WO2022230161A1 - インクジェットヘッド及びインクジェット記録方法 - Google Patents

インクジェットヘッド及びインクジェット記録方法 Download PDF

Info

Publication number
WO2022230161A1
WO2022230161A1 PCT/JP2021/017151 JP2021017151W WO2022230161A1 WO 2022230161 A1 WO2022230161 A1 WO 2022230161A1 JP 2021017151 W JP2021017151 W JP 2021017151W WO 2022230161 A1 WO2022230161 A1 WO 2022230161A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
liquid
substrate
repellent layer
nozzle plate
Prior art date
Application number
PCT/JP2021/017151
Other languages
English (en)
French (fr)
Inventor
洋明 香西
進 小島
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2023516989A priority Critical patent/JPWO2022230161A1/ja
Priority to PCT/JP2021/017151 priority patent/WO2022230161A1/ja
Publication of WO2022230161A1 publication Critical patent/WO2022230161A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads

Definitions

  • the present invention relates to an inkjet head and an inkjet recording method, and more particularly to an inkjet head equipped with a nozzle plate having excellent ink resistance and an inkjet recording method capable of obtaining a high-quality inkjet recorded image using the same.
  • an inkjet recording method has been proposed in which ink droplets are ejected from nozzles of an inkjet head to form an inkjet image on a recording medium.
  • inkjet head when ink droplets are ejected, the ink mist generated in the inkjet recording device and the rebounding of ink from the recording medium can affect the nozzle ejection surface (surrounding the ejection side opening of the nozzle). Ink may adhere. It is known that when ink adheres to the ejection surface and blocks the vicinity of the ejection port, the ejection angle of the ink is bent.
  • a type of material called a silane coupling agent is often selected as the constituent material of the liquid-repellent layer.
  • This silane coupling agent exhibits excellent liquid repellency even in an extremely thin film (ideally a monomolecular layer) and forms a siloxane bond with the substrate (substrate - "Si-O-Si" - liquid-repellent group). By doing so, it has a feature that high adhesion can be obtained.
  • a base film is provided on the nozzle plate, and a silane coupling agent is applied to the top of the base film to form an ultra-thin liquid-repellent layer.
  • liquid-repellent layer composed of such a silane coupling agent is ink resistance. It has become clear that the liquid repellency decreases when the liquid repellent layer is exposed to ink for a long period of time. In particular, when the applied ink is an alkaline ink, the phenomenon appears remarkably.
  • Patent Document 1 a material expected to be resistant to alkali, such as SiO 2 , Al 2 O 3 or ZrO 2 , formed by plasma polymerization under the liquid-repellent layer is formed as a base film, and alkaline ejection is performed. It has been proposed to form a liquid-repellent layer having high durability against ink.
  • the plasma-polymerized film generally has many microdefects, and it is conceivable that alkali penetrates through the microdefects and the liquid-repellent layer peels off, degrading the function. Therefore, it is difficult to say that it has sufficient durability.
  • a first liquid-repellent base film (tantalum oxide film) is formed by atomic layer deposition (ALD) with few microdefects on a first protective film on a silicon thermal oxide film, and then plasma CVD is performed.
  • a method of forming a thick second liquid-repellent base film has been proposed.
  • a plurality of film forming apparatuses are required and the manufacturing process is lengthened, there is a problem in productivity.
  • Patent Document 3 proposes a method of forming a liquid-repellent layer by laminating materials having relatively different molecular weights and liquid-repellent properties.
  • the method proposed in Patent Document 3 is intended to improve liquid repellency and wiping resistance, and does not describe the effect of durability against alkaline ink, and is technically different from the present invention. .
  • the present invention has been made in view of the above problems and circumstances, and the problem to be solved is to provide an inkjet head equipped with a nozzle plate having excellent ink resistance and to obtain a high-quality inkjet recorded image using the same.
  • An object of the present invention is to provide an ink jet recording method capable of
  • the present inventors have studied the causes of the above problems, and noticed that the base film forming the nozzle plate is eroded by ink, particularly alkaline ink.
  • a liquid - repellent layer composed of a silane coupling agent it is common to use SiO2 as a base film to form siloxane bonds. was peeled off and missing, leading to a decrease in liquid repellency.
  • An inkjet head comprising a nozzle plate having a substrate, the nozzle plate has a liquid-repellent layer on the outermost surface of the substrate on the side of the ink ejection surface; having a base film between the substrate and the liquid-repellent layer; The liquid-repellent layer forms a siloxane bond derived from the base film and a silane coupling agent,
  • the silane coupling agent comprises a main chain having a perfluoroalkylene group and a silicon atom of a terminal crosslinkable silyl group bonded via a hydrophobic linker group.
  • the underlayer contains an oxide, nitride or carbide of titanium, aluminum, zirconium, chromium, hafnium, nickel, tantalum or silicon, respectively.
  • An inkjet recording method comprising recording an image using the inkjet head according to any one of items 1 to 5 and ink.
  • an inkjet head equipped with a nozzle plate having excellent ink resistance and an inkjet recording method capable of obtaining a high-quality inkjet recorded image using the same.
  • FIG. 1A is a conceptual diagram showing an example of a cross section of the structure of a nozzle plate provided in the inkjet head of the present invention.
  • the nozzle plate 1 of the present invention has at least a base film 3 and a liquid-repellent layer 4 laminated on a substrate 2 .
  • FIG. 1B shows a conceptual diagram of bonding of the silane coupling agent in the liquid-repellent layer.
  • the liquid-repellent layer 4 derived from a silane coupling agent forms a siloxane bond with the base film 3, and the silane coupling agent forms a main chain 7 having a perfluoroalkylene group and a crosslinkable silyl group at the terminal.
  • the silicon atom of 5 is bonded via a hydrophobic linker group 6 .
  • FIG. 1B shows the case where the liquid-repellent layer is a monomolecular layer. In this way, it is preferable that the liquid-repellent layer is bonded to the underlying film through siloxane bonds by silane coupling to form a monomolecular layer.
  • the main chain 7 having a perfluoroalkylene group can prevent the ink I from penetrating into the base film 3 from the nozzle plate surface.
  • the hydrophobic linker group 6 can prevent the ink I from penetrating into the siloxane bond portion derived from the base film 3 and the silane coupling agent. For this reason, it is presumed that the influence on the siloxane bonds due to penetration of the ink I from the surface and side surfaces can be reduced, and a nozzle plate having excellent ink resistance can be realized.
  • FIG. 2 is a conceptual diagram showing an example of a cross section of the configuration of a nozzle plate according to the present invention
  • Conceptual diagram of bonding of silane coupling agents in the liquid-repellent layer Schematic cross-sectional view showing an example of a typical configuration of a nozzle plate having nozzle holes
  • Schematic cross-sectional view showing another example of a typical configuration of a nozzle plate having nozzle holes Flowchart showing an example of the manufacturing process of the nozzle plate according to the present invention
  • FIG. 4 is a schematic cross-sectional view showing step S11 of the nozzle plate manufacturing process according to the present invention
  • FIG. 4 is a schematic cross-sectional view showing step S12 of the nozzle plate manufacturing process according to the present invention
  • FIG. 4 is a schematic cross-sectional view showing step S13 of the nozzle plate manufacturing process according to the present invention
  • FIG. 4 is a schematic cross-sectional view showing step S14 of the nozzle plate manufacturing process according to the present invention
  • FIG. 4 is a schematic cross-sectional view showing step S15 of the nozzle plate manufacturing process according to the present invention
  • FIG. 4 is a schematic cross-sectional view showing step S16 of the nozzle plate manufacturing process according to the present invention
  • FIG. 1 is a schematic front view of the configuration of an inkjet recording apparatus applicable to the inkjet recording method of the present invention
  • Schematic bottom view of head unit applicable to inkjet recording apparatus Schematic cross-sectional view showing the cross-sectional shape of an inkjet head
  • An inkjet head of the present invention is an inkjet head comprising a nozzle plate having a substrate, wherein the nozzle plate has a liquid-repellent layer on the outermost surface of the substrate on the side of the ink ejection surface, and a liquid-repellent layer is formed on the substrate.
  • a base film is provided between the liquid layer and the liquid-repellent layer, and the liquid-repellent layer forms a siloxane bond derived from the base film and a silane coupling agent, and the silane coupling agent has a perfluoroalkylene group. It is characterized in that the main chain and the silicon atoms of the terminal crosslinkable silyl groups are bonded via a hydrophobic linker group.
  • the underlayer film contains oxides, nitrides, or carbides of titanium, aluminum, zirconium, chromium, hafnium, nickel, tantalum, or silicon, respectively. preferably.
  • the undercoat film contains silicon dioxide, since a highly adhesive liquid-repellent layer can be obtained.
  • the substrate preferably contains silicon, metal, or resin from the viewpoint of high mechanical strength, ink resistance, and excellent dimensional stability.
  • the liquid-repellent layer is preferably a monomolecular layer from the viewpoint of ink landing accuracy.
  • the inkjet head of the present invention and ink are used to perform inkjet recording for image recording.
  • the ink is preferably water-based ink. This is preferable because vivid and high color developability can be obtained.
  • An inkjet head of the present invention is an inkjet head comprising a nozzle plate having a substrate, wherein the nozzle plate has a liquid-repellent layer on the outermost surface of the substrate on the side of the ink ejection surface, and a liquid-repellent layer is formed on the substrate.
  • a base film is provided between the liquid layer and the liquid-repellent layer, and the liquid-repellent layer forms a siloxane bond derived from the base film and a silane coupling agent, and the silane coupling agent has a perfluoroalkylene group. It is characterized in that the main chain and the silicon atoms of the terminal crosslinkable silyl groups are bonded via a hydrophobic linker group.
  • the substrate applicable to the nozzle plate according to the present invention can be selected from materials having high mechanical strength, ink resistance, and excellent dimensional stability. is preferred.
  • materials having high mechanical strength, ink resistance, and excellent dimensional stability is preferred.
  • stainless steel, nickel (Ni) or other metal materials, polyimide, polyphenylene sulfide, polyethylene terephthalate or other organic materials, and silicon (Si) can be used.
  • silicon as the substrate from the viewpoint of processing accuracy, and to use a resin substrate or a stainless steel substrate from the viewpoint of the ink resistance of the substrate itself.
  • the thickness of the substrate is not particularly limited, but is usually in the range of 10-300 ⁇ m, preferably in the range of 20-100 ⁇ m, more preferably in the range of 30-80 ⁇ m.
  • the nozzle plate according to the present invention has a base film between the substrate and the liquid-repellent layer, which will be described later.
  • the base film By providing the base film, the adhesion between the liquid-repellent layer and the substrate can be improved.
  • the underlayer preferably contains oxides, nitrides or carbides of titanium, aluminum, zirconium, chromium, hafnium, nickel, tantalum or silicon, respectively, depending on the substrate.
  • the base film contains silicon dioxide, since a highly adhesive liquid-repellent layer can be obtained.
  • the maximum peak P of the binding energy of the Si2p orbital of the surface portion measured by the X-ray photoelectron spectroscopy is 99.6 (eV) ⁇ P ⁇ 101 Those with underlayers in the range of 0.9 (eV) can also be used.
  • the base film Since the base film has a Si—C bond in which Si is directly bonded to carbon, the chemical stability is improved, the base film is not corroded by corrosive ink such as alkaline ink, and the liquid-repellent layer. and a chemical bond (siloxane bond, Si--O--Si) can be formed, and adhesion can be improved.
  • the following two methods are listed as methods for forming the base film composed of Si—C bonds, and they can be selected and used as appropriate.
  • the first method uses trimethoxysilane (abbreviation: TMS) as a forming raw material and argon gas as a carrier gas, and uses a high-frequency discharge plasma CVD (Chemical Vapor Deposition) or PIG (Penning Ionization Gauge) method. This is a method of forming an underlying film having Si—C bonds using plasma CVD. Further, oxygen gas may be added for the purpose of introducing oxygen into the underlying film.
  • TMS trimethoxysilane
  • argon gas as a carrier gas
  • PIG Personal Ionization Gauge
  • the second method is to form an underlying film having Si—C bonds by sputtering in an atmosphere of argon gas as a carrier gas using SiC as a target. Further, oxygen gas may be added for the purpose of introducing oxygen into the underlying film.
  • the high-frequency discharge plasma CVD As the high-frequency discharge plasma CVD, the PIG plasma CVD, and the sputtering method, conventionally known methods can be applied, and there is no particular limitation.
  • the thickness of the underlying film according to the present invention is preferably within the range of 1-1000 nm, more preferably within the range of 5-300 nm, and even more preferably within the range of 10-200 nm.
  • the nozzle plate has a liquid-repellent layer as the outermost layer on the ink ejection surface side of the substrate. This liquid-repellent layer can prevent ink from adhering to the nozzle surface during ink jet recording.
  • This liquid-repellent layer forms a siloxane bond derived from the base film and a silane coupling agent, and the silane coupling agent is a main chain having a perfluoroalkylene group and a silicon atom having a crosslinkable silyl group at the terminal. are attached via a hydrophobic linker group.
  • silane coupling agent In the silane coupling agent according to the present invention, a main chain having a perfluoroalkylene group and a silicon atom of a terminal crosslinkable silyl group are bonded via a hydrophobic linker group.
  • a crosslinkable silyl group is a functional group having 1 to 3 hydrolyzable groups in addition to the bond to the main chain via a hydrophobic linker group on the silicon atom.
  • the silane coupling agent according to the present invention is preferably a compound having a structure represented by general formula (1) below.
  • General formula (1) (YL) n SiX 4-n (Wherein, Y represents a main chain having a perfluoroalkylene group. L represents a hydrophobic linker group.
  • X represents a group capable of forming a hydrolyzable silyl group.
  • n represents 1 to 3 represents an integer of
  • Y represents a main chain having a perfluoroalkylene group, and is preferably a perfluoroalkyl group or a perfluoroether group in which all hydrogen atoms are substituted with fluorine atoms.
  • a material having a perfluoropolyether (PFPE) group (--CF 2 --O--CF 2 --) in the main chain (Y) can be used.
  • the silane coupling agent having a perfluoroalkyl group has a main chain ( Y) in which all hydrogen atoms in the alkyl chain are replaced with fluorine atoms . ) 5 -, and the like.
  • L represents a linker group that connects the main chain (Y) and Si, and is a hydrophobic group. Specifically, it is preferably a group represented by (CH 2 ) m . m is preferably an integer of 2-6. It is believed that the presence of such a linker group suppresses the attack of the ink on the underlying film and prevents deterioration of the ink resistance.
  • a linker group having a structure represented by general formula (1) can be detected by NMR measurement. Specifically, in the NMR measurement, CH 2 directly bonded to Si has the characteristic of appearing in the lowest magnetic field (near 0.6 ppm). Also, CH 2 adjacent to this can be confirmed by 2D (H—H COZY) measurement.
  • groups capable of forming a hydrolyzable silyl group include an alkoxy group, a mercapto group, a halogen atom, an amide group, an acetoxy group, an amino group, and an isopropenoxy group.
  • an alkoxy group is preferred.
  • a methoxy group and an ethoxy group are particularly preferred.
  • These groups are groups capable of bonding with the underlying film through condensation with hydroxyl groups or adsorbed water on the surface of the underlying film.
  • the silane coupling agent according to the present invention having a perfluoroether group includes, for example, "FG-5010Z130-0.2” and “FG-5080TH-0.1” manufactured by Fluoro Technology Co., Ltd. Shin-Etsu Chemical Co., Ltd. "KY-1900” and “KY-1901” manufactured by Co., Ltd., and "DURASURF DS-5831TH” manufactured by Harves Co., Ltd. can be mentioned.
  • Examples of the silane coupling agent according to the present invention having a perfluoroalkyl group include T2577, T2705, T2876, T2917 and T3560 manufactured by Tokyo Chemical Industry Co., Ltd.
  • FIGS. 2A to 2C are schematic cross-sectional views showing typical configurations of nozzle plates having nozzle holes.
  • the nozzle plate 40A shown in FIG. 2A has a configuration including a substrate 41, a base film 42A, and a liquid-repellent layer 43.
  • the substrate 41 is made of silicon, for example.
  • the nozzle 2411 is a nozzle that ejects ink formed on the substrate 41, and includes an ink channel and a nozzle hole on the ejection surface side.
  • the base film 42A is provided on the exit surface side of the substrate 41 and is a base film on the flow path (substrate 41) side of the liquid-repellent layer 43 .
  • the liquid-repellent layer 43 is provided on the exit surface side of the base film 42A, is formed of the silane coupling agent according to the present invention, and has liquid-repellency (ink-repellency).
  • FIG. 2B is a schematic cross-sectional view of the nozzle plate 40B.
  • the nozzle plate 40B has a substrate 41, a base film 42B, and a liquid-repellent layer 43.
  • the base film 42B is provided on the exit surface side of the substrate 41 and in the flow path of the nozzle 2411, and is a film that partially serves as the base film of the liquid-repellent layer 43 on the substrate 41 side.
  • FIG. 2C is a schematic cross-sectional view of the nozzle plate 40C.
  • the nozzle plate 40C has a substrate 41, a flow path protective film 44, a base film 42A, and a liquid-repellent layer 43.
  • the flow path protective film 44 is a film provided on the exit surface side of the substrate 41 and in the flow path of the nozzle 2411, and a part of the base film 42A serves as the base film on the substrate 41 side.
  • the channel protective film 44 is a protective film having ink resistance.
  • the material of the flow path protection film 44 is formed of oxides such as titanium, zirconium, chromium, hafnium, nickel, tantalum, and silicon.
  • FIG. 4A nozzle substrate
  • FIGS. 3 and 4A to 4F a schematic sectional view showing each step of the manufacturing process of the nozzle plate according to the present invention.
  • FIG. 3 is a flow chart showing an example of the manufacturing process of the nozzle plate according to the present invention.
  • 4A to 4F are schematic cross-sectional views showing steps (steps S11 to S16) of the nozzle plate manufacturing process according to the present invention.
  • FIG. 4A is a cross-sectional view schematically showing substrate 41 on which nozzle holes have been processed (step S11).
  • FIG. 4B is a cross-sectional view schematically showing the substrate 41 on which the base film 42A is formed (step S12).
  • FIG. 4C is a cross-sectional view schematically showing the substrate 41 on which the liquid-repellent layer 43a is formed (step S13).
  • FIG. 4A is a cross-sectional view schematically showing substrate 41 on which nozzle holes have been processed (step S11).
  • FIG. 4B is a cross-sectional view schematically showing the substrate 41 on which the base film 42A is formed (step S12).
  • FIG. 4C is a cross-sectional view schematically showing the substrate 41
  • FIG. 4D is a cross-sectional view schematically showing the substrate 41 on which the liquid-repellent layer protective film 45 is formed (step S14).
  • FIG. 4E is a cross-sectional view schematically showing the substrate 41 subjected to the liquid-repellent layer removal process (step S15).
  • FIG. 4F is a cross-sectional view schematically showing the nozzle plate 40A shown in FIG. 2A from which the liquid-repellent layer protective film 45 has been removed (step S16).
  • Step S11 A method of manufacturing the nozzle plate 40A shown in FIG. 2A will be described with reference to FIG. (Step S11)
  • a resist pattern is provided on the flow path side surface of the silicon substrate 41 using a mask corresponding to the position where the nozzle 2411 including the ink flow path is to be formed.
  • a substrate 41 having nozzles 2411 formed thereon is formed by processing nozzle holes and nozzle flow paths by etching.
  • etching method applied in step S11 for example, reactive ion etching (RIE: Reactive Ion Etching) by the Bosch method, which facilitates deep etching, is used.
  • RIE reactive ion etching
  • laser perforation, blasting, or the like may be used (combinedly used) to form ink channels and nozzles.
  • Step S12 Next, in step S12, as shown in FIG. 4B, a base film 42A is formed on the emission surface side of the substrate 41 by CVD, sputtering, or the like.
  • the substrate 41 is preferably cleaned to remove foreign matter. Since the substrate 41 is silicon-based here, RCA cleaning is preferably used, but other cleaning methods may be used depending on the material of the substrate 41 .
  • Step S13 Next, in step S13, as shown in FIG. 4C, a liquid-repellent layer 43a is formed on the exit surface side of the substrate 41 and in the flow paths of the nozzles 2411 by dipping or the like.
  • a process for improving the wettability of the surface of the substrate 41 is performed.
  • OH groups can be formed on the surface of the base film to improve wettability.
  • a liquid-repellent agent is applied to the substrate 2410 with improved wettability.
  • the substrate 41 is immersed in the liquid-repellent agent (dip coating) so that the liquid-repellent agent is applied to the entire surface.
  • the liquid-repellent agent a liquid obtained by diluting the silane coupling agent according to the present invention with a solvent is used here.
  • This liquid-repellent agent further contains water as a solvent and may contain a surfactant or the like.
  • Other coating methods that can be used include CVD, spray coating, spin coating, wire bar coating (such as when a siloxane-grafted polymer is used), and the like.
  • the substrate 41 to which the liquid-repellent agent is attached is allowed to stand under appropriate conditions (temperature and humidity) to form the liquid-repellent layer 43a.
  • a chemical bond (siloxane bond) is generated between the liquid-repellent layer and the substrate 41 (base film 42A) based on the above-described plasma treatment and hydrolysis using the silane coupling agent, and the surface of the substrate 41 becomes A monomolecular liquid-repellent layer 43a is formed.
  • Appropriate conditions are determined according to the type of the liquid repellent agent, and heat treatment is performed at room temperature or at a high temperature (for example, 300 to 400° C.) as necessary.
  • the substrate 41 on which the liquid-repellent layer 43a is formed is washed (rinsed) with a fluorine-based solvent (such as hydrofluoroether).
  • a fluorine-based solvent such as hydrofluoroether
  • ultrasonic cleaning is performed to remove the remaining liquid-repellent agent that is not chemically bonded.
  • the frequency of ultrasonic waves the MHz band is preferably used.
  • the liquid-repellent layer 43 a formed on the surface of the substrate 41 by chemical bonding becomes a monomolecular layer formed along the shape of the substrate 41 .
  • Step S14 Next, as step S14, as shown in FIG. 4D, a liquid-repellent layer protective film 45 such as masking tape or resist is formed on the exit surface side of the substrate 41. Next, as shown in FIG.
  • Step S15 Next, as step S15, as shown in FIG. 4E, the liquid-repellent layer 43a in the channel of the substrate 41 where the liquid-repellent layer protective film 45 is not formed is removed by oxygen plasma treatment or the like, and the liquid-repellent layer 43 is removed. leave.
  • Step S16 Finally, as step S16, as shown in FIG. 4F, the liquid-repellent layer protective film 45 is removed to form the nozzle plate 40A shown in FIG. 2A.
  • the inkjet recording method of the present invention is characterized by recording an image using an inkjet head having the configuration of the present invention and ink. Furthermore, it is preferable that the ink is a water-based ink, since vivid and high color developability can be obtained.
  • the inkjet ink that can be applied to the inkjet recording method of the present invention is not particularly limited.
  • Oil-based inkjet ink organic solvent-based inkjet ink that mainly contains solvent that evaporates at room temperature and does not substantially contain water
  • hot-melt ink that prints by heating and melting the ink that is solid at room temperature
  • actinic rays such as ultraviolet rays after printing
  • inkjet inks such as active energy ray-curable inkjet inks that are cured by . This is a preferred embodiment from the viewpoint of sex.
  • inks examples include alkaline inks and acidic inks.
  • alkaline inks may cause chemical deterioration of the water-repellent layer and the nozzle forming surface.
  • it is particularly effective to apply an inkjet head equipped with the nozzle plate of the present invention.
  • inks applicable to the present invention include coloring materials such as dyes and pigments, water, water-soluble organic solvents, pH adjusters, and the like.
  • water-soluble organic solvents that can be used include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, glycerin, triethylene glycol, ethanol, and propanol.
  • pH adjusters that can be used include sodium hydroxide, potassium hydroxide, sodium acetate, sodium carbonate, sodium bicarbonate, alkanolamine, hydrochloric acid, and acetic acid.
  • Alkaline ink has a pH of 8.0 or higher.
  • the water-repellent layer 43 is derived from the silane coupling agent according to the invention.
  • the water-repellent layer 43 has a structure in which silicon and fluororesin are bonded with a hydrophobic substituent such as an ethylene group (CH 2 ) 2 . Therefore, ink resistance can be improved.
  • FIG. 5 is a schematic front view of the configuration of an inkjet recording apparatus PL that can be applied to the inkjet recording method of the present invention.
  • the inkjet recording apparatus PL includes a medium supply section 10, an image forming section 20, a medium discharge section 30, a control section (not shown), and the like.
  • the recording medium R stored in the medium supply section 10 is transported to the image forming section 20 based on the control operation by the control section, and is discharged to the medium discharge section 30 after an image is formed.
  • the medium supply unit 10 has a medium supply tray 11, a transport unit 12, and the like.
  • the medium supply tray 11 is a plate-like member provided so that one or a plurality of recording media R can be placed thereon.
  • the medium supply tray 11 moves up and down according to the amount of the recording media R placed thereon, and the uppermost one of the recording media R is held at the transport start position by the transport unit 12 .
  • As the recording medium R various materials that can be curvedly carried on the outer peripheral surface of the image forming drum 21, such as printing paper, cells, films, and fabrics of various thicknesses, are used.
  • the conveying unit 12 includes a plurality of (for example, two) rollers 121 and 122, a ring-shaped belt 123 supported by the rollers 121 and 122 on the inner surface, and a recording medium R placed on the medium supply tray 11. and a supply unit (not shown) for transferring the uppermost one of them to the belt 123 .
  • the conveying unit 12 conveys the recording medium R transferred onto the belt 123 by the supplying unit and sends it to the image forming unit 20 according to the circular movement of the belt 123 caused by the rotation of the rollers 121 and 122 .
  • the image forming section 20 includes an image forming drum 21, a transfer unit 22, a temperature measurement section 23, a head unit 24, a heating section 25, a delivery section 26, a cleaning section, and the like.
  • the image forming drum 21 has a cylindrical outer peripheral shape, carries the recording medium R on its outer peripheral surface (conveying surface), and conveys the recording medium R along a conveying path corresponding to its rotating operation.
  • a heater is provided on the inner surface side of the image forming drum 21, and can heat the conveying surface so that the recording medium R placed on the conveying surface reaches a predetermined set temperature.
  • the delivery unit 22 delivers the recording medium R delivered from the conveying section 12 to the image forming drum 21 .
  • the transfer unit 22 is provided at a position between the transport section 12 of the medium supply section 10 and the image forming drum 21 .
  • the delivery unit 22 has a claw portion 221 that grips one end of the recording medium R sent by the conveying portion 12, a cylindrical delivery drum 222 that guides the recording medium R gripped by the claw portion 221, and the like.
  • the recording medium R picked up from the conveying unit 12 by the claw part 221 moves along the outer peripheral surface of the rotating delivery drum 222 when sent to the delivery drum 222, and is guided to the outer peripheral surface of the image forming drum 21 as it is and received. Passed.
  • the temperature measurement unit 23 measures the position from when the recording medium R is placed on the transport surface of the image forming drum 21 until it is transported to a position facing the ink ejection surface (ejection surface) of the first head unit 24 . to measure the surface temperature of the transported recording medium R (the temperature of the surface opposite to the surface in contact with the transport surface).
  • a radiation thermometer is used as the temperature sensor of the temperature measurement unit 23, and the surface temperature of the recording medium R that is not in contact with the temperature measurement unit 23 (radiation thermometer) is measured by measuring the intensity distribution of infrared rays. .
  • the temperature measurement unit 23 measures the temperature at a plurality of points along the width direction (the direction perpendicular to the surface of FIG. A plurality of sensors are arranged so as to be able to measure , and the measurement data is output to each control unit at a preset appropriate timing and controlled.
  • the head unit 24 includes the nozzle plate of the present invention, and a plurality of nozzle openings (nozzles An image is formed by ejecting (ejecting) ink droplets from the holes to various locations on the recording medium R.
  • four head units 24 are arranged at predetermined intervals, separated from the outer peripheral surface of the image forming drum 21 by a predetermined distance.
  • the four head units 24 output four color inks of C (cyan), M (magenta), Y (yellow) and K (black).
  • each color ink of C, M, Y, and K is ejected in order from the upstream side in the conveying direction of the recording medium R, respectively.
  • Each of the head units 24 here is a line head capable of forming an image over the image forming width on the recording medium R in combination with the rotation of the image forming drum 21 .
  • the heating unit 25 heats the surface of the transported recording medium R.
  • the heating unit 25 has, for example, a heating wire and the like, and heats the air by generating heat when energized, and heats the recording medium R by irradiating infrared rays.
  • the heating unit 25 is located in the vicinity of the outer peripheral surface of the image forming drum 21, and after ink is ejected from the head unit 24 onto the recording medium R conveyed by the rotation of the image forming drum 21, the recording medium R becomes an image. It is arranged so that the recording medium R can be heated before passing from the forming drum 21 to the delivery section 26 .
  • the operation of the heating unit 25 dries the ink ejected from the nozzles of the head unit 24 and fixes the ink to the recording medium R.
  • the delivery section 26 conveys the recording medium R onto which ink has been ejected and fixed from the image forming drum 21 to the medium discharge section 30 .
  • the delivery section 26 includes a plurality of (for example, two) rollers 261 and 262, a ring-shaped belt 263 supported by the rollers 261 and 262 on the inner surface, a cylindrical delivery roller 264, and the like.
  • the delivery unit 26 guides the recording medium R on the image forming drum 21 onto the belt 263 by the transfer roller 264, and moves the transferred recording medium R together with the belt 263 that circulates as the rollers 261 and 262 rotate. , and sent out to the medium discharge unit 30 .
  • the cleaning section cleans the ink ejection surface of the head unit 24 .
  • the cleaning section is arranged adjacent to the image forming drum 21 in the width direction. By moving the head unit 24 in the width direction, the ink ejection surface of the head unit 24 is set at the cleaning position by the cleaning section.
  • the medium ejecting unit 30 stores the recording medium R after image formation sent from the image forming unit 20 until it is taken out by the user.
  • the medium ejection section 30 has a plate-like medium ejection tray 31 on which the recording medium R conveyed by the delivery section 26 is placed.
  • 6A and 6B are a schematic side view and a schematic bottom view of a head unit applicable to an inkjet recording apparatus.
  • 6A is a schematic side view when the head unit 24 is viewed from above the transport surface of the image forming drum 21 and from the upstream side in the transport direction of the recording medium R.
  • FIG. 6B is a schematic bottom view of the head unit 24 as seen from the conveying surface side of the image forming drum 21.
  • the head unit 24 has a plurality of inkjet heads 241 having a configuration defined by the present invention.
  • 16 inkjet heads 241 are provided in one head unit 24, but the number is not limited to this.
  • the 16 inkjet heads 241 are included in 8 inkjet modules 242 in a group of two each.
  • the inkjet modules 242 are adjusted and fixed at appropriate relative positions in a houndstooth pattern here by a fixing member 245 .
  • the fixed member 245 is supported and held by a carriage 246 .
  • the carriage 246 holds a first sub-tank 243 and a second sub-tank 244 together, and ink is supplied to each inkjet head 241 from the first sub-tank 243 and the second sub-tank 244 .
  • the carriage 246 can independently move in the width direction on the image forming drum 21 for each of the four head units 24 .
  • each inkjet head 241 has a plurality of nozzles 2411 .
  • the inkjet head 241 ejects ink (droplets) from openings (nozzle holes) of a plurality of nozzles 2411 provided on each bottom surface (nozzle opening surface 241 a ), and the ink is carried on the conveying surface of the image forming drum 21 .
  • Ink droplets are made to land on the recording medium R.
  • the inkjet head 241 is shown to have a two-dimensional array pattern in which the openings are arranged in two rows in the transport direction, but the invention is not limited to this.
  • the openings may be arranged in any suitable one-dimensional or two-dimensional array pattern.
  • the arrangement range of these openings covers the printable width of the recording medium R carried on the conveying surface in the width direction by the entirety of the 16 inkjet heads 241, and image formation is performed by the one-pass method while the head unit 24 is fixed. is allowed.
  • the nozzle opening surfaces 241 a of the 16 inkjet heads 241 are covered with the liquid-repellent layer 43 .
  • FIG. 7 is a schematic cross-sectional view showing the cross-sectional shape of the inkjet head 241. As shown in FIG.
  • Each inkjet head 241 is not particularly limited, but as shown in FIG. 7, is a bend mode inkjet head formed by laminating a plurality of plates (substrates). Specifically, each inkjet head 241 has a nozzle plate 40A, a pressure chamber substrate 50, a vibration plate 60, a spacer substrate 70, and a wiring substrate 80 stacked in this order from the nozzle opening surface 241a (ink ejection surface, downward) side upward. It is
  • the pressure chamber 51 is in contact with the piezoelectric element portion 71 of the spacer substrate 70 via the vibration plate 60 and electrically connected to the nozzle 2411 .
  • a control signal from the control section of the inkjet recording apparatus 1 is input to the piezoelectric element section 71 through the wiring of the wiring board 80 , and the piezoelectric element section 71 physically vibrates, causing the ink flow path of the wiring board 80 or the like to An inflow of ink into the pressure chamber 51 and an outflow of ink from the pressure chamber 51 to the nozzles 2411 of the nozzle plate 40A are performed. Then, the ink in the nozzle 2411 is ejected as ink droplets from an opening (nozzle hole) on the nozzle opening surface 241a (ejection surface) side, and the ink droplets land on the recording medium R.
  • an intermediate substrate (intermediate layer) having flow paths leading from the pressure chambers 51 to the nozzles 2411 may be provided between the nozzle plate 40A and the pressure chamber substrate 50 .
  • ⁇ Inkjet head For the detailed configuration of the inkjet head applicable to the present invention, for example, JP-A-2012-140017, JP-A-2013-010227, JP-A-2014-058171, JP-A-2014-097644, and JP-A-2014-097644. JP 2015-142979, JP 2015-142980, JP 2016-002675, JP 2016-002682, JP 2016-107401, JP 2017-109476, JP 2017 -177626 or the like can be appropriately selected and applied.
  • a nozzle plate 1 having the configuration shown in FIG. 2A was produced according to the following method.
  • (1) Preparation of Substrate A single-crystal silicon substrate having a thickness of 100 ⁇ m was prepared as a substrate.
  • a resist pattern was provided on the surface of the substrate on the channel side using a mask corresponding to the position where the nozzle including the ink channel was to be formed, and the nozzle hole and the nozzle channel were processed by etching to form the nozzle.
  • etching method reactive ion etching (RIE) by the Bosch method, which facilitates deep etching, was used.
  • RIE reactive ion etching
  • Liquid Repellent Layer Protective Film A 100 ⁇ m-thick polyethylene terephthalate film having an adhesive layer made of a rubber-based adhesive on one side was prepared as a liquid repellent layer protective film. Next, the liquid-repellent layer of the nozzle plate and the adhesive layer of the liquid-repellent layer protective film were opposed to each other and bonded together.
  • nozzle plates 2 to 7 In the manufacture of the nozzle plate 1, the silicon (Si) substrate, the SiO 2 base film, and the silane coupling agent SC-1 of the material for forming the liquid-repellent layer were changed as shown in Table I. Nozzle plates 2 to 7 were produced in the same manner as in No. 1. However, the stainless steel used for the substrate (abbreviated as SUS (Steel Use Stainless) in the table) was SUS304-H (thickness 75 ⁇ m, manufactured by Nippon Steel Chemical & Materials Co., Ltd.), and the outer shape was processed by etching.
  • SUS Steel Use Stainless
  • SiC of the underlayer is formed by using a material gas containing an alkyl silicon compound (abbreviation: TEOS: tetraethoxysilane, Si(OC 2 H 5 ) 4 ) as a forming material and argon as a carrier gas.
  • TEOS alkyl silicon compound
  • Ar carrier gas
  • the thickness was 320 nm.
  • the silane coupling agents used are shown below.
  • the silane coupling agents according to the present invention are SC-3 to SC-5, and SC-1 and SC-2 are comparative compounds.
  • SC-1 T3352 (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • SC-2 T3134 (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • SC-3 T1770 (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • SC-4 T2705 (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • SC-5 KY-1901 (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • a sample silane coupling agent (stock solution) is diluted with deuterated chloroform and concentrated by evaporation. In that case, it will harden if it dries completely, so leave some liquid.
  • the silane coupling agent according to the present invention is subjected to 1H, H—H COZY, and 19F-NMR measurements in NMR measurement, and CH 2 directly bonded to Si is at the lowest magnetic field (near 0.6 ppm). A peak appeared, and CH 2 adjacent to this was confirmed by 2D (H—H COZY) measurement. It was also confirmed that the liquid-repellent layer was a monomolecular layer. Further, it was confirmed by FT-IR (Fourier transform infrared spectroscopy) that the formed liquid-repellent layer of each nozzle plate formed a siloxane bond with the underlying film.
  • the ink immersion test is a method of immersing the manufactured nozzle plate with a liquid-repellent layer in dummy ink to evaluate the durability of the liquid-repellent layer.
  • Each nozzle plate prepared above was immersed in a dummy ink at 60° C., and the wettability on the liquid-repellent layer after one week of immersion was measured by measuring the contact angle of water according to the following criteria.
  • the reason for using the contact angle evaluation is that the liquid repellency of the ink can be evaluated quantitatively. Contact angles were measured at 25° C. with water.
  • dummy ink A water-based alkaline dummy ink having a pH of 10.0 at 25° C. was prepared.
  • the dummy ink used in the test is an aqueous solution containing polypropylene glycol alkyl ether and dipolypropylene glycol alkyl ether, adjusted to pH 10.0 using an aqueous sodium carbonate solution as a buffer solution.
  • The static contact angle of the dummy ink is 60° or more. Dynamic contact angle is 50° or more. ⁇ : The static contact angle of the dummy ink is 50° or more and less than 60°. A dynamic contact angle of 40° or more and less than 50°. x: Static contact angle of dummy ink is less than 50°. The dynamic contact angle is less than 40°, and deformation of the liquid-repellent layer and separation between layers are observed, which poses problems in practical use. Table I shows the evaluation results obtained as described above.
  • the nozzle plate having the structure specified in the present invention compared to the comparative example, was exposed to alkaline ink with a high pH for a long time, and the water-repellent layer and the base film remained intact. It was confirmed that the nozzle plate was free from deformation and peeling and had excellent ink resistance.
  • Example 2 Each of the nozzle plates 1 to 7 treated in Example 1 was mounted on the inkjet recording apparatus shown in FIGS. The image was printed.
  • the following two types of inks a UV-based ink and a water-based ink, were used.
  • UV-based ink ALTAMIRA Pack SUV (manufactured by Agfa-Gewalt Japan Co., Ltd.)
  • Water-based ink AGORA DESIGN DLK (manufactured by Agfa-Gewalt Japan Co., Ltd.))
  • the image produced by the inkjet recording apparatus using the inkjet head of the present invention was superior to the comparative inkjet head in terms of density unevenness regardless of which ink was used. This is due to the effect that ink mist does not easily adhere to the nozzle surface of an inkjet head equipped with a nozzle plate with excellent ink resistance. It was presumed that this was caused by ink discharge bending due to the tendency of mist to adhere.
  • An inkjet head equipped with the nozzle plate of the present invention has excellent ink resistance and can be suitably used for inkjet recording methods using ink in various fields.
  • Reference Signs List 1 40A, 40B, 40C nozzle plate 2, 41 substrate 3, 42A, 42B base film 4, 43 liquid-repellent layer 5 crosslinkable silyl group 6 hydrophobic linker group 7 main chain having perfluoroalkylene group 10 medium supply part 11 Medium Supply Tray 12 Conveying Section 121, 122 Roller 123 Belt 20 Image Forming Section 21 Image Forming Drum 221 Claw Section 222 Drum 22 Delivery Unit 23 Temperature Measurement Section 24 Head Unit 241 Inkjet Head 241a Nozzle Opening Surface 2411 Nozzle 25 Heating Section 26 Delivery Sections 261, 262, 264 Roller 263 Belt 30 Medium Discharge Section 31 Medium Discharge Tray 44 Flow Path Protective Film 45 Liquid Repellent Layer Protective Film 50 Pressure Chamber Substrate 51 Pressure Chamber 60 Diaphragm 70 Spacer Substrate 71 Piezoelectric Element Section 80 Wiring Substrate I Ink PL inkjet recording device R recording medium

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

本発明の課題は、耐インク性に優れたノズルプレートを具備したインクジェットヘッド及びそれを用いて高品位のインクジェット記録画像を得ることができるインクジェット記録方法を提供することである。 本発明のインクジェットヘッドは、基板を有するノズルプレートを具備した、インクジェットヘッドであって、前記ノズルプレートが、前記基板のインク吐出面側の最表面に撥液層を有し、前記基板と前記撥液層との間に下地膜を有し、前記撥液層は、前記下地膜とシランカップリング剤に由来するシロキサン結合を形成しており、前記シランカップリング剤が、パーフルオロアルキレン基を有する主鎖と末端の架橋性シリル基が有するケイ素原子とが疎水性のリンカー基を介して結合していることを特徴とする。

Description

インクジェットヘッド及びインクジェット記録方法
 本発明は、インクジェットヘッド及びインクジェット記録方法に関し、より詳しくは、耐インク性に優れたノズルプレートを具備したインクジェットヘッド及びそれを用いて高品位のインクジェット記録画像を得ることができるインクジェット記録方法に関する。
 従来、インクジェットヘッドのノズルからインク滴を吐出して、記録媒体上にインクジェット画像の形成を行うインクジェット記録方法が提案されている。
 インクジェットヘッドにおいては、インク滴を吐出したときに、インクジェット記録装置内に発生するインクミストや、記録媒体からのインクの跳ね返り等の影響により、ノズルの射出面(ノズルの吐出側開口の周囲)にインクが付着してしまうことがある。射出面にインクが付着し、吐出口付近を塞いでしまうと、インクの吐出角度が曲がってしまうことが知られている。このノズル面へのインク付着を抑制する手段として、ノズル面に撥液層を形成することが一般的である。
 撥液層の構成材料としては、シランカップリング剤と呼ばれるタイプの材料が選択される場合が多い。このシランカップリング剤は、極薄膜(理想的には単分子層)でも優れた撥液性を発現し、かつ基板とシロキサン結合(基板-「Si-O-Si」-撥液基)を形成することで、高い密着性を得ることができるという特徴を有している。特に、近年では、インクの着弾精度を向上させるため、インクの吐出性能の影響を及ぼしにくいという観点から、ノズルプレート上に下地膜を設け、その上にシランカップリング剤により極薄膜の撥液層を設ける例が多くみられる。
 このようなシランカップリング剤により構成される撥液層における問題の一つとして耐インク性が挙げられる。撥液層が長時間にわたりインクに曝されると、撥液性が低下することが、明らかになってきている。特に、適用するインクがアルカリ性インクである場合には、その現象が顕著に表れる。
 上記問題に対し特許文献1では、撥液層の下にプラズマ重合により製膜されたSiO2、Al23又はZrO2など、耐アルカリ性が期待できる材料を下地膜として形成し、アルカリ性の吐出インクに対して耐久性の高い撥液層を形成することが提案されている。しかし、プラズマ重合膜は一般的に微小欠陥が多く、微小欠陥からアルカリが侵入して撥液層が剥離し、機能が低下することが考えられる。そのため十分な耐久性があるとは言い難い。
 また、特許文献2では、シリコン熱酸化膜の上の第1保護膜に微小欠陥の少ない原子層堆積(ALD)により第1撥液下地膜(酸化タンタル膜)を形成し、その後、プラズマCVDで厚膜の第2撥液下地膜(酸化タンタル膜)を形成した方法が提案されている。しかしながら、複数の成膜装置が必要であり、製造工程も長くなってしまうため、生産性に問題がある。
 さらに、特許文献3では、分子量と撥液性が相対的に異なる材料を積層させて撥液層を形成する方法が提案されている。しかしながら、特許文献3で提案されている方法は、撥液性の向上と耐ワイピング性の向上が目的であり、アルカリ性インクに対する耐久性の効果の記載はなく、本発明とは技術的思想が異なる。
特許第4293035号公報 特許第6186721号公報 特許第5387096号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、耐インク性に優れたノズルプレートを具備したインクジェットヘッド及びそれを用いて高品位のインクジェット記録画像を得ることができるインクジェット記録方法を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する中で、ノズルプレートを構成している下地膜がインク、特にアルカリ性インクによって浸食されていることに着目した。シランカップリング剤により構成されている撥液層では、シロキサン結合を形成するために下地膜としてSiO2を用いることが一般的だが、このSiO2成分がインクにより溶解してしまうため、撥液層が剥がれて欠落し、撥液性の低下を招いていることが判明した。
 そこで、耐インク性の高い下地膜の検討というより、撥液材料の構造についても検討した結果、撥液材料の分子構造、特に後述する疎水性のリンカー基を有する特定構造の撥液材料が、インク耐久性に強く関係することを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.基板を有するノズルプレートを具備した、インクジェットヘッドであって、
前記ノズルプレートが、前記基板のインク吐出面側の最表面に撥液層を有し、
前記基板と前記撥液層との間に下地膜を有し、
前記撥液層は、前記下地膜とシランカップリング剤に由来するシロキサン結合を形成しており、
前記シランカップリング剤が、パーフルオロアルキレン基を有する主鎖と末端の架橋性シリル基が有するケイ素原子とが疎水性のリンカー基を介して結合していることを特徴とするインクジェットヘッド。
 2.前記下地膜が、チタン、アルミニウム、ジルコニウム、クロム、ハフニウム、ニッケル、タンタル又はケイ素の、それぞれ、酸化物、窒化物若しくは炭化物を含有することを特徴とする第1項に記載のインクジェットヘッド。
 3.前記下地膜が、二酸化ケイ素を含有することを特徴とする第1項に記載のインクジェットヘッド。
 4.前記基板が、ケイ素、金属又は樹脂を含有することを特徴とする第1項から第3項までのいずれか一項に記載のインクジェットヘッド。
 5.前記撥液層が、単分子層であることを特徴とする第1項から第4項までのいずれか一項に記載のインクジェットヘッド。
 6.第1項から第5項までのいずれか一項に記載のインクジェットヘッドと、インクを用いて、画像記録することを特徴とするインクジェット記録方法。
 7.前記インクが、水性インクであることを特徴とする第6項に記載のインクジェット記録方法。
 本発明の上記手段により、耐インク性に優れたノズルプレートを具備したインクジェットヘッド及びそれを用いて高品位のインクジェット記録画像を得ることができるインクジェット記録方法を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 図1Aは、本発明のインクジェットヘッドに具備するノズルプレートの構成の断面の一例を示す概念図である。本発明のノズルプレート1は、基板2上に、少なくとも下地膜3と撥液層4とが積層されている。
 図1Bは、撥液層におけるシランカップリング剤の結合の概念図を示している。シランカップリング剤に由来する撥液層4は、下地膜3とシロキサン結合を形成しているものであり、シランカップリング剤が、パーフルオロアルキレン基を有する主鎖7と末端の架橋性シリル基5が有するケイ素原子とが疎水性のリンカー基6を介して結合している。
 図1Bでは、撥液層が単分子層の場合を示した。このように、シランカップリングにより撥液層がシロキサン結合を介して下地膜と結合し、単分子層を形成していることが好ましい。
 このような構成とすることにより、インクIのノズルプレート表面からの下地膜3への侵入を、パーフルオロアルキレン基を有する主鎖7により防ぐことができる。また、下地膜3とシランカップリング剤に由来するシロキサン結合部分へのインクIの侵入を、疎水性のリンカー基6により防ぐことができると考えられる。このため、表面と側面からのインクIの侵入によるシロキサン結合への影響を少なくすることができ、耐インク性に優れたノズルプレートを実現できるものと推察している。
 したがって、下地膜として安価なSiO2用いても、従来では困難であった耐インク性を向上させることができるものと推察される。
本発明に係るノズルプレートの構成の断面の一例を示す概念図 撥液層におけるシランカップリング剤の結合の概念図 ノズル孔を有するノズルプレートの代表的な構成の一例を示す概略断面図 ノズル孔を有するノズルプレートの代表的な構成の他の一例を示す概略断面図 ノズル孔を有するノズルプレートの代表的な構成の他の一例を示す概略断面図 本発明に係るノズルプレートの製造工程の一例を示すフローチャート 本発明に係るノズルプレートの製造工程のステップS11を示す概略断面図 本発明に係るノズルプレートの製造工程のステップS12を示す概略断面図 本発明に係るノズルプレートの製造工程のステップS13を示す概略断面図 本発明に係るノズルプレートの製造工程のステップS14を示す概略断面図 本発明に係るノズルプレートの製造工程のステップS15を示す概略断面図 本発明に係るノズルプレートの製造工程のステップS16を示す概略断面図 本発明のインクジェット記録方法に適用可能なインクジェット記録装置の構成を正面から見た概略図 インクジェット記録装置に適用可能なヘッドユニットの概略側面図 インクジェット記録装置に適用可能なヘッドユニットの概略底面図 インクジェットヘッドの断面形状を示す概略断面図
 本発明のインクジェットヘッドは、基板を有するノズルプレートを具備した、インクジェットヘッドであって、前記ノズルプレートが、前記基板のインク吐出面側の最表面に撥液層を有し、前記基板と前記撥液層との間に下地膜を有し、前記撥液層は、前記下地膜とシランカップリング剤に由来するシロキサン結合を形成しており、前記シランカップリング剤が、パーフルオロアルキレン基を有する主鎖と末端の架橋性シリル基が有するケイ素原子とが疎水性のリンカー基を介して結合していることを特徴とする。この特徴は、下記各実施態様(形態)に共通する又は対応する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記下地膜が、チタン、アルミニウム、ジルコニウム、クロム、ハフニウム、ニッケル、タンタル又はケイ素の、それぞれ、酸化物、窒化物若しくは炭化物を含有することが好ましい。
 また、前記下地膜が、二酸化ケイ素を含有することが、密着性の高い撥液層が得られることから好ましい。
 さらに、本発明においては、前記基板が、機械的強度が高く、耐インク性を備え、寸法安定性に優れるという観点から、ケイ素、金属又は樹脂を含有することが好ましい。
 本発明の実施態様としては、インクの着弾精度の観点から、前記撥液層が、単分子層であることが好ましい。
 また、本発明のインクジェット記録方法においては、本発明のインクジェットヘッドと、インクを用いて、画像記録するインクジェット記録することを特徴とする。
 さらに、本発明においては、前記インクが、水性インクであることが好ましい。これにより、鮮やかで高い発色性が得られることから好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 《インクジェットヘッド》
 本発明のインクジェットヘッドは、基板を有するノズルプレートを具備した、インクジェットヘッドであって、前記ノズルプレートが、前記基板のインク吐出面側の最表面に撥液層を有し、前記基板と前記撥液層との間に下地膜を有し、前記撥液層は、前記下地膜とシランカップリング剤に由来するシロキサン結合を形成しており、前記シランカップリング剤が、パーフルオロアルキレン基を有する主鎖と末端の架橋性シリル基が有するケイ素原子とが疎水性のリンカー基を介して結合していることを特徴とする。
 [ノズルプレートの構成要素]
 本発明に係るノズルプレートを構成する各要素の詳細について説明する。
 〔基板〕
 本発明に係るノズルプレートに適用可能な基板としては、機械的強度が高く、耐インク性を備え、寸法安定性に優れた材料より選択することができることから、ケイ素、金属又は樹脂を含有することが好ましい。
 例えば、ステンレス、ニッケル(Ni)又はその他の金属材料、ポリイミド、ポリフェニレンサルファイド、ポリエチレンテレフタレート又はその他の有機物材料や、シリコン(Si)を用いることができる。
 中でも、本発明においては、基板としては、加工精度の観点からはシリコン、基板自体の耐インク性という観点からは樹脂基板又はステンレス基板を用いることが好ましい。
 基板の厚さとしては、特に制限はないが、通常10~300μmの範囲内であり、好ましくは20~100μmの範囲内であり、更に好ましくは30~80μmの範囲内である。
 〔下地膜〕
 本発明に係るノズルプレートにおいては、基板と後述する撥液層との間に、下地膜を有している。下地膜を設けることにより、撥液層と基板の密着性を向上させることができる。下地膜は、基材に応じて、チタン、アルミニウム、ジルコニウム、クロム、ハフニウム、ニッケル、タンタル又はケイ素の、それぞれ、酸化物、窒化物若しくは炭化物を含有することが好ましい。
 これらの中では、下地膜が、二酸化ケイ素を含有することが、密着性の高い撥液層が得られることから好ましい。
 さらに、少なくともケイ素(Si)と炭素(C)を含有し、前記X線光電子分光法により測定される表面部のSi2p軌道の結合エネルギーの最大ピークPが、99.6(eV)≦P≦101.9(eV)の範囲内である下地膜を有するものも使用できる。
 Siが炭素と直接結合しているSi-C結合を下地膜が有することにより、化学的安定性が向上し、アルカリ性インク等の腐食性を有するインクに対しても浸食されなくなり、かつ撥液層と化学結合(シロキサン結合、Si-O-Si)を形成することが可能となり、密着性を高めることができる。
 Si-C結合で構成される下地膜の形成方法としては、下記の2つの方法が挙げられ、適宜選択して用いることができる。
 第1の方法は、形成原料としてトリメトキシシラン(略称:TMS)と、キャリアガスとしてアルゴンガスを用い、高周波放電プラズマCVD(Chemical Vapor Deposition:化学気相成長)、又はPIG(Penning Ionization Gauge)方式プラズマCVDを用いて、Si-C結合を有する下地膜を成膜する方法である。また、下地膜に酸素を導入することを目的として、酸素ガスを添加してもよい。
 第2の方法は、SiCをターゲットとして、キャリアガスとしてアルゴンガスの雰囲気化で、スパッタ法により、Si-C結合を有する下地膜を成膜する方法である。また、下地膜に酸素を導入することを目的として、酸素ガスを添加してもよい。
 高周波放電プラズマCVD、PIG方式プラズマCVD、スパッタ法としては、従来公知の方法を適用することができ、特に制限はない。
 本発明に係る下地膜の厚さは、好ましくは1~1000nmの範囲内であり、より好ましくは5~300nmの範囲内であり、さらに好ましくは10~200nmの範囲内である。
 〔撥液層〕
 本発明のインクジェットヘッドは、ノズルプレートが基板のインク吐出面側の最表層に撥液層を有している。この撥液層により、インクジェット記録時にノズル表面へのインク等の付着を防止することができる。
 この撥液層は、下地膜とシランカップリング剤に由来するシロキサン結合を形成しており、シランカップリング剤が、パーフルオロアルキレン基を有する主鎖と末端の架橋性シリル基が有するケイ素原子とが疎水性のリンカー基を介して結合していることを特徴としている。
 (シランカップリング剤)
 本発明に係るシランカップリング剤は、パーフルオロアルキレン基を有する主鎖と末端の架橋性シリル基が有するケイ素原子とが疎水性のリンカー基を介して結合している。架橋性シリル基とは、ケイ素原子における疎水性のリンカー基を介した主鎖との結合手以外に加水分解性基が1~3個結合する官能基である。
 本発明に係るシランカップリング剤は、下記一般式(1)で表される構造を有する化合物であることが好ましい。
 一般式(1)
   (Y-L)nSiX4-n
(式中、Yは、パーフルオロアルキレン基を有する主鎖を表す。Lは、疎水性のリンカー基を表す。Xは、加水分解性シリル基を形成できる基を表す。nは、1~3の整数を表す。)
 Yは、パーフルオロアルキレン基を有する主鎖を表し、水素原子が全てフッ素原子により置換された、パーフルオロアルキル基、又はパーフルオロエーテル基であることが好ましい。
 パーフルオロポリエーテル基を有するシランカップリング剤としては、主鎖(Y)が、パーフルオロポリエーテル(PFPE)基(-CF2-O-CF2-)を有する材料を用いることができる。
 パーフルオロアルキル基を有するシランカップリング剤としては、主鎖(Y)が、アルキル鎖の水素原子を全てフッ素原子に置き換えたもので、例えば、CF3CF2CF2-、CF3(CF25-、などの基を挙げることができる。
 Lは、主鎖(Y)とSiとを結びつけるリンカー基を表し、疎水性の基である。具体的には、(CH2mで表される基であることが好ましい。mは、2~6の整数であることが好ましい。このようなリンカー基があることによって、インクの下地膜への攻撃を抑制し耐インク性が劣化することを防ぐものと考えられる。
 一般式(1)で示す構造を有するリンカー基は、NMR測定で検出することができる。具体的には、NMR測定において、Siに直接結合しているCH2については、最も低磁場(0.6ppm付近)に出るという特徴を有している。また、これと隣り合っているCH2については、2D(H-H COSY)測定にて確認可能である。
 加水分解性シリル基を形成できる基として、Xは、アルコキシ基、メルカプト基、ハロゲン原子、アミド基、アセトキシ基、アミノ基、イソプロペノキシ基等を挙げることができる。これらの中では、アルコキシ基が好ましい。特にメトキシ基及びエトキシ基が好ましい。これらの基は、下地膜表面のヒドロキシ基又は吸着水との縮合により、下地膜と結合可能な基である。
 具体的には、パーフルオロエーテル基を有する本発明に係るシランカップリング剤としては、例えば、フロロテクノロジー社製「FG-5010Z130-0.2」、「FG-5080TH-0.1」信越化学工業(株)製「KY-1900」、「KY-1901」、株式会社ハーベス製の「DURASURF DS-5831TH」が挙げられる。
 パーフルオロアルキル基を有する本発明に係るシランカップリング剤としては、東京化成工業株式会社製T2577、T2705、T2876、T2917及びT3560等を挙げることができる。
 《インクジェットヘッドの製造方法》
 以下、インクジェットヘッドに具備される本発明に係るノズルプレートの代表的な構成とその製造方法について説明する。
 [ノズルプレートの代表的な構成]
 本発明で規定する構成からなるノズル孔を形成したノズルプレート(ノズル基板)の構成例について説明する。
 図2A~図2Cは、ノズル孔を有するノズルプレートの代表的な構成を示す概略断面図である。
 図2Aで示すノズルプレート40Aは、基板41と、下地膜42Aと、撥液層43を有する構成である。基板41は、例えば、ケイ素(シリコン)製である。ノズル2411は、基板41に形成されたインクを射出するノズルであり、インクの流路と射出面側のノズル穴とを含む。下地膜42Aは、基板41の射出面側に設けられ、撥液層43の流路(基板41)側の下地膜である。撥液層43は、下地膜42Aの射出面側に設けられ、本発明に係るシランカップリング剤で形成され、撥液性(撥インク性)を有する。
 図2Bは、ノズルプレート40Bの模式的な断面図である。ノズルプレート40Bは、基板41と、下地膜42Bと、撥液層43と、を有する。図2Bの構成では、下地膜42Bは、基板41の射出面側及びノズル2411の流路内に設けられ、一部が撥液層43の基板41側の下地膜となる膜である。
 図2Cは、ノズルプレート40Cの模式的な断面図である。図2Cに示すように、ノズルプレート40Cは、基板41と、流路保護膜44と、下地膜42Aと、撥液層43と、を有する。流路保護膜44は、基板41の射出面側及びノズル2411の流路内に設けられ、一部が下地膜42Aの基板41側の下地膜となる膜である。流路保護膜44は、耐インク性を有する保護膜である。流路保護膜44の材料は、チタン、ジルコニウム、クロム、ハフニウム、ニッケル、タンタル、シリコン等の酸化物等により形成されている。
 [ノズルプレートの製造方法]
 次いで、一例として図2Aで説明したノズルプレート40A(ノズル基板)の製造方法について、図3及び図4A~図4Fを交えて説明する。具体的には、本発明に係るノズルプレートの製造工程の各ステップを示す概略断面図である。
 図3は、本発明に係るノズルプレートの製造工程の一例を示すフローチャートである。図4A~図4Fは、本発明に係るノズルプレートの製造工程の各ステップ(ステップS11~ステップS16)を示す概略断面図である。図4Aは、ノズル穴加工がされた基板41を模式的に示す断面図である(ステップS11)。図4Bは、下地膜42Aが形成された基板41を模式的に示す断面図である(ステップS12)。図4Cは、撥液層43aが形成された基板41を模式的に示す断面図である(ステップS13)。図4Dは、撥液層保護膜45が形成された基板41を模式的に示す断面図である(ステップS14)。図4Eは、撥液層除去処理が施された基板41を模式的に示す断面図である(ステップS15)。図4Fは、撥液層保護膜45が除去され、図2Aで示すノズルプレート40Aを模式的に示す断面図である(ステップS16)。
 図3を参照して、図2Aで示したノズルプレート40Aの製造方法を説明する。
 (ステップS11)
はじめに、ステップS11として、図4Aで示すように、シリコン製の基板41の流路側の表面に対し、インク流路を含むノズル2411が形成される位置に応じたマスクを用いてレジストパターンを設け、エッチングによりノズル穴及びノズル流路を加工してノズル2411を形成した基板41を形成する。
 このステップS11で適用するエッチングの方法としては、例えば、深掘りの容易なボッシュ法による反応性イオンエッチング(RIE:Reactive Ion Etching)が用いられる。あるいは、インク流路やノズルの形成には、レーザー穿孔やブラスト加工などが用いられ(併用され)てもよい。
 (ステップS12)
 次いで、ステップS12として、図4Bで示すように、CVDやスパッタ法などにより、基板41の射出面側に下地膜42Aを形成する。
 このステップS12の後に、基板41が洗浄され異物が除去されるのが好ましい。ここでは、基板41がシリコンベースであるので、RCA洗浄が好適に用いられるが、基板41の材質に応じて他の洗浄方法が用いられてもよい。
 (ステップS13)
 次いで、ステップS13として、図4Cで示すように、ディップ処理などにより、基板41の射出面側及びノズル2411の流路内に撥液層43aを形成する。
 このステップS13では、より詳細には、まず、基板41の表面の濡れ性を向上させる処理が行われる。例えば、酸素ガス中又はアルゴンガス中でプラズマ処理を行うことで、下地膜の表面にOH基を形成させることにより濡れ性を向上させることもできる。そして、濡れ性が向上した基板2410に撥液剤が塗布される。ここでは、基板41を撥液剤中に浸す(ディップコーティング)ことで、全面に撥液剤が塗布される。撥液剤としては、ここでは、本発明に係るシランカップリング剤を溶媒で希釈した液を用いる。この撥液剤には、更に、溶媒として水を含み、また、界面活性剤などが含有されていてもよい。塗布の方法としては、他に、CVD、スプレーコーティング、スピンコーティング、ワイヤーバーコーティング(シロキサングラフト型ポリマーが用いられる場合など)などを用いることができる。
 そして、撥液剤が付着した基板41が適宜な条件(温度湿度)で静置され撥液層43aが形成される。撥液層と基板41(下地膜42A)との間には、上述のプラズマ処理とシランカップリング剤を用いた加水分解とに基づいて化学結合(シロキサン結合)が生じて、基板41の表面に単分子状態の撥液層43aが形成される。適宜な条件は、撥液剤の種別などに応じて定められ、常温又は必要に応じて高温状態(例えば、300~400℃)とされて、熱処理が行われる。そして、基板41の表面全体に撥液層43aが形成された後、撥液層43aが形成された基板41のフッ素系溶媒(ハイドロフルオロエーテルなど)による洗浄(リンス)が行われる。このとき、超音波洗浄を行うことで、化学結合を生じていない残りの撥液剤が除去される。超音波の周波数としては、MHz帯が好ましく用いられる。これにより、基板41の表面に化学結合により形成された撥液層43aは、基板41の形状に沿って形成される単分子層となる。
 (ステップS14)
 次いで、ステップS14として、図4Dで示すように、基板41の射出面側に、マスキングテープやレジストなどの撥液層保護膜45を形成する。
 (ステップS15)
 次いで、ステップS15として、図4Eで示すように、酸素プラズマ処理などにより、撥液層保護膜45が形成されていない基板41の流路内の撥液層43aを除去し、撥液層43を残す。
 (ステップS16)
 最後に、ステップS16として、図4Fで示すように、撥液層保護膜45を除去して、図2Aで示すノズルプレート40Aを形成する。
 《インクジェット記録方法》
 本発明のインクジェット記録方法では、本発明の構成からなるインクジェットヘッドと、インクを用いて画像記録することを特徴とする。更には、インクが水性インクであることが鮮やかで高い発色性が得られることから好ましい。
 以下、インクジェット記録方法に適用するインクジェット記録装置の具体的な構成と、アルカリ性インクに代表されるインクについて説明する。
 (インク)
 本発明のインクジェット記録方法に適用可能なインクジェットインクとしては、特に制限はなく、例えば、水を主溶媒とする水系インクジェットインク、室温では揮発しない不揮発性溶媒を主とし、実質的に水を含まない油性インクジェットインク、室温で揮発する溶媒を主とし、実質的に水を含まない有機溶媒系インクジェットインク、室温では固体のインクを加熱溶融して印字するホットメルトインク、印字後、紫外線等の活性光線により硬化する活性エネルギー線硬化型インクジェットインク等、様々な種類のインクジェットインクがあるが、本発明においては、本発明の効果を発揮することができる観点で、アルカリ性インクを適用することが、耐インク性の観点から好ましい態様である。
 インクには、例えば、アルカリ性インクや酸性インクがあり、特に、アルカリ性インクは、撥水層やノズル形成面の化学的な劣化を生じさせるおそれがあるが、このようなアルカリ性インクを用いたインクジェット記録方法において、本発明のノズルプレートを具備したインクジェットヘッドを適用することが、特に有効である。
 詳しくは、本発明に適用可能なインクとしては、染料や顔料などの色材、水、水溶性有機溶剤、pH調整剤などを含む。水溶性有機溶剤は、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリエチレングリコール、エタノール、プロパノールなどを使用することができる。pH調整剤は、例えば、水酸化ナトリウム、水酸化カリウム、酢酸ソーダ、炭酸ナトリウム、重炭酸ナトリウム、アルカノールアミン、塩酸、酢酸などを使用することができる。
 pH調整剤として、水酸化ナトリウム、水酸化カリウム、酢酸ソーダ、炭酸ナトリウム、重炭酸ナトリウム、アルカノールアミンなどを使用した場合、インクはアルカリ性を呈し、撥水層やノズル形成面の化学的ダメージ(化学的な劣化)を生じさせるおそれがあるアルカリ性インク(液体)となる。アルカリ性インクはpHが8.0以上である。
 上述したように、撥水層43は、本発明に係るシランカップリング剤に由来している。撥水層43は、ケイ素とフッ素樹脂とが、エチレン基(CH22のような疎水性の置換基で結合された構造を有している。このため、耐インク性を向上させることができる。
 〔インクジェット記録装置〕
 次いで、本発明のノズルプレートを具備するインクジェット記録装置について、図を交えて説明する。
 図5及び図6を参照して、本発明に適用可能なインクジェット記録装置について説明する。
 図5は、本発明のインクジェット記録方法に適用が可能なインクジェット記録装置PLの構成を正面から見た概略図である。
 インクジェット記録装置PLは、媒体供給部10、画像形成部20、媒体排出部30、制御部(図示略)などを備えている。インクジェット記録装置PLでは、制御部による制御動作に基づいて、媒体供給部10に格納された記録媒体Rが画像形成部20に搬送され、画像が形成された後に媒体排出部30に排出される。
 媒体供給部10は、媒体供給トレー11、搬送部12などを有する。媒体供給トレー11は、記録媒体Rを一又は複数載置可能に設けられた板状部材である。媒体供給トレー11は、載置された記録媒体Rの量に応じて上下動し、記録媒体Rのうち一番上のものが搬送部12による搬送開始位置に保持される。記録媒体Rとしては、種々の厚さの印刷用紙、セル、フィルムや布帛など、画像形成ドラム21の外周面上に湾曲して担持され得る種々のものが用いられる。
 搬送部12は、複数(例えば、2本)のローラー121及び122と、内側面でローラー121及び122により支持された輪状のベルト123と、媒体供給トレー11上に載置された記録媒体Rのうち一番上のものをベルト123に受け渡す供給部(図示略)と、を有する。搬送部12は、ローラー121及び122の回転によるベルト123の周回移動に従って供給部によりベルト123上に受け渡された記録媒体Rを搬送して画像形成部20へ送る。
 画像形成部20は、画像形成ドラム21、受け渡しユニット22、温度計測部23、ヘッドユニット24、加熱部25、デリバリー部26、クリーニング部などを備える。
 画像形成ドラム21は、円筒状の外周形状を有し、当該外周面(搬送面)上に記録媒体Rを担持して、その回転動作に応じた搬送経路で記録媒体Rを搬送する。この画像形成ドラム21の内面側には、ヒーターが設けられ、搬送面上に載置された記録媒体Rが所定の設定温度になるように搬送面を加熱し得る。
 受け渡しユニット22は、搬送部12から受け渡された記録媒体Rを画像形成ドラム21に受け渡す。受け渡しユニット22は、媒体供給部10の搬送部12と画像形成ドラム21との間の位置に設けられている。受け渡しユニット22は、搬送部12により送られてきた記録媒体Rの一端を把持する爪部221、爪部221に把持された記録媒体Rを誘導する円筒状の受け渡しドラム222などを有する。爪部221により搬送部12から取得された記録媒体Rは、受け渡しドラム222に送られると回転する受け渡しドラム222の外周面に沿って移動し、そのまま画像形成ドラム21の外周面に誘導されて受け渡される。
 温度計測部23は、記録媒体Rが画像形成ドラム21の搬送面上に載置されてから最初のヘッドユニット24のインク射出面(吐出面)と対向する位置に搬送されるまでの間の位置に設けられて、搬送される記録媒体Rの表面温度(搬送面に接する面とは反対面の温度)を計測する。この温度計測部23の温度センサーとしては、例えば、放射温度計が用いられ、赤外線の強度分布を計測することで温度計測部23(放射温度計)と接しない記録媒体Rの表面温度を計測する。温度計測部23には、画像形成部20において記録媒体Rが搬送される経路に沿った方向(搬送方向)に直交する幅方向(図5の面に垂直な方向)に沿って複数点の温度が計測可能に複数のセンサーが配列されており、計測データは、予め設定された適切なタイミングで各々制御部に出力されて制御される。
 ヘッドユニット24は、本発明のノズルプレートを具備し、記録媒体Rが担持された画像形成ドラム21の回転に応じ、記録媒体Rと対向するインク射出面に設けられた複数のノズル開口部(ノズル穴)から記録媒体Rの各所にインクの液滴を射出(吐出)していくことで画像を形成する。本発明に係るインクジェット記録装置Pでは、ヘッドユニット24は、画像形成ドラム21の外周面から予め設定された距離だけ離隔されて、所定の間隔で4つ配置されている。4つのヘッドユニット24は、C(シアン)M(マゼンタ)Y(イエロー)K(ブラック)4色のインクをそれぞれ出力する。ここでは、記録媒体Rの搬送方向について上流側から順番にC、M、Y、Kの各色インクがそれぞれ射出される。インクとしては、任意のものが用いられ得るが、ここでは、通常の液体インクが用いられ、加熱部25の動作により水分が蒸発、乾燥されることでインクが記録媒体Rに定着する。ヘッドユニット24の各々は、ここでは、画像形成ドラム21の回転との組み合わせにより記録媒体R上の画像形成幅に亘って画像を形成可能なラインヘッドである。
 加熱部25は、搬送される記録媒体Rの表面を加熱する。加熱部25は、例えば、電熱線などを有して通電に応じて発熱して空気を加熱し、また赤外線を照射することで記録媒体Rを加熱する。加熱部25は、画像形成ドラム21の外周面の近傍であって、画像形成ドラム21の回転により搬送される記録媒体R上にヘッドユニット24からインクの射出がなされた後、記録媒体Rが画像形成ドラム21からデリバリー部26に渡る前で記録媒体Rを加熱可能に配置されている。加熱部25の動作により、ヘッドユニット24のノズルから射出されたインクを乾燥させてインクを記録媒体Rに定着させる。
 デリバリー部26は、インクが射出、定着された記録媒体Rを画像形成ドラム21から媒体排出部30に搬送する。デリバリー部26は、複数(例えば、2本)のローラー261及び262、内側面でローラー261及び262に支持された輪状のベルト263、円筒状の受け渡しローラー264などを有する。デリバリー部26は、受け渡しローラー264により画像形成ドラム21上の記録媒体Rをベルト263上に誘導し、受け渡された記録媒体Rをローラー261及び262の回転に伴い周回移動するベルト263と共に移動させることで搬送して媒体排出部30に送り出す。
 クリーニング部は、ヘッドユニット24のインク射出面のクリーニング動作を行う。クリーニング部は、画像形成ドラム21に対して幅方向について隣り合って配置されている。ヘッドユニット24が幅方向に移動されることで、ヘッドユニット24のインク射出面がクリーニング部によるクリーニング位置にセットされる。
 媒体排出部30は、画像形成部20から送り出された画像形成後の記録媒体Rをユーザーにより取り出されるまで格納する。媒体排出部30は、デリバリー部26により搬送された記録媒体Rが載置される板状の媒体排出トレー31などを有する。
 図6A及び図6Bは、インクジェット記録装置に適用可能なヘッドユニットの概略側面図と概略底面図である。図6Aは、ヘッドユニット24を画像形成ドラム21の搬送面上方で記録媒体Rの搬送方向上流側から見た場合の概略側面図である。図6Bは、ヘッドユニット24を画像形成ドラム21の搬送面側から見た概略底面図である。
 ヘッドユニット24は、本発明で規定する構成からなる複数のインクジェットヘッド241を有する。ここでは、一つのヘッドユニット24に16個のインクジェットヘッド241が設けられているが、これに限られない。16個のインクジェットヘッド241は、それぞれ2個ずつ一組で8個のインクジェットモジュール242に含まれる。インクジェットモジュール242は、固定部材245によりここでは千鳥格子状に適切な相対位置で調整、固定されている。
 固定部材245は、キャリッジ246により支持されて保持されている。キャリッジ246には、第1サブタンク243及び第2サブタンク244が併せて保持されており、これらの第1サブタンク243及び第2サブタンク244から各インクジェットヘッド241に対してインクが供給される。キャリッジ246は、4つのヘッドユニット24について、各々別個に画像形成ドラム21上で幅方向に移動可能とされている。
 図6Bに示すように、インクジェットヘッド241は、それぞれ複数のノズル2411を有する。インクジェットヘッド241は、各々の底面(ノズル開口面241a)に設けられた複数のノズル2411の開口部(ノズル穴)からインク(液滴)を射出し、画像形成ドラム21の搬送面上に担持された記録媒体Rに対してインク液滴を着弾させる。ここでは、インクジェットヘッド241として、それぞれ搬送方向について2列に開口部が配列された二次元配列パターンを有するものが示されているが、これに限られない。適宜な一次元又は二次元配列パターンで開口部が配列されていて良い。これら開口部の配列範囲は、16個のインクジェットヘッド241全体で、幅方向について搬送面に担持される記録媒体Rの記録可能幅をカバーし、ヘッドユニット24を固定したままワンパス方式での画像形成が可能とされる。16個のインクジェットヘッド241のノズル開口面241aは、撥液層43により被覆されている。
 次に、図6Aで説明したヘッドユニット24のインク射出面に設けられたノズルプレート40A(図示略)、について詳しく説明する。
 図7は、インクジェットヘッド241の断面形状を示す概略断面図である。
 各インクジェットヘッド241は、特には限られないが、図7に示すように、複数のプレート(基板)が積層されて形成されているベンドモード式のインクジェットヘッドとする。具体的には、各インクジェットヘッド241は、ノズル開口面241a(インク射出面、下方)側から上方へ順に、ノズルプレート40A、圧力室基板50、振動板60、スペーサー基板70、配線基板80が積層されている。
 第1サブタンク243及び第2サブタンク244から供給されたインクは、配線基板80、スペーサー基板70、振動板60に連通されたインク流路を介して圧力室基板50の圧力室51に流入される。圧力室51は、振動板60を介してスペーサー基板70の圧電素子部71に当接され、またノズル2411に導通されている。インクジェット記録装置1の制御部からの制御信号が配線基板80の配線を介して圧電素子部71に入力され、圧電素子部71が物理的に振動することにより、配線基板80などのインク流路から圧力室51内へのインクの流入と、圧力室51内からノズルプレート40Aのノズル2411へのインクの流出と、がなされる。そして、ノズル2411内のインクが、ノズル開口面241a(射出面)側の開口部(ノズル穴)からインクの液滴として射出され、当該インクの液滴が記録媒体R上に着弾される。
 なお、ノズルプレート40Aと圧力室基板50との間に、圧力室51からノズル2411へ導通する流路を有する中間基板(中間層)を設ける構成としてもよい。
 《インクジェットヘッド》
 本発明に適用可能なインクジェットヘッドの詳細な構成については、例えば、特開2012-140017号公報、特開2013-010227号公報、特開2014-058171号公報、特開2014-097644号公報、特開2015-142979号公報、特開2015-142980号公報、特開2016-002675号公報、特開2016-002682号公報、特開2016-107401号公報、特開2017-109476号公報、特開2017-177626号公報等に記載されている構成からなるインクジェットヘッドを適宜選択して適用することができる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。また、特記しない限り、各操作は、室温(25℃)で行った。
 (実施例1)
 《ノズルプレートの作製》
 〔ノズルプレート1の作製〕
 下記の方法に従い、図2Aに記載の構成からなるノズルプレート1を作製した。
 (1)基板の準備
 基板として、厚さ100μmの単結晶のシリコン基板を準備した。この基板の流路側の表面に対し、インク流路を含むノズルが形成される位置に応じたマスクを用いてレジストパターンを設け、エッチングによりノズル穴及びノズル流路を加工してノズルを形成した。エッチングの方法としては、深掘りの容易なボッシュ法による反応性イオンエッチング(RIE)を用いた。
 (2)下地膜の形成
 上記基板をRCA洗浄した後にプラズマ重合により厚さ70nmのSiO2膜を形成して下地膜とした。
 (3)撥液層の形成
 アルゴンガス中でプラズマ処理を行うことで、SiO2膜の表面にOH基を形成させることにより表面の濡れ性を向上させた。その後、シランカップリング剤SC-1(T3352:東京化成工業株式会社製)をフッ素系溶媒(製品名HFE-7200; 住友スリーエム社製)で希釈した液体に、基板をディップした。
 その後、撥液剤が付着した基板を100℃で30分間熱処理して化学反応を進行させ、シロキサン結合を形成することにより、撥液層を形成した。
 その後、撥液層が形成された基板のフッ素系溶媒(ハイドロフルオロエーテル)により超音波洗浄し、化学結合を生じていない残りの撥液剤を除去した。
 (4)撥液層保護膜の付与
 ゴム系粘着剤より構成される粘着層を一方の面側に有する厚さ100μmのポリエチレンテレフタレートフィルムを撥液層保護膜として準備した。次いで、ノズルプレートの撥液層と撥液層保護膜の粘着層とを対向させて貼合した。
 (5)ノズル貫通孔及びノズル孔の作製
 上記作製した撥液層保護膜を具備したノズルプレートについて、図4Aで示すように、シリコン製の基板の流路側の表面に対し、インク流路を含むノズルが形成される位置に応じたマスクを用いてレジストパターンを設け、深掘りが容易なボッシュ法による反応性イオンエッチング(RIE)を用いたエッチングにより、ノズル穴及びノズル流路を加工してノズル孔を形成した。最後に、撥液層保護膜を剥し、ノズルプレート1を作製した。
 〔ノズルプレート2~7の作製〕
 上記ノズルプレート1の作製において、シリコン(Si)基板と、SiO2下地膜と、撥液層形成材料のシランカップリング剤SC-1とを、表Iに示すように、それぞれ変えて、ノズルプレート1の作製と同様にしてノズルプレート2~7を作製した。
 ただし、基板に用いたステンレス(表中SUS(Steel Use Stainless)と略記)は、SUS304-H(厚さ75μm、日鉄ケミカル&マテリアル(株)製)を用い、エッチングで外形加工を行った。
 また、下地膜のSiCは、形成材料として、アルキルシリコン化合物(略称:TEOS:テトラエトキシシラン、Si(OC254)を含む材料ガスと、キャリアガスとしてアルゴンを使用し、公知のプラズマCVD装置を用い、材料ガス(TEOS)の流量が3sccm、キャリアガス(Ar)の流量を100sccmとし、成膜温度を25℃、出力600(W)で、厚さ320nmに形成した。
 以下に用いたシランカップリング剤を示す。なお、本発明に係るシランカップリング剤はSC-3~SC-5であり、SC-1及びSC-2は、比較化合物である。
 SC-1:T3352(東京化成工業株式会社製)
 SC-2:T3134(東京化成工業株式会社製)
 SC-3:T1770(東京化成工業株式会社製)
 SC-4:T2705(東京化成工業株式会社製)
 SC-5:KY-1901(信越化学工業株式会社製)
 試料のシランカップリング剤(原液)を重クロロホルムで希釈し、エバポレーションにより濃縮させる。その場合、完全に乾固すると硬化してしまう為、液を多少残すようにする。
 本発明に係るシランカップリング剤は、NMR測定において、1H、H-H COSY、19F-NMR測定を実施し、Siに直接結合しているCH2については最も低磁場(0.6ppm付近)にピークが出ており、これと隣り合っているCH2については2D(H-H COSY)測定にて確認できた。また、これにより撥液層が単分子層であることを確認できた。
 また、形成した各ノズルプレートの撥液層は下地膜とシロキサン結合を形成していることを、FT-IR(フーリエ変換赤外分光法)により確認した。
 《ノズルプレートの評価》
 〔インク浸漬試験による耐久性評価〕
 上記作製した各ノズルプレートについて、以下のようにしてインク浸漬試験による加速耐久試験を行った。インク浸漬試験とは、作製した撥液層付きノズルプレートをダミーインクに浸漬して、撥液層の耐久性を評価する方法である。
 上記作製した各ノズルプレートを、60℃のダミーインクに浸漬し、浸漬1週間後の撥液層上の濡れ性を下記の基準に従って水の接触角を測定することで行った。接触角評価を用いた理由は、インクの撥液性を定量的に評価できるためである。
 接触角は25℃にて、水を用いて測定した。
 (ダミーインク)
 25℃におけるpHが10.0の水系アルカリ性ダミーインクを用意した。試験に用いたダミーインクは、炭酸ナトリウム水溶液を緩衝溶液として、pHを10.0に調整した、ポリプロピレングリコールアルキルエーテル及びジポリプロピレングリコールアルキルエーテルを含んだ水溶液である。
  (評価基準)
 ○:ダミーインクの静的接触角が60°以上。動的接触角が50°以上。
 △:ダミーインクの静的接触角が50°以上60°未満。動的接触角が40°以上50°未満。
 ×:ダミーインクの静的接触角が50°未満。動的接触角が40°未満、かつ、撥液層の変形や層間の剥離の発生が認められ、実用上問題がある。
 以上により得られた評価結果を表Iに示す。
Figure JPOXMLDOC01-appb-T000001
 表Iに記載したように、本発明で規定する構成からなるノズルプレートは、比較例に対し、高pHのアルカリ性インクを用い、それらに長時間晒されたのちでも、撥水層や下地膜の変形や剥離がなく、耐インク性に優れたノズルプレートであることを確認できた。
 (実施例2)
 実施例1で処理したノズルプレート1~7のそれぞれを、図5~図7に示すインクジェット記録装置に搭載し、25±1℃、50±10%RHの環境条件下で塩ビメディアへワンパスでベタ画像の印字を行った。インクは、UV系インクと水性インクの以下の2種を用いた。
UV系インク:ALTAMIRA PackSUV(日本アグファ・ゲバルト(株)製)
水性インク:AGORA DESIGN DLK(日本アグファ・ゲバルト(株)製))
 印字したベタ画像を目視観察した結果、本発明のインクジェットヘッドを用いたインクジェット記録装置による画像は、いずれのインクを用いても濃度ムラの点で比較のインクジェットヘッドより優れていることを確認した。これは、耐インク性に優れたノズルプレートを搭載したインクジェットヘッドのノズル面にはインクミストが付着し難い効果によるものであり、耐インク性に劣るノズルプレートは、ノズル面の吐出穴近傍にインクミストが付着しやすいことで、インク吐出曲がりが発生することが要因であると推察された。
 本発明のノズルプレートを具備したインクジェットヘッドは、耐インク性に優れ、様々な分野のインクを用いたインクジェット記録方法に好適に利用できる。
 1、40A、40B、40C ノズルプレート
 2、41 基板
 3、42A、42B 下地膜
 4、43 撥液層
 5 架橋性シリル基
 6 疎水性のリンカー基
 7 パーフルオロアルキレン基を有する主鎖
 10 媒体供給部
 11 媒体供給トレー
 12 搬送部
 121、122 ローラー
 123 ベルト
 20 画像形成部
 21 画像形成ドラム
 221 爪部
 222 ドラム
 22 受け渡しユニット
 23 温度計測部
 24 ヘッドユニット
 241 インクジェットヘッド
 241a ノズル開口面
 2411 ノズル
 25 加熱部
 26 デリバリー部
 261、262、264 ローラー
 263 ベルト
 30 媒体排出部
 31 媒体排出トレー
 44 流路保護膜
 45 撥液層保護膜
 50 圧力室基板
 51 圧力室
 60 振動板
 70 スペーサー基板
 71 圧電素子部
 80 配線基板
 I インク
 PL インクジェット記録装置
 R 記録媒体

Claims (7)

  1.  基板を有するノズルプレートを具備した、インクジェットヘッドであって、
    前記ノズルプレートが、前記基板のインク吐出面側の最表面に撥液層を有し、
    前記基板と前記撥液層との間に下地膜を有し、
    前記撥液層は、前記下地膜とシランカップリング剤に由来するシロキサン結合を形成しており、
    前記シランカップリング剤が、パーフルオロアルキレン基を有する主鎖と末端の架橋性シリル基が有するケイ素原子とが疎水性のリンカー基を介して結合していることを特徴とするインクジェットヘッド。
  2.  前記下地膜が、チタン、アルミニウム、ジルコニウム、クロム、ハフニウム、ニッケル、タンタル又はケイ素の、それぞれ、酸化物、窒化物若しくは炭化物を含有することを特徴とする請求項1に記載のインクジェットヘッド。
  3.  前記下地膜が、二酸化ケイ素を含有することを特徴とする請求項1に記載のインクジェットヘッド。
  4.  前記基板が、ケイ素、金属又は樹脂を含有することを特徴とする請求項1から請求項3までのいずれか一項に記載のインクジェットヘッド。
  5.  前記撥液層が、単分子層であることを特徴とする請求項1から請求項4までのいずれか一項に記載のインクジェットヘッド。
  6.  請求項1から請求項5までのいずれか一項に記載のインクジェットヘッドと、インクを用いて、画像記録することを特徴とするインクジェット記録方法。
  7.  前記インクが、水性インクであることを特徴とする請求項6に記載のインクジェット記録方法。
PCT/JP2021/017151 2021-04-30 2021-04-30 インクジェットヘッド及びインクジェット記録方法 WO2022230161A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023516989A JPWO2022230161A1 (ja) 2021-04-30 2021-04-30
PCT/JP2021/017151 WO2022230161A1 (ja) 2021-04-30 2021-04-30 インクジェットヘッド及びインクジェット記録方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017151 WO2022230161A1 (ja) 2021-04-30 2021-04-30 インクジェットヘッド及びインクジェット記録方法

Publications (1)

Publication Number Publication Date
WO2022230161A1 true WO2022230161A1 (ja) 2022-11-03

Family

ID=83848151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017151 WO2022230161A1 (ja) 2021-04-30 2021-04-30 インクジェットヘッド及びインクジェット記録方法

Country Status (2)

Country Link
JP (1) JPWO2022230161A1 (ja)
WO (1) WO2022230161A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351923A (ja) * 2003-05-07 2004-12-16 Seiko Epson Corp 撥液膜被覆部材、液体噴出装置の構成部材、液体噴出ヘッドのノズルプレート、液体噴出ヘッドおよび液体噴出装置
JP2007253485A (ja) * 2006-03-23 2007-10-04 Seiko Epson Corp 撥液膜被覆部材、液体噴出装置の構成部材、液体噴出ヘッドのノズルプレート、液体噴出ヘッドおよび液体噴出装置
JP2009066798A (ja) * 2007-09-11 2009-04-02 Sharp Corp 撥液層の形成方法及びノズルプレートの製造方法
JP2011073284A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 有機膜の形成方法、有機膜、ノズルプレート、およびインクジェット記録装置
JP2012213873A (ja) * 2011-03-31 2012-11-08 Fujifilm Corp 撥水膜の形成方法、ノズルプレート、インクジェットヘッド、および、インクジェット記録装置
JP2015193964A (ja) * 2014-03-18 2015-11-05 セイコーエプソン株式会社 インクジェット抜蝕方法およびインクジェット捺染システム
US20160203973A1 (en) * 2014-12-22 2016-07-14 Stmicroelectronics S.R.L. Method for the surface treatment of a semiconductor substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351923A (ja) * 2003-05-07 2004-12-16 Seiko Epson Corp 撥液膜被覆部材、液体噴出装置の構成部材、液体噴出ヘッドのノズルプレート、液体噴出ヘッドおよび液体噴出装置
JP2007253485A (ja) * 2006-03-23 2007-10-04 Seiko Epson Corp 撥液膜被覆部材、液体噴出装置の構成部材、液体噴出ヘッドのノズルプレート、液体噴出ヘッドおよび液体噴出装置
JP2009066798A (ja) * 2007-09-11 2009-04-02 Sharp Corp 撥液層の形成方法及びノズルプレートの製造方法
JP2011073284A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 有機膜の形成方法、有機膜、ノズルプレート、およびインクジェット記録装置
JP2012213873A (ja) * 2011-03-31 2012-11-08 Fujifilm Corp 撥水膜の形成方法、ノズルプレート、インクジェットヘッド、および、インクジェット記録装置
JP2015193964A (ja) * 2014-03-18 2015-11-05 セイコーエプソン株式会社 インクジェット抜蝕方法およびインクジェット捺染システム
US20160203973A1 (en) * 2014-12-22 2016-07-14 Stmicroelectronics S.R.L. Method for the surface treatment of a semiconductor substrate

Also Published As

Publication number Publication date
JPWO2022230161A1 (ja) 2022-11-03

Similar Documents

Publication Publication Date Title
JP4734979B2 (ja) インクジェットヘッド、インクジェットヘッドの製造方法、インクジェット記録装置及びインクジェット塗布装置
CN110869213B (zh) 喷墨头、喷墨记录装置及喷墨头的制造方法
US20110074871A1 (en) Method of Forming Organic Film, and Organic Film, Nozzle Plate and Inkjet Recording Apparatus
JP5248454B2 (ja) ノズルプレートの製造方法
JP7087702B2 (ja) ノズルプレートの製造方法、インクジェットヘッドの製造方法、ノズルプレート及びインクジェットヘッド
WO2022230161A1 (ja) インクジェットヘッド及びインクジェット記録方法
JP5491909B2 (ja) インクジェットヘッドの製造方法
WO2015033911A1 (ja) 撥水膜、成膜方法、ノズルプレート、インクジェットヘッド、及びインクジェット記録装置
JP4253857B2 (ja) インクジェットヘッドの製造方法
JP7188456B2 (ja) インクジェットヘッド、インクジェットヘッドの製造方法及びインクジェット記録方法
US8475885B2 (en) Method of forming organic film, and organic film, nozzle plate, inkjet head and electronic device
JP5168756B2 (ja) 液体吐出ヘッド及び画像形成装置
JP7088188B2 (ja) インクジェットヘッド、インクジェット記録装置及びインクジェットヘッドの製造方法
JP2019051636A (ja) インクジェットヘッド及びインクジェットプリンタ
JP2011068094A (ja) 撥液膜形成方法、インクジェットヘッド、及びインクジェット記録装置
JP2008062525A (ja) ノズルプレート、インクジェットヘッドおよびこれらの製造方法
JP2019077103A (ja) インクジェットヘッド及びインクジェットプリンタ
US11865839B2 (en) Nozzle plate nozzle plate manufacturing method and inkjet head
JP7453760B2 (ja) 液体吐出ヘッド用基板およびその製造方法
WO2022044246A1 (ja) インクジェットヘッド
JP2011073282A (ja) 有機膜の形成方法、ノズルプレート、インクジェットヘッド、および電子機器
JP2022080462A (ja) インクジェットヘッド及びインクジェットプリンタ
JP2005262471A (ja) 液滴吐出ヘッドの製造方法、及び液滴吐出ヘッド、並びに液滴吐出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939320

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023516989

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939320

Country of ref document: EP

Kind code of ref document: A1