함량(ppm) 112 1428 28
수명(Retention 80%) 121 60 41
도 1은 실시예 1, 비교예 1 및 비교예 2에서 각각 제조된 리튬-황 이차전지용 양극의 종단면을 나타낸 것이다.
도 1에 나타난 바와 같이, 실시예 1에서 제조된 양극은 집전체(10), 습식 양극 활물질층(20) 및 건식 양극 활물질층(30)이 적층된 구조를 가진다. 상기 습식 양극 활물질층(20)은 건식 양극 활물질층(30)에 비해 상대적으로 고 기공도를 나타내고, 상기 건식 양극 활물질층(30)은 상기 습식 양극 활물질층(20)에 비해 상대적으로 고밀도인 특성을 나타낸다. 또한, 상기 습식 양극 활물질층(20)으로 인해 집전체(10)와 상기 건식 양극 활물질층(30)이 직접 적층되었을 때 나타나는 저항이 개선될 수 있다. 또한, 상기 습식 양극 활물질층(20)은 건식 양극 활물질층(30)과의 접착력도 좋고, 집전체(10)와의 접착력이 좋아 양극의 내구성도 개선될 수 있다.
또한, 비교예 1에서 제조된 양극은 집전체(10) 및 습식 양극 활물질층(20)이 적층된 구조를 가진다. 상기 습식 양극 활물질층(20) 내부에는 바인더가 포함되어 있으므로, 저항이 커지는 문제가 있다.
또한, 비교예 2에서 제조된 양극은 집전체(10) 및 건식 양극 활물질층(30)이 적층된 구조를 가진다. 상기 집전체(10)와 건식 양극 활물질층(30) 사이에는 바인더가 도포되어 있어, 상기 바인더에 의한 접촉 저항이 커지고, 고율 특성이 저하되는 문제가 있을 수 있다.
또한, 상기 표 1, 도 2a, 도 2b 및 도 3에 나타난 바와 같이, 실시예 1은 (건식 및 습식 양극 활물질층이 형성된 양극을 포함하는 리튬-황 이차전지)는 비교예 1(습식 양극 활물질층이 형성된 양극을 포함하는 리튬-황 이차전지)에 비해 용량, 고율특성, 과전압 및 수명 특성이 우수한 것을 알 수 있다.
또한, 실시예 1은 비교예 2(건식 양극 활물질층이 형성된 양극을 포함하는 리튬-황 이차전지)에 비해 고율특성, 과전압 및 수명 특성이 우수한 것을 알 수 있다. 0.1C에서의 실시예 1과 비교예 2의 용량 차이가 크게 나지 않은 것은, 저항이 크게 작용하지 않는 낮은 충/방전 속도에 기인한 것이다. 즉, 도 2b에 나타난 바와 같이, 방전속도가 0.2C일 경우, 비교예 2의 저항 때문에 용량이 급격하게 저하되는 것을 알 수 있다.
[부호의 설명]
10: 집전체
20: 습식 양극 활물질층
30: 건식 양극 활물질층

Claims (14)

