WO2022142291A1 - 一种振动传感器 - Google Patents

一种振动传感器 Download PDF

Info

Publication number
WO2022142291A1
WO2022142291A1 PCT/CN2021/107978 CN2021107978W WO2022142291A1 WO 2022142291 A1 WO2022142291 A1 WO 2022142291A1 CN 2021107978 W CN2021107978 W CN 2021107978W WO 2022142291 A1 WO2022142291 A1 WO 2022142291A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
vibration sensor
acoustic cavity
acoustic
mass element
Prior art date
Application number
PCT/CN2021/107978
Other languages
English (en)
French (fr)
Inventor
邓文俊
袁永帅
周文兵
黄雨佳
郑金波
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2020/140180 external-priority patent/WO2022140921A1/zh
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to EP21913042.4A priority Critical patent/EP4203512A4/en
Priority to JP2023524771A priority patent/JP2023547160A/ja
Priority to CN202180057727.1A priority patent/CN116250253A/zh
Priority to KR1020237013883A priority patent/KR20230074238A/ko
Priority to JP2023521923A priority patent/JP2023544877A/ja
Priority to CN202111307655.XA priority patent/CN115623392A/zh
Priority to PCT/CN2021/129151 priority patent/WO2022262176A1/zh
Priority to EP21913481.4A priority patent/EP4187216A4/en
Priority to CN202111309102.8A priority patent/CN114697823A/zh
Priority to PCT/CN2021/129148 priority patent/WO2022142737A1/zh
Priority to CN202180078575.3A priority patent/CN117157998A/zh
Priority to CN202180066637.9A priority patent/CN116584108A/zh
Priority to KR1020237011481A priority patent/KR20230058525A/ko
Priority to BR112023004959A priority patent/BR112023004959A2/pt
Priority to CN202111413109.4A priority patent/CN114697839A/zh
Priority to CN202122924309.8U priority patent/CN216391413U/zh
Priority to EP21914041.5A priority patent/EP4184134A4/en
Priority to CN202111573072.1A priority patent/CN114697824B/zh
Priority to CN202180057471.4A priority patent/CN116171582A/zh
Priority to BR112023003742A priority patent/BR112023003742A2/pt
Priority to PCT/CN2021/140090 priority patent/WO2022143302A1/zh
Priority to JP2023518843A priority patent/JP2023543765A/ja
Priority to KR1020237011152A priority patent/KR20230058505A/ko
Priority to TW111118332A priority patent/TW202301883A/zh
Publication of WO2022142291A1 publication Critical patent/WO2022142291A1/zh
Priority to US18/168,585 priority patent/US20230199370A1/en
Priority to US18/173,043 priority patent/US20230199360A1/en
Priority to US18/181,537 priority patent/US20230217147A1/en
Priority to US18/365,976 priority patent/US20230384147A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/08Microphones

