WO2022224904A1 - 半導体装置およびその製造方法ならびに電力変換装置 - Google Patents

半導体装置およびその製造方法ならびに電力変換装置 Download PDF

Info

Publication number
WO2022224904A1
WO2022224904A1 PCT/JP2022/017837 JP2022017837W WO2022224904A1 WO 2022224904 A1 WO2022224904 A1 WO 2022224904A1 JP 2022017837 W JP2022017837 W JP 2022017837W WO 2022224904 A1 WO2022224904 A1 WO 2022224904A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
die pad
support
lead
semiconductor device
Prior art date
Application number
PCT/JP2022/017837
Other languages
English (en)
French (fr)
Inventor
周平 高田
純司 藤野
貴雅 岩井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023515444A priority Critical patent/JP7483128B2/ja
Publication of WO2022224904A1 publication Critical patent/WO2022224904A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present disclosure relates to a semiconductor device, its manufacturing method, and a power conversion device.
  • a semiconductor element is mounted on a die pad in a lead frame.
  • a semiconductor element and a lead frame are electrically connected by wires.
  • a semiconductor element or the like mounted on a die pad is sealed with a sealing material.
  • lead frames employ a structure in which a die pad arranged close to the surface of a sealing material is supported by suspension leads.
  • Japanese Patent Application Laid-Open No. 2002-200003 proposes a method of providing a lead frame with a protrusion in order to suppress the deformation of the die pad due to the injection of the sealing material.
  • the present disclosure has been made based on such development, and one object thereof is to provide a semiconductor device in which deformation of a die pad is suppressed, and another object thereof is to provide such a semiconductor device. It is to provide a manufacturing method, and still another object is to provide a power conversion device to which such a semiconductor device is applied.
  • One semiconductor device is a semiconductor device in which a semiconductor element mounted on a die pad is sealed with a sealing material in such a manner that leads protrude, the semiconductor device comprising a frame, suspension leads, a support body, and support leads. and an encapsulant.
  • the frame connects to the lead.
  • Suspension leads are connected to the frame and to the die pad.
  • the support body is bonded to the die pad and supports the die pad.
  • the support lead is connected to the frame and to the support main body.
  • the sealing material seals the semiconductor element mounted on the die pad together with the frame, suspension leads, support body and support leads.
  • the encapsulant includes first and second major surfaces and first and second side surfaces. The first principal surface and the second principal surface are spaced apart in the first direction.
  • the first side surface and the second side surface are formed so as to connect the first main surface and the second main surface, and are spaced apart in a second direction intersecting the first direction.
  • the frame includes a first frame located on the side of the first side surface.
  • the die pad is arranged at a second position closer to the first main surface than the first position in the first direction in which the frame is arranged.
  • the support body is bonded to the die pad.
  • the suspension lead is inclined from the portion connected to the first frame toward the portion connected to the die pad.
  • the die pad is formed with a cut-out pattern corresponding to the shape of the support main body, which is cut inward from the outer periphery of the die pad. In plan view from the first direction, the support body is joined to the die pad at a position away from the punched pattern.
  • Another semiconductor device is a semiconductor device in which a semiconductor element mounted on a die pad is sealed with a sealing material in such a manner that leads protrude, the semiconductor device comprising a frame, suspension leads, a support body, and support leads. and an encapsulant.
  • the frame connects to the lead.
  • Suspension leads are connected to the frame and to the die pad.
  • the support body is bonded to the die pad and supports the die pad.
  • the support lead is connected to the frame and to the support main body.
  • the sealing material seals the semiconductor element mounted on the die pad together with the suspension leads, the support main body and the support leads.
  • the encapsulant includes first and second major surfaces and first and second side surfaces. The first principal surface and the second principal surface are spaced apart in the first direction.
  • the first side surface and the second side surface are formed so as to connect the first main surface and the second main surface, and are spaced apart in a second direction intersecting the first direction.
  • the frame includes a first frame located on the side of the first side surface.
  • the die pad is arranged at a second position closer to the first main surface than the first position in the first direction where the first frame is arranged.
  • the support main body is bonded to the die pad on the side opposite to the side on which the semiconductor element is mounted.
  • the suspension lead is inclined from the portion connected to the first frame toward the portion connected to the die pad.
  • a cut-out pattern corresponding to the shape of the support main body is formed in the portion connected to the suspension lead. In plan view from the first direction, the support main body is joined to the first frame at a position away from the punched pattern.
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device in which a semiconductor element mounted on a die pad is sealed with a sealing material in a manner in which leads protrude, and includes the following steps.
  • a lead, a die pad, a frame, a suspension lead, a support main body, and a lead frame that will be the support lead are prepared.
  • the lead frame is processed in such a manner that the frame is connected to the lead, the die pad is connected to the frame via the suspension lead, and the support body is connected to the frame via the support lead.
  • a bending process is performed to tilt the suspension leads so that the die pad is arranged at a second position lower than the first position in the first direction in which the frame is arranged. Bond the support body to the die pad.
  • a semiconductor element is mounted on the die pad.
  • the semiconductor element mounted on the die pad is assembled with the frame, hanging leads, support body and Seal the support leads.
  • the frame, the semiconductor element mounted on the die pad, the suspension leads, the support body and the encapsulating material encapsulating the support leads are removed from the mold.
  • the first pattern to be the die pad in the lead frame is arranged in a second direction intersecting the first direction and in a direction opposite to the second direction with respect to the second pattern to be the support main body. and the first pattern is positioned in a third direction intersecting the first direction and the second direction.
  • a cut-out pattern corresponding to the second pattern is formed in the first pattern.
  • the second pattern is arranged at a joining position away from the cut pattern in the first pattern in the second direction.
  • the second pattern is bonded to the bonding position of the first pattern.
  • the encapsulating material is injected from the side of the frame to which the suspension leads are connected toward the die pad that is connected to the suspension leads.
  • a power conversion device includes the above semiconductor device, a main conversion circuit that converts input power and outputs it, and a control circuit that outputs a control signal for controlling the main conversion circuit to the main conversion circuit. It has
  • the support main body is positioned away from the cut-out pattern on the die pad with respect to the die pad on which the semiconductor element is mounted when viewed in plan from the first direction. are spliced. As a result, a semiconductor device in which deformation of the die pad due to injection of the encapsulant is suppressed can be obtained.
  • the support main body is joined to the die pad on which the semiconductor element is mounted at a position apart from the notch-shaped punched-out pattern in plan view from the first direction.
  • the first pattern that will be the die pad and the second pattern that will be the support body portion are separated and bent, so that the second pattern is a cutout pattern in the first pattern. is positioned at a bonding position spaced apart in a second direction from the .
  • the encapsulant is injected from the side of the frame to which the suspension leads are connected toward the die pad that is connected to the suspension leads.
  • the power conversion device according to the present disclosure suppresses deformation of the die pad on which the semiconductor element is mounted, thereby obtaining a power conversion device with excellent heat dissipation.
  • FIG. 1 is a partial perspective view showing the structure of a semiconductor device according to a first embodiment
  • FIG. FIG. 4 is a partial plan view showing the structure of a semiconductor device in the same embodiment
  • 2 is a front view showing the structure of a semiconductor device in the embodiment
  • FIG. FIG. 10 is a partial plan view showing one step of a method of manufacturing a semiconductor device in the same embodiment
  • FIG. 5 is a front view in the process shown in FIG. 4 in the same embodiment
  • 5 is a partial plan view showing a step performed after the step shown in FIG. 4 in the same embodiment
  • FIG. FIG. 7 is a front view in the process shown in FIG. 6 in the same embodiment
  • FIG. 7 is a partial perspective view showing a step performed after the step shown in FIG.
  • FIG. 6 is a partial perspective view showing the structure of a semiconductor device according to a first comparative example. It is a front view which shows the structure of the semiconductor device which concerns on a 1st comparative example. It is a front view which shows the structure of the semiconductor device which concerns on a 2nd comparative example. It is a front view for explaining a problem of a semiconductor device according to a second comparative example.
  • FIG. 10 is a partial perspective view for explaining effects of the semiconductor device in the same embodiment;
  • FIG. 4 is a diagram for explaining the arrangement relationship between a die pad and a support main body in the same embodiment;
  • FIG. 11 is a partial perspective view showing the structure of a semiconductor device according to a second embodiment;
  • FIG. 11 is a partial perspective view showing the structure of a semiconductor device according to a third embodiment
  • FIG. 4 is a partial plan view showing the structure of a semiconductor device in the same embodiment
  • 2 is a front view showing the structure of a semiconductor device in the embodiment
  • FIG. 10 is a partial plan view showing one step of a method of manufacturing a semiconductor device in the same embodiment
  • FIG. 14 is a partial perspective view showing the structure of a semiconductor device according to a fourth embodiment
  • FIG. 4 is a partial plan view showing the structure of a semiconductor device in the same embodiment
  • 2 is a front view showing the structure of a semiconductor device in the embodiment
  • FIG. 10 is a partial plan view showing one step of a method of manufacturing a semiconductor device in the same embodiment
  • FIG. 14 is a partial perspective view showing the structure of a semiconductor device according to a fifth embodiment
  • FIG. 11 is a partial perspective view showing one step of a method for manufacturing a semiconductor device in the same embodiment
  • FIG. 11 is a block diagram of a power conversion device to which a semiconductor device is applied, according to a sixth embodiment
  • Embodiment 1 A semiconductor device according to the first embodiment will be described. As shown in FIGS. 1, 2 and 3, the semiconductor device 1 includes leads 5 , a frame 7 , suspension leads 9 , a die pad 11 , support leads 13 and a support main body 15 as a lead frame 3 .
  • Lead 5 includes lead terminal 5a and lead terminal 5b.
  • Frame 7 includes frame 7a, frame 7b, frame 7c and frame 7d.
  • a power semiconductor element 17a such as an IGBT (Insulated Gate Bipolar Transistor) is mounted as a semiconductor element 17, for example.
  • Semiconductor element 17a is bonded to die pad 11 by, for example, a conductive adhesive.
  • a semiconductor element 17b such as an IC element for control is mounted on the frame 7c as the semiconductor element 17, for example.
  • the semiconductor element 17b is joined to the frame 7c by, for example, a conductive adhesive.
  • the semiconductor element 17a and the frame 7b are electrically connected by a wire 19a.
  • the wire 19a is bonded to the semiconductor element 17a and the frame 7b by ultrasonic bonding.
  • Semiconductor element 17a and semiconductor element 17b are electrically connected by wire 19b.
  • the wire 19b is bonded to the semiconductor elements 17a and 17b by ultrasonic bonding. Note that wires are omitted in FIG. 2 to avoid complexity.
  • the lead frame 3 on which the semiconductor element 17 is mounted is sealed with a molding resin 21 as a sealing material in such a manner that the lead terminals 5a and 5b are exposed. It is electrically connected to the outside of the semiconductor device 1 through the lead terminals 5a and 5b.
  • Mold resin 21 has first main surface 23 , second main surface 25 , first side surface 27 and second side surface 29 .
  • the first main surface 23 and the second main surface 25 are positioned apart from each other in the Z-axis direction as the first direction.
  • the first side surface 27 and the second side surface 29 are spaced apart in the X-axis direction as the second direction.
  • a gate mark 33 is left on the first side surface 27 of the mold resin 21 .
  • the surface roughness of the gate trace 33 is rougher than that of the surrounding surface.
  • suspension lead 9 is connected to the frame 7a and to the die pad 11. Suspension lead 9 extends in the positive direction substantially along the X-axis from the portion connected to frame 7 a toward the portion connected to die pad 11 .
  • the support lead 13 is connected to the frame 7d and to the support main body 15.
  • the support lead 13 extends in the negative direction substantially along the X-axis from the portion connected to the frame 7 d toward the portion connected to the support body portion 15 .
  • the die pad 11 is arranged at a second position closer to the first main surface 23 than the first position in the Z-axis direction where the frame 7a (lead terminals 5a) is arranged. That is, the die pad 11 is arranged at the second position on the Z-axis negative direction side with respect to the first position in the Z-axis direction.