  1. 양극 집전체;
    상기 양극 집전체의 일 면에 형성된 습식 양극 활물질층; 및
    상기 습식 양극 활물질층 상에 형성된 건식 양극 활물질층;을 포함하되,
    상기 습식 양극 활물질층은 황-탄소 복합체, 바인더 및 도전재를 포함하고,
    상기 건식 양극 활물질층은 황 용융물 내에 다공성 탄소재가 분산된, 탄소 포함 황 용융물로 구성된 것인, 리튬 이차전지용 양극.
  2. 제1항에 있어서,
    상기 습식 양극 활물질층은 황-탄소 복합체 40 내지 80 중량%, 바인더 1 내지 30 중량% 및 도전재 0.5 내지 30 중량%를 포함하는 것인, 리튬 이차전지용 양극.
  3. 제1항에 있어서,
    상기 습식 양극 활물질층의 로딩량은 2.0 mAh/㎠ 내지 5.0 mAh/㎠ 이고, 상기 습식 양극 활물질층의 로딩량은 상기 건식 양극 활물질층의 로딩량의 2% 내지 20%인 것인, 리튬 이차전지용 양극.
  4. 제1항에 있어서,
    상기 습식 양극 활물질층의 기공도는 30% 내지 90%인 것인, 리튬 이차전지용 양극.
  5. 제1항에 있어서,
    상기 습식 양극 활물질층의 밀도는 0.2 내지 1.4 g/㎤인 것인, 리튬 이차전지용 양극.
  6. 제1항에 있어서,
    상기 건식 양극 활물질층의 기공도는 68% 이하인 것인, 리튬 이차전지용 양극.
  7. 제1항에 있어서,
    상기 건식 양극 활물질층은 내부 접착력이 10 gf/cm 이상인, 리튬 이차전지용 양극.
  8. (1) 황-탄소 복합체, 바인더 및 도전재를 포함하는 양극 슬러리를 양극 집전체에 일면에 도포하여, 습식 양극 활물질층을 형성하는 단계; 및
    (2) 상기 습식 양극 활물질층의 일면에 프리스탠딩 필름형 양극재인 건식 양극 활물질층을 부착하는 단계;를 포함하는 리튬 이차전지용 양극의 제조방법.
  9. 제8항에 있어서,
    상기 프리스탠딩 필름형 양극재인 건식 양극 활물질층은,
    (a) 황과 다공성 탄소재를 혼합하는 단계;
    (b) 상기 (a) 단계에서 형성된 혼합물을 열처리하는 단계; 및
    상기 (b) 단계에서 형성된 황-탄소 복합체를 용기에 충진 후 가압하여 탄소 포함 황 용융물을 형성하는 단계;를 포함하는 공정에 의해 제조되는 것인, 리튬 이차전지용 양극의 제조방법.
  10. 제9항에 있어서,
    상기 열처리는 130 내지 170℃의 온도 조건 하에서 수행되는 것인, 리튬 이차전지용 양극의 제조방법.
  11. 제9항에 있어서,
    상기 가압은 0.8 내지 15 MPa의 압력 조건 하에서 수행되는 것인, 리튬 이차전지용 양극의 제조방법.
  12. 제1항에 따른 리튬 이차전지용 양극;
    리튬 금속 또는 리튬 합금을 포함하는 음극;
    상기 양극과 음극 사이에 위치하는 분리막; 및
    상기 양극, 음극 및 분리막이 함침된 전해질을 포함하는 리튬 이차전지.
  13. 제12항에 있어서,
    상기 리튬 이차전지는 리튬-황 이차전지인, 리튬 이차전지.
  14. 제12항에 있어서,
    상기 양극은 황의 로딩량이 3.0 mAh/㎠ 내지 5.0 mAh/㎠인, 리튬 이차전지.
PCT/KR2022/006159 2021-05-07 2022-04-29 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지 WO2022235015A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023524812A JP7497527B2 (ja) 2021-05-07 2022-04-29 リチウム二次電池用正極、この製造方法及びこれを含むリチウム二次電池
EP22799058.7A EP4203093A1 (en) 2021-05-07 2022-04-29 Cathode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
CN202280006660.3A CN116457956A (zh) 2021-05-07 2022-04-29 锂二次电池用正极、其制造方法及包含其的锂二次电池
US18/028,480 US20230361277A1 (en) 2021-05-07 2022-04-29 Positive electrode for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0058926 2021-05-07
KR20210058926 2021-05-07
KR10-2022-0052596 2022-04-28
KR1020220052596A KR20220152141A (ko) 2021-05-07 2022-04-28 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2022235015A1 true WO2022235015A1 (ko) 2022-11-10

Family

ID=83932716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006159 WO2022235015A1 (ko) 2021-05-07 2022-04-29 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Country Status (4)

