WO2022142737A1 - 一种振动传感器 - Google Patents

一种振动传感器 Download PDF

Info

Publication number
WO2022142737A1
WO2022142737A1 PCT/CN2021/129148 CN2021129148W WO2022142737A1 WO 2022142737 A1 WO2022142737 A1 WO 2022142737A1 CN 2021129148 W CN2021129148 W CN 2021129148W WO 2022142737 A1 WO2022142737 A1 WO 2022142737A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass element
vibration
acoustic
acoustic cavity
elastic
Prior art date
Application number
PCT/CN2021/129148
Other languages
English (en)
French (fr)
Inventor
邓文俊
袁永帅
黄雨佳
周文兵
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2020/140180 external-priority patent/WO2022140921A1/zh
Priority claimed from PCT/CN2021/107978 external-priority patent/WO2022142291A1/zh
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to JP2023521923A priority Critical patent/JP2023544877A/ja
Priority to KR1020237011481A priority patent/KR20230058525A/ko
Priority to EP21913481.4A priority patent/EP4187216A4/en
Priority to CN202180066637.9A priority patent/CN116584108A/zh
Priority to BR112023004959A priority patent/BR112023004959A2/pt
Priority to EP21914041.5A priority patent/EP4184134A4/en
Priority to CN202180057471.4A priority patent/CN116171582A/zh
Priority to PCT/CN2021/140090 priority patent/WO2022143302A1/zh
Priority to KR1020237011152A priority patent/KR20230058505A/ko
Priority to JP2023518843A priority patent/JP2023543765A/ja
Priority to BR112023003742A priority patent/BR112023003742A2/pt
Priority to CN202111573072.1A priority patent/CN114697824B/zh
Publication of WO2022142737A1 publication Critical patent/WO2022142737A1/zh
Priority to US18/168,585 priority patent/US20230199370A1/en
Priority to US18/173,043 priority patent/US20230199360A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • H04R1/083Special constructions of mouthpieces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/08Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/46Special adaptations for use as contact microphones, e.g. on musical instrument, on stethoscope
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms

Definitions

  • the present application relates to the field of acoustic technology, and in particular, to a vibration sensor.
  • a vibration sensor is an energy conversion device that converts vibration signals into electrical signals.
  • the vibration sensor can be used as a bone conduction microphone.
  • the vibration sensor can detect the vibration signal transmitted through the skin when a person speaks, so as to detect the voice signal without being disturbed by external noise.
  • the structure of the vibration components in the vibration sensor is unstable, which leads to the problems that the product yield of the vibration sensor in the production process is not high and the sensitivity of the vibration sensor is low in the working process.
  • the vibration sensor includes: a vibration receiver, including a housing and a vibration unit, the housing forms an acoustic cavity, the vibration unit is located in the acoustic cavity, and divides the acoustic cavity into a first acoustic cavity and a second acoustic cavity; and an acoustic transducer in acoustic communication with the first acoustic cavity, wherein: the housing is configured to vibrate based on an external vibration signal, and the vibration unit is responsive to the vibration of the housing Vibration changes the sound pressure in the first acoustic cavity, so that the acoustic transducer generates an electrical signal; the vibration unit includes a mass element and an elastic element, and the area of the side of the mass element facing away from the acoustic transducer is smaller than that of the mass element close to the acoustic transducer The area of one side of the elastic element surrounds the side wall connected to the mass element
  • the mass element includes a first mass element and a second mass element, the second mass element is adjacent to the acoustic transducer, the first mass element is located on a side of the second mass element away from the acoustic transducer, and the first mass element is located on a side of the second mass element facing away from the acoustic transducer.
  • the cross-sectional area of the element perpendicular to the vibration direction of the mass element is smaller than the cross-sectional area of the second mass element perpendicular to the vibration direction of the mass element.
  • the first mass element is located in the middle region of the second mass element, and there is a certain distance between the side wall of the first mass element and the side wall of the second mass element.
  • the specific pitch ranges from 10um to 500um.
  • the elastic element includes a first elastic part and a second elastic part, two ends of the first elastic part are respectively connected with the side wall of the first mass element and the second elastic part, and the second elastic part is used for acoustic transduction
  • the transducer extends and is connected to the acoustic transducer.
  • the first elastic part includes a first side surface and a second side surface, the first side surface is connected to the side wall of the first mass element, and the second side surface and the second mass element are exposed on the surface of the second acoustic cavity connect.
  • the side wall of the second mass element is connected with the second elastic portion.
  • the acoustic transducer includes a substrate, the second elastic element extends toward and is connected to the substrate, and the substrate, the second mass element, and the second elastic element form a first acoustic cavity.
  • the thickness of the first mass element is 50um-1000um, and the thickness of the second mass element is 10um-150um.
  • the thickness of the first mass element is greater than the thickness of the second mass element.
  • the line connecting the edge of the mass element on the side facing away from the acoustic transducer and the edge of the mass element on the side close to the acoustic transducer and the mass element forms an included angle, and the included angle ranges from 10° to 80°.
  • the mass element includes a first hole portion that communicates with the first acoustic cavity and the second acoustic cavity.
  • the radius of the first hole portion is 1 ⁇ m ⁇ 50 ⁇ m.
  • the housing includes a third hole, and the second acoustic cavity communicates with the outside through the third hole.
  • a vibration sensor including: a vibration receiver, the vibration receiver includes a housing and a vibration unit, the housing forms an acoustic cavity, and the vibration unit is located in the acoustic cavity and divide the acoustic cavity into a first acoustic cavity and a second acoustic cavity; and an acoustic transducer in acoustic communication with the first acoustic cavity, wherein: the housing is configured to Vibration is generated based on an external vibration signal, and the vibration unit changes the sound pressure in the first acoustic cavity in response to the vibration of the housing, so that the acoustic transducer generates an electrical signal; wherein the vibration unit includes A mass element and an elastic element, the elastic element is surrounded and connected to the side wall of the mass element, and the vibration sensor further includes a limit piece, the limit piece is located between the elastic piece and the housing with a limit. bit piece.
  • the height of the limiting member is 100um ⁇ 1000um.
  • One of the embodiments of the present application further provides a vibration sensor, including a vibration receiver, including a housing and a vibration unit, the housing forms an acoustic cavity, the vibration unit is located in the acoustic cavity, and the an acoustic cavity divided into a first acoustic cavity and a second acoustic cavity; and an acoustic transducer in acoustic communication with the first acoustic cavity, wherein: the housing is configured to generate based on an external vibration signal Vibration, the vibration unit changes the sound pressure in the first acoustic cavity in response to the vibration of the housing, so that the acoustic transducer generates an electrical signal; the vibration unit includes a mass element and an elastic element, The mass element includes grooves on the sides of the mass element in the direction of its vibration.
  • the mass element includes a first hole portion, the first hole portion communicates with the first acoustic cavity and the second acoustic cavity, and the first hole portion is located in the concave slot.
  • the radius of the first hole portion is 1 ⁇ m ⁇ 50 ⁇ m.
  • the size of the groove is larger than the size of the first hole portion.
  • One of the embodiments of the present application further provides a vibration sensor, including a vibration receiver, including a housing and a vibration unit, the housing forms an acoustic cavity, the vibration unit is located in the acoustic cavity, and separates the acoustic cavity into a first acoustic cavity an acoustic cavity and a second acoustic cavity; and an acoustic transducer in acoustic communication with the first acoustic cavity, wherein: the housing is configured to vibrate based on an external vibration signal, and the vibrating unit changes in response to the vibration of the housing The sound pressure in the first acoustic cavity causes the acoustic transducer to generate an electrical signal, the vibration unit includes a mass element and an elastic element, and the elastic element surrounds the side wall connected to the mass element and extends to the housing.
  • the thickness of the elastic element is greater than the thickness of the mass element.
  • the mass element or the housing is provided with a hole, and the radius of the hole is 1 um ⁇ 50 um.
  • FIG. 1 is an exemplary frame diagram of a vibration sensor according to some embodiments of the present specification
  • FIG. 2A is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • 2B is a schematic structural diagram of a mass element according to some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a vibration unit according to some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of a vibration unit according to some embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of a mass element according to some embodiments of the present application.
  • 6A is a schematic structural diagram of a vibration unit according to some embodiments of the present application.
  • 6B is a schematic structural diagram of a vibration unit according to some embodiments of the present application.
  • 6C is a schematic structural diagram of a vibration unit according to some embodiments of the present application.
  • 6D is a schematic structural diagram of a vibration unit according to some embodiments of the present application.
  • FIG. 7 is a schematic structural diagram of a vibration sensor according to some embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • FIG. 9 is a schematic structural diagram of a vibration transceiver according to some embodiments of the present application.
  • system means for distinguishing different components, elements, parts, parts or assemblies at different levels.
  • device means for converting components, elements, parts, parts or assemblies to different levels.
  • the vibration sensor may include a vibration receiver and an acoustic transducer.
  • the vibration receiver may include a housing and a vibration unit, the housing may form an acoustic cavity, and the vibration unit may be located in the acoustic cavity and partition the acoustic cavity into a first acoustic cavity and a second acoustic cavity acoustic cavity.
  • the acoustic transducer may be in acoustic communication with the first acoustic cavity.
  • the housing may be configured to vibrate based on external vibration signals (eg, signals generated by the vibration of bones, skin, etc., as the user speaks).
  • the vibration unit may change the sound pressure of the first acoustic cavity in response to the vibration of the housing, so that the acoustic transducer generates an electrical signal.
  • the vibration unit may include a mass element and an elastic element.
  • the area of the side of the mass element facing away from the acoustic transducer is smaller than the area of the side of the mass element close to the acoustic transducer.
  • the contact area between the mass element and the elastic element in the embodiments of the present specification increases relative to the contact area between the cylindrical (eg, cylindrical or prismatic) mass element and the elastic element.
  • the connection area between the elastic element and the mass element increases, thereby improving the connection strength between the elastic element and the mass element, and improving the stability of the vibration assembly structure.
  • connection strength between the elastic element and the mass element and improving the sealing performance of the first acoustic cavity, it is possible to effectively prevent a gap between the elastic element and the mass element, so that the gas in the first acoustic cavity can be effectively prevented.
  • the leakage to the second acoustic cavity occurs, which in turn makes the change of the sound pressure of the first acoustic cavity in response to the vibration of the casing more sensitive, thereby improving the sensitivity of the vibration sensor.
  • FIG. 1 is an exemplary frame diagram of a vibration sensor 100 according to some embodiments of the present specification.
  • the vibration sensor 100 may include a vibration receiver 110 and an acoustic transducer 120 .
  • vibration receiver 110 and acoustic transducer 120 may be physically connected.
  • the physical connection in this specification may include welding, clamping, gluing, integral molding, etc., or any combination thereof.
  • the vibration sensor 100 may be used as a bone conduction microphone.
  • the vibration sensor 100 can receive vibration signals of tissues such as bones, skin and the like generated when the user speaks, and convert the vibration signals into electrical signals containing sound information. Since the sound (or vibration) in the air is hardly collected, the vibration sensor 100 can be protected from ambient noise (eg, the sound of others talking, the noise generated by the passing of vehicles) to a certain extent, and is suitable for use in a noisy environment To collect the voice signal when the user speaks.
  • the noisy environment may include a noisy restaurant, a meeting place, a street, near a road, a fire scene, and the like.
  • the vibration sensor 100 may be applied to earphones (eg, air conduction earphones and bone conduction earphones), hearing aids, hearing aids, glasses, helmets, augmented reality (AR) devices, virtual reality (VR) devices, etc. or any combination thereof.
  • earphones eg, air conduction earphones and bone conduction earphones
  • AR augmented reality
  • VR virtual reality
  • the vibration sensor 100 may be applied to earphones as a bone conduction microphone.