  • the suspension lead 9 is inclined in the Z-axis negative direction from the portion connected to the frame 7 a toward the portion connected to the die pad 11 .
  • a support main body 15 is joined to the die pad 11 .
  • the support body portion 15 is joined to the side of the die pad 11 on which the semiconductor element 17 is mounted.
  • the support body portion 15 is bonded to the die pad 11 by, for example, a UV curing adhesive, an epoxy adhesive, or the like.
  • the support lead 13 is inclined in the Z-axis negative direction from the portion connected to the frame 7 d toward the portion connected to the support body portion 15 . Note that the support main body 15 does not necessarily need to be bonded to the side of the die pad 11 on which the semiconductor element 17 is mounted, as long as the deformation of the die pad 11 can be suppressed.
  • the die pad 11 is formed with a cut-out pattern 12 corresponding to the shape of the support body 15, which is cut inward from the outer circumference of the die pad 11.
  • the support body 15 is bonded to the die pad 11 at a position away from the punched pattern 12 in the X-axis direction.
  • the semiconductor device 1 according to Embodiment 1 is configured as described above.
  • a plate-like lead frame material (lead frame 3) that will be the leads 5, frame 7, suspension leads 9, die pad 11, support leads 13, support main body 15, etc. is prepared (see FIG. 4).
  • the part to be the die pad 11 is connected to the part to be the frame 7a (lead terminal 5a) through the part to be the suspension lead 9, and the part to be the support main body 15 is the support.
  • a plate-shaped lead frame material is patterned so as to be connected to a portion to be the frame 7d (lead terminal 5b) through a portion to be the lead 13, and is press-worked, for example.
  • the portion that will become the die pad 11 as the first pattern is patterned so as to surround the portion that will become the support body portion 15 as the second pattern from three sides.
  • the area to be the die pad 11 is located on the Y-axis negative direction side with respect to the portion to be the support main body 15, and the die pad 11 is located on both the X-axis positive direction side and the X-axis negative direction side. It is patterned so that the regions are located.
  • the part that will become the die pad 11 and the part that will become the support body part 15 are separated by press working along the cutting line 6 .
  • the die pad 11 is formed with a cut-out pattern 12 corresponding to the pattern of the support body 15, which is cut inward from the outer periphery (see FIG. 6).
  • the lead frame 3 is bent according to the bending lines 4a, 4b, 4c, and 4d.
  • the die pad 11 is suspended so as to be arranged at a second position lower than the first position in the Z-axis direction where the frame 7a (lead terminals 5a) is arranged. A portion where the lead 9 and the frame 7a are connected and a portion where the suspension lead 9 and the die pad 11 are connected are bent. By this bending, the frame 7a (lead terminal 5a) and the die pad 11 are arranged in parallel.
  • the support lead 13 and the frame 7d are connected such that the position of the lower surface of the support main body 15 in the Z-axis direction substantially coincides with the position of the upper surface of the die pad 11 in the Z-axis direction.
  • the portion where the support lead 13 and the support body portion 15 are connected to each other are bent. By this bending process, the frame 7d (the lead terminal 5b) and the support main body 15 are arranged in parallel.
  • the angle at which the suspension lead 9 is inclined and the angle at which the support lead 13 is inclined are set as desired so as to ensure a contact area between the lower surface of the support body 15 and the upper surface of the die pad 11 as large as possible. It should be set to an angle.
  • the semiconductor element 17a is bonded to the die pad 11 with a conductive adhesive. Also, the semiconductor element 17b is bonded to the frame 7c with a conductive adhesive. Wires 19a are then bonded to semiconductor element 17a and frame 7b by ultrasonic bonding. Also, the wire 19b is bonded to the semiconductor elements 17a and 17b by ultrasonic bonding.
  • the lead frame 3 on which the semiconductor elements 17a and 17b are mounted is placed in a mold 41.
  • the mold 41 is provided with an injection gate 45 for injecting the mold resin 21 into the cavity 43 .
  • the injection gate 45 is positioned on the X-axis negative direction side with respect to the inclined suspension lead 9 .
  • the molding resin 21 is injected into the cavity 43 from the injection gate 45 while the mold 41 is heated.
  • the support body 15 is bonded to the upper surface of the die pad 11. This prevents the suspension leads 9, the die pad 11, and the like from being lifted.
  • the semiconductor device 1 sealing the semiconductor elements 17 a and 17 b with the mold resin 21 is removed from the mold 41 .
  • the lead terminal 5a protrudes from the first side surface and the lead terminal 5b protrudes from the second side surface.
  • the semiconductor device 1 shown in FIGS. 1 and 2 is completed.
  • a semiconductor device 51 according to a first comparative example includes leads 55, a frame 57, suspension leads 59a and 59b, and a die pad 61 as a lead frame 53.
  • FIG. Lead 55 includes lead terminal 55a and lead terminal 55b.
  • the frame 57 includes a frame 57a, a frame 57b, a frame 57c and a frame 57d.
  • a semiconductor element 17 a is mounted on the die pad 61 .
  • the semiconductor element 17b is mounted on the frame 57c.
  • the die pad 61 on which the semiconductor element 17a is mounted is supported by suspension leads 59a connected to the frame 57a and suspension leads 59b connected to the frame 57d. Therefore, when injecting the gate mold resin, deformation of the die pad 61 due to the mold resin injected from the injection gate is suppressed.
  • the distance Z1 from the die pad 61 to the first main surface of the mold resin and the distance Z2 from the frame 57b to the first main surface of the mold resin are substantially the same.
  • the distance Z1 be as short as possible.
  • the distance Z2 is also reduced, making it difficult to ensure the electrical insulation of the frame 57b. As a result, it becomes difficult to achieve both insulation and heat dissipation.
  • the die pad 61 on which the semiconductor element 17a is mounted is supported only by suspension leads 59 connected to the frame 57a.
  • the die pad 61 on which the semiconductor element 17a is mounted is arranged so as to be closer to the first main surface side of the mold resin 21 than the frame 57a.
  • the heat generated in the semiconductor element 17a can be efficiently dissipated to the outside of the mold resin, and the electrical insulation of the frame 57b can be ensured. can be done.
  • the distance from the die pad 61 to the bottom surface of the mold is shorter than the distance from the die pad 61 to the top surface of the mold. Therefore, when the mold resin is injected into the mold, there is a difference in the flow of the mold resin (resin flow) between the mold resin flowing above the die pad 61 and the mold resin flowing below the die pad 61 . Become.
  • this difference in resin flow causes a difference between the force that the die pad 61 receives from above and the force that it receives from below, resulting in deformation of the die pad 61 .
  • the deformation of the die pad 61 causes variation in the distance Z1 between the die pad 61 and the first main surface of the mold resin, and the stability of heat dissipation is impaired.
  • the wires 19 that are originally sealed in the mold resin are exposed to the outside of the mold resin 21 due to the deformation of the die pad 61 .
  • the die pad 11 on which the semiconductor element 17a is mounted extends in the Z-axis direction in which the frame 7a (lead terminals 5a) is arranged. is arranged at a second position closer to the first major surface 23 than the first position at .
  • the support main body 15 is joined to the die pad 11 on the side where the semiconductor element 17 is mounted.
  • the die pad 11 will not support the support body 15 .
  • bonding it is possible to suppress deformation of the die pad 11 .
  • the support body 15 is bonded to the die pad 11 with a UV curable adhesive or the like, so the die pad 11 is deformed by such force. can be suppressed.
  • the distance between the die pad 11 and the first main surface of the mold resin 21 is set to a substantially constant relatively short distance Z1 over the entire region of the die pad 11. can hold.
  • the heat generated in the semiconductor element 17a can be stably dissipated from the die pad 11 to the outside of the mold resin 21.
  • the support body portion 15 has a different pattern from the pattern of the frame 7 including the frame 7b, and the die pad 11 and the support body portion 15 are each formed from a lead frame material.
  • the distance from one main surface the thickness of the mold resin 21
  • a distance Z2 longer than the distance Z1 can be maintained.
  • the electrical insulation of frame 7b and leads 5 can be ensured.
  • the die pad 11 and the support body 15 are formed by pressing and bending a lead frame material.
  • the punched pattern 12 reflecting the shape of the support body 15 is formed on the die pad 11 . Due to the bending, the punched pattern 12 and the support body 15 are displaced from their initial positions before the bending in plan view from the Z-axis direction.
  • the amount of deviation is simply estimated.
  • the length of the suspension lead 9 is L1
  • the length of the support lead 13 is L2
  • the inclination angle of the suspension lead 9 is ⁇ 1
  • the inclination angle of the support lead 13 is ⁇ 2.
  • the tip of the suspension lead 9 and the tip of the support lead 13 are displaced from each other by a distance S1+a distance S2 in a plan view. Therefore, the die pad 11 connected to the tip of the suspension lead 9 and the support main body 15 connected to the tip of the support lead 13 are displaced from each other by a distance S1+a distance S2 in plan view. It is estimated that
  • the semiconductor device 1 includes a plurality of die pads 11 including a die pad 11a, a die pad 11b, a die pad 11c and a die pad 11d.
  • a semiconductor element 17c is mounted on the die pad 11a.
  • a semiconductor element 17d is mounted on the die pad 11b.
  • a semiconductor element 17e is mounted on the die pad 11c.
  • a semiconductor element 17f is mounted on the die pad 11d.
  • the support main body 15 joined to the die pad 11 includes a support main body 15a, a support main body 15b, and a support main body 15c.
  • the support body portion 15a is joined to the die pad 11a.
  • the support body portion 15b is joined to the die pad 11b.
  • the support body portion 15c is joined to the die pad 11c.
  • the support main body 15a is connected to the frame 7 via support leads 13a.
  • the support body portion 15b is connected to the frame 7 via support leads 13b.
  • the support body portion 15c is connected to the frame 7 via support leads 13c.
  • the support body 15 is not joined to the die pad 11d having a larger area than the die pads 11a to 11c. Since the configuration other than this is the same as the configuration of semiconductor device 1 shown in FIGS. 1 and 2, the same members are denoted by the same reference numerals, and description thereof will not be repeated unless necessary.
  • the die pad 11 including the die pads 11a to 11c, the support main body portion 15 including the support main body portions 15a to 15c, and the support leads 13a to 13c are attached to the lead frame material which becomes the lead frame.
  • the semiconductor device can be manufactured by substantially the same manufacturing process as the manufacturing method of the semiconductor device described above.
  • the die pad 11d can be Since it has a larger area than the die pads 11c, its influence is considered to be smaller than that of the die pads 11a to 11c. Therefore, even if the support body is not joined to the die pad 11d, variations in the distance between the die pad 11d and the first main surface of the mold resin 21 (thickness of the mold resin 21) are considered to be small.
  • the distance between each of the plurality of die pads 11 (die pads 11a to 11d) and the first main surface of the mold resin 21 (thickness of the mold resin 21) can be kept at a substantially constant relatively short distance over the area of each die pad 11 .
  • the heat generated in the semiconductor elements 17c to 17f can be stably dissipated from the corresponding die pad 11 to the outside of the mold resin 21.
  • FIG. Also, electrical insulation between the frame 7 and the leads 5 can be ensured.
  • Embodiment 3 An example of a semiconductor device according to Embodiment 3 will be described.
  • the hanging leads 9 connected to the die pad 11 and the support leads 13 connected to the support main body 15 are arranged along the X-axis direction.
  • the support main body and support leads (structure) an example of a structure in which the support leads 13 connected to the support main body 15 are arranged along the Y-axis direction will be described.
  • the support body 15 is joined to the die pad 11.
  • the support leads 13 connected to the support main body 15 are arranged along the Y-axis direction.
  • the support lead 13 is connected to the frame 7e.
  • the frame 7 e extends along the X-axis direction from the frame 7 connected to the frame 7 a connected to the suspension lead 9 .
  • the support body 15 is separated in the X-axis direction and in the Y-axis direction from the punched pattern 12 formed on the die pad 11 . It is also arranged at a position on the die pad 11 . Since the structure other than this is the same as that of semiconductor device 1 shown in FIGS. 1 and 2, the same members are denoted by the same reference numerals, and description thereof will not be repeated unless necessary.
  • a plate-shaped lead frame material to be a lead frame is prepared.
  • the portion to be the die pad 11 is connected to the portion to be the frame 7a (lead terminal 5a) through the portion to be the suspension lead 9, and the portion to be the support body 15 is connected to the frame 7d through the portion to be the support lead 13.
  • the lead frame material is patterned so as to be connected to the portion that will become (lead terminal 5b), and is press-worked, for example.
  • the portion that will become the support lead 13 is patterned so as to extend along the X-axis direction (see FIG. 3).
  • the portion that will become the lead 13 is patterned so as to extend along the Y-axis direction.
  • the portion that will become the die pad 11 and the portion that will become the support body portion 15 are separated by press working.
  • the die pad 11 is formed with a cut-out pattern 12 corresponding to the pattern of the support body 15, which is cut inward from the outer periphery (see FIG. 19).
  • the lead frame 3 is bent. As shown in FIG. 19, by bending the suspension lead 9, the punched pattern 12 is separated from the support body 15 in the negative direction of the X axis. Further, by bending the support lead 13, the support main body 15 is moved away from the punched pattern 12 in the positive direction of the Y axis (see dotted line arrow Y2). After that, semiconductor device 1 shown in FIG. 16 and the like is completed by substantially the same manufacturing steps as the method of manufacturing the semiconductor device described in the first embodiment.
  • the distance between the die pad 11 and the first main surface of the mold resin 21 is determined by the thickness of the die pad 11.
  • a substantially constant relatively short distance can be maintained over the entire area.
  • the heat generated in the semiconductor element 17a can be stably dissipated from the die pad 11 to the outside of the mold resin 21.
  • FIG. Also, electrical insulation between the frame 7 and the leads 5 can be ensured.
  • the support leads 13 connected to the support main body 15 are arranged along the Y-axis direction from the frame 7e extending along the X-axis direction.
  • the frame 7e has a structure in which nothing other than the support lead 13 is connected. As a result, it is possible to suppress the lead frame 3 from increasing in size, thereby contributing to the miniaturization of the semiconductor device.
  • Embodiment 4 An example of a semiconductor device according to Embodiment 4 will be described. Here, other examples of variations of the support main body and the support lead (structure) in the semiconductor device will be described.
  • the support lead 13 is connected to the frame 7 to which the die pad 11 and suspension leads 9 are connected through the frame 7a.
  • the support lead 13 is arranged to extend from the frame 7 in the positive direction of the X-axis.
  • a support body portion 15 is connected to the support lead 13 .
  • the support main body 15 is bent from the support lead 13 in the Z-axis negative direction and joined to the die pad 11 .
  • the support lead 13 and the support main body 15 extend from the frame 7 in the positive direction of the X-axis.
  • the cross-sectional shape of the support lead 13 and the support main body 15 along the Y-axis direction is approximately L-shaped.
  • the support body 15 is positioned on the die pad 11 away from the punched pattern 12 formed on the die pad 11 in the X-axis direction and the Y-axis direction. is joined to Since the structure other than this is the same as the structure of the semiconductor device 1 shown in FIGS. 1, 2 and 3, the same reference numerals are given to the same members, and the description thereof will not be repeated unless necessary. and
  • a plate-shaped lead frame material to be a lead frame is prepared.
  • the portion to be the die pad 11 is connected to the portion to be the frame 7 via the portion to be the suspension lead 9 and the portion to be the frame 7a, and the portion to be the support main body 15 is connected to the frame via the portion to be the support lead 13.
  • the lead frame material is patterned so as to be connected to the portion 7, and is press-worked, for example.
  • the die pad 11 is formed with a cut-out pattern 12 corresponding to the pattern of the support body 15, which is cut inward from the outer periphery (see FIG. 23).
  • the lead frame 3 is bent. As shown in FIG. 23, by bending the suspension lead 9, the punched pattern 12 is separated from the support main body 15 in the negative direction of the X axis. Further, the support body 15 is bent in the Z-axis negative direction and joined to the die pad 11 . After that, semiconductor device 1 shown in FIG. 15 and the like is completed by substantially the same manufacturing steps as the method of manufacturing the semiconductor device described in the first embodiment.
  • the distance between the die pad 11 and the first main surface of the mold resin 21 is determined by the thickness of the die pad 11.
  • a substantially constant relatively short distance can be maintained over the entire area.
  • the heat generated in the semiconductor element 17a can be stably dissipated from the die pad 11 to the outside of the mold resin 21.
  • FIG. Also, electrical insulation of the frame 7 and the like can be ensured.
  • the cross-sectional shape along the Y-axis direction of the support lead 13 and the support body portion 15 extending along the X-axis direction is L-shaped. Therefore, the second moment of area of the support lead 13 and the support main body 15 is increased, and the rigidity is improved. Thereby, it is possible to effectively suppress the deformation of the die pad 11 when the mold resin is injected.
  • the suspension leads 9 connected to the die pad 11 and the support leads 13 connected to the support body portion 15 extend from the frame 7 extending in the Y-axis direction toward the X-axis positive direction. are arranged in such a manner as to extend
  • the semiconductor device 1 cannot adopt the structure of the lead frame 3 of the semiconductor device 1 described in the first embodiment in which the support lead 13 is connected to the frame 7d located on the opposite side of the frame 7a. can be effectively applied to
  • Embodiment 5 An example of a semiconductor device according to Embodiment 5 will be described.
  • the support body 15 does not necessarily need to be bonded to the side of the die pad 11 on which the semiconductor element 17 is mounted, as long as the deformation of the die pad 11 can be suppressed.
  • An example of such a structure is described here.
  • the support body 15 is bonded to the die pad 11 on the side opposite to the side on which the semiconductor element 17 is mounted.
  • the suspension lead 9 is connected to the frame 7a and the die pad 11. As shown in FIG. Suspension lead 9 extends in the positive direction substantially along the X-axis from the portion connected to frame 7 a toward the portion connected to die pad 11 .
  • the support lead 13 is connected to the frame 7d and to the support main body 15.
  • the support lead 13 extends in the negative direction substantially along the X-axis from the portion connected to the frame 7 d toward the portion connected to the support body portion 15 .
  • a cut-out pattern 12 corresponding to the shape of the support main body 15 is formed on the frame 7 (7a) to which the suspension lead 9 is connected.
  • the support main body 15 is joined to a position away from the punched pattern 12 formed on the frame 7 in the X-axis direction. Since the structure other than this is the same as that of semiconductor device 1 shown in FIGS. 1 and 2, the same members are denoted by the same reference numerals, and description thereof will not be repeated unless necessary.
  • a plate-shaped lead frame material to be a lead frame is prepared.
  • the portion that will become the die pad 11 is connected to the portion that will become the frame 7a (7) through the portion that will become the suspension lead 9, and the portion that will become the support body portion 15 will become the frame 7d through the portion that will become the support lead 13.
  • the lead frame material is patterned and, for example, press-worked so as to be connected to the portion.
  • the portion that will become the support body portion 15 is made up of a portion that will become the suspension lead 9, a portion that will become the frame 7a that extends in the X-axis direction, and a portion that will become the frame 7 that extends in the Y-axis direction. is patterned so as to be surrounded by (see the chain double-dashed line shown in FIG. 25).
  • the lead frame 3 is bent.
  • the support main body 15 moves away from the position surrounded by the suspension lead 9 and the frames 7 and 7a in the negative direction of the Z axis and in the positive direction of the X axis (dotted arrow Y3 reference).
  • the support body portion 15 is arranged on the Z-axis negative direction side with respect to the die pad 11 .
  • a cut-out pattern 12 corresponding to the shape of the support main body 15 is formed on the frame 7 to which the suspension lead 9 is connected.
  • semiconductor device 1 shown in FIG. 24 is completed by substantially the same manufacturing steps as the method of manufacturing the semiconductor device described in the first embodiment.
  • the distance between the die pad 11 and the first main surface of the mold resin 21 is determined by the thickness of the die pad 11.
  • a substantially constant relatively short distance can be maintained over the entire area.
  • the heat generated in the semiconductor element 17a can be stably dissipated from the die pad 11 to the outside of the mold resin 21 via the support body portion 15.
  • FIG. Also, electrical insulation between the frame 7 and the leads 5 can be ensured.
  • Embodiment 6 a power conversion device to which the semiconductor device 1 described in the first to fifth embodiments is applied will be described.
  • the present disclosure is not limited to a specific power converter, a case where the present disclosure is applied to a three-phase inverter will be described below as a sixth embodiment.
  • FIG. 26 is a block diagram showing the configuration of a power conversion system to which the power converter according to this embodiment is applied.
  • the power conversion system shown in FIG. 26 includes a power supply 100, a power conversion device 200, and a load 300.
  • the power supply 100 is a DC power supply and supplies DC power to the power converter 200 .
  • the power supply 100 can be configured by various things, for example, it can be configured by a DC system, a solar battery, or a storage battery. Alternatively, it may be composed of a rectifier circuit or an AC/DC converter connected to an AC system. Also, power supply 100 may be configured by a DC/DC converter that converts DC power output from a DC system into predetermined power.
  • the power conversion device 200 is a three-phase inverter connected between the power supply 100 and the load 300 , converts the DC power supplied from the power supply 100 into AC power, and supplies the AC power to the load 300 .
  • the power conversion device 200 includes a main conversion circuit 201 that converts DC power into AC power and outputs it, and a control circuit 203 that outputs a control signal for controlling the main conversion circuit 201 to the main conversion circuit 201.
  • the load 300 is a three-phase electric motor driven by AC power supplied from the power conversion device 200 .
  • the load 300 is not limited to a specific application, but is an electric motor mounted on various electrical equipment, such as a hybrid vehicle, an electric vehicle, a railroad vehicle, an elevator, or an electric motor for an air conditioner.
  • the main conversion circuit 201 includes a switching element and a freewheeling diode (both not shown). By switching the switching element, the DC power supplied from the power supply 100 is converted into AC power and supplied to the load 300 .
  • the main conversion circuit 201 is a two-level three-phase full bridge circuit, with six switching elements and It can consist of six freewheeling diodes in anti-parallel.
  • the semiconductor device 1 according to Embodiments 1 to 4 described above is configured as a semiconductor module 202 in at least one of each switching element and each freewheeling diode of the main conversion circuit 201 .
  • Six switching elements are connected in series every two switching elements to form upper and lower arms, and each upper and lower arm forms each phase (U phase, V phase, W phase) of the full bridge circuit.
  • Output terminals of the upper and lower arms, that is, three output terminals of the main conversion circuit 201 are connected to the load 300 .
  • the main conversion circuit 201 includes a drive circuit (not shown) for driving each switching element, but the drive circuit may be built in the semiconductor module 202 or may be provided.
  • the drive circuit generates a drive signal for driving the switching element of the main conversion circuit 201 and supplies it to the control electrode of the switching element of the main conversion circuit 201 .
  • a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrode of each switching element.
  • the driving signal When maintaining the switching element in the ON state, the driving signal is a voltage signal (on signal) equal to or higher than the threshold voltage of the switching element, and when maintaining the switching element in the OFF state, the driving signal is a voltage equal to or less than the threshold voltage of the switching element. signal (off signal).
  • the control circuit 203 controls the switching elements of the main conversion circuit 201 so that the desired power is supplied to the load 300 . Specifically, based on the power to be supplied to the load 300, the time (on time) during which each switching element of the main conversion circuit 201 should be in the ON state is calculated. For example, the main conversion circuit 201 can be controlled by PWM control that modulates the ON time of the switching element according to the voltage to be output. Then, a control command (control signal ). The drive circuit outputs an ON signal or an OFF signal as a drive signal to the control electrode of each switching element according to this control signal.
  • the semiconductor device 1 described in the first to fifth embodiments is applied as the semiconductor module 202 to at least one of the switching elements and the free wheel diodes of the main converter circuit 201. , the deformation of the die pad 11 is suppressed, the heat generated by the switching elements and the like can be effectively dissipated, and the reliability of the power converter can be improved.
  • the present disclosure is not limited to this, and can be applied to various power converters.
  • a two-level power conversion device is used, but a three-level or multi-level power conversion device may be used. Disclosure may apply.
  • the present disclosure can be applied to a DC/DC converter or an AC/DC converter.
  • the power conversion device to which the present disclosure is applied is not limited to the case where the above-described load is an electric motor. It can also be used as a power conditioner such as a photovoltaic power generation system or an electric storage system.
  • the present disclosure is effectively used for a semiconductor device having a die pad on which a semiconductor element is mounted.
  • 1 semiconductor device 3 lead frames, 4a, 4b, 4c, 4d bending lines, 5 leads, 5a, 5b lead terminals, 6 cutting lines, 7, 7a, 7b, 7c, 7d, 7e frames, 9, 9a, 9b, 9c, 9d suspension leads, 11, 11a, 11b, 11c, 11d die pad, 12 blanking pattern, 13, 13a, 13b, 13c support leads, 15, 15a, 15b, 15c support body, 17, 17a, 17b, 17c, 17d, 17e, 17f semiconductor element, 19, 19a, 19b wire, 21 mold resin, 23 first main surface, 25 second main surface, 27 first side surface, 29 second side surface, 33 gate mark, 41 mold, 43 Cavity, 45 injection gate, Y1, Y2, Y3 arrows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

半導体装置(1)では、電力用の半導体素子(17a)が搭載されたダイパッド(11)は、傾斜した吊りリード(9)を介してフレーム(7a)に接続されている。ダイパッド(11)には、サポート本体部(15)が接合されている。サポート本体部(15)は、傾斜したサポートリード(13)を介してフレーム(7d)に接続されている。ダイパッド(11)には、サポート本体部(15)の形状に対応する切り欠き状の抜きパターン(12)が形成されている。Z軸方向からの平面視において、サポート本体部(15)は、抜きパターン(12)からX軸方向に離れた位置に接合されている。

Description

半導体装置およびその製造方法ならびに電力変換装置
 本開示は、半導体装置およびその製造方法ならびに電力変換装置に関する。
 半導体装置では、リードフレームにおけるダイパッドに半導体素子が搭載されている。半導体素子とリードフレームとが、ワイヤによって電気的に接続されている。半導体装置では、ダイパッドに搭載された半導体素子等は封止材によって封止されている。半導体素子が搭載されたリードフレームを金型内に配置し、その金型内に封止材を注入することによって、ダイパッドに搭載された半導体素子等が封止される。封止材の側面からは、ダイパッドに繋がるリード端子が露出する。
 半導体装置では、通電に伴って半導体素子から熱が発生する。半導体素子において発生した熱は、ダイパッドから封止材を経て、半導体装置の外部へ放熱される。このとき、半導体素子が搭載されたダイパッドが封止材の表面に近いほど、伝熱経路が短くなり、放熱性を高めることができる。このため、リードフレームでは、封止材の表面に接近させて配置させたダイパッドを、吊りリードによって支持する構造が採用されている。
 このようなリードフレームの構造では、金型内に封止材を注入する際に、ダイパッドの上方を流れる封止材とダイパッドの下方を流れる封止材との流動性の違いに起因して、ダイパッドが変形することがある。特許文献1では、封止材の注入に伴うダイパッドの変形を抑えるために、リードフレームに突起を設ける手法が提案されている。
特開2007-142225号公報
 従来より半導体装置では、半導体素子が搭載されるダイパッドの変形に伴う放熱性の低下と電気的絶縁性の低下とを抑制することが求められている。
 本開示は、このような開発のもとでなされたものであり、一つの目的は、ダイパッドの変形が抑制される半導体装置を提供することであり、他の目的は、そのような半導体装置の製造方法を提供することであり、さらに他の目的は、そのような半導体装置を適用した電力変換装置を提供することである。
 本開示に係る一の半導体装置は、リードを突出させる態様で、ダイパッドに搭載された半導体素子を封止材によって封止した半導体装置であって、フレームと吊りリードとサポート本体部とサポートリードと封止材とを備えている。フレームは、リードに繋がる。吊りリードは、フレームに繋がるとともにダイパッドに接続される。サポート本体部は、ダイパッドに接合され、ダイパッドを支持する。サポートリードは、フレームに繋がるとともにサポート本体部に接続される。封止材は、ダイパッドに搭載された半導体素子を、フレーム、吊りリード、サポート本体部およびサポートリードとともに封止する。封止材は、第1主面および第2主面と第1側面および第2側面とを含む。第1主面および第2主面は、第1方向に距離を隔てて位置する。第1側面および第2側面は、第1主面と第2主面とに繋がるように形成され、第1方向と交差する第2方向に距離を隔てて位置する。フレームは、第1側面の側に位置する第1フレームを含む。ダイパッドは、フレームが配置されている第1方向における第1位置よりも第1主面に近い第2位置に配置されている。サポート本体部は、ダイパッドに接合されている。吊りリードは、第1フレームに繋がる部分からダイパッドに接続されている部分に向かって傾斜している。ダイパッドには、ダイパッドの外周から内側へ切り込んだ、サポート本体部の形状に対応する切り欠き状の抜きパターンが形成されている。第1方向からの平面視において、サポート本体部は、ダイパッドにおける、抜きパターンから離れた位置に接合されている。
 本開示に係る他の半導体装置は、リードを突出させる態様で、ダイパッドに搭載された半導体素子を封止材によって封止した半導体装置であって、フレームと吊りリードとサポート本体部とサポートリードと封止材とを備えている。フレームは、リードに繋がる。吊りリードは、フレームに繋がるとともにダイパッドに接続される。サポート本体部は、ダイパッドに接合され、ダイパッドを支持する。サポートリードは、フレームに繋がるとともにサポート本体部に接続される。封止材は、ダイパッドに搭載された半導体素子を、吊りリード、サポート本体部およびサポートリードとともに封止する。封止材は、第1主面および第2主面と第1側面および第2側面とを含む。第1主面および第2主面は、第1方向に距離を隔てて位置する。第1側面および第2側面は、第1主面と第2主面とに繋がるように形成され、第1方向と交差する第2方向に距離を隔てて位置する。フレームは、第1側面の側に位置する第1フレームを含む。ダイパッドは、第1フレームが配置されている第1方向における第1位置よりも第1主面に近い第2位置に配置されている。サポート本体部は、ダイパッドに対して、半導体素子が搭載されている側とは反対側に接合されている。吊りリードは、第1フレームに繋がる部分からダイパッドに接続されている部分に向かって傾斜している。第1フレームにおいて、吊りリードに繋がっている部分には、サポート本体部の形状に対応する切り欠き状の抜きパターンが形成されている。第1方向からの平面視において、サポート本体部は、第1フレームにおける抜きパターンから離れた位置に接合されている。
 本開示に係る半導体装置の製造方法は、リードを突出させる態様で、ダイパッドに搭載された半導体素子を封止材によって封止した半導体装置の製造方法であって、以下の工程を備えている。リード、ダイパッド、フレーム、吊りリード、サポート本体部およびサポートリードとなるリードフレームを用意する。フレームがリードに繋がり、ダイパッドが吊りリードを介してフレームに繋がり、サポート本体部がサポートリードを介してフレームに繋がる態様で、リードフレームを加工する。ダイパッドが、フレームが配置されている第1方向における第1位置よりも低い第2位置に配置される態様で、吊りリードを傾斜させる曲げ加工を行う。サポート本体部をダイパッドに接合する。ダイパッドに半導体素子を搭載する。サポート本体部が接合されたダイパッドを含むリードフレームを金型内に配置し、注入ゲートから封止材を注入することにより、ダイパッドに搭載された半導体素子とともに、フレーム、吊りリード、サポート本体部およびサポートリードを封止する。金型内から、フレーム、ダイパッドに搭載された半導体素子、吊りリード、サポート本体部およびサポートリードを封止した封止材を取り出す。リードフレームを加工する工程では、リードフレームにおけるダイパッドとなる第1パターンは、サポート本体部となる第2パターンに対して、第1方向と交差する第2方向と、第2方向とは反対方向との双方に第1パターンが位置するとともに、第1方向および第2方向と交差する第3方向に第1パターンが位置する態様で、第2パターンを三方向から取り囲むようにパターニングされる。第1パターンと第2パターンとを切り離すことにより、第1パターンには、第2パターンに対応する切り欠き状の抜きパターンが形成される。曲げ加工を行う工程では、第2パターンは、第1パターンにおける抜きパターンから第2方向に離れた接合位置に配置される。サポート本体部をダイパッドに接合する工程では、第2パターンは、第1パターンにおける接合位置に接合される。封止材を注入する工程では、封止材は、吊りリードが繋がっているフレームの側から、吊りリードに繋がっているダイパッドに向かって注入される。
 本開示に係る電力変換装置は、上記の半導体装置を有し、入力される電力を変換して出力する主変換回路と、主変換回路を制御する制御信号を主変換回路に出力する制御回路とを備えている。
 本開示に係る一の半導体装置によれば、第1方向からの平面視において、半導体素子が搭載されたダイパッドに対し、サポート本体部は、ダイパッドにおける、切り欠き状の抜きパターンから離れた位置に接合されている。これにより、封止材の注入に伴うダイパッドの変形が抑制された半導体装置が得られる。
 本開示に係る他の半導体装置によれば、第1方向からの平面視において、半導体素子が搭載されたダイパッドに対し、サポート本体部は、切り欠き状の抜きパターンから離れた位置に接合されている。これにより、封止材の注入に伴うダイパッドの変形が抑制された半導体装置が得られる。
 本開示に係る半導体装置の製造方法によれば、ダイパッドとなる第1パターンとサポート本体部となる第2パターンとを切り離し、曲げ加工を行うことにより、第2パターンは、第1パターンにおける抜きパターンから第2方向に離れた接合位置に配置されて接合される。その状態で、封止材が、吊りリードが繋がっているフレームの側から、吊りリードに繋がっているダイパッドに向かって注入される。これにより、注入される封止材によって、半導体素子が搭載されたダイパッドの変形が抑制された半導体装置を製造することができる。
 本開示に係る電力変換装置は、上記の半導体装置を備えていることで、半導体素子を搭載したダイパッドの変形が抑制されて、放熱性に優れた電力変換装置が得られる。
実施の形態1に係る半導体装置の構造を示す部分斜視図である。 同実施の形態において、半導体装置の構造を示す部分平面図である。 同実施の形態において、半導体装置の構造を示す正面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す部分平面図である。 同実施の形態において、図4に示す工程における正面図である。 同実施の形態において、図4に示す工程の後に行われる工程を示す部分平面図である。 同実施の形態において、図6に示す工程における正面図である。 同実施の形態において、図6に示す工程の後に行われる工程を示す部分斜視図である。 第1比較例に係る半導体装置の構造を示す部分斜視図である。 第1比較例に係る半導体装置の構造を示す正面図である。 第2比較例に係る半導体装置の構造を示す正面図である。 第2比較例に係る半導体装置の課題を説明するための正面図である。 同実施の形態において、半導体装置の作用効果を説明するための部分斜視図である。 同実施の形態において、ダイパッドとサポート本体部との配置関係を説明するための図である。 実施の形態2に係る半導体装置の構造を示す部分斜視図である。 実施の形態3に係る半導体装置の構造を示す部分斜視図である。 同実施の形態において、半導体装置の構造を示す部分平面図である。 同実施の形態において、半導体装置の構造を示す正面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す部分平面図である。 実施の形態4に係る半導体装置の構造を示す部分斜視図である。 同実施の形態において、半導体装置の構造を示す部分平面図である。 同実施の形態において、半導体装置の構造を示す正面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す部分平面図である。 実施の形態5に係る半導体装置の構造を示す部分斜視図である。 同実施の形態において、半導体装置の製造方法の一工程を示す部分斜視図である。 実施の形態6に係る、半導体装置を適用した電力変換装置のブロック図である。
 実施の形態1.
 実施の形態1に係る半導体装置について説明する。図1、図2および図3に示すように、半導体装置1は、リードフレーム3として、リード5、フレーム7、吊りリード9、ダイパッド11、サポートリード13およびサポート本体部15を備えている。リード5は、リード端子5aおよびリード端子5bを含む。フレーム7は、フレーム7a、フレーム7b、フレーム7cおよびフレーム7dを含む。
 ダイパッド11には、半導体素子17として、たとえば、IGBT(Insulated Gate Bipolar Transistor)等の電力用の半導体素子17aが搭載されている。半導体素子17aは、たとえば、導電性接着剤によってダイパッド11に接合されている。フレーム7cには、半導体素子17として、たとえば、制御用のIC素子等の半導体素子17bが搭載されている。半導体素子17bは、たとえば、導電性接着剤によってフレーム7cに接合されている。
 半導体素子17aとフレーム7bとが、ワイヤ19aによって電気的に接続されている。ワイヤ19aは、超音波接合によって半導体素子17aとフレーム7bとに接合されている。半導体素子17aと半導体素子17bとが、ワイヤ19bによって電気的に接続されている。ワイヤ19bは、超音波接合によって半導体素子17aと半導体素子17bとに接合されている。なお、図2では、煩雑さを避けるために、ワイヤは省かれている。
 半導体素子17を搭載したリードフレーム3は、リード端子5a、5bを露出する態様で、封止材としてのモールド樹脂21に封止されている。リード端子5a、5b等を介して、半導体装置1の外部と電気的に接続される。モールド樹脂21は、第1主面23、第2主面25、第1側面27および第2側面29を有する。第1主面23と第2主面25とは、第1方向としてのZ軸方向に距離を隔てて位置する。第1側面27と第2側面29とは、第2方向としてのX軸方向に距離を隔てて位置する。モールド樹脂21における第1側面27には、ゲート痕33が残されている。ゲート痕33では、表面の粗さが周囲の表面の粗さよりも荒い。
 吊りリード9は、フレーム7aに接続されるとともにダイパッド11に接続されている。吊りリード9は、フレーム7aに接続されている部分からダイパッド11に接続されている部分に向かって、X軸にほぼ沿って正方向に延在する。
 サポートリード13は、フレーム7dに接続されるとともにサポート本体部15に接続されている。サポートリード13は、フレーム7dに接続されている部分からサポート本体部15に接続されている部分に向かって、X軸にほぼ沿って負方向に延在する。
 ダイパッド11は、フレーム7a(リード端子5a)が配置されているZ軸方向における第1位置よりも、第1主面23に近い第2位置に配置されている。すなわち、ダイパッド11は、Z軸方向における第1位置に対して、Z軸負方向側の第2位置に配置されている。吊りリード9は、フレーム7aに接続されている部分からダイパッド11に接続されている部分へ向かって、Z軸負方向側に傾斜している。
 ダイパッド11には、サポート本体部15が接合されている。サポート本体部15は、ダイパッド11において、半導体素子17が搭載されている側に接合されている。サポート本体部15は、たとえば、UV硬化系接着剤またはエポキシ系接着剤等によって、ダイパッド11に接合されている。サポートリード13は、フレーム7dに接続されている部分からサポート本体部15に接続されている部分に向かって、Z軸負方向側に傾斜している。なお、サポート本体部15は、ダイパッド11の変形を抑制することができれば、ダイパッド11において、半導体素子17が搭載されている側に、必ずしも接合させなくてもよい。
 図1および図2に示すように、ダイパッド11には、ダイパッド11の外周から内側へ切り込んだ、サポート本体部15の形状に対応する切り欠き状の抜きパターン12が形成されている。Z軸方向からの平面視において、サポート本体部15は、ダイパッド11における抜きパターン12から、X軸方向に離れた位置に接合されている。実施の形態1に係る半導体装置1は、上記のように構成される。
 次に、上述した半導体装置1の製造方法の一例について説明する。まず、リード5、フレーム7、吊りリード9、ダイパッド11、サポートリード13およびサポート本体部15等となる板状のリードフレーム材(リードフレーム3)を用意する(図4参照)。
 次に、図4および図5に示すように、ダイパッド11となる部分が吊りリード9となる部分を介してフレーム7a(リード端子5a)となる部分に繋がり、サポート本体部15となる部分がサポートリード13となる部分を介してフレーム7d(リード端子5b)となる部分に繋がるように、板状のリードフレーム材をパターニングし、たとえば、プレス加工を施す。
 このとき、第1パターンとしてのダイパッド11となる部分は、第2パターンとしてのサポート本体部15となる部分を三方から取り囲むようにパターニングされる。具体的には、サポート本体部15となる部分に対して、Y軸負方向側にダイパッド11となる領域が位置するとともに、X軸正方向側とX軸負方向側との双方にダイパッド11となる領域が位置するように、パターニングされる。
 ダイパッド11となる部分とサポート本体部15となる部分とは、切断線6にしたがって、プレス加工によって切り離される。ダイパッド11には、外周から内側へ切り込んだ切り欠き状の、サポート本体部15のパターンに対応した抜きパターン12が形成されることになる(図6参照)。
 次に、折り曲げ線4a、4b、4c、4dにしたがって、リードフレーム3に曲げ加工を施す。このとき、図6および図7に示すように、ダイパッド11は、フレーム7a(リード端子5a)が配置されているZ軸方向の第1位置よりも低い第2位置に配置されるように、吊りリード9とフレーム7aとが接続されている部分と、吊りリード9とダイパッド11とが接続されている部分とに曲げ加工が施される。この曲げ加工により、フレーム7a(リード端子5a)とダイパッド11とは並行に配置される。
 また、サポート本体部15は、サポート本体部15の下面のZ軸方向の位置が、ダイパッド11の上面のZ軸方向の位置にほぼ一致するように、サポートリード13とフレーム7dとが接続されている部分と、サポートリード13とサポート本体部15とが接続されている部分とに曲げ加工が施される。この曲げ加工により、フレーム7d(リード端子5b)とサポート本体部15とは、平行に配置される。
 さらに、この曲げ加工において、吊りリード9を傾斜させる角度およびサポートリード13を傾斜させる角度によっては、サポート本体部15をダイパッド11に接合させることができなくなる場合が想定される。また、Z軸方向から見た平面視において、サポート本体部15の一部が、ダイパッド11からはみ出てしまう領域が増えてしまい、サポート本体部15とダイパッド11との十分な接合面積を確保することができなくなる場合が想定される。
 このため、この曲げ加工では、サポート本体部15の下面とダイパッド11の上面との接触面積をできるだけ大きく確保できるように、吊りリード9を傾斜させる角度とサポートリード13を傾斜させる角度とを所望の角度に設定しておく必要がある。
 次に、半導体素子17aを、導電性接着剤によってダイパッド11に接合する。また、半導体素子17bを、導電性接着剤によってフレーム7cに接合する。次に、ワイヤ19aを、超音波接合によって半導体素子17aとフレーム7bとに接合する。また、ワイヤ19bを、超音波接合によって半導体素子17aと半導体素子17bとに接合する。
 次に、図8に示すように、半導体素子17a、17bが搭載されたリードフレーム3を金型41に配置する。金型41には、モールド樹脂21をキャビティ43内に注入する注入ゲート45が設けられている。注入ゲート45は、傾斜した吊りリード9に対して、X軸負方向側に位置する。次に、金型41を加熱しながら、注入ゲート45からモールド樹脂21をキャビティ43内に注入する。
 このとき、キャビティ43内に注入されるモールド樹脂21によって、たとえ、吊りリード9およびダイパッド11等を上に持ち上げようとする力が作用したとしても、ダイパッド11の上面にサポート本体部15が接合されていることで、吊りリード9およびダイパッド11等が持ち上げられるのを阻止することができる。
 キャビティ43内へモールド樹脂21が充填された後、モールド樹脂21によって半導体素子17a、17bを封止した半導体装置1を、金型41から取り出す。モールド樹脂21では、リード端子5aが、第1側面から突出し、リード端子5bが、第2側面から突出している。こうして、図1および図2に示す半導体装置1が完成する。
 次に、実施の形態1に係る半導体装置1の効果について、比較例に係る半導体装置と比較して説明する。なお、半導体素子17等の、実施の形態1に係る半導体装置1と同様の構成については同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 まず、第1比較例に係る半導体装置51について説明する。図9および図10に示すように、第1比較例に係る半導体装置51は、リードフレーム53として、リード55、フレーム57、吊りリード59a、59bおよびダイパッド61を備えている。リード55は、リード端子55aおよびリード端子55bを含む。フレーム57は、フレーム57a、フレーム57b、フレーム57cおよびフレーム57dを含む。ダイパッド61には、半導体素子17aが搭載されている。フレーム57cには、半導体素子17bが搭載されている。
 半導体素子17aが搭載されたダイパッド61は、フレーム57aに接続される吊りリード59aと、フレーム57dに接続される吊りリード59bとによって支持されている。このため、ゲートモールド樹脂を注入する際に、注入ゲートから注入されるモールド樹脂によってダイパッド61が変形することは抑制される。
 しかしながら、第1比較例に係る半導体装置51では、絶縁性と放熱性の双方を得ることが難しい。ダイパッド61からモールド樹脂の第1主面までの距離Z1と、フレーム57bからモールド樹脂の第1主面までの距離Z2とは、ほぼ同じ距離になる。半導体素子17aにおいて発生した熱をモールド樹脂の外へ効率的に放熱させるには、距離Z1はできるだけ短いことが望ましい。ところが、距離Z1を縮めようとすると、距離Z2も縮めることになるため、フレーム57bの電気的な絶縁性を確保することが難しくなる。その結果、絶縁性と放熱性とを両立させることが難しくなる。
 次に、第2比較例に係る半導体装置51について説明する。図11に示すように、第2比較例に係る半導体装置51では、半導体素子17aが搭載されたダイパッド61は、フレーム57aに接続される吊りリード59のみによって支持されている。半導体素子17aが搭載されたダイパッド61は、フレーム57aよりも、モールド樹脂21における第1主面の側に接近するように配置されている。
 これにより、第2比較例に係る半導体装置51では、半導体素子17aにおいて発生した熱をモールド樹脂の外へ効率的に放熱させることができ、また、フレーム57bの電気的な絶縁性を確保することができる。
 しかしながら、第2比較例に係る半導体装置51では、ダイパッド61から金型の下面までの距離が、ダイパッド61から金型の上面までの距離よりも短くなる。このため、モールド樹脂を金型内に注入する際に、ダイパッド61の上方を流れるモールド樹脂と、ダイパッド61の下方を流れるモールド樹脂とにおいて、モールド樹脂の流れ(樹脂流動)に違いが生じることになる。
 図12に示すように、この樹脂流動の違いに起因して、ダイパッド61が上方から受ける力と下から受ける力とに差が生じ、ダイパッド61が変形することになる。ダイパッド61が変形することで、ダイパッド61とモールド樹脂の第1主面との距離Z1にばらつきが生じ、放熱の安定性が損なわれてしまうことが想定される。また、ダイパッド61が変形することによって、本来、モールド樹脂に封止されているワイヤ19がモールド樹脂21の外へ露出してしまうことが想定される。
 第1比較例および第2比較例に対して、実施の形態1に係る半導体装置1では、半導体素子17aが搭載されたダイパッド11は、フレーム7a(リード端子5a)が配置されているZ軸方向における第1位置よりも、第1主面23に近い第2位置に配置されている。しかも、ダイパッド11には、半導体素子17が搭載されている側にサポート本体部15が接合されている。
 このため、モールド樹脂21を注入する際に、樹脂流動に違いが生じ、ダイパッド11が上方から受ける力と下から受ける力とに差が生じたとしても、ダイパッド11には、サポート本体部15が接合されていることで、ダイパッド11が変形しようとするのを抑制することができる。また、ダイパッド11に上下方向以外の方向から力が作用したとしても、サポート本体部15が、UV硬化系接着剤等によってダイパッド11に接合されていることで、そのような力によってダイパッド11が変形するのを抑制することができる。
 これにより、図13に示すように、ダイパッド11とモールド樹脂21の第1主面との距離(モールド樹脂21の厚さ)として、ダイパッド11の領域の全体においてほぼ一定の比較的短い距離Z1に保持することができる。その結果、半導体素子17aにおいて発生した熱を、ダイパッド11からモールド樹脂21の外部へ安定に放熱させることができる。
 また、サポート本体部15を、フレーム7bを含むフレーム7のパターンとは別のパターンとして、ダイパッド11およびサポート本体部15のそれぞれをリードフレーム材から形成することで、フレーム7bとモールド樹脂21の第1主面との距離(モールド樹脂21の厚さ)として、距離Z1よりも長い距離Z2を保持することができる。その結果、フレーム7bおよびリード5の電気的絶縁性を確保することができる。
 (抜きパターン12とサポート本体部15との平面視的なずれの長さ)
 上述したように、半導体装置1において、ダイパッド11とサポート本体部15とは、リードフレーム材のプレス加工と曲げ加工とによって形成される。ダイパッド11には、サポート本体部15を切り離すことによって、サポート本体部15の形状を反映した抜きパターン12が形成されることになる。曲げ加工によって、抜きパターン12とサポート本体部15とは、Z軸方向からの平面視において、曲げ加工を施す前の当初の位置から互いにずれることになる。ここで、そのずれ量(平面視的な長さ)について、簡単に見積もる。
 図14に示すように、吊りリード9の長さを長さL1、サポートリード13の長さを長さL2、吊りリード9の傾斜角度をθ、サポートリード13の傾斜角度をθとする。そうすると、吊りリード9に曲げ加工を施すことによって、吊りリード9の先端部(ダイパッド11に接続されている部分)は、平面視的に、X軸負方向側に、距離S1=L1(1-cosθ)だけずれることになる。一方、サポートリード13の先端部(サポート本体部15に接続されている部分)は、平面視的に、X軸正方向側に、距離S2=L2(1-cosθ)だけずれることになる。
 これにより、吊りリード9の先端部とサポートリード13の先端部とは、平面視的に、互いに距離S1+距離S2ずれることになる。このことから、吊りリード9の先端部に接続されているダイパッド11と、サポートリード13の先端部に接続されているサポート本体部15とは、平面視的に、互いに距離S1+距離S2ずれることになると見積もられる。
 実施の形態2.
 実施の形態2に係る半導体装置の一例について説明する。図15に示すように、半導体装置1では、ダイパッド11として、ダイパッド11a、ダイパッド11b、ダイパッド11cおよびダイパッド11dを含む複数のダイパッド11を備えている。半導体素子17として、ダイパッド11aには、半導体素子17cが搭載されている。ダイパッド11bには、半導体素子17dが搭載されている。ダイパッド11cには、半導体素子17eが搭載されている。ダイパッド11dには、半導体素子17fが搭載されている。
 そのダイパッド11に接合されるサポート本体部15として、サポート本体部15a、サポート本体部15bおよびサポート本体部15cとを備えている。サポート本体部15aは、ダイパッド11aに接合されている。サポート本体部15bは、ダイパッド11bに接合されている。サポート本体部15cは、ダイパッド11cに接合されている。
 サポート本体部15aは、サポートリード13aを介してフレーム7に繋がっている。サポート本体部15bは、サポートリード13bを介してフレーム7に繋がっている。サポート本体部15cは、サポートリード13cを介してフレーム7に繋がっている。
 なお、この半導体装置1では、ダイパッド11a~11cに比べて大面積を有するダイパッド11dには、サポート本体部15は接合されていない。これ以外の構成については、図1および図2に示す半導体装置1の構成と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 次に、上述した半導体装置1の製造方法の一例について説明する。上述した半導体装置1の場合、リードフレームとなるリードフレーム材に対して、ダイパッド11a~ダイパッド11cを含むダイパッド11、サポート本体部15a~15cを含むサポート本体部15、および、サポートリード13a~13cを含むサポートリード13のパターニングを行うことで、前述した半導体装置の製造方法と実質的に同じ製造工程によって製造することができる。
 特に、金型にモールド樹脂を注入する工程では、樹脂流動の違いに起因して、ダイパッド11dが上方から受ける力と下から受ける力とに差が生じたとしても、ダイパッド11dは、ダイパッド11a~11cに比べて大面積を有するため、その影響は、ダイパッド11a~11cが受ける影響と比べて小さいと考えられる。このため、ダイパッド11dにサポート本体部を接合させていなくても、ダイパッド11dとモールド樹脂21の第1主面との距離(モールド樹脂21の厚さ)のばらつきは小さいと考えられる。
 上述した半導体装置1によれば、前述した半導体装置1と同様に、複数のダイパッド11(ダイパッド11a~11d)のそれぞれとモールド樹脂21の第1主面との距離(モールド樹脂21の厚さ)を、それぞれのダイパッド11の領域の全体において、ほぼ一定の比較的短い距離に保持することができる。その結果、半導体素子17c~17fにおいて発生した熱を、対応するダイパッド11からモールド樹脂21の外部へ安定に放熱させることができる。また、フレーム7とリード5の電気的絶縁性を確保することができる。
 実施の形態3.
 実施の形態3に係る半導体装置の一例について説明する。前述した半導体装置1では、ダイパッド11に接続される吊りリード9と、サポート本体部15に接続されるサポートリード13とは、X軸方向に沿って配置された構造を例に挙げた。ここでは、サポート本体部およびサポートリード(構造)のバリエーションの一例として、サポート本体部15に接続されるサポートリード13が、Y軸方向に沿って配置された構造の一例について説明する。
 図16、図17および図18に示すように、ダイパッド11にサポート本体部15が接合されている。そのサポート本体部15に接続されているサポートリード13は、Y軸方向に沿って配置されている。サポートリード13は、フレーム7eに接続されている。フレーム7eは、吊りリード9に接続されているフレーム7aに繋がるフレーム7からX軸方向に沿って延在している。
 図17に示すように、Z軸方向から見た平面視において、サポート本体部15は、ダイパッド11に形成された抜きパターン12に対して、X軸方向に離れているとともに、Y軸方向に離れた、ダイパッド11における位置に配置されている。なお、これ以外の構成については、図1および図2に示す半導体装置1の構成と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 次に、上述した半導体装置1の製造方法の一例について説明する。まず、リードフレームとなる板状のリードフレーム材を用意する。次に、ダイパッド11となる部分が吊りリード9となる部分を介してフレーム7a(リード端子5a)となる部分に繋がり、サポート本体部15となる部分がサポートリード13となる部分を介してフレーム7d(リード端子5b)となる部分に繋がるように、リードフレーム材をパターニングし、たとえば、プレス加工を施す。
 このとき、前述した半導体装置1では、サポートリード13となる部分が、X軸方向に沿って延在するようにパターニングされる(図3参照)のに対して、上述した半導体装置1では、サポートリード13となる部分は、Y軸方向に沿って延在するようにパターニングされることになる。
 ダイパッド11となる部分とサポート本体部15となる部分とは、プレス加工によって切り離される。ダイパッド11には、外周から内側へ切り込んだ切り欠き状の、サポート本体部15のパターンに対応した抜きパターン12が形成される(図19参照)。
 次に、リードフレーム3に曲げ加工を施す。図19に示すように、吊りリード9に曲げ加工を施すことで、抜きパターン12は、サポート本体部15からX軸負方向に離れる。さらに、サポートリード13に曲げ加工を施すことで、サポート本体部15は、抜きパターン12に対して、Y軸正方向に離れる(点線矢印Y2参照)。その後、実施の形態1において説明した半導体装置の製造方法と実質的に同じ製造工程によって、図16等に示す半導体装置1が完成する。
 上述した半導体装置1によれば、実施の形態1において説明した半導体装置1と同様に、ダイパッド11とモールド樹脂21の第1主面との距離(モールド樹脂21の厚さ)を、ダイパッド11の領域の全体において、ほぼ一定の比較的短い距離に保持することができる。その結果、半導体素子17aにおいて発生した熱を、ダイパッド11からモールド樹脂21の外部へ安定に放熱させることができる。また、フレーム7とリード5の電気的絶縁性を確保することができる。
 さらに、上述した半導体装置1では、サポート本体部15に接続されるサポートリード13が、X軸方向に沿って延在するフレーム7eからY軸方向に沿って配置されている。フレーム7eには、サポートリード13以外のものは接続されていない構造とされる。これにより、リードフレーム3の大型化を抑制して、半導体装置の小型化に寄与することができる。
 実施の形態4.
 実施の形態4に係る半導体装置の一例について説明する。ここでは、半導体装置におけるサポート本体部およびサポートリード(構造)のバリエーションの他の例について説明する。
 図20、図21および図22に示すように、フレーム7aを介してダイパッド11および吊りリード9が接続されているフレーム7に、サポートリード13が接続されている。サポートリード13は、フレーム7からX軸正方向に延在するように配置されている。サポートリード13には、サポート本体部15が接続されている。
 サポート本体部15は、サポートリード13からZ軸負方向に屈曲してダイパッド11に接合されている。サポートリード13およびサポート本体部15は、フレーム7からX軸正方向に延在する。サポートリード13およびサポート本体部15のY軸方向に沿った断面形状は、ほぼL字型になる。
 図21に示すように、Z軸方向から平面視において、サポート本体部15は、ダイパッド11に形成された抜きパターン12に対して、X軸方向とY軸方向とに離れた、ダイパッド11における位置に接合されている。なお、これ以外の構成については、図1、図2および図3に示す半導体装置1の構成と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 次に、上述した半導体装置1の製造方法の一例について説明する。まず、リードフレームとなる板状のリードフレーム材を用意する。次に、ダイパッド11となる部分が吊りリード9となる部分およびフレーム7aとなる部分を介してフレーム7となる部分に繋がり、サポート本体部15となる部分がサポートリード13となる部分を介してフレーム7となる部分に繋がるように、リードフレーム材をパターニングし、たとえば、プレス加工を施す。
 このとき、ダイパッド11となる部分とサポート本体部15となる部分とは、プレス加工によって切り離される。ダイパッド11には、外周から内側へ切り込んだ切り欠き状の、サポート本体部15のパターンに対応した抜きパターン12が形成される(図23参照)。
 次に、リードフレーム3に曲げ加工を施す。図23に示すように、吊りリード9に曲げ加工を施すことで、抜きパターン12は、サポート本体部15からX軸負方向に離れる。さらに、サポート本体部15をZ軸負方向側に屈曲し、ダイパッド11に接合する。その後、実施の形態1において説明した半導体装置の製造方法と実質的に同じ製造工程によって、図15等に示す半導体装置1が完成する。
 上述した半導体装置1によれば、実施の形態1において説明した半導体装置1と同様に、ダイパッド11とモールド樹脂21の第1主面との距離(モールド樹脂21の厚さ)を、ダイパッド11の領域の全体において、ほぼ一定の比較的短い距離に保持することができる。その結果、半導体素子17aにおいて発生した熱を、ダイパッド11からモールド樹脂21の外部へ安定に放熱させることができる。また、フレーム7等の電気的絶縁性を確保することができる。
 さらに、上述した半導体装置1では、X軸方向に沿ってそれぞれ延在するサポートリード13およびサポート本体部15のY軸方向に沿った断面形状が、L字型である。このため、サポートリード13およびサポート本体部15の断面2次モーメントが高くなり、剛性が向上する。これにより、モールド樹脂を注入する際にダイパッド11が変形するのを効果的に抑制することができる。
 また、上述した半導体装置1では、ダイパッド11に接続される吊りリード9と、サポート本体部15に接続されるサポートリード13とは、Y軸方向に延在するフレーム7からX軸正方向に向かって延在する態様で配置されている。
 これにより、フレーム7aとは反対側に位置するフレーム7dにサポートリード13を接続させた実施の形態1において説明した半導体装置1が有するリードフレーム3の構造を採用することができない半導体装置1に対して有効に適用することができる。
 また、フレーム7eにサポートリード13を接合させた実施の形態3において説明した半導体装置1が有するリードフレーム3の構造を採用することができない半導体装置1に対して有効に適用することができる。
 実施の形態5.
 実施の形態5に係る半導体装置の一例について説明する。実施の形態1では、サポート本体部15は、ダイパッド11の変形を抑制することができれば、ダイパッド11において、半導体素子17が搭載されている側に、必ずしも接合させなくてもよいことを述べた。ここでは、そのような構造の一例について説明する。
 図25に示すように、サポート本体部15は、ダイパッド11において、半導体素子17が搭載されている側とは反対側に接合されている。吊りリード9は、フレーム7aに接続されるとともにダイパッド11に接続されている。吊りリード9は、フレーム7aに接続されている部分からダイパッド11に接続されている部分に向かって、X軸にほぼ沿って正方向に延在する。
 サポートリード13は、フレーム7dに接続されるとともにサポート本体部15に接続されている。サポートリード13は、フレーム7dに接続されている部分からサポート本体部15に接続されている部分に向かって、X軸にほぼ沿って負方向に延在する。
 吊りリード9が繋がっているフレーム7(7a)には、サポート本体部15の形状に対応する切り欠き状の抜きパターン12が形成されている。Z軸方向からの平面視において、サポート本体部15は、フレーム7に形成された抜きパターン12から、X軸方向に離れた位置に接合されている。なお、これ以外の構成については、図1および図2に示す半導体装置1の構成と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 次に、上述した半導体装置の製造方法の一例について説明する。まず、リードフレームとなる板状のリードフレーム材を用意する。次に、ダイパッド11となる部分が吊りリード9となる部分を介してフレーム7a(7)となる部分に繋がり、サポート本体部15となる部分がサポートリード13となる部分を介してフレーム7dとなる部分に繋がるように、リードフレーム材をパターニングし、たとえば、プレス加工を施す。
 このとき、サポート本体部15となる部分は、吊りリード9となる部分と、X軸方向に延在するフレーム7aとなる部分と、Y軸方向に延在するフレーム7となる部分とによって、三方から取り囲まれるようにパターニングされる(図25に示す二点鎖線を参照)。
 次に、図25に示すように、リードフレーム3に曲げ加工を施す。サポートリード13に曲げ加工を施すことで、サポート本体部15は、吊りリード9およびフレーム7、7aに囲まれた位置から、Z軸負方向に離れるとともに、X軸正方向に離れる(点線矢印Y3参照)。サポート本体部15は、ダイパッド11に対して、Z軸負方向側に配置される。吊りリード9が繋がっているフレーム7には、サポート本体部15の形状に対応した切り欠き状の抜きパターン12が形成される。
 吊りリード9に曲げ加工を施すことで、ダイパッド11は、サポート本体部15に接触する態様で、サポート本体部15上に配置される。サポート本体部15とダイパッド11とが接合される。その後、実施の形態1において説明した半導体装置の製造方法と実質的に同じ製造工程によって、図24に示す半導体装置1が完成する。
 上述した半導体装置1によれば、実施の形態1において説明した半導体装置1と同様に、ダイパッド11とモールド樹脂21の第1主面との距離(モールド樹脂21の厚さ)を、ダイパッド11の領域の全体において、ほぼ一定の比較的短い距離に保持することができる。その結果、半導体素子17aにおいて発生した熱を、ダイパッド11からサポート本体部15を介してモールド樹脂21の外部へ安定に放熱させることができる。また、フレーム7とリード5の電気的絶縁性を確保することができる。
 実施の形態6.
 ここでは、上述した実施の形態1~5において説明した半導体装置1を適用した電力変換装置について説明する。本開示は特定の電力変換装置に限定されるものではないが、以下、実施の形態6として、三相のインバータに本開示を適用した場合について説明する。
 図26は、本実施の形態に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。図26に示す電力変換システムは、電源100、電力変換装置200、負荷300から構成される。電源100は、直流電源であり、電力変換装置200に直流電力を供給する。電源100は種々のものにより構成することが可能であり、たとえば、直流系統、太陽電池、蓄電池により構成することができる。また、交流系統に接続された整流回路またはAC/DCコンバータにより構成してもよい。また、電源100を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成してもよい。
 電力変換装置200は、電源100と負荷300の間に接続された三相のインバータであり、電源100から供給された直流電力を交流電力に変換し、負荷300に交流電力を供給する。電力変換装置200は、図26に示すように、直流電力を交流電力に変換して出力する主変換回路201と、主変換回路201を制御する制御信号を主変換回路201に出力する制御回路203とを備えている。
 負荷300は、電力変換装置200から供給された交流電力によって駆動する三相の電動機である。なお、負荷300は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、たとえば、ハイブリッド自動車、電気自動車、鉄道車両、エレベーター、または、空調機器向けの電動機として用いられる。
 以下、電力変換装置200の詳細について説明する。主変換回路201は、スイッチング素子と還流ダイオードを備えている(いずれも図示せず)。スイッチング素子がスイッチングすることによって、電源100から供給される直流電力が交流電力に変換されて、負荷300に供給される。主変換回路201の具体的な回路構成は種々のものがあるが、本実施の形態に係る主変換回路201は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。
 主変換回路201の各スイッチング素子および各還流ダイオードの少なくともいずれかに、上述した実施の形態1~4に係る半導体装置1を、半導体モジュール202として構成する。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路201の3つの出力端子は、負荷300に接続される。
 また、主変換回路201は、各スイッチング素子を駆動する駆動回路(図示せず)を備えているが、駆動回路は半導体モジュール202に内蔵されていてもよいし、半導体モジュール202とは別に駆動回路を備える構成であってもよい。駆動回路は、主変換回路201のスイッチング素子を駆動する駆動信号を生成し、主変換回路201のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路203からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。
 制御回路203は、負荷300に所望の電力が供給されるように、主変換回路201のスイッチング素子を制御する。具体的には、負荷300に供給すべき電力に基づいて主変換回路201の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。たとえば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路201を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるように、主変換回路201が備える駆動回路に制御指令(制御信号)を出力する。駆動回路は、この制御信号に従い、各スイッチング素子の制御電極にオン信号またはオフ信号を駆動信号として出力する。
 本実施の形態に係る電力変換装置では、主変換回路201の各スイッチング素子および各還流ダイオードの少なくともいずれかに、実施の形態1~5において説明した半導体装置1を、半導体モジュール202として適用するため、ダイパッド11の変形が抑制されて、スイッチング素子等で発生した熱を効果的に放熱させることができ、電力変換装置の信頼性を向上させることができる。
 本実施の形態では、2レベルの三相インバータに本開示を適用する例について説明したが、本開示は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが、3レベルまたはマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には、単相のインバータに本開示を適用しても構わない。また、直流負荷等に電力を供給する場合には、DC/DCコンバータまたはAC/DCコンバータに本開示を適用することも可能である。
 また、本開示を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、たとえば、放電加工機、レーザー加工機、誘導加熱調理器または非接触器給電システムの電源装置として用いることもでき、さらには、太陽光発電システムまたは蓄電システム等のパワーコンディショナーとして用いることも可能である。
 なお、各実施の形態において説明した半導体装置については、必要に応じて種々組み合わせることが可能である。
 今回開示された実施の形態は例示であってこれに制限されるものではない。本開示は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
 本開示は、半導体素子を搭載するダイパッドを備えた半導体装置に有効に利用される。
 1 半導体装置、3 リードフレーム、4a、4b、4c、4d 折り曲げ線、5 リード、5a、5b リード端子、6 切断線、7、7a、7b、7c、7d、7e フレーム、9、9a、9b、9c、9d 吊りリード、11、11a、11b、11c、11d ダイパッド、12 抜きパターン、13、13a、13b、13c サポートリード、15、15a、15b、15c サポート本体部、17、17a、17b、17c、17d、17e、17f 半導体素子、19、19a、19b ワイヤ、21 モールド樹脂、23 第1主面、25 第2主面、27 第1側面、29 第2側面、33 ゲート痕、41 金型、43 キャビティ、45 注入ゲート、Y1、Y2、Y3 矢印。

Claims (13)

  1.  リードを突出させる態様で、ダイパッドに搭載された半導体素子を封止材によって封止した半導体装置であって、
     前記リードに繋がるフレームと、
     前記フレームに繋がるとともに前記ダイパッドに接続される吊りリードと、
     前記ダイパッドに接合され、前記ダイパッドを支持するサポート本体部と、
     前記フレームに繋がるとともに前記サポート本体部に接続されるサポートリードと、
     前記ダイパッドに搭載された前記半導体素子を、前記吊りリード、前記サポート本体部および前記サポートリードとともに封止する前記封止材と
    を備え、
     前記封止材は、
     第1方向に距離を隔てて位置する第1主面および第2主面と、
     前記第1主面と前記第2主面とに繋がるように形成され、前記第1方向と交差する第2方向に距離を隔てて位置する第1側面および第2側面と
    を含み、
     前記フレームは、前記第1側面の側に位置する第1フレームを含み、
     前記ダイパッドは、前記フレームが配置されている前記第1方向における第1位置よりも前記第1主面に近い第2位置に配置され、
     前記サポート本体部は、前記ダイパッドに接合され、
     前記吊りリードは、前記第1フレームに繋がる部分から前記ダイパッドに接続されている部分に向かって傾斜し、
     前記ダイパッドには、前記ダイパッドの外周から内側へ切り込んだ、前記サポート本体部の形状に対応する切り欠き状の抜きパターンが形成され、
     前記第1方向からの平面視において、前記サポート本体部は、前記ダイパッドにおける、前記抜きパターンから離れた位置に接合された、半導体装置。
  2.  前記サポートリードは、前記フレームから前記サポート本体部へ向かって傾斜し、
     前記第1方向からの平面視において、前記サポート本体部は、前記ダイパッドにおける、前記抜きパターンから前記第2方向に離れた位置に接合された、請求項1記載の半導体装置。
  3.  前記フレームは、前記第2側面の側に位置する第2フレームを含み、
     前記吊りリードは、前記第1フレームから前記第2方向に沿って延在し、
     前記サポートリードは、前記第2フレームから前記第2方向に沿って延在する、請求項2記載の半導体装置。
  4.  前記フレームは、前記第2側面の側に位置する第2フレームを含み、
     前記サポートリードは、前記第2フレームから前記サポート本体部へ向かって傾斜し、
     前記ダイパッドは、第1ダイパッドと第2ダイパッドとを含み、
     前記サポート本体部は、前記第1ダイパッドに接合される第1サポート本体部と、前記第2ダイパッドに接合される第2サポート本体部とを含み、
     前記第1ダイパッドおよび前記第1サポート本体部と、前記第2ダイパッドおよび前記第2サポート本体部とは、前記第1方向および前記第2方向と交差する第3方向に沿って配置された、請求項1記載の半導体装置。
  5.  前記サポートリードは、前記フレームから前記サポート本体部へ向かって傾斜し、
     前記第1方向からの平面視において、前記サポート本体部は、前記ダイパッドにおける、前記抜きパターンから前記第2方向に離れるとともに、前記第1方向および前記第2方向と交差する第3方向に離れた位置に接合された、請求項1記載の半導体装置。
  6.  前記フレームは、前記第1フレームから前記第2方向に沿って前記第2側面に向かって延在する第3フレームを含み、
     前記吊りリードは、前記第1フレームから前記第2方向に沿って延在し、
     前記サポートリードは、前記第3フレームから前記第3方向に沿って延在する、請求項5記載の半導体装置。
  7.  前記サポートリードは、前記第1方向における前記第1位置に配置され、
     前記サポート本体部は、前記サポートリードから、前記第1方向における前記第2位置に配置されている前記ダイパッドに向かって屈曲している、請求項1記載の半導体装置。
  8.  前記吊りリードは、前記第1フレームから前記第2方向に沿って延在し、
     前記サポートリードは、前記第1フレームから前記第2方向に沿って延在する、請求項7記載の半導体装置。
  9.  リードを突出させる態様で、ダイパッドに搭載された半導体素子を封止材によって封止した半導体装置であって、
     前記リードに繋がるフレームと、
     前記フレームに繋がるとともに前記ダイパッドに接続される吊りリードと、
     前記ダイパッドに接合され、前記ダイパッドを支持するサポート本体部と、
     前記フレームに繋がるとともに前記サポート本体部に接続されるサポートリードと、
     前記ダイパッドに搭載された前記半導体素子を、前記吊りリード、前記サポート本体部および前記サポートリードとともに封止する前記封止材と
    を備え、
     前記封止材は、
     第1方向に距離を隔てて位置する第1主面および第2主面と、
     前記第1主面と前記第2主面とに繋がるように形成され、前記第1方向と交差する第2方向に距離を隔てて位置する第1側面および第2側面と
    を含み、
     前記フレームは、前記第1側面の側に位置する第1フレームを含み、
     前記ダイパッドは、前記第1フレームが配置されている前記第1方向における第1位置よりも前記第1主面に近い第2位置に配置され、
     前記サポート本体部は、前記ダイパッドに対して、前記半導体素子が搭載されている側とは反対側に接合され、
     前記吊りリードは、前記第1フレームに繋がる部分から前記ダイパッドに接続されている部分に向かって傾斜し、
     前記第1フレームにおいて、前記吊りリードに繋がっている部分には、前記サポート本体部の形状に対応する切り欠き状の抜きパターンが形成され、
     前記第1方向からの平面視において、前記サポート本体部は、前記第1フレームにおける前記抜きパターンから離れた位置に接合された、半導体装置。
  10.  前記フレームは、前記第2主面の側に位置する第2フレームを含み、
     前記サポートリードは、前記第2フレームから前記第2方向に沿って延在する、請求項9記載の半導体装置。
  11.  前記第1側面には、表面の粗さが周囲よりも荒いゲート痕が位置する、請求項1~10のいずれか1項に記載の半導体装置。
  12.  リードを突出させる態様で、ダイパッドに搭載された半導体素子を封止材によって封止した半導体装置の製造方法であって、
     前記リード、前記ダイパッド、フレーム、吊りリード、サポート本体部およびサポートリードとなるリードフレームを用意する工程と、
     前記フレームが前記リードに繋がり、前記ダイパッドが前記吊りリードを介して前記フレームに繋がり、前記サポート本体部が前記サポートリードを介して前記フレームに繋がる態様で、前記リードフレームを加工する工程と、
     前記ダイパッドが、前記フレームが配置されている第1方向における第1位置よりも低い第2位置に配置される態様で、前記吊りリードを傾斜させる曲げ加工を行う工程と、
     前記サポート本体部を前記ダイパッドに接合する工程と、
     前記ダイパッドに前記半導体素子を搭載する工程と、
     前記サポート本体部が接合された前記ダイパッドを含む前記リードフレームを金型内に配置し、注入ゲートから封止材を注入することにより、前記ダイパッドに搭載された前記半導体素子とともに、前記フレーム、前記吊りリード、前記サポート本体部および前記サポートリードを封止する工程と、
     前記金型内から、前記フレーム、前記ダイパッドに搭載された前記半導体素子、前記吊りリード、前記サポート本体部および前記サポートリードを封止した封止材を取り出す工程と
    を備え、
     前記リードフレームを加工する工程では、
     前記リードフレームにおける前記ダイパッドとなる第1パターンは、前記サポート本体部となる第2パターンに対して、前記第1方向と交差する第2方向と、前記第2方向とは反対方向との双方に前記第1パターンが位置するとともに、前記第1方向および前記第2方向と交差する第3方向に前記第1パターンが位置する態様で、前記第2パターンを三方向から取り囲むようにパターニングされ、
     前記第1パターンと前記第2パターンとを切り離すことにより、前記第1パターンには、前記第2パターンに対応する切り欠き状の抜きパターンが形成され、
     前記曲げ加工を行う工程では、前記第2パターンは、前記第1パターンにおける前記抜きパターンから前記第2方向に離れた接合位置に配置され、
     前記サポート本体部を前記ダイパッドに接合する工程では、前記第2パターンは、前記第1パターンにおける前記接合位置に接合され、
     前記封止材を注入する工程では、前記封止材は、前記吊りリードが繋がっている前記フレームの側から、前記吊りリードに繋がっている前記ダイパッドに向かって注入される、半導体装置の製造方法。
  13.  請求項1~11のいずれか1項に記載の半導体装置を有し、入力される電力を変換して出力する主変換回路と、
     前記主変換回路を制御する制御信号を前記主変換回路に出力する制御回路と
    を備えた電力変換装置。
PCT/JP2022/017837 2021-04-21 2022-04-14 半導体装置およびその製造方法ならびに電力変換装置 WO2022224904A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023515444A JP7483128B2 (ja) 2021-04-21 2022-04-14 半導体装置およびその製造方法ならびに電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021071896 2021-04-21
JP2021-071896 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022224904A1 true WO2022224904A1 (ja) 2022-10-27

Family

ID=83723285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017837 WO2022224904A1 (ja) 2021-04-21 2022-04-14 半導体装置およびその製造方法ならびに電力変換装置

Country Status (2)

Country Link
JP (1) JP7483128B2 (ja)
WO (1) WO2022224904A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177011A (ja) * 1997-12-12 1999-07-02 Toshiba Corp 半導体装置および半導体装置の製造方法およびリードフレーム
US20030092216A1 (en) * 2001-11-09 2003-05-15 Advanced Semiconductor Engineering, Inc. Method of manufacturing a semiconductor package with a lead frame having a support structure
JP2010153519A (ja) * 2008-12-24 2010-07-08 Yamaha Corp 半導体装置用パッケージ本体及びその製造方法、半導体装置、マイクロフォンパッケージ
JP2012059885A (ja) * 2010-09-08 2012-03-22 Denso Corp 半導体装置の製造方法および半導体装置
WO2017138072A1 (ja) * 2016-02-08 2017-08-17 三菱電機株式会社 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177011A (ja) * 1997-12-12 1999-07-02 Toshiba Corp 半導体装置および半導体装置の製造方法およびリードフレーム
US20030092216A1 (en) * 2001-11-09 2003-05-15 Advanced Semiconductor Engineering, Inc. Method of manufacturing a semiconductor package with a lead frame having a support structure
JP2010153519A (ja) * 2008-12-24 2010-07-08 Yamaha Corp 半導体装置用パッケージ本体及びその製造方法、半導体装置、マイクロフォンパッケージ
JP2012059885A (ja) * 2010-09-08 2012-03-22 Denso Corp 半導体装置の製造方法および半導体装置
WO2017138072A1 (ja) * 2016-02-08 2017-08-17 三菱電機株式会社 半導体装置

Also Published As

Publication number Publication date
JP7483128B2 (ja) 2024-05-14
JPWO2022224904A1 (ja) 2022-10-27

Similar Documents

Publication Publication Date Title
CN110178219B (zh) 半导体装置以及电力变换装置
JP6816825B2 (ja) 半導体装置、電力変換装置および半導体装置の製造方法
JP6566927B2 (ja) 半導体装置および電力変換装置
WO2013001905A1 (ja) リードフレーム、及び、パワーモジュール
JP7094447B2 (ja) パワーモジュール及び電力変換装置
JP6575739B1 (ja) 半導体装置、半導体装置の製造方法および電力変換装置
JP5948106B2 (ja) パワー半導体モジュール及びそれを用いた電力変換装置
JP6667737B1 (ja) 半導体モジュールおよび電力変換装置
WO2022224904A1 (ja) 半導体装置およびその製造方法ならびに電力変換装置
WO2022239112A1 (ja) 半導体装置及び電力変換装置
JP7002645B2 (ja) パワー半導体装置およびその製造方法ならびに電力変換装置
JP7134345B2 (ja) 半導体モジュール、半導体モジュールの製造方法および電力変換装置
JP2018073923A (ja) 電力用半導体装置、電力用半導体装置の製造方法および電力変換装置
JP6811644B2 (ja) パワー半導体装置およびその製造方法、ならびに電力変換装置
JP7450740B2 (ja) 半導体装置、半導体装置の製造方法および電力変換装置
JP2021019139A (ja) 電力用半導体装置及び電力変換装置
JP2019197831A (ja) 半導体装置およびその製造方法、ならびに電力変換装置
JP6851559B1 (ja) 半導体装置および電力変換装置
US20230411253A1 (en) Semiconductor device, semiconductor device group, and power conversion apparatus
WO2024090278A1 (ja) 半導体装置、電力変換装置および半導体装置の製造方法
WO2023175675A1 (ja) パワーモジュール半導体パッケージおよび半導体装置
JP2022067375A (ja) 電力用半導体装置およびその製造方法ならびに電力変換装置
JP7106007B2 (ja) 半導体装置および電力変換装置
JP7329583B2 (ja) 半導体装置および電力変換装置
WO2023022001A1 (ja) パワーモジュールおよび電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023515444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791678

Country of ref document: EP

Kind code of ref document: A1