Definitions

  • the present application relates to the field of acoustics, and in particular, to a vibration sensor.
  • a vibration sensor is an energy conversion device that converts vibration signals into electrical signals.
  • the vibration sensor can detect the vibration signal transmitted through the skin when a person speaks, and convert the vibration signal transmitted by the human skin into an electrical signal, so as to achieve the effect of transmitting sound.
  • the sensitivity of the vibration sensor will affect the quality of the sound it transmits, and the current vibration sensor is generally not sensitive. It is therefore desirable to provide a vibration sensor with improved sensitivity.
  • a vibration sensor comprising: a vibration receiver, including a housing and a vibration unit, the housing forms an acoustic cavity, the vibration unit is located in the acoustic cavity, and partitions the acoustic cavity into a first acoustic cavity and a second acoustic cavity; and an acoustic transducer in acoustic communication with the first acoustic cavity, wherein: the housing is configured to vibrate based on an external vibration signal, the vibrating unit responsive to The vibration of the casing vibrates and transmits the vibration to the acoustic transducer through the first acoustic cavity to generate an electrical signal, the vibration unit includes a mass element and an elastic element, the mass element The deviation from the cross-sectional area of the first acoustic cavity perpendicular to the vibration direction of the mass unit is less than 25%.
  • the sensitivity of the vibration sensor is greater than or equal to -40dB in the range of frequencies less than 1000Hz.
  • the vibration amplitude of the mass element is inversely proportional to the square of the resonant frequency of the vibration sensor.
  • the sensitivity of the vibration sensor is proportional to: the ratio of the air pressure change of the first acoustic cavity to the initial air pressure of the first acoustic cavity, or the volume change of the first acoustic cavity
  • the ratio to the initial volume of the first acoustic cavity, or the product of the vibration amplitude of the mass element and the cross-sectional area of the first acoustic cavity in the vibration direction perpendicular to the mass element and the first acoustic cavity A ratio of an initial volume of an acoustic cavity, wherein the sensitivity is greater than a threshold by setting at least one of the initial volume of the first acoustic cavity, the area of the first acoustic cavity, and the resonant frequency.
  • the acoustic transducer includes at least one air inlet, and the initial volume of the first acoustic cavity includes the volume of the at least one air inlet.
  • the elastic element is circumferentially attached to the side wall of the mass element, the elastic element extends towards the acoustic transducer and connects directly or indirectly to the acoustic transducer.
  • the width of the elastic element from one side close to the mass element to the other side away from the mass element is 10-500um.
  • the width of the elastic element varies from one side close to the mass element to the other side away from the mass element, and the variation amount of the variation is less than or equal to 300um.
  • the housing is connected with the acoustic transducer, and the end of the elastic element extending toward the acoustic transducer is directly connected with the acoustic transducer.
  • the vibration receiver further includes a base plate, the base plate is disposed on the acoustic transducer, and an end of the elastic element extending toward the acoustic transducer is connected to the base plate.
  • the base plate includes a bottom plate and a side wall, the bottom plate connecting the acoustic transducer, and an inner surface of the side wall connecting the elastic element.
  • the thickness of the bottom plate is 50-150 um, and the length of the side wall in a direction away from the bottom plate is 20-200 um.
  • the resonance frequency of the vibration sensor is 1000 Hz ⁇ 5000 Hz.
  • the resonance frequency of the vibration sensor is 1000 Hz ⁇ 4000 Hz.
  • the resonance frequency of the vibration sensor is 2000 Hz to 3500 Hz.
  • the resilient element is in direct contact with or spaced from the housing.
  • the elastic element includes a first elastic part and a second elastic part, two ends of the first elastic part are respectively connected with the side wall of the mass element and the second elastic part, the The second elastic portion extends toward the acoustic transducer and is directly or indirectly connected with the acoustic transducer.
  • the material of the elastic element includes at least one of silicone rubber, silicone gel, and silicone sealant.
  • the elastic element has a Shore hardness of 1-50 HA.
  • the surface of the elastic element remote from the acoustic transducer is lower than the surface of the mass element remote from the acoustic transducer.
  • At least one of the housing and mass element is provided with at least one pressure relief hole.
  • the volume of the first acoustic cavity is smaller than the volume of the second acoustic cavity.
  • the height of the first acoustic cavity is 1-100 um, and the height of the second acoustic cavity is 50-200 um.
  • the thickness of the mass element is 50-1000um.
  • FIG. 1 is a schematic structural diagram of a vibration sensor according to some embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of a vibration sensor according to some embodiments of the present application.
  • FIG. 3 is a schematic diagram of a connection manner of a mass element and an elastic element according to some embodiments of the present application
  • FIG. 4A is a schematic diagram of a vibration unit according to some embodiments of the present application.
  • FIG. 4B is a schematic diagram of a vibration unit according to other embodiments of the present application.
  • 4C is a schematic diagram of a vibration unit according to other embodiments of the present application.
  • FIG. 5 is a schematic diagram of a vibration receiver according to some embodiments of the present application.
  • FIG. 6 is a simplified schematic structural diagram of a vibration system according to some embodiments of the present application.
  • FIG. 7 is a schematic structural diagram of a vibration sensor according to some embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of a vibration sensor according to some embodiments of the present application.
  • FIG. 9 is a schematic structural diagram of a vibration sensor according to some embodiments of the present application.
  • FIG. 10 is a frequency response curve diagram of a vibration sensor according to some embodiments of the present application.
  • FIG. 11 is a schematic structural diagram of a vibration sensor according to some embodiments of the present application.
  • FIG. 12 is a schematic structural diagram of a vibration sensor according to some embodiments of the present application.
  • system means for distinguishing different components, elements, parts, parts or assemblies at different levels.
  • device means for converting signals into signals.
  • unit means for converting signals into signals.
  • module means for converting signals into signals.
  • the vibration sensor may include a vibration receiver and an acoustic transducer.
  • the vibration receiver may include a housing and a vibration unit.
  • the housing may form an acoustic cavity.
  • the vibration unit may be located in the acoustic cavity and divide the acoustic cavity into a first acoustic cavity and a second acoustic cavity.
  • the acoustic transducer may be in acoustic communication with the first acoustic cavity.
  • the housing may be configured to vibrate based on external vibration signals (eg, signals generated by the vibration of bones, skin, etc., as the user speaks).
  • the vibration unit may vibrate in response to the vibration of the housing and transmit the vibration to the acoustic transducer through the first acoustic cavity to generate an electrical signal.
  • the vibration unit may include a mass element and an elastic element. The deviation between the cross-sectional area of the mass element and the first acoustic cavity perpendicular to the vibration direction of the mass unit is less than 25%, which improves the air volume compression ratio in the first acoustic cavity during the vibration of the vibration unit, Thus, the sensitivity of the vibration sensor is improved.
  • the elastic element may surround the side wall attached to the mass element and extend to the acoustic transducer to directly or indirectly connect the acoustic transducer, so that the elastic element undergoes shear deformation during vibration of the vibrating unit.
  • shear deformation reduces the spring coefficient of the elastic element, which reduces the resonant frequency of the vibration sensor, thereby increasing the vibration amplitude of the mass element during the vibration of the vibration unit, and improving the vibration sensor's performance. sensitivity.
  • FIG. 1 is a schematic structural diagram of a vibration sensor 100 according to some embodiments of the present specification.
  • the vibration sensor 100 may include a vibration receiver 110 and an acoustic transducer 120 .
  • vibration receiver 110 and acoustic transducer 120 may be physically connected.
  • the physical connection in this specification may include welding, clamping, gluing, integral molding, etc., or any combination thereof.
  • the vibration sensor 100 may be used as a bone conduction microphone.
  • the vibration sensor 100 can receive vibration signals of tissues such as bones, skin and the like generated when the user speaks, and convert the vibration signals into electrical signals containing sound information. Since the sound (or vibration) in the air is hardly collected, the vibration sensor 100 can be protected from ambient noise (eg, the sound of others talking, the noise generated by the passing of vehicles) to a certain extent, and is suitable for use in a noisy environment To collect the voice signal when the user speaks.
  • the noisy environment may include a noisy restaurant, a meeting place, a street, near a road, a fire scene, and the like.
  • the vibration sensor 100 may be applied to earphones (eg, air conduction earphones and bone conduction earphones), hearing aids, hearing aids, glasses, helmets, augmented reality (AR) devices, virtual reality (VR) devices, etc. or any combination thereof.
  • earphones eg, air conduction earphones and bone conduction earphones
  • AR augmented reality
  • VR virtual reality
  • the vibration sensor 100 may be applied to earphones as a bone conduction microphone.
  • the vibration receiver 110 may be configured to receive and transmit vibration signals.
  • the vibration receiver 110 includes a housing and a vibration unit.
  • the housing may be an internally hollow structure, and some components of the vibration sensor 100 (eg, the vibration unit) may be located within the housing.
  • the housing may form an acoustic cavity within which the vibrating unit may be located.
  • the shape of the housing may be a regular or irregular three-dimensional structure such as a cuboid, a cylinder, a truncated cone, etc.
  • the material of the housing may include metals (eg, copper, stainless steel), alloys, plastics, etc., or any combination thereof.
  • the casing may have a certain thickness to ensure sufficient strength, so as to better protect the components (eg, vibration units) of the vibration sensor 100 disposed in the casing.
  • the vibration unit may partition the acoustic cavity formed by the housing into a first acoustic cavity and a second acoustic cavity.
  • the first acoustic cavity may be in acoustic communication with the acoustic transducer 120 .
  • Acoustic communication may be a communication that is capable of transmitting sound pressure, sound waves, or vibration signals.
  • the acoustic transducer 120 may receive vibration signals and convert the received vibration signals into electrical signals containing acoustic information.
  • the vibration signal may be received via the vibration receiver 110 and transferred into the first acoustic cavity, which may transfer the vibration signal to the acoustic transducer 120 through acoustic communication.
  • the housing when the vibration sensor 100 is in operation, the housing may vibrate based on external vibration signals (eg, signals generated by the vibration of bones, skin, etc., when the user speaks). The vibration unit may vibrate in response to the vibration of the housing, and transmit the vibration to the acoustic transducer 120 through the first acoustic cavity.
  • the vibration of the vibration unit can cause a volume change of the first acoustic cavity, thereby causing a change in air pressure in the first acoustic cavity, and converting the change in air pressure in the cavity into a change in sound pressure in the cavity.
  • the acoustic transducer 120 may detect changes in sound pressure of the first acoustic cavity and generate electrical signals based thereon.
  • the acoustic transducer 120 may include a diaphragm, the sound pressure in the first acoustic cavity changes and acts on the diaphragm to vibrate (or deform) the diaphragm, and the acoustic transducer 120 converts the vibration of the diaphragm into electricity Signal.
  • FIGS. 2-12 For a detailed description of the vibration sensor 100, reference may be made to the detailed description of FIGS. 2-12.
  • vibration sensor 100 may also include other components, such as a power supply, to provide power to acoustic transducer 120, and the like. These corrections and changes are still within the scope of this specification.
  • FIG. 2 is a schematic structural diagram of a vibration sensor 200 according to some embodiments of the present specification.
  • the vibration sensor 200 may include a vibration receiver 210 and an acoustic transducer 220 .
  • the vibration receiver 210 may include a housing 211 and a vibration unit 212 .
  • the housing 211 may be coupled with the acoustic transducer 220 to enclose a structure having an acoustic cavity 213 .
  • the connection between the housing 211 and the acoustic transducer 120 may be a physical connection.
  • the vibration unit 212 may be located within the acoustic cavity 213 .
  • the vibration unit 212 may partition the acoustic cavity 213 into a first acoustic cavity 2131 and a second acoustic cavity 2132 .
  • the vibration unit 212 may form the second acoustic cavity 2132 with the housing 211 ; the vibration unit 212 may form the first acoustic cavity 2131 with the acoustic transducer 220 .
  • the first acoustic cavity 2131 may be in acoustic communication with the acoustic transducer 220 .
  • the first acoustic cavity 2131 may include an air inlet 221 through which the acoustic transducer 220 may be in acoustic communication with the first acoustic cavity 2131 .
  • vibration sensor 200 may include more than one air intake.
  • vibration sensor 200 may include a plurality of air inlets arranged in an array.
  • the height H 1 of the first acoustic cavity 2131 is 1-500um
  • the height H 1 of the first acoustic cavity 2132 refers to the mass element 2121 is the distance between the surface close to the acoustic transducer 220 and the surface in the housing 211 close to the mass element 2121 on the acoustic transducer 220 (or substrate).
  • the height H 1 of the first acoustic cavity 2131 is 1-450um. More preferably, along the vibration direction of the vibration unit 212, the height H 1 of the first acoustic cavity 2131 is 1-400um.
  • the height H 1 of the first acoustic cavity 2131 is 1-350um. More preferably, along the vibration direction of the vibration unit 212, the height H 1 of the first acoustic cavity 2131 is 1-300um. More preferably, along the vibration direction of the vibration unit 212, the height H 1 of the first acoustic cavity 2131 is 1-250um. More preferably, along the vibration direction of the vibration unit 212, the height H 1 of the first acoustic cavity 2131 is 1-200um. More preferably, along the vibration direction of the vibration unit 212, the height H 1 of the first acoustic cavity 2131 is 1-150um.
  • the height H 1 of the first acoustic cavity 2131 is 1-100um. More preferably, along the vibration direction of the vibration unit 212, the height H 1 of the first acoustic cavity 2131 is 1-80um. More preferably, along the vibration direction of the vibration unit 212, the height H1 of the first acoustic cavity 2131 is 1-60um. More preferably, along the vibration direction of the vibration unit 212, the height H1 of the first acoustic cavity 2131 is 1-40um. More preferably, along the vibration direction of the vibration unit 212, the height H 1 of the first acoustic cavity 2131 is 1-20um.
  • the second acoustic cavity 2132 may have an open structure, that is, directly communicate with the outside world.
  • the second acoustic cavity 2132 may communicate with the outside world through a hole structure or an opening structure provided on the housing 211 .
  • the air pressure change of the second acoustic cavity 2132 has little effect on the vibration of the vibration unit 212 , but the air conduction sound in the environment may affect the performance of the vibration sensor 200 .
  • the second acoustic cavity 2132 may be a sealed cavity structure.
  • the volume of the second acoustic cavity 2132 may be larger than that of the first acoustic cavity 2131 , so as to reduce the influence of the air pressure change of the second acoustic cavity 2132 on the vibration of the vibration unit 212 during the vibration of the vibration unit 212 .
  • the height H 2 of the second acoustic cavity 2132 may be 1-2000um, and the height H 2 of the second acoustic cavity 2132 refers to the distance between the mass element 2121 and the acoustic transducer 220 . The distance between the surface and the inner surface of the housing 211 that is parallel to the mass element 2121 .
  • the height H 2 of the second acoustic cavity 2132 may be 1-1000um.
  • the height H 2 of the second acoustic cavity 2132 may be 1-500um.
  • the height H 2 of the second acoustic cavity 2132 may be 1-450um.
  • the height H 2 of the second acoustic cavity 2132 may be 1-400um.
  • the height H 2 of the second acoustic cavity 2132 may be 1-350um.
  • the height H 2 of the second acoustic cavity 2132 may be 1-300um. More preferably, along the vibration direction of the vibration unit 212, the height H 2 of the second acoustic cavity 2132 may be 1-250um. More preferably, along the vibration direction of the vibration unit 212, the height H 2 of the second acoustic cavity 2132 may be 1-200um. More preferably, along the vibration direction of the vibration unit 212, the height H 2 of the second acoustic cavity 2132 may be 10-200um. More preferably, along the vibration direction of the vibration unit 212, the height H 2 of the second acoustic cavity 2132 may be 20-200um.
  • the height H 2 of the second acoustic cavity 2132 may be 30-200um. More preferably, along the vibration direction of the vibration unit 212, the height H 2 of the second acoustic cavity 2132 may be 40-200um. More preferably, along the vibration direction of the vibration unit 212, the height H 2 of the second acoustic cavity 2132 may be 50-200um. More preferably, along the vibration direction of the vibration unit 212, the height H 2 of the second acoustic cavity 2132 may be 60-200um. More preferably, along the vibration direction of the vibration unit 212, the height H2 of the second acoustic cavity 2132 may be 70-200um.
  • the height H 2 of the second acoustic cavity 2132 may be 80-200um. More preferably, along the vibration direction of the vibration unit 212, the height H 2 of the second acoustic cavity 2132 may be 90-200um. More preferably, along the vibration direction of the vibration unit 212, the height H 2 of the second acoustic cavity 2132 may be 100-200um. More preferably, along the vibration direction of the vibration unit 212, the height H 2 of the second acoustic cavity 2132 may be 120-200um. More preferably, along the vibration direction of the vibration unit 212, the height H 2 of the second acoustic cavity 2132 may be 140-200um.
  • the height H 2 of the second acoustic cavity 2132 may be 160-200um. More preferably, along the vibration direction of the vibration unit 212, the height H 2 of the second acoustic cavity 2132 may be 180-200um.
  • the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 10:1. In some embodiments, along the vibration direction of the vibration unit 212 , the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 9:1. In some embodiments, along the vibration direction of the vibration unit 212 , the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 8:1.
  • the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 8:1. In some embodiments, along the vibration direction of the vibration unit 212 , the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 7:1. In some embodiments, along the vibration direction of the vibration unit 212 , the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 6:1.
  • the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 5:1. In some embodiments, along the vibration direction of the vibration unit 212 , the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 4:1. In some embodiments, along the vibration direction of the vibration unit 212 , the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 3:1.
  • the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 2:1. In some embodiments, along the vibration direction of the vibration unit 212 , the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 1.5:1. In some embodiments, along the vibration direction of the vibration unit 212 , the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 2.5:1.
  • the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 3.5:1. In some embodiments, along the vibration direction of the vibration unit 212 , the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 4.5:1. In some embodiments, along the vibration direction of the vibration unit 212 , the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 5.5:1.
  • the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 6.5:1. In some embodiments, along the vibration direction of the vibration unit 212 , the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 7.5:1. In some embodiments, along the vibration direction of the vibration unit 212 , the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 8.5:1. In some embodiments, along the vibration direction of the vibration unit 212 , the ratio of the height H 2 of the second acoustic cavity 2132 to the height H 1 of the first acoustic cavity 2131 may be 9.5:1.
  • the vibration unit 212 may include a mass element 2121 and an elastic element 2122 .
  • the mass element 2121 and the elastic element 2122 may be physically connected, eg, glued.
  • the elastic element 2122 may be a material with a certain viscosity, and is directly bonded to the mass element 2121 .
  • the elastic element 2122 may be a high temperature resistant material such that the elastic element 2122 maintains performance during the manufacturing process of the vibration sensor 200 . In some embodiments, when the elastic element 2122 is in an environment of 200° C.
  • the elastic element 2122 may be a material with good elasticity (ie, easily elastically deformed), so that the vibration unit 212 may vibrate in response to the vibration of the housing 211 .
  • the material of the elastic element 2122 may include silicone rubber, silicone gel, silicone sealant, etc., or any combination thereof.
  • the Shore hardness of the elastic element 2122 may be 1-50 HA.
  • the Shore hardness of the elastic member 2122 may be 1-45 HA. More preferably, the Shore hardness of the elastic member 2122 may be 1-40 HA. More preferably, the Shore hardness of the elastic member 2122 may be 1-35 HA. More preferably, the Shore hardness of the elastic member 2122 may be 1-30 HA. More preferably, the Shore hardness of the elastic member 2122 may be 1-25 HA. More preferably, the Shore hardness of the elastic member 2122 may be 1-20 HA. More preferably, the Shore hardness of the elastic member 2122 may be 1-15 HA. More preferably, the Shore hardness of the elastic member 2122 may be 1-10 HA. More preferably, the Shore hardness of the elastic member 2122 may be 1-5 HA. More preferably, the Shore hardness of the elastic member 2122 may be 15HA.
  • Mass element 2121 may also be referred to as a mass.
  • the material of the mass element 2121 may be a material with a density greater than a certain density threshold (eg, 6 g/cm 3 ), eg, a metal.
  • a certain density threshold eg, 6 g/cm 3
  • the material of mass element 2121 may include lead, copper, silver, tin, stainless steel, alloys, etc., or any combination thereof.
  • the mass element 2121 is made of a material with a density greater than a certain density threshold, which can reduce the size of the vibration sensor 200 to a certain extent.
  • the material density of the mass element 2121 has a large effect on the resonance peak and sensitivity of the frequency response curve of the vibration sensor 200 . Under the same volume, the greater the density of the mass element 2121 is, the greater the mass thereof, the resonance peak of the vibration sensor 200 is shifted to the low frequency, and the sensitivity is increased.
  • the mass element 2121 has a material density of 6-20 g/cm 3 .
  • the material density of the mass element 2121 is 6 ⁇ 15 g/cm 3 . More preferably, the material density of the mass element 2121 is 6 ⁇ 10 g/cm 3 . More preferably, the material density of the mass element 2121 is 6 ⁇ 8 g/cm 3 .
  • the mass element 2121 and the elastic element 2122 may be composed of different materials, and then assembled (eg, glued) together to form the vibration unit 212 .
  • the mass element 2121 and the elastic element 2122 may also be composed of the same material, and the vibration unit 212 is formed by integral molding.
  • the thickness of the mass element 2121 along its vibration direction may be 50-1000 um.
  • the thickness of the mass element 2121 along its vibration direction may be 60-900um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 70-800um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 80-700um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 90-600um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 100-500um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 100-400um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 100-300um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 100-200um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 100-150um.
  • the elastic element 2122 may surround the side wall connected to the mass element 2121 .
  • FIG. 3 is a schematic diagram of the connection manner of the mass element 2121 and the elastic element 2122 according to some embodiments of the present specification.
  • the inner side 2124 of the elastic element 2122 is connected with the side wall of the mass element 2121 .
  • the inner side 2124 of the elastic element 2122 may refer to the side where the space surrounded by the elastic element 2122 is located.
  • the side wall of the mass element 2121 may refer to a side of the mass element 2121 parallel to the vibration direction.
  • the upper and lower surfaces of the mass element 2121 are approximately perpendicular to the vibration direction, and are used to define the second acoustic cavity 2132 and the first acoustic cavity 2131 respectively. Since the elastic element 2122 surrounds the side wall connected to the mass element 2121, when the vibration unit 212 vibrates along the vibration direction, the momentum of the mass element 2121 is converted into a force on the elastic element 2122, causing the elastic element 2122 to undergo shear deformation.
  • the shear deformation reduces the spring coefficient of the elastic element 2122, which reduces the resonance frequency of the vibration sensor 200, thereby increasing the vibration amplitude of the mass element 2121 during the vibration of the vibration unit 212, increasing the The sensitivity of the vibration sensor 200 is improved.
  • the mass element 2121 and the elastic element 2122 in the vibration unit 212 may be regarded as additional resonance systems other than the resonance system of the acoustic transducer 220 .
  • the additional resonance system may adjust the original vibration characteristics of the vibration sensor 200 (ie, the vibration characteristics under the action of the original resonance system of the acoustic transducer 220 ) such that the original resonance frequency of the vibration sensor 200 (ie, the vibration characteristics under the action of the original resonance system of the acoustic transducer 220 ) The resonant frequency of the original resonant system of the transducer 220) changes.
  • this setting can be regarded as introducing a new resonance system into the original resonance system of the vibration sensor 200, thereby introducing a new resonance peak, and the resonance frequency of the newly added resonance peak is lower than that of the acoustic transducer 220, so that
  • the sensing device 200 has high sensitivity.
  • sensitivity of the sensing device 200 reference may be made to the detailed description of Figures 6-8.
  • the resonance frequency of the vibration sensor 200 may be 1000 Hz ⁇ 5000 Hz.
  • the resonance frequency of the vibration sensor 200 may be 1500 Hz ⁇ 5000 Hz. More preferably, the resonance frequency of the vibration sensor 200 may be 2000 Hz ⁇ 5000 Hz. More preferably, the resonance frequency of the vibration sensor 200 may be 2500 Hz ⁇ 5000 Hz. More preferably, the resonance frequency of the vibration sensor 200 may be 3000 Hz ⁇ 5000 Hz. More preferably, the resonance frequency of the vibration sensor 200 may be 3500 Hz ⁇ 5000 Hz. More preferably, the resonance frequency of the vibration sensor 200 may be 4000 Hz ⁇ 5000 Hz. More preferably, the resonance frequency of the vibration sensor 200 may be 4500 Hz ⁇ 5000 Hz.
  • the resonance frequency of the vibration sensor 200 may be 1000 Hz ⁇ 4500 Hz. More preferably, the resonance frequency of the vibration sensor 200 may be 1000 Hz ⁇ 4000 Hz. More preferably, the resonance frequency of the vibration sensor 200 may be 1500 Hz ⁇ 4500 Hz. More preferably, the resonance frequency of the vibration sensor 200 may be 2000 Hz ⁇ 4000 Hz. More preferably, the resonance frequency of the vibration sensor 200 may be 2000 Hz ⁇ 3500 Hz. More preferably, the resonance frequency of the vibration sensor 200 may be 2000 Hz ⁇ 3000 Hz. More preferably, the resonance frequency of the vibration sensor 200 may be 2000 Hz ⁇ 2500 Hz.
  • the resonant frequency of the vibration sensor 200 may be determined by the parameters of the mass element 2121 and the elastic element 2122 .
  • the parameters used to determine the resonant frequency may include, but are not limited to, the mass of the mass element 2121, the mass of the elastic element 2122, the stiffness of the elastic element 2122, the Young's modulus of the elastic element 2122, the shear of the elastic element 2122 The shear modulus, the equivalent stiffness of the elastic element 2122, or the spring constant of the elastic element 2122, etc.
  • the vibration sensor 200 can have different resonant frequencies by adjusting the parameters of the mass element 2121 and the elastic element 2122 . For example, when the mass of the mass element 2121 is constant, the smaller the spring coefficient of the adjusting elastic element 2122 is, the lower the resonance frequency of the vibration sensor 200 is.
  • the shape of the elastic element 2122 can be adapted to the shape of the mass element 2121 .
  • the elastic element 2122 may be a tubular structure whose open end has the same cross-sectional shape as the mass element 2121 in a cross-section perpendicular to the vibration direction of the mass element 2121 .
  • the open end of the elastic member 2122 may be the end connected with the mass member 2121 .
  • the shape of the mass element 2121 on the cross section perpendicular to the vibration direction of the mass element 2121 is a quadrangle
  • the area surrounded by the elastic element 2122 is a tube shape, and the tube shape is in the cross section perpendicular to the vibration direction of the mass element 2121 .
  • the shape of the mass element 2121 on the cross section perpendicular to the vibration direction of the mass element 2121 may also include regular shapes (eg, circle, ellipse, sector, rounded rectangle, polygon) and irregular shapes, and the like.
  • the shape of the tubular shape surrounded by the elastic element 2122 on a cross-section perpendicular to the vibration direction of the mass element 2121 may include a tubular shape having a regular shape or an irregular shape aperture.
  • This specification does not limit the shape of the outer side 2125 of the tubular elastic element 2122 .
  • the outer side 2125 of the elastic element 2122 may be the opposite side to the inner side 2124 of the elastic element 2122.
  • the shape of the outer side of the tubular elastic element 2122 may include a cylindrical shape, an elliptical cylindrical shape, a conical shape, a rounded rectangular column, a rectangular column, a polygonal column, an irregular column, etc., or any combination thereof. As shown in FIG. 3 , the shape of the outer side of the tubular elastic element 2122 may be quadrilateral.
  • the width W of the elastic element 2122 surrounding the side wall connected to the mass element 2121 from one side close to the mass element 2121 to the other side away from the mass element 2121 may be 10-500um .
  • the width W of the elastic element 2122 from one side close to the mass element 2121 to the other side away from the mass element 2121 may be 20-450um.
  • the width W of the elastic element 2122 from one side close to the mass element 2121 to the other side away from the mass element 2121 may be 30-400um.
  • the width W of the elastic element 2122 from one side close to the mass element 2121 to the other side away from the mass element 2121 may be 40-350um.
  • the width W of the elastic element 2122 from one side close to the mass element 2121 to the other side away from the mass element 2121 may be 50-300um. More preferably, the width W of the elastic element 2122 from one side close to the mass element 2121 to the other side away from the mass element 2121 may be 60-250um. More preferably, the width W of the elastic element 2122 from one side close to the mass element 2121 to the other side away from the mass element 2121 may be 70-200um. More preferably, the width W of the elastic element 2122 from one side close to the mass element 2121 to the other side away from the mass element 2121 may be 80-150um. More preferably, the width W of the elastic element 2122 from one side close to the mass element 2121 to the other side away from the mass element 2121 may be 90-100um.
  • the width W of the elastic element 2122 varies along the vibration direction from one side close to the mass element 2122 to the other side away from the mass element 2122 . That is, the elastic element 2122 may include a plurality of sections perpendicular to the vibration direction, and the width of each section corresponds to the length of the elastic element 2122 along the direction perpendicular to the boundary direction of the elastic element 2122 in the section. Widths can vary. As shown in FIGS. 4A-4B , the elastic element 2122 may bulge outwardly and/or inwardly relative to the mass element 2121 .
  • the elastic element 2122 may bulge outward relative to the mass element 2121, referring to at least a partial area of the outer side 2125 of the elastic element 2122 and the axis of the first acoustic cavity 2131 (the Z axis as shown in the figure) The distance between them gradually increases along the direction from the mass element 2121 to the acousto-electric transducer element; the elastic element 2122 can bulge inward relative to the mass element 2121, which means that at least a part of the inner side 2124 of the elastic element 212 is in contact with the first sound element. The distance between the axes of the cavities 2131 gradually decreases along the direction from the mass element 2121 to the acoustoelectric transducer element.
  • the axis of the first acoustic cavity 2131 may refer to the geometric centerline of the first acoustic cavity 2131 parallel to the vibration direction.
  • the outward and/or inward bulging may cause the width W of the elastic element 2122 to vary along the vibration direction of the mass element 2121 from one side closer to the mass element 2122 to the other side away from the mass element 2122 .
  • the width of the portion of the elastic element 2122 away from the mass element 2121 is larger than the width of the portion close to the mass element 2121 due to the inward bulge.
  • the amount of change in the width change can be expressed as the difference between the minimum width value and the maximum width value of the width.
  • the amount of change in the width change may be less than or equal to 300um. In some embodiments, the amount of change in the width change may be less than or equal to 250um. In some embodiments, the amount of change in the width change may be less than or equal to 200um. In some embodiments, the amount of change in the width change may be less than or equal to 150um. In some embodiments, the amount of change in the width change may be less than or equal to 100um. In some embodiments, the amount of change in the width change may be less than or equal to 50um. In some embodiments, the amount of change in the width change may be less than or equal to 30um. In some embodiments, the width may also remain unchanged, that is, the amount of change in the width change may be zero.
  • the elastic element 2122 may be recessed outwardly and/or inwardly relative to the mass element 2121 .
  • the elastic element 2122 may be recessed outwardly relative to the mass element 2121 to refer to the relationship between at least a partial area of the inner side 2124 of the elastic element 2122 and the axis of the first acoustic cavity 2131 (the Z axis as shown in the figure) The distance between them gradually decreases first and then gradually increases along the direction from the mass element 2121 to the acoustoelectric transducer element; the elastic element 2122 may be recessed inward relative to the mass element 2121, which means that at least part of the area of the outer side 2125 of the elastic element 212 is different from The distance between the axes of the first acoustic cavity 2131 first gradually decreases and then gradually increases along the direction from the mass element 2121 to the acoustoelectric transducer element.
  • the outer side 2125 of the elastic element 2122 can be recessed inward, and the inner side 2124 of the elastic element 2122 can be recessed outward.
  • the outer side 2125 of the elastic element 2122 may be concave inward, and the inner side 2124 of the elastic element 2122 may also be bulged inward.
  • the elastic element 2122 is away from the surface A of the acoustic transducer 220 (ie, the upper surface of the elastic element 2122 , the upper surface of the elastic element 2122 is the upper surface of the elastic element 2122 away from the acoustic transducer 220 ) surface) may be lower than the surface B of the mass element 2121 away from the acoustic transducer 220 (ie the upper surface of the mass element 2121, which is the surface of the mass element 2121 away from the acoustic transducer 220).
  • the elastic element 2122 is an elastic colloid
  • the elastic element 2122 may overflow onto the surface B of the mass element 2121 due to operational reasons, which may affect the packaging of the housing 211 (even As a result, the housing 211 cannot be encapsulated), resulting in a change in the volume of the second acoustic cavity 2132, and an increase in the equivalent stiffness of the elastic element 2122, thereby reducing the performance (eg, sensitivity) of the vibration sensor 200.
  • the equivalent stiffness of the elastic element 2122 may be a parameter that can reflect the properties of the total deformation (eg, including tensile and compressive deformation and shear deformation) of the elastic element 2122 .
  • the height difference between the surface A of the elastic element 2122 away from the acoustic transducer 220 and the surface B of the mass element 2121 away from the acoustic transducer 220 may be less than 2/3 of the thickness of the mass element 2121 .
  • the height difference between the surface A of the elastic element 2122 away from the acoustic transducer 220 and the surface B of the mass element 2121 away from the acoustic transducer 220 may be less than 1/2 of the thickness of the mass element 2121 .
  • the height difference between the surface A of the elastic element 2122 away from the acoustic transducer 220 and the surface B of the mass element 2121 away from the acoustic transducer 220 may be less than 1/3 of the thickness of the mass element 2121.
  • the elastic element 2121 may extend toward the acoustic transducer 220 and connect the acoustic transducer 220 directly or indirectly.
  • one end of the elastic element 2121 extending toward the acoustic transducer 220 may be directly connected to the acoustic transducer 220 .
  • the connection between the elastic element 2121 and the acoustic transducer 220 may be physical connection, for example, glue.
  • the elastic element 2121 and the housing 211 may be in direct contact or spaced apart. For example, as shown in FIG. 2 , a space may exist between the elastic element 2121 and the housing 211 .
  • FIG. 5 is a schematic diagram of a vibration receiver 210 according to some embodiments of the present specification.
  • the elastic element 2121 can be in direct contact with the housing 211 .
  • the flow of the elastic element 2121 during the preparation of the vibration receiver 212 can be reduced, so as to better control the size and shape of the elastic element.
  • the size of the motion sensor 200 can be reduced.
  • the space between the elastic element 2121 and the housing 211 may increase the size of the dynamic sensor 200, it can reduce the equivalent stiffness of the elastic element 2121 and increase the stiffness of the elastic element 2121. Therefore, during the vibration process of the vibration unit 212 , the vibration amplitude of the mass element 2121 is increased, which can reduce the resonance frequency of the vibration sensor 200 and improve the sensitivity of the vibration sensor 200 .
  • At least one of the housing 211 and the mass element 2121 may be provided with at least one pressure relief hole.
  • at least one pressure relief hole 2111 may be provided on the housing 211 .
  • the pressure relief hole 2111 may penetrate through the housing 211 .
  • the mass element 2121 may be provided with at least one pressure relief hole 2123 .
  • the pressure relief hole 2123 may penetrate the mass element 2121 .
  • the pressure relief hole 2123 can make the gas in the first acoustic cavity 2131 and the second acoustic cavity 2132 circulate, and the pressure relief hole 2111 can make the second acoustic cavity 2132 and the outside gas flow, so as to balance the preparation process of the vibration sensor 200 ( For example, the change in air pressure inside the first acoustic cavity 2131 and the second acoustic cavity 2332 caused by the temperature change during reflow soldering reduces or prevents damage to the components of the vibration sensor 200 caused by the change in air pressure, for example, cracking, deformation Wait.
  • the housing 211 may be provided with at least one pressure relief hole 2111 , and the pressure relief hole 2111 may be used to reduce the damping generated by the gas inside the second acoustic cavity 2332 when the mass element 2121 vibrates.
  • the pressure relief hole 2111 and/or the pressure relief hole 2123 may be a single hole.
  • the diameter of the single hole may be 1-50um.
  • the diameter of the single hole may be 2-45um. More preferably, the diameter of the single hole may be 3-40um. More preferably, the diameter of the single hole may be 4-35um. More preferably, the diameter of the single hole may be 5-30um. More preferably, the diameter of the single hole may be 5-25um. More preferably, the diameter of the single hole may be 5-20um. More preferably, the diameter of the single hole may be 6-15um. More preferably, the diameter of the single hole may be 7-10um.
  • the pressure relief holes 2111 and/or the pressure relief holes 2123 may be an array composed of a certain number of micro holes.
  • the number of microwells may be 2-10.
  • the diameter of each micropore may be 0.1-25um.
  • the diameter of each micropore may be 0.5-20um. More preferably, the diameter of each micropore may be 0.5-25um. More preferably, the diameter of each micropore may be 0.5-20um. More preferably, the diameter of each micropore may be 0.5-15um. More preferably, the diameter of each micropore may be 0.5-10um. More preferably, the diameter of each micropore may be 0.5-5um. More preferably, the diameter of each micropore may be 0.5-4um. More preferably, the diameter of each micropore may be 0.5-3um. More preferably, the diameter of each micropore may be 0.5-2um. More preferably, the diameter of each micropore may be 0.5-1 um.
  • air-conducted sound in the environment may affect the performance of the vibration sensor 200 in use.
  • a sealing material may be used to seal the at least one pressure relief hole 2111 on the housing 211 .
  • the sealing material may include epoxy glue, silicone sealant, or the like, or any combination thereof.
  • pressure relief holes may not be provided in the housing 211 and the mass element 2121 .
  • the connection strength between the components of the vibration sensor 200 can be improved (for example, by enhancing the connection strength of the glue connecting the components) , to prevent the components of the vibration sensor 200 from being damaged due to changes in air pressure inside the first acoustic cavity 2131 and the second acoustic cavity 2332 .
  • the vibration sensor 200 may convert external vibration signals into electrical signals.
  • the external vibration signal may include a vibration signal when a person speaks, a vibration signal generated by the skin moving with the human body or other equipment (such as a speaker) working close to the skin, etc., and an object or air in contact with the vibration sensor 200. vibration signals, etc., or any combination thereof.
  • the vibration sensor 200 works, the external vibration signal can be transmitted to the vibration unit 212 through the casing 211 , and the mass element 2121 of the vibration unit 212 vibrates in response to the vibration of the casing 211 driven by the elastic element 2122 .
  • the vibration of the mass element 2121 can cause a volume change of the first acoustic cavity 2131, thereby causing a change in air pressure in the first acoustic cavity 2131, and converting the change in air pressure in the cavity into a change in sound pressure in the cavity.
  • the acoustic transducer 220 may detect changes in sound pressure of the first acoustic cavity 2131 and convert them into electrical signals.
  • the acoustic transducer 220 may include an air inlet 221, and the sound pressure change in the first acoustic cavity 2131 may act on the diaphragm of the acoustic transducer 220 through the air inlet 221, causing the diaphragm to vibrate (or deform).
  • the electrical signals generated by the acoustic transducer 220 may be transmitted to external electronic devices.
  • the acoustic transducer 220 may include an interface 222 .
  • the interface 222 may be wired (eg, electrically) or wirelessly connected to internal elements (eg, a processor) of the external electronic device.
  • the electrical signal generated by the acoustic transducer 220 may be transmitted to the external electronic device through the interface 222 in a wired or wireless manner.
  • the external electronic device may include a mobile device, a wearable device, a virtual reality device, an augmented reality device, etc., or any combination thereof.
  • mobile devices may include smartphones, tablet computers, personal digital assistants (PDAs), gaming devices, navigation devices, etc., or any combination thereof.
  • the wearable device may include a smart bracelet, earphones, hearing aids, smart helmets, smart watches, smart clothing, smart backpacks, smart accessories, etc., or any combination thereof.
  • a virtual reality device and/or an augmented reality device may include a virtual reality headset, virtual reality glasses, virtual reality patch, augmented reality helmet, augmented reality glasses, augmented reality patch, etc., or any combination thereof.
  • virtual reality devices and/or augmented reality devices may include Google Glass, Oculus Rift, Hololens, Gear VR, and the like.
  • the elastic element 2122 may be provided with at least one pressure relief hole.
  • the pressure relief hole may penetrate through the elastic element 2122 .
  • FIG. 6 is a simplified schematic diagram of a vibration system 600 according to some embodiments of the present specification.
  • the vibration receiver shown in FIGS. 1-5 may be described by vibration system 600 .
  • the vibration system 600 may include a casing 611 enclosing a closed cavity and a vibration unit 612 located in the closed cavity.
  • the vibration unit 612 may include a mass element 6121 and an elastic element 6122 .
  • the elastic element 6122 may be connected between the mass element 6121 and the housing 611 .
  • the elastic element 6122 may be a spring.
  • the mass of the housing 611 may be expressed as m
  • the mass of the mass element 6121 may be expressed as M m
  • the mass of the elastic element 6122 may be expressed as K m
  • the damping of the system may be expressed as R m .
  • ⁇ 10 is the vibration amplitude when the casing 611 vibrates
  • i is an imaginary unit
  • is the vibration frequency when the casing 611 vibrates
  • t is the vibration time when the casing 611 vibrates.
  • ⁇ 2 is the displacement of the mass element 6121 when it vibrates.
  • a 10 is the acceleration amplitude of the casing 611
  • the force impedance modulus value resistance Abs is the absolute value function.
  • the vibration amplitude ⁇ h of the mass unit 6121 relative to the housing 611 under unit acceleration can be expressed as:
  • the vibration amplitude of the mass unit 6121 in the low frequency range (for example, the flat region of the frequency response curve)
  • the vibration amplitude of the mass unit 6121 in the low frequency range in the practical application of the vibration system 600 can be expressed as:
  • the vibration amplitude of the mass unit 6121 in the low frequency range can be expressed as:
  • the sensitivity of the vibration system 600 in the flat region of the frequency response curve is mainly related to the resonant frequency ⁇ 0 of the vibration system 600 , and is less affected by the quality factor Q m and is almost negligible. Therefore, the vibration amplitude of the mass unit 6121 relative to the housing 611 at low frequencies (eg, the flat region of the frequency response curve) under unit acceleration can be expressed as:
  • the vibration amplitude of the mass element 6121 is inversely proportional to the square of the resonance frequency of the vibration system 600 .
  • the vibration amplitude of the mass element 2121 is inversely proportional to the square of the resonance frequency of the vibration sensor 200 .
  • the vibration amplitude of the mass element 2121 is inversely proportional to the square of the resonance frequency of the vibration sensor 200 .
  • the low frequency may be a frequency band of less than 2000 Hz or less than 1000 Hz or less than 800 Hz or less than 600 Hz or less than 500 Hz.
  • the larger the vibration amplitude of the center of gravity of the mass unit of the mechanical system at low frequencies for example, the flat region of the frequency response curve of the mechanical system
  • the lower the resonance frequency of the mechanical system and the higher the sensitivity for example, the flat region of the frequency response curve of the mechanical system
  • the elastic element eg, the elastic element 2122
  • the vibration unit eg, the vibration unit 212
  • the elastic element undergoes shear deformation.
  • shear deformation reduces the spring coefficient of the elastic element, lowers the resonance frequency of the vibration sensor (eg, vibration sensor 200), thereby increasing the vibration amplitude of the mass element during the vibration of the vibration unit, The sensitivity of the vibration sensor has been improved.
  • the vibration amplitude of the mass element reduces the resonance frequency of the vibration sensor and improves the sensitivity of the vibration sensor.
  • the resonance frequency of the vibration system 600 can be determined by the mass M m of the mass element 6121, the mass K m of the elastic element 6122, and the damping R m of the system, wherein the damping R m of the system is positively related to the resonance frequency of the vibration system 600, and the mass element
  • the sum of the mass M m of the 6121 and the mass K m of the elastic element 6122 is negatively related to the resonant frequency of the vibration system 600 .
  • FIG. 7 is a schematic structural diagram of a vibration sensor 700 according to some embodiments of the present specification.
  • the vibration sensor 700 may include a vibration receiver 710 and an acoustic transducer 720 .
  • the vibration receiver 710 may include a housing 711 and a vibration unit 712 .
  • the housing 711 may be connected with the acoustic transducer 720 to enclose a package structure having the acoustic cavity 713 .
  • the vibration unit 712 may be located in the acoustic cavity 713 of the package structure and divide the acoustic cavity 713 into a first acoustic cavity 7131 and a second acoustic cavity 7132 .
  • the vibration unit 712 may include a mass element 7121 , an elastic film 7122 and a support member 7123 . As shown in FIG. 7 , the mass element 7121 may be disposed on the upper surface of the elastic film 7122 .
  • the material of the elastic film 7122 may include a polymer elastic film such as a polytetrafluoroethylene (PTFE) film, a polydimethylsiloxane (PDMS) film, or a composite film (for example, a plastic film (such as polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC) and polyester (PET), etc.), cellophane, paper and/or metal foil (AL, etc.) .
  • PTFE polytetrafluoroethylene
  • PDMS polydimethylsiloxane
  • composite film for example, a plastic film (such as polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride
  • the support portion 7123 may be used to support the elastic film 7122 . As shown in FIG. 7 , the elastic film 7122 is fixed to one end surface of the support member 450 . The other end face of the support member 450 is connected to the acoustic transducer 720 .
  • the mass element 7121 is disposed above the first acoustic cavity 7131 through the elastic film 7122, and the cross-sectional area of the mass element 7121 perpendicular to its vibration direction is smaller than that of the first acoustic cavity 7131 at The cross-sectional area perpendicular to the vibration direction of the mass element 7121.
  • the cross-sectional area of the mass element 7121 perpendicular to its vibration direction is less than or equal to 2/3 of the cross-sectional area of the first acoustic cavity 7131 perpendicular to the vibration direction of the mass element 7121 .
  • the cross-sectional area of the mass element 7121 perpendicular to the vibration direction thereof is less than or equal to 1/3 of the cross-sectional area of the first acoustic cavity 7131 perpendicular to the vibration direction of the mass element 7121 .
  • the sensitivity of the vibration sensor 700 may be proportional to the ratio of the air pressure change of the first acoustic cavity 7131 to the initial air pressure of the first acoustic cavity 712 or the volume change of the first acoustic cavity 7131 and the initial air pressure of the first acoustic cavity 7131 volume ratio.
  • the sensitivity of the vibration sensor 700 can be expressed as:
  • ⁇ p is the air pressure change of the first acoustic cavity 7131
  • p 0 is the initial air pressure of the first acoustic cavity 7131
  • ⁇ V is the volume change of the first acoustic cavity 7131
  • V 0 is the initial volume of the first acoustic cavity 7131 .
  • the acoustic transducer 720 may include at least one air inlet 721
  • the initial volume V 0 of the first acoustic cavity 7131 includes the volume of the at least one air inlet 721 .
  • the mass element 7121 vibrates up and down along its vibration direction It will drive the elastic film 7122 to deform, thereby causing the volume of the first acoustic cavity 7131 to change.
  • the shape of the volume change of the first acoustic cavity 7131 caused by the deformation of the elastic film 7122 can be approximated as a pyramid, and the volume change ⁇ V of the first acoustic cavity 7131 can be expressed as:
  • ⁇ h is the vibration amplitude of the mass element 7121
  • a 1 is the cross-sectional area of the mass element 7121 perpendicular to the vibration direction thereof
  • a 0 is the cross-sectional area of the first acoustic cavity 7131 perpendicular to the vibration direction of the mass element 7121 .
  • the sensitivity of the vibration sensor 700 can be expressed as:
  • FIG. 8 is a schematic structural diagram of a vibration sensor 800 according to some embodiments of the present specification.
  • the vibration sensor 800 may include a vibration receiver 810 and an acoustic transducer 820 .
  • the vibration receiver 810 may include a housing 811 and a vibration unit 812 .
  • the housing 811 may be connected with the acoustic transducer 820 to enclose a package structure having the acoustic cavity 813 .
  • the vibration unit 812 may be located within the acoustic cavity 813 of the package structure.
  • the vibration unit 812 may partition the acoustic cavity 813 into a first acoustic cavity 8131 and a second acoustic cavity 8132 .
  • the vibration unit 212 may include a mass element 8121 and an elastic element 8122 .
  • the elastic element 8122 may surround the side wall connected to the mass element 8121 , and extend toward the acoustic transducer 820 and be directly connected to the acoustic transducer 820 .
  • the structure and components of the vibration sensor 800 are the same as or similar to those of the vibration sensor 200 described in FIG. 2 . For details, refer to the descriptions in FIGS. 2-5 , which will not be repeated here.
  • the cross-sectional area of the mass element 8121 perpendicular to its vibration direction is approximately equal to that of the first acoustic cavity 8131 perpendicular to the mass.
  • the deviation between the cross-sectional areas of the mass element 8121 and the first acoustic cavity 8131 perpendicular to the vibration direction of the mass element 8121 may be less than 25%.
  • the deviation refers to the absolute value of the difference between the cross-sectional areas of the mass element 8121 and the first acoustic cavity 8131 perpendicular to the vibration direction of the mass element 8121 and the difference between the mass element 8121 perpendicular to the vibration direction of the mass element 8121
  • the ratio of the cross-sectional area in the direction of vibration is 3/4-5/4 of the cross-sectional area of the first acoustic cavity 8131 perpendicular to the vibration direction of the mass element 8121 .
  • the cross-sectional area of the first acoustic cavity 8131 perpendicular to the vibration direction of the mass element 8121 may be the area of the cross-section of the first acoustic cavity 8131 near the mass element 8121 .
  • close may mean that the distance between the cross section and the lower surface of the mass element 8121 is smaller than the distance between the cross section and the upper surface of the acoustic transducer 820 .
  • the lower surface of the mass element 8121 refers to the surface of the mass element 8121 close to the acoustic transducer 820
  • the upper surface of the acoustic transducer 820 refers to the surface of the acoustic transducer 820 close to the mass element 8121
  • the cross-sectional area of the first acoustic cavity 8131 perpendicular to the vibration direction of the mass element 8121 may be an average value of the areas of all cross-sections of the first acoustic cavity 8131 perpendicular to the vibration direction.
  • the cross-sectional area of the mass element 8121 perpendicular to the vibration direction of the mass element 8121 may be the area of the lower surface of the mass element 8121 . In some embodiments, the cross-sectional area of the mass element 8121 perpendicular to the vibration direction of the mass element 8121 may also be an average value of all cross-sectional areas of the mass element 8121 perpendicular to the vibration direction. In some embodiments, the cross-sectional area of the mass element 8121 perpendicular to the vibration direction of the mass element 8121 may also be the area of the upper surface of the mass element 8121 . In some embodiments, the upper surface of the mass element 8121 refers to the surface of the mass element 8121 that is remote from the acoustic transducer 820 .
  • the mass element 8121 is up and down along its vibration direction.
  • the vibration causes the volume of the first acoustic cavity 8131 to change.
  • the shape of the volume change of the first acoustic cavity 8131 caused by the mass element 8121 can be approximated as a cylindrical shape (or a rectangular parallelepiped shape), the volume change ⁇ V of the first acoustic cavity 8131 can be expressed as:
  • ⁇ h is the vibration amplitude of the mass element 8121
  • a 0 is the cross-sectional area of the first acoustic cavity 8131 perpendicular to the vibration direction of the mass element 8121 .
  • the sensitivity of the vibration sensor 800 can be expressed as:
  • ⁇ p is the air pressure change of the first acoustic cavity 8131
  • p 0 is the initial air pressure of the first acoustic cavity 8131
  • V 0 is the initial volume of the first acoustic cavity 8131
  • the acoustic transducer 820 may include at least one air inlet 821
  • the initial volume V 0 of the first acoustic cavity 8131 includes the volume of the at least one air inlet 821 .
  • the sensitivity of the vibration sensor 800 can be proportional to the product of the vibration amplitude ⁇ h of the mass element 8121 and the cross-sectional area A 0 of the first acoustic cavity 8131 perpendicular to the vibration direction of the mass element 8121 and the first The ratio of the initial volume V 0 of an acoustic cavity 8131.
  • the sensitivity s of the vibration sensor 800 may be greater than a threshold value by designing the structural parameters of the vibration sensor 800 .
  • the resonance frequency ⁇ 0 of the vibration sensor 800 can be designed by designing the structural parameters of the vibration sensor 800 , thereby affecting the vibration amplitude ⁇ h of the mass element 8121, so that the sensitivity of the vibration sensor 800 can meet the requirements.
  • the sensitivity of the vibration sensor 800 can be increased by setting the initial volume V 0 of the first acoustic cavity 8131 and/or the cross-sectional area A 0 of the first acoustic cavity 8131 perpendicular to the vibration direction of the mass unit 8121 . s is greater than the threshold. The threshold can be adjusted by designers according to actual needs.
  • the cross-sectional area of the mass element (for example, the mass element 8121 ) perpendicular to its vibration direction can be approximately equal to the first acoustic cavity (for example, the first acoustic cavity 8131 ) in the The cross-sectional area perpendicular to the vibration direction of the mass element increases the sensitivity of the vibration sensor (eg, vibration sensor 800).
  • the sensitivity of the vibration sensor 200 is greater than or equal to -40 dB within the frequency range of 100 Hz to 1000 Hz.
  • the sensitivity of the vibration sensor 200 is greater than or equal to -38dB within the frequency range of 100Hz ⁇ 1000Hz.
  • the sensitivity of the vibration sensor 200 is greater than or equal to -36dB within the frequency range of 100Hz ⁇ 1000Hz.
  • the sensitivity of the vibration sensor 200 is greater than or equal to -34dB within the frequency range of 100Hz ⁇ 1000Hz.
  • the sensitivity of the vibration sensor 200 is greater than or equal to -32dB within the frequency range of 100Hz ⁇ 1000Hz.
  • the sensitivity of the vibration sensor 200 is greater than or equal to -30 dB within the frequency range of 100 Hz to 1000 Hz. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to -28dB within the frequency range of 100Hz ⁇ 1000Hz. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to -27dB within the frequency range of 100Hz ⁇ 1000Hz. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to -26dB in the frequency range of 100Hz ⁇ 1000Hz. More preferably, within the frequency range of 100 Hz ⁇ 1000 Hz, the sensitivity of the vibration sensor 200 is greater than or equal to -24 dB.
  • the sensitivity of the vibration sensor 200 is greater than or equal to -22dB in the frequency range of 100Hz ⁇ 1000Hz. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to -20dB within the frequency range of 100Hz ⁇ 1000Hz. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to -18dB in the frequency range of 100Hz ⁇ 1000Hz. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to -16 dB within the frequency range of 100 Hz to 1000 Hz. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to -14dB in the frequency range of 100Hz ⁇ 1000Hz.
  • the sensitivity of the vibration sensor 200 is greater than or equal to 12 dB. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to -10 dB within the frequency range of 100 Hz to 1000 Hz.
  • FIG. 9 is a schematic structural diagram of a vibration sensor 900 according to some embodiments of the present specification.
  • the vibration sensor 900 may include a vibration receiver 910 and an acoustic transducer 920 .
  • the vibration receiver 910 may include a housing 911 and a vibration unit 912 .
  • the housing 911 may form an acoustic cavity 913 .
  • the vibration unit 912 may be located in the acoustic cavity 913 and divide the acoustic cavity 913 into a first acoustic cavity 9131 and a second acoustic cavity 9132 .
  • the vibration unit 912 may include a mass element 9121 and an elastic element 9122 .
  • the elastic element 9122 may surround the side wall connected to the mass element 9121 , and extend toward the acoustic transducer 920 and indirectly connect the acoustic transducer 920 .
  • the structure and components of the vibration sensor 900 are the same as or similar to those of the vibration sensor 200 described in FIG. 2 . For details, refer to the descriptions in FIGS. 2-5 , which will not be repeated here.
  • the vibration receiver 910 may further include a substrate 914 .
  • Substrate 914 may be used to secure and/or support other components of vibration sensor 900 .
  • housing 911 may be physically connected to substrate 914 to enclose acoustic cavity 913 .
  • Substrate 914 may be disposed on acoustic transducer 920 .
  • One end of the elastic member 9122 that may extend toward the acoustic transducer 920 may be connected to the base plate 914 , so that the base plate may be used to fix and support the vibration unit 912 .
  • the arrangement of the base plate allows the vibration receiver 910 to be processed, produced and sold as a separate component.
  • the thickness of the substrate may be 10um ⁇ 300um.
  • the thickness of the substrate may be 20um ⁇ 250um. More preferably, the thickness of the substrate may be 30um ⁇ 200um. More preferably, the thickness of the substrate may be 40um ⁇ 150um. More preferably, the thickness of the substrate may be 50um ⁇ 150um. More preferably, the thickness of the substrate may be 60um ⁇ 130um.
  • the thickness of the substrate may be 70um ⁇ 110um. More preferably, the thickness of the substrate may be 80um ⁇ 90um.
  • the material of the substrate may include metals (eg, iron, copper, stainless steel, etc.), alloys, non-metals (plastic, rubber, resin), etc., or any combination thereof.
  • the substrate 914 may include an air outlet 9141 .
  • the resonance frequency of the vibration sensor 900 may be 2500 Hz ⁇ 5000 Hz. More preferably, the resonance frequency of the vibration sensor 900 may be 3000 Hz ⁇ 5000 Hz. More preferably, the resonance frequency of the vibration sensor 900 may be 3500 Hz ⁇ 5000 Hz. More preferably, the resonance frequency of the vibration sensor 900 may be 4000 Hz ⁇ 5000 Hz. More preferably, the resonance frequency of the vibration sensor 900 may be 4500 Hz ⁇ 5000 Hz. More preferably, the resonance frequency of the vibration sensor 900 may be 2500 Hz ⁇ 4500 Hz. More preferably, the resonance frequency of the vibration sensor 900 may be 2500 Hz ⁇ 4000 Hz.
  • the resonance frequency of the vibration sensor 900 may be 2500 Hz ⁇ 3500 Hz. More preferably, the resonance frequency of the vibration sensor 900 may be 2500 Hz ⁇ 3000 Hz.
  • the sensitivity of vibration sensor 900 is greater than or equal to -27 dB in the range of frequencies less than 1000 Hz.
  • the sensitivity of the vibration sensor 200 is greater than or equal to -26dB in the range of frequency less than 1000Hz. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to -24dB in the range of frequency less than 1000Hz. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to -22dB in the range of frequency less than 1000Hz.
  • the sensitivity of the vibration sensor 200 is greater than or equal to -20dB in the range of frequency less than 1000Hz. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to -18dB in the range of frequency less than 1000Hz. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to -16dB in the range of frequency less than 1000Hz. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to -14dB in the range of frequency less than 1000Hz. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to 12 dB in the range of frequency less than 1000 Hz. More preferably, the sensitivity of the vibration sensor 200 is greater than or equal to -10 dB in the range of frequency less than 1000 Hz.
  • FIG. 10 is a frequency response graph of a vibration sensor 900 according to some embodiments of the present specification. As shown in FIG. 10 , the resonance frequency of the vibration sensor 900 is about 4500 Hz, and in the range of the frequency less than 1000 Hz, the sensitivity of the vibration sensor 200 is about -18 dB.
  • FIG. 11 is a schematic structural diagram of a vibration sensor 1100 according to some embodiments of the present specification.
  • the vibration sensor 1100 may include a vibration receiver 1110 and an acoustic transducer 1120 .
  • the vibration receiver 1110 may include a housing 1111 , a vibration unit 1112 , and a substrate 1114 .
  • the housing 1111 may be connected with the substrate 1114 to enclose a package structure having an acoustic cavity 1113 .
  • the vibration unit 1112 may be located within the acoustic cavity 1113 .
  • the vibration unit 1112 may partition the acoustic cavity 1113 into a first acoustic cavity 11131 and a second acoustic cavity 11132 .
  • the vibration unit 1112 may include a mass element 11121 and an elastic element 11122 .
  • the elastic element 11122 may surround the side wall connected to the mass element 11121 , and extend toward the acoustic transducer 1120 and directly connect to the substrate 1114 .
  • the vibration receiver 1110 may be disposed on the acoustic transducer 1120 .
  • the structure and components of the vibration sensor 1100 are the same as or similar to those of the vibration sensor 200 described in FIG. 2 . For details, refer to the descriptions in FIGS. 2-5 , which will not be repeated here.
  • the substrate 1114 may include a bottom plate 11142 and sidewalls 11143 .
  • the backplane 11142 may connect the acoustic transducer 1120 .
  • the inner surface of the side wall 11143 may be connected to the elastic member 11122 .
  • the outer surface of the sidewall 11143 may be in close contact with the housing 1111 to achieve encapsulation with the housing 1111 .
  • the outer surface of the sidewall 11143 may not be in contact with the casing 1111 , and the bottom plate 11142 of the substrate 1114 may extend to the casing 1111 and be in close contact with the casing 1111 to form a package.
  • the base plate 11142 has a thickness of 50-150um.
  • the thickness of the bottom plate 11142 is 60-140um. More preferably, the thickness of the bottom plate 11142 is 70-130um. More preferably, the thickness of the bottom plate 11142 is 80-120um. More preferably, the thickness of the bottom plate 11142 is 90-110 um. More preferably, the thickness of the bottom plate 11142 is 95-105um.
  • the length of the side wall 11143 in a direction away from the bottom plate 11142 is 20-200 um.
  • the length of the side wall 11143 in the direction away from the bottom plate 11142 is 30-180um. More preferably, the length of the side wall 11143 in the direction away from the bottom plate 11142 is 40-160um. More preferably, the length of the side wall 11143 in the direction away from the bottom plate 11142 is 50-140um. More preferably, the length of the side wall 11143 in the direction away from the bottom plate 11142 is 60-120um. More preferably, the length of the side wall 11143 in the direction away from the bottom plate 11142 is 70-110 um. More preferably, the length of the side wall 11143 in the direction away from the bottom plate 11142 is 80-100um. More preferably, the length of the side wall 11143 in the direction away from the bottom plate 11142 is 85-95um.
  • the above description of the vibration sensor 1100 and its components in FIG. 11 is only for illustration and description, and does not limit the scope of application of this specification.
  • various modifications and changes can be made to the vibration sensor 1100 under the guidance of this specification.
  • the housing 1111 and the acoustic transducer 1120 may be in contact (eg, physically connected) or have a gap. These corrections and changes are still within the scope of this specification.
  • FIG. 12 is a schematic structural diagram of a vibration sensor 900 according to some embodiments of the present specification.
  • the vibration sensor 1200 may include a vibration receiver 1210 and an acoustic transducer 1220 .
  • the vibration receiver 1210 may include a housing 1211 and a vibration unit 1212 .
  • the housing 1211 may be connected with the acoustic transducer 1220 to enclose a package structure having an acoustic cavity 1213 .
  • the vibration unit 1212 may be located within the acoustic cavity 1213 of the package structure.
  • the vibration unit 1212 may partition the acoustic cavity 1213 into a first acoustic cavity 12131 and a second acoustic cavity 12132 .
  • the vibration unit 1212 may include a mass element 12121 and an elastic element 12122 .
  • the elastic element 12122 may surround the side wall connected to the mass element 12121 and extend toward the acoustic transducer 1220 and directly or indirectly connect the acoustic transducer 1220 .
  • the structure and components of the vibration sensor 1200 are the same as or similar to those of the vibration sensor 200 described in FIG. 2 . For details, refer to the descriptions in FIGS. 2-5 , which will not be repeated here.
  • the elastic element 12122 may include a first elastic portion 122A and a second elastic portion 122B. Two ends of the first elastic portion 122A are respectively connected to the side wall of the mass element 12121 and the second elastic portion 122B.
  • the second elastic part 122B extends toward the acoustic transducer 1220 and is directly or indirectly connected with the acoustic transducer 1220 .
  • one end of the second elastic portion 122B extending toward the acoustic transducer 1220 may be directly physically connected (eg, glued) to the acoustic transducer 1220 .
  • the vibration receiver 1210 may include a base plate, and one end of the second elastic portion 122B extending toward the acoustic transducer 1220 may be connected to the acoustic transducer 1220 through the base plate.
  • the substrate is the same as or similar to the substrates 914 and 1114 described in FIG. 9 and FIG. 10 .
  • FIG. 9 and FIG. 10 please refer to the description in FIG. 9 and FIG. 10 , which will not be repeated here.
  • the first elastic portion 122A is not connected/contacted with the acoustic transducer 1220 or the substrate, which can effectively reduce the stiffness of the elastic element 12122, thereby increasing the vibration amplitude of the mass element 12121 during the vibration of the vibration unit 1212 , which reduces the resonance frequency of the vibration sensor 1200 and improves the sensitivity of the vibration sensor 1200 .
  • the resonance frequency of the vibration sensor 1200 may be 1000 Hz ⁇ 4000 Hz.
  • the resonance frequency of the vibration sensor 1200 may be 1000 Hz ⁇ 3500 Hz. More preferably, the resonance frequency of the vibration sensor 1200 may be 1000 Hz ⁇ 3000 Hz.
  • the resonance frequency of the vibration sensor 1200 may be 1000 Hz ⁇ 2500 Hz. More preferably, the resonance frequency of the vibration sensor 1200 may be 1000 Hz ⁇ 2000 Hz. More preferably, the resonance frequency of the vibration sensor 1200 may be 1000 Hz ⁇ 1500 Hz. More preferably, the resonance frequency of the vibration sensor 1200 may be 1500 Hz ⁇ 4000 Hz. More preferably, the resonance frequency of the vibration sensor 1200 may be 2000 Hz ⁇ 4000 Hz. More preferably, the resonance frequency of the vibration sensor 1200 may be 2500 Hz ⁇ 4000 Hz. More preferably, the resonance frequency of the vibration sensor 1200 may be 3000 Hz ⁇ 4000 Hz.
  • the resonance frequency of the vibration sensor 1200 may be 3500 Hz ⁇ 4000 Hz. More preferably, the resonance frequency of the vibration sensor 1200 may be 2000 Hz ⁇ 3500 Hz. More preferably, the resonance frequency of the vibration sensor 1200 may be 2500 Hz ⁇ 3000 Hz.
  • the first elastic portion 122A and the second elastic portion 122B may be made of the same or different materials.
  • the material of the first elastic portion 122A and the second elastic portion 122B may include silicone rubber, silicone gel, silicone sealant, etc., or any combination thereof.
  • the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 0.1-100 HA.
  • the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 0.2-95 HA. More preferably, the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 0.3-90 HA.
  • the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 0.4-85 HA. More preferably, the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 0.5-80 HA. More preferably, the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 0.6-75 HA. More preferably, the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 0.7-70 HA. More preferably, the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 0.8-65 HA.
  • the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 0.9-60 HA. More preferably, the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 1-55 HA. More preferably, the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 1-50 HA. More preferably, the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 1-45 HA. More preferably, the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 1-40 HA. More preferably, the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 1-35 HA.
  • the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 1-30 HA. More preferably, the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 1-25 HA. More preferably, the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 1-20 HA. More preferably, the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 1-15 HA. More preferably, the Shore hardness of the first elastic part 122A and the second elastic part 122B may be 1-10 HA.
  • the thickness of the first elastic portion 122A along the vibration direction of the mass unit 12121 is 10-300um.
  • the thickness of the first elastic portion 122A along the vibration direction of the mass unit 12121 is 20-280um. More preferably, the thickness of the first elastic portion 122A along the vibration direction of the mass unit 12121 is 30-260um. More preferably, the thickness of the first elastic portion 122A along the vibration direction of the mass unit 12121 is 40-240um. More preferably, the thickness of the first elastic portion 122A along the vibration direction of the mass unit 12121 is 50-240um. More preferably, the thickness of the first elastic portion 122A along the vibration direction of the mass unit 12121 is 50-220um.
  • the thickness of the first elastic portion 122A along the vibration direction of the mass unit 12121 is 50-200um. More preferably, the thickness of the first elastic portion 122A along the vibration direction of the mass unit 12121 is 60-180um. More preferably, the thickness of the first elastic portion 122A along the vibration direction of the mass unit 12121 is 70-160um. More preferably, the thickness of the first elastic portion 122A along the vibration direction of the mass unit 12121 is 80-140um. More preferably, the thickness of the first elastic portion 122A along the vibration direction of the mass unit 12121 is 90-120um. More preferably, the thickness of the first elastic portion 122A along the vibration direction of the mass unit 12121 is 100-110 um.
  • the length of the first elastic portion 122A along the direction perpendicular to the vibration direction of the mass unit 12121 is 10 -300um. In some embodiments, the width of the first elastic portion 122A from one side close to the mass element 12121 to the other side away from the mass element 12121 is 20-280um. In some embodiments, the width of the first elastic portion 122A from one side close to the mass element 12121 to the other side away from the mass element 12121 is 30-260um. In some embodiments, the width of the first elastic portion 122A from one side close to the mass element 12121 to the other side away from the mass element 12121 is 40-240um.
  • the width of the first elastic portion 122A from one side close to the mass element 12121 to the other side away from the mass element 12121 is 50-240um. In some embodiments, the width of the first elastic portion 122A from one side close to the mass element 12121 to the other side away from the mass element 12121 is 50-220um. In some embodiments, the width of the first elastic portion 122A from one side close to the mass element 12121 to the other side away from the mass element 12121 is 50-200um. In some embodiments, the width of the first elastic portion 122A from one side close to the mass element 12121 to the other side away from the mass element 12121 is 60-180um.
  • the width of the first elastic portion 122A from one side close to the mass element 12121 to the other side away from the mass element 12121 is 70-160um. In some embodiments, the width of the first elastic portion 122A from one side close to the mass element 12121 to the other side away from the mass element 12121 is 80-140um. In some embodiments, the width of the first elastic portion 122A from one side close to the mass element 12121 to the other side away from the mass element 12121 is 90-120um. In some embodiments, the width of the first elastic portion 122A from one side close to the mass element 12121 to the other side away from the mass element 12121 is 100-110um.
  • the width of the second elastic portion 122B from one side close to the mass element 12121 to the other side away from the mass element 12121 is 20-280um. In some embodiments, the width of the second elastic portion 122B from one side close to the mass element 12121 to the other side away from the mass element 12121 is 30-260um. In some embodiments, the width of the second elastic portion 122B from one side close to the mass element 12121 to the other side away from the mass element 12121 is 40-240um. In some embodiments, the width of the second elastic portion 122B from one side close to the mass element 12121 to the other side away from the mass element 12121 is 50-240um.
  • the width of the second elastic portion 122B from one side close to the mass element 12121 to the other side away from the mass element 12121 is 50-220um. In some embodiments, the width of the second elastic portion 122B from one side close to the mass element 12121 to the other side away from the mass element 12121 is 50-200um. In some embodiments, the width of the second elastic portion 122B from one side close to the mass element 12121 to the other side away from the mass element 12121 is 60-180um. In some embodiments, the width of the second elastic portion 122B from one side close to the mass element 12121 to the other side away from the mass element 12121 is 70-160um.
  • the width of the second elastic portion 122B from one side close to the mass element 12121 to the other side away from the mass element 12121 is 80-140um. In some embodiments, the width of the second elastic portion 122B from one side close to the mass element 12121 to the other side away from the mass element 12121 is 90-120um. In some embodiments, the width of the second elastic portion 122B from one side close to the mass element 12121 to the other side away from the mass element 12121 is 100-110um.
  • the above description of the vibration sensor 1200 and its components in FIG. 11 is only for illustration and description, and does not limit the scope of application of this specification.
  • various modifications and changes can be made to the vibration sensor 1200 under the guidance of this specification.
  • the housing 1211 and the acoustic transducer 1220 may be in contact (eg, physically connected) or have a gap. These corrections and changes are still within the scope of this specification.
  • aspects of this application may be illustrated and described in several patentable categories or situations, including any new and useful process, machine, product, or combination of matter, or combinations of them of any new and useful improvements. Accordingly, various aspects of the present application may be performed entirely by hardware, entirely by software (including firmware, resident software, microcode, etc.), or by a combination of hardware and software.
  • the above hardware or software may be referred to as a "data block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of the present application may be embodied as a computer product comprising computer readable program code embodied in one or more computer readable media.
  • a computer storage medium may contain a propagated data signal with the computer program code embodied therein, for example, on baseband or as part of a carrier wave.
  • the propagating signal may take a variety of manifestations, including electromagnetic, optical, etc., or a suitable combination.
  • Computer storage media can be any computer-readable media other than computer-readable storage media that can communicate, propagate, or transmit a program for use by coupling to an instruction execution system, apparatus, or device.
  • Program code on a computer storage medium may be transmitted over any suitable medium, including radio, cable, fiber optic cable, RF, or the like, or a combination of any of the foregoing.
  • the computer program coding required for the operation of the various parts of this application may be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python Etc., conventional procedural programming languages such as C language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code may run entirely on the user's computer, or as a stand-alone software package on the user's computer, or partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any network, such as a local area network (LAN) or wide area network (WAN), or to an external computer (eg, through the Internet), or in a cloud computing environment, or as a service Use eg software as a service (SaaS).
  • LAN local area network
  • WAN wide area network
  • SaaS software as a service

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种振动传感器(100, 200, 600, 700, 800, 900, 1100, 1200),包括:振动接收器(110, 210, 710, 810, 910, 1110, 1210),包括壳体(211, 611, 711, 811, 911, 1111, 1211)和振动单元(212, 612, 712, 812, 912, 1112, 1212),壳体(211, 611, 711, 811, 911, 1111, 1211)形成声学腔(213, 713, 813, 913, 1113, 1213),振动单元(212, 612, 712, 812, 912, 1112, 1212)位于声学腔(213, 713, 813, 913, 1113, 1213)中,并将声学腔(213, 713, 813, 913, 1113, 1213)分隔为第一声学腔(2131, 7131, 8131, 9131, 11131, 12131)和第二声学腔(2132, 7132, 8132, 9132, 11132, 12132);以及声学换能器(120, 220, 720, 820, 920, 1120, 1220),与第一声学腔(2131, 7131, 8131, 9131, 11131, 12131)声学连通,其中:壳体(211, 611, 711, 811, 911, 1111, 1211)被配置为基于外部振动信号产生振动,振动单元(212, 612, 712, 812, 912, 1112, 1212)响应于壳体(211, 611, 711, 811, 911, 1111, 1211)的振动而振动,并将振动通过第一声学腔(2131, 7131, 8131, 9131, 11131, 12131)传递至声学换能器(120, 220, 720, 820, 920, 1120, 1220)以产生电信号,振动单元(212, 612, 712, 812, 912, 1112, 1212)包括质量元件(2121, 6121, 7121, 8121, 9121, 11121, 12121)和弹性元件(2122, 6122, 7122, 8122, 9122, 11122, 12122),质量元件(2121, 6121, 7121, 8121, 9121, 11121, 12121)和第一声学腔(2131, 7131, 8131, 9131, 11131, 12131)在垂直于质量元件(2121, 6121, 7121, 8121, 9121, 11121, 12121)的振动方向的横截面积之间的偏差小于25%。

Description

一种振动传感器
交叉引用
本申请要求于2020年12月28日提交的申请号为PCT/CN2020/140180的国际申请和2021年4月23日提交的申请号为202110445739.3的中国申请的优先权,其全部内容通过引用结合于此。
技术领域
本申请涉及声学领域,特别涉及一种振动传感器。
背景技术
振动传感器是一种将振动信号转换为电信号的能量转换器件。当振动传感器用作骨传导麦克风时,振动传感器可以检测人说话时经皮肤传递的振动信号,并将人皮肤传递来的振动信号转换为电信号,从而达到传递声音的效果。振动传感器的灵敏度会影响到其传递声音的质量,而目前的振动传感器普遍灵敏度不高。因此希望提供一种具有提高的灵敏度的振动传感器。
发明内容
本说明书一方面提供一种振动传感器,包括:振动接收器,包括壳体和振动单元,所述壳体形成声学腔,所述振动单元位于所述声学腔中,并将所述声学腔分隔为第一声学腔和第二声学腔;以及声学换能器,与所述第一声学腔声学连通,其中:所述壳体被配置为基于外部振动信号产生振动,所述振动单元响应于所述壳体的振动而振动,并将所述振动通过所述第一声学腔传递至所述声学换能器以产生电信号,所述振动单元包括质量元件和弹性元件,所述质量元件和所述第一声学腔在垂直于所述质量单元的振动方向的横截面积之间的偏差小于25%。
在一些实施例中,在频率小于1000Hz的范围内,所述振动传感器的灵敏度为大于或等于-40dB。
在一些实施例中,所述质量元件的振动幅度反比于所述振动传感器的谐振频率的平方。
在一些实施例中,所述振动传感器的灵敏度正比于:所述第一声学腔的气压变化与所述第一声学腔的初始气压的比值,或所述第一声学腔的体积变化与所述第一声学腔的初始体积的比值,或所述质量元件的振动幅度和所述第一声学腔在垂直于所述质量单元的振动方向的横截面积的乘积与所述第一声学腔的初始体积的比值,其中,通过设 置所述第一声学腔的初始体积、所述第一声学腔的面积以及所述谐振频率中至少一个以使所述灵敏度大于阈值。
在一些实施例中,所述声学换能器包括至少一个进气口,所述第一声学腔的初始体积包括所述至少一个进气口的体积。
在一些实施例中,所述弹性元件环绕连接于所述质量元件的侧壁,所述弹性元件向所述声学换能器延伸并直接或间接连接所述声学换能器。
在一些实施例中,所述弹性元件从靠近所述质量元件的一侧到远离所述质量元件的另一侧的宽度为10-500um。
在一些实施例中,所述弹性元件从靠近所述质量元件的一侧到远离所述质量元件的另一侧的宽度是变化的,所述变化的变化量小于或等于300um。
在一些实施例中,所述壳体与所述声学换能器连接,所述弹性元件向所述声学换能器延伸的一端与所述声学换能器直接连接。
在一些实施例中,所述振动接收器进一步包括基板,所述基板设置于所述声学换能器上,所述弹性元件向所述声学换能器延伸的一端与所述基板连接。
在一些实施例中,所述基板包括底板和侧壁,所述底板连接所述声学换能器,所述侧壁的内表面连接所述弹性元件。
在一些实施例中,所述底板的厚度为50-150um,所述侧壁沿远离所述底板的方向的长度为20-200um。
在一些实施例中,所述振动传感器的谐振频率为1000Hz~5000Hz。
在一些实施例中,所述振动传感器的谐振频率为1000Hz~4000Hz。
在一些实施例中,所述振动传感器的谐振频率为2000Hz~3500Hz。
在一些实施例中,所述弹性元件与所述壳体直接接触或存在间隔。
在一些实施例中,所述弹性元件包括第一弹性部和第二弹性部,所述第一弹性部的两端分别与所述质量元件的侧壁和所述第二弹性部连接,所述第二弹性部向所述声学换能器延伸并与所述声学换能器直接或间接连接。
在一些实施例中,所述弹性元件的材料包括硅橡胶、硅凝胶、硅密封胶中的至少一种。
在一些实施例中,所述弹性元件的邵氏硬度为1-50HA。
在一些实施例中,所述弹性元件远离所述声学换能器的表面低于所述质量元件远离所述声学换能器的表面。
在一些实施例中,所述壳体和质量元件中的至少一个设有至少一个泄压孔。
在一些实施例中,所述第一声学腔的体积小于所述第二声学腔的体积。
在一些实施例中,沿所述质量单元的振动方向,所述第一声学腔的高度为1-100um,所述第二声学腔的高度为50-200um。
在一些实施例中,沿所述质量单元的振动方向,所述质量元件的厚度为50-1000um。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请一些实施例所示的振动传感器的结构示意图;
图2是根据本申请一些实施例所示的振动传感器的结构示意图;
图3是根据本申请一些实施例所示的质量元件和弹性元件的连接方式的示意图;
图4A是根据本申请一些实施例所示的振动单元的示意图;
图4B是根据本申请另一些实施例所示的振动单元的示意图;
图4C是根据本申请另一些实施例所示的振动单元的示意图;
图5是根据本申请一些实施例所示的振动接收器的示意图;
图6是根据本申请一些实施例所示的振动系统的简化结构示意图;
图7是根据本申请一些实施例所示的振动传感器的结构示意图;
图8是根据本申请一些实施例所示的振动传感器的结构示意图;
图9是根据本申请一些实施例所示的振动传感器的结构示意图;
图10是根据本申请一些实施例所示的振动传感器的频率响应曲线图;
图11是根据本申请一些实施例所示的振动传感器的结构示意图;
图12是根据本申请一些实施例所示的振动传感器的结构示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相 同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本说明书实施例中提供了一种振动传感器。该振动传感器可以包括振动接收器和声学换能器。振动接收器可以包括壳体和振动单元。壳体可以形成声学腔。振动单元可以位于声学腔中,并将声学腔分隔为第一声学腔和第二声学腔。声学换能器可以与第一声学腔声学连通。壳体可以被配置为基于外部振动信号(例如,用户说话时的骨骼、皮肤等振动产生的信号)产生振动。振动单元可以响应于壳体的振动而振动,并将该振动通过第一声学腔传递至声学换能器以产生电信号。振动单元可以包括质量元件和弹性元件。质量元件和第一声学腔在垂直于质量单元的振动方向的横截面积之间的偏差小于25%,这提高了在振动单元振动过程中,第一声学腔内的空气体积压缩比,从而提高了振动传感器的灵敏度。
在一些实施例中,弹性元件可以环绕连接于质量元件的侧壁并向声学换能器延伸以直接或间接连接声学换能器,从而在振动单元振动过程中,弹性元件发生剪切形变。相比于拉伸和压缩形变,剪切形变降低了弹性元件的弹簧系数,这降低了振动传感器的谐振频率,从而提高了在振动单元振动过程中,质量元件的振动幅度,提高了振动传感器的灵敏度。
图1是根据本说明书一些实施例所示的振动传感器100的结构示意图。如图1所示,振动传感器100可以包括振动接收器110和声学换能器120。在一些实施例中,振动接收器110和声学换能器120可以通过物理方式连接。本说明书中的物理方式连接可以包括焊接、卡接、胶接或一体成型等或其任意组合。
在一些实施例中,振动传感器100可以作为骨传导麦克风使用。当作为骨传导麦克风使用时,振动传感器100可以接收用户说话时产生的骨骼、皮肤等组织的振动信号,并将该振动信号转换为包含声音信息的电信号。由于几乎不采集空气中的声音(或振动),因此振动传感器100可以一定程度地免受周围环境噪声(例如,周围他人说话声音、车辆驶过产生的噪声)的影响,适合在嘈杂环境中使用以采集用户说话时的语音信号。仅作为示例,嘈杂环境可以包括嘈杂的餐厅、会场、街道、马路附近、火灾现场等场合。在一些实施例中,振动传感器100可以应用于耳机(例如,空气传导耳机和骨传导耳机)、助听器、辅听器、眼镜、头盔、增强现实(AR)设备、虚拟现实(VR)设备等或其任意组合。例如,振动传感器100可以作为骨传导麦克风应用于耳机。
振动接收器110可以被配置为接收并传递振动信号。在一些实施例中,振动接收器110包括壳体和振动单元。壳体可以是内部中空的结构,且振动传感器100的部分部件(例如,振动单元)可以位于壳体内。例如,壳体可以形成声学腔,振动单元可以位于声学腔内。在一些实施例中,壳体的形状可以为长方体、圆柱体、圆台等规则或不规则形状的立体结构。在一些实施例中,壳体的材料可以包括金属(例如,铜、不锈钢)、合金、塑料等或其任意组合。在一些实施例中,壳体可以具有一定的厚度以保证足够的强度,从而更好的保护设置在壳体内的振动传感器100的部件(例如,振动单元)。在一些实施例中,振动单元可以将壳体形成的声学腔分隔为第一声学腔和第二声学腔。第一声学腔可以与声学换能器120声学连通。声学连通可以是能够传递声压、声波或振动信号的连通方式。
声学换能器120可以接收振动信号并将接收的振动信号转换为包含声音信息的电信号。在一些实施例中,振动信号可以经由振动接收器110接收并传递至第一声学腔中,第一声学腔可以通过声学连通将振动信号传递至声学换能器120。在一些实施例中,振动传感器100工作时,壳体可以基于外部振动信号(例如,用户说话时的骨骼、皮肤等振动产生的信号)产生振动。振动单元可以响应于壳体的振动而振动,并将该振动通过第一声学腔传递至声学换能器120。例如,振动单元的振动可以引起第一声学腔的体积变化,进而引起第一声学腔内气压的变化,并将腔内气压的变化转换为腔内的声压变化。声学换能器120可以检测到第一声学腔的声压变化并基于此产生电信号。例如,声学换能器120可以包括振膜,第一声学腔内声压变化并作用于振膜,使振膜发生振动(或形变),声学换能器120将振膜的振动转化为电信号。关于振动传感器100的详细描述可以参考图2-12的详细描述。
应当注意的是,上述有关振动传感器100及其部件的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对振动传感器100进行各种修正和改变。在一些实施例中,振动传感器100还可以包括其他部件,例如,电源,以为声学换能器120提供电能等。这些修正和改变仍在本说明书的范围之内。
图2是根据本说明书一些实施例所示的振动传感器200的结构示意图。如图2所示,振动传感器200可以包括振动接收器210和声学换能器220。振动接收器210可以包括壳体211和振动单元212。在一些实施例中,壳体211可以与声学换能器220连接以围成具有声学腔213的结构。壳体211和声学换能器120之间的连接方式可以为物理连接。在一些实施例中,振动单元212可以位于声学腔213内。在一些实施例中,振动单元212可以将声学腔213分隔为第一声学腔2131和第二声学腔2132。例如,振动单元212可以与壳体211形成第二声学腔2132;振动单元212可以与声学换能器220形成第一声学腔2131。
在一些实施例中,第一声学腔2131可以与声学换能器220声学连通。仅作为示例,第一声学腔2131可以包括进气口221,声学换能器220可以通过进气口221与第一声学腔2131声学连通。应当注意,如图2所示的单个进气口221的描述仅用于说明,并不意在限制本发明的范围。应当理解,振动传感器200可以包括一个以上的进气口。例如,振动传感器200可以包括布置成阵列的多个进气口。
在一些实施例中,沿振动单元212的振动方向(如图2所示),第一声学腔2131的高度H 1为1-500um,第一声学腔2132的高度H 1是指质量元件2121靠近声学换能器220的表面与壳体211中与声学换能器220(或基板)上靠近质量元件2121的表面之间的距离。优选地,沿振动单元212的振动方向,第一声学腔2131的高度H 1为1-450um。更优选地,沿振动单元212的振动方向,第一声学腔2131的高度H 1为1-400um。更优选地,沿振动单元212的振动方向,第一声学腔2131的高度H 1为1-350um。更优选地,沿振动单元212的振动方向,第一声学腔2131的高度H 1为1-300um。更优选地,沿振动单元212的振动方向,第一声学腔2131的高度H 1为1-250um。更优选地,沿振动单元212的振动方向,第一声学腔2131的高度H 1为1-200um。更优选地,沿振动单元212的振动方向,第一声学腔2131的高度H 1为1-150um。更优选地,沿振动单元212的振动方向,第一声学腔2131的高度H 1为1-100um。更优选地,沿振动单元212的振动方向,第一声学腔2131的高度H 1为1-80um。更优选地,沿振动单元212的振动方 向,第一声学腔2131的高度H 1为1-60um。更优选地,沿振动单元212的振动方向,第一声学腔2131的高度H 1为1-40um。更优选地,沿振动单元212的振动方向,第一声学腔2131的高度H 1为1-20um。
在一些实施例中,第二声学腔2132可以具有开放的结构,即直接与外界连通,例如,第二声学腔2132可以通过设置在壳体211上的孔结构或开口结构与外界连通。在这种情况下,第二声学腔2132的气压变化对振动单元212的振动几乎没有影响,但是,环境中的气导声音可能会影响到振动传感器200的使用性能。为了减少环境中气导声音的影响,在一些实施例中,第二声学腔2132可以为密封的腔体结构。在一些实施例中,第二声学腔2132的体积可以大于第一声学腔2131的体积,以在振动单元212振动过程中,减少第二声学腔2132的气压变化对振动单元212的振动的影响。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为1-2000um,第二声学腔2132的高度H 2是指质量元件2121远离声学换能器220的表面与壳体211中与质量元件2121平行的内表面之间的距离。优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为1-1000um。优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为1-500um。优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为1-450um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为1-400um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为1-350um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为1-300um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为1-250um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为1-200um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为10-200um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为20-200um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为30-200um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为40-200um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为50-200um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为60-200um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为70-200um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为80-200um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为90-200um。更优选地,沿振动单元212的振动方向, 第二声学腔2132的高度H 2可以为100-200um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为120-200um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为140-200um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为160-200um。更优选地,沿振动单元212的振动方向,第二声学腔2132的高度H 2可以为180-200um。
在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为10:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为9:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为8:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为8:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为7:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为6:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为5:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为4:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为3:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为2:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为1.5:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为2.5:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为3.5:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为4.5:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为5.5:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为6.5:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为7.5:1。在一些实施例中,沿 振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为8.5:1。在一些实施例中,沿振动单元212的振动方向,第二声学腔2132的高度H 2与第一声学腔2131的高度H 1的比值可以为9.5:1。
在一些实施例中,振动单元212可以包括质量元件2121和弹性元件2122。在一些实施例中,质量元件2121和弹性元件2122可以物理连接,例如,胶接。仅作为示例,弹性元件2122可以为具有一定黏性的材料,直接粘接在质量元件2121上。在一些实施例中,弹性元件2122可以为耐高温的材料,使得弹性元件2122在振动传感器200的加工制造过程中保持性能。在一些实施例中,弹性元件2122处于200℃~300℃的环境中时,其杨氏模量和剪切模量无变化或变化很小(如变化量在5%以内),其中,杨氏模量可以用于表征弹性元件2122受拉伸或压缩时的变形能力,剪切模量可以用于表征弹性元件2122受剪切时的变形能力。在一些实施例中,弹性元件2122可以为具有良好弹性(即易发生弹性形变)的材料,使得振动单元212可以响应于壳体211的振动而振动。仅作为示例,弹性元件2122的材料可以包括硅橡胶、硅凝胶、硅密封胶等或其任意组合。在一些实施例中,弹性元件2122的邵氏硬度可以为1-50HA。优选地,弹性元件2122的邵氏硬度可以为1-45HA。更优选地,弹性元件2122的邵氏硬度可以为1-40HA。更优选地,弹性元件2122的邵氏硬度可以为1-35HA。更优选地,弹性元件2122的邵氏硬度可以为1-30HA。更优选地,弹性元件2122的邵氏硬度可以为1-25HA。更优选地,弹性元件2122的邵氏硬度可以为1-20HA。更优选地,弹性元件2122的邵氏硬度可以为1-15HA。更优选地,弹性元件2122的邵氏硬度可以为1-10HA。更优选地,弹性元件2122的邵氏硬度可以为1-5HA。更优选地,弹性元件2122的邵氏硬度可以为15HA。
质量元件2121也可以称为质量块。在一些实施例中,质量元件2121的材料可以为密度大于一定密度阈值(例如,6g/cm 3)的材料,例如,金属。仅作为示例,质量元件2121的材料可以包括铅、铜、银、锡、不锈钢、合金等或其任意组合。由于质量元件2121的材料的密度越高,尺寸则越小,因此用密度大于一定密度阈值的材料制作质量元件2121,这可以在一定程度上降低振动传感器200的尺寸。在一些实施例中,质量元件2121的材料密度对振动传感器200的频率响应曲线的谐振峰和灵敏度有较大影响。同等体积下,质量元件2121的密度越大,其质量越大,振动传感器200的谐振峰向低频移动,灵敏度上升。在一些实施例中,质量元件2121的材料密度为6~20g/cm 3。优选地,质量元件2121的材料密度为6~15g/cm 3。更优选地,质量元件2121的材料密 度为6~10g/cm 3。更优选地,质量元件2121的材料密度为6~8g/cm 3。在一些实施例中,质量元件2121和弹性元件2122可以是由不同种材料所组成,再通过组装(例如,胶接)在一起形成振动单元212。在一些实施例中,质量元件2121和弹性元件2122也可以是由同种材料组成,通过一体成型形成振动单元212。
在一些实施例中,质量元件2121沿其振动方向的厚度可以为50-1000um。优选地,质量元件2121沿其振动方向的厚度可以为60-900um。更优选地,质量元件2121沿其振动方向的厚度可以为70-800um。更优选地,质量元件2121沿其振动方向的厚度可以为80-700um。更优选地,质量元件2121沿其振动方向的厚度可以为90-600um。更优选地,质量元件2121沿其振动方向的厚度可以为100-500um。更优选地,质量元件2121沿其振动方向的厚度可以为100-400um。更优选地,质量元件2121沿其振动方向的厚度可以为100-300um。更优选地,质量元件2121沿其振动方向的厚度可以为100-200um。更优选地,质量元件2121沿其振动方向的厚度可以为100-150um。
在一些实施例中,弹性元件2122可以环绕连接于质量元件2121的侧壁。图3是根据本说明书一些实施例所示的质量元件2121和弹性元件2122的连接方式的示意图。如图2-4所示,弹性元件2122的内侧2124与质量元件2121的侧壁连接。弹性元件2122的内侧2124可以指被弹性元件2122所环绕的空间所在的一侧。质量元件2121的侧壁可以指的是质量元件2121与振动方向平行的一侧。质量元件2121的上下表面与振动方向近似垂直,并且分别用于限定第二声学腔2132以及第一声学腔2131。由于弹性元件2122环绕连接于质量元件2121的侧壁,在振动单元212沿着振动方向振动过程中,质量元件2121的动量转换为对弹性元件2122的作用力,使弹性元件2122发生剪切形变。相比于拉伸和压缩形变,剪切形变降低了弹性元件2122的弹簧系数,这降低了振动传感器200的谐振频率,从而提高了在振动单元212振动过程中,质量元件2121的振动幅度,提高了振动传感器200的灵敏度。
在一些实施例中,振动单元212中的质量元件2121和弹性元件2122可以视为声学换能器220的谐振系统以外的附加谐振系统。在一些实施例中,附加谐振系统可以调节振动传感器200的原始的振动特性(即在声学换能器220的原始谐振系统作用下的振动特性),使振动传感器200的原始谐振频率(即在声学换能器220的原始谐振系统作用下的谐振频率)发生变化。同时这一设置可以视为为振动传感器200的原始谐振系统引入了新的谐振系统,从而引入了新增的谐振峰,新增的谐振峰的谐振频率小于声学换能器220的谐振频率,使得传感装置200具备较高的灵敏度。关于传感装置200的灵 敏度的详细描述可以参考图6-8的详细描述。
在一些实施例中,振动传感器200的谐振频率可以为1000Hz~5000Hz。优选地,振动传感器200的谐振频率可以为1500Hz~5000Hz。更优选地,振动传感器200的谐振频率可以为2000Hz~5000Hz。更优选地,振动传感器200的谐振频率可以为2500Hz~5000Hz。更优选地,振动传感器200的谐振频率可以为3000Hz~5000Hz。更优选地,振动传感器200的谐振频率可以为3500Hz~5000Hz。更优选地,振动传感器200的谐振频率可以为4000Hz~5000Hz。更优选地,振动传感器200的谐振频率可以为4500Hz~5000Hz。更优选地,振动传感器200的谐振频率可以为1000Hz~4500Hz。更优选地,振动传感器200的谐振频率可以为1000Hz~4000Hz。更优选地,振动传感器200的谐振频率可以为1500Hz~4500Hz。更优选地,振动传感器200的谐振频率可以为2000Hz~4000Hz。更优选地,振动传感器200的谐振频率可以为2000Hz~3500Hz。更优选地,振动传感器200的谐振频率可以为2000Hz~3000Hz。更优选地,振动传感器200的谐振频率可以为2000Hz~2500Hz。在一些实施例中,振动传感器200的谐振频率可以通过质量元件2121和弹性元件2122的参数确定。在一些实施例中,用于确定谐振频率的参数可以包括但不限于质量元件2121的质量、弹性元件2122的质量、弹性元件2122的刚度、弹性元件2122的杨氏模量、弹性元件2122的剪切模量、弹性元件2122的等效刚度或弹性元件2122的弹簧系数等。在一些实施例中,通过调整质量元件2121和弹性元件2122的参数可以使振动传感器200具有不同的谐振频率。例如,质量元件2121的质量不变时,调整弹性元件2122的弹簧系数越小,振动传感器200的谐振频率越低。
在一些实施例中,弹性元件2122的形状可以与质量元件2121形状相适应。例如,弹性元件2122的可以是管状结构,该管状结构的开口端在与质量元件2121的振动方向垂直的截面上具有与质量元件2121相同的截面形状。弹性元件2122的开口端可以是与质量元件2121相连接的一端。如图3所示,质量元件2121在与质量元件2121的振动方向垂直的截面上的形状为四边形,弹性元件2122所环绕区域为管形,该管形在与质量元件2121的振动方向垂直的截面上具有四边形孔。仅作为示例,质量元件2121在与质量元件2121的振动方向垂直的截面上的形状还可以包括规则形状(例如,圆形、椭圆形、扇形、圆角矩形、多边形)和不规则形状等。相应地,弹性元件2122所环绕的管形在与质量元件2121的振动方向垂直的截面上的形状可以包括具有规则形状或不规则形状孔径的管形。本说明书对管形弹性元件2122的外侧2125的形状不做限定。弹 性元件2122的外侧2125可以是与弹性元件2122的内侧2124相反的侧面。例如,管形弹性元件2122的外侧的形状可以包括圆柱形、椭圆柱形、锥形、圆角矩形柱、矩形柱、多边形柱、不规则柱状等或其任意组合。如图3所示,管形弹性元件2122的外侧的形状可以为四边形。
在一些实施例中,如图3所示,环绕连接于质量元件2121的侧壁的弹性元件2122从靠近质量元件2121的一侧到远离质量元件2121的另一侧的宽度W可以为10-500um。优选地,弹性元件2122从靠近质量元件2121的一侧到远离质量元件2121的另一侧的宽度W可以为20-450um。更优选地,弹性元件2122从靠近质量元件2121的一侧到远离质量元件2121的另一侧的宽度W可以为30-400um。更优选地,弹性元件2122从靠近质量元件2121的一侧到远离质量元件2121的另一侧的宽度W可以为40-350um。更优选地,弹性元件2122从靠近质量元件2121的一侧到远离质量元件2121的另一侧的宽度W可以为50-300um。更优选地,弹性元件2122从靠近质量元件2121的一侧到远离质量元件2121的另一侧的宽度W可以为60-250um。更优选地,弹性元件2122从靠近质量元件2121的一侧到远离质量元件2121的另一侧的宽度W可以为70-200um。更优选地,弹性元件2122从靠近质量元件2121的一侧到远离质量元件2121的另一侧的宽度W可以为80-150um。更优选地,弹性元件2122从靠近质量元件2121的一侧到远离质量元件2121的另一侧的宽度W可以为90-100um。
在一些实施例中,弹性元件2122从靠近质量元件2122的一侧到远离质量元件2122的另一侧的宽度W在沿着振动方向是变化的。即弹性元件2122在垂直于振动方向可以包括多个截面,每个截面对应弹性元件2122的宽度为沿着垂直于该截面中弹性元件2122边界方向上的长度,弹性元件2122在多个截面中的宽度可以不同。如图4A-4B所示,弹性元件2122可以相对于质量元件2121向外向和/或内鼓出。如本文中所述,弹性元件2122可以相对于质量元件2121向外鼓出指的是弹性元件2122的外侧2125的至少部分区域与第一声学腔2131的轴线(如图中所示Z轴)之间的距离沿着质量元件2121至声电换能元件方向逐渐增大;弹性元件2122可以相对于质量元件2121向内鼓出指的是弹性元件212的内侧2124的至少部分区域与第一声学腔2131的轴线之间的距离沿着质量元件2121至声电换能元件方向逐渐减小。第一声学腔2131的轴线(如图中所示Z轴)可以指的是第一声学腔2131平行于振动方向的几何中心线。该向外和/或向内鼓出可以导致弹性元件2122沿着质量元件2121的振动方向从靠近质量元件2122的一侧到远离质量元件2122的另一侧的宽度W是变化的。例如,如图4B所示,由于 向内鼓出,弹性元件2122远离质量元件2121的部分的宽度大于靠近质量元件2121的部分的宽度。宽度变化的变化量可以以该宽度的最小宽度值与最大宽度值之间的差值表示。在一些实施例中,该宽度变化的变化量可以小于或等于300um。在一些实施例中,该宽度变化的变化量可以小于或等于250um。在一些实施例中,该宽度变化的变化量可以小于或等于200um。在一些实施例中,该宽度变化的变化量可以小于或等于150um。在一些实施例中,该宽度变化的变化量可以小于或等于100um。在一些实施例中,该宽度变化的变化量可以小于或等于50um。在一些实施例中,该宽度变化的变化量可以小于或等于30um。在一些实施例中,该宽度也可以保持不变,即该宽度变化的变化量可以为0。在一些实施例中,参见图4C,弹性元件2122可以相对于质量元件2121向外向和/或内凹陷。如本文中所述,弹性元件2122可以相对于质量元件2121向外凹陷指的是弹性元件2122的内侧2124的至少部分区域与第一声学腔2131的轴线(如图中所示Z轴)之间的距离沿着质量元件2121至声电换能元件方向先逐渐减小再逐渐增大;弹性元件2122可以相对于质量元件2121向内凹陷指的是弹性元件212的外侧2125的至少部分区域与第一声学腔2131的轴线之间的距离沿着质量元件2121至声电换能元件方向先逐渐减小再逐渐增大。例如,弹性元件2122的外侧2125可以向内凹陷,弹性元件2122的内侧2124可以向外凹陷。又例如,弹性元件2122的外侧2125可以向内凹陷,弹性元件2122的内侧2124也可以向内鼓出。
在一些实施例中,如图2所示,弹性元件2122远离声学换能器220的表面A(即弹性元件2122的上表面,弹性元件2122的上表面为弹性元件2122远离声学换能器220的表面)可以低于质量元件2121远离声学换能器220的表面B(即质量元件2121的上表面,质量元件2121的上表面为质量元件2121远离声学换能器220的表面)。通常,由于弹性元件2122为弹性胶体,在振动单元212的制备过程中,由于操作原因,弹性元件2122有可能会溢出至质量元件2121的表面B上,这可能会影响壳体211的封装(甚至导致壳体211不可封装),导致第二声学腔2132的体积改变,以及弹性元件2122的等效刚度增加,从而降低振动传感器200的性能(例如,灵敏度)。弹性元件2122的等效刚度可以是能够反映弹性元件2122总变形(例如,包括拉压变形和剪切变形)性质的参数。在一些实施例中,弹性元件2122远离声学换能器220的表面A与质量元件2121远离声学换能器220的表面B的高度差可以小于质量元件2121的厚度的2/3。优选地,弹性元件2122远离声学换能器220的表面A与质量元件2121远离声学换能器220的表面B的高度差可以小于质量元件2121的厚度的1/2。更优选地,弹 性元件2122远离声学换能器220的表面A与质量元件2121远离声学换能器220的表面B的高度差可以小于质量元件2121的厚度的1/3。
在一些实施例中,弹性元件2121可以向声学换能器220延伸并直接或间接连接声学换能器220。例如,如图2所示,弹性元件2121向声学换能器220延伸的一端可以与声学换能器220直接连接。弹性元件2121与声学换能器220之间的连接方式可以为物理连接,例如,胶接。在一些实施例中,弹性元件2121与壳体211可以直接接触或存在间隔。例如,如图2所示,弹性元件2121与壳体211之间可以存在间隔。此间隔的尺寸可以由设计人员根据振动传感器200的尺寸调整。又例如,图5是根据本说明书一些实施例所示的振动接收器210的示意图。如图5所示,弹性元件2121与壳体211可以直接接触,这一方面可以减少振动接收器212的制备过程中,弹性元件2121的流动,以更好的控制弹性元件的尺寸和形状,另一方面可以降低动传感器200的尺寸。相比于弹性元件2121与壳体21直接接触,弹性元件2121与壳体211之间存在间隔虽然可能会增加动传感器200的尺寸,但是可以降低弹性元件2121的等效刚度,增加弹性元件2121的弹性,从而提高了在振动单元212振动过程中,质量元件2121的振动幅度,这可以降低了振动传感器200的谐振频率,提高振动传感器200的灵敏度。
在一些实施例中,壳体211和质量元件2121中的至少一个可以设有至少一个泄压孔。如图2和图5所示,壳体211上可以设有至少一个泄压孔2111。泄压孔2111可以贯穿壳体211。如图2-5所示,质量元件2121上可以设有至少一个泄压孔2123。泄压孔2123可以贯穿质量元件2121。泄压孔2123可以使第一声学腔2131与第二声学腔2132内的气体流通,泄压孔2111可以使第二声学腔2132和外界的气体流通,从而平衡振动传感器200的制备过程中(例如,回流焊过程中)的温度变化引起的第一声学腔2131和第二声学腔2332内部的气压变化,减少或防止该气压变化引起的振动传感器200的部件的损坏,例如,开裂、变形等。在一些实施例中,壳体211上可以设有至少一个泄压孔2111,当质量元件2121振动时,泄压孔2111可以用于减小第二声学腔2332内部的气体产生的阻尼。
在一些实施例中,泄压孔2111和/或泄压孔2123可以为单孔。在一些实施例中,该单孔的直径可以为1-50um。优选地,该单孔的直径可以为2-45um。更优选地,该单孔的直径可以为3-40um。更优选地,该单孔的直径可以为4-35um。更优选地,该单孔的直径可以为5-30um。更优选地,该单孔的直径可以为5-25um。更优选地,该单孔的直径可以为5-20um。更优选地,该单孔的直径可以为6-15um。更优选地,该单孔的直 径可以为7-10um。在一些实施例中,泄压孔2111和/或泄压孔2123可以为一定数量的微孔组成的阵列。仅作为示例,微孔的数量可以为2-10个。在一些实施例中,每个微孔的直径可以为0.1-25um。优选地,每个微孔的直径可以为0.5-20um。更优选地,每个微孔的直径可以为0.5-25um。更优选地,每个微孔的直径可以为0.5-20um。更优选地,每个微孔的直径可以为0.5-15um。更优选地,每个微孔的直径可以为0.5-10um。更优选地,每个微孔的直径可以为0.5-5um。更优选地,每个微孔的直径可以为0.5-4um。更优选地,每个微孔的直径可以为0.5-3um。更优选地,每个微孔的直径可以为0.5-2um。更优选地,每个微孔的直径可以为0.5-1um。
在一些实施例中,环境中的气导声音可能会影响到振动传感器200的使用性能。为了减少环境中气导声音的影响,在振动传感器200的制备完成后,例如,回流焊后,可以使用密封材料将壳体211上的至少一个泄压孔2111封住。仅作为示例,该密封材料可以包括环氧胶、硅密封胶等或其任意组合。
在一些实施例中,壳体211和质量元件2121中也可以不设置泄压孔。在一些实施例中,当壳体211和质量元件2121中不设置泄压孔时,可以通过提高振动传感器200各部件之间的连接强度的方式(例如,增强连接各部件的胶水的连接强度),避免振动传感器200的部件因第一声学腔2131和第二声学腔2332内部的气压变化而发生损坏。
振动传感器200可以将外部振动信号转换为电信号。仅作为示例,外部振动信号可以包括人说话时的振动信号、皮肤随人体运动或随靠近皮肤的其他设备(例如扬声器)工作等原因产生的振动信号、和与振动传感器200接触的物体或空气产生的振动信号等,或其任意组合。振动传感器200工作时,外部振动信号可以通过壳体211传递到振动单元212,振动单元212的质量元件2121在弹性元件2122的带动下响应于壳体211的振动而发生振动。质量元件2121的振动可以引起第一声学腔2131的体积变化,进而引起第一声学腔2131内的气压变化,并将腔内气压的变化转换为腔内的声压变化。声学换能器220可以检测第一声学腔2131的声压变化并转换为电信号。例如,声学换能器220可以包括进气口221,第一声学腔2131内的声压变化可以通过进气口221作用于声学换能器220的振膜,使振膜发生振动(或形变)以产生电信号。进一步,声学换能器220产生的电信号可以传递到外部电子设备。仅作为示例,如图2所示,声学换能器220可以包括接口222。接口222可以与外部电子设备的内部元件(例如,处理器)有线连接(例如,电连接)或无线连接。声学换能器220产生的电信号可以以有线或无线的方式通过接口222传递到外部电子设备。在一些实施例中,外部电子设备可以包括 移动设备、可穿戴设备、虚拟现实设备、增强现实设备等,或其任意组合。在一些实施例中,移动设备可以包括智能手机、平板电脑、个人数字助理(PDA)、游戏设备、导航设备等,或其任何组合。在一些实施例中,可穿戴设备可以包括智能手环、耳机、助听器、智能头盔、智能手表、智能服装、智能背包、智能配件等,或其任意组合。在一些实施例中,虚拟现实设备和/或增强现实设备可以包括虚拟现实头盔、虚拟现实眼镜、虚拟现实补丁、增强现实头盔、增强现实眼镜、增强现实补丁等或其任何组合。例如,虚拟现实设备和/或增强现实设备可以包括Google Glass、Oculus Rift、Hololens、Gear VR等。
应当注意的是,上述有关振动传感器200及其部件的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对振动传感器200进行各种修正和改变。在一些实施例中,弹性元件2122可以设有至少一个泄压孔。该泄压孔可以贯穿弹性元件2122。这些修正和改变仍在本说明书的范围之内。
图6是根据本说明书一些实施例所示的振动系统600的简化结构示意图。图1-5所示的振动接收器可以通过振动系统600进行描述。如图6所示,振动系统600可以包括围成一个封闭腔的壳体611和位于该封闭腔内的振动单元612。振动单元612可以包括质量元件6121和弹性元件6122。弹性元件6122可以连接在质量元件6121和壳体611之间。在一些实施例中,弹性元件6122可以为弹簧。为了描述方便,壳体611的质量可以表示为m,质量元件6121的质量可以表示为M m,弹性元件6122的质量可以表示为K m,系统的阻尼可以表示为R m
设壳体611振动时的位移ξ 1可以表示为:
ξ 1=ξ 10*e i*ω*t    (1),
其中,ξ 10是壳体611振动时的振动幅度,i是虚数单位,ω是壳体611振动时的振动频率,t是壳体611振动时的振动时间。质量单元6121的运动方程可以表示为:
Figure PCTCN2021107978-appb-000001
其中,ξ 2是质量元件6121振动时的位移。
令质量单元6121和壳体611之间的相对位移ξ为ξ=ξ 12,则该相对位移的幅度ξ a可以表示为:
Figure PCTCN2021107978-appb-000002
其中,a 10为壳体611的加速度幅值,力阻抗模值
Figure PCTCN2021107978-appb-000003
力抗
Figure PCTCN2021107978-appb-000004
Figure PCTCN2021107978-appb-000005
Abs为绝对值函数。
单位加速度下质量单元6121相对壳体611的振动幅度Δh可以表示为:
Figure PCTCN2021107978-appb-000006
令K m=ω 0 2*M m,其中,ω 0为振动系统600的谐振频率,可得:
Figure PCTCN2021107978-appb-000007
对于振动系统600在频率响应曲线平坦区的灵敏度,ω<<ω 0,且为了便于计算,取ω=1,则质量单元6121在低频范围内(例如,频率响应曲线平坦区)的振动幅度可以表示为:
Figure PCTCN2021107978-appb-000008
在振动系统600的实际应用中,ω 0>>1,则振动系统600的实际应用中质量单元6121在低频范围内的振动幅度可以表示为:
Figure PCTCN2021107978-appb-000009
将品质因数
Figure PCTCN2021107978-appb-000010
带入公式(7),则质量单元6121在低频范围内的振动幅度可以表示为:
Figure PCTCN2021107978-appb-000011
振动系统600在频率响应曲线平坦区的灵敏度主要与振动系统600的谐振频率ω 0有关,受品质因数Q m的影响低,几乎可以忽略不计。因此,单位加速度下质量单元6121在低频(例如,频率响应曲线平坦区)相对壳体611的振动幅度可以表示为:
Figure PCTCN2021107978-appb-000012
由公式(9)可知,质量元件6121的振动幅度反比于振动系统600的谐振频率的平方。应用于在本说明书的其他实施例中,例如,图2所示的振动传感器200,则质量元件2121的振动幅度反比于振动传感器200的谐振频率的平方。进一步,由公式(9)可知,对于机械系统(例如,振动传感器100、振动传感器200、振动系统600),其谐 振频率越低,其质量单元(例如,质量元件2121、质量单元6121)的重心在低频(例如,该机械系统频率响应曲线平坦区)的振动幅度越大,其灵敏度越高。在一些实施例中,低频可以是小于2000Hz或小于1000Hz或小于800Hz或小于600Hz或小于500Hz的频段。同理,该机械系统的质量单元的重心在低频(例如,该机械系统频率响应曲线平坦区)的振动幅度越大,该机械系统的谐振频率越低,灵敏度越高。
因此,在本说明书中,根据图2中的描述,弹性元件(例如,弹性元件2122)环绕连接于质量元件(例如,质量元件2121)的侧壁,在振动单元(例如,振动单元212)振动过程中,弹性元件发生剪切形变。相比于拉伸和压缩形变,剪切形变降低了弹性元件的弹簧系数,降低了振动传感器(例如,振动传感器200)的谐振频率,从而提高了在振动单元振动过程中质量元件的振动幅度,提高了振动传感器的灵敏度。
进一步,在本说明书中,根据图2中的描述,弹性元件与壳体(例如,壳体211)之间存在间隔,这可以降低弹性元件的刚度,增加弹性元件的弹性,从而提高了在振动单元振动过程中,质量元件的振动幅度,因此降低了振动传感器的谐振频率,提高振动传感器的灵敏度。
振动系统600的谐振频率可以由质量单元6121的质量M m、弹性元件6122的质量K m以及系统的阻尼R m确定,其中,系统的阻尼R m与振动系统600的谐振频率正相关,质量单元6121的质量M m和弹性元件6122的质量K m之和与振动系统600的谐振频率负相关。另外,由公式(9)可知,对于谐振频率相同的机械系统(例如,振动传感器100、振动传感器200、振动系统600),其质量单元(例如,质量元件2121、质量单元6121)的重心在低频(例如,该机械系统频率响应曲线平坦区)的振动幅度近似相同。关于质量单元的重心在低频的振动幅度近似相同的机械系统,如何通过设置该机械系统各部件的结构和/或参数提高该机械系统的灵敏度,具体请参见下面图7-8的介绍。
图7是根据本说明书一些实施例所示的振动传感器700的结构示意图。如图7所示,振动传感器700可以包括振动接收器710和声学换能器720。振动接收器710可以包括壳体711和振动单元712。壳体711可以与声学换能器720连接以围成具有声学腔713的封装结构。振动单元712可以位于该封装结构的声学腔713内并将声学腔713分隔为第一声学腔7131和第二声学腔7132。振动单元712可以包括质量元件7121、弹性薄膜7122和支撑部件7123。如图7所示,质量元件7121可以设置于弹性薄膜7122上表面。在一些实施例中,弹性薄膜7122的材料可以包括聚四氟乙烯(PTFE)薄膜、聚二甲基硅氧烷(PDMS)薄膜等高分子弹性膜,也可以为复合薄膜(例如,塑料薄膜 (如聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)和聚酯(PET)等)、玻璃纸、纸张和/或金属箔AL等复合形成的薄膜)。支撑部7123可以用于支撑弹性薄膜7122。如图7所示,弹性薄膜7122固定于支撑部件450的一个端面。支撑部件450的另一端面与声学换能器720连接。
需要注意的是,如图7所示,质量元件7121通过弹性薄膜7122设置在第一声学腔7131上方,且质量元件7121在垂直于其振动方向的横截面积小于第一声学腔7131在垂直于质量元件7121的振动方向的横截面积。仅作为示例,质量元件7121在垂直于其振动方向的横截面积小于或等于第一声学腔7131在垂直于质量元件7121的振动方向的横截面积的2/3。又例如,质量元件7121在垂直于其振动方向的横截面积小于或等于第一声学腔7131在垂直于质量元件7121的振动方向的横截面积的1/3。
振动传感器700的灵敏度可以正比于第一声学腔7131的气压变化与第一声学腔712的初始气压的比值或第一声学腔7131的体积变化与所述第一声学腔7131的初始体积的比值。换言之,振动传感器700的灵敏度可以表示为:
Figure PCTCN2021107978-appb-000013
其中,Δp为第一声学腔7131的气压变化,p 0为第一声学腔7131的初始气压,ΔV为第一声学腔7131体积变化,V 0为第一声学腔7131的初始体积。在一些实施例中,声学换能器720可以包括至少一个进气口721,第一声学腔7131的初始体积V 0包括至少一个进气口721的体积。
如图7所示,由于质量元件7121在垂直于其振动方向的横截面积小于第一声学腔7131在垂直于质量元件7121的振动方向的横截面积,质量元件7121沿其振动方向上下振动会带动弹性薄膜7122形变,从而引起第一声学腔7131体积发生变化。由于弹性薄膜7122形变引起的第一声学腔7131体积的变化的形状可以近似为棱台,则第一声学腔7131体积变化ΔV可以表示为:
Figure PCTCN2021107978-appb-000014
其中,Δh为质量元件7121的振动幅度,A 1为质量元件7121在垂直于其振动方向的横截面积,A 0为第一声学腔7131在垂直于质量元件7121的振动方向的横截面积。
进一步,根据公式(10)和(11),振动传感器700的灵敏度可以表示为:
Figure PCTCN2021107978-appb-000015
图8是根据本说明书一些实施例所示的振动传感器800的结构示意图。如图8 所示,振动传感器800可以包括振动接收器810和声学换能器820。振动接收器810可以包括壳体811和振动单元812。壳体811可以与声学换能器820连接以围成具有声学腔813的封装结构。振动单元812可以位于该封装结构的声学腔813内。振动单元812可以将声学腔813分隔为第一声学腔8131和第二声学腔8132。振动单元212可以包括质量元件8121和弹性元件8122。弹性元件8122可以环绕连接于质量元件8121的侧壁,并向声学换能器820延伸且直接连接声学换能器820。振动传感器800的结构和部件与图2中描述的振动传感器200的结构和部件相同或相似,具体可以参见图2-5中的描述,在此不再赘述。
需要注意的是,如图8所示,由于弹性元件8122环绕连接于质量元件8121的侧壁,质量元件8121在垂直于其振动方向的横截面积近似等于第一声学腔8131在垂直于质量元件8121的振动方向的横截面积。在一些实施例中,质量元件8121和第一声学腔8131在垂直于质量元件8121的振动方向的横截面积之间的偏差可以小于25%。在一些实施例中,该偏差是指质量元件8121和第一声学腔8131在垂直于质量元件8121的振动方向的横截面积的差值的绝对值与质量元件8121在垂直于质量元件8121的振动方向的横截面积的比值。例如,质量元件8121在垂直于其振动方向的横截面积是第一声学腔8131在垂直于质量元件8121的振动方向的横截面积的3/4-5/4。在一些实施例中,第一声学腔8131在垂直于质量元件8121的振动方向的横截面积可以是第一声学腔8131靠近质量元件8121处的横截面的面积。其中,靠近可以是指该横截面与质量元件8121的下表面之间的距离小于该横截面与声学换能器820的上表面之间的距离。在一些实施例,质量元件8121的下表面是指质量元件8121上靠近声学换能器820的表面,声学换能器820的上表面是指声学换能器820上靠近质量元件8121的表面。在一些实施例中,第一声学腔8131在垂直于质量元件8121的振动方向的横截面积可以是第一声学腔8131在垂直于振动方向的全部横截面的面积的平均值。在一些实施例中,质量元件8121在垂直于质量元件8121的振动方向的横截面积可以是质量元件8121的下表面的面积。在一些实施例中,质量元件8121在垂直于质量元件8121的振动方向的横截面积也可以是质量元件8121在垂直于振动方向的全部横截面的面积的平均值。在一些实施例中,质量元件8121在垂直于质量元件8121的振动方向的横截面积还可以是质量元件8121的上表面的面积。在一些实施例,质量元件8121的上表面是指质量元件8121上远离声学换能器820的表面。
如图8所示,由于质量元件8121在垂直于其振动方向的横截面积近似等于第一 声学腔8131在垂直于质量元件8121的振动方向的横截面积,质量元件8121沿其振动方向上下振动引起第一声学腔8131体积发生变化。由于质量元件8121引起的第一声学腔8131的体积变化的形状可以近似为筒形(或长方体形),则第一声学腔8131体积变化ΔV可以表示为:
ΔV≈ΔhA 0        (13),其中,Δh为质量元件8121的振动幅度,A 0为第一声学腔8131在垂直于质量元件8121的振动方向的横截面积。
进一步,根据公式(10)和(13),振动传感器800的灵敏度可以表示为:
Figure PCTCN2021107978-appb-000016
其中,Δp为第一声学腔8131的气压变化,p 0为第一声学腔8131的初始气压,V 0为第一声学腔8131的初始体积。在一些实施例中,声学换能器820可以包括至少一个进气口821,第一声学腔8131的初始体积V 0包括至少一个进气口821的体积。
从公式(14)可以看出,振动传感器800的灵敏度可以正比于质量元件8121的振动幅度Δh和第一声学腔8131在垂直于质量元件8121的振动方向的横截面积A 0的乘积与第一声学腔8131的初始体积V 0的比值。在一些实施例中,可以通过对振动传感器800的结构参数的设计可以使振动传感器800的灵敏度s大于阈值。例如,根据上述公式(9),可以通过设计振动传感器800的结构参数设计振动传感器800的谐振频率ω 0,从而影响质量元件8121的振动幅度Δh,以使振动传感器800的灵敏度达到需求。在一些实施例中,可以通过设置第一声学腔8131的初始体积V 0和/或第一声学腔8131在垂直于质量单元8121的振动方向的横截面积A 0使振动传感器800的灵敏度s大于阈值。该阈值可以由设计人员根据实际需要调整。
从公式(12)和(14)可以看出,在第一声学腔(例如,第一声学腔7131、第一声学腔8131)的初始体积V 0、垂直于质量元件(例如,质量元件7121、质量元件8121)的振动方向的横截面积A 0以及该质量元件的振动幅度Δh一定的前提下,当该质量元件在垂直于其振动方向的横截面积A 1小于第一声学腔在垂直于该质量元件的振动方向的横截面积A 0时,在相同谐振频率下(即Δh相同),
Figure PCTCN2021107978-appb-000017
即图8所示振动传感器800的灵敏度大于图7所示振动传感器的灵敏度。
综上所述,在本说明书中,可以通过设置质量元件(例如,质量元件8121)在垂直于其振动方向的横截面积近似等于第一声学腔(例如,第一声学腔8131)在垂直于 该质量元件的振动方向的横截面积,提高振动传感器(例如,振动传感器800)的灵敏度。
在一些实施例中,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-40dB。优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-38dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-36dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-34dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-32dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-30dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-28dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-27dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-26dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-24dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-22dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-20dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-18dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-16dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-14dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于12dB。更优选地,在频率为100Hz~1000Hz的范围内,振动传感器200灵敏度大于或等于-10dB。
应当注意的是,上述图6-8有关振动传感器及其部件的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对振动传感器进行各种修正和改变。这些修正和改变仍在本说明书的范围之内。
图9是根据本说明书一些实施例所示的振动传感器900的结构示意图。如图9所示,振动传感器900可以包括振动接收器910和声学换能器920。振动接收器910可以包括壳体911和振动单元912。壳体911可以形成声学腔913。振动单元912可以位于该声学腔913内并将声学腔913分隔为第一声学腔9131和第二声学腔9132。振动单元912可以包括质量元件9121和弹性元件9122。弹性元件9122可以环绕连接于质量元件9121的侧壁,并向声学换能器920延伸且间接连接声学换能器920。振动传感器900的结构和部件与图2中描述的振动传感器200的结构和部件相同或相似,具体可以 参见图2-5中的描述,在此不再赘述。
在一些实施例中,振动接收器910可以进一步包括基板914。基板914可以用于固定和/或支撑振动传感器900的其他部件。例如,壳体911可以与基板914物理连接以围成声学腔913。基板914可以设置于声学换能器920上。弹性元件9122可以向声学换能器920延伸的一端可以与基板914连接,使得基板可以用于固定和支撑振动单元912。基板的设置使得振动接收器910可以作为独立的部件加工、生产和销售。具有基板的振动接收器910可以直接与现有的声学换能器920物理连接(例如,胶接)以获得振动传感器900,这简化了振动传感器900的生产工艺,提高了生产振动传感器900的工艺灵活性。在一些实施例中,基板的厚度可以为10um~300um。优选地,基板的厚度可以为20um~250um。更优选地,基板的厚度可以为30um~200um。更优选地,基板的厚度可以为40um~150um。更优选地,基板的厚度可以为50um~150um。更优选地,基板的厚度可以为60um~130um。更优选地,基板的厚度可以为70um~110um。更优选地,基板的厚度可以为80um~90um。在一些实施例中,基板的材料可以包括金属(例如,铁、铜、不锈钢等)、合金、非金属(塑料、橡胶、树脂)等或其任意组合。
在一些实施例中,基板914可以包括出气口9141。出气口9141与声学换能器920的进气口921在基板914与声学换能器920的连接面上的投影重叠或部分重叠,使得第一声学腔9131内的声压变化可以通过出气口9141和进气口921作用于声学换能器920以产生电信号。
在一些实施例中,振动传感器900的谐振频率可以为2500Hz~5000Hz。更优选地,振动传感器900的谐振频率可以为3000Hz~5000Hz。更优选地,振动传感器900的谐振频率可以为3500Hz~5000Hz。更优选地,振动传感器900的谐振频率可以为4000Hz~5000Hz。更优选地,振动传感器900的谐振频率可以为4500Hz~5000Hz。更优选地,振动传感器900的谐振频率可以为2500Hz~4500Hz。更优选地,振动传感器900的谐振频率可以为2500Hz~4000Hz。更优选地,振动传感器900的谐振频率可以为2500Hz~3500Hz。更优选地,振动传感器900的谐振频率可以为2500Hz~3000Hz。在一些实施例中,在频率小于1000Hz的范围内,振动传感器900灵敏度大于或等于-27dB。优选地,在频率小于1000Hz的范围内,振动传感器200灵敏度大于或等于-26dB。更优选地,在频率小于1000Hz的范围内,振动传感器200灵敏度大于或等于-24dB。更优选地,在频率小于1000Hz的范围内,振动传感器200灵敏度大于或等于-22dB。更优选地,在频率小于1000Hz的范围内,振动传感器200灵敏度大于或等于-20dB。 更优选地,在频率小于1000Hz的范围内,振动传感器200灵敏度大于或等于-18dB。更优选地,在频率小于1000Hz的范围内,振动传感器200灵敏度大于或等于-16dB。更优选地,在频率小于1000Hz的范围内,振动传感器200灵敏度大于或等于-14dB。更优选地,在频率小于1000Hz的范围内,振动传感器200灵敏度大于或等于12dB。更优选地,在频率小于1000Hz的范围内,振动传感器200灵敏度大于或等于-10dB。
图10是根据本说明书一些实施例所示的振动传感器900的频率响应曲线图。如图10所示,振动传感器900的谐振频率约为4500Hz,在频率小于1000Hz的范围内,振动传感器200灵敏度在-18dB左右。
应当注意的是,上述图9-10有关振动传感器900及其部件的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对振动传感器900进行各种修正和改变。例如,弹性元件9121与壳体911可以直接接触或存在间隔。这些修正和改变仍在本说明书的范围之内。
图11是根据本说明书一些实施例所示的振动传感器1100的结构示意图。如图11所示,振动传感器1100可以包括振动接收器1110和声学换能器1120。振动接收器1110可以包括壳体1111、振动单元1112、和基板1114。壳体1111可以与基板1114连接以围成具有声学腔1113的封装结构。振动单元1112可以位于声学腔1113内。振动单元1112可以将声学腔1113分隔为第一声学腔11131和第二声学腔11132。振动单元1112可以包括质量元件11121和弹性元件11122。弹性元件11122可以环绕连接于质量元件11121的侧壁,并向声学换能器1120延伸且直接连接基板1114。振动接收器1110可以设置于声学换能器1120上。振动传感器1100的结构和部件与图2中描述的振动传感器200的结构和部件相同或相似,具体可以参见图2-5中的描述,在此不再赘述。
在一些实施例中,如图11所示,基板1114可以包括底板11142和侧壁11143。底板11142可以连接声学换能器1120。侧壁11143的内表面可以连接弹性元件11122。在一些实施例中,侧壁11143的外表面可以与壳体1111紧密接触,实现与壳体1111的封装。在一些实施例中,侧壁11143的外表面可以不与壳体1111接触,基板1114的底板11142可以延伸至壳体1111处,并与壳体1111紧密接触形成封装。侧壁11143的设置可以减少在振动传感器1100的制备过程中弹性元件11122的流动,便于更好地控制弹性元件11122的形状和位置。在一些实施例中,底板11142的厚度为50-150um。优选地,底板11142的厚度为60-140um。更优选地,底板11142的厚度为70-130um。更优选地,底板11142的厚度为80-120um。更优选地,底板11142的厚度为90-110 um。更优选地,底板11142的厚度为95-105um。在一些实施例中,侧壁11143沿远离底板11142的方向的长度为20-200um。优选地,侧壁11143沿远离底板11142的方向的长度为30-180um。更优选地,侧壁11143沿远离底板11142的方向的长度为40-160um。更优选地,侧壁11143沿远离底板11142的方向的长度为50-140um。更优选地,侧壁11143沿远离底板11142的方向的长度为60-120um。更优选地,侧壁11143沿远离底板11142的方向的长度为70-110um。更优选地,侧壁11143沿远离底板11142的方向的长度为80-100um。更优选地,侧壁11143沿远离底板11142的方向的长度为85-95um。
应当注意的是,上述图11有关振动传感器1100及其部件的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对振动传感器1100进行各种修正和改变。例如,壳体1111与声学换能器1120可以接触(例如,物理连接)或存在间隙。这些修正和改变仍在本说明书的范围之内。
图12是根据本说明书一些实施例所示的振动传感器900的结构示意图。如图12所示,振动传感器1200可以包括振动接收器1210和声学换能器1220。振动接收器1210可以包括壳体1211和振动单元1212。壳体1211可以与声学换能器1220连接以围成具有声学腔1213的封装结构。振动单元1212可以位于该封装结构的声学腔1213内。振动单元1212可以将声学腔1213分隔为第一声学腔12131和第二声学腔12132。振动单元1212可以包括质量元件12121和弹性元件12122。弹性元件12122可以环绕连接于质量元件12121的侧壁,并向声学换能器1220延伸且直接或间接连接声学换能器1220。振动传感器1200的结构和部件与图2中描述的振动传感器200的结构和部件相同或相似,具体可以参见图2-5中的描述,在此不再赘述。
在一些实施例中,弹性元件12122可以包括第一弹性部122A和第二弹性部122B。第一弹性部122A的两端分别与质量元件12121的侧壁和第二弹性部122B连接。第二弹性部122B向声学换能器1220延伸并与声学换能器1220直接或间接连接。例如,第二弹性部122B向声学换能器1220延伸的一端可以直接物理连接(例如,胶接)到声学换能器1220。又例如,振动接收器1210可以包括基板,第二弹性部122B向声学换能器1220延伸的一端可以通过基板与声学换能器1220连接。该基板与图9和图10中描述的基板914和1114相同或相似,具体可以参加图9和图10中的描述,在此不再赘述。在本实施例中,第一弹性部122A不与声学换能器1220或基板连接/接触,这可以有效降低弹性元件12122的刚度,从而提高在振动单元1212振动过程中,质量元件12121的振动幅度,这降低了振动传感器1200的谐振频率,提高了振动传感器1200的 灵敏度。在一些实施例中,振动传感器1200的谐振频率可以为1000Hz~4000Hz。优选地,振动传感器1200的谐振频率可以为1000Hz~3500Hz。更优选地,振动传感器1200的谐振频率可以为1000Hz~3000Hz。更优选地,振动传感器1200的谐振频率可以为1000Hz~2500Hz。更优选地,振动传感器1200的谐振频率可以为1000Hz~2000Hz。更优选地,振动传感器1200的谐振频率可以为1000Hz~1500Hz。更优选地,振动传感器1200的谐振频率可以为1500Hz~4000Hz。更优选地,振动传感器1200的谐振频率可以为2000Hz~4000Hz。更优选地,振动传感器1200的谐振频率可以为2500Hz~4000Hz。更优选地,振动传感器1200的谐振频率可以为3000Hz~4000Hz。更优选地,振动传感器1200的谐振频率可以为3500Hz~4000Hz。更优选地,振动传感器1200的谐振频率可以为2000Hz~3500Hz。更优选地,振动传感器1200的谐振频率可以为2500Hz~3000Hz。
在一些实施例中,第一弹性部122A和第二弹性部122B可以为相同或不同的材料制备。仅作为示例,第一弹性部122A和第二弹性部122B的材料可以包括硅橡胶、硅凝胶、硅密封胶等或其任意组合。在一些实施例中,第一弹性部122A和第二弹性部122B的邵氏硬度可以为0.1-100HA。优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为0.2-95HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为0.3-90HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为0.4-85HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为0.5-80HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为0.6-75HA。更优选地第一弹性部122A和第二弹性部122B的邵氏硬度可以为0.7-70HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为0.8-65HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为0.9-60HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为1-55HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为1-50HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为1-45HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为1-40HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为1-35HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为1-30HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为1-25HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为1-20HA。更优选地,第一弹性部122A和第二弹性部122B的邵氏硬度可以为1-15HA。更优选地,第一 弹性部122A和第二弹性部122B的邵氏硬度可以为1-10HA。
在一些实施例中,第一弹性部122A沿质量单元12121的振动方向的厚度为10-300um。优选地,第一弹性部122A沿质量单元12121的振动方向的厚度为20-280um。更优选地,第一弹性部122A沿质量单元12121的振动方向的厚度为30-260um。更优选地,第一弹性部122A沿质量单元12121的振动方向的厚度为40-240um。更优选地,第一弹性部122A沿质量单元12121的振动方向的厚度为50-240um。更优选地,第一弹性部122A沿质量单元12121的振动方向的厚度为50-220um。更优选地,第一弹性部122A沿质量单元12121的振动方向的厚度为50-200um。更优选地,第一弹性部122A沿质量单元12121的振动方向的厚度为60-180um。更优选地,第一弹性部122A沿质量单元12121的振动方向的厚度为70-160um。更优选地,第一弹性部122A沿质量单元12121的振动方向的厚度为80-140um。更优选地,第一弹性部122A沿质量单元12121的振动方向的厚度为90-120um。更优选地,第一弹性部122A沿质量单元12121的振动方向的厚度为100-110um。
在一些实施例中,第一弹性部122A沿垂直于质量单元12121的振动方向的方向上的长度为(即从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度)为10-300um。在一些实施例中,第一弹性部122A从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为20-280um。在一些实施例中,第一弹性部122A从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为30-260um。在一些实施例中,第一弹性部122A从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为40-240um。在一些实施例中,第一弹性部122A从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为50-240um。在一些实施例中,第一弹性部122A从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为50-220um。在一些实施例中,第一弹性部122A从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为50-200um。在一些实施例中,第一弹性部122A从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为60-180um。在一些实施例中,第一弹性部122A从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为70-160um。在一些实施例中,第一弹性部122A从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为80-140um。在一些实施例中,第一弹性部122A从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为90-120um。在一些实施例中,第一弹性部122A从靠近质量元件12121的一侧 到远离质量元件12121的另一侧的宽度为100-110um。在一些实施例中,第二弹性部122B从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为20-280um。在一些实施例中,第二弹性部122B从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为30-260um。在一些实施例中,第二弹性部122B从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为40-240um。在一些实施例中,第二弹性部122B从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为50-240um。在一些实施例中,第二弹性部122B从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为50-220um。在一些实施例中,第二弹性部122B从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为50-200um。在一些实施例中,第二弹性部122B从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为60-180um。在一些实施例中,第二弹性部122B从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为70-160um。在一些实施例中,第二弹性部122B从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为80-140um。在一些实施例中,第二弹性部122B从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为90-120um。在一些实施例中,第二弹性部122B从靠近质量元件12121的一侧到远离质量元件12121的另一侧的宽度为100-110um。
应当注意的是,上述图11有关振动传感器1200及其部件的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对振动传感器1200进行各种修正和改变。例如,壳体1211与声学换能器1220可以接触(例如,物理连接)或存在间隙。这些修正和改变仍在本说明书的范围之内。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性 的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、 附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (24)

  1. 一种振动传感器,包括:
    振动接收器,包括壳体和振动单元,所述壳体形成声学腔,所述振动单元位于所述声学腔中,并将所述声学腔分隔为第一声学腔和第二声学腔;以及
    声学换能器,与所述第一声学腔声学连通,其中:
    所述壳体被配置为基于外部振动信号产生振动,所述振动单元响应于所述壳体的振动而振动,并将所述振动通过所述第一声学腔传递至所述声学换能器以产生电信号,
    所述振动单元包括质量元件和弹性元件,所述质量元件和所述第一声学腔在垂直于所述质量单元的振动方向的横截面积之间的偏差小于25%。
  2. 根据权利要求1所述的振动传感器,其中,在频率小于1000Hz的范围内,所述振动传感器的灵敏度为大于或等于-40dB。
  3. 根据权利要求1所述的振动传感器,其中,所述质量元件的振动幅度反比于所述振动传感器的谐振频率的平方。
  4. 根据权利要求3所述的振动传感器,其中,所述振动传感器的灵敏度正比于:
    所述第一声学腔的气压变化与所述第一声学腔的初始气压的比值,或
    所述第一声学腔的体积变化与所述第一声学腔的初始体积的比值,或
    所述质量元件的振动幅度和所述第一声学腔在垂直于所述质量单元的振动方向的横截面积的乘积与所述第一声学腔的初始体积的比值,其中,通过设置所述第一声学腔的初始体积、所述第一声学腔的面积以及所述谐振频率中至少一个以使所述灵敏度大于阈值。
  5. 根据权利要求4所述的振动传感器,其中,所述声学换能器包括至少一个进气口,所述第一声学腔的初始体积包括所述至少一个进气口的体积。
  6. 根据权利要求1所述的振动传感器,其中,所述弹性元件环绕连接于所述质量元件的侧壁,所述弹性元件向所述声学换能器延伸并直接或间接连接所述声学换能器。
  7. 根据权利要求6所述的振动传感器,其中,所述弹性元件从靠近所述质量元件的一侧到远离所述质量元件的另一侧的宽度为10-500um。
  8. 根据权利要求6所述的振动传感器,其中,所述弹性元件从靠近所述质量元件的一侧到远离所述质量元件的另一侧的宽度是变化的,所述变化的变化量小于或等于300um。
  9. 根据权利要求6所述的振动传感器,其中,所述壳体与所述声学换能器连接,所述弹性元件向所述声学换能器延伸的一端与所述声学换能器直接连接。
  10. 根据权利要求6所述的振动传感器,其中,所述振动接收器进一步包括基板,所述基板设置于所述声学换能器上,所述弹性元件向所述声学换能器延伸的一端与所述基板连接。
  11. 根据权利要求10所述的振动传感器,其中,所述基板包括底板和侧壁,所述底板连接所述声学换能器,所述侧壁的内表面连接所述弹性元件。
  12. 根据权利要求11所述的振动传感器,其中,所述底板的厚度为50-150um,所述侧壁沿远离所述底板的方向的长度为20-200um。
  13. 根据权利要求1所述的振动传感器,其中,所述振动传感器的谐振频率为1000Hz~5000Hz。
  14. 根据权利要求1所述的振动传感器,其中,所述振动传感器的谐振频率为1000Hz~4000Hz。
  15. 根据权利要求1所述的振动传感器,其中,所述振动传感器的谐振频率为2000Hz~3500Hz。
  16. 根据权利要求1所述的振动传感器,其中,所述弹性元件与所述壳体直接接触或存在间隔。
  17. 根据权利要求1所述的振动传感器,其中,所述弹性元件包括第一弹性部和第二弹性部,所述第一弹性部的两端分别与所述质量元件的侧壁和所述第二弹性部连接,所述第二弹性部向所述声学换能器延伸并与所述声学换能器直接或间接连接。
  18. 根据权利要求1所述的振动传感器,其中,所述弹性元件的材料包括硅橡胶、硅凝胶、硅密封胶中的至少一种。
  19. 根据权利要求1所述的振动传感器,其中,所述弹性元件的邵氏硬度为1-50HA。
  20. 根据权利要求1所述的振动传感器,其中,所述弹性元件远离所述声学换能器的表面低于所述质量元件远离所述声学换能器的表面。
  21. 根据权利要求1所述的振动传感器,其中,所述壳体和质量元件中的至少一个设有至少一个泄压孔。
  22. 根据权利要求1所述的振动传感器,其中,所述第一声学腔的体积小于所述第二声学腔的体积。
  23. 根据权利要求1所述的振动传感器,其中,沿所述质量单元的振动方向,所述第一声学腔的高度为1-100um,所述第二声学腔的高度为50-200um。
  24. 根据权利要求1所述的振动传感器,其中,沿所述质量单元的振动方向,所述质量元件的厚度为50-1000um。
PCT/CN2021/107978 2020-12-28 2021-07-22 一种振动传感器 WO2022142291A1 (zh)

Priority Applications (28)

Application Number Priority Date Filing Date Title
EP21913042.4A EP4203512A4 (en) 2020-12-28 2021-07-22 VIBRATION SENSOR
JP2023524771A JP2023547160A (ja) 2020-12-28 2021-07-22 振動センサ
CN202180057727.1A CN116250253A (zh) 2020-12-28 2021-07-22 一种振动传感器
KR1020237013883A KR20230074238A (ko) 2020-12-28 2021-07-22 진동센서
BR112023004959A BR112023004959A2 (pt) 2020-12-28 2021-11-05 Sensores de vibração
KR1020237011481A KR20230058525A (ko) 2020-12-28 2021-11-05 진동센서
CN202111307655.XA CN115623392A (zh) 2021-07-16 2021-11-05 一种振动传感器
PCT/CN2021/129151 WO2022262176A1 (zh) 2021-06-18 2021-11-05 一种振动传感器
EP21913481.4A EP4187216A4 (en) 2020-12-28 2021-11-05 VIBRATION SENSOR
CN202111309102.8A CN114697823A (zh) 2020-12-28 2021-11-05 一种振动传感器
PCT/CN2021/129148 WO2022142737A1 (zh) 2020-12-28 2021-11-05 一种振动传感器
CN202180078575.3A CN117157998A (zh) 2021-06-18 2021-11-05 一种振动传感器
CN202180066637.9A CN116584108A (zh) 2020-12-28 2021-11-05 一种振动传感器
JP2023521923A JP2023544877A (ja) 2020-12-28 2021-11-05 振動センサ
CN202111413109.4A CN114697839A (zh) 2020-12-28 2021-11-25 一种振动传感器及其装配方法
CN202122924309.8U CN216391413U (zh) 2020-12-28 2021-11-25 一种振动传感器
KR1020237011152A KR20230058505A (ko) 2020-12-28 2021-12-21 진동센서
CN202111573072.1A CN114697824B (zh) 2020-12-28 2021-12-21 一种振动传感器
EP21914041.5A EP4184134A4 (en) 2020-12-28 2021-12-21 VIBRATION SENSOR
CN202180057471.4A CN116171582A (zh) 2020-12-28 2021-12-21 一种振动传感器
BR112023003742A BR112023003742A2 (pt) 2020-12-28 2021-12-21 Sensor de vibração
PCT/CN2021/140090 WO2022143302A1 (zh) 2020-12-28 2021-12-21 一种振动传感器
JP2023518843A JP2023543765A (ja) 2020-12-28 2021-12-21 振動センサ
TW111118332A TW202301883A (zh) 2021-06-18 2022-05-17 振動感測器
US18/168,585 US20230199370A1 (en) 2020-12-28 2023-02-14 Vibration sensor
US18/173,043 US20230199360A1 (en) 2020-12-28 2023-02-22 Vibration sensors
US18/181,537 US20230217147A1 (en) 2020-12-28 2023-03-09 Vibration sensors
US18/365,976 US20230384147A1 (en) 2021-06-18 2023-08-05 Vibration sensors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/140180 WO2022140921A1 (zh) 2020-12-28 2020-12-28 一种振动传感器
CNPCT/CN2020/140180 2020-12-28
CN202110445739 2021-04-23
CN202110445739.3 2021-04-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/181,537 Continuation US20230217147A1 (en) 2020-12-28 2023-03-09 Vibration sensors

Publications (1)

Publication Number Publication Date
WO2022142291A1 true WO2022142291A1 (zh) 2022-07-07

Family

ID=82135788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107978 WO2022142291A1 (zh) 2020-12-28 2021-07-22 一种振动传感器

Country Status (2)

Country Link
CN (1) CN114697779A (zh)
WO (1) WO2022142291A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068464A2 (en) * 2003-01-30 2004-08-12 Aliphcom, Inc. Acoustic vibration sensor
CN208434106U (zh) * 2018-08-01 2019-01-25 歌尔科技有限公司 一种用于振动传感器的振动组件及振动传感器
CN211085470U (zh) * 2019-11-19 2020-07-24 歌尔微电子有限公司 用于振动感测装置的振动机构以及振动感测装置
CN111510834A (zh) * 2020-05-27 2020-08-07 潍坊歌尔微电子有限公司 骨声纹传感器模组和电子设备
CN111556419A (zh) * 2020-05-27 2020-08-18 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN211930820U (zh) * 2020-05-28 2020-11-13 青岛歌尔智能传感器有限公司 振动传感器和音频设备
CN212086490U (zh) * 2020-06-16 2020-12-04 荣成歌尔电子科技有限公司 振动传感器和电子设备
CN212183709U (zh) * 2020-07-21 2020-12-18 山东新港电子科技有限公司 一种微型振动传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068464A2 (en) * 2003-01-30 2004-08-12 Aliphcom, Inc. Acoustic vibration sensor
CN208434106U (zh) * 2018-08-01 2019-01-25 歌尔科技有限公司 一种用于振动传感器的振动组件及振动传感器
CN211085470U (zh) * 2019-11-19 2020-07-24 歌尔微电子有限公司 用于振动感测装置的振动机构以及振动感测装置
CN111510834A (zh) * 2020-05-27 2020-08-07 潍坊歌尔微电子有限公司 骨声纹传感器模组和电子设备
CN111556419A (zh) * 2020-05-27 2020-08-18 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN211930820U (zh) * 2020-05-28 2020-11-13 青岛歌尔智能传感器有限公司 振动传感器和音频设备
CN212086490U (zh) * 2020-06-16 2020-12-04 荣成歌尔电子科技有限公司 振动传感器和电子设备
CN212183709U (zh) * 2020-07-21 2020-12-18 山东新港电子科技有限公司 一种微型振动传感器

Also Published As

Publication number Publication date
CN114697779A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN218162856U (zh) 一种振动传感器
WO2022262639A1 (zh) 一种振动传感器
US20230199360A1 (en) Vibration sensors
WO2022142291A1 (zh) 一种振动传感器
US20230288250A1 (en) Vibration sensors
CN116250253A (zh) 一种振动传感器
WO2022140921A1 (zh) 一种振动传感器
TW202242354A (zh) 振動感測器
RU2809948C1 (ru) Датчик вибрации
CN115914951A (zh) 扬声器及电子设备
RU2793179C1 (ru) Микрофон и электронное устройство с микрофоном
RU2818792C1 (ru) Датчики вибрации
JP7434571B2 (ja) マイクロフォン及びそれを有する電子機器
WO2023272906A1 (zh) 一种振动传感器
CN114697823A (zh) 一种振动传感器
CN217283376U (zh) 一种封装件
TW202303112A (zh) 振動感測器
JP2023544074A (ja) マイクロフォン
TW202308402A (zh) 振動感測器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021913042

Country of ref document: EP

Effective date: 20230320

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023005612

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2023524771

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237013883

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023005612

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230327