WO2022222316A1 - 传感装置 - Google Patents

传感装置 Download PDF

Info

Publication number
WO2022222316A1
WO2022222316A1 PCT/CN2021/112030 CN2021112030W WO2022222316A1 WO 2022222316 A1 WO2022222316 A1 WO 2022222316A1 CN 2021112030 W CN2021112030 W CN 2021112030W WO 2022222316 A1 WO2022222316 A1 WO 2022222316A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
sound
gel
liquid
resonant frequency
Prior art date
Application number
PCT/CN2021/112030
Other languages
English (en)
French (fr)
Inventor
袁永帅
邓文俊
周文兵
黄雨佳
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to CN202180078576.8A priority Critical patent/CN116491129A/zh
Priority to TW111115378A priority patent/TW202243297A/zh
Publication of WO2022222316A1 publication Critical patent/WO2022222316A1/zh
Priority to US18/351,480 priority patent/US20230362524A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/222Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only  for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2406Electrostatic or capacitive probes, e.g. electret or cMUT-probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/022Liquids
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • H04R1/083Special constructions of mouthpieces

Definitions

  • This specification relates to the field of acoustic technology, and particularly to a sensing device.
  • a sensing device receives an external vibration signal, and near the resonant frequency of the sensing device, the vibration signal will generate a large amplitude due to the effect of resonance.
  • the amplitude of the vibration signal is relatively small, so that the sensing device can only have high sensitivity in a narrow frequency range. Therefore, it is desirable to provide a sensing device with higher sensitivity in a wider frequency range.
  • Embodiments of the present specification may provide a sensing device, the sensing device comprising: a sensing structure having a first resonant frequency; and a sound pickup structure configured to communicate with the transmission through a sound inlet hole
  • a sensing structure having a first resonant frequency
  • a sound pickup structure configured to communicate with the transmission through a sound inlet hole
  • the vibration causes the sound pressure in the acoustic cavity to change
  • the sensing structure converts the air conduction sound into an electrical signal based on the sound pressure change in the acoustic cavity, wherein the sound pickup structure is the
  • the sensing device provides a second resonant frequency that differs from the first resonant frequency in the range of 1000-10000 Hz.
  • the pickup structure comprises a liquid or a gel; and the liquid or the gel together with the gas within the acoustic cavity forms a resonant system having the second resonant frequency.
  • the pickup structure further includes a support for limiting movement of the liquid or the gel.
  • the support includes a tubular string connected to or in contact with the sensing structure; and the tubular string includes a straight tubular string or a curved tubular string.
  • the sensing structure includes a printed circuit board; and the sound pickup structure includes a diaphragm connected to the printed circuit board.
  • the pickup structure includes a diaphragm, a liquid and a support or includes a diaphragm, a gel and a support; the liquid and the diaphragm together form a resonant system having the second resonant frequency Or the gel and the diaphragm together form a resonant system having the second resonant frequency; and the diaphragm and the support are used to limit the movement of the liquid or gel.
  • the pickup structure includes a diaphragm and a liquid or includes a diaphragm and a gel; and the liquid and the diaphragm together form a resonant system or the gel having the second resonant frequency A resonance system having the second resonance frequency is formed together with the diaphragm.
  • the sound pickup structure includes a diaphragm, a liquid, a support and a mass, or includes a diaphragm, a gel, a support and a mass; the liquid, the diaphragm and the mass together forming a resonant system having the second resonant frequency or the gel, the diaphragm and the mass together form a resonant system having the second resonant frequency; and the diaphragm and the support are used to define movement of the liquid or gel; and placement of the mass in the liquid or gel.
  • the sound pickup structure includes a diaphragm, a support and a mass; the diaphragm and the mass together form a resonant system having the second resonant frequency; and the support is used for supporting the diaphragm and the mass.
  • the modulus of the diaphragm is 100MPa-300GPa.
  • the diaphragm has a modulus of 5GPa-50GPa.
  • the diaphragm is circular; and the radius of the diaphragm is 500um-3mm.
  • the liquid has a density of 0 g/cm3 to 3 g/cm3.
  • the liquid has a viscosity of 1 cst to 3000 cst.
  • the second resonant frequency is lower than the first resonant frequency.
  • the second resonant frequency is 2000Hz-10000Hz.
  • FIG. 1 is a schematic structural diagram of a condenser air conduction microphone according to some embodiments of the present specification
  • FIG. 2 is a schematic structural diagram of a piezoelectric air conduction microphone according to some embodiments of the present specification
  • FIG. 3 is a schematic structural diagram of an exemplary sensing device according to some embodiments of the present specification.
  • FIG. 4 is a schematic structural diagram of an exemplary sensing device according to some embodiments of the present specification.
  • FIG. 5 is a schematic structural diagram of an exemplary sensing device according to some embodiments of the present specification.
  • FIG. 6 is a schematic structural diagram of an exemplary sensing device according to some embodiments of the present specification.
  • FIG. 7 is a schematic structural diagram of an exemplary sensing device according to some embodiments of the present specification.
  • FIG. 8 is a schematic structural diagram of an exemplary sensing device according to some embodiments of the present specification.
  • FIG. 9 is a schematic structural diagram of an exemplary sensing device according to some embodiments of the present specification.
  • FIG. 10 is a schematic structural diagram of an exemplary sensing device according to some embodiments of the present specification.
  • FIG. 11 is a schematic structural diagram of an exemplary sensing device according to some embodiments of the present specification.
  • FIG. 12 is a schematic structural diagram of an exemplary sensing device according to some embodiments of the present specification.
  • FIG. 13 is a schematic structural diagram of an exemplary sensing device according to some embodiments of the present specification.
  • FIG. 14 is a schematic structural diagram of an exemplary sensing device according to some embodiments of the present specification.
  • FIG. 15 is a schematic structural diagram of an exemplary sensing device according to some embodiments of the present specification.
  • FIG. 16 is a schematic structural diagram of an exemplary sensing device according to some embodiments of the present specification.
  • 17 is a frequency response curve of an exemplary sensing device according to some embodiments of the present specification.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature. In the description of this specification, "a plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • connection In this specification, unless otherwise expressly specified and limited, the terms “installation”, “connection”, “connection”, “fixation” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • fixing and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • the specific meanings of the above terms in this specification can be understood according to specific situations.
  • a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or indirectly through an intermediary between the first and second features touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the sensing device may include a sensing structure and a sound pickup structure.
  • the sensing structure has a first resonant frequency.
  • the sound pickup structure can communicate with the external sound of the sensing device (such as air conduction sound) through the sound inlet hole and form an acoustic cavity with the sensing structure.
  • the sound pickup structure vibrates in response to the air conduction sound transmitted through the sound inlet hole, the vibration can cause the sound pressure in the acoustic cavity to change.
  • the sensing structure can convert air-conducted sound into electrical signals based on changes in sound pressure within the acoustic cavity.
  • the sound pickup structure can provide a second resonant frequency for the sensing device.
  • the second resonant frequency is less than the first resonant frequency.
  • the difference between the second resonant frequency and the first resonant frequency satisfies certain conditions, for example, between 1000Hz-10000Hz, compared with the sensing structure, the sensitivity of the sensing device with the pickup structure is in a wider frequency range can be improved within.
  • the pickup structure may include liquid, gel, support (eg, a column), diaphragm (eg, a polymer membrane), mass, etc., or any combination thereof.
  • the liquid, gel or mass can form a resonant system (such as a spring-mass system) with the above-mentioned second resonant frequency together with the gas in the above-mentioned acoustic cavity, or alternatively, the liquid, gel or mass can form together with the diaphragm
  • a resonant system eg, a spring-mass system having the second resonant frequency described above. Supports can be used to limit the movement of liquids, gels, diaphragms or masses.
  • the parameters change the magnitude of the second resonant frequency and the magnitude relationship between the first resonant frequency and the second resonant frequency, so as to achieve, for example, improve the sensitivity and reliability of the sensing device or make the output gain of the sensing device within
  • the desired frequency band eg, mid-low frequency
  • the frequency response curve of the sensing device is more flat.
  • the sensing structure may include a matrix structure and a stacked structure.
  • the base structure may be a regular or irregular three-dimensional structure with a hollow portion inside, for example, may be a hollow frame structure, including but not limited to a rectangular frame, a circular frame, a regular polygon frame and other regular shapes , and any irregular shape.
  • the laminated structure may be located in the hollow portion of the base structure or at least partially suspended above the hollow portion of the base structure. In some embodiments, at least a portion of the laminate structure is physically connected to the base structure.
  • the laminated structure can be a cantilever beam, which can be a plate-like structure, one end of the cantilever beam is connected to the upper surface, the lower surface of the base structure or the side wall where the hollow part of the base structure is located, and the other end of the cantilever beam is connected Not connected or in contact with the base structure, so that the other end of the cantilever beam is suspended in the hollow part of the base structure.
  • the stacked structure may include a diaphragm layer (also called a suspended film structure), the suspended film structure is fixedly connected to the base structure, and the stacked structure is disposed on the upper surface or the lower surface of the suspended film structure.
  • the laminated structure may include a mass element (such as a mass) and a support arm, the mass element is fixedly connected with the base structure through the support arm, one end of the support arm is connected with the base structure, and the other end of the support arm is connected with the mass element, Part areas of the mass element and the support arm are suspended in the hollow part of the base structure.
  • mass element such as a mass
  • support arm is connected with the base structure
  • Part areas of the mass element and the support arm are suspended in the hollow part of the base structure.
  • the laminated structure may include vibratory elements and acoustic transducing elements.
  • the base structure can generate vibration based on an external vibration signal, and the vibration unit is deformed in response to the vibration of the base structure; the acoustic transducer unit generates an electrical signal based on the deformation of the vibration unit.
  • the vibration unit and the acoustic transducer unit here is only for the purpose of conveniently introducing the working principle of the laminated structure, and does not limit the actual composition and structure of the laminated structure. In fact, the vibration unit may not be necessary, and its function can be completely realized by the acoustic transducer unit.
  • the acoustic transducer unit can generate an electrical signal directly in response to the vibration of the base structure.
  • the base structure is not limited to a structure independent of the housing of the sensing structure, and in some embodiments, the base structure may also be a part of the sensing structure housing.
  • the sensing structure may be deformed and/or displaced based on external signals, such as mechanical signals (eg, pressure, mechanical vibrations), acoustic signals (eg, acoustic waves), electrical signals, optical signals, thermal signals, and the like.
  • the deformations and/or displacements can be further converted into target signals by the transducing components of the sensing structure.
  • the target signal may be an electrical signal, a mechanical signal (eg, mechanical vibration), an acoustic signal (eg, a sound wave), an electrical signal, an optical signal, a thermal signal, and the like.
  • the sensing structure may be a microphone (eg, an air conduction microphone or a microphone with bone conduction as one of the main sound propagation modes), an accelerometer, a pressure sensing structure, a hydrophone, an energy harvester, a gyroscope Instrument and so on.
  • Air conduction microphones refer to microphones that can receive air-conducted sound waves and convert them into electrical signals.
  • Microphones that use bone conduction as one of the main sound propagation methods refer to microphones that can at least receive solid vibrations and convert them into electrical signals.
  • the embodiments of this specification take the sensing structure as an air conduction microphone as an example, which is not intended to limit the protection scope of this specification.
  • FIG. 1 is a schematic structural diagram of a condenser air conduction microphone according to some embodiments of the present specification.
  • FIG. 2 is a schematic structural diagram of a piezoelectric air conduction microphone according to some embodiments of the present specification.
  • the sensing structure may include a condenser microphone.
  • the condenser microphone 100 may include a transducer element 110 , a processor 120 , a printed circuit board (PCB) 130 , a housing 150 , and a sound inlet 160 .
  • the transducing element 110 may convert external vibration signals (eg, air conduction sound 140 ) into electrical signals.
  • the transducer element 110 may include a diaphragm 111 and a back plate 112 . The diaphragm 111 and the back plate 112 can form a capacitor.
  • the diaphragm 111 and the back plate 112 can be placed in parallel with a short distance, respectively forming two poles of the capacitor.
  • the air-conducting sound 140 causes the diaphragm 111 to vibrate through the sound inlet hole 160 , the distance between the diaphragm 111 and the back plate 112 will change, thereby changing the capacitance of the capacitor.
  • the electricity in the capacitor changes, thereby generating an electrical signal and realizing sound collection.
  • processor 120 may acquire the electrical signal from transducer element 110 and perform signal processing.
  • the signal processing may include frequency modulation processing, amplitude modulation processing, filtering processing, noise reduction processing, and the like.
  • the processor 120 may include a microcontroller, a microprocessor, an application specific integrated circuit (ASIC), an application specific instruction-set processor (ASIP), a central processing unit (CPU) ), physical computing processor (physics processing unit, PPU), digital signal processor (digital signal processing, DSP), field-programmable gate array (field-programmable gate array, FPGA), advanced RISC machine (advanced RISC machine) , ARM), programmable logic device (PLD), or other types of processing circuits or processors.
  • ASIC application specific integrated circuit
  • ASIP application specific instruction-set processor
  • CPU central processing unit
  • PPU physical computing processor
  • digital signal processor digital signal processing
  • field-programmable gate array field-programmable gate array
  • FPGA field-programmable gate array
  • FPGA field-programmable gate array
  • the circuit and other elements of the condenser microphone 100 may be provided (eg, by laser etching, chemical etching, etc.) on the PCB 130.
  • the transducer element 110 and/or the processor 120 may be fixedly connected to the PCB 130 through conductive glue (eg, conductive silver glue, copper powder conductive glue, nickel-carbon conductive glue, silver-copper conductive glue, etc.).
  • the conductive adhesive may be conductive glue, conductive adhesive film, conductive rubber ring, conductive tape, and the like.
  • the transducer element 110 and/or the processor 120 may be electrically connected to other components through circuits provided on the PCB 130, respectively.
  • the transducer element 110 and the processor 120 may be directly connected by wires (eg, gold wires, copper wires, aluminum wires, etc.).
  • the PCB 130 may be a phenolic PCB paper substrate, a composite PCB substrate, a glass fiber PCB substrate, a metal PCB substrate, a build-up multilayer PCB substrate, and the like.
  • the PCB 130 may be an FR-4 grade fiberglass PCB substrate made of epoxy fiberglass cloth.
  • the PCB 130 may also be a flexible printed circuit board (Flexible Printed Circuit board, FPC).
  • the housing 150 may be a regular or irregular three-dimensional structure with a cavity (ie, a hollow portion) inside, for example, may be a hollow frame structure, including but not limited to a rectangular frame, a circular frame, Regular shapes such as regular polygon boxes, as well as any irregular shapes.
  • the transducer element 110, the processor 120 and the PCB 130 and the circuits and other components disposed thereon may be sealed.
  • the housing 150 may include a sound inlet hole, and through the sound inlet hole, the transducer element 110 may be communicated with external sound.
  • the housing 150 may be made of metal (eg, stainless steel, copper, etc.), plastic (eg, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) , polystyrene (PS), acrylonitrile-butadiene-styrene (ABS), composite materials (such as metal matrix composite materials or non-metal matrix composite materials), etc.
  • plastic eg, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) , polystyrene (PS), acrylonitrile-butadiene-styrene (ABS), composite materials (such as metal matrix composite materials or non-metal matrix composite materials), etc.
  • the material used for the housing 150 may be brass.
  • the sensing structure may include a piezoelectric microphone
  • the piezoelectric microphone may include the above-mentioned base structure and the above-mentioned laminated structure (eg, cantilever beam, support arm, or mass unit).
  • the piezoelectric microphone 200 may include a transducer element, a processor 220 , a PCB 230 , a housing 250 and a sound inlet hole 260 .
  • the transducer element may include a diaphragm 211 and a piezoelectric element (not shown in FIG. 2 ).
  • the diaphragm 211 may be connected or in contact with a piezoelectric element (not shown in FIG. 2 ).
  • a piezoelectric element (not shown in FIG. 2 ) may be attached to the diaphragm 211 , and when the air-conducting sound 240 causes the housing 250 or the diaphragm 211 to vibrate through the sound inlet hole 260 , it may be The piezoelectric element (not shown in FIG. 2 ) is driven to generate deformation, and then an electrical signal is generated through the piezoelectric effect of the piezoelectric element (not shown in FIG. 2 ) during deformation, so as to realize sound collection.
  • piezoelectric microphone 200 differs from condenser microphone 100 in that the transducer elements, other elements such as processor, PCB, housing, sound inlet, etc., are the same or similar.
  • the processor 220 , the PCB 230 , the housing 250 and the sound inlet hole 260 please refer to the description about the processor 120 , the PCB 130 , the housing 150 and the sound inlet hole 160 .
  • the transducer element in a piezoelectric microphone may only include a diaphragm, and the diaphragm is a piezoelectric film.
  • the air-conducted sound causes the vibration and deformation of the diaphragm through the sound inlet hole, and then the sound is collected by the electrical signal generated by the piezoelectric effect when the diaphragm is deformed.
  • the sensing structure in order to improve the responsiveness of the sensing structure to air-conducted sound, may be combined with one or more additional sound pickup structures to form a sensing device.
  • the structure of the sensing structure may be the same as or similar to the structure of the aforementioned sensing structure (eg, the condenser microphone 100 and the piezoelectric microphone 200 ).
  • the sound pickup structure may be disposed between the transducer element of the sensing structure and the sound inlet hole.
  • the sound pickup structure may be configured to communicate with external sound of the sensing device (eg, air conduction sound) through the sound inlet hole and form an acoustic cavity with the sensing structure.
  • air conduction sound e.g, air conduction sound
  • the vibration can cause the sound pressure in the acoustic cavity to change, and the sensing structure converts the air conduction sound based on the sound pressure change in the acoustic cavity. It is an electrical signal, so as to realize the acquisition of sound.
  • the sensing structure can provide the sensing device with a first resonant frequency
  • the pickup structure can provide the sensing device with a second resonant frequency.
  • the difference between the first resonant frequency and the second resonant frequency may be in the range of 1000 Hz-10000 Hz.
  • the difference between the first resonant frequency and the second resonant frequency may be between 2000 Hz-8000 Hz.
  • the difference between the first resonant frequency and the second resonant frequency may be between 3000 Hz-7000 Hz.
  • the difference between the first resonant frequency and the second resonant frequency may be between 4000 Hz-6000 Hz.
  • the first resonant frequency is related to properties of the sensing structure itself (eg, shape, material, structure). In some embodiments, the first resonant frequency may be above 10,000 Hz. In some embodiments, the first resonant frequency may be above 12000 Hz. In some embodiments, the first resonant frequency may be above 15000 Hz.
  • the second resonant frequency is less than the first resonant frequency.
  • the second resonant frequency may be between 2000 Hz-10000 Hz.
  • the second resonant frequency may be between 2000 Hz-8000 Hz.
  • the second resonant frequency may be between 3000Hz-4000Hz.
  • the second resonant frequency may be between 3200Hz-3800Hz.
  • the second resonant frequency may be between 3400Hz-3600Hz.
  • the second resonant frequency may be between 2000Hz-4000Hz.
  • the second resonant frequency may be between 4000 Hz-10000 Hz.
  • the pickup structure is formed from a solid structure (eg, support, mass, diaphragm), liquid, gel, etc., or a combination thereof, in connection with or in contact with the sensing structure.
  • the liquid, gel or mass may form a resonance system with the second resonance frequency together with the gas in the acoustic cavity formed between the pickup structure and the sensing structure, or the liquid, gel or mass may Together with the diaphragm, a resonant system (eg, a spring-mass system) having the above-mentioned second resonant frequency is formed.
  • Supports can be used to confine the movement of liquids, gels, diaphragms or masses.
  • the magnitude of the second resonant frequency and the magnitude relationship between the second resonant frequency and the first resonant frequency may be related to parameters of the pickup structure and/or parameters of the sensing structure.
  • the parameters of the pickup structure and/or the sensing structure can be determined through computer simulation, phantom experiments, etc. The range of parameters.
  • the influence of each factor on the frequency response of the sensor device can be determined one by one by controlling variables based on simulation.
  • the effects of different factors on the frequency response of the sensing device there is a correlation between the effects of different factors on the frequency response of the sensing device, so the effects of the parameter pair or parameter group on the frequency response of the sensing device can be determined in the form of corresponding parameter pairs or parameter groups.
  • the relationship between the second resonant frequency and sensitivity of the sensing device and the parameters of the pickup structure and/or the parameters of the sensing structure is taken as an example of the sound pickup structure formed by the combination of the mass block, the diaphragm and the support. As shown in the following formula (1):
  • S represents the sensitivity of the sensing device
  • f represents the second resonant frequency
  • K 1 represents the modulus of the diaphragm (such as Young's modulus)
  • K 2 represents the modulus of the support (such as Young's modulus)
  • V is the volume of the acoustic cavity
  • R is the radius of the mass
  • h is the height of the mass
  • is the density of the mass.
  • the second resonant frequency may increase as the modulus of the diaphragm increases. In some embodiments, the second resonant frequency may increase as the modulus of the support increases. In some embodiments, the second resonance frequency may first decrease and then increase as the size (eg, radius, area) of the mass perpendicular to the vibration direction of the diaphragm increases. In some embodiments, the second resonant frequency may decrease as the height of the mass along the vibration direction of the diaphragm increases. In some embodiments, the second resonant frequency may decrease as the density of the mass increases.
  • the sensitivity of the sensing device may decrease as the modulus of the diaphragm increases. In some embodiments, the sensitivity of the sensing device may decrease as the modulus of the support increases. In some embodiments, the sensitivity of the sensing device may first increase and then decrease as the cavity volume increases. In some embodiments, the sensitivity of the sensing device may first increase and then decrease as the radius of the mass (eg, along a direction perpendicular to the vibration direction of the diaphragm) increases. The sensitivity of the sensing device can increase as the height of the mass (eg along the vibration direction of the diaphragm) increases. In some embodiments, the sensitivity of the sensing device may increase as the density of the proof mass increases.
  • the pickup structure may comprise a liquid, a gel, or a combination thereof.
  • the liquid, gel, or a combination thereof may form a resonant system (eg, a spring-mass system) with the above-mentioned second resonant frequency together with the gas in the above-mentioned acoustic cavity.
  • a resonant system eg, a spring-mass system
  • a liquid, a gel, or a combination thereof can be used as the mass in the resonant system, and the gas in the acoustic cavity can be used as the spring in the resonant system.
  • the sound pickup structure formed by the liquid, gel, or a combination thereof may be substantially parallel to the diaphragm (also referred to as the second diaphragm) in the sensing structure.
  • the "substantially parallel” used here means that the surface (such as the upper surface and the lower surface) of the pickup structure is parallel to the surface (such as the upper surface and the lower surface) of the second diaphragm or the deviation between the two is less than 3 degrees, 5 degrees, 8 degrees degrees, 10 degrees, etc.
  • the PCB in the sensing structure can be used to limit the movement of the liquid, gel, or combination thereof.
  • liquids, gels or combinations thereof are confined within a limited space in the PCB so that they can only move within the limited space. If the viscosity of the liquid, gel or combination thereof reaches a certain threshold, the liquid, gel or combination thereof can adhere to the inner wall of the confined space.
  • the density of the liquid may be between 0 g/cm 3 -3 g/cm 3 . In some embodiments, the density of the liquid may be between 0 g/cm3 - 2 g/cm3. In some embodiments, the density of the liquid may be between 0 g/cm3 - 1 g/cm3. In some embodiments, the density of the liquid may be between 1 g/cm3 - 3 g/cm3. In some embodiments, the viscosity of the gel may be between 1 rystokes (cst) - 3000 rystokes (cst).
  • the viscosity of the gel may be between 1 cst - 1000 cst. In some embodiments, the viscosity of the gel may be between 50 cst - 900 cst. In some embodiments, the viscosity of the gel may be between 100 cst - 700 cst. In some embodiments, the viscosity of the gel may be between 200 cst - 500 cst. In some embodiments, the viscosity of the gel may be between 300 cst - 400 cst. In some embodiments, the viscosity of the gel may be between 1 cst - 500 cst. In some embodiments, the viscosity of the gel may be between 500 cst - 3000 cst.
  • the liquid when selecting the type of liquid or gel, its safety (eg, non-flammable and non-explosive), stability (eg, non-volatile, no high-temperature deterioration, etc.) and the like may also be considered.
  • the liquid may include oil (eg, silicone oil, glycerin, castor oil, motor oil, lubricating oil, hydraulic oil (eg, aviation hydraulic oil), etc.), water (including pure water, aqueous solutions of other inorganic or organic substances, etc. (eg, brine)) , oil-water emulsion, etc. or any combination thereof.
  • oil eg, silicone oil, glycerin, castor oil, motor oil, lubricating oil, hydraulic oil (eg, aviation hydraulic oil), etc.
  • water including pure water, aqueous solutions of other inorganic or organic substances, etc. (eg, brine)) , oil-water emulsion, etc. or any combination thereof.
  • Gels can include natural hydrogels (eg, agarose, methylcellulose, hyaluronic acid, gelatin, chitosan), synthetic hydrogels (eg, polyacrylamide, polyvinyl alcohol, sodium polyacrylate, polymerized acrylates) substance) aerogel or a combination thereof.
  • natural hydrogels eg, agarose, methylcellulose, hyaluronic acid, gelatin, chitosan
  • synthetic hydrogels eg, polyacrylamide, polyvinyl alcohol, sodium polyacrylate, polymerized acrylates
  • the magnitude of the second resonant frequency and the magnitude relationship between the second resonant frequency and the first resonant frequency can be adjusted by adjusting the properties of the liquid, the gel or the composition thereof or the parameters of the sensing structure.
  • properties of the liquid, gel or composition thereof may include density of the liquid, gel or composition thereof, viscosity of the liquid, gel or composition thereof, volume of the liquid, gel or composition thereof, presence or absence of Bubble, bubble volume, bubble position, number of bubbles, etc.
  • Parameters of the sensing structure may include the internal structure, dimensions, modulus (eg, Young's modulus) of its housing, the mass of the sensing structure and/or the size, modulus (eg, Young's modulus) of its transducing element Wait.
  • modulus eg, Young's modulus
  • the greater the density of the liquid, gel, or composition thereof the greater the mass of the liquid, gel, or composition thereof in the same volume, and the smaller the second resonant frequency.
  • the greater the viscosity of the liquid, the gel, or the combination thereof the less likely it is to generate vibration in a specific direction (eg, longitudinal direction), and the greater the second resonant frequency.
  • the density or viscosity of the liquid, gel, or combination thereof may be selected according to the magnitude of the desired second resonant frequency. For example, if the second resonant frequency is required to be in a larger frequency region (such as 4000Hz-10000Hz), a liquid, a gel or a combination thereof with a relatively high viscosity (such as 500cst-3000cst) can be selected, or a relatively low density (such as 0g) can be selected.
  • a relatively high viscosity such as 500cst-3000cst
  • a relatively low density such as 0g
  • liquids, gels or their compositions if the second resonance frequency is required to be in a smaller frequency region (eg 2000Hz–4000Hz), liquids with lower viscosity (eg 1cst–500cst) can be selected , gel or a combination thereof, or select a liquid, gel or a combination thereof with a higher density (eg, 1g/cm3-3g/cm3).
  • a smaller frequency region eg 2000Hz–4000Hz
  • liquids with lower viscosity eg 1cst–500cst
  • a liquid, gel or a combination thereof with a higher density eg, 1g/cm3-3g/cm3
  • the pickup structure may include a liquid (or gel or combination thereof) and a support.
  • the liquid (or gel or a combination thereof) may form a resonant system (eg, a spring-mass system) with the above-mentioned second resonant frequency together with the gas in the above-mentioned acoustic cavity.
  • the support is used to limit the movement of the liquid (or gel or combination thereof), thereby ensuring the stability of the frequency response of the sensing device.
  • the cross-section of the support may be rectangular, circular, annular, square, pentagonal, hexagonal, or the like.
  • the support may include a string (eg, a straight string, a curved string) attached to or in contact with the sensing structure.
  • the string may be attached or contacted to one side of the PCB in the sensing structure.
  • the height of the pipe string may be between 0.1 mm and 50 mm.
  • the height of the string may be between 1mm-40mm.
  • the height of the string may be between 5mm-30mm.
  • the height of the string may be between 10-20 mm.
  • the diameter of the column (in the direction perpendicular to the vibration of the diaphragm) may be greater than or equal to the diameter of the acoustic cavity (in the direction perpendicular to the vibration of the diaphragm).
  • the diameter of the tubing string is between 0.01 mm - 5 mm. In some embodiments, the diameter of the tubing string is between 0.1 mm - 6 mm. In some embodiments, the diameter of the tubing string is between 1 mm - 10 mm. In some embodiments, the diameter of the tubing string is between 5mm-20mm.
  • the principle of generating the second resonance frequency of the sound pickup structure comprising the liquid (or gel or its composition) and the support is the same as or similar to the above-mentioned sound pickup structure comprising the liquid, gel or its composition, more
  • the size of the second resonant frequency can be adjusted by adjusting the properties of the liquid, the gel or its composition or the parameters of the sensing structure, and the properties of the support (such as the mode of the support can also be adjusted) amount) to adjust the size of the second resonant frequency.
  • the greater the modulus of the support the greater the second resonant frequency.
  • the resonant system with the second resonant frequency is formed by the vibration of the diaphragm in the longitudinal direction, and the vibration of the diaphragm in other directions may adversely affect the resonant system with the second resonant frequency (such as cause the frequency response curve to be unstable).
  • the support can be placed on the left and/or right side of the liquid (or gel or combination thereof) to dampen the vibration of the diaphragm in other directions.
  • the support if the support is prone to vibrate under the action of external sound, it may cause the diaphragm to vibrate in other directions.
  • the modulus of the support needs to be greater than a certain threshold.
  • the material of the support member may include UV-curable glue (also known as photosensitive glue, shadowless glue), polydimethyloxane (PDMS), foam, etc., or any combination thereof.
  • the pickup structure may include a diaphragm.
  • the diaphragm can form a resonant system having the above-mentioned second resonant frequency.
  • the diaphragm may be connected to a PCB in the sensing structure.
  • the diaphragm can be fixedly connected to the PCB by means of adhesives, snaps, bolts, etc., so that the movement of the diaphragm in a specific direction (non-longitudinal, such as lateral direction) can be restricted.
  • the number of diaphragms is not limited, such as 2, 3, 4 and so on.
  • the modulus (eg, Young's modulus) of the diaphragm may be between 100MPa-300GPa. In some embodiments, the modulus of the diaphragm may be between 1 GPa-200 GPa. In some embodiments, the modulus of the diaphragm may be between 5GPa-50GPa. In some embodiments, the modulus of the diaphragm may be between 1 GPa-10 GPa. In some embodiments, the modulus of the diaphragm may be between 2GPa-8GPa. In some embodiments, the modulus of the diaphragm may be between 3GPa-7GPa.
  • the modulus of the diaphragm may be between 4GPa-6GPa. In some embodiments, the modulus of the diaphragm may be 1 GPa. In some embodiments, the modulus of the diaphragm may be between 1/100-1/10 of the modulus of the second diaphragm. In some embodiments, the modulus of the diaphragm may be between 1/50-1/5 of the modulus of the second diaphragm. In some embodiments, the modulus of the diaphragm may be between 1/25-2/5 of the modulus of the second diaphragm. In some embodiments, the modulus of the diaphragm may be between 1/20-1/2 of the modulus of the second diaphragm.
  • the diaphragm may be a polytetrafluoroethylene film, a polydimethylsiloxane film, a plastic film (such as polyethylene, polypropylene, polystyrene, polyvinyl chloride and polyester, etc.), cellophane, paper, Metal foil, etc. or any combination thereof.
  • the shape of the cross section of the diaphragm (eg, along the direction perpendicular to the vibration direction of the diaphragm) may be a circle, a triangle, a quadrilateral, a polygon, and the like.
  • the cross-sectional shape of the diaphragm may be adapted to the shape of the radial cross-section (eg, along a direction perpendicular to the vibration of the diaphragm) of the acoustic cavity defined by the pickup structure and the sensing structure.
  • the acoustic cavity may be cylindrical, and correspondingly, the shape of the cross section of the diaphragm may be circular.
  • the radius of the diaphragm may depend on the size of the acoustic cavity.
  • the radius of the diaphragm may be the same as or close to the radius of the acoustic cavity.
  • the radius of the diaphragm may be between 500um-3mm.
  • the radius of the diaphragm may be between 800um-2.5mm.
  • the radius of the diaphragm may be between 1mm-2mm.
  • the radius of the diaphragm may be between 1.2mm-1.6mm.
  • the thickness of the diaphragm may be between 500nm-100um. In some embodiments, the thickness of the diaphragm may be between 800nm-80um. In some embodiments, the thickness of the diaphragm may be between 1000nm-50um. In some embodiments, the thickness of the diaphragm may be between 2000nm-30um. In some embodiments, the thickness of the diaphragm may be between 5000nm-10um.
  • the magnitude of the second resonance frequency can be adjusted by adjusting the properties of the diaphragm or the parameters of the sensing structure.
  • the properties of the diaphragm may include the modulus of the diaphragm, the dimensions of the diaphragm (eg, length, width, thickness), and the like.
  • Parameters of the sensing structure may include the internal structure, dimensions, modulus of its housing, the mass of the sensing structure and/or the size, modulus, etc. of its transducing elements.
  • the greater the modulus of the diaphragm the greater the second resonant frequency.
  • the modulus of the diaphragm can be selected according to the magnitude of the desired second resonant frequency.
  • a diaphragm with a larger modulus such as 5Gpa-300Gpa, 5Gpa-50Gpa
  • a diaphragm with a smaller modulus such as 100MPa-5GPa
  • the pickup structure may include a diaphragm and a liquid (or a gel, or a combination of liquid and gel).
  • the liquid (or gel, or a combination of liquid and gel) and the diaphragm together form a resonant system (eg, a spring-mass system) having the second resonant frequency described above.
  • the liquid (or gel, or a combination of liquid and gel) can be considered as the mass in the resonant system and the diaphragm as the spring in the resonant system.
  • the PCB in the diaphragm and sensing structure can be used to constrain the movement of the liquid (or gel, or a combination of liquid and gel).
  • the diaphragm may be placed on the first side (upper side, lower side) of a liquid (or gel, or a combination of liquid and gel), the liquid (or gel, or a combination of liquid and gel)
  • the second side end of the sensor is connected (left, right) to the PCB in the sensing structure to limit the movement of the liquid (or gel, or a combination of liquid and gel).
  • the permeability of the diaphragm needs to be less than the threshold.
  • the number of diaphragms is not limited, such as 2, 3, 4 and so on.
  • the size of the second resonant frequency can be adjusted by adjusting the properties of the liquid (or gel, or a combination of liquid and gel), the properties of the diaphragm, or the parameters of the sensing structure, more related descriptions Please refer to the above description of the sound pickup structure containing liquid (or gel, or a combination of liquid and gel) or diaphragm, and details are not repeated here.
  • the pickup structure may include a diaphragm, a liquid (or a gel, or a combination of liquid and gel), and a support.
  • the liquid (or gel, or a combination of liquid and gel) and the diaphragm together form a resonant system (eg, a spring-mass system) having the second resonant frequency described above.
  • a resonant system eg, a spring-mass system
  • a liquid, a gel, or a combination thereof can be used as the mass in the resonant system, and the diaphragm as the spring in the resonant system.
  • the diaphragm and support can be used to limit the movement of the liquid (or gel, or a combination of liquid and gel).
  • the diaphragm can be placed on the first side (upper side, lower side) of the liquid (or gel, or a combination of liquid and gel), and the support can be placed on the liquid (or gel, or liquid and gel combination) composition) of the second side (left, right) to limit the movement of the liquid (or gel, or a combination of liquid and gel).
  • the diaphragm may be connected to the support.
  • the diaphragm can be fixed to the inner wall of the support by its peripheral side.
  • the connection means may include adhesive bonding, clamps, snaps, bolts, and the like.
  • the number of diaphragms or supports is not limited, such as 2, 3, 4, and so on.
  • the magnitude of the second resonant frequency can be adjusted by adjusting the properties of the liquid (or gel, or a combination of liquid and gel), the properties of the diaphragm, the properties of the support, or the parameters of the sensing structure , please refer to the above description of the sound pickup structure containing the liquid (or gel, or a combination of liquid and gel), the diaphragm or the support, for more related descriptions, and details are not repeated here.
  • the pickup structure may include a diaphragm, a liquid (or a gel, or a combination of liquid and gel), a support, and a mass.
  • the liquid (or gel, or a combination of liquid and gel), the diaphragm and the mass together form a resonant system (eg, a spring-mass system) having the above-mentioned second resonant frequency.
  • a resonant system eg, a spring-mass system
  • the liquid and the mass can be regarded as the mass in the resonant system
  • the diaphragm can be regarded as the spring in the resonant system.
  • the mass may be placed in a liquid (or gel, or a combination of liquid and gel).
  • the diaphragm and support are used to define the movement of the liquid (or gel, or a combination of liquid and gel).
  • the diaphragm may be located on the first side (eg, the upper side, the lower side) of the liquid (or gel, or a combination of liquid and gel), and the support may be located on the liquid (or gel, or liquid) and gel combination) on the second side (left, right) to restrict movement of the liquid (or gel, or combination of liquid and gel).
  • the number of diaphragms or supports is not limited, such as 2, 3, 4, and so on.
  • the mass can be in the shape of a square, a rectangular parallelepiped, a cylinder, a ring, or the like.
  • the thickness of the mass block (along the vibration direction of the diaphragm) is between 1 um and 5000 um. In some embodiments, the thickness of the mass is between 1 um and 3000 um. In some embodiments, the thickness of the mass is between 1 um and 1000 um. In some embodiments, the thickness of the mass is between 1 um and 500 um. In some embodiments, the thickness of the mass is between 1 um and 200 um. In some embodiments, the thickness of the mass is between 1 um and 50 um.
  • the area of the mass block (eg, the cross-sectional area or the bottom area along the direction perpendicular to the vibration direction of the diaphragm) is 0.1 mm 2 -100 mm 2 .
  • the area of the mass is 0.1 mm2-50 mm2.
  • the mass has an area of 0.1 mm2-10 mm2.
  • the mass has an area of 0.1 mm2-6 mm2.
  • the mass has an area of 0.1 mm2-3 mm2.
  • the area of the mass is 0.1-1 mm2.
  • the material density of the mass is 2g/cm3-100g/cm3. In some embodiments, the mass has a material density of 2 g/cm3 to 70 g/cm3. In some embodiments, the mass has a material density of 5 g/cm3 to 50 g/cm3. In some embodiments, the mass has a material density of 5 g/cm3 to 30 g/cm3. In some embodiments, the mass can be made of metals such as lead, copper, silver, tin, or an alloy of at least two metals.
  • the number of mass blocks included in the sound pickup structure is not limited, eg, one, two or more.
  • the two or more mass blocks can be respectively fixed on the upper and lower surfaces of the diaphragm.
  • the mass block when the mass block is located on the lower surface or both the upper and lower surfaces of the polymer membrane, the sensitivity of the sensing device will be further improved.
  • the size of the second resonant frequency can be adjusted by adjusting the properties of the liquid, the gel or its composition, the properties of the diaphragm, the properties of the support, or the parameters of the sensing structure.
  • Properties of the mass eg thickness, density, radius
  • the thicker the mass of the same area the greater the total mass thereof, and the lower the second resonant frequency.
  • under the same volume the greater the density of the mass, the greater the mass, and the lower the second resonant frequency of the sensing device.
  • the pickup structure may include a diaphragm, a support, and a mass.
  • the diaphragm and the mass together form a resonant system (eg, a spring-mass system) having the above-mentioned second resonant frequency.
  • the mass can be regarded as the mass in the resonance system, and the diaphragm can be regarded as the spring in the resonance system.
  • the mass may be positioned above the diaphragm.
  • the support can be connected with the PCB in the sensing structure to support the diaphragm and the mass.
  • the sensing device By adding a pickup structure to the sensing device, the sensing device is provided with a second resonant frequency that is smaller than the first resonant frequency.
  • the difference between the second resonant frequency and the first resonant frequency satisfies certain conditions, for example, between 1000Hz-10000Hz, compared with the sensing structure, the sensitivity of the sensing device with the pickup structure is in a wider frequency range (such as 0Hz-15000Hz, 2000Hz-13000Hz, 3000Hz-12000Hz) can be improved, especially the sensitivity of the sensing device near the second resonance frequency (such as 2000Hz-10000Hz, 3000Hz-4000Hz) can be improved.
  • the sensitivity of the sensing device may be increased by 3dB-30dB over a wider frequency range. In some embodiments, the sensitivity of the sensing device may be increased by 3dB-45dB over a wider frequency range. In some embodiments, the sensitivity of the sensing device may be increased by 6dB-30dB over a wider frequency range.
  • the sensing device described above includes a sound pickup structure, which is only for the purpose of illustration, and is not intended to limit the protection scope of this specification.
  • the sensing device may include two or more pickup structures, wherein each pickup structure is the same as or similar to the pickup structure described above.
  • the sensing structure can provide the sensing device with a first resonant frequency
  • the two sound pickup structures can provide the sensing device with a second resonant frequency and a third resonance frequency respectively.
  • Resonant frequency The second resonance frequency and the third resonance frequency may satisfy different relationships according to the actual application scenarios of the sensing device.
  • the third resonant frequency is a low frequency, a medium low frequency, and a medium high frequency (eg, in a frequency band less than 7000 Hz, 5000 Hz, 4000 Hz, 3000 Hz, 1000 Hz, or 500 Hz), and the second resonant frequency may be greater than the third resonant frequency and be a higher frequency band. (eg above 2000Hz, above 4000Hz, above 5000Hz, above 8000Hz).
  • the second resonance frequency and the third resonance frequency are both medium and low frequencies.
  • the sensing device When the sensing device has a resonant frequency in the low frequency or mid-low frequency range, its sensitivity at low frequencies will be higher than that of the sensing structure (such as the condenser microphone 100 and the piezoelectric microphone 200 ); when the sensing device is further in the range of When the high frequency or the mid-high frequency has a resonant frequency, its frequency response curve is also flatter in the mid-low frequency range, which is more conducive to the acquisition of effective voice signals in the frequency band.
  • the sensing structure such as the condenser microphone 100 and the piezoelectric microphone 200
  • the above description of applying the sound pickup structure to the air conduction microphone is for illustrative purposes only, and is not intended to limit the scope of protection of this specification.
  • the above sound pickup structure can also be applied to other equipment, such as bone conduction as a Microphones, accelerometers, pressure sensing structures, hydrophones, energy harvesters, gyroscopes, etc., are one of the main propagation modes of sound.
  • the above sound pickup structure can be applied to a microphone using bone conduction as one of the main sound propagation modes.
  • the resonant system with the second resonant frequency is formed by the vibration of the diaphragm in the longitudinal direction, and the vibration of the diaphragm in other directions may adversely affect the resonant system with the second resonant frequency ( If the frequency response curve is unstable).
  • the input signal strength of the bone conduction is relatively large.
  • the modulus of the diaphragm in the sound pickup structure (such as Young's modulus) It needs to be larger than a certain threshold, such as 5GPa, 10GPa, 20GPa, etc.
  • the second resonant frequency can be adjusted by adjusting the parameters of the sound pickup structure with reference to the application of the sound pickup structure to the air conduction microphone.
  • FIG. 3 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • 4 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • the sensing device 300 may include a sensing structure 300A (a condenser microphone) and a sound pickup structure 300B.
  • Sensing structure 300A may include transducer element 310, processor 320, PCB 330, and housing 350.
  • the transducer element 310 may include a diaphragm 311 and a back plate 312 .
  • the sensing structure 300A is the same as or similar to the condenser microphone 100 shown in FIG. 1 , and details are not described herein again.
  • the sensing structure 300A may include sound inlet holes (eg, sound inlet holes 370 shown in dashed boxes, sound inlet holes on housing 350 (not shown in FIG. 3 )).
  • the sound pickup structure 300B can communicate with the external sound of the sensing structure (as shown in FIG. 3 , air conduction sound 340 ) through the sound inlet hole.
  • an acoustic cavity 360 is formed between the pickup structure 300B and the sensing structure 300A.
  • the external air conduction sound 340 can act on the sound pickup structure 300B through the sound inlet hole, and cause the sound pickup structure 300B to vibrate and deform, thereby causing the sound pressure in the acoustic cavity 360 to change.
  • the transducer element 310 can convert the air conduction sound 340 into an electrical signal based on the sound pressure change in the acoustic cavity 360 .
  • the sensing structure 300A may provide the sensing device 300 with a first resonant frequency.
  • the pickup structure 300B may provide the sensing device 300 with a second resonant frequency.
  • the first resonance frequency and the second resonance frequency please refer to the descriptions of the first resonance frequency and the second resonance frequency above, which will not be repeated here.
  • the sound pickup structure 300B may be disposed between the transducer element 310 of the sensing structure 300A and the sound inlet hole 370 .
  • the sound pickup structure 300B may be disposed at the sound inlet hole 370 .
  • the pickup structure 300B may comprise a liquid, a gel, or a combination thereof.
  • the liquid, gel, or a combination thereof and the gas in the acoustic cavity 360 may together form a resonant system having the above-mentioned second resonant frequency.
  • the sound pickup structure 300B formed by the liquid, gel or a combination thereof may be substantially parallel to the diaphragm 311 .
  • substantially parallel means that the surface (such as the upper surface, the lower surface) of the liquid, the gel or the composition thereof is parallel to the surface (such as the upper surface and the lower surface) of the diaphragm 311 or the deviation is less than 3 degrees, 5 degrees, 8 degrees , 10 degrees, etc.
  • the liquid, gel, or a combination thereof can be attached to the PCB 330.
  • the liquid, gel, or combination thereof may have a viscosity such that it may remain fixed relative to the PCB 330.
  • the magnitude of the second resonant frequency can be adjusted by adjusting the properties (eg, viscosity, density) of the liquid, gel, or composition thereof.
  • properties eg, viscosity, density
  • the magnitude of the second resonance frequency please refer to the above description of the sound pickup structure comprising liquid, gel or a combination thereof, and details are not repeated here.
  • the sound pickup structure 300B can also form the sensing device 400 with the sensing structure 400A (piezoelectric microphone) shown in FIG. 4 .
  • the sensing structure 400A may include a transducer element 411 , a processor 420 , a PCB 430 , a housing 450 and a sound inlet 470 .
  • the sensing structure 400A is the same as or similar to the piezoelectric microphone 200 shown in FIG. 2 , and details are not described herein again.
  • the sensing device 400 is similar to the sensing device 300 , except that the types of sensing structures included are different. For more related descriptions, please refer to the description of the sensing device 300 in FIG. 3 , which will not be repeated here.
  • FIG. 5 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • 6 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • the sensing device 500 may include a sensing structure 500A (a condenser microphone) and a sound pickup structure 500B.
  • Sensing structure 500A may include transducer element 510, processor 520, PCB 530, and housing 550.
  • the transducer element 510 may include a diaphragm 511 and a back plate 512 .
  • the sensing structure 500A is the same as or similar to the capacitive microphone 100 shown in FIG. 1 or the sensing structure 300A shown in FIG. 3 , and details are not described herein again.
  • the sensing structure 500A may include sound inlet holes (sound inlet holes 570 shown in dashed boxes, sound inlet holes on housing 550 (not shown in FIG. 5 )).
  • the sound pickup structure 500B can communicate with the external sound of the sensing structure (as shown in FIG. 5 , air conduction sound 540 ) through the sound inlet hole.
  • an acoustic cavity 560 is formed between the pickup structure 500B and the sensing structure 500A.
  • the external sound 540 can act on the sound pickup structure 500B through the sound inlet hole, and cause the sound pickup structure 500B to vibrate and deform, thereby causing the sound pressure in the acoustic cavity 560 to change.
  • the transducer element 510 can convert the air conduction sound 540 into an electrical signal based on the sound pressure change in the acoustic cavity 560 .
  • the sensing structure may provide the sensing device 500 with a first resonant frequency.
  • the pickup structure 500B may provide the sensing device 500 with a second resonant frequency.
  • the first resonance frequency and the second resonance frequency please refer to the above description of the first resonance frequency and the second resonance frequency.
  • the sound pickup structure 500B may be disposed between the transducer element 510 of the sensing structure 500A and the sound inlet hole 570 .
  • the sound pickup structure 500B may be disposed at the sound inlet hole 570 .
  • the pickup structure 500B may include a liquid (or gel or combination thereof) 582 and a support 584 .
  • the liquid (or gel or combination thereof) 582 and the gas in the acoustic cavity 560 may together form a resonant system having the second resonant frequency described above.
  • the support 584 serves to limit the movement of the liquid (or gel or combination thereof) 582 .
  • Supports 584 may be fixedly attached to PCB 530 and located on the left and right sides of liquid (or gel or combination thereof) 582.
  • the magnitude of the second resonant frequency can be adjusted by adjusting the properties of the liquid (or gel or composition thereof) 582 (eg, viscosity, density) and/or the properties of the support 584 (eg, modulus).
  • the properties of the liquid (or gel or composition thereof) 582 eg, viscosity, density
  • the properties of the support 584 eg, modulus
  • the sound pickup structure 500B can also form a sensing device 600 with the sensing structure 600A (piezoelectric microphone) shown in FIG. 6 .
  • the sensing structure 600A may include a transducer element 611 , a processor 620 , a PCB 630 , a housing 650 and a sound inlet 670 .
  • the sensing structure 600A is the same as or similar to the piezoelectric microphone 200 shown in FIG. 2 or the sensing structure 400A shown in FIG. 4 , and details are not described herein again.
  • the sensing device 600 is similar to the sensing device 500 , except that the types of sensing structures included are different. For more related descriptions, please refer to the description about the sensing device 500 in FIG. 5 .
  • FIG. 7 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • 8 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • the sensing device 700 may include a sensing structure 700A (a condenser microphone) and a sound pickup structure 700B.
  • Sensing structure 700A may include transducer element 710, processor 720, PCB 730, and housing 750.
  • the transducer element 710 may include a diaphragm 711 and a back plate 712 .
  • the sensing structure 700A is the same as or similar to the capacitive microphone 100 shown in FIG. 1 or the sensing structure 300A or 500A shown in FIG. 3 or FIG. 5 , and details are not repeated here.
  • the sensing structure 700A may include sound inlet holes (sound inlet holes 770 shown in dashed boxes, sound inlet holes on housing 750 (not shown in FIG. 7 )).
  • the sound pickup structure 700B can communicate with the external sound of the sensing structure (as shown in FIG. 7 , air conduction sound 740 ) through the sound inlet hole.
  • an acoustic cavity 760 is formed between the pickup structure 700B and the sensing structure 700A.
  • the external sound 740 can act on the sound pickup structure 700B through the sound inlet hole, and cause the sound pickup structure 700B to vibrate and deform, thereby causing the sound pressure in the acoustic cavity 760 to change.
  • the transducer element 710 can convert the air conduction sound 740 into an electrical signal based on the sound pressure change in the acoustic cavity 760 .
  • the sensing structure may provide the sensing device 700 with a first resonant frequency.
  • the pickup structure 700B may provide the sensing device 700 with a second resonant frequency.
  • the first resonance frequency and the second resonance frequency please refer to the above description of the first resonance frequency and the second resonance frequency.
  • the sound pickup structure 700B may be disposed between the transducer element 710 of the sensing structure 700A and the sound inlet hole 770 .
  • the sound pickup structure 700B may be provided at the sound inlet hole 770 .
  • the pickup structure 700B may include a diaphragm.
  • the diaphragm can form a resonant system having the above-mentioned second resonant frequency.
  • the diaphragm can be connected to the PCB 730.
  • the magnitude of the second resonant frequency can be adjusted by adjusting the properties (eg, modulus) of the diaphragm.
  • the properties eg, modulus
  • the sound pickup structure 700B can also form a sensing device 800 with the sensing structure 800A (piezoelectric microphone) shown in FIG. 8 .
  • the sensing structure 800A may include a transducer element 811, a processor 820, a PCB 830, a housing 850 and a sound inlet hole 870.
  • the sensing structure 800A is the same as or similar to the piezoelectric microphone 200 shown in FIG. 2 or the sensing structure 400A or 600A shown in FIG. 4 or 6 , and details are not repeated here.
  • the sensing device 800 is similar to the sensing device 700 except that the types of sensing structures included are different. For more related descriptions, please refer to the description about the sensing device 700 in FIG. 7 .
  • FIG. 9 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification. 10 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • the sensing device 900 may include a sensing structure 900A (a condenser microphone) and a sound pickup structure 900B.
  • Sensing structure 900A may include transducer element 910, processor 920, PCB 930, and housing 950.
  • the transducer element 910 may include a diaphragm 911 and a back plate 912 .
  • the sensing structure 900A is the same as or similar to the capacitive microphone 100 shown in FIG. 1 or the sensing structures 300A, 500A or 700A shown in FIG. 3 , FIG. 5 or FIG. 7 , and details are not described herein again.
  • the sensing structure 900A may include sound inlet holes (sound inlet holes 970 shown in dashed boxes, sound inlet holes on housing 950 (not shown in FIG. 9 )).
  • the sound pickup structure 900B can communicate with the external sound of the sensing structure (as shown in FIG. 9 , air conduction sound 940 ) through the sound inlet hole.
  • an acoustic cavity 960 is formed between the pickup structure 900B and the sensing structure 900A.
  • the external sound 940 can act on the sound pickup structure 900B through the sound inlet hole, and cause the sound pickup structure 900B to vibrate and deform, thereby causing the sound pressure in the acoustic cavity 960 to change.
  • the transducer element 910 can convert the air conduction sound 940 into an electrical signal based on the sound pressure change in the acoustic cavity 960 .
  • the sensing structure may provide the sensing device 900 with a first resonant frequency.
  • the pickup structure 900B may provide the sensing device 900 with a second resonant frequency.
  • the first resonance frequency and the second resonance frequency please refer to the above description of the first resonance frequency and the second resonance frequency.
  • the sound pickup structure 900B may be disposed between the transducer element 910 of the sensing structure 900A and the sound inlet hole 970 .
  • the sound pickup structure 900B may be provided at the sound inlet hole 970 .
  • the pickup structure 900B may include a liquid (or gel or combination thereof) 982 and a diaphragm 984 . Liquid (or gel or combination thereof) 982 and diaphragm 984 may together form a resonant system having the second resonant frequency described above. Diaphragm 984 and PCB 930 are used to limit the movement of liquid (or gel or combination thereof) 982.
  • the PCB 930 can be fixedly connected to the liquid (or gel or composition thereof) 982 and the diaphragm 984, and is located on the left and right sides of the liquid (or gel or composition thereof) 982 and the diaphragm 984.
  • Diaphragms 984 are located on the upper and lower sides of liquid (or gel or combination thereof) 982 .
  • liquid (or gel or combination thereof) 982 and diaphragm 984 are substantially parallel to diaphragm 911 .
  • substantially parallel means that the surface of the liquid (or gel or its composition) 982 or the surface (eg upper surface, lower surface) of the diaphragm 984 and the surface (eg upper surface, lower surface) of the diaphragm 911 are parallel or the deviation is less than 3 degrees, 5 degrees, 8 degrees, 10 degrees, etc.
  • the magnitude of the second resonant frequency can be adjusted by adjusting the properties (eg, viscosity, density) of the liquid (or gel or composition thereof) 982 and/or the properties (eg, modulus) of the diaphragm 984 .
  • the properties eg, viscosity, density
  • the properties eg, modulus
  • the sound pickup structure 900B can also form a sensing device 1000 with the sensing structure 1000A (piezoelectric microphone) shown in FIG. 10 .
  • the sensing structure 1000A may include a transducer element 1011, a processor 1020, a PCB 1030, a housing 1050 and a sound inlet hole 1070.
  • the sensing structure 1000A is the same as or similar to the piezoelectric microphone 200 shown in Fig. 2 or the sensing structures 400A, 600A or 800A shown in Figs.
  • the sensing device 1000 is similar to the sensing device 900 , except that the types of sensing structures included are different. For more related descriptions, please refer to the description about the sensing device 900 in FIG. 9 .
  • FIG. 11 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • 12 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • the sensing device 1100 may include a sensing structure 1100A (a condenser microphone) and a sound pickup structure 1100B.
  • Sensing structure 1100A may include transducer element 1110, processor 1120, PCB 1130, and housing 1150.
  • the transducer element 1110 may include a diaphragm 1111 and a back plate 1112 .
  • the sensing structure 1100A is the same as or similar to the capacitive microphone 100 shown in FIG. 1 or the sensing structures 300A, 500A, 700A or 900A shown in FIGS. 3 , 5 , 7 or 9 , and details are not described herein again.
  • the sensing structure 1100A may include sound inlet holes (eg, sound inlet holes 1170 shown in dashed boxes, sound inlet holes on housing 1150 (not shown in FIG. 11 )).
  • the sound pickup structure 1100B can communicate with the external sound of the sensing structure through the sound inlet hole (air-conducted sound 1140 as shown in FIG. 11 ).
  • an acoustic cavity 1160 is formed between the pickup structure 1100B and the sensing structure 1100A.
  • the external sound 1140 can act on the sound pickup structure 1100B through the sound inlet hole, and cause the sound pickup structure 1100B to vibrate and deform, thereby causing the sound pressure in the acoustic cavity 1160 to change.
  • the transducer element 1110 can convert the air conduction sound 1140 into an electrical signal based on the sound pressure change in the acoustic cavity 1160 .
  • the sensing structure 1100A may provide the sensing device 1100 with a first resonant frequency.
  • the pickup structure 1100B may provide the sensing device 1100 with a second resonant frequency.
  • the first resonance frequency and the second resonance frequency please refer to the above description of the first resonance frequency and the second resonance frequency.
  • the sound pickup structure 1100B may be disposed between the transducer element 1110 and the sound inlet hole 1170 of the sensing structure 1100A.
  • the sound pickup structure 1100B may be disposed at the sound inlet hole 1170 and above the PCB 1130.
  • the pickup structure 1100B may include a diaphragm 1182 , a liquid (or gel or a combination thereof) 1184 and a support 1186 .
  • the diaphragm 1182 and the liquid (or gel or combination thereof) 1184 may together form a resonant system having the second resonant frequency described above.
  • the diaphragm 1182 can be fixed to the inner wall of the support member 1186 through its peripheral side, and the diaphragm 1182 and the support member 1186 can be used to restrict the movement of the liquid (or gel or a combination thereof) 1184 .
  • Supports 1186 can be fixedly attached to the PCB 1130 and are located on the left and right sides of the liquid (or gel or combination thereof) 1184.
  • Diaphragm 1182 may be located on the upper and lower sides of liquid (or gel or combination thereof) 1184, respectively.
  • the diaphragm 1182 or liquid (or gel or combination thereof) 1184 is substantially parallel to the diaphragm 1111 .
  • substantially parallel means that the surface (eg, upper surface, lower surface) of the diaphragm 1182 or liquid (or gel or a combination thereof) 1184 is parallel to or deviates less than 3 from the surface (eg, upper surface, lower surface) of the diaphragm 1111. degrees, 5 degrees, 8 degrees, 10 degrees, etc.
  • the size of the second resonant frequency can be adjusted.
  • the magnitude of the second resonant frequency please refer to the above description of the sound pickup structure including the diaphragm, the liquid (or the gel or the combination thereof) and/or the support.
  • the pickup structure 1100B can also form a sensing device 1200 with the sensing structure 1200A (piezoelectric microphone) shown in FIG. 12 .
  • the sensing structure 1200A may include a transducer element 1211 , a processor 1220 , a PCB 1230 , a housing 1250 and a sound inlet 1270 .
  • the sensing structure 1200A is the same as or similar to the piezoelectric microphone 200 shown in FIG. 2 or the sensing structures 400A, 600A, 800A or 1000A shown in FIGS.
  • the sensing device 1200 is similar to the sensing device 1100 , except that the types of sensing structures included are different. For more related descriptions, please refer to the description about the sensing device 1100 in FIG. 11 .
  • FIG. 13 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • 14 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • the sensing device 1300 may include a sensing structure 1300A (condenser microphone) and a sound pickup structure 1300B.
  • Sensing structure 1300A may include transducer element 1310, processor 1320, PCB 1330, and housing 1350.
  • the transducer element 1310 may include a diaphragm 1311 and a back plate 1312 .
  • the sensing structure 1300A is the same as or similar to the capacitive microphone 100 shown in FIG. 1 or the sensing structure 300A, 500A, 700A, 900A or 1100A shown in FIGS.
  • the sensing structure 1300A may include sound inlet holes (eg, sound inlet holes 1370 shown in dashed boxes, sound inlet holes on housing 1350 (not shown in FIG. 13 )).
  • the sound pickup structure 1300B can communicate with the external sound of the sensing structure through the sound inlet hole (air-conducted sound 1340 as shown in FIG. 13 ).
  • an acoustic cavity 1360 is formed between the pickup structure 1300B and the sensing structure 1300A.
  • the external sound 1340 can act on the sound pickup structure 1300B through the sound inlet hole, and cause the sound pickup structure 1300B to vibrate and deform, thereby causing the sound pressure in the acoustic cavity 1360 to change.
  • the transducer element 1310 can convert the air conduction sound 1340 into an electrical signal based on the sound pressure change in the acoustic cavity 1360 .
  • sensing structure 1300A may provide sensing device 1300 with a first resonant frequency.
  • the pickup structure 1300B may provide the sensing device 1300 with a second resonant frequency.
  • first resonance frequency and the second resonance frequency please refer to the above description of the first resonance frequency and the second resonance frequency.
  • the sound pickup structure 1300B may be disposed between the transducer element 1310 and the sound inlet hole 1370 of the sensing structure 1300A.
  • the sound pickup structure 1300B may be disposed at the sound inlet hole 1370 and above the PCB 1330.
  • the pickup structure 1300B may include a mass 1382 , a diaphragm 1384 and a support 1386 .
  • the mass 1382 and the diaphragm 1384 may jointly form a resonant system having the above-mentioned second resonant frequency.
  • the support member 1386 can be fixedly connected with the PCB 1330, and is located on the left and right sides of the diaphragm 1384 and fixedly connected with the diaphragm 1384.
  • the mass 1382 is located on the upper side of the diaphragm 1384 .
  • the mass 1382 and the diaphragm 1384 are substantially parallel to the diaphragm 1311 .
  • substantially parallel means that the surface (such as the upper surface and the lower surface) of the mass block 1382 or the diaphragm 1384 is parallel to the surface (such as the upper surface and the lower surface) of the diaphragm 1311 or the deviation is less than 3 degrees, 5 degrees, 8 degrees, 10 degrees etc.
  • the adjustment can be made The magnitude of the second resonant frequency.
  • the magnitude of the second resonant frequency please refer to the above description at the sound pickup structure including the diaphragm, the mass, and/or the support.
  • the sound pickup structure 1300B can also form a sensing device 1400 with the sensing structure 1400A (piezoelectric microphone) shown in FIG. 14 .
  • the sensing structure 1400A may include a transducer element 1411 , a processor 1420 , a PCB 1430 , a housing 1450 and a sound inlet 1470 .
  • the sensing structure 1400A is the same as or similar to the piezoelectric microphone 200 shown in FIG. 2 or the sensing structures 400A, 600A, 800A or 1200A shown in FIGS.
  • the sensing device 1400 is similar to the sensing device 1300 except that the types of sensing structures included are different. For more related descriptions, please refer to the description about the sensing device 1300 in FIG. 13 .
  • 15 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • 16 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • the sensing device 1500 may include a sensing structure 1500A (a condenser microphone) and a sound pickup structure 1500B.
  • Sensing structure 1500A may include transducer element 1510, processor 1520, PCB 1530, and housing 1550.
  • the transducer element 1510 may include a diaphragm 1511 and a back plate 1512 .
  • the sensing structure 1500A is the same as or similar to the condenser microphone 100 shown in FIG. 1 or the sensing structure 300A, 500A, 700A, 900A, 1100A or 1300A shown in FIGS. No longer.
  • the sensing structure 1500A may include sound inlet holes (sound inlet holes 1570 as shown in dashed boxes, sound inlet holes on housing 1550 (not shown in FIG. 15 )).
  • the sound pickup structure 1500B can communicate with the external sound of the sensing structure through the sound inlet hole (air-conducted sound 1540 as shown in FIG. 15 ).
  • an acoustic cavity 1560 is formed between the pickup structure 1500B and the sensing structure 1500A.
  • the external sound 1540 can act on the sound pickup structure 1500B through the sound inlet hole, and cause the sound pickup structure 1500B to vibrate and deform, thereby causing the sound pressure in the acoustic cavity 1560 to change.
  • sensing structure 1500A may provide sensing device 1500 with a first resonant frequency.
  • the pickup structure 1500B may provide the sensing device 1500 with a second resonant frequency.
  • first resonance frequency and the second resonance frequency please refer to the above description of the first resonance frequency and the second resonance frequency.
  • the sound pickup structure 1500B may be disposed between the transducer element 1510 of the sensing structure 1500A and the sound inlet hole 1570 .
  • the sound pickup structure 1500B may be disposed at the sound inlet hole 1570 and above the PCB 1530.
  • the pickup structure 1500B may include a diaphragm 1582 , a mass 1584 , a liquid (or gel or a combination thereof) 1586 and a support 1588 .
  • Diaphragm 1582, mass 1584, and liquid (or gel or combination thereof) 1586 may collectively form a resonant system having the second resonant frequency described above.
  • Diaphragm 1582 and support 1588 are used to limit movement of liquid (or gel or combination thereof) 1586 and/or mass 1584.
  • the supports 1588 can be fixedly connected to the PCB 1530 and are located on the left and right sides of the liquid (or gel or combination thereof) 1586 and the diaphragm 1582.
  • Diaphragm 1582 may be located on the upper and lower sides of liquid (or gel or combination thereof) 1586, respectively.
  • the outside of the mass 1584 is surrounded by a liquid (or gel or combination thereof) 1586.
  • the diaphragm 1582 , the mass 1584 or the liquid (or gel or a combination thereof) 1586 is substantially parallel to the diaphragm 1511 .
  • substantially parallel means that the surface (eg, upper surface, lower surface) of diaphragm 1582, mass 1584, or liquid (or gel or a combination thereof) 1586 is parallel to the surface (eg, upper surface, lower surface) of diaphragm 1511 Or the deviation is less than 3 degrees, 5 degrees, 8 degrees, 10 degrees, etc.
  • the magnitude of the second resonant frequency can be adjusted.
  • properties of diaphragm 1582 eg, modulus
  • properties of mass 1584 eg, mass, height, density, radius
  • properties of liquid (or gel or a combination thereof) 1586 eg, viscosity, density
  • properties of the support 1588 eg, modulus
  • the pickup structure 1500B can also form a sensing device 1600 with the sensing structure 1600A (piezoelectric microphone) shown in FIG. 16 .
  • the sensing structure 1600A may include a transducer element 1611, a processor 1620, a PCB 1630 and a housing 1650.
  • the sensing structure 1600A is the same as or similar to the piezoelectric microphone 200 shown in FIG. 2 or the sensing structure 400A, 600A, 800A, 1200A or 1400A shown in FIGS. .
  • the sensing device 1600 is similar to the sensing device 1500 , except that the types of sensing structures included are different. For more related descriptions, please refer to the description about the sensing device 1500 in FIG. 15 .
  • 17 is a frequency response curve of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • the sensing device may include an air-conducting microphone and a pickup structure (such as the pickup structures shown in FIGS. 3-16 ).
  • the frequency response curve 1710 is the frequency response curve of the air conduction microphone
  • the frequency response curve 1720 is the frequency response curve of the sound pickup structure.
  • the abscissa of the frequency response curve 1710 or 1720 represents the frequency, in Hertz Hz, and the ordinate represents the sensitivity, in volts decibels dB.
  • the frequency response curve 1710 includes a formant 1712, which corresponds to the resonant frequency (also referred to as the first resonant frequency) of the air conduction microphone (f 0 in FIG. 17 ).
  • the frequency response curve 1720 includes a formant 1722, which corresponds to the resonant frequency (also referred to as the second resonant frequency) of the pickup structure (f 1 in FIG. 17 ).
  • the difference between the first resonant frequency and the second resonant frequency ( ⁇ f in FIG. 17 ) is between 1000 Hz-10000 Hz.
  • the second resonant frequency is lower than the first resonant frequency, so that the sensitivity of the sensing device in a frequency range lower than the first resonant frequency, especially near the second resonant frequency can be improved.
  • the sensor devices with sound pickup structures operate in the middle and low frequency bands (eg, 3000 Hz) where voice information is richer. –4000Hz) has higher sensitivity.
  • the difference in sensitivity between the two ( ⁇ v in Figure 17) is between 3dB–30dB.
  • the difference in sensitivity between the two ( ⁇ v in Figure 17 ) is between 3dB and 45dB.
  • the sensitivity difference between the two ( ⁇ v in Figure 17) is between 6dB-30dB.
  • FIG. 18 is a schematic diagram of an exemplary sensing device shown in accordance with some embodiments of the present specification.
  • the sensing device may include a sensing structure (a microphone using bone conduction as one of the main sound propagation modes) and a sound pickup structure (the sound pickup structure described in FIG. 13 or 14 ).
  • the frequency response curve 1810 is the frequency response curve of the sensing structure
  • the frequency response curve 1820 is the frequency response curve of the sound pickup structure.
  • the frequency response curve 1810 includes a formant 1812, which corresponds to the resonant frequency (also referred to as the first resonant frequency) of the sensing structure (f 0 in FIG. 18 ).
  • the frequency response curve 1820 includes a formant 1822, which corresponds to the resonant frequency (also referred to as the second resonant frequency) of the pickup structure (f 1 in FIG. 18 ).
  • the second resonance frequency is smaller than the first resonance frequency, so that the sensitivity of the sensing structure can be improved.
  • the frequency response curve of the sensing device shown in FIG. 17 (wherein the sensing structure is an air conduction microphone) is the frequency response curve under ideal conditions.
  • the sensing structure is an air conduction microphone
  • the variation trend of its actual frequency response curve may be the same or similar to the variation trend of the frequency response curve shown in FIG. 18 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Otolaryngology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Pressure Sensors (AREA)

Abstract

一种传感装置(300),传感装置(300)包括:传感结构(300A),传感结构(300A)具有第一谐振频率;以及拾音结构(300B),被配置为通过进声孔(370)与传感装置(300)的气导声音(340)连通;拾音结构(300B)与传感结构(300A)之间形成声学腔体(360);当拾音结构(300B)响应于经由进声孔(370)传递的气导声音(340)而产生振动时,振动引起声学腔体(360)内的声压发生变化,传感结构(300A)基于声学腔体(360)内的声压变化将气导声音(340)转为电信号;其中,拾音结构(300B)为传感装置(300)提供第二谐振频率,第二谐振频率与第一谐振频率的差值在1000Hz–10000Hz的范围内。

Description

传感装置
交叉引用
本说明书要求2021年4月23日提交的申请号为202110445739.3的中国申请的优先权,其全部内容通过引用并入本文。
技术领域
本说明书涉及声学技术领域,特别涉及传感装置。
背景技术
传感装置(例如,麦克风)接收外部的振动信号,在传感装置的谐振频率附近,由于谐振作用,振动信号会产生较大的振幅。但是,在传感装置的非谐振频率处,振动信号产生的振幅相对较小,由此导致传感装置只能在较窄的频段范围内具有较高的灵敏度。因此,希望提供一种在更宽的频段范围内都具有较高灵敏度的传感装置。
发明内容
本说明书实施例可以提供一种传感装置,所述传感装置包括:传感结构,所述传感结构具有第一谐振频率;以及拾音结构,被配置为通过进声孔与所述传感装置的外部声音连通,所述拾音结构与所述传感结构之间形成声学腔体,当所述拾音结构响应于经由所述进声孔传递的气导声音而产生振动时,所述振动引起所述声学腔体内的声压发生变化,所述传感结构基于所述声学腔体内的声压变化将所述气导声音转为电信号,其中,所述拾音结构为所述传感装置提供第二谐振频率,所述第二谐振频率与所述第一谐振频率的差值在1000–10000Hz的范围内。
在一些实施例中,所述拾音结构包括液体或凝胶;以及所述液体或所述凝胶与所述声学腔体内的气体共同形成具有所述第二谐振频率的谐振系统。
在一些实施例中,所述拾音结构还包括支撑件,所述支撑件用于限定所述液体或所述凝胶的运动。
在一些实施例中,所述支撑件包括连接于或接触所述传感结构的管柱;以及所述管柱包括直型管柱或曲型管柱。
在一些实施例中,所述传感结构包括印刷电路板;以及所述拾音结构包括振膜,所述振膜连接于所述印刷电路板。
在一些实施例中,所述拾音结构包括振膜、液体和支撑件或包括振膜、凝胶和支撑件;所述液体和所述振膜共同形成具有所述第二谐振频率的谐振系统或所述凝胶和所述振膜共同形成具有所述第二谐振频率的谐振系统;以及所述振膜和所述支撑件用于限定所述液体或凝胶的运动。
在一些实施例中,所述拾音结构包括振膜和液体或包括振膜和凝胶;以及所述液体和所述振膜共同形成具有所述第二谐振频率的谐振系统或者所述凝胶和所述振膜共同形成具有所述第二谐振频率的谐振系统。
在一些实施例中,所述拾音结构包括振膜、液体、支撑件和质量块或者包括振膜、凝胶、支撑件和质量块;所述液体、所述振膜和所述质量块共同形成具有所述第二谐振频率的谐振系统或所述 凝胶、所述振膜和所述质量块共同形成具有所述第二谐振频率的谐振系统;以及所述振膜和支撑件用于限定所述液体或凝胶的运动;以及所述质量块置于所述液体或凝胶中。
在一些实施例中,所述拾音结构包括振膜、支撑件和质量块;所述振膜和所述质量块共同形成具有所述第二谐振频率的谐振系统;以及所述支撑件用于支撑所述振膜和所述质量块。
在一些实施例中,所述振膜的模量为100MPa-300GPa。
在一些实施例中,所述振膜的模量为5GPa-50GPa。
在一些实施例中,所述传感结构包括第二振膜;以及所述振膜的模量为所述第二振膜模量的1/100-1/10。
在一些实施例中,所述振膜呈圆形;以及所述振膜的半径为500um-3mm。
在一些实施例中,所述液体的密度为0g/cm3-3g/cm3。
在一些实施例中,所述液体的黏度为1cst-3000cst。
在一些实施例中,所述第二谐振频率低于所述第一谐振频率。
在一些实施例中,所述第二谐振频率为2000Hz-10000Hz。
附加的特征将在下面的描述中部分地阐述,并且对于本领域技术人员来说,通过查阅以下内容和附图将变得显而易见,或者可以通过实例的产生或操作来了解。本说明书的特征可以通过实践或使用以下详细实例中阐述的方法、工具和组合的各个方面来实现和获得。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的电容式气导麦克风的结构示意图;
图2是根据本说明书一些实施例所示的压电式气导麦克风的结构示意图;
图3是根据本说明书一些实施例所示的示例性的传感装置的结构示意图;
图4是根据本说明书一些实施例所示的示例性的传感装置的结构示意图;
图5是根据本说明书一些实施例所示的示例性的传感装置的结构示意图;
图6是根据本说明书一些实施例所示的示例性的传感装置的结构示意图;
图7是根据本说明书一些实施例所示的示例性的传感装置的结构示意图;
图8是根据本说明书一些实施例所示的示例性的传感装置的结构示意图;
图9是根据本说明书一些实施例所示的示例性的传感装置的结构示意图;
图10是根据本说明书一些实施例所示的示例性的传感装置的结构示意图;
图11是根据本说明书一些实施例所示的示例性的传感装置的结构示意图;
图12是根据本说明书一些实施例所示的示例性的传感装置的结构示意图;
图13是根据本说明书一些实施例所示的示例性的传感装置的结构示意图;
图14是根据本说明书一些实施例所示的示例性的传感装置的结构示意图;
图15是根据本说明书一些实施例所示的示例性的传感装置的结构示意图;
图16是根据本说明书一些实施例所示的示例性的传感装置的结构示意图;
图17是根据本说明书一些实施例所示的示例性的传感装置的频响曲线;
图18是根据本说明书一些实施例所示的示例性的传感装置的频响曲线。
具体实施例
为了更清楚地说明本说明书的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其他类似情景。应当理解,给出这些示例性实施例仅仅是为了使相关领域的技术人员能够更好地理解进而实现本说明书,而并非以任何方式限制本说明书的范围。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”。
在本说明书的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“高度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“垂直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本说明书的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本说明书的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本说明书中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本说明书中的具体含义。
在本说明书中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
本说明书中一些实施例提供了传感装置。该传感装置可以包括传感结构和拾音结构。该传感结构具有第一谐振频率。该拾音结构可以通过进声孔与传感装置的外部声音连通(如气导声音)并与传感结构之间形成声学腔体。当拾音结构响应于经由该进声孔传递的气导声音而产生振动时,该振动可以引起声学腔体内的声压发生变化。传感结构可以基于声学腔体内的声压变化将气导声音转为电信号。其中,拾音结构可以为传感装置提供第二谐振频率。在一些实施例中,第二谐振频率小于第一谐振频率。当第二谐振频率与第一谐振频率差值满足一定的条件,例如,在1000Hz–10000Hz之间时,相比于传感结构,含拾音结构的传感装置的灵敏度在更宽的频率范围内都能有所提升。
在一些实施例中,拾音结构可以包括液体、凝胶、支撑件(如管柱)、振膜(如高分子膜)、质量块等或其任意组合。液体、凝胶或质量块可以与上述声学腔体内的气体共同形成具有上述第二谐振频率的谐振系统(如弹簧-质量系统),又或者,液体、凝胶或质量块可以与振膜共同形成具有上述第二谐振频率的谐振系统(如弹簧-质量系统)。支撑件可以用于限制液体、凝胶、振膜或质量块的运动。在一些实施例中,可以通过调整形成所述拾音结构的物质的参数(例如,液体或凝胶的黏度、液体或凝胶的密度、振膜的模量、振膜的尺寸、质量块的重量等),改变第二谐振频率的大小以及第一谐振频率和第二谐振频率之间的大小关系,从而达到,例如,提高传感装置的灵敏度、可靠性或使传感装置的输出增益在所需频段(例如,中低频)更加稳定、传感装置的频响曲线更加平坦等目的。
在一些实施例中,传感结构可以包括基体结构和叠层结构。在一些实施例中,基体结构可以为内部具有中空部分的规则或不规则的立体结构,例如,可以是中空的框架结构体,包括但不限于矩形框、圆形框、正多边形框等规则形状,以及任何不规则形状。叠层结构可以位于基体结构的中空部分或者至少部分悬空设置在基体结构中空部分的上方。在一些实施例中,叠层结构的至少部分结构与基体结构通过物理方式进行连接。例如,叠层结构可以为悬臂梁,该悬臂梁可以为板状结构体,悬臂梁的一端与基体结构的上表面、下表面或基体结构中中空部分所在的侧壁连接,悬臂梁的另一端不与基体结构连接或接触,使得悬臂梁的另一端悬空设置于基体结构的中空部分。又例如,叠层结构可以包括振膜层(也称为悬膜结构),悬膜结构与基体结构固定连接,叠层结构设置于悬膜结构的上表面或下表面。再例如,叠层结构可以包括质量元件(如质量块)和支撑臂,质量元件通过支撑臂与基体结构固定连接,该支撑臂的一端与基体结构连接,支撑臂的另一端与质量元件连接,使得质量元件和支撑臂的部分区域悬空设置于基体结构中空部分。需要知道的是,本说明书中所说的“位于基体结构的中空部分”或“悬空设置于基体结构的中空部分”可以表示悬空设置于基体结构中空部分的内部、下方或者上方。
在一些实施例中,叠层结构可以包括振动单元和声学换能单元。具体地,基体结构可以基于外部振动信号产生振动,振动单元响应于基体结构的振动发生形变;声学换能单元基于振动单元的形变产生电信号。需要知道的是,这里对振动单元和声学换能单元的描述只是出于方便介绍叠层结构工作原理的目的,并不限制叠层结构的实际组成和结构。事实上,振动单元可以不是必须的,其功能完全可以由声学换能单元实现。例如,对声学换能单元的结构做一定改变后可以由声学换能单 元直接响应于基体结构的振动而产生电信号。需要注意的是,基体结构不限于相对传感结构的壳体独立的结构,在一些实施例中,基体结构还可以为传感结构壳体的一部分。
在一些实施例中,传感结构可以基于外部信号,例如力学信号(如压力、机械振动)、声信号(如声波)、电信号、光信号、热信号等,产生形变和/或位移。所述形变和/或位移可以通过传感结构的换能部件进一步转换为目标信号。所述目标信号可以是电信号、力学信号(如机械振动)、声信号(如声波)、电信号、光信号、热信号等。在一些实施例中,传感结构可以是麦克风(例如,气传导麦克风或以骨传导为声音主要传播方式之一的麦克风)、加速度计、压力传感结构、水听器、能量收集器、陀螺仪等。气传导麦克风是指可以接收空气传导声波并将其转换成电信号的麦克风,以骨传导为声音主要传播方式之一的麦克风是指至少可以接收固体振动并将其转换成电信号的麦克风。为了便于说明,本说明书实施例以传感结构为气导麦克风为例,其并不诣在限制本说明书的保护范围。
图1是根据本说明书一些实施例所示的电容式气导麦克风的结构示意图。图2是根据本说明书一些实施例所示的压电式气导麦克风的结构示意图。
在一些实施例中,传感结构可以包括电容式麦克风。以图1所示的电容式麦克风100为例,电容式麦克风100可以包括换能元件110、处理器120、印刷电路板(printed circuit board,PCB)130、壳体150、和进声孔160。在一些实施例中,换能元件110可以将外部振动信号(如气导声音140)转换为电信号。如图1所示,换能元件110可以包括振膜111和背板112。振膜111与背板112可以构成电容。例如,振膜111和背板112可以平行放置且距离较近,分别构成该电容的两极。当气导声音140经由进声孔160引起振膜111产生振动时,振膜111与背板112之间的距离会发生改变,从而改变了电容器的电容。在电压维持不变的情况下,电容器内的电量发生变化,从而产生电信号,实现声音的采集。
在一些实施例中,处理器120可以从换能元件110获取该电信号并进行信号处理。在一些实施例中,该信号处理可以包括调频处理、调幅处理、滤波处理、降噪处理等。处理器120可以包括微控制器、微处理器、专用集成电路(application specific integrated circuit,ASIC)、专用指令集处理器(application specific instruction-set processor,ASIP)、中央处理器(central processing unit,CPU)、物理运算处理器(physics processing unit,PPU)、数字信号处理器(digital signal processing,DSP)、现场可编程门阵列(field-programmable gate array,FPGA)、高级精简指令集计算机(advanced RISC machine,ARM)、可编程逻辑器件(programmable logic device,PLD)或其他类型的处理电路或处理器。
在一些实施例中,PCB 130上可以设置(例如,通过激光刻蚀、化学刻蚀等方式)电路及电容式麦克风100的其他元件(如换能元件110、处理器120)。在一些实施例中,换能元件110和/或处理器120可以通过导电胶(例如,导电银胶、铜粉导电胶、镍碳导电胶、银铜导电胶等)固定连接于PCB 130上。所述导电胶可以是导电胶水、导电胶膜、导电胶圈、导电胶带等。在一些实施例中,换能元件110和/或处理器120可以分别通过PCB 130上设置的电路与其他元器件电连接。在一 些实施例中,换能元件110和处理器120之间可以通过导线(例如金线、铜线、铝线等)直接连接。
在一些实施例中,PCB 130可以是酚醛PCB纸基板、复合PCB基板、玻纤PCB基板、金属PCB基板、积层法多层板PCB基板等。例如,PCB 130可以是环氧玻纤布制成的FR-4等级的玻纤PCB基板。在一些实施例中,PCB 130也可以是柔性印刷电路板(Flexible Printed Circuit board,FPC)。
在一些实施例中,壳体150可以为内部具有腔体(即中空部分)的规则或不规则的立体结构,例如,可以是中空的框架结构体,包括但不限于矩形框、圆形框、正多边形框等规则形状,以及任何不规则形状。在一些实施例中,可以对换能元件110、处理器120和PCB 130及其上设置的电路和其他元器件进行密封。在一些实施例中,壳体150上可以包括进声孔,通过该进声孔,可以使得换能元件110与外部声音连通。
在一些实施例中,壳体150可以采用金属(例如,不锈钢、铜等)、塑料(例如,聚乙烯(polyethylene,PE)、聚丙烯(polypropylene,PP)、聚氯乙烯(polyvinyl chloride,PVC)、聚苯乙烯(polystyrene,PS)、丙烯腈─丁二烯─苯乙烯共聚合物(acrylonitrile butadiene styrene,ABS)、复合材料(如金属基复合材料或非金属基复合材料)等。仅作为示例,壳体150所用的材料可以为黄铜。
在一些实施例中,传感结构可以包括压电式麦克风,压电式麦克风可以包括上述基体结构和上述叠层结构(如悬臂梁、支撑臂或质量单元)。以图2所示压电式麦克风200为例,压电式麦克风200可以包括换能元件、处理器220、PCB 230、壳体250和进声孔260。换能元件可以包括振膜211和压电元件(未在图2中示出)。振膜211可以与压电元件(未在图2中示出)连接或接触。在一些实施例中,压电元件(未在图2中示出)可以贴附在振膜211上,当气导声音240经由进声孔260引起壳体250或振膜211产生振动时,可以带动压电元件(未在图2中示出)产生形变,进而通过压电元件(未在图2中示出)在形变时的压电效应产生电信号,实现声音的采集。在一些实施例中,压电式麦克风200与电容式麦克风100不同之处在于换能元件,其他元件如,处理器、PCB、壳体、进声孔等,是相同或相似的。更多关于处理器220、PCB 230、壳体250和进声孔260的描述可参考关于处理器120、PCB 130、壳体150和进声孔160的描述。
需要说明的是,以上对压电式麦克风(如压电式麦克风200)中的换能元件的描述仅是示例,不诣在限制本说明书的范围。在一些实施例中,压电式麦克风中的换能元件可以仅包括振膜,且该振膜是压电薄膜。气导声音经由进声孔引起振膜振动形变,进而通过振膜形变时的压电效应产生的电信号实现声音的采集。
在一些实施例中,为了改善传感结构对气导声音的响应能力,可以将传感结构与一个或多个额外的拾音结构进行组合形成传感装置。该传感结构的结构可以与前述的传感结构(如电容式麦克风100、压电式麦克风200)结构相同或类似。
在一些实施例中,拾音结构可以设置于传感结构的换能元件和进声孔之间。该拾音结构可以被配置为通过所述进声孔与传感装置的外部声音连通(如气导声音)且与传感结构之间形成声学腔体。当拾音结构响应于经由该进声孔传递的气导声音而产生振动时,该振动可以引起声学腔体内的 声压发生变化,传感结构基于声学腔体内的声压变化将气导声音转为电信号,从而实现声音的采集。
在一些实施例中,传感结构可以为传感装置提供第一谐振频率,拾音结构可为传感装置提供第二谐振频率。在一些实施例中,第一谐振频率与第二谐振频率的差值可以在1000Hz-10000Hz的范围内。在一些实施例中,第一谐振频率与第二谐振频率的差值可以在2000Hz-8000Hz之间。在一些实施例中,第一谐振频率与第二谐振频率的差值可以在3000Hz-7000Hz之间。在一些实施例中,第一谐振频率与第二谐振频率的差值可以在4000Hz-6000Hz之间。在一些实施例中,该第一谐振频率与传感结构本身的属性(如形状、材料、结构)相关。在一些实施例中,该第一谐振频率可以在10000Hz以上。在一些实施例中,该第一谐振频率可以在12000Hz以上。在一些实施例中,该第一谐振频率可以在15000Hz以上。
在一些实施例中,该第二谐振频率小于第一谐振频率。在一些实施例中,第二谐振频率可以在2000Hz-10000Hz之间。在一些实施例中,第二谐振频率可以在2000Hz-8000Hz之间。在一些实施例中,第二谐振频率可以在3000Hz-4000Hz之间。在一些实施例中,第二谐振频率可以在3200Hz-3800Hz之间。在一些实施例中,第二谐振频率可以在3400Hz-3600Hz之间。在一些实施例中,第二谐振频率可以在2000Hz-4000Hz之间。在一些实施例中,第二谐振频率可以在4000Hz-10000Hz之间。相比于未组合拾音结构的传感结构,含拾音结构的传感装置在较宽的频率范围的灵敏度有所提升。
在一些实施例中,拾音结构由与传感结构连接或接触的固体结构(如支撑件、质量块、振膜)、液体、凝胶等或其组合形成。该液体、凝胶或质量块可以与上述拾音结构与传感结构之间形成的声学腔体内的气体共同形成具有上述第二谐振频率的谐振系统,又或者,液体、凝胶或质量块可以与振膜共同形成具有上述第二谐振频率的谐振系统(如弹簧-质量系统)。支撑件可用于限定液体、凝胶、振膜或质量块的运动。在一些实施例中,第二谐振频率的大小以及第二谐振频率和第一谐振频率的大小关系可以与拾音结构的参数和/或传感结构的参数相关。在一些实施例中,为获得传感装置的理想的输出频响或满足实际应用要求的输出频响,可以通过计算机模拟、模体实验等方式确定拾音结构的参数和/或传感结构的参数的范围。在一些实施例中,可以基于仿真模拟,通过控制变量的方式,逐个确定各因素分别对传感装频响的影响。
在一些实施例中,不同因素之间对传感装置频响的影响存在关联,因此可以以相应的参数对或者参数组的方式,确定参数对或参数组对传感装置频响的影响。仅仅出于说明的目的,以质量块、振膜和支撑件组合形成拾音结构为例,传感装置的第二谐振频率以及灵敏度与拾音结构的参数和/或传感结构的参数的关系如下公式(1)所示:
(S,f)=g(K 1,K 2,V,R,h,ρ)      (1)
其中,S表示传感装置的灵敏度,f表示第二谐振频率,K 1表示振膜的模量(如杨氏模量),K 2表示支撑件的模量(如杨氏模量),V表示声学腔体的体积,R表示质量块的半径,h表示质量块的高度,以及ρ表示质量块的密度。
在一些实施例中,第二谐振频率可随着振膜的模量的增大而增大。在一些实施例中,第二谐 振频率可随着支撑件的模量的增大而增大。在一些实施例中,第二谐振频率可随着质量块在垂直于振膜振动方向的尺寸(如半径、面积)的增大而先减小后增大。在一些实施例中,第二谐振频率可随着质量块沿着振膜振动方向的高度的增大而减小。在一些实施例中,第二谐振频率可随着质量块的密度的增大而减小。
在一些实施例中,传感装置的灵敏度可随着振膜的模量的增大而减小。在一些实施例中,传感装置的灵敏度可随着支撑件的模量的增大而减小。在一些实施例中,传感装置的灵敏度可随着腔体体积的增大而先增大后减小。在一些实施例中,传感装置的灵敏度可随着质量块的半径(如沿垂直于振膜振动方向)的增大而先增大后减小。传感装置的灵敏度可随着质量块的高度(如沿振膜振动方向)的增大而增大。在一些实施例中,传感装置的灵敏度可随着质量块的密度的增大而增大。
在一些实施例中,拾音结构可以包括液体、凝胶或其组合物。该液体、凝胶或其组合物可以与上述声学腔体内的气体共同形成具有上述第二谐振频率的谐振系统(如弹簧-质量系统)。例如,可以将液体、凝胶或其组合物当成该谐振系统中的质量,并将声学腔体内的气体当成该谐振系统中的弹簧。在一些实施例中,该液体、凝胶或其组合物构成的拾音结构可以与传感结构中的振膜(也称之为第二振膜)基本平行。此处使用的“基本平行”表示拾音结构的表面(如上表面、下表面)与第二振膜的表面(如上表面、下表面)平行或二者之间偏差小于3度、5度、8度、10度等。
在一些实施例中,传感结构中的PCB可以用于限制该液体、凝胶或其组合物的运动。例如,液体、凝胶或其组合物被限定在PCB中的一个有限空间内,从而使其只能在该有限空间内运动。若液体、凝胶或其组合物的黏度达到一定阈值,液体、凝胶或其组合物可以黏附在该有限空间的内壁上。
为了使得拾音结构提供的第二谐振频率在目标频率范围内,在一些实施例中,液体的密度可以在0g/cm3–3g/cm3之间。在一些实施例中,液体的密度可以在0g/cm3–2g/cm3之间。在一些实施例中,液体的密度可以在0g/cm3–1g/cm3之间。在一些实施例中,液体的密度可以在1g/cm3–3g/cm3之间。在一些实施例中,凝胶的黏度可以在1里斯托克斯(cst)–3000里斯托克斯(cst)之间。在一些实施例中,凝胶的黏度可以在1cst–1000cst之间。在一些实施例中,凝胶的黏度可以在50cst–900cst之间。在一些实施例中,凝胶的黏度可以在100cst–700cst之间。在一些实施例中,凝胶的黏度可以在200cst–500cst之间。在一些实施例中,凝胶的黏度可以在300cst–400cst之间。在一些实施例中,凝胶的黏度可以在1cst–500cst之间。在一些实施例中,凝胶的黏度可以在500cst–3000cst之间。
在一些实施例中,在选择液体或凝胶的种类时,还可以考虑其安全性(如不易燃不易爆)、稳定性(如不易挥发、不发生高温变质等)等。例如,液体可以包括油(例如硅油、甘油、蓖麻油、机油、润滑油、液压油(例如航空液压油)等)、水(包括纯水、其他无机物或有机物的水溶液等(例如盐水))、油水乳化液等或其任意组合。凝胶可以包括天然水凝胶(如琼脂糖、甲基纤维素、透明质酸、明胶、壳聚糖)、合成水凝胶(如聚丙烯酰胺、聚乙烯醇、聚丙烯酸钠、丙烯酸酯聚合物)气凝胶或其组合物。
在一些实施例中,可以通过调液体、凝胶或其组合物的属性或传感结构的参数来调整第二谐振频率的大小以及第二谐振频率和第一谐振频率的大小关系。仅作为示例,液体、凝胶或其组合物的属性可以包括液体、凝胶或其组合物的密度、液体、凝胶或其组合物的黏度、液体、凝胶或其组合物体积、是否有气泡、气泡体积、气泡位置、气泡数量等。传感结构的参数可以包括其壳体的内部结构、尺寸、模量(如杨氏模量)、传感结构的质量和/或其换能元件的尺寸、模量(如杨氏模量)等。在一些实施例中,液体、凝胶或其组合物的密度越大,相同体积下液体、凝胶或其组合物的质量越大,第二谐振频率越小。在一些实施例中,液体、凝胶或其组合物的黏度越大,更不易产生特定方向(如纵向)的振动,第二谐振频率越大。
在一些实施例中,可以根据所需第二谐振频率的大小来选择液体、凝胶或其组合物的密度或黏度。例如,如果需要第二谐振频率处在较大的频率区域(如4000Hz–10000Hz),可选择黏度较大(如500cst–3000cst)的液体、凝胶或其组合物或者选择密度较小(如0g/cm3–1g/cm3)的液体、凝胶或其组合物;如果需要第二谐振频率处在较小的频率区域(如2000Hz–4000Hz),可选择黏度较小(如1cst–500cst)的液体、凝胶或其组合物或者选择密度较大(如1g/cm3–3g/cm3)的液体、凝胶或其组合物。
在一些实施例中,该拾音结构可以包括液体(或凝胶或其组合物)和支撑件。该液体(或凝胶或其组合物)可以与上述声学腔体内的气体共同形成具有上述第二谐振频率的谐振系统(如弹簧-质量系统)。该支撑件用于限定液体(或凝胶或其组合物)的运动,进而确保传感装置的频响的稳定性。在一些实施例中,支撑件的横截面可以为矩形、圆形、环形、方形、五边形六边形等。在一些实施例中,支撑件可以包括连接于或接触传感结构的管柱(如直型管柱、曲型管柱)。例如,该管柱可连接或接触于传感结构中的PCB的一侧。为了使得拾音结构提供的第二谐振频率在目标频率范围内,在一些实施例中,该管柱的高度可以在0.1mm-50mm之间。在一些实施例中,该管柱的高度可以在1mm-40mm之间。在一些实施例中,该管柱的高度可以在5mm-30mm之间。在一些实施例中,该管柱的高度可以在10-20mm之间。在一些实施例中,该管柱的直径(沿垂直于振膜振动方向)可以大于或等于声学腔体的直径(沿垂直于振膜振动方向)。在一些实施例中,该管柱的直径在0.01mm–5mm之间。在一些实施例中,该管柱的直径在0.1mm–6mm之间。在一些实施例中,该管柱的直径在1mm–10mm之间。在一些实施例中,该管柱的直径在5mm–20mm之间。
需要说明的是,包含液体(或凝胶或其组合物)和支撑件的拾音结构生成第二谐振频率的原理和上述包含液体、凝胶或其组合物的拾音结构相同或类似,更多相关描述可参考上述包含液体、凝胶或其组合物的拾音结构处的描述,在此不再赘述。
在一些实施例中,除了上述可以通过调整液体、凝胶或其组合物的属性或传感结构的参数来调整第二谐振频率的大小,还可以通过调整支撑件的属性(如支撑件的模量)来调整第二谐振频率的大小。在一些实施例中,支撑件的模量越大,第二谐振频率越大。
需要说明的是,具有第二谐振频率的谐振系统是通过振膜在纵向上的振动形成的,振膜在其 他方向上的振动可能会对具有第二谐振频率的谐振系统有不利的影响(如造成频响曲线不稳定)。在一些实施例中,该支撑件可以置于液体(或凝胶或其组合物)的左侧和/或右侧,以抑制振膜在其他方向上的振动。此外,如果支撑件易在外界声音的作用下产生振动,可能会导致振膜在其他方向上发生振动。为避免这个问题,支撑件的模量需要大于特定阈值。仅作为示例,支撑件的材料可以包括紫外光固化胶(又称为光敏胶、无影胶)、聚二甲硅氧烷(Polydimethyloxane,PDMS)、泡棉等或其任意组合。
在一些实施例中,拾音结构可以包括振膜。该振膜可以形成具有上述第二谐振频率的谐振系统。在一些实施例中,振膜可以与传感结构中PCB连接。例如,振膜可以通过胶黏剂、卡扣、螺栓等方式固定连接于PCB,从而可以限制振膜沿着特定方向(非纵向,如横向)的运动。在一些实施例中,振膜的数量不限,如2个、3个、4个等。
为了使得拾音结构提供的第二谐振频率在目标频率范围内,在一些实施例中,振膜的模量(如杨氏模量)可以在100MPa-300GPa之间。在一些实施例中,振膜的模量可以在1GPa-200GPa之间。在一些实施例中,振膜的模量可以在5GPa-50GPa之间。在一些实施例中,振膜的模量可以在1GPa-10GPa之间。在一些实施例中,振膜的模量可以在2GPa-8GPa之间。在一些实施例中,振膜的模量可以在3GPa-7GPa之间。在一些实施例中,振膜的模量可以在4GPa-6GPa之间。在一些实施例中,振膜的模量可以是1GPa。在一些实施例中,振膜的模量可以在第二振膜的模量的1/100-1/10之间。在一些实施例中,振膜的模量可以在第二振膜的模量的1/50-1/5之间。在一些实施例中,振膜的模量可以在第二振膜的模量的1/25-2/5之间。在一些实施例中,振膜的模量可以在第二振膜的模量的1/20-1/2之间。仅作为示例,振膜可以为聚四氟乙烯薄膜、聚二甲基硅氧烷薄膜、塑料薄膜(如聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯和聚酯等)、玻璃纸、纸张、金属箔等或其任意组合物。
在一些实施例中,振膜横截面(如沿垂直于振膜振动方向)的形状可以是圆形、三角形、四边形、多边形等。在一些实施例中,振膜的横截面形状可以与拾音结构和传感结构限定的声学腔体的径向截面(如沿垂直于振膜振动方向)形状相适应。在一些实施例中,该声学腔体可以为圆柱形,相应地,振膜横截面的形状可以为圆形。在一些实施例中,振膜的半径可以根据声学腔体的尺寸而定。例如,振膜的半径可以与该声学腔体的半径相同或接近。为了使得拾音结构提供的第二谐振频率在目标频率范围内,在一些实施例中,振膜的半径可以在500um-3mm之间。在一些实施例中,振膜的半径可以在800um–2.5mm之间。在一些实施例中,振膜的半径可以在1mm-2mm之间。在一些实施例中,振膜的半径可以在1.2mm-1.6mm之间。在一些实施例中,振膜的厚度可以在500nm–100um之间。在一些实施例中,振膜的厚度可以在800nm–80um之间。在一些实施例中,振膜的厚度可以在1000nm–50um之间。在一些实施例中,振膜的厚度可以在2000nm–30um之间。在一些实施例中,振膜的厚度可以在5000nm–10um之间。
在一些实施例中,可以通过调整振膜的属性或传感结构的参数来调整第二谐振频率的大小。仅作为示例,振膜的属性可以包括振膜的模量、振膜的尺寸(如长度、宽度、厚度)等。传感结构 的参数可以包括其壳体的内部结构、尺寸、模量、传感结构的质量和/或其换能元件的尺寸、模量等。在一些实施例中,振膜的模量越大,第二谐振频率越大。可以根据所需第二谐振频率的大小来选择振膜的模量。例如,如果需要第二谐振频率处在较大的频率区域(如4000Hz–10000Hz),可选择模量较大(如5Gpa–300Gpa、5Gpa–50Gpa)的振膜;如果需要第二谐振频率处在较小的频率区域(如2000Hz–4000Hz),可选择模量较小(如100MPa–5GPa)的振膜。
在一些实施例中,拾音结构可以包括振膜和液体(或凝胶、或液体和凝胶的组合物)。该液体(或凝胶、或液体和凝胶的组合物)和振膜共同形成具有上述第二谐振频率的谐振系统(如弹簧-质量系统)。例如,可以将液体(或凝胶、或液体和凝胶的组合物)当成该谐振系统中的质量,并将振膜当成该谐振系统中的弹簧。
在一些实施例中,振膜和传感结构中PCB可以用于限制该液体(或凝胶、或液体和凝胶的组合物)的运动。例如,振膜可以置于液体(或凝胶、或液体和凝胶的组合物)的第一侧端(上侧、下侧),液体(或凝胶、或液体和凝胶的组合物)的第二侧端与传感结构中PCB连接(左侧、右侧),以限制液体(或凝胶、或液体和凝胶的组合物)的运动。需要说明的是,为了确保液体或凝胶不会从振膜处渗出,振膜的渗透率需要小于阈值。在一些实施例中,振膜的数量不限,如2个、3个、4个等。
在一些实施例中,可以通过调整液体(或凝胶、或液体和凝胶的组合物)的属性、振膜的属性或传感结构的参数来调整第二谐振频率的大小,更多相关说明请参见上述含液体(或凝胶、或液体和凝胶的组合物)或含振膜的拾音结构处的描述,在此不再赘述。
在一些实施例中,拾音结构可以包括振膜、液体(或凝胶、或液体和凝胶的组合物)和支撑件。该液体(或凝胶、或液体和凝胶的组合物)和振膜共同形成具有上述第二谐振频率的谐振系统(如弹簧-质量系统)。例如,可以将液体、凝胶或其组合物当成该谐振系统中的质量,并将振膜当成该谐振系统中的弹簧。
在一些实施例中,振膜和支撑件可以用于限制该液体(或凝胶、或液体和凝胶的组合物)的运动。例如,振膜可以置于液体(或凝胶、或液体和凝胶的组合物)的第一侧端(上侧、下侧),支撑件可以位于液体(或凝胶、或液体和凝胶的组合物)的第二侧端(左侧、右侧),以限制液体(或凝胶、或液体和凝胶的组合物)的运动。在一些实施例中,振膜可以与支撑件连接。振膜可以通过其周侧固定于支撑件的内壁。仅作为示例,该连接方式可以包括胶粘剂粘合,卡箍、卡扣、螺栓等。在一些实施例中,振膜或支撑件的数量不限,如2个、3个、4个等。
在一些实施例中,可以通过调整液体(或凝胶、或液体和凝胶的组合物)的属性、振膜的属性、支撑件的属性或传感结构的参数来调整第二谐振频率的大小,更多相关说明请参见上述含液体(或凝胶、或液体和凝胶的组合物)、振膜或支撑件的拾音结构处的描述,在此不再赘述。
在一些实施例中,拾音结构可以包括振膜、液体(或凝胶、或液体和凝胶的组合物)、支撑件和质量块。该液体(或凝胶、或液体和凝胶的组合物)、该振膜和该质量块共同形成具有上述第二谐振频率的谐振系统(如弹簧-质量系统)。例如,可以将液体和质量块当成该谐振系统中的质量, 并将振膜当成该谐振系统中的弹簧。
在一些实施例中,质量块可以置于液体(或凝胶、或液体和凝胶的组合物)中。振膜和支撑件用于限定液体(或凝胶、或液体和凝胶的组合物)的运动。在一些实施例中,振膜可位于液体(或凝胶、或液体和凝胶的组合物)的第一侧端(如上侧、下侧),支撑件可位于液体(或凝胶、或液体和凝胶的组合物)的第二侧端(左侧、右侧),以限制液体(或凝胶、或液体和凝胶的组合物)的运动。在一些实施例中,振膜或支撑件的数量不限,如2个、3个、4个等。更多关于支撑件、液体(或凝胶、或液体和凝胶的组合物)、或振膜的描述可参考上述含支撑件、液体(或凝胶、或液体和凝胶的组合物)、或振膜的拾音结构处的描述,在此不再赘述。
在一些实施例中,质量块可以为方块、长方体、圆柱、圆环等形状。为了使得拾音结构提供的第二谐振频率在目标频率范围内,在一些实施例中,质量块的厚度(沿振膜振动方向)在1um-5000um之间。在一些实施例中,质量块的厚度为1um-3000um之间。在一些实施例中,质量块的厚度为1um-1000um之间。在一些实施例中,质量块的厚度为1um-500um之间。在一些实施例中,质量块的厚度为1um-200um之间。在一些实施例中,质量块的厚度为1um-50um之间。
为了使得拾音结构提供的第二谐振频率在目标频率范围内,在一些实施例中,质量块的面积(如沿垂直于振膜振动方向上的截面积或底面积)为0.1mm2-100mm2。在一些实施例中,质量块的面积为0.1mm2-50mm2。在一些实施例中,质量块的面积为0.1mm2-10mm2。在一些实施例中,质量块的面积为0.1mm2-6mm2。在一些实施例中,质量块的面积为0.1mm2-3mm2。在一些实施例中,质量块的面积为0.1-1mm2。
为了使得拾音结构提供的第二谐振频率在目标频率范围内,在一些实施例中,质量块的材料密度为2g/cm3-100g/cm3。在一些实施例中,质量块的材料密度为2g/cm3-70g/cm3。在一些实施例中,质量块的材料密度为5g/cm3-50g/cm3。在一些实施例中,质量块的材料密度为5g/cm3-30g/cm3。在一些实施例中,质量块可以采用铅、铜、银、锡等金属或至少两种金属的合金等。
在一些实施例中,拾音结构包含的质量块数量不限,如,一个、两个或以上。当拾音结构包括两个或以上质量块时,该两个或两个以上的质量块可以分别固定于振膜的上下表面。在一些实施例中,质量块位于高分子膜下表面或者上下表面都有时,传感装置的灵敏度会进一步提高。
在一些实施例中,除了上述可以通过调整液体、凝胶或其组合物的属性、振膜的属性、支撑件的属性或传感结构的参数来调整第二谐振频率的大小,还可以通过调整质量块的属性(如厚度、密度、半径)来调整第二谐振频率的大小。在一些实施例中,同等面积下质量块越厚,其总质量越大,第二谐振频率越小。在一些实施例中,同等体积下,质量块的密度越大,其质量越大,传感装置的第二谐振频率越小。
在一些实施例中,拾音结构可以包括振膜、支撑件和质量块。振膜和质量块共同形成具有上述第二谐振频率的谐振系统(如弹簧-质量系统)。例如,可以将质量块当成该谐振系统中的质量,并将振膜当成该谐振系统中的弹簧。在一些实施例中,质量块可以位于振膜的上方。支撑件可以与传感结构中PCB连接,用于支撑振膜和质量块。更多关于振膜、支撑件、质量块或调整第二谐振频 率大小的描述可参见上述含振膜、支撑件、质量块的拾音结构处的描述,在此不再赘述。
通过在传感装置中加入拾音结构,为传感装置提供小于第一谐振频率的第二谐振频率。当第二谐振频率与第一谐振频率差值满足一定的条件,例如,在1000Hz–10000Hz之间时,相比于传感结构,含拾音结构的传感装置的灵敏度在更宽的频率范围内(如0Hz–15000Hz、2000Hz–13000Hz、3000Hz–12000Hz)都能有所提升,尤其可以提升传感装置在第二谐振频率(如2000Hz–10000Hz、3000Hz–4000Hz)附近的灵敏度。在一些实施例中,传感装置的灵敏度在更宽的频率范围内可以提升3dB–30dB。在一些实施例中,传感装置的灵敏度在更宽的频率范围内可以提升3dB–45dB。在一些实施例中,传感装置的灵敏度可以在更宽的频率范围内提升6dB–30dB。
需要说明书的是,上述描述的传感装置包括一个拾音结构,仅用于说明的目的,并不诣在限制本说明书的保护范围。在一些实施例中,传感装置可以包括两个或以上拾音结构,其中每一个拾音结构与上述描述的拾音结构相同或类似。以传感装置包括传感结构和两个拾音结构为例,传感结构可以为传感装置提供第一谐振频率,两个拾音结构可以分别为传感装置提供第二谐振频率和第三谐振频率。第二谐振频率和第三谐振频率可根据传感装置的实际应用场景满足不同的关系。示例性地,第三谐振频率为低频、中低频、中高频(如小于7000Hz、5000Hz、4000Hz、3000Hz、1000Hz或500Hz的频段内),第二谐振频率可以大于第三谐振频率,为更高频段(如2000Hz以上、4000Hz以上、5000Hz以上、8000Hz以上)。又例如,第二谐振频率和第三谐振频率均为中低频。当传感装置在低频或者中低频范围内具有谐振频率时,其在低频的灵敏度相较于传感结构(如电容式麦克风100、压电式麦克风200)会更高;当传感装置进一步在高频或中高频具有谐振频率时,其频响曲线在中低频范围内也更为平坦,更有利于实现对该频段内有效语音信号的获取。
需要说明的是,上述将拾音结构应用于气导麦克风描述仅用于说明的目的,并不诣在限制本说明书的保护范围,上述拾音结构还可应用于其他设备,如以骨传导为声音主要传播方式之一的麦克风、加速度计、压力传感结构、水听器、能量收集器、陀螺仪等。仅作为示例,上述拾音结构可以应用于以骨传导为声音主要传播方式之一的麦克风中。结合上文所述,具有第二谐振频率的谐振系统是通过振膜在纵向上的振动形成的,振膜在其他方向上的振动可能会对具有第二谐振频率的谐振系统有不利的影响(如造成频响曲线不稳定)。在一些实施例中,骨导的输入信号强度较大,为避免拾音结构中的振膜产生不利于第二谐振频率的振动,拾音结构中振膜的模量(如杨氏模量)需要大于一定阈值,如5GPa、10GPa、20GPa等。除此之外,当上述拾音结构应用于骨传到麦克风时,可参考其应用于气导麦克风的情况,通过调整拾音结构的参数,调整第二谐振频率的大小。
图3是根据本说明书一些实施例所示的示例性传感装置的示意图。图4是根据本说明书一些实施例所示的示例性传感装置的示意图。
如图3所示,传感装置300可以包括传感结构300A(电容式麦克风)和拾音结构300B。传感结构300A可以包括换能元件310、处理器320、PCB 330和壳体350。换能元件310可以包括振膜311和背板312。传感结构300A与图1所示的电容式麦克风100相同或类似,在此不再赘述。
在一些实施例中,传感结构300A可以包括进声孔(如虚线框所示的进声孔370、壳体350上 的进声孔(未在图3中示出))。拾音结构300B可以通过该进声孔与传感结构的外部声音连通(如图3中所示的气导声音340)。在一些实施例中,拾音结构300B与传感结构300A之间形成声学腔体360。外部气导声音340可通过该进声孔作用于拾音结构300B,并引起拾音结构300B振动变形,进而使得声学腔体360内的声压发生变化。进一步地,换能元件310可以基于声学腔体360内的声压变化将所述气导声音340转为电信号。在这个过程中,传感结构300A可以为传感装置300提供第一谐振频率。拾音结构300B可以为传感装置300提供第二谐振频率。更多关于第一谐振频率和第二谐振频率的描述请参考上文中对第一谐振频率和第二谐振频率的描述,在此不再赘述。
如图3所示,拾音结构300B可以设置于传感结构300A的换能元件310和进声孔370之间。例如,拾音结构300B可以设置在进声孔370处。拾音结构300B可以包括液体、凝胶或其组合物。该液体、凝胶或其组合物与声学腔体360中的气体可以共同形成具有上述第二谐振频率的谐振系统。该液体、凝胶或其组合物构成的拾音结构300B可以与振膜311基本平行。此处使用的“基本平行”表示液体、凝胶或其组合物的表面(如上表面、下表面)与振膜311表面(如上表面、下表面)平行或偏差小于3度、5度、8度、10度等。
如图3所示,该液体、凝胶或其组合物可以与PCB 330连接。在一些实施例中,液体、凝胶或其组合物可以具有一定的黏度,从而可以相对于PCB 330保持固定。通过调整液体、凝胶或其组合物的属性(如黏度、密度),可以调整第二谐振频率的大小。更多关于调整第二谐振频率的大小的描述请参见上文中包含液体、凝胶或其组合物的拾音结构处的描述,在此不再赘述。
在一些实施例中,拾音结构300B也可与图4中所示的传感结构400A(压电式麦克风)构成传感装置400。其中,传感结构400A可以包括换能元件411、处理器420、PCB 430、壳体450和进声孔470。传感结构400A与图2所示的压电式麦克风200相同或类似,在此不再赘述。传感装置400和传感装置300类似,只是包含的传感结构的种类不同,更多相关描述请参考图3中关于传感装置300的描述,在此不再赘述。
图5是根据本说明书一些实施例所示的示例性传感装置的示意图。图6是根据本说明书一些实施例所示的示例性传感装置的示意图。
如图5所示,传感装置500可以包括传感结构500A(电容式麦克风)和拾音结构500B。传感结构500A可以包括换能元件510、处理器520、PCB 530和壳体550。换能元件510可以包括振膜511和背板512。传感结构500A与图1所示的电容式麦克风100或图3所示的传感结构300A相同或类似,在此不再赘述。
在一些实施例中,传感结构500A可以包括进声孔(如虚线框所示的进声孔570、壳体550上的进声孔(未在图5中示出))。拾音结构500B可以通过该进声孔与传感结构的外部声音连通(如图5中所示的气导声音540)。在一些实施例中,拾音结构500B与传感结构500A之间形成声学腔体560。外部声音540可通过该进声孔作用于拾音结构500B,并引起拾音结构500B振动变形,进而使得声学腔体560内的声压发生变化。进一步地,换能元件510可以基于声学腔体560内的声压变化将所述气导声音540转为电信号。在这个过程中,传感结构可以为传感装置500提供第一谐振 频率。拾音结构500B可以为传感装置500提供第二谐振频率。更多关于第一谐振频率和第二谐振频率的描述请参考上文中对第一谐振频率和第二谐振频率的描述。
如图5所示,拾音结构500B可以设置于传感结构500A的换能元件510和进声孔570之间。例如,拾音结构500B可以设置在进声孔570处。拾音结构500B可以包括液体(或凝胶或其组合物)582和支撑件584。液体(或凝胶或其组合物)582与声学腔体560中的气体可以共同形成具有上述第二谐振频率的谐振系统。支撑件584用于限制液体(或凝胶或其组合物)582的运动。支撑件584可以和PCB 530固定连接,并位于液体(或凝胶或其组合物)582的左侧和右侧。在一些实施例中,通过调整液体(或凝胶或其组合物)582的属性(如黏度、密度)和/或支撑件584的属性(如模量),可以调整第二谐振频率的大小。更多关于调整第二谐振频率的大小的描述请参见上文中含液体(或凝胶或其组合物)或支撑件的拾音结构处的描述。
在一些实施例中,拾音结构500B也可与图6中所示的传感结构600A(压电式麦克风)构成传感装置600。其中,传感结构600A可以包括换能元件611、处理器620、PCB 630、壳体650和进声孔670。传感结构600A与图2所示的压电式麦克风200或图4所示的传感结构400A相同或类似,在此不再赘述。传感装置600和传感装置500类似,只是包含的传感结构的种类不同,更多相关描述请参考图5中关于传感装置500的描述。
图7是根据本说明书一些实施例所示的示例性传感装置的示意图。图8是根据本说明书一些实施例所示的示例性传感装置的示意图。
如图7所示,传感装置700可以包括传感结构700A(电容式麦克风)和拾音结构700B。传感结构700A可以包括换能元件710、处理器720、PCB 730和壳体750。换能元件710可以包括振膜711和背板712。传感结构700A与图1所示的电容式麦克风100或图3或图5所示的传感结构300A或500A相同或类似,在此不再赘述。
在一些实施例中,传感结构700A可以包括进声孔(如虚线框所示的进声孔770、壳体750上的进声孔(未在图7中示出))。拾音结构700B可以通过该进声孔与传感结构的外部声音连通(如图7中所示的气导声音740)。在一些实施例中,拾音结构700B与传感结构700A之间形成声学腔体760。外部声音740可通过该进声孔作用于拾音结构700B,并引起拾音结构700B振动变形,进而使得声学腔体760内的声压发生变化。进一步地,换能元件710可以基于声学腔体760内的声压变化将所述气导声音740转为电信号。在这个过程中,传感结构可以为传感装置700提供第一谐振频率。拾音结构700B可以为传感装置700提供第二谐振频率。更多关于第一谐振频率和第二谐振频率的描述请参考上文中对第一谐振频率和第二谐振频率的描述。
如图7所示,拾音结构700B可以设置于传感结构700A的换能元件710和进声孔770之间。例如,拾音结构700B可以设置在进声孔770处。拾音结构700B可以包括振膜。该振膜可以形成具有上述第二谐振频率的谐振系统。振膜可以与PCB 730连接。在一些实施例中,通过调整振膜的属性(如模量),可以调整第二谐振频率的大小。更多关于振膜或调整第二谐振频率的大小的描述请参见上文中包含振膜的拾音结构处的描述。
在一些实施例中,拾音结构700B也可与图8中所示的传感结构800A(压电式麦克风)构成传感装置800。其中,传感结构800A可以包括换能元件811、处理器820、PCB 830、壳体850和进声孔870。传感结构800A与图2所示的压电式麦克风200或图4或6所示的传感结构400A或600A相同或类似,在此不再赘述。传感装置800和传感装置700类似,只是包含的传感结构的种类不同,更多相关描述请参考图7中关于传感装置700的描述。
图9是根据本说明书一些实施例所示的示例性传感装置的示意图。图10是根据本说明书一些实施例所示的示例性传感装置的示意图。
如图9所示,传感装置900可以包括传感结构900A(电容式麦克风)和拾音结构900B。传感结构900A可以包括换能元件910、处理器920、PCB 930和壳体950。换能元件910可以包括振膜911和背板912。传感结构900A与图1所示的电容式麦克风100或图3、图5或图7所示的传感结构300A、500A或700A相同或类似,在此不再赘述。
在一些实施例中,传感结构900A可以包括进声孔(如虚线框所示的进声孔970、壳体950上的进声孔(未在图9中示出))。拾音结构900B可以通过该进声孔与传感结构的外部声音连通(如图9中所示的气导声音940)。在一些实施例中,拾音结构900B与传感结构900A之间形成声学腔体960。外部声音940可通过该进声孔作用于拾音结构900B,并引起拾音结构900B振动变形,进而使得声学腔体960内的声压发生变化。进一步地,换能元件910可以基于声学腔体960内的声压变化将所述气导声音940转为电信号。在这个过程中,传感结构可以为传感装置900提供第一谐振频率。拾音结构900B可以为传感装置900提供第二谐振频率。更多关于第一谐振频率和第二谐振频率的描述请参考上文中对第一谐振频率和第二谐振频率的描述。
如图9所示,拾音结构900B可以设置于传感结构900A的换能元件910和进声孔970之间。例如,拾音结构900B可以设置在进声孔970处。拾音结构900B可以包括液体(或凝胶或其组合物)982和振膜984。液体(或凝胶或其组合物)982和振膜984可以共同形成具有上述第二谐振频率的谐振系统。振膜984和PCB 930用于限制液体(或凝胶或其组合物)982的运动。PCB 930可以与液体(或凝胶或其组合物)982和振膜984固定连接,并位于液体(或凝胶或其组合物)982和振膜984的左侧和右侧。振膜984位于液体(或凝胶或其组合物)982的上侧和下侧。
如图10所示,液体(或凝胶或其组合物)982和振膜984与振膜911基本平行。此处使用的“基本平行”表示液体(或凝胶或其组合物)982或振膜984的表面(如上表面、下表面)与振膜911表面(如上表面、下表面)平行或偏差小于3度、5度、8度、10度等。在一些实施例中,通过调液体(或凝胶或其组合物)982的属性(如黏度、密度)和/或振膜984的属性(如模量),可以调整第二谐振频率的大小。更多关于调整第二谐振频率的大小的描述请参见上文中包含液体(或凝胶或其组合物)或振膜的拾音结构处的描述。
在一些实施例中,拾音结构900B也可与图10中所示的传感结构1000A(压电式麦克风)构成传感装置1000。其中,传感结构1000A可以包括换能元件1011、处理器1020、PCB 1030、壳体1050和进声孔1070。传感结构1000A与图2所示的压电式麦克风200或图4、6或8所示的传感结 构400A、600A或800A相同或类似,在此不再赘述。传感装置1000和传感装置900类似,只是包含的传感结构的种类不同,更多相关描述请参考图9中关于传感装置900的描述。
图11是根据本说明书一些实施例所示的示例性传感装置的示意图。图12是根据本说明书一些实施例所示的示例性传感装置的示意图。
如图11所示,传感装置1100可以包括传感结构1100A(电容式麦克风)和拾音结构1100B。传感结构1100A可以包括换能元件1110、处理器1120、PCB 1130和壳体1150。换能元件1110可以包括振膜1111和背板1112。传感结构1100A与图1所示的电容式麦克风100或图3、5、7或9所示的传感结构300A、500A、700A或900A相同或类似,在此不再赘述。
在一些实施例中,传感结构1100A可以包括进声孔(如虚线框所示的进声孔1170、壳体1150上的进声孔(未在图11中示出))。拾音结构1100B可以通过该进声孔与传感结构的外部声音连通(如图11中所示的气导声音1140)。在一些实施例中,拾音结构1100B与传感结构1100A之间形成声学腔体1160。外部声音1140可通过该进声孔作用于拾音结构1100B,并引起拾音结构1100B振动变形,进而使得声学腔体1160内的声压发生变化。进一步地,换能元件1110可以基于声学腔体1160内的声压变化将所述气导声音1140转为电信号。在这个过程中,传感结构1100A可以为传感装置1100提供第一谐振频率。拾音结构1100B可以为传感装置1100提供第二谐振频率。更多关于第一谐振频率和第二谐振频率的描述请参考上文中对第一谐振频率和第二谐振频率的描述。
如图11所示,拾音结构1100B可以设置于传感结构1100A的换能元1110和进声孔1170之间。例如,拾音结构1100B可以设置在进声孔1170处且位于PCB 1130的上方。拾音结构1100B可以包括振膜1182、液体(或凝胶或其组合物)1184和支撑件1186。振膜1182和液体(或凝胶或其组合物)1184可以共同形成具有上述第二谐振频率的谐振系统。振膜1182可以通过其周侧固定于支撑件1186的内壁,振膜1182和支撑件1186可用于限制液体(或凝胶或其组合物)1184的运动。支撑件1186可以和PCB 1130固定连接,并位于液体(或凝胶或其组合物)1184的左侧和右侧。振膜1182可分别位于液体(或凝胶或其组合物)1184的上侧和下侧。
如图11所示,振膜1182或液体(或凝胶或其组合物)1184与振膜1111基本平行。此处使用的“基本平行”表示振膜1182或液体(或凝胶或其组合物)1184的表面(如上表面、下表面)与振膜1111表面(如上表面、下表面)平行或偏差小于3度、5度、8度、10度等。
在一些实施例中,通过调整振膜1182的属性(如模量)、液体(或凝胶或其组合物)1184的属性(如黏度、密度)、和/或支撑件1186的属性(如模量),可以调整第二谐振频率的大小。更多关于调整第二谐振频率的大小的描述请参见上文中包含振膜、液体(或凝胶或其组合物)和/或支撑件的拾音结构的描述。
在一些实施例中,拾音结构1100B也可与图12中所示的传感结构1200A(压电式麦克风)构成传感装置1200。其中,传感结构1200A可以包括换能元件1211、处理器1220、PCB 1230、壳体1250和进声孔1270。传感结构1200A与图2所示的压电式麦克风200或图4、6、8或10所示的传感结构400A、600A、800A或1000A相同或类似,在此不再赘述。传感装置1200和传感装置1100 类似,只是包含的传感结构的种类不同,更多相关描述请参考图11中关于传感装置1100的描述。
图13是根据本说明书一些实施例所示的示例性传感装置的示意图。图14是根据本说明书一些实施例所示的示例性传感装置的示意图。
如图13所示,传感装置1300可以包括传感结构1300A(电容式麦克风)和拾音结构1300B。传感结构1300A可以包括换能元件1310、处理器1320、PCB 1330和壳体1350。换能元件1310可以包括振膜1311和背板1312。传感结构1300A与图1所示的电容式麦克风100或图3、5、7、9或11所示的传感结构300A、500A、700A、900A或1100A相同或类似,在此不再赘述。
在一些实施例中,传感结构1300A可以包括进声孔(如虚线框所示的进声孔1370、壳体1350上的进声孔(未在图13中示出))。拾音结构1300B可以通过该进声孔与传感结构的外部声音连通(如图13中所示的气导声音1340)。在一些实施例中,拾音结构1300B与传感结构1300A之间形成声学腔体1360。外部声音1340可通过该进声孔作用于拾音结构1300B,并引起拾音结构1300B振动变形,进而使得声学腔体1360内的声压发生变化。进一步地,换能元件1310可以基于声学腔体1360内的声压变化将所述气导声音1340转为电信号。在这个过程中,传感结构1300A可以为传感装置1300提供第一谐振频率。拾音结构1300B可以为传感装置1300提供第二谐振频率。更多关于第一谐振频率和第二谐振频率的描述请参考上文中对第一谐振频率和第二谐振频率的描述。
如图13所示,拾音结构1300B可以设置于传感结构1300A的换能元件1310和进声孔1370之间。例如,拾音结构1300B可以设置在进声孔1370处且位于PCB 1330的上方。拾音结构1300B可以包括质量块1382、振膜1384和支撑件1386。质量块1382和振膜1384可以共同形成具有上述第二谐振频率的谐振系统。支撑件1386可以和PCB 1330固定连接,并位于振膜1384的左侧和右侧且与振膜1384固定连接。质量块1382位于振膜1384的上侧。
如图13所示,质量块1382和振膜1384与振膜1311基本平行。此处使用的“基本平行”表示质量块1382或振膜1384的表面(如上表面、下表面)与振膜1311表面(如上表面、下表面)平行或偏差小于3度、5度、8度、10度等。
在一些实施例中,通过调整质量块1382的属性(如质量、高度、密度、半径)、振膜1384的属性(如模量)和/或支撑件1386的属性(如模量),可以调整第二谐振频率的大小。更多关于调整第二谐振频率的大小的描述请参见上文中包含振膜、质量块、和/或支撑件的拾音结构处的描述。
在一些实施例中,拾音结构1300B也可与图14中所示的传感结构1400A(压电式麦克风)构成传感装置1400。其中,传感结构1400A可以包括换能元件1411、处理器1420、PCB 1430、壳体1450和进声孔1470。传感结构1400A与图2所示的压电式麦克风200或图4、6、8或12所示的传感结构400A、600A、800A或1200A相同或类似,在此不再赘述。传感装置1400和传感装置1300类似,只是包含的传感结构的种类不同,更多相关描述请参考图13中关于传感装置1300的描述。
图15是根据本说明书一些实施例所示的示例性传感装置的示意图。图16是根据本说明书一些实施例所示的示例性传感装置的示意图。
如图15所示,传感装置1500可以包括传感结构1500A(电容式麦克风)和拾音结构1500B。 传感结构1500A可以包括换能元件1510、处理器1520、PCB 1530和壳体1550。换能元件1510可以包括振膜1511和背板1512。传感结构1500A与图1所示的电容式麦克风100或图3、5、7、9、11或13所示的传感结构300A、500A、700A、900A、1100A或1300A相同或类似,在此不再赘述。
在一些实施例中,传感结构1500A可以包括进声孔(如虚线框所示的进声孔1570、壳体1550上的进声孔(未在图15中示出))。拾音结构1500B可以通过该进声孔与传感结构的外部声音连通(如图15中所示的气导声音1540)。在一些实施例中,拾音结构1500B与传感结构1500A之间形成声学腔体1560。外部声音1540可通过该进声孔作用于拾音结构1500B,并引起拾音结构1500B振动变形,进而使得声学腔体1560内的声压发生变化。进一步地,换能元件1510可以基于声学腔体1560内的声压变化将所述气导声音1540转为电信号。在这个过程中,传感结构1500A可以为传感装置1500提供第一谐振频率。拾音结构1500B可以为传感装置1500提供第二谐振频率。更多关于第一谐振频率和第二谐振频率的描述请参考上文中对第一谐振频率和第二谐振频率的描述。
如图15所示,拾音结构1500B可以设置于传感结构1500A的换能元件1510和进声孔1570之间。例如,拾音结构1500B可以设置在进声孔1570处且位于PCB 1530的上方。拾音结构1500B可以包括振膜1582、质量块1584、液体(或凝胶或其组合物)1586和支撑件1588。振膜1582、质量块1584和液体(或凝胶或其组合物)1586可以共同形成具有上述第二谐振频率的谐振系统。振膜1582和支撑件1588用于限制液体(或凝胶或其组合物)1586和/或质量块1584的运动。支撑件1588可以和PCB 1530固定连接,并位于液体(或凝胶或其组合物)1586和振膜1582的左侧和右侧。振膜1582可分别位于液体(或凝胶或其组合物)1586的上侧和下侧。质量块1584的外侧被液体(或凝胶或其组合物)1586包裹。
如图15所示,振膜1582、质量块1584或液体(或凝胶或其组合物)1586与振膜1511基本平行。此处使用的“基本平行”表示振膜1582、质量块1584或液体(或凝胶或其组合物)1586的表面(如上表面、下表面)与振膜1511表面(如上表面、下表面)平行或偏差小于3度、5度、8度、10度等。
在一些实施例中,通过调整振膜1582的属性(如模量)、质量块1584的属性(如质量、高度、密度、半径)、液体(或凝胶或其组合物)1586的属性(如黏度、密度)、和/或支撑件1588的属性(如模量),可以调整第二谐振频率的大小。更多关于调整第二谐振频率的大小的描述请参见上文中包含振膜、质量块、液体(或凝胶或其组合物)和/或支撑件的拾音结构处的描述。
在一些实施例中,拾音结构1500B也可与图16中所示的传感结构1600A(压电式麦克风)构成传感装置1600。其中,传感结构1600A可以包括换能元件1611、处理器1620、PCB 1630和壳体1650。传感结构1600A与图2所示的压电式麦克风200或图4、6、8、12或14所示的传感结构400A、600A、800A、1200A或1400A相同或类似,在此不再赘述。传感装置1600和传感装置1500类似,只是包含的传感结构的种类不同,更多相关描述请参考图15中关于传感装置1500的描述。
图17是根据本说明书一些实施例所示的示例性传感装置的频响曲线。
在一些实施例中,传感装置可以包括气导麦克风和拾音结构(如图3-16所示的拾音结构)。 如图17所示,频响曲线1710为该气导麦克风的频响曲线,频响曲线1720为该拾音结构的频响曲线。频响曲线1710或1720的横坐标表示频率,单位为赫兹Hz,纵坐标表示灵敏度,单位为伏特分贝dB。频响曲线1710包括共振峰1712,其对应气导麦克风的谐振频率(也可称之为第一谐振频率)(如图17中f 0)。频响曲线1720包括共振峰1722,其对应拾音结构的谐振频率(也可称之为第二谐振频率)(如图17中f 1)。在一些实施例中,第一谐振频率和第二谐振频率的差值(如图17中Δf)为1000Hz–10000Hz之间。
如图17所示,第二谐振频率小于第一谐振频率,从而可以提升传感装置在小于第一谐振频率的频率范围内,尤其是第二谐振频率附近的灵敏度。在一些实施例中,相比于没有拾音结构的传感装置(如传感装置100、传感装置200),含拾音结构的传感装置在语音信息较为丰富的中低频段(如3000Hz–4000Hz)有较高的灵敏度。例如,二者灵敏度差值(如图17中Δv)在3dB–30dB之间。又例如,二者灵敏度差值(如图17中Δv)在3dB–45dB之间。又例如,二者灵敏度差值(如图17中Δv)在6dB–30dB之间。
图18是根据本说明书一些实施例所示的示例性传感装置的示意图。
在一些实施例中,传感装置可以包括传感结构(以骨传导为声音主要传播方式之一的麦克风)和拾音结构(如图13或14所述的拾音结构)。如图18所示,频响曲线1810为该传感结构的频响曲线,频响曲线1820为该拾音结构的频响曲线。频响曲线1810包括共振峰1812,其对应传感结构的谐振频率(也可称之为第一谐振频率)(如图18中f 0)。频响曲线1820包括共振峰1822,其对应拾音结构的谐振频率(也可称之为第二谐振频率)(如图18中f 1)。第二谐振频率小于第一谐振频率,从而可以提升传感结构的灵敏度。
需要说明的是,图17中所示的传感装置(其中传感结构为气导麦克风)的频响曲线为理想情况下的频响曲线。当传感结构为气导麦克风时,其实际频响曲线的变化趋势可以与图18中所示的频响曲线的变化趋势相同或相似。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求 并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (17)

  1. 一种传感装置,其特征在于,包括:
    传感结构,所述传感结构具有第一谐振频率;以及
    拾音结构,被配置为通过进声孔与所述传感装置的外部声音连通,所述拾音结构与所述传感结构之间形成声学腔体,当所述拾音结构响应于经由所述进声孔传递的气导声音而产生振动时,所述振动引起所述声学腔体内的声压发生变化,所述传感结构基于所述声学腔体内的声压变化将所述气导声音转为电信号,其中,所述拾音结构为所述传感装置提供第二谐振频率,所述第二谐振频率与所述第一谐振频率的差值在1000Hz–10000Hz的范围内。
  2. 根据权利要求1所述的传感装置,其特征在于,
    所述拾音结构包括液体或凝胶;以及
    所述液体或所述凝胶与所述声学腔体内的气体共同形成具有所述第二谐振频率的谐振系统。
  3. 根据权利要求2所述的传感装置,其特征在于,
    所述拾音结构还包括支撑件,所述支撑件用于限定所述液体或所述凝胶的运动。
  4. 根据权利要求3所述的传感装置,其特征在于,
    所述支撑件包括连接于或接触所述传感结构的管柱;以及
    所述管柱包括直型管柱或曲型管柱。
  5. 根据权利要求1所述的传感装置,其特征在于,
    所述传感结构包括印刷电路板;以及
    所述拾音结构包括振膜,所述振膜连接于所述印刷电路板。
  6. 根据权利要求1所述的传感装置,其特征在于,
    所述拾音结构包括振膜、液体和支撑件或包括振膜、凝胶和支撑件;
    所述液体和所述振膜共同形成具有所述第二谐振频率的谐振系统或所述凝胶和所述振膜共同形成具有所述第二谐振频率的谐振系统;以及
    所述振膜和所述支撑件用于限定所述液体或凝胶的运动。
  7. 根据权利要求1所述的传感装置,其特征在于,
    所述拾音结构包括振膜和液体或包括振膜和凝胶;以及
    所述液体和所述振膜共同形成具有所述第二谐振频率的谐振系统或者所述凝胶和所述振膜共同形成具有所述第二谐振频率的谐振系统。
  8. 根据权利要求1所述的传感装置,其特征在于,
    所述拾音结构包括振膜、液体、支撑件和质量块或者包括振膜、凝胶、支撑件和质量块;
    所述液体、所述振膜和所述质量块共同形成具有所述第二谐振频率的谐振系统或所述凝胶、所述振膜和所述质量块共同形成具有所述第二谐振频率的谐振系统;以及
    所述振膜和支撑件用于限定所述液体或凝胶的运动;以及
    所述质量块置于所述液体或凝胶中。
  9. 根据权利要求1所述的传感装置,其特征在于,
    所述拾音结构包括振膜、支撑件和质量块;
    所述振膜和所述质量块共同形成具有所述第二谐振频率的谐振系统;以及
    所述支撑件用于支撑所述振膜和所述质量块。
  10. 根据权利要求5-9任一项所述的传感装置,其特征在于,所述振膜的模量为100MPa-300GPa。
  11. 根据权利要求5-9任一项所述的传感装置,其特征在于,所述振膜的模量为5GPa-50GPa。
  12. 根据权利要求5-9任一项所述的传感装置,其特征在于,
    所述传感结构包括第二振膜;以及
    所述振膜的模量为所述第二振膜模量的1/100-1/10。
  13. 根据权利要求5-9任一项所述的传感装置,其特征在于,
    所述振膜呈圆形;以及
    所述振膜的半径为500um-3mm。
  14. 根据权利要求2或权利要求3所述的传感装置,其特征在于,所述液体的密度为0g/cm 3-3g/cm 3
  15. 根据权利要求2或权利要求3所述的传感装置,其特征在于,所述液体的黏度为1cst-3000cst。
  16. 根据权利要求1所述的传感装置,其特征在于,所述第二谐振频率低于所述第一谐振频率。
  17. 根据权利要求1所述的传感装置,其特征在于,所述第二谐振频率为2000Hz-10000Hz。
PCT/CN2021/112030 2021-04-23 2021-08-11 传感装置 WO2022222316A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180078576.8A CN116491129A (zh) 2021-04-23 2021-08-11 传感装置
TW111115378A TW202243297A (zh) 2021-04-23 2022-04-22 傳感裝置
US18/351,480 US20230362524A1 (en) 2021-04-23 2023-07-12 Sensor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110445739 2021-04-23
CN202110445739.3 2021-04-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/351,480 Continuation US20230362524A1 (en) 2021-04-23 2023-07-12 Sensor device

Publications (1)

Publication Number Publication Date
WO2022222316A1 true WO2022222316A1 (zh) 2022-10-27

Family

ID=83665786

Family Applications (6)

Application Number Title Priority Date Filing Date
PCT/CN2021/112030 WO2022222316A1 (zh) 2021-04-23 2021-08-11 传感装置
PCT/CN2021/112014 WO2022222315A1 (zh) 2021-04-23 2021-08-11 一种传感装置
PCT/CN2021/112065 WO2022222317A1 (zh) 2021-04-23 2021-08-11 一种振动传感装置
PCT/CN2022/071932 WO2022222557A1 (zh) 2021-04-23 2022-01-14 加速度传感装置
PCT/CN2022/088598 WO2022223041A1 (zh) 2021-04-23 2022-04-22 一种传感装置
PCT/CN2022/088558 WO2022223032A1 (zh) 2021-04-23 2022-04-22 一种传感装置

Family Applications After (5)

Application Number Title Priority Date Filing Date
PCT/CN2021/112014 WO2022222315A1 (zh) 2021-04-23 2021-08-11 一种传感装置
PCT/CN2021/112065 WO2022222317A1 (zh) 2021-04-23 2021-08-11 一种振动传感装置
PCT/CN2022/071932 WO2022222557A1 (zh) 2021-04-23 2022-01-14 加速度传感装置
PCT/CN2022/088598 WO2022223041A1 (zh) 2021-04-23 2022-04-22 一种传感装置
PCT/CN2022/088558 WO2022223032A1 (zh) 2021-04-23 2022-04-22 一种传感装置

Country Status (4)

Country Link
US (5) US20230319458A1 (zh)
CN (14) CN117044239A (zh)
TW (3) TW202242846A (zh)
WO (6) WO2022222316A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11711653B2 (en) 2021-05-11 2023-07-25 xMEMS Labs, Inc. Sound producing cell and manufacturing method thereof
JP2023002319A (ja) * 2021-06-22 2023-01-10 株式会社デンソー Memsデバイス
CN116804561B (zh) * 2023-04-27 2024-02-06 中国人民解放军国防科技大学 一种基于附加损耗的谐振子阻尼修调装置及方法
CN117560611B (zh) * 2024-01-11 2024-04-16 共达电声股份有限公司 麦克风

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170111731A1 (en) * 2015-10-20 2017-04-20 Sonion Nederland B.V. Microphone assembly with suppressed frequency response
CN107005772A (zh) * 2014-11-13 2017-08-01 因文森斯公司 形成宽感测间隙微机电系统麦克风的集成封装和制造方法
CN209526861U (zh) * 2019-03-27 2019-10-22 歌尔科技有限公司 一种骨声纹传感器及电子设备
CN211630374U (zh) * 2020-03-30 2020-10-02 歌尔微电子有限公司 音频模组和电子设备
CN112565995A (zh) * 2020-11-16 2021-03-26 歌尔微电子有限公司 传感器芯片、骨声纹传感器和电子设备
CN112601169A (zh) * 2020-12-15 2021-04-02 武汉大学 一种宽频带高灵敏度谐振式压电mems麦克风

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211898A (en) * 1977-07-11 1980-07-08 Matsushita Electric Industrial Co., Ltd. Headphone with two resonant peaks for simulating loudspeaker reproduction
JPH02155400A (ja) * 1988-12-08 1990-06-14 Tamura Electric Works Ltd 圧電形受話器
JPH04102029U (ja) * 1991-02-13 1992-09-03 ユピテル工業株式会社 振動センサ
JP2928861B2 (ja) * 1996-02-22 1999-08-03 株式会社日立製作所 音響センサ
WO2005024367A2 (en) * 2003-09-08 2005-03-17 Microsense Cardiovascular Systems 1996 A method and system for calibrating resonating pressure sensors and calibratable resonating pressure sensors
DE102006002350A1 (de) * 2006-01-18 2007-07-19 Robert Bosch Gmbh Inertialsensoranordnung
JP2009069006A (ja) * 2007-09-13 2009-04-02 Fujifilm Corp カンチレバー型センサ、それを用いる物質検知システム及び物質検査方法
US7626316B2 (en) * 2007-09-28 2009-12-01 Robert Bosch Gmbh Passive self-tuning resonator system
CN101871951B (zh) * 2010-06-07 2011-11-30 瑞声声学科技(深圳)有限公司 微加速度传感器
CN101871952B (zh) * 2010-06-11 2012-07-11 瑞声声学科技(深圳)有限公司 Mems加速度传感器
WO2012140846A1 (ja) * 2011-04-12 2012-10-18 パナソニック株式会社 Mems圧力センサ
US9872111B2 (en) * 2013-03-06 2018-01-16 Infineon Technologies Austria Ag Acoustic sensor package
NL1040505C2 (en) * 2013-11-19 2015-05-26 Beethoven Marine Systems B V Sensor for detecting pressure waves in a fluid, provided with static pressure compensation.
US9683968B2 (en) * 2014-06-17 2017-06-20 Nxp B.V. Combination sensor
JP6445158B2 (ja) * 2014-08-27 2018-12-26 ゴルテック.インク バルブ機構付きのmemsデバイス
CN104393736A (zh) * 2014-11-25 2015-03-04 北京交通大学 采用磁性液体和永磁铁组合结构的平面振动能量采集器
CN105158511B (zh) * 2015-06-29 2018-11-30 歌尔股份有限公司 一种mems三轴加速度计
CN204887455U (zh) * 2015-08-13 2015-12-16 深圳市韶音科技有限公司 一种改善骨传导扬声器音质的骨传导扬声器
US9661411B1 (en) * 2015-12-01 2017-05-23 Apple Inc. Integrated MEMS microphone and vibration sensor
JP6806901B2 (ja) * 2016-11-30 2021-01-06 キストラー ホールディング アクチエンゲゼルシャフト 力を測定するための測定値ピックアップ
CN206728276U (zh) * 2017-01-09 2017-12-08 声佗医疗科技(上海)有限公司 一种口腔内器具和口腔内麦克风
US10231061B2 (en) * 2017-04-28 2019-03-12 Infineon Technologies Ag Sound transducer with housing and MEMS structure
CN108337617A (zh) * 2018-03-02 2018-07-27 上海微联传感科技有限公司 压电式麦克风
KR102461608B1 (ko) * 2018-07-30 2022-11-02 삼성전자주식회사 스피커에 포함된 진동판을 이용하여 하우징 내부 공간의 액체를 외부로 배출하는 전자 장치, 및 그 전자 장치의 제어 방법
CN210065158U (zh) * 2018-12-20 2020-02-14 歌尔科技有限公司 多功能传感器
CN209589100U (zh) * 2019-03-04 2019-11-05 嘉贺恒德科技有限责任公司 填充树脂式振动传感器及传感系统
CN209659621U (zh) * 2019-03-27 2019-11-19 歌尔科技有限公司 振动传感器和音频设备
DE102020113974A1 (de) * 2019-05-28 2020-12-03 Apple Inc. Entlüftete akustische wandler und verwandte verfahren und systeme
JP7226154B2 (ja) * 2019-07-10 2023-02-21 株式会社デンソー 超音波センサ
CN110631759A (zh) * 2019-09-29 2019-12-31 苏州敏芯微电子技术股份有限公司 差压传感器封装结构及电子设备
CN110988395B (zh) * 2019-12-02 2022-08-19 青岛歌尔智能传感器有限公司 加速度传感器及其制备方法
CN211702391U (zh) * 2020-03-25 2020-10-16 歌尔微电子有限公司 Mems麦克风和电子产品
CN111510834A (zh) * 2020-05-27 2020-08-07 潍坊歌尔微电子有限公司 骨声纹传感器模组和电子设备
CN111556419A (zh) * 2020-05-27 2020-08-18 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN211930820U (zh) * 2020-05-28 2020-11-13 青岛歌尔智能传感器有限公司 振动传感器和音频设备
CN212748031U (zh) * 2020-08-18 2021-03-19 洛阳大工检测技术有限公司 一种含有谐振腔的振动检测传感器
CN111970615A (zh) * 2020-09-30 2020-11-20 广东汉泓医疗科技有限公司 一种声音传感器振膜及一种听诊器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107005772A (zh) * 2014-11-13 2017-08-01 因文森斯公司 形成宽感测间隙微机电系统麦克风的集成封装和制造方法
US20170111731A1 (en) * 2015-10-20 2017-04-20 Sonion Nederland B.V. Microphone assembly with suppressed frequency response
CN209526861U (zh) * 2019-03-27 2019-10-22 歌尔科技有限公司 一种骨声纹传感器及电子设备
CN211630374U (zh) * 2020-03-30 2020-10-02 歌尔微电子有限公司 音频模组和电子设备
CN112565995A (zh) * 2020-11-16 2021-03-26 歌尔微电子有限公司 传感器芯片、骨声纹传感器和电子设备
CN112601169A (zh) * 2020-12-15 2021-04-02 武汉大学 一种宽频带高灵敏度谐振式压电mems麦克风

Also Published As

Publication number Publication date
CN218920578U (zh) 2023-04-25
WO2022222315A1 (zh) 2022-10-27
CN115243178A (zh) 2022-10-25
TW202242846A (zh) 2022-11-01
WO2022222317A1 (zh) 2022-10-27
CN115243149A (zh) 2022-10-25
CN218162856U (zh) 2022-12-27
CN116530094A (zh) 2023-08-01
TW202243297A (zh) 2022-11-01
CN115243176A (zh) 2022-10-25
CN117044239A (zh) 2023-11-10
US20230353932A1 (en) 2023-11-02
WO2022223041A1 (zh) 2022-10-27
CN116635699A (zh) 2023-08-22
CN115243151A (zh) 2022-10-25
CN115243150A (zh) 2022-10-25
US20230358601A1 (en) 2023-11-09
CN115243169A (zh) 2022-10-25
WO2022223032A1 (zh) 2022-10-27
US20230362524A1 (en) 2023-11-09
TW202245484A (zh) 2022-11-16
US20230319458A1 (en) 2023-10-05
US20230349862A1 (en) 2023-11-02
CN116491129A (zh) 2023-07-25
WO2022222557A1 (zh) 2022-10-27
CN115243133A (zh) 2022-10-25
CN116547992A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
WO2022222316A1 (zh) 传感装置
US7710001B2 (en) Piezoelectric transducers and associated methods
EP2728903B1 (en) Acoustic generator and acoustic generation device using same
JPS63120269A (ja) 音響トランスジューサ
CN110944274B (zh) 一种基于Piston-mode的带质量负载可调谐MEMS压电声换能器
Lerch Electroacoustic transducers using piezoelectric polyvinylidenefluoride films
CN103262575A (zh) 振荡器设备和电子仪器
JP2012142648A (ja) 電子機器
US11662248B2 (en) Vibration sensors
BE1011085A4 (nl) Element voor het weergeven en/of opnemen van geluid.
WO2022142291A1 (zh) 一种振动传感器
Ohga A flat piezoelectric polymer film loudspeaker as a multi-resonance system
BE1011559A4 (nl) Element voor het weergeven en/of opnemen van geluid.
WO2023272906A1 (zh) 一种振动传感器
WO2023092420A1 (zh) 传声器
TW202322638A (zh) 傳聲器
CN116250253A (zh) 一种振动传感器
Liu et al. An Analytical Model for Bandwidth Enhancement of Air‐Coupled Unsealed Helmholtz Structural CMUTs
White et al. Capacitively sensed micromachined hydrophone with viscous fluid-structure coupling
TW202303112A (zh) 振動感測器
JPS60241399A (ja) 水中用送波器
TW202308402A (zh) 振動感測器
JP2023544074A (ja) マイクロフォン
JPH0332960B2 (zh)
JPH0771356B2 (ja) 光フアイバハイドロホン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180078576.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937540

Country of ref document: EP

Kind code of ref document: A1