Country Link
US (1) US20230361277A1 (ko)
EP (1) EP4203093A1 (ko)
JP (1) JP7497527B2 (ko)
WO (1) WO2022235015A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160051610A (ko) * 2014-10-31 2016-05-11 주식회사 엘지화학 프리스탠딩 필름형 리튬-설퍼 전지용 양극재 및 이를 포함하는 리튬-설퍼 전지
KR20160078734A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 리튬 설퍼 전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 설퍼 전지
KR20180055230A (ko) 2016-11-16 2018-05-25 주식회사 엘지화학 다층 구조의 리튬-황 전지용 양극 및 이의 제조방법
JP2018113142A (ja) 2017-01-11 2018-07-19 トヨタ自動車株式会社 リチウム硫黄電池
KR20190026626A (ko) * 2017-09-04 2019-03-13 한양대학교 산학협력단 금속-황 전지용 양극, 이의 제조방법 및 이를 포함하는 금속-황 전지
KR20200089788A (ko) * 2019-01-17 2020-07-28 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20210058926A (ko) 2018-09-24 2021-05-24 무스탕 샘플링, 엘엘씨 액체 기화 디바이스 및 방법
KR20220052596A (ko) 2020-10-21 2022-04-28 김동순 송배전선의 처짐방지장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160051610A (ko) * 2014-10-31 2016-05-11 주식회사 엘지화학 프리스탠딩 필름형 리튬-설퍼 전지용 양극재 및 이를 포함하는 리튬-설퍼 전지
KR20160078734A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 리튬 설퍼 전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 설퍼 전지
KR20180055230A (ko) 2016-11-16 2018-05-25 주식회사 엘지화학 다층 구조의 리튬-황 전지용 양극 및 이의 제조방법
JP2018113142A (ja) 2017-01-11 2018-07-19 トヨタ自動車株式会社 リチウム硫黄電池
KR20190026626A (ko) * 2017-09-04 2019-03-13 한양대학교 산학협력단 금속-황 전지용 양극, 이의 제조방법 및 이를 포함하는 금속-황 전지
KR20210058926A (ko) 2018-09-24 2021-05-24 무스탕 샘플링, 엘엘씨 액체 기화 디바이스 및 방법
KR20200089788A (ko) * 2019-01-17 2020-07-28 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20220052596A (ko) 2020-10-21 2022-04-28 김동순 송배전선의 처짐방지장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DILLARD CAITLIN, CHUNG SHENG-HENG, SINGH ARVINDER, MANTHIRAM ARUMUGAM, KALRA VIBHA: "Binder-free, freestanding cathodes fabricated with an ultra-rapid diffusion of sulfur into carbon nanofiber mat for lithium sulfur batteries", MATERIALS TODAY ENERGY, vol. 9, 1 September 2018 (2018-09-01), pages 336 - 344, XP055871550, ISSN: 2468-6069, DOI: 10.1016/j.mtener.2018.06.004 *

Also Published As

Publication number Publication date
JP7497527B2 (ja) 2024-06-10
US20230361277A1 (en) 2023-11-09
EP4203093A1 (en) 2023-06-28
JP2023546706A (ja) 2023-11-07

Similar Documents

Publication Publication Date Title
WO2017213325A1 (ko) 카본 나이트라이드와 그래핀 옥사이드의 자기조립 복합체 및 그 제조방법, 이를 적용한 양극 및 이를 포함하는 리튬-황 전지
WO2021010625A1 (ko) 리튬-황 이차전지
WO2021172879A1 (ko) 리튬 금속 음극의 제조방법, 이에 의해 제조된 리튬 금속 음극 및 이를 포함하는 리튬-황 전지
WO2022060021A1 (ko) 리튬 금속 전극의 제조방법, 이에 의해 제조된 리튬 금속 전극, 및 이를 포함하는 리튬 이차 전지
WO2020067792A1 (ko) 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
WO2022035120A1 (ko) 리튬-황 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2020105980A1 (ko) 리튬-황 이차전지
WO2022164107A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2021010626A1 (ko) 리튬-황 이차전지
WO2021241959A1 (ko) 프리스탠딩 필름형 리튬 이차전지용 양극재, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2023008783A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2022149913A1 (ko) 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지
WO2020032454A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 양극 및 리튬 이차전지
WO2022255672A1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지
WO2021177723A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2022149912A1 (ko) 양극 및 이를 포함하는 리튬 이차전지
WO2022235015A1 (ko) 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022005210A1 (ko) 리튬-황 전지용 양극 및 이의 제조방법
WO2020242247A1 (ko) 황-탄소 복합체, 이를 포함하는 리튬-황 전지용 양극, 및 상기 양극을 포함하는 리튬-황 전지
WO2022086026A1 (ko) 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022250427A1 (ko) 필름형 양극 제조 장치, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지, 전지모듈 및 전지팩
WO2023282680A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
WO2023068621A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2023287110A1 (ko) 리튬 이차전지
WO2022114693A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22799058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022799058

Country of ref document: EP

Effective date: 20230320

WWE Wipo information: entry into national phase

Ref document number: 202280006660.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023524812

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE