WO2022227839A1 - 一种电子器件及其制作方法 - Google Patents

一种电子器件及其制作方法 Download PDF

Info

Publication number
WO2022227839A1
WO2022227839A1 PCT/CN2022/078566 CN2022078566W WO2022227839A1 WO 2022227839 A1 WO2022227839 A1 WO 2022227839A1 CN 2022078566 W CN2022078566 W CN 2022078566W WO 2022227839 A1 WO2022227839 A1 WO 2022227839A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
positive ions
electronic device
resin
present application
Prior art date
Application number
PCT/CN2022/078566
Other languages
English (en)
French (fr)
Inventor
任中伟
王江川
亢佳萌
Original Assignee
北京梦之墨科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京梦之墨科技有限公司 filed Critical 北京梦之墨科技有限公司
Publication of WO2022227839A1 publication Critical patent/WO2022227839A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment

Definitions

  • the present application relates to the technical field of electronic manufacturing, and in particular, to an electronic device and a manufacturing method thereof.
  • the traditional conductive paste is mainly composed of conductive fillers, binders and various adjustment aids to form a composite material system, including high-temperature conductive pastes used in ceramics, components, and energy fields (the binder is mainly inorganic binder) , and low-temperature conductive paste for film, sheet or fabric substrate under low temperature conditions (the binder is mainly an organic binder).
  • the binder is mainly an organic binder.
  • its general application process is to form a pattern on the substrate by printing, spraying or transfer printing, drying and curing at a temperature of 150 ° C ⁇ 300 ° C to form a conductive circuit, at this temperature
  • Organic binders remain in the conductive traces.
  • the resistance of the conductive line depends not only on the formulation of the low-temperature conductive paste, but also on the temperature and time of the drying and curing process, which will limit the application of the low-temperature conductive paste.
  • the present application provides an electronic device and a manufacturing method thereof, which can make the resistance of the conductive structure independent of drying and curing without changing the existing conductive paste material system.
  • the application provides an electronic device, which adopts the following technical solutions:
  • the electronic device includes:
  • the conductive structure including a conductive pattern made of a conductive paste and positive ions, the conductive pattern including conductive particles and a resin, the positive ions attached to the conductive on the resin between the particles.
  • the positive ions are metal cations and/or hydrogen ions.
  • the metal cation is one or more of sodium ion, lithium ion and potassium ion.
  • the number of positive ions in each region of the conductive structure is consistent.
  • the conductive structure is divided into a plurality of regions, and the number of positive ions in adjacent regions of the conductive structure is different along the first direction.
  • the application provides a method for making an electronic device, which adopts the following technical solutions:
  • the manufacturing method of the electronic device includes:
  • the conductive paste comprising conductive particles and resin
  • the dried conductive pattern is brought into contact with positive ions, and the positive ions are attached to the resin between the conductive particles to obtain a conductive structure.
  • the conductive structure is obtained by contacting the dried conductive pattern with a liquid containing positive ions, and after rinsing, the positive ions are attached to the resin between the conductive particles.
  • the positive ion-containing liquid is an acid solution, an alkaline solution or a salt solution.
  • the contact method includes one or more of soaking, spraying, dripping or coating.
  • the application provides a method for making an electronic device, which adopts the following technical solutions:
  • the manufacturing method of the electronic device includes:
  • the conductive paste comprising conductive particles and resin
  • the conductive pattern after heating and drying is brought into contact with positive ions, and the positive ions are attached to the resin between the conductive particles to obtain a conductive structure.
  • the present application provides an electronic device and a manufacturing method thereof.
  • the electronic device includes: a substrate and a conductive structure on the substrate, the conductive structure includes a conductive pattern made of conductive paste and positive ions, and the conductive pattern includes conductive particles and resin, positive ions are attached to the resin between the conductive particles, in this conductive structure, the addition of positive ions increases the number of holes in the entire system of the conductive structure, reducing the difficulty of electrons passing through the resin between the conductive particles , the electrons can be transferred from the conductive particles to the positive ions, and then from the positive ions to the adjacent conductive particles, thereby improving the electrical properties of the conductive structure, and then achieving the premise of not changing the existing conductive paste material system. Make the electrical resistance of the conductive structure independent of bake cure.
  • FIG. 1 is a schematic structural diagram 1 of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic view of the microstructure of the region A in FIG. 1 according to an embodiment of the present application;
  • FIG. 3 is a schematic diagram 1 of positive ion positions provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram 2 of positive ion positions provided in an embodiment of the present application.
  • FIG. 5 is a second schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 6 is a flowchart 1 of a manufacturing method of an electronic device provided by an embodiment of the present application.
  • FIG. 7 is a trend diagram of the variation trend of resistance with time of contact with positive ions provided by the embodiment of the present application.
  • FIG. 8 is a second flowchart of a method for manufacturing an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram 1 of an electronic device provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of FIG. 1 provided by an embodiment of the present application.
  • Schematic diagram of the microstructure of the A region, the electronic device includes:
  • the conductive structure 2 includes a conductive pattern 21 made of conductive paste and positive ions 22, the conductive pattern 21 includes conductive particles 21a and a resin 21b, and the positive ions 22 are attached to the conductive on the resin 21b between the particles 21a.
  • FIG. 3 is a schematic diagram of the position of the positive ions provided in the embodiment of the present application.
  • the positive ions 22 are attached to the resin.
  • the surface of 21b, or, as shown in FIG. 4, FIG. 4 is a schematic diagram of the position of positive ions provided in the second embodiment of the application, the positive ions 22 are embedded in the gap between the conductive particles 21a and the resin 21b, etc., the embodiment of the application does not apply to this. be limited.
  • the positive ions 22 can also be attached to the conductive particles 21a. The more the positive ions 22 are attached to the conductive pattern 21, the better the effect of improving the electrical performance of the conductive structure 2 is.
  • the principle of the improvement of the electrical properties of the conductive structure 2 by the presence of the positive ions 22 is as follows: the addition of the positive ions 22 increases the number of holes in the entire system of the conductive structure 2 and reduces the electrons passing through the resin 21b between the conductive particles 21a As shown in FIG. 2, electrons can be transferred from the conductive particles 21a to the positive ions 22, and then from the positive ions 22 to the adjacent conductive particles 21b, thereby improving the conductivity of the conductive structure 2 and making the conductive structure
  • the resistance does not depend on drying to cure.
  • the sizes and positions of the conductive particles 21a and the positive ions 22 in FIG. 2 are only examples and not limited.
  • the conductive particles 21a may be in contact with each other, and there may be multiple paths in the conductive pattern 21 at the same time. Such as the paths formed by the connection of the conductive particles 21a, the paths formed by the conductive particles 21a through the resin 21b, the paths formed by the conductive particles 21a through the resin 21b and the positive ions 22 thereon, and the paths formed by the conductive particles 21a through the positive ions 22.
  • the substrate 1 in the embodiment of the present application may be a flexible substrate or a rigid substrate
  • the flexible substrate may be polyethylene terephthalate (PET), polybutylene terephthalate Ester (PBT), Polyethylene Naphthalate (PEN), Polyimide (PI), Polyamide (PA), Low Density Polyethylene (LDPE), Thermoplastic Elastomer (TPE), Thermoplastic Polyurethane Elastomer
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate Ester
  • PEN Polyethylene Naphthalate
  • PI Polyimide
  • PA Low Density Polyethylene
  • LDPE Low Density Polyethylene
  • TPE Thermoplastic Elastomer
  • TPU Thermoplastic Polyurethane Elastomer
  • One of the films such as rubber (TPU)
  • the hard substrate can be FR-4, epoxy glass, glass resin, etc.
  • LDPE low-density polyethylene
  • TPE thermoplastic elasto
  • the positive ions in the embodiments of the present application are positive ions with strong polarity such as metal cations and/or hydrogen ions, which have a better effect of improving electrical performance.
  • the metal cation is one or more of sodium ion, lithium ion, and potassium ion.
  • the conductive structure 2 in the embodiment of the present application may be a conductive line, a conductive layer, a conductive connector, a resistor, etc., which is not limited in the embodiment of the present application.
  • the resistances between different regions of the conductive structure 2 can be the same or different, and can be specifically designed according to actual needs. to control the resistance.
  • the conductive structure 2 is an integral structure, and the number of positive ions in each region of the conductive structure 2 is the same, so that the overall resistance of the conductive structure 2 is the same.
  • the conductive structure 2 in this example may be a conductive trace or the like.
  • FIG. 5 which is a second schematic structural diagram of an electronic device provided by an embodiment of the present application
  • the conductive structure 2 is divided into a plurality of regions (separated by dotted lines in FIG. 5 ) On), and the number of positive ions in two adjacent regions of the X conductive structure 2 along the first direction is different, that is, the resistances of the two adjacent regions are different.
  • the number of positive ions in each region along the first direction X may gradually increase, may gradually decrease, or may fluctuate, and those skilled in the art can choose according to actual needs.
  • the first direction X may be a direction parallel to the edge of the substrate, or may be a direction at a certain angle with the edge of the substrate.
  • the conductive structure in this example may be a ladder resistor or the like.
  • the conductive paste used for making the conductive pattern in the embodiment of the present application may include the following components: 30%-95% of conductive filler, 5%-70% of organic resin carrier and 0%-5% of auxiliary agent, above The percentages are all weight percentages.
  • the weight percentage of the conductive filler can be: 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% %;
  • the weight percentage of the organic resin carrier can be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70% %;
  • the weight percentage of the adjuvant can be 0, 0.1%, 0.2%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5% or 5%.
  • the conductive filler, organic resin carrier and auxiliary agent in the conductive paste in the embodiments of the present application may be selected with reference to the following contents.
  • the conductive filler is one or a mixture of at least two of gold, silver, copper, iron, nickel, aluminum, graphene, carbon black, graphite, silver-coated copper powder, and the like.
  • the shape of the conductive filler is one of flake, spherical, linear, rod, needle, dendritic, etc., or a mixture of at least two.
  • the conductive filler is silver powder, specifically spherical silver powder, flake silver powder or a mixture of the two.
  • the organic resin carrier in the embodiments of the present application includes a resin (either a thermoplastic resin or a thermosetting resin), and optionally a solvent, a curing agent, and the like.
  • the resin in the embodiments of the present application may be one or at least two of polyester resin, polyurethane resin, epoxy resin, acrylic resin, phenolic resin, alkyd resin, silicone resin, vinyl acetate resin, and polyimide resin. a mixture of species.
  • the solvent in the embodiments of the present application can be selected from ethanol, isopropanol, n-propanol, ethylene glycol, propylene glycol, glycerol, n-butanol, ethylene glycol propyl ether, ethylene glycol butyl ether, diethylene glycol Diethyl ether, diethylene glycol propyl ether, diethylene glycol butyl ether, propylene glycol propyl ether, propylene glycol butyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, dipropylene glycol butyl ether, ethylene glycol propyl ether acetate, ethylene glycol butyl Ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol propyl ether acetate, diethylene glycol butyl ether acetate, propylene glycol propyl ether acetate, propylene glycol
  • the curing agent in the embodiments of the present application may be one or more of an isocyanate-based curing agent, a phenolic resin-based curing agent, and an amine-based curing agent.
  • the auxiliary agent may be one of wetting agent, dispersing agent, adhesion promoter, coupling agent, leveling agent, thixotropic agent, antioxidant, defoaming agent, acid-base balance agent, etc. species or several.
  • the electronic devices in the embodiments of the present application can be fabricated in various ways, and the embodiments of the present application are described by taking two specific fabrication methods as examples.
  • FIG. 6 is a flow chart 1 of a method for manufacturing an electronic device provided in an embodiment of the present application.
  • the first method for manufacturing an electronic device in the embodiment of the present application includes:
  • Step S1 providing a substrate.
  • Step S2 using a conductive paste to make a conductive pattern on the substrate, and the conductive paste includes conductive particles and resin.
  • forming processes such as screen printing, stencil printing, flexographic printing, pad printing, transfer printing, extrusion dispensing, and coating may be used, and conductive pastes may be used to form conductive patterns on the substrate.
  • Step S3 drying the conductive pattern at room temperature.
  • the above drying degree is sufficient as long as the surface layer of the conductive pattern has no solvent.
  • the reason is that, if there is a solvent, since the substances that can ionize positive ions are easily soluble in water and insoluble in the solvent, the existence of the solvent will hinder the positive ion in the next step. ion attachment.
  • the degree of drying of the conductive pattern may be surface dry or overall dry, which is not limited here.
  • step S3 Taking a standard conductive pattern with a length of 180 mm, a width of 0.8 mm and a thickness of 20 microns as an example, after step S3, its resistance is mainly between a dozen ohms to infinity (non-conductive), depending on the type of conductive paste and related to drying time.
  • step S4 the dried conductive pattern is brought into contact with positive ions, and the positive ions are attached to the resin between the conductive particles to obtain a conductive structure.
  • the dried conductive pattern is contacted with a liquid containing positive ions, and after rinsing, the positive ions are attached to the resin between the conductive particles to obtain a conductive structure.
  • the positive ion-containing liquid is an acid solution, an alkaline solution or a salt solution.
  • the above contact methods include one or more of soaking, spraying, dripping or coating.
  • Fig. 7 is a graph of the variation trend of the resistance with the time of contact with positive ions provided by the embodiment of the application. The applicant found that at the beginning of the contact, the resistance decreased rapidly, and with the extension of time, the rate of resistance decreased gradually Slow down until the resistance reaches a steady state. That is, within a certain period of time, the longer the contact time, the more obvious the decrease in resistance. And the higher the concentration of positive ions in the liquid containing positive ions, the more obvious the decrease in resistance when the contact time is the same. Those skilled in the art can choose the concentration of the liquid and the contact time according to actual needs.
  • the contact time in the embodiment of the present application may be 30s ⁇ 30min.
  • the acid solution can be a sulfuric acid solution or a hydrochloric acid solution with a concentration of 1% to 10%
  • the alkali solution can be a sodium hydroxide solution or a potassium hydroxide solution with a concentration of 1% to 10%
  • the salt solution can be a concentration of 1% to 10%. % sodium chloride solution or potassium chloride solution.
  • the resistance of the conductive structure obtained after step S4 is significantly lower than that in step S3, and the reduction range is more than 50%, and even more than 99%.
  • step S4 when the conductive structure 2 shown in FIG. 1 is fabricated, in step S4, the entire conductive pattern after drying can be immersed in the liquid containing positive ions as a whole, or each region can be immersed in the liquid containing positive ions separately. The same time in the liquid is achieved.
  • each area of the dried conductive pattern can be immersed in a liquid containing positive ions for different times. Specifically, for each area to be soaked for different time, it is also possible for each area to be immersed in the liquid as a whole and then to be removed from the liquid in stages, or it can also be that each area is firstly immersed in the liquid in stages and then soaked as a whole.
  • the conductive pattern is printed by the conductive paste, it is exposed to an environment containing positive ions, and the positive ions are attached to the resin between the conductive particles, which can improve the performance of the conductive structure.
  • the electrical conductivity can be further improved without changing the existing conductive paste material system, and the conductive structure can be formed by a low-temperature or zero-heat process, so that the electrical properties of the conductive structure do not depend on drying and curing.
  • the above manufacturing method of electronic devices is not only suitable for conventional temperature-resistant substrates (which can be dried and cured), but also suitable for non-temperature-resistant substrates, such as low density polyethylene (LDPE), thermoplastic elastomer (TPE), thermoplastic polyurethane elastomer rubber (TPU) ) and other membrane materials.
  • LDPE low density polyethylene
  • TPE thermoplastic elastomer
  • TPU thermoplastic polyurethane elastomer rubber
  • FIG. 8 is a flowchart 2 of a manufacturing method of an electronic device provided by an embodiment of the present application.
  • the second manufacturing method of an electronic device in the embodiment of the present application includes:
  • Step S10 providing a substrate.
  • Step S20 using conductive paste to make a conductive pattern on the substrate, and the conductive paste includes conductive particles and resin.
  • forming processes such as screen printing, stencil printing, flexographic printing, pad printing, transfer printing, extrusion dispensing, and coating may be used, and conductive pastes may be used to form conductive patterns on the substrate.
  • Step S30 heating and drying the conductive pattern.
  • the above drying temperature can be 120°C ⁇ 200°C, and the sintering time can be 10min ⁇ 80min.
  • the resistance size is mainly in the range of tenths of ohms to ten ohms.
  • step S40 the conductive pattern after heating and drying is brought into contact with positive ions, and the positive ions are attached to the resin between the conductive particles to obtain a conductive structure.
  • the conductive pattern after heating and drying is brought into contact with a liquid containing positive ions, and after being rinsed, the positive ions are attached to the resin between the conductive particles to obtain a conductive structure.
  • the positive ion-containing liquid is an acid solution, an alkaline solution or a salt solution.
  • the above contact methods include one or more of soaking, spraying, dripping or coating. Among them, within a certain period of time, the longer the contact time, the more obvious the decrease in resistance. And the higher the concentration of positive ions in the liquid containing positive ions, the more obvious the decrease in resistance when the contact time is the same. Those skilled in the art can choose the concentration of the liquid and the contact time according to actual needs.
  • the contact time in the embodiment of the present application may be 30s ⁇ 30min.
  • the acid solution can be a sulfuric acid solution or a hydrochloric acid solution with a concentration of 1% to 10%
  • the alkali solution can be a sodium hydroxide solution or a potassium hydroxide solution with a concentration of 1% to 10%
  • the salt solution can be a concentration of 1% to 10%. % sodium chloride solution or potassium chloride solution.
  • the resistance of the conductive structure obtained after the step S40 is significantly lower than that in the step S30, and the reduction range is more than 10%, even up to about 50%.
  • step S40 when the conductive structure 2 shown in FIG. 1 is fabricated, in step S40, the entire dried conductive pattern can be immersed in the liquid containing positive ions as a whole, or each region can be immersed in the liquid containing positive ions separately. The same time in the liquid is achieved.
  • each area of the dried conductive pattern can be immersed in a liquid containing positive ions for different times. Specifically, for each area to be soaked for different time, it is also possible for each area to be immersed in the liquid as a whole and then to be removed from the liquid in stages, or it can also be that each area is firstly immersed in the liquid in stages and then soaked as a whole.
  • the initial resistance of the conductive pattern in the process of step S4 is high, and the reduction of the resistance is higher than that of the second manufacturing method. Therefore, the first manufacturing method is more suitable for manufacturing the The conductive structure shown is more conducive to realizing the resistance difference between different regions.
  • Examples 1 to 39 are comparisons of resistance changes before and after step S4 in the manufacturing process of the first manufacturing method of the electronic device.
  • the conductive patterns are standard conductive patterns with a length of 180 mm, a width of 0.8 mm and a thickness of 20 microns.
  • the processing time of step S4 is 30 minutes.
  • Examples 40 to 53 are comparisons of resistance changes before and after step S40 in the manufacturing process of the second manufacturing method of the electronic device.
  • the conductive patterns are standard conductive patterns with a length of 180 mm, a width of 0.8 mm and a thickness of 20 microns.
  • the processing time of step S40 is 30 minutes.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

本申请提供一种电子器件及其制作方法,涉及电子制造技术领域。本申请提供的电子器件包括:基材和位于所述基材上的导电结构,所述导电结构包括由导电浆料制成的导电图形以及正离子,所述导电图形包括导电颗粒和树脂,所述正离子附着于所述导电颗粒之间的树脂上。本申请的技术方案能够在不改变现有导电浆料物料体系的前提下,使导电结构的电阻不依赖于烘干固化。

Description

一种电子器件及其制作方法
本申请要求于2021年04月28提交中国专利局,申请号为202110470063.3,申请名称为“一种电子器件及其制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子制造技术领域,尤其涉及一种电子器件及其制作方法。
背景技术
传统导电浆料主要由导电填料、粘结剂和各种调整助剂混合构成一个复合材料系统,包括应用于陶瓷、元件、能源领域的高温导电浆料(粘结剂主要为无机粘结剂),以及在低温工况下用于膜材、板材或织物基底的低温导电浆料(粘结剂主要为有机粘结剂)。对于低温导电浆料来说,其一般应用工艺为通过印刷、喷涂或转印的方式在基材上形成图形,在150℃~300℃的温度下烘干固化,形成导电线路,在该温度下有机粘结剂会保留在导电线路中。导电线路的电阻不仅依赖于低温导电浆料的配方,还会依赖于烘干固化过程的温度和时间,会对低温导电浆料的应用造成一些限制。
申请内容
本申请提供一种电子器件及其制作方法,可以在不改变现有导电浆料物料体系的前提下,使导电结构的电阻不依赖于烘干固化。
第一方面,本申请提供一种电子器件,采用如下技术方案:
所述电子器件包括:
基材和位于所述基材上的导电结构,所述导电结构包括由导电浆料制成的导电图形以及正离子,所述导电图形包括导电颗粒和树脂,所述正离子附着于所述导电颗粒之间的树脂上。
可选地,所述正离子为金属阳离子和/或氢离子。
可选地,所述金属阳离子为钠离子、锂离子、钾离子中的一种或几种。
可选地,所述导电结构各区域中正离子的数量一致。
可选地,在第一方向上,所述导电结构划分为多个区域,且沿所述第一方向所述导电结构中相邻区域中正离子的数量不同。
第二方面,本申请提供一种电子器件的制作方法,采用如下技术方案:
所述电子器件的制作方法包括:
提供一基材;
使用导电浆料在所述基材上制作导电图形,所述导电浆料包括导电颗粒和树脂;
在室温下使所述导电图形干燥;
使干燥后的所述导电图形接触正离子,所述正离子附着于所述导电颗粒之间的树脂上,得到导电结构。
可选地,通过使干燥后的所述导电图形接触含正离子的液体,冲洗干净后,所述正离子附着于所述导电颗粒之间的树脂上,得到所述导电结构。
可选地,所述含正离子的液体为酸溶液、碱溶液或者盐溶液。
可选地,接触方式包括浸泡、喷淋、滴加或者涂覆中的一种或几种。
第三方面,本申请提供一种电子器件的制作方法,采用如下技术方案:
所述电子器件的制作方法包括:
提供一基材;
使用导电浆料在所述基材上制作导电图形,所述导电浆料包括导电颗粒和树脂;
加热烘干所述导电图形;
使加热烘干后的所述导电图形接触正离子,所述正离子附着于所述导电颗粒之间的树脂上,得到导电结构。
本申请提供了一种电子器件及其制作方法,该电子器件包括:基材和位于基材上的导电结构,导电结构包括由导电浆料制成的导电图形以及正离子,导电图形包括导电颗粒和树脂,正离子附着于导电颗粒之间的树脂上,该导电结构中,正离子的加入增加了导电结构整个体系中的空穴的数量,降低了电子穿过导电颗粒之间的树脂的难度,电子可从导电颗粒转移到正离子上,再从正离子转移到相邻的导电颗 粒上,从而提高导电结构的电学性能,进而能够实现在不改变现有导电浆料物料体系的前提下,使导电结构的电阻不依赖于烘干固化。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电子器件的结构示意图一;
图2为本申请实施例提供的图1中A区域的微观结构示意图;
图3为本申请实施例提供的正离子位置示意图一;
图4为本申请实施例提供的正离子位置示意图二;
图5为本申请实施例提供的电子器件的结构示意图二;
图6为本申请实施例提供的电子器件的制作方法流程图一;
图7为本申请实施例提供的电阻随接触正离子时间变化趋势图;
图8为本申请实施例提供的电子器件的制作方法流程图二。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下本申请实施例中的各技术特征均可以相互结合。
本申请实施例提供一种电子器件,具体地,如图1和图2所示,图1为本申请 实施例提供的电子器件的结构示意图一,图2为本申请实施例提供的图1中A区域的微观结构示意图,该电子器件包括:
基材1和位于基材1上的导电结构2,导电结构2包括由导电浆料制成的导电图形21以及正离子22,导电图形21包括导电颗粒21a和树脂21b,正离子22附着于导电颗粒21a之间的树脂21b上。
正离子22附着于导电颗粒21a之间的树脂21b上的方式可以有多种,比如,如图3所示,图3为本申请实施例提供的正离子位置示意图一,正离子22附着在树脂21b的表面,或者,如图4所示,图4为本申请实施例提供的正离子位置示意图二,正离子22嵌入导电颗粒21a和树脂21b之间的缝隙中等,本申请实施例对此不进行限定。另外,正离子22也可以附着于导电颗粒21a上,导电图形21上正离子22附着越多对导电结构2的电学性能的提升效果越好。
正离子22的存在对导电结构2的电学性能的提升的原理如下:正离子22的加入增加了导电结构2整个体系中的空穴的数量,降低了电子穿过导电颗粒21a之间的树脂21b的难度,如图2所示,电子可从导电颗粒21a转移到正离子22上,再从正离子22转移到相邻的导电颗粒21b上,从而提高了导电结构2的电导率,使导电结构的电阻不依赖于烘干固化。
需要说明的是,图2中导电颗粒21a、正离子22的尺寸和位置仅为示例并非限定,实际中导电颗粒21a之间会存在相互接触的情况,导电图形21中可以同时存在多种通路,如导电颗粒21a连接形成的通路,导电颗粒21a通过树脂21b形成的通路,导电颗粒21a通过树脂21b及其上的正离子22形成的通路,导电颗粒21a通过正离子22形成的通路等。
下面本申请实施例对以上电子器件中的各部分进行详细说明。
可选地,本申请实施例中基材1可以为柔性基材,也可以为硬质基材,柔性基材可以为聚对苯二甲酸乙二酯(PET)、聚对苯二甲酸丁二酯(PBT)、聚萘二甲酸乙二醇酯(PEN)、聚酰亚胺(PI)、聚酰胺(PA)、低密度聚乙烯(LDPE)、热塑性弹性体(TPE)、热塑性聚氨酯弹性体橡胶(TPU)等薄膜中的一种,硬质基材可以为FR-4、环氧玻璃、玻璃树脂等。对于低密度聚乙烯(LDPE)、热塑性弹性体(TPE)、 热塑性聚氨酯弹性体橡胶(TPU)等不耐温基材,本申请实施例的优势更加明显。
可选地,本申请实施例中的正离子为金属阳离子和/或氢离子等极性强的正离子,对电学性能的提升效果更优。示例性地,金属阳离子为钠离子、锂离子、钾离子中的一种或几种。
可选地,本申请实施例中的导电结构2可以为导电线路、导电层、导电连接件、电阻等,本申请实施例对此不进行限定。另外,导电结构2的不同区域之间的电阻可以一致,也可以不同,具体可以根据实际需要进行设计,在本申请实施例中通过对导电结构2的不同位置上的正离子的数量的控制,来实现对电阻的控制。
在一个例子中,如图1所示,导电结构2为一整体结构,导电结构2各区域的正离子的数量一致,以使得导电结构2整体电阻一致。此例子中的导电结构2可以为导电线路等。
在又一个例子中,如图5所示,图5为本申请实施例提供的电子器件的结构示意图二,在第一方向X上,导电结构2划分为多个区域(图5中由虚线隔开),且沿第一方向X导电结构2中相邻两区域中的正离子的数量不同,也就是相邻两区域的电阻不同。其中,沿第一方向X上各区域的正离子的数量可以逐渐升高,也可以逐渐降低,也可以高低起伏变化,本领域技术人员可以根据实际需要进行选择。第一方向X可以为平行于基材边缘的方向,也可以为与基材边缘呈一定角度的方向。此例子中的导电结构可以为阶梯电阻等。
可选地,本申请实施例中用于制作导电图形的导电浆料可以包括以下组分:导电填料30%~95%,有机树脂载体5%~70%和助剂0%~5%,以上百分比均为重量百分比。其中,导电填料的重量百分比可以为:30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或者95%;有机树脂载体的重量百分比可以为5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%或者70%;助剂的重量百分比可以为0、0.1%、0.2%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%或者5%。
示例性地,本申请实施例中导电浆料中的导电填料、有机树脂载体和助剂可以参考以下内容进行选择。
导电填料
本申请实施例中,导电填料为金、银、铜、铁、镍、铝、石墨烯、炭黑、石墨、银包铜粉等中的一种或者至少两种组成的混合物。导电填料的形状为片状、球状、线形、棒状、针状、树枝状等中的一种或者至少两种组成的混合物。优选地,导电填料为银粉,具体可以为球状银粉、片状银粉或者二者的混合物。
有机树脂载体
本申请实施例中的有机树脂载体包括树脂(热塑性树脂或热固性树脂均可),还可选地包含溶剂、固化剂等。
本申请实施例中的树脂可以为聚酯树脂、聚氨酯树脂、环氧树脂、丙烯酸树脂、酚醛树脂、醇酸树脂、有机硅树脂、氯醋树脂、聚酰亚胺树脂中的一种或者至少两种组成的混合物。
本申请实施例中的溶剂可选为乙醇、异丙醇、正丙醇、乙二醇、丙二醇、丙三醇、正丁醇、乙二醇丙醚、乙二醇丁醚、二乙二醇乙醚、二乙二醇丙醚、二乙二醇丁醚、丙二醇丙醚、丙二醇丁醚、二丙二醇乙醚、二丙二醇丙醚、二丙二醇丁醚、乙二醇丙醚醋酸酯、乙二醇丁醚醋酸酯、二乙二醇乙醚醋酸酯、二乙二醇丙醚醋酸酯、二乙二醇丁醚醋酸酯、丙二醇丙醚醋酸酯、丙二醇丁醚醋酸酯、二丙二醇乙醚醋酸酯、二丙二醇丙醚醋酸酯、二丙二醇丁醚醋酸酯、异佛尔酮和松油醇中的一种或者至少两种组成的混合物。
本申请实施例中的固化剂可以为异氰酸酯类固化剂、酚醛树脂类固化剂、胺类固化剂中的一种或几种。
助剂
本申请实施例中,助剂可以为润湿剂、分散剂、附着力促进剂、偶联剂、流平剂、触变剂、抗氧剂、消泡剂、酸碱平衡剂等中的一种或几种。
本申请实施例中的的电子器件可以通过多种方式制作,本申请实施例以两种具体的制作方法为例进行说明。
示例性地,如图6所示,图6为本申请实施例提供的电子器件的制作方法流程图一,本申请实施例中电子器件的第一种制作方法包括:
步骤S1、提供一基材。
步骤S2、使用导电浆料在基材上制作导电图形,导电浆料包括导电颗粒和树脂。
本申请实施例中可以使用丝网印刷、钢网印刷、柔版印刷、移印、转印、挤出式点胶、涂覆等成型工艺,使用导电浆料在基材上制作导电图形。
步骤S3、在室温下使导电图形干燥。
以上干燥的程度只要是能够满足导电图形的表层无溶剂即可,原因在于,若有溶剂,由于能够电离出正离子的物质易溶于水,不溶于溶剂,溶剂的存在会阻碍下个步骤中正离子的附着。导电图形的干燥程度可以为表干,也可以为整体干燥,此处不进行限定。
以长180毫米,宽0.8毫米,厚20微米的标准导电图形为例,经步骤S3后其电阻大小主要在十几欧到无限大(不导通)之间,具体跟导电浆料的种类和干燥时间有关。
步骤S4、使干燥后的导电图形接触正离子,正离子附着于导电颗粒之间的树脂上,得到导电结构。
可选地,本申请实施例中通过使干燥后的导电图形接触含正离子的液体,冲洗干净后,正离子附着于导电颗粒之间的树脂上,得到导电结构。
可选地,含正离子的液体为酸溶液、碱溶液或者盐溶液。
可选地,以上接触方式包括浸泡、喷淋、滴加或者涂覆中的一种或几种。如图7所示,图7为本申请实施例提供的电阻随接触正离子时间变化趋势图,申请人发现,在刚开始接触时,电阻迅速降低,随着时间的延长,电阻降低的速度逐渐减慢,直至电阻达到稳定状态。也就是说,在一定时间内,接触时间越长,电阻降低越明显。且含正离子的液体中正离子的浓度越大,接触时间相同时,电阻降低越明显。本领域技术人员可以根据实际需要选择液体的浓度以及接触的时间。
示例性地,本申请实施例中接触时间可以为30s~30min。酸溶液可以为浓度为1%~10%的硫酸溶液或者盐酸溶液,碱溶液可以为浓度为1%~10%的氢氧化钠溶液或者氢氧化钾溶液,盐溶液可以为浓度为1%~10%的氯化钠溶液或者氯化钾溶液。
经步骤S4后得到的导电结构的电阻大小比步骤S3中明显降低,降低幅度达50% 以上,甚至可达99%以上。
在一个例子中,制作如图1所示的导电结构2时,在步骤S4中可通过使干燥后的整个导电图形整体浸泡入含正离子的液体中,或者各区域分别浸泡入含正离子的液体中相同时间等方式来实现。
在又一个例子中,制作如图5所示的导电结构2时,在步骤S4中可通过使干燥后的导电图形的各区域浸泡入含正离子的液体中不同时间的方式来实现,具体可以为各区域分别浸泡不同时间,也可以为各区域先整体浸泡入液体再分阶段依次脱离液体,也可以为各区域先分阶段依次进入液体,再整体浸泡。
在以上电子器件的制作过程中,只要通过导电浆料印制成导电图形后,使其暴露于含正离子的环境中,正离子附着于导电颗粒之间的树脂上,即可提高导电结构的电导率,进而能够实现在不改变现有导电浆料物料体系的前提下,低温或者零热工艺形成导电结构,使导电结构的电学性能不依赖于烘干固化。
以上电子器件的制作方法不仅适用于常规的耐温基材(可烘干固化),还适用于不耐温基材,如低密度聚乙烯(LDPE)、热塑性弹性体(TPE)、热塑性聚氨酯弹性体橡胶(TPU)等膜材。
如图8所示,图8为本申请实施例提供的电子器件的制作方法流程图二,本申请实施例中电子器件的第二种制作方法包括:
步骤S10、提供一基材。
步骤S20、使用导电浆料在基材上制作导电图形,导电浆料包括导电颗粒和树脂。
本申请实施例中可以使用丝网印刷、钢网印刷、柔版印刷、移印、转印、挤出式点胶、涂覆等成型工艺,使用导电浆料在基材上制作导电图形。
步骤S30、加热烘干导电图形。
以上烘干温度可以为120℃~200℃,烧结时间为10min~80min。以长180毫米,宽0.8毫米,厚20微米的标准导电图形为例,经步骤S30后其电阻大小主要在零点几欧到十几欧范围内。
步骤S40、使加热烘干后的导电图形接触正离子,正离子附着于导电颗粒之间的树脂上,得到导电结构。
可选地,本申请实施例中通过使加热烘干后的导电图形接触含正离子的液体,冲洗干净后,正离子附着于导电颗粒之间的树脂上,得到导电结构。
可选地,含正离子的液体为酸溶液、碱溶液或者盐溶液。
可选地,以上接触方式包括浸泡、喷淋、滴加或者涂覆中的一种或几种。其中,在一定时间内,接触时间越长,电阻降低越明显。且含正离子的液体中正离子的浓度越大,接触时间相同时,电阻降低越明显。本领域技术人员可以根据实际需要选择液体的浓度以及接触的时间。
示例性地,本申请实施例中接触时间可以为30s~30min。酸溶液可以为浓度为1%~10%的硫酸溶液或者盐酸溶液,碱溶液可以为浓度为1%~10%的氢氧化钠溶液或者氢氧化钾溶液,盐溶液可以为浓度为1%~10%的氯化钠溶液或者氯化钾溶液。
经步骤S40后得到的导电结构的电阻大小比步骤S30中明显降低,降低幅度达10%以上,甚至可达50%左右。
在一个例子中,制作如图1所示的导电结构2时,在步骤S40中可通过使干燥后的整个导电图形整体浸泡入含正离子的液体中,或者各区域分别浸泡入含正离子的液体中相同时间等方式来实现。
在又一个例子中,制作如图5所示的导电结构2时,在步骤S4中可通过使干燥后的导电图形的各区域浸泡入含正离子的液体中不同时间的方式来实现,具体可以为各区域分别浸泡不同时间,也可以为各区域先整体浸泡入液体再分阶段依次脱离液体,也可以为各区域先分阶段依次进入液体,再整体浸泡。
需要说明的是,第一种制作方法中步骤S4处理过程中导电图形的起始电阻高,电阻的降低幅度高于第二种制作方法,因此,第一种制作方法更适合于制作图5所示的导电结构,更利于实现不同区域之间的电阻差异。
本申请实施例中的电子器件的详细内容,都适用于以上两种制作方法,此处不再进行赘述。
实施例
实施例1~39为采用电子器件的第一种制作方法制作过程中步骤S4前后电阻变化对比。导电图形均为长180毫米,宽0.8毫米,厚20微米的标准导电图形。步骤S4处理时间为30min。
Figure PCTCN2022078566-appb-000001
Figure PCTCN2022078566-appb-000002
实施例40~53为采用电子器件的第二种制作方法制作过程中步骤S40前后电阻变化对比。导电图形均为长180毫米,宽0.8毫米,厚20微米的标准导电图形。步骤S40处理时间为30min。
Figure PCTCN2022078566-appb-000003
Figure PCTCN2022078566-appb-000004
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种电子器件,其特征在于,包括:
    基材和位于所述基材上的导电结构,所述导电结构包括由导电浆料制成的导电图形以及正离子,所述导电图形包括导电颗粒和树脂,所述正离子附着于所述导电颗粒之间的树脂上。
  2. 根据权利要求1所述的电子器件,其特征在于,所述正离子为金属阳离子和/或氢离子。
  3. 根据权利要求2所述的电子器件,其特征在于,所述金属阳离子为钠离子、锂离子、钾离子中的一种或几种。
  4. 根据权利要求1所述的电子器件,其特征在于,所述导电结构各区域中正离子的数量一致。
  5. 根据权利要求1所述的电子器件,其特征在于,在第一方向上,所述导电结构划分为多个区域,且沿所述第一方向所述导电结构中相邻区域中正离子的数量不同。
  6. 一种电子器件的制作方法,用于制作权利要求1~5任一项所述的电子器件,其特征在于,包括:
    提供一基材;
    使用导电浆料在所述基材上制作导电图形,所述导电浆料包括导电颗粒和树脂;
    在室温下使所述导电图形干燥;
    使干燥后的所述导电图形接触正离子,所述正离子附着于所述导电颗粒之间的树脂上,得到导电结构。
  7. 根据权利要求6所述的电子器件的制作方法,其特征在于,通过使干燥后的所述导电图形接触含正离子的液体,冲洗干净后,所述正离子附着于所述导电颗粒之间的树脂上,得到所述导电结构。
  8. 根据权利要求7所述的电子器件的制作方法,其特征在于,所述含正离子的液体为酸溶液、碱溶液或者盐溶液。
  9. 根据权利要求7所述的电子器件的制作方法,其特征在于,接触方式包括浸 泡、喷淋、滴加或者涂覆中的一种或几种。
  10. 一种电子器件的制作方法,用于制作权利要求1~5任一项所述的电子器件,其特征在于,包括:
    提供一基材;
    使用导电浆料在所述基材上制作导电图形,所述导电浆料包括导电颗粒和树脂;
    加热烘干所述导电图形;
    使加热烘干后的所述导电图形接触正离子,所述正离子附着于所述导电颗粒之间的树脂上,得到导电结构。
PCT/CN2022/078566 2021-04-28 2022-03-01 一种电子器件及其制作方法 WO2022227839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110470063.3 2021-04-28
CN202110470063.3A CN113192665B (zh) 2021-04-28 2021-04-28 一种电子器件及其制作方法

Publications (1)

Publication Number Publication Date
WO2022227839A1 true WO2022227839A1 (zh) 2022-11-03

Family

ID=76980182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078566 WO2022227839A1 (zh) 2021-04-28 2022-03-01 一种电子器件及其制作方法

Country Status (2)

Country Link
CN (1) CN113192665B (zh)
WO (1) WO2022227839A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113192665B (zh) * 2021-04-28 2022-12-30 北京梦之墨科技有限公司 一种电子器件及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249036A (ja) * 2010-05-24 2011-12-08 Dainippon Printing Co Ltd 導電性基板の製造方法
JP2016062653A (ja) * 2014-09-12 2016-04-25 出光興産株式会社 表面抵抗が改善された導電体及びその製造方法
CN109887646A (zh) * 2019-03-08 2019-06-14 宁波石墨烯创新中心有限公司 一种电极及其制作方法
WO2020202969A1 (ja) * 2019-03-29 2020-10-08 東レ株式会社 導電パターンの製造方法
CN113192665A (zh) * 2021-04-28 2021-07-30 北京梦之墨科技有限公司 一种电子器件及其制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851523B (zh) * 2015-05-21 2017-01-25 苏州大学 一种柔性透明导电膜制作方法及柔性透明导电膜
CN112002458A (zh) * 2020-08-03 2020-11-27 浙江泰仑电力集团有限责任公司 无机填料表面包银和其水性光固化导电银浆及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249036A (ja) * 2010-05-24 2011-12-08 Dainippon Printing Co Ltd 導電性基板の製造方法
JP2016062653A (ja) * 2014-09-12 2016-04-25 出光興産株式会社 表面抵抗が改善された導電体及びその製造方法
CN109887646A (zh) * 2019-03-08 2019-06-14 宁波石墨烯创新中心有限公司 一种电极及其制作方法
WO2020202969A1 (ja) * 2019-03-29 2020-10-08 東レ株式会社 導電パターンの製造方法
CN113192665A (zh) * 2021-04-28 2021-07-30 北京梦之墨科技有限公司 一种电子器件及其制作方法

Also Published As

Publication number Publication date
CN113192665B (zh) 2022-12-30
CN113192665A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
US10852890B2 (en) Touch panel and manufacturing method thereof
KR101191003B1 (ko) 도전성 패턴 및 이의 제조방법
JP5515828B2 (ja) 低抵抗透明導電性フィルムとその製造方法及び太陽電池並びに電子機器
WO2022227839A1 (zh) 一种电子器件及其制作方法
KR20130044132A (ko) 은피복 구리분
CN108428719A (zh) 像素界定层的制作方法、显示基板及制作方法、显示装置
CN106700961B (zh) 一种电磁波屏蔽膜及基于其的高度透明强电磁波屏蔽胶带
CN107027240A (zh) 一种高电阻碳膜线路板及其制造方法
CN103700784A (zh) 一种图形化电极的制备方法
CN113362991A (zh) 一种透明导电膜及其制备方法和应用
KR101796452B1 (ko) 연성인쇄회로기판 및 그 제조 방법
CN104850265A (zh) 单层多点触控结构的制造方法
CN103092445A (zh) 一种电容式触控板的制作方法
CN104391596A (zh) 导电膜及其制备方法、应用该导电膜的触控屏及电子装置
CN105702319A (zh) 耐弯折透明硫化铜导电膜及其制备方法
CN108364711A (zh) 一种丝网印刷银纳米线透明导电薄膜的后处理方法
WO2014061949A1 (ko) 도금층을 구비한 도전성 페이스트 인쇄회로기판 및 이의 제조방법
CN114054322A (zh) 一种金属网格感应膜的制备方法
JP2016162935A (ja) 配線基板の製造方法及び配線基板
CN110379539B (zh) 一种丝网印刷用的分形结构银微粒导电油墨制备嵌入式电极及方法
CN206698498U (zh) 一种高电阻碳膜线路板
CN112752410A (zh) 电流体光刻制备透明可拉伸液态金属电路的方法和应用
CN113667172A (zh) 一种防水、透气、导电并绝缘的复合材料及其制备方法
CN109411149B (zh) 石墨烯电路图案及其制备方法、电子产品
KR101925305B1 (ko) 금속 나노 입자를 함유한 전도성 고분자 전극 형성 방법 및 에칭액

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17995477

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794319

Country of ref document: EP

Kind code of ref document: A1