  • the vibration receiver 110 may be configured to receive and transmit vibration signals.
  • the vibration receiver 110 includes a housing and a vibration unit.
  • the housing may be an internally hollow structure, and some components of the vibration sensor 100 (eg, the vibration unit) may be located within the housing.
  • the housing may form an acoustic cavity, and the vibrating unit may be located within the acoustic cavity.
  • the vibration unit may be located in the acoustic cavity, and the acoustic cavity formed by the housing is divided into a first acoustic cavity and a second acoustic cavity.
  • the acoustic cavity may be in acoustic communication with the acoustic transducer 120 .
  • Acoustic communication may be a communication that is capable of transmitting sound pressure, sound waves, or vibration signals.
  • the acoustic transducer 120 may generate an electrical signal containing sound information based on changes in sound pressure of the first acoustic chamber.
  • the vibration signal may be received via the vibration receiver 110 to change the air pressure inside the first acoustic cavity, and the acoustic transducer 120 may generate an electrical signal according to the change in air pressure inside the first acoustic cavity.
  • the housing when the vibration sensor 100 is in operation, the housing may vibrate based on external vibration signals (eg, signals generated by the vibration of bones, skin, etc., when the user speaks).
  • the vibration unit may vibrate in response to the vibration of the housing, and transmit the vibration to the acoustic transducer 120 through the first acoustic cavity.
  • the vibration of the vibration unit can cause a volume change of the first acoustic cavity, thereby causing a change in air pressure in the first acoustic cavity, and converting the change in air pressure in the cavity into a change in sound pressure in the cavity.
  • the acoustic transducer 120 may detect changes in sound pressure of the first acoustic cavity and generate electrical signals based thereon.
  • the acoustic transducer 120 may include a diaphragm, the sound pressure in the first acoustic cavity changes and acts on the diaphragm to vibrate (or deform) the diaphragm, and the acoustic transducer 120 converts the vibration of the diaphragm into electricity Signal.
  • FIGS. 2A-10 For a detailed description of the vibration sensor 100, reference may be made to the detailed description of FIGS. 2A-10 .
  • vibration sensor 100 may also include other components, such as a power supply, to provide power to acoustic transducer 120, and the like. These corrections and changes are still within the scope of this specification.
  • FIG. 2A is an exemplary structural diagram of a vibration sensor 200 according to some embodiments of the present application.
  • the vibration sensor 200 may include a vibration receiver 210 and an acoustic transducer 220, wherein the vibration receiver 210 may include a housing 211 and a vibration unit 212.
  • the housing 211 may be a hollow structure inside, and in some embodiments, the housing 211 may be connected with the acoustic transducer 220 to enclose a structure having an acoustic cavity.
  • the housing 211 and the acoustic transducer 220 may be physically connected.
  • the vibration unit 212 may be located in the acoustic cavity, and the vibration unit 212 may divide the acoustic cavity into a first acoustic cavity 213 and a second acoustic cavity 214 .
  • the vibration unit 212 may form a first acoustic cavity 213 with the acoustic transducer 220
  • the vibration unit 212 may form a second acoustic cavity 214 with the housing 211 .
  • the vibration sensor 200 may convert external vibration signals into electrical signals.
  • the external vibration signal may include a vibration signal when a person speaks, a vibration signal generated by the skin moving with the human body or other equipment (such as a speaker) working close to the skin, etc., and an object or air in contact with the vibration sensor 200. vibration signals, etc., or any combination thereof.
  • the vibration sensor 200 works, the external vibration signal can be transmitted to the vibration unit 212 through the casing 211 , and the mass element 2121 of the vibration unit 212 vibrates in response to the vibration of the casing 211 driven by the elastic element 2122 .
  • the vibration of the mass element 2121 can cause a volume change of the first acoustic cavity 213, thereby causing a change in air pressure in the first acoustic cavity 213, and converting the change in air pressure in the cavity into a change in sound pressure in the cavity.
  • the acoustic transducer 220 may detect changes in sound pressure of the first acoustic cavity 213 and convert them into electrical signals.
  • the acoustic transducer 220 may include a sound pickup hole 2221, and the sound pressure change in the first acoustic cavity 213 may act on the diaphragm of the acoustic transducer 220 through the sound pickup hole 2221, causing the diaphragm to vibrate (or deformation) to generate electrical signals. Further, the electrical signals generated by the acoustic transducer 220 may be transmitted to external electronic devices.
  • acoustic transducer 220 may include interface 223 . The interface may be wired (eg, electrically) or wirelessly connected to an internal element (eg, a processor) of the external electronic device.
  • the electrical signals generated by the acoustic transducer 220 may be transmitted to external electronic devices through an interface in a wired or wireless manner.
  • the external electronic device may include a mobile device, a wearable device, a virtual reality device, an augmented reality device, etc., or any combination thereof.
  • mobile devices may include smartphones, tablet computers, personal digital assistants (PDAs), gaming devices, navigation devices, etc., or any combination thereof.
  • the wearable device may include a smart bracelet, earphones, hearing aids, smart helmets, smart watches, smart clothing, smart backpacks, smart accessories, etc., or any combination thereof.
  • the virtual reality device and/or augmented reality device may include a virtual reality headset, virtual reality glasses, virtual reality patch, augmented reality helmet, augmented reality glasses, augmented reality patch, etc., or any combination thereof.
  • virtual reality devices and/or augmented reality devices may include Google Glass, Oculus Rift, Hololens, Gear VR, and the like.
  • the shape of the housing 211 may be a three-dimensional structure with a regular or irregular shape such as a cuboid, a cylinder, and a truncated cone.
  • the material of the housing may include metals (eg, copper, stainless steel), alloys, plastics, etc., or any combination thereof.
  • the casing may have a certain thickness to ensure sufficient strength to better protect the components of the vibration sensor 100 (eg, the vibration unit 212 ) disposed in the casing.
  • the first acoustic cavity 213 may be in acoustic communication with the acoustic transducer 220 .
  • the acoustic transducer 220 may include a sound pickup hole 2221 , and the acoustic transducer 220 may be in acoustic communication with the first acoustic cavity 213 through the sound pickup hole 2221 .
  • the vibration sensor 200 may include more than one sound pickup hole 2221 .
  • the vibration sensor 200 may include a plurality of sound pickup holes arranged in an array, wherein the sound pickup holes may be located at any positions of the acoustic transducer 220 corresponding to the first acoustic cavity 213 .
  • the vibration unit 212 may include a mass element 2121 and an elastic element 2122 .
  • the mass element 2121 and the elastic element 2122 may be physically connected, eg, glued.
  • the elastic element 2122 may be a material with a certain viscosity, and is directly bonded to the mass element 2121 .
  • the elastic element 2122 may be a high temperature resistant material such that the elastic element 2122 maintains performance during the manufacturing process of the vibration sensor 200 .
  • its Young’s modulus and shear modulus have no change or little change (eg, the change is within 5%), wherein the Young’s modulus
  • the modulus can be used to characterize the deformation capacity of the elastic element 2122 when subjected to tension or compression, and the shear modulus can be used to characterize the deformation capacity of the elastic member 2122 when subjected to shear.
  • the elastic element 2122 may be a material with good elasticity (ie, easily elastically deformed), so that the vibration unit 212 may vibrate in response to the vibration of the housing 211 .
  • the material of the elastic element 2122 may include silicone rubber, silicone gel, silicone sealant, etc., or any combination thereof.
  • the Shore hardness of the elastic element 2122 may be less than 50 HA.
  • the Shore hardness of the elastic member 2122 may be less than 45HA. More preferably, the Shore hardness of the elastic member 2122 may be less than 40 HA. More preferably, the Shore hardness of the elastic member 2122 may be less than 35HA.
  • the Shore hardness of the elastic member 2122 may be less than 30 HA. More preferably, the Shore hardness of the elastic member 2122 may be less than 25HA. More preferably, the Shore hardness of the elastic member 2122 may be less than 20 HA. More preferably, the Shore hardness of the elastic member 2122 may be less than 15HA. More preferably, the Shore hardness of the elastic member 2122 may be less than 10 HA. More preferably, the Shore hardness of the elastic member 2122 may be less than 5HA.
  • the material of the mass element 2121 may be a material with a density greater than a certain density threshold (eg, 6 g/cm 3 ), eg, a metal.
  • a certain density threshold eg, 6 g/cm 3
  • the material of the mass element 2121 may include metals or alloys such as lead, copper, silver, tin, stainless steel, stainless iron, or any combination thereof.
  • the mass element 2121 is made of a material with a density greater than a certain density threshold, which can reduce the size of the vibration sensor 200 to a certain extent.
  • the material density of the mass element 2121 has a large effect on the resonance peak and sensitivity of the frequency response curve of the vibration sensor 200 . Under the same volume, the greater the density of the mass element 2121, the greater its mass, and the resonance peak of the vibration sensor 200 is shifted to low frequencies. Since the frequency of the vibration signal (eg, bone conduction sound) is lower, by increasing the mass element 2121 quality, the sensitivity of the vibration sensor 200 in lower frequency bands (eg, 20Hz-6000Hz) can be improved. In some embodiments, the material density of mass element 2121 is greater than 6 g/cm 3 . In some embodiments, the material density of mass element 2121 is greater than 7 g/cm 3 .
  • the material density of the mass element 2121 is 7-20 g/cm 3 .
  • the material density of the mass element 2121 is 7 ⁇ 15 g/cm 3 . More preferably, the material density of the mass element 2121 is 7 ⁇ 10 g/cm 3 . More preferably, the material density of the mass element 2121 is 7 ⁇ 8 g/cm 3 .
  • the mass element 2121 and the elastic element 2122 may be composed of different materials, and then assembled (eg, glued) together to form the vibration unit 212 . In some embodiments, the mass element 2121 and the elastic element 2122 may also be composed of the same material, and the vibration unit 212 is formed by integral molding.
  • the thickness of the mass element 2121 along its vibration direction may be 60um-1150um.
  • the thickness of the mass element 2121 along its vibration direction may be 70um-900um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 80um-800um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 90um-700um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 100um-600um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 110um-500um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 120um-400um.
  • the thickness of the mass element 2121 along its vibration direction may be 130um-300um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 140um-200um. More preferably, the thickness of the mass element 2121 along its vibration direction may be 100um-150um.
  • the elastic element 2122 may surround the peripheral side surface connected to the mass element 2121 .
  • the peripheral side surface of the mass element 2121 is the side surface of the columnar structure.
  • the peripheral surface of the mass element 2121 is in addition to the first mass element 21211 and the second mass element.
  • the side surface of 21212 also includes, in the direction perpendicular to the vibration direction of the mass element 2121, the area of the second mass element 21212 not covered by the first mass element 21211.
  • a side of the mass element 2121 away from the acoustic transducer 220 and a side of the mass element 2121 close to the acoustic transducer 220 are approximately perpendicular to the vibration direction, and are used to define the second acoustic cavity 214 and the first acoustic cavity 213 respectively . Since the elastic element 2122 is connected to the peripheral surface of the mass element 2121, during the vibration of the vibration unit 212 along the vibration direction, the momentum of the mass element 2121 is converted into a force on the elastic element 2122, so that the elastic element 2122 undergoes shear deformation .
  • the shear deformation reduces the spring coefficient of the elastic element 2122, which reduces the resonant frequency of the vibration sensor 200, thereby increasing the vibration of the vibration unit 212 in the lower frequency range of the mass element 2121.
  • the vibration amplitude within the range eg, 20Hz-6000Hz
  • the elastic element 2122 is in close contact with the peripheral surface of the mass element 2121, which can ensure the sealing of the first acoustic cavity 213, so that the air pressure change of the first acoustic cavity 213 is only related to the vibration unit 212.
  • the vibration amplitudes are related, so that the sound pressure change of the first acoustic cavity 213 can be made more obvious and effective.
  • the elastic element 2122 may be a tubular structure.
  • the shape of the inner wall of the elastic element 2122 in the tubular structure can be adapted to the shape of the peripheral surface of the mass element 2121 .
  • the inner wall of the elastic element 2122 refers to the side wall on which the tube structure fits with the mass element 2121 .
  • the mass element 2121 is in a stepped shape, and the connection between the elastic element 2122 and the mass element 2121 is in a stepped shape adapted to the mass element 2121 .
  • the shape of the cross section of the mass element 2121 perpendicular to its vibration direction may be a triangle, a quadrangle, a circle, an ellipse, a fan shape, a rounded rectangle, or other regular or irregular shapes.
  • the specification does not limit the shape of the outer wall of the tubular structure of the elastic element 2122 , and the outer wall of the elastic element 2122 may be a side wall away from the inner wall of the elastic element 2122 connected with the mass element 2121 .
  • the shape of the outer wall of the tubular structure of the elastic element 2122 may include cylindrical, elliptical cylindrical, conical, rounded rectangular columns, rectangular columns, polygonal columns, irregular columns, etc., or any combination thereof.
  • elastic element 2122 may extend toward and connect acoustic transducer 220 .
  • one end of the elastic member 2122 extending toward the acoustic transducer 220 may be connected to the acoustic transducer 220 .
  • the elastic element 2122 and the acoustic transducer 220 may be physically connected, eg, glued or welded.
  • the elastic element 2122 can also be connected with the acoustic transducer 220 through a connecting piece (not shown in FIG. 2A ), wherein one end of the connecting piece is connected with the elastic element 2122 and the other end of the connecting piece is connected with the acoustic transducer device 220 is connected.
  • the elastic element 2122 and the housing 211 may be in direct contact or spaced apart.
  • the size of the interval between the elastic element 2122 and the housing 211 can be adjusted by the designer according to the size of the vibration sensor 200 .
  • the space between the elastic element 2122 and the housing 211 can reduce the equivalent stiffness of the elastic element 2122 and increase the elasticity of the elastic element 2122 , thereby improving the vibration process of the vibration unit 212 Among them, the vibration amplitude of the mass element 2121 in a lower frequency range (eg, 20 Hz-6000 Hz) increases the sensitivity of the vibration sensor 200 .
  • a lower frequency range eg, 20 Hz-6000 Hz
  • the area of the side of the mass element 2121 facing away from the acoustic transducer 220 is smaller than the area of the side of the mass element 2121 close to the acoustic transducer 220 .
  • the areas of the multiple cross-sections perpendicular to the vibration direction on the mass element 2121 may be different.
  • the mass element 2121 has a stepped structure.
  • the areas of multiple cross-sections on the mass element 2121 that are perpendicular to the vibration direction, along a portion of the mass element 2121 away from the acoustic transducer 220 increases gradually.
  • the areas of multiple cross-sections perpendicular to the vibration direction on the mass element 2121 may be partially the same, for example, the peripheral side of the mass element 2121 may be a stepped structure.
  • the areas of the multiple cross-sections perpendicular to the vibration direction on the mass element 2121 are different, which can increase the peripheral surface area of the mass element 2121, thereby making the elastic element 2122 and the elastic element 2122 different from each other.
  • the connection area of the mass element 2121 is increased, the connection strength between the elastic element 2122 and the mass element 2121 is improved, the sealing performance of the first acoustic cavity is strengthened, and the sound pressure of the first acoustic cavity in response to the vibration of the casing is increased.
  • the change is more pronounced, increasing the sensitivity of the vibration sensor.
  • the peripheral side surface of the mass element 2121 may have at least one step-like structure.
  • FIG. 2B is a schematic structural diagram of the mass element 2121 according to some embodiments of the present application. 2A and 2B, the mass element 2121 may include a first mass element 21211 and a second mass element 21212, the second mass element 21212 is close to the acoustic transducer 220, the first mass element 21211 is located at the second mass element 21212 away from the second mass element 21212 On one side of the mass element 21212, the cross-sectional area of the first mass element 21211 perpendicular to the vibration direction of the mass element 2121 is smaller than the cross-sectional area of the second mass element 21212 perpendicular to the vibration direction of the mass element 2121, so that the first mass element 21211 and the second mass element 21211 have a cross-sectional area perpendicular to the vibration direction.
  • the overall outer edge of 21212 forms a stepped structure.
  • the peripheral side surface of the mass element 2121 may include a side wall a of the first mass element 21211, a region b and a side wall c of the second mass element 21212, and the side wall a, the region b and the side wall c form a step like structure.
  • the stepped structure can increase the area of the peripheral side surface of the mass element 2121. Accordingly, the connecting area between the elastic element 2122 and the side wall of the mass element 2121 is larger, which is conducive to the close fit between the mass element 2121 and the elastic element 2122, thereby Better sealing between the elastic element 2122 and the mass element 2121 is beneficial to ensure the sealing of the first acoustic cavity 213 .
  • first mass element 21211 and the second mass element 21212 may be connected and fixed by physical means, for example, adhesive bonding (adhesion is achieved by using adhesives such as epoxy glue, silicone sealant, etc.), or One piece.
  • adhesive bonding adhesive bonding
  • the side of the first mass element 21211 close to the acoustic transducer 220 and the side of the second mass element 21212 away from the acoustic transducer 220 may be physically connected and fixed.
  • the side of the first mass element 21211 away from the acoustic transducer 220 is perpendicular to its vibration direction
  • the side of the second mass element 2121 close to the acoustic transducer 220 is perpendicular to its vibration direction.
  • the closer to the second mass element 2121 the larger the area of the cross section perpendicular to its vibration direction on the first mass element 21211; The larger the area of the cross section.
  • the first mass element 21211 may be disposed concentrically with the second mass element 21212 , or may be disposed not concentrically with the second mass element 21212 .
  • the shape of the sidewall (ie, the cross section perpendicular to the vibration direction) of the first mass element 21211 and/or the second mass element 21212 may include cylindrical, elliptical cylindrical, trapezoidal, rounded rectangular columns (eg, 2B ), rectangular columns, polygonal columns, irregular columns (eg, columns with multiple stepped faces), etc., or any combination thereof.
  • the shapes of the sidewalls of the first mass element 21211 and the second mass element 21212 may be the same. For example, as shown in FIG. 2B , the shapes of the sidewalls of the first mass element 21211 and the second mass element 21212 are both formed as Rounded rectangular column.
  • the shapes of the sidewalls of the first mass element 21211 and the second mass element 21212 may be different.
  • the shape of the sidewall of the first mass element 21211 is cylindrical
  • the shape of the sidewall of the second mass element 21212 is cylindrical. Formed as a rounded rectangular column.
  • the material of the first mass element 21211 and the material of the second mass element 21212 may be the same or different.
  • the materials of the first mass element 21211 and the second mass element 21212 may include lead, Metals or alloys such as copper, silver, tin, stainless steel, stainless iron, or any combination thereof.
  • the material density of the first mass element 21211 and the second mass element 21212 may be greater than 6 g/cm 3 .
  • the material density of the first mass element 21211 and the second mass element 21212 may be greater than 7 g/cm 3 .
  • the first mass element 21211 is located in the middle region of the second mass element 21212, so that there may be a certain distance d (eg, 10um) between the sidewall of the first mass element 21211 and the sidewall of the second mass element 21212 ⁇ 1000um), that is, there is a certain distance d between the side edge of the first mass element 21211 close to the acoustic transducer 220 and the side edge of the second mass element 21212 away from the acoustic transducer 220 .
  • d eg, 10um
  • the distance d between the side wall of the first mass element 21211 and the side wall of the second mass element 21212 may be equal everywhere, for example, when the first mass element 21211 and the second mass element 21212 are arranged concentrically, the The shape of the sidewall of the first mass element 21211 and the shape of the sidewall of the second mass element 21212 are both cylindrical structures, and the distance d between the sidewall of the first mass element 21211 and the sidewall of the second mass element 21212 is equal. In some embodiments, the distance d between the sidewall of the first mass element 21211 and the sidewall of the second mass element 21212 may not be equal everywhere.
  • the sidewall of the first mass element 21211 has a cylindrical structure
  • the The shape of the sidewall of the second mass element 21212 is a rectangular column.
  • the distance between the edge on the sidewall of the second mass element 21212 and the sidewall of the first mass element 21211 is the same as the distance between the edge on the sidewall of the second mass element 21212 and the sidewall of the first mass element 21211.
  • the spacing of the side walls of a mass element 21211 is not equal.
  • the specific distance d may be 10um ⁇ 500um. More preferably, the specific distance d may be 20um ⁇ 450um. More preferably, the specific distance d may be 30um ⁇ 400um. More preferably, the specific distance d may be 40um ⁇ 350um.
  • the specific distance d may be 50um ⁇ 300um. More preferably, the specific distance d may be 60um ⁇ 250um. More preferably, the specific distance d may be 70um ⁇ 200um. More preferably, the specific distance d may be 80um ⁇ 150um. More preferably, the specific distance d may be 90um ⁇ 100um.
  • the thickness of the first mass element 21211 along its vibration direction may be greater than the thickness of the second mass element 21212 along its vibration direction.
  • the thickness of the first mass element 21211 along its vibration direction may be 50um-1000um, and the thickness of the second mass element 21212 along its vibration direction may be 10um-150um.
  • the thickness of the first mass element 21211 along its vibration direction may be 60um-900um, and the thickness of the second mass element 21212 along its vibration direction may be 20um-130um. More preferably, the thickness of the first mass element 21211 along its vibration direction may be 70um-800um, and the thickness of the second mass element 21212 along its vibration direction may be 30um-120um. More preferably, the thickness of the first mass element 21211 along its vibration direction may be 80um-700um, and the thickness of the second mass element 21212 along its vibration direction may be 40um-110um. More preferably, the thickness of the first mass element 21211 along its vibration direction may be 90um-600um, and the thickness of the second mass element 21212 along its vibration direction may be 50um-100um.
  • the thickness of the first mass element 21211 along its vibration direction may be 100um-500um, and the thickness of the second mass element 21212 along its vibration direction may be 60um-90um. More preferably, the thickness of the first mass element 21211 along its vibration direction may be 200um-400um, and the thickness of the second mass element 21212 along its vibration direction may be 60um-90um. More preferably, the thickness of the first mass element 21211 along its vibration direction may be 300um-350um, and the thickness of the second mass element 21212 along its vibration direction may be 70um-80um.
  • the mass element 2122 is not limited to the structure including the first mass element 21211 and the second mass element 21212 shown in FIG. 2A and FIG. 2B , and may also include a third mass element, a fourth mass element or more mass elements .
  • a stepped structure may be formed between the sidewalls of every two mass elements.
  • the elastic element 2122 may include a first elastic part 21221 and a second elastic part 21222, the first elastic part 21221 is connected to the side wall of the first mass element 21211, and the second elastic part 21222 is connected to the second elastic part 21222.
  • the side wall of the mass element 21212, the first elastic part 21221 and the second elastic part 21222 may be connected by physical means, for example, gluing, welding.
  • the first elastic portion 21221 and the second elastic portion 21222 may be integrally formed.
  • the first elastic portion 21221 is in close contact with the sidewall of the first mass element 21211
  • the second elastic portion 21222 is in close contact with the sidewall of the second mass element 21212
  • the first elastic portion 21221 is in close contact with the second mass element 21212.
  • the elastic part 21222 is connected sealingly.
  • both ends of the first elastic portion 21221 may be connected to the sidewall of the first mass element 21211 and the second elastic portion 21222, respectively.
  • both ends of the first elastic portion 21221 may be sealed with the sidewall of the first mass element 21211 and the second elastic portion 21222 in sealing connection, respectively.
  • the first elastic part 21221 may include a first side surface 21221a and a second side surface 21221b, the first side surface 21221a is connected with the side wall of the first mass element 21211, and the second side surface 21221b and the second mass element 21212 are exposed to the second acoustic cavity 214 surface connection.
  • the second side surface 21221b of the first elastic part 21221 can be connected with the stepped surface of the second mass element 21212 , and the stepped surface of the second mass element 21212 has a supporting effect on the first elastic part 21221 .
  • the second side surface 21221b of the first elastic part 21221 may be connected with the second elastic part 21222 .
  • the side wall of the second mass element 21212 is connected with the second elastic portion 21222 .
  • the second elastic portion 21222 extends toward the acoustic transducer 220 and connects with the acoustic transducer 220 (eg, the substrate 222). In some embodiments, both ends of the second elastic part 21222 may be connected to the side wall of the second mass element 21212 and the acoustic transducer 220 respectively, and the second elastic part 21222 connected to the side wall of the second mass element 21212 One end can also be connected with the first elastic part 21221 . In some embodiments, the shape of the first side surface 21221a of the first elastic portion 21221 is adapted to the shape of the sidewall of the first mass element 21211.
  • the shape of the side surface of the second elastic portion 21222 close to the side wall of the second mass element 21212 is adapted to the shape of the side wall of the second mass element 21212, for example, the cross section of the second mass element 21212 perpendicular to its vibration direction
  • the shape can be a triangle, a quadrangle, a circle, an ellipse, a fan shape, a rounded rectangle, or other regular or irregular shapes.
  • the side wall of the second elastic part 21222 close to the second mass element 21212
  • the cross-sectional shape perpendicular to the vibration direction of the side of the second mass element 21212 is the same as the cross-sectional shape perpendicular to the vibration direction of the side wall of the second mass element 21212 .
  • This specification does not limit the lateral shape of the first elastic portion 21221 away from the side wall of the first mass element 21211 and the lateral shape of the second elastic portion 21222 away from the side wall of the second mass element 21212, for example, the lateral shape may include a cylinder, an ellipse Cylindrical, conical, rounded rectangular, rectangular, polygonal, irregular, etc. or any combination thereof.
  • the materials of the first elastic part 21221 and the second elastic part 21222 may be the same or different.
  • the materials of the first elastic part 21221 or the second elastic part 21222 may include silicone rubber, silicone gel , silicone sealant, etc. or any combination thereof.
  • the mass element 2121 may further include a first hole portion 21213 , and the first hole portion 21213 communicates with the first acoustic cavity 213 and the second acoustic cavity 214 .
  • the first hole portion 21213 may penetrate the mass element 2121, and the first hole portion 21213 may allow the gas in the first acoustic cavity 213 and the second acoustic cavity 214 to circulate, so as to balance the manufacturing process of the vibration sensor 200 (eg, reflow).
  • the first hole portion 21213 may be a single hole structure.
  • the diameter of the single hole may be 1-50um.
  • the diameter of the single hole may be 2-45um. More preferably, the diameter of the single hole may be 3-40um. More preferably, the diameter of the single hole may be 4-35um. More preferably, the diameter of the single hole may be 5-30um. More preferably, the diameter of the single hole may be 5-25um. More preferably, the diameter of the single hole may be 5-20um. More preferably, the diameter of the single hole may be 6-15um. More preferably, the diameter of the single hole may be 7-10um.
  • the first hole portion 21213 may be an array composed of a certain number of micro holes.
  • the number of microwells may be 2-10.
  • the diameter of each micropore may be 0.1-25um.
  • the diameter of each micropore may be 0.5-20um. More preferably, the diameter of each micropore may be 0.5-25um. More preferably, the diameter of each micropore may be 0.5-20um. More preferably, the diameter of each micropore may be 0.5-15um. More preferably, the diameter of each micropore may be 0.5-10um. More preferably, the diameter of each micropore may be 0.5-5um. More preferably, the diameter of each micropore may be 0.5-4um. More preferably, the diameter of each micropore may be 0.5-3um. More preferably, the diameter of each micropore may be 0.5-2um. More preferably, the diameter of each micropore may be 0.5-1 um.
  • the mass element 2121 may not be provided with the first hole portion 21213 .
  • the connection strength between the mass element 2121 and the elastic element 2122 can be improved (for example, by enhancing the strength of the glue between the mass element 2121 and the elastic element 2122 adhesive strength) to avoid damage to the components of the vibration sensor 200 due to changes in air pressure inside the first acoustic cavity 213 .
  • the acoustic transducer 220 may include a substrate 222 .
  • Substrate 222 may be used to secure and/or support vibration receiver 210 .
  • the substrate 222 may be disposed on the acoustic transducer 220, and the housing 211 and the substrate 222 are physically connected to form an acoustic cavity.
  • one end of the elastic element 2122 extending toward the acoustic transducer 220 may be connected to the base plate 222 , and the base plate 222 may be used to fix and support the vibration unit 212 .
  • the arrangement of the base plate 222 allows the vibration receiver 210 to be processed, produced and sold as a stand-alone component.
  • the vibration receiver 210 with the substrate 222 can be directly physically connected (eg, glued) with the acoustic transducer 220 to obtain the vibration sensor 200 , which simplifies the production process of the vibration sensor 200 and improves the process flexibility of producing the vibration sensor 200 .
  • the thickness of the substrate 222 may be 10um ⁇ 300um.
  • the thickness of the substrate 222 may be 20um ⁇ 280um. More preferably, the thickness of the substrate 222 may be 30um ⁇ 270um. More preferably, the thickness of the substrate 222 may be 40um ⁇ 250um. More preferably, the thickness of the substrate 222 may be 80um ⁇ 90um.
  • the material of the substrate 222 may include metals (eg, iron, copper, stainless steel, etc.), alloys, non-metals (plastic, rubber, resin), etc., or any combination thereof.
  • the sound pickup hole 2221 may be located on the base plate 222, and the sound pickup hole 2221 penetrates through the base plate 222 along the vibration direction.
  • the sound pressure change in the first acoustic cavity 213 may act on the acoustic transducer 220 through the sound pickup hole 2221 to generate an electrical signal.
  • the vibration sensor 200 may include at least one first hole portion 21213, and the first hole portion 21213 may penetrate the elastic element 2122 settings. These corrections and changes are still within the scope of this specification.
  • FIG. 3 is a schematic structural diagram of a vibration unit 312 according to some embodiments of the present application. As shown in FIG. 3 , the area of the side of the mass element 3121 facing away from the acoustic transducer is smaller than the area of the side of the mass element 3121 close to the acoustic transducer.
  • the side connecting the edge of the mass element 312 away from the acoustic transducer and the edge of the mass element 312 close to the acoustic transducer is an inclined surface, and the elastic element 3122 and the mass element 312 are away from the acoustic transducer.
  • the inclined surface connection between the side of the mass element 312 and the side of the mass element 312 close to the acoustic transducer ensures that the elastic element 3122 and the mass element 3121 have a larger connection area, thereby improving the distance between the elastic element 3122 and the mass element 3121. connection strength.
  • the side of the mass element 3121 facing away from the acoustic transducer and the side of the mass element 3121 close to the acoustic transducer may be a smooth inclined surface.
  • the side of the mass element 3121 facing away from the acoustic transducer and the side of the mass element 3121 close to the acoustic transducer may be an inclined surface with multiple concavities and convexities, for example, a surface of an inclined surface Can be wavy or jagged in structure.
  • the line between the edge of the mass element 3121 on the side facing away from the acoustic transducer and the edge of the mass element 3121 on the side close to the acoustic transducer is the same as the
  • the vibration direction of the mass element 3121 forms an included angle, and the included angle c can be 10°-80°.
  • the included angle c may be 20°-70°. More preferably, the included angle c may be 30°-60°. More preferably, the included angle c may be 40°-50°. More preferably, the included angle c may be 42°-48°. More preferably, the included angle c may be 44°-46°.
  • the elastic element 3122 surrounds the side connected to the interface between the side of the mass element 3121 facing away from the acoustic transducer and the side of the mass element 3121 closer to the acoustic transducer.
  • one end of the elastic element 3122 is connected with the inclined surface of the mass element 3121, and the other end of the elastic element 3122 is connected with the acoustic transducer.
  • a first acoustic cavity 313 is formed between one side of the mass element 3121 close to the acoustic transducer, the elastic element 3122 and the acoustic transducer.
  • the shape of the end surface of the elastic element 3122 connected to the inclined surface of the mass element 3121 is adapted to the shape of the inclined surface of the mass element 3121, for example, the edge of the connecting side surface is a wavy or zigzag curve, and the elastic element 3122 The outer edge of the end face connected to the joined side face is also a wavy or zigzag curve.
  • This specification does not limit the shape of the side of the elastic element 3122 exposed to the second acoustic cavity.
  • the edge of the side of the elastic element 3122 exposed to the second acoustic cavity may be is an irregular curve with multiple bumps.
  • the mass element 3121 may further include a first hole portion 31213, and the first hole portion 31213 penetrates the mass element 3121 to allow the first acoustic cavity 313 to communicate with the gas in the second acoustic cavity.
  • the first hole portion 31213 may be a single hole structure.
  • the first hole portion 31213 may be an array composed of a certain number of micro holes. For example only, the number of microwells may be 2-10.
  • the substrate 322 may be used to secure and/or support the vibration unit 312 .
  • one end of the elastic element 3122 connected to the acoustic transducer may be connected to the base plate 322 , so that the base plate 322 can be used to fix and support the vibration unit 312 .
  • the substrate 322 may include a pickup hole 2221 for acoustically communicating the first acoustic cavity 313 with the acoustic transducer.
  • the vibration sensor 200 may include at least two elastic elements, the elastic elements are connected with the elastic elements, and the vibration element 312 is close to the mass element.
  • the elastic element is connected with the mass element, and the mass element close to the acoustic transducer is connected with the acoustic transducer.
  • FIG. 4 is a schematic structural diagram of a vibration unit 412 according to some embodiments of the present application.
  • the two ends of the elastic element 4122 are respectively connected with the side wall of the mass element 4121 and the acoustic transducer by physical means, such as gluing.
  • One side of the mass element 4121 close to the acoustic transducer, the elastic element 4122 and the A first acoustic cavity 413 is formed between the acoustic transducers.
  • the mass element 4121 may be provided with a second hole portion 41214, and the first hole portion 41213 communicates with the second hole portion 41214.
  • the mass element 4121 may include one or more second aperture portions 41214 . The setting of the second hole portion 41214 makes the local structure of the mass element 4121 thinner, so that the first hole portion 41213 can be opened at the thinned local structure, and at the same time, it is convenient to control the processing strength of the first hole portion 41213.
  • the 41213 is processed without damage to other components of the vibration sensor (eg, substrate 422, acoustic transducer).
  • the second hole portion 41214 is located on the side of the mass element 4121 along its vibration direction.
  • the second hole portion 41214 may be located at a side portion of the mass element 4121 close to or away from the substrate 422 .
  • the first hole portion 41213 and the second hole portion 41214 are disposed along the vibration direction of the mass element 4121 , wherein the first hole portion 41213 and the second hole portion 41214 penetrate the mass element 4121 .
  • the second hole portion 41214 may be arranged concentrically with the mass element 4121, or may not be arranged concentrically with the mass element 4121.
  • the first hole portion 41213 may be arranged concentrically with the second hole portion 41214 or may not be arranged concentrically with the second hole portion 41214 .
  • the second hole portion 41214 and/or the first hole portion 41213 may be square holes, polygonal holes, round holes, irregular holes, etc. or any combination thereof.
  • the hole shape of the hole portion 41213 is not limited. In some embodiments, the hole shapes of the first hole portion 41213 and the second hole portion 41214 may be the same or different. In some embodiments, both the first hole portion 41213 and the second hole portion 41214 may be a single hole structure. In some embodiments, the second hole portion 41214 may be a single hole structure, and the first hole portion 31213 may be an array composed of a certain number of micro holes.
  • the size of the second hole portion 41214 is larger than that of the first hole portion 41213 , so that the first hole portion 41213 is processed in the second hole portion 41214 .
  • the cross-sectional area of the second hole portion 41214 perpendicular to the vibration direction of the mass element 4121 is larger than the cross-sectional area of the first hole portion 41213 perpendicular to the vibration direction of the mass element 4121 .
  • the diameter of the second hole portion 41214 may be 100um-1600um, and the diameter of the first hole portion 41213 may be 1um-50um.
  • the diameter of the second hole portion 4121 may be 110um ⁇ 1400um, and the diameter of the first hole portion 41213 may be 2um ⁇ 45um.
  • the diameter of the second hole portion 41214 may be 120um ⁇ 1200um, and the diameter of the first hole portion 41213 may be 3um ⁇ 40um.
  • the diameter of the second hole portion 41214 may be 130um ⁇ 1000um, and the diameter of the first hole portion 41213 may be 4um ⁇ 35um.
  • the diameter of the second hole portion 41214 may be 140um ⁇ 800um, and the diameter of the first hole portion 41213 may be 5um ⁇ 30um.
  • the diameter of the second hole portion 41214 may be 160um ⁇ 600um, and the diameter of the first hole portion 41213 may be 5um ⁇ 25um.
  • the diameter of the second hole portion 41214 may be 180um ⁇ 500um, and the diameter of the first hole portion 41213 may be 5um ⁇ 20um.
  • the diameter of the second hole portion 41214 may be 200um ⁇ 400um, and the diameter of the first hole portion 41213 may be 10um ⁇ 15um.
  • FIG. 5 is a schematic structural diagram of the mass element 4121 shown in FIG. 4 , the second hole 41214 is provided on the side of the mass element 4121 close to the acoustic transducer, and the first hole 41213 is provided on the mass element 4121 away from the acoustic transducer On one side, the second hole portion 41214 and the first hole portion 41213 are provided through the mass element 4121 .
  • FIG. 6A is a schematic structural diagram of a vibration unit 412 according to some embodiments of the present application.
  • the second hole 41214 may also be located on the side of the mass element 4121 away from the acoustic transducer, the first hole 41213 is provided on the side of the mass element 4121 close to the acoustic transducer, and the second hole 41214 , the first hole portion 41213 penetrates the mass element 4121 .
  • the depth of the first hole portion 41213 along the vibration direction of the mass element 4121 may be greater than, less than, or equal to the depth of the second hole portion 41214 along the vibration direction of the mass element 4121 .
  • FIG. 6B A schematic diagram of the structure of the vibration unit 412 shown in the embodiment.
  • the second hole 41214 is located on the side of the mass element 4121 away from the acoustic transducer
  • the first hole 41213 is located on the side of the mass element 4121 close to the acoustic transducer
  • the second hole 41214 the first The hole portion 41213 penetrates through the mass element 4121
  • the depth of the first hole portion 41213 along the vibration direction of the mass element 4121 is greater than the depth of the second hole portion 41214 along the vibration direction of the mass element 4121 .
  • FIG. 6C is a schematic structural diagram of the vibration unit 412 according to some embodiments of the present application. As shown in FIG.
  • second holes 41214 are provided on both sides of the mass element 4121 close to and away from the acoustic transducer, and the second holes 41214 on both sides of the mass element 4121 pass through the first holes Section 41213 is connected.
  • the vibration unit 412 may include a mass element 4121 stacked in multiple layers, the materials of the multiple layers of the mass element 4121 may be the same or not identical or completely different, and the first hole portion 41213 is provided through part of the mass element 4121, The second hole portion 41214 is disposed through part of the mass element 4121, and the first hole portion 41213 communicates with the second hole portion 41214.
  • the vibration unit 412 may include two layers of superposed mass elements 4121 , the materials of the two layers of the mass elements 4121 are different, the first hole 41213 is provided through the mass element 4121 facing away from the acoustic transducer, and the second hole The portion 41214 is provided through the adjacent mass element 4121, and the first hole portion 41213 communicates with the second hole portion 41214.
  • the vibration unit 412 and its components is only for illustration and description, and does not limit the scope of application of this specification.
  • various modifications and changes can be made to the vibration unit 412 under the guidance of this specification. These corrections and changes are still within the scope of this specification.
  • the second hole portion 41214 shown in FIGS. 4-6D can also be applied to the vibration sensor 200 shown in FIG. 2A .
  • the mass element 4121 in FIGS. 4 to 6D is only used for exemplary illustration, and its specific shape and structure can be referred to the contents of FIGS. 2A and 2B , which will not be further described herein.
  • the vibration sensor may further include a limiter, the limiter is located between the elastic element and the housing to limit the flow trajectory of the elastic element in a high temperature state, so as to control the size of the elastic element.
  • FIG. 7 is a schematic structural diagram of a vibration sensor 500 according to some embodiments of the present application. As shown in FIG.
  • the vibration sensor 500 includes a vibration receiver 510 , an acoustic transducer 520 and a limiting member 530 .
  • the vibration receiver 510 may include a housing 511 and a vibration unit 512 .
  • the housing 511 may be connected with the acoustic transducer 520 to enclose a package structure having an acoustic cavity.
  • the vibration unit 512 may be located within the acoustic cavity.
  • the vibration unit 512 may divide the acoustic cavity into a first acoustic cavity 513 and a second acoustic cavity 514 .
  • the vibration unit 512 may include a mass element 5121 and an elastic element 5122 .
  • the elastic element 5122 may surround the side wall connected to the mass element 5121 and extend toward the acoustic transducer 520 and directly connect to the substrate 522 .
  • the structure and components of the vibration sensor 500 are the same as or similar to those of the vibration sensor 200 described in FIG. 2A . For details, refer to the description in FIG. 2A , which will not be repeated here.
  • the stopper 530 is located between the elastic element 5122 and the housing 511 , the stopper 530 acts as a restriction on the outer wall of the elastic element 5122 , and can control the flow of the elastic element 5122 during the preparation of the vibration receiver 510 , to better control the size and shape of the elastic element 5122.
  • the limiter 530 may be disposed around the elastic element 5122 , the elastic element 5122 is physically connected to the mass element 5121 on the side close to the mass element 5121 , and the elastic element 5122 is connected to the limiter 53 on the side close to the limiter 53 . physical connection.
  • the stopper 530 may be physically connected to the substrate 522 .
  • the limiting member 530 may not be in contact with the housing 511 , or may be in contact with the housing 511 .
  • the height of the limiting member 530 along the vibration direction of the mass element 5121 may be 100um ⁇ 1000um.
  • the height of the limiting member 530 along the vibration direction of the mass element 5121 may be 110um ⁇ 900um.
  • the height of the limiting member 530 along the vibration direction of the mass element 5121 may be 120um ⁇ 800um.
  • the height of the limiting member 530 along the vibration direction of the mass element 5121 may be 130um ⁇ 700um.
  • the height of the limiting member 530 along the vibration direction of the mass element 5121 may be 140um ⁇ 600um.
  • the height of the limiting member 530 along the vibration direction of the mass element 5121 may be 150um ⁇ 500um.
  • the height of the limiting member 530 along the vibration direction of the mass element 5121 may be 160um ⁇ 400um.
  • the height of the limiting member 530 along the vibration direction of the mass element 5121 may be 170um ⁇ 300um.
  • the height of the limiting member 530 along the vibration direction of the mass element 5121 may be 180um ⁇ 200um. More preferably, the height of the limiting member 530 along the vibration direction of the mass element 5121 is equal to the height of the mass element 5121 .
  • This specification does not limit the material and/or density of the limiting member 530.
  • the limiting member 530 may be made of a non-magnetic conductive metal material.
  • At least one third hole 5111 may be provided on the casing 511 , and the third hole 5111 penetrates through the casing 511 .
  • the structure of the third hole portion 5111 is the same as or similar to the structure of the first hole portion 21213 .
  • the third hole portion 5111 can allow the second acoustic cavity 514 to communicate with the outside air, so as to balance the air inside the second acoustic cavity 514 caused by temperature changes during the preparation process of the vibration sensor 500 (eg, during reflow soldering).
  • the change in air pressure reduces or prevents damage to components of the vibration sensor 500 caused by the change in air pressure, such as cracking, deformation, and the like.
  • the third hole portion 5111 may serve to reduce the damping generated by the gas inside the second acoustic cavity 514 .
  • air-conducted sound in the environment may affect the performance of vibration sensor 500 in use.
  • a sealing material may be used to seal the third hole 5111 on the housing 511 .
  • the sealing material may include epoxy glue, silicone sealant, or the like, or any combination thereof.
  • the housing 511 may not be provided with the third hole portion 5111 .
  • the above description of the vibration sensor 500 and its components in FIG. 7 is only for illustration and description, and does not limit the scope of application of this specification.
  • various modifications and changes can be made to the vibration sensor 500 under the guidance of this specification.
  • the housing 511 and the acoustic transducer 520 may be in contact (eg, physically connected) or indirectly connected. These corrections and changes are still within the scope of this specification.
  • the limiting member 530 shown in FIG. 7 can also be applied to the vibration sensor shown in FIGS. 2A-6D .
  • the mass element 5121 in FIG. 7 is only used for exemplary illustration, and its specific shape and structure can refer to the contents of FIGS. 2A-6D , which will not be further described herein.
  • FIG. 8 is a schematic structural diagram of a vibration sensor 600 according to some embodiments of the present application.
  • the vibration sensor 600 includes a vibration receiver 610 and an acoustic transducer 620 .
  • the vibration receiver 610 may include a housing 611 and a vibration unit 612 .
  • the housing 611 may be connected with the acoustic transducer 620 to enclose a package structure having an acoustic cavity, the vibration unit 612 may be located in the acoustic cavity, and the vibration unit 612 may divide the acoustic cavity into a first acoustic cavity 613 and a second acoustic cavity.
  • Two acoustic cavities 614 Two acoustic cavities 614 .
  • the vibration unit 612 may include a mass element 6121 and an elastic element 6122 , and the mass element 6121 is connected with the housing 611 through the elastic element 6122 .
  • the structure and components of the vibration sensor 600 are the same as or similar to those of the vibration sensor 200 described in FIG. 2A . For details, refer to the description in FIG. 2A , which will not be repeated here.
  • the elastic element 6122 is sleeved on the outer side of the mass element 6121 , wherein the inner side of the elastic element 6122 is physically connected with the mass element 6121 , and the outer side of the elastic element 6122 is physically connected with the housing 611 .
  • the elastic element 6122 and the substrate 622 have a certain distance in the vibration direction of the mass element 6121, wherein the elastic element 6122, the mass element 6121, the housing 611 and the substrate 622 form the first acoustic cavity 613, and the elastic The element 6122 , the mass element 6121 and the housing 611 form a second acoustic cavity 614 .
  • the height of the mass element 6121 can be controlled by a jig (not shown in FIG. 8 ). Lift the mass element 6121 with its own height, and then connect the mass element 6121 to the housing 611 through the elastic element 6122 to realize the height control of the mass element 6121, so that the first acoustic cavity 613 and the first acoustic cavity 613 and the second acoustic cavity can be controlled more stably.
  • the height of the two acoustic cavity 614 .
  • the thickness of the elastic element 6122 along the vibration direction of the mass element 6121 is equal to the thickness of the mass element 6121 . In some embodiments, the thickness of the elastic element 6122 along the vibration direction of the mass element 6121 is smaller or larger than the thickness of the mass element 6121 .
  • FIG. 9 is a schematic structural diagram of a vibration transceiver 610 according to some embodiments of the present application.
  • the thickness of the elastic element 6122 along the vibration direction of the mass element 6121 is greater than the thickness of the mass element 6121 , wherein the two sides of the elastic element 6122 along the vibration direction of the mass element 6121 may be relative to the mass element Both sides of the 6121 are protruded, so that the connection area between the elastic element 6122 and the mass element 6121 can be increased, thereby increasing the connection strength between the two.
  • the mass element 6121 may be provided with a hole portion 630 .
  • the hole portion 630 may penetrate the mass element 6121 to communicate the first acoustic cavity 613 and the second acoustic cavity 614, so as to balance the first acoustic cavity 613 caused by the temperature change during the preparation process of the vibration sensor 600 (eg, during the reflow process).
  • Changes in air pressure inside the acoustic cavity 613 and the second acoustic cavity 614 reduce or prevent damage to components of the vibration sensor 200 caused by the changes in air pressure, such as cracking, deformation, and the like.
  • the casing 611 may be provided with a hole 630, and the hole 630 may penetrate through the casing 611 to communicate with the second acoustic cavity 614 and the outside world.
  • the hole 630 may be used to reduce Damping due to the gas inside the second acoustic cavity 614 .
  • the hole portion 630 reference may be made to the related descriptions about the first hole portion, the second hole portion, and the third hole portion elsewhere in the embodiments of this specification, such as FIG. 2A and related contents.
  • aspects of this application may be illustrated and described in several patentable categories or situations, including any new and useful process, machine, product, or combination of matter, or combinations of them. of any new and useful improvements. Accordingly, various aspects of the present application may be performed entirely by hardware, entirely by software (including firmware, resident software, microcode, etc.), or by a combination of hardware and software.
  • the above hardware or software may be referred to as a "data block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of the present application may be embodied as a computer product comprising computer readable program code embodied in one or more computer readable media.
  • a computer storage medium may contain a propagated data signal with the computer program code embodied therein, for example, on baseband or as part of a carrier wave.
  • the propagating signal may take a variety of manifestations, including electromagnetic, optical, etc., or a suitable combination.
  • Computer storage media can be any computer-readable media other than computer-readable storage media that can communicate, propagate, or transmit a program for use by coupling to an instruction execution system, apparatus, or device.
  • Program code on a computer storage medium may be transmitted over any suitable medium, including radio, cable, fiber optic cable, RF, or the like, or a combination of any of the foregoing.
  • the computer program coding required for the operation of the various parts of this application may be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python Etc., conventional procedural programming languages such as C language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code may run entirely on the user's computer, or as a stand-alone software package on the user's computer, or partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any network, such as a local area network (LAN) or wide area network (WAN), or to an external computer (eg, through the Internet), or in a cloud computing environment, or as a service Use eg software as a service (SaaS).
  • LAN local area network
  • WAN wide area network
  • SaaS software as a service

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

一种振动传感器(200),包括:振动接收器(210),包括壳体(211)和振动单元(212),壳体(211)形成声学腔体,振动单元(212)位于声学腔体中,将声学腔体分隔为第一声学腔体(213)和第二声学腔体(214);以及声学换能器(220),与第一声学腔体(213)连通,其中,壳体(211)被配置为基于外部振动信号产生振动,振动单元(212)响应于壳体(211)的振动而改变第一声学腔体(213)内的声压,使得声学换能器(220)产生电信号;振动单元(212)包括质量元件(2121)和弹性元件(2122),质量元件(2121)背离声学换能器(220)一侧的面积小于质量元件(2121)靠近声学换能器(220)一侧的面积,弹性元件(2122)环绕连接于质量元件(2121)的侧壁。

Description

一种振动传感器
优先权信息
本申请要求于2020年12月28日提交的申请号为PCT/CN2020/140180的国际申请、于2021年4月23日提交的申请号为202110445739.3的中国申请及于2021年7月22日提交的申请号为PCT/CN2021/107978的国际申请,其全部内容通过引用并入本文。
技术领域
本申请涉及声学技术领域,特别涉及一种振动传感器。
背景技术
振动传感器是一种将振动信号转换为电信号的能量转换器件。目前振动传感器可以用作骨传导麦克风,振动传感器可以检测人说话时的经皮肤传递的振动信号,从而检测到语音信号,同时又不受外界噪声的干扰。目前振动传感器中振动组件的结构不稳定,导致振动传感器在生产过程中的产品良率不高以及振动传感器在工作过程中的灵敏度较低的问题。
因此希望提供一种具有较强结构稳定性以及较高灵敏度的振动传感器。
发明内容
本申请实施例之一提供一种振动传感器,该振动传感器包括:振动接收器,包括壳体和振动单元,壳体形成声学腔体,振动单元位于声学腔体中,并将声学腔体分隔为第一声学腔体和第二声学腔体;以及声学换能器,与第一声学腔体声学连通,其中:壳体被配置为基于外部振动信号产生振动,振动单元响应于壳体的振动而改变第一声学腔体内的声压,使得声学换能器产生电信号;振动单元包括质量元件和弹性元件,质量元件背离声学换能器一侧的面积小于质量元件靠近声学换能器的一侧的面积,弹性元件环绕连接于质量元件的侧壁。
在一些实施例中,质量元件包括第一质量元件和第二质量元件,第二质量元件靠近声学换能器,第一质量元件位于第二质量元件背离声学换能器的一侧,第一质量元件中垂直质量元件振动方向的截面积小于第二质量元件中垂直质量元件振动方向的截面积。
在一些实施例中,第一质量元件位于第二质量元件的中部区域,且第一质量元件的侧壁与第二质量元件的侧壁之间具有特定间距。
在一些实施例中,特定间距的范围为10um~500um。
在一些实施例中,弹性元件包括第一弹性部和第二弹性部,第一弹性部的两端分别与第一质量元件的侧壁和第二弹性部连接,第二弹性部向声学换能器延伸并与声学换能器连接。
在一些实施例中,第一弹性部包括第一侧面和第二侧面,第一侧面与第一质量元件的侧壁连接,第二侧面与第二质量元件上暴露在第二声学腔体的表面连接。
在一些实施例中,第二质量元件的侧壁与第二弹性部连接。
在一些实施例中,声学换能器包括基板,第二弹性元件向基板延伸并与基板连接,基板、第二质量元件和第二弹性元件形成第一声学腔体。
在一些实施例中,沿质量元件的振动方向,第一质量元件的厚度为50um~1000um,第二质量元件的厚度为10um~150um。
在一些实施例中,沿质量元件的振动方向,第一质量元件的厚度大于第二质量元件的厚度。
在一些实施例中,在质量元件沿其振动方向获取的截面中,质量元件背离声学换能器一侧的边缘与质量元件靠近声学换能器的一侧的边缘之间的连线与质量元件振动方向形成夹角,夹角的范围为10°-80°。
在一些实施例中,质量元件包括第一孔部,第一孔部连通第一声学腔体和第二声学腔体。
在一些实施例中,第一孔部的半径为1um~50um。
在一些实施例中,壳体上包括第三孔部,第二声学腔体通过第三孔部与外部连通。
本申请实施例之一还提供一种振动传感器,包括:振动接收器,该振动接收器包括壳体和振动单元,所述壳体形成声学腔体,所述振动单元位于所述声学腔体中,并将所述声学腔体分隔为第一声学腔体和第二声学腔体;以及声学换能器,与所述第一声学腔体声学连通,其中:所述壳体 被配置为基于外部振动信号产生振动,所述振动单元响应于所述壳体的振动而改变所述第一声学腔体内的声压,使得所述声学换能器产生电信号;其中所述振动单元包括质量元件和弹性元件,所述弹性元件环绕连接于所述质量元件的侧壁,所述振动传感器进一步包括限位件,所述限位件位于所述弹性件与所述壳体之间具有限位件。
在一些实施例中,沿质量元件的振动方向,限位件的高度为100um~1000um。
本申请实施例之一还提供一种振动传感器,包括振动接收器,包括壳体和振动单元,所述壳体形成声学腔体,所述振动单元位于所述声学腔体中,并将所述声学腔体分隔为第一声学腔体和第二声学腔体;以及声学换能器,与所述第一声学腔体声学连通,其中:所述壳体被配置为基于外部振动信号产生振动,所述振动单元响应于所述壳体的振动而改变所述第一声学腔体内的声压,使得所述声学换能器产生电信号;所述振动单元包括质量元件和弹性元件,所述质量元件包括凹槽,所述凹槽位于所述质量元件沿其振动方向的侧部。
在一些实施例中,所述质量元件包括第一孔部,所述第一孔部连通所述第一声学腔体和所述第二声学腔体,所述第一孔部位于所述凹槽处。
在一些实施例中,所述第一孔部的半径为1um~50um。
在一些实施例中,所述凹槽的尺寸大于所述第一孔部的尺寸。
本申请实施例之一还提供一种振动传感器,包括振动接收器,包括壳体和振动单元,壳体形成声学腔体,振动单元位于声学腔体中,并将声学腔体分隔为第一声学腔体和第二声学腔体;以及声学换能器,与第一声学腔体声学连通,其中:壳体被配置为基于外部振动信号产生振动,振动单元响应于壳体的振动而改变第一声学腔体内的声压,使得声学换能器产生电信号,振动单元包括质量元件和弹性元件,弹性元件环绕连接于质量元件的侧壁,并延伸到壳体。
在一些实施例中,沿质量元件的振动方向,弹性元件的厚度大于质量元件的厚度。
在一些实施例中,质量元件或壳体上开设有孔部,孔部的半径为1um~50um。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的振动传感器的示例性框架图;
图2A是根据本申请一些实施例所示的振动传感器的示例性结构图;
图2B是根据本申请一些实施例所示的质量元件的结构示意图;
图3是根据本申请一些实施例所示的振动单元的结构示意图;
图4是根据本申请一些实施例所示的振动单元的结构示意图;
图5根据本申请一些实施例所示的质量元件的结构示意图;
图6A根据本申请一些实施例所示的振动单元的结构示意图;
图6B根据本申请一些实施例所示的振动单元的结构示意图;
图6C根据本申请一些实施例所示的振动单元的结构示意图;
图6D根据本申请一些实施例所示的振动单元的结构示意图;
图7是根据本申请一些实施例所示的振动传感器的结构示意图;
图8是根据本说明书一些实施例所示的振动传感器的结构示意图;
图9是根据本申请一些实施例所示的振动收发器的结构示意图。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
本说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表 示数量限制,而是表示存在至少一个。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书实施例描述了一种振动传感器。在一些实施例中,振动传感器可以包括振动接收器和声学换能器。在一些实施例中,振动接收器可以包括壳体和振动单元,壳体可以形成声学腔体,振动单元可以位于声学腔体中,并将声学腔体分隔为第一声学腔体和第二声学腔体。声学换能器可以与第一声学腔体声学连通。壳体可以被配置为基于外部振动信号(例如,用户说话时的骨骼、皮肤等振动产生的信号)产生振动。振动单元可以响应于壳体的振动而改变第一声学腔体的声压,使得声学换能器产生电信号。
在一些实施例中,振动单元可以包括质量元件和弹性元件。其中,质量元件背离声学换能器一侧的面积小于质量元件靠近声学换能器的一侧的面积。在相同厚度条件下,本说明书实施例中的质量元件与弹性元件的接触面积相对于柱状(例如,圆柱状或棱柱状)质量元件与弹性元件的接触面积有所增加,当弹性元件环绕连接于质量元件时,弹性元件与质量元件的连接面积增大,进而提高弹性元件与质量元件之间的连接强度,提高振动组件结构的稳定性。进一步地,通过提高弹性元件和质量元件之间的连接强度,提高第一声学腔体的密封性,可以有效防止弹性元件与质量元件连接处出现缝隙,以至于第一声学腔体的气体泄漏至第二声学腔体的情况发生,进而使响应于壳体振动的第一声学腔体的声压变化更为灵敏,从而提高了振动传感器的灵敏度。
图1是根据本说明书一些实施例所示的振动传感器100的示例性框架图。如图1所示,振动传感器100可以包括振动接收器110和声学换能器120。在一些实施例中,振动接收器110和声学换能器120可以通过物理方式连接。本说明书中的物理方式连接可以包括焊接、卡接、胶接或一体成型等或其任意组合。
在一些实施例中,振动传感器100可以作为骨传导麦克风使用。当作为骨传导麦克风使用时,振动传感器100可以接收用户说话时产生的骨骼、皮肤等组织的振动信号,并将该振动信号转换为包含声音信息的电信号。由于几乎不采集空气中的声音(或振动),因此振动传感器100可以一定程度地免受周围环境噪声(例如,周围他人说话声音、车辆驶过产生的噪声)的影响,适合在嘈杂环境中使用以采集用户说话时的语音信号。仅作为示例,嘈杂环境可以包括嘈杂的餐厅、会场、街道、马路附近、火灾现场等场合。在一些实施例中,振动传感器100可以应用于耳机(例如,空气传导耳机和骨传导耳机)、助听器、辅听器、眼镜、头盔、增强现实(AR)设备、虚拟现实(VR)设备等或其任意组合。例如,振动传感器100可以作为骨传导麦克风应用于耳机。
振动接收器110可以被配置为接收并传递振动信号。在一些实施例中,振动接收器110包括壳体和振动单元。壳体可以是内部中空的结构,且振动传感器100的部分部件(例如,振动单元)可以位于壳体内。例如,壳体可以形成声学腔体,振动单元可以位于声学腔体内。在一些实施例中,振动单元可以位于声学腔体中,并将壳体形成的声学腔体分隔为第一声学腔体和第二声学腔体。声学腔体可以与声学换能器120声学连通。声学连通可以是能够传递声压、声波或振动信号的连通方式。
声学换能器120可以基于第一声学腔室的声压变化产生包含声音信息的电信号。在一些实施例中,振动信号可以经由振动接收器110接收并使得第一声学腔体内部气压发生变化,声学换能器120可以根据第一声学腔室内部的气压变化产生电信号。在一些实施例中,当振动传感器100工作时,壳体可以基于外部振动信号(例如,用户说话时的骨骼、皮肤等振动产生的信号)产生振动。振动单元可以响应于壳体的振动而振动,并将该振动通过第一声学腔体传递至声学换能器120。例如,振动单元的振动可以引起第一声学腔体的体积变化,进而引起第一声学腔体内气压的变化,并将腔内气压的变化转换为腔内的声压变化。声学换能器120可以检测到第一声学腔体的声压变化并基于此产生电信号。例如,声学换能器120可以包括振膜,第一声学腔体内声压变化并作用于振膜,使振膜发生振动(或形变),声学换能器120将振膜的振动转化为电信号。关于振动传感器100的详细描述可以参考图2A-图10的详细描述。
应当注意的是,上述有关振动传感器100及其部件的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对振动传感器100进行各种修正和改变。在一些实施例中,振动传感器100还可以包括其他部件,例如,电源,以为声学换能器120提供电能等。这些修正和改变仍在本说明书的范围之内。
图2A是根据本申请一些实施例所示的振动传感器200的示例性结构图。如图2A所示,振 动传感器200可以包括振动接收器210和声学换能器220,其中,振动接收器210可以包括壳体211和振动单元212。
壳体211可以为内部中空的结构,在一些实施例中,壳体211可以与声学换能器220连接以围成具有声学腔体的结构。壳体211和声学换能器220之间可以通过物理方式连接。在一些实施例中,振动单元212可以位于声学腔体内,振动单元212可以将声学腔体分隔为第一声学腔体213和第二声学腔体214。在一些实施例中,振动单元212可以与声学换能器220形成第一声学腔体213,振动单元212可以与壳体211形成第二声学腔体214。
振动传感器200可以将外部振动信号转换为电信号。仅作为示例,外部振动信号可以包括人说话时的振动信号、皮肤随人体运动或随靠近皮肤的其他设备(例如扬声器)工作等原因产生的振动信号、和与振动传感器200接触的物体或空气产生的振动信号等,或其任意组合。振动传感器200工作时,外部振动信号可以通过壳体211传递到振动单元212,振动单元212的质量元件2121在弹性元件2122的带动下响应于壳体211的振动而发生振动。质量元件2121的振动可以引起第一声学腔体213的体积变化,进而引起第一声学腔体213内的气压变化,并将腔内气压的变化转换为腔内的声压变化。声学换能器220可以检测第一声学腔体213的声压变化并转换为电信号。例如,声学换能器220可以包括拾音孔2221,第一声学腔体213内的声压变化可以通过拾音孔2221作用于声学换能器220的振膜,使振膜发生振动(或形变)以产生电信号。进一步,声学换能器220产生的电信号可以传递到外部电子设备。仅作为示例,声学换能器220可以包括接口223。接口可以与外部电子设备的内部元件(例如,处理器)有线连接(例如,电连接)或无线连接。声学换能器220产生的电信号可以以有线或无线的方式通过接口传递到外部电子设备。在一些实施例中,外部电子设备可以包括移动设备、可穿戴设备、虚拟现实设备、增强现实设备等,或其任意组合。在一些实施例中,移动设备可以包括智能手机、平板电脑、个人数字助理(PDA)、游戏设备、导航设备等,或其任何组合。在一些实施例中,可穿戴设备可以包括智能手环、耳机、助听器、智能头盔、智能手表、智能服装、智能背包、智能配件等,或其任意组合。在一些实施例中,虚拟现实设备和/或增强现实设备可以包括虚拟现实头盔、虚拟现实眼镜、虚拟现实补丁、增强现实头盔、增强现实眼镜、增强现实补丁等或其任何组合。例如,虚拟现实设备和/或增强现实设备可以包括Google Glass、Oculus Rift、Hololens、Gear VR等。
在一些实施例中,壳体211的形状可以为长方体、圆柱体、圆台等规则或不规则形状的立体结构。在一些实施例中,壳体的材料可以包括金属(例如,铜、不锈钢)、合金、塑料等或其任意组合。在一些实施例中,壳体可以具有一定的厚度以保证足够的强度,从而更好的保护设置在壳体内的振动传感器100的部件(例如,振动单元212)。在一些实施例中,第一声学腔体213可以与声学换能器220声学连通。仅作为示例,声学换能器220可以包括拾音孔2221,声学换能器220可以通过拾音孔2221与第一声学腔体213声学连通。应当注意,如图2A所示的单个拾音孔2221的描述仅用于说明,并不意在限制本发明的范围。应当理解,振动传感器200可以包括一个以上的拾音孔2221。例如,振动传感器200可以包括布置成阵列的多个拾音孔,其中,拾音孔可以位于第一声学腔体213对应的声学换能器220的任意位置。
在一些实施例中,振动单元212可以包括质量元件2121和弹性元件2122。在一些实施例中,质量元件2121和弹性元件2122可以通过物理方式连接,例如,胶接。仅作为示例,弹性元件2122可以为具有一定黏性的材料,直接粘接在质量元件2121上。
在一些实施例中,弹性元件2122可以为耐高温的材料,使得弹性元件2122在振动传感器200的加工制造过程中保持性能。在一些实施例中,弹性元件2122处于200℃~300℃的环境中时,其杨氏模量和剪切模量无变化或变化很小(如变化量在5%以内),其中,杨氏模量可以用于表征弹性元件2122受拉伸或压缩时的变形能力,剪切模量可以用于表征弹性元件2122受剪切时的变形能力。在一些实施例中,弹性元件2122可以为具有良好弹性(即易发生弹性形变)的材料,使得振动单元212可以响应于壳体211的振动而振动。仅作为示例,弹性元件2122的材料可以包括硅橡胶、硅凝胶、硅密封胶等或其任意组合。为了使得弹性元件2122具有较好的弹性,在一些实施例中,弹性元件2122的邵氏硬度可以小于50HA。优选地,弹性元件2122的邵氏硬度可以小于45HA。更优选地,弹性元件2122的邵氏硬度可以小于40HA。更优选地,弹性元件2122的邵氏硬度可以小于35HA。更优选地,弹性元件2122的邵氏硬度可以小于30HA。更优选地,弹性元件2122的邵氏硬度可以小于25HA。更优选地,弹性元件2122的邵氏硬度可以小于20HA。更优选地,弹性元件2122的邵氏硬度可以小于15HA。更优选地,弹性元件2122的邵氏硬度可以小于10HA。更优选地,弹性元件2122的邵氏硬度可以小于5HA。
在一些实施例中,质量元件2121的材料可以为密度大于一定密度阈值(例如,6g/cm 3)的材料,例如,金属。仅作为示例,质量元件2121的材料可以包括铅、铜、银、锡、不锈钢、不锈铁等金属或合金或其任意组合。在相同质量下,质量元件2121的材料的密度越高,尺寸则越小,因此用密度大于一定密度阈值的材料制作质量元件2121,这可以在一定程度上降低振动传感器200的尺寸。在一些实施例中,质量元件2121的材料密度对振动传感器200的频率响应曲线的谐振峰和灵敏度有较大影响。在同等体积下,质量元件2121的密度越大,其质量越大,振动传感器200的谐振峰向低频移动,由于振动信号(例如,骨导声音)的频率较低,通过增大质量元件2121的质量,可以提高振动传感器200在较低频段(例如,20Hz-6000Hz)的灵敏度。在一些实施例中,质量元件2121的材料密度大于6g/cm 3。在一些实施例中,质量元件2121的材料密度大于7g/cm 3。在一些实施例中,质量元件2121的材料密度为7~20g/cm 3。优选地,质量元件2121的材料密度为7~15g/cm 3。更优选地,质量元件2121的材料密度为7~10g/cm 3。更优选地,质量元件2121的材料密度为7~8g/cm 3。在一些实施例中,质量元件2121和弹性元件2122可以是由不同种材料所组成,再通过组装(例如,胶接)在一起形成振动单元212。在一些实施例中,质量元件2121和弹性元件2122也可以是由同种材料组成,通过一体成型形成振动单元212。
在一些实施例中,质量元件2121沿其振动方向(如图2A所示)的厚度可以为60um-1150um。优选地,质量元件2121沿其振动方向的厚度可以为70um-900um。更优选地,质量元件2121沿其振动方向的厚度可以为80um-800um。更优选地,质量元件2121沿其振动方向的厚度可以为90um-700um。更优选地,质量元件2121沿其振动方向的厚度可以为100um-600um。更优选地,质量元件2121沿其振动方向的厚度可以为110um-500um。更优选地,质量元件2121沿其振动方向的厚度可以为120um-400um。更优选地,质量元件2121沿其振动方向的厚度可以为130um-300um。更优选地,质量元件2121沿其振动方向的厚度可以为140um-200um。更优选地,质量元件2121沿其振动方向的厚度可以为100um-150um。
在一些实施例中,弹性元件2122可以环绕连接于质量元件2121的周侧表面。例如,当质量元件2121为柱状结构(圆柱或棱柱)时,质量元件2121的周侧表面为柱状结构的侧面。又例如,当质量元件2121为两个不同尺寸的柱状结构(例如,第一质量元件21211和第二质量元件21212)时,质量元件2121的周侧表面除了第一质量元件21211和第二质量元件21212的侧面,还包括在与质量元件2121振动方向垂直的方向上,第二质量元件21212未被第一质量元件21211覆盖的区域。质量元件2121背离声学换能器220的一侧面及质量元件2121靠近声学换能器220的一侧面与振动方向近似垂直,并且分别用于限定第二声学腔体214以及第一声学腔体213。由于弹性元件2122环绕连接于质量元件2121的周侧表面,在振动单元212沿着振动方向振动过程中,质量元件2121的动量转换为对弹性元件2122的作用力,使弹性元件2122发生剪切形变。相比于拉伸和压缩形变,剪切形变降低了弹性元件2122的弹簧系数,这降低了振动传感器200的谐振频率,从而提高了在振动单元212振动过程中,质量元件2121在较低频率范围内(例如,20Hz-6000Hz)的振动幅度,提高了振动传感器200的灵敏度。在一些实施例中,弹性元件2122与质量元件2121的周侧表面紧密贴合,可以保证第一声学腔体213的密封性,使得第一声学腔体213的气压变化只与振动单元212振动幅度相关,从而可以使得第一声学腔体213的声压变化更为明显有效。
在一些实施例中,弹性元件2122可以为管状结构。相应的,呈管状结构的弹性元件2122的内壁形状可以与质量元件2121周侧表面形状相适应。这里可以理解为,沿振动方向上的不同高度,弹性元件2122内壁与质量元件2121具有相同的截面形状。弹性元件2122的内壁是指管结构与质量元件2121贴合的侧壁。例如,质量元件2121为阶梯状,弹性元件2122与质量元件2121的连接处为与质量元件2121相适配的阶梯状。在一些实施例中,质量元件2121的与其振动方向垂直的截面的形状可以为三角形、四边形、圆形、椭圆形、扇形、圆角矩形、等规则或不规则形状。本说明书对弹性元件2122的管状结构的外壁的形状不做限定,弹性元件2122的外壁可以是背离弹性元件2122与质量元件2121连接的内壁的侧壁。例如,弹性元件2122的管状结构的外壁的形状可以包括圆柱形、椭圆柱形、锥形、圆角矩形柱、矩形柱、多边形柱、不规则柱形等或其任意组合。
在一些实施例中,弹性元件2122可以向声学换能器220延伸并连接声学换能器220。例如,如图2A所示,弹性元件2122向声学换能器220延伸的一端可以与声学换能器220连接。弹性元件2122与声学换能器220之间可以通过物理方式连接,例如,胶接、焊接。在一些实施例中,弹性元件2122也可以通过连接件(图2A中未示出)与声学换能器220连接,其中连接件的一端与弹性元件2122连接,连接件的另一端与声学换能器220连接。在一些实施例中,弹性元件2122与壳体211可以直接接触或存在间隔。例如,如图2A所示,弹性元件2122与壳体211之间可以存在间 隔。弹性元件2122与壳体211之间的间隔尺寸可以由设计人员根据振动传感器200的尺寸调整。相比于弹性元件2122与壳体211直接接触,弹性元件2122与壳体211之间存在间隔可以降低弹性元件2122的等效刚度,增加弹性元件2122的弹性,从而提高了在振动单元212振动过程中,质量元件2121在较低频率范围内(例如,20Hz-6000Hz)的振动幅度,提高振动传感器200的灵敏度。
在一些实施例中,质量元件2121背离声学换能器220的一侧的面积小于质量元件2121靠近声学换能器220的一侧的面积。在一些实施例中,质量元件2121上与振动方向垂直的多个截面的面积可以均不同,例如,质量元件2121为阶梯状结构。为了增大弹性元件2122与质量元件2121周侧表面的连接面积,在一些实施例中,质量元件2121上与振动方向垂直的多个截面的面积,沿质量元件2121背离声学换能器220的一侧至质量元件2121靠近声学换能器220的一侧,逐渐增大。在一些实施例中,质量元件2121上与振动方向垂直的多个截面的面积可以部分相同,例如,质量元件2121的周侧可以为阶梯状结构。在质量元件2121的沿其振动方向的厚度一定的情况下,质量元件2121上与振动方向垂直的多个截面的面积不同,可以增大质量元件2121的周侧表面面积,进而使得弹性元件2122与质量元件2121的连接面积增大,提高弹性元件2122与质量元件2121之间的连接强度,加强第一声学腔体的密封性,使响应于壳体振动的第一声学腔体的声压变化更为显著,从而提高了振动传感器的灵敏度。
在一些实施例中,质量元件2121的周侧表面可以为至少一级阶梯状结构。图2B是根据本申请一些实施例所示的质量元件2121的结构示意图。结合图2A和图2B,质量元件2121可以包括第一质量元件21211和第二质量元件21212,第二质量元件21212靠近声学换能器220,第一质量元件21211位于第二质量元件21212背离第二质量元件21212的一侧,第一质量元件21211中垂直质量元件2121振动方向的截面积小于第二质量元件21212中垂直质量元件2121振动方向的截面积,使第一质量元件21211及第二质量元件21212的整体外缘形成阶梯状结构。仅作为示例性说明,质量元件2121的周侧表面可以包括第一质量元件21211的侧壁a、第二质量元件21212的区域b和侧壁c,侧壁a、区域b和侧壁c形成阶梯状结构。阶梯状结构可以增大质量元件2121周侧表面的面积,相应地,弹性元件2122与质量元件2121侧壁的相连接的面积较大,有利于质量元件2121与弹性元件2122的紧密贴合,从而使弹性元件2122与质量元件2121之间有较好的密封性,有利于保证第一声学腔体213的密封性。在一些实施例中,第一质量元件21211与第二质量元件21212可以通过物理方式连接固定,例如,胶接(利用环氧胶、硅密封胶等具有黏性的胶体实现粘接),也可以一体成型。在一些实施例中,第一质量元件21211靠近声学换能器220的侧面与第二质量元件21212远离声学换能器220的侧面可以通过物理方式连接固定。
在一些实施例中,第一质量元件21211的远离声学换能器220的侧面与其振动方向垂直,第二质量元件2121的靠近声学换能器220的侧面与其振动方向垂直。在一些实施例中,越靠近第二质量元件2121,第一质量元件21211上与其振动方向垂直的截面的面积越大,越靠近声学换能器220,第二质量元件21212上与其振动方向垂直的截面的面积越大。在一些实施例中,第一质量元件21211可以与第二质量元件21212同心设置,也可以与第二质量元件21212不同心设置。在一些实施例中,第一质量元件21211和/或第二质量元件21212的侧壁形状(即,与振动方向垂直的截面)可以包括圆柱形、椭圆柱形、台形、圆角矩形柱(如图2B所示)、矩形柱、多边形柱、不规则柱形(例如,具有多阶梯面的柱形)等或其任意组合。在一些实施例中,第一质量元件21211与第二质量元件21212的侧壁形状可以相同,例如,如图2B所示,第一质量元件21211及第二质量元件21212的侧壁形状都形成为圆角矩形柱。在一些实施例中,第一质量元件21211与第二质量元件21212的侧壁形状可以不相同,例如,第一质量元件21211的侧壁形状形成为圆柱形,第二质量元件21212的侧壁形状形成为圆角矩形柱。在一些实施例中,第一质量元件21211的材料与第二质量元件21212的材料可以相同,也可以不相同,仅作为示例,第一质量元件21211及第二质量元件21212的材料可以包括铅、铜、银、锡、不锈钢、不锈铁等金属或合金或其任意组合。在一些实施例中,第一质量元件21211及第二质量元件21212的材料密度可以大于6g/cm 3。在一些实施例中,第一质量元件21211及第二质量元件21212的材料密度可以大于7g/cm 3
在一些实施例中,第一质量元件21211位于第二质量元件21212的中部区域,使得第一质量元件21211的侧壁与第二质量元件21212的侧壁之间可以具有特定间距d(例如,10um~1000um),即第一质量元件21211靠近声学换能器220的侧面边缘与第二质量元件21212远离声学换能器220的侧面边缘之间具有特定间距d。在一些实施例中,第一质量元件21211的侧壁与第二质量元件21212的侧壁之间的间距d可以处处相等,例如,第一质量元件21211与第二质量元件21212同心设置时,第一质量元件21211的侧壁形状、第二质量元件21212的侧壁形状均为圆柱形结构, 第一质量元件21211的侧壁与第二质量元件21212的侧壁之间的间距d处处相等。在一些实施例中,第一质量元件21211的侧壁与第二质量元件21212的侧壁之间的间距d可以不处处相等,例如,第一质量元件21211的侧壁形状为圆柱形结构,第二质量元件21212的侧壁形状为矩形柱,第二质量元件21212侧壁上的棱边处与第一质量元件21211的侧壁的间距与第二质量元件21212侧壁上的侧棱处与第一质量元件21211的侧壁的间距不相等。在一些实施例中,特定间距d可以为10um~500um。更优选地,特定间距d可以为20um~450um。更优选地,特定间距d可以为30um~400um。更优选地,特定间距d可以为40um~350um。更优选地,特定间距d可以为50um~300um。更优选地,特定间距d可以为60um~250um。更优选地,特定间距d可以为70um~200um。更优选地,特定间距d可以为80um~150um。更优选地,特定间距d可以为90um~100um。
在一些实施例中,第一质量元件21211沿其振动方向上的厚度可以大于第二质量元件21212沿其振动方向上的厚度。通过增加第一质量元件21211的厚度不仅可以增加质量元件2121整体的质量,也可以增加弹性元件2122与第一质量元件21211中侧壁a的连接面积,提高弹性元件2122与质量元件2121的连接强度。在一些实施例中,第一质量元件21211沿其振动方向上的厚度可以为50um~1000um,第二质量元件21212沿其振动方向上的厚度可以为10um~150um。更优选地,第一质量元件21211沿其振动方向上的厚度可以为60um~900um,第二质量元件21212沿其振动方向上的厚度可以为20um~130um。更优选地,第一质量元件21211沿其振动方向上的厚度可以为70um~800um,第二质量元件21212沿其振动方向上的厚度可以为30um~120um。更优选地,第一质量元件21211沿其振动方向上的厚度可以为80um~700um,第二质量元件21212沿其振动方向上的厚度可以为40um~110um。更优选地,第一质量元件21211沿其振动方向上的厚度可以为90um~600um,第二质量元件21212沿其振动方向上的厚度可以为50um~100um。更优选地,第一质量元件21211沿其振动方向上的厚度可以为100um~500um,第二质量元件21212沿其振动方向上的厚度可以为60um~90um。更优选地,第一质量元件21211沿其振动方向上的厚度可以为200um~400um,第二质量元件21212沿其振动方向上的厚度可以为60um~90um。更优选地,第一质量元件21211沿其振动方向上的厚度可以为300um~350um,第二质量元件21212沿其振动方向上的厚度可以为70um~80um。
需要注意的是,质量元件2122不限于图2A和图2B所示的包括第一质量元件21211和第二质量元件21212的结构,还可以包括第三质量元件、第四质量元件或者更多质量元件。当质量元件2122包括两个以上质量元件时,每两个质量元件的侧壁之间可以形成一个阶梯状结构。
在一些实施例中,弹性元件2122可以包括第一弹性部21221和第二弹性部21222,第一弹性部21221环绕连接于第一质量元件21211的侧壁,第二弹性部21222环绕连接于第二质量元件21212的侧壁,第一弹性部21221和第二弹性部21222可以通过物理方式连接,例如,胶接、焊接。在一些实施例中,第一弹性部21221和第二弹性部21222可以为一体成型结构。在一些实施例中,第一弹性部21221与第一质量元件21211的侧壁紧密贴合,第二弹性部21222与第二质量元件21212的侧壁紧密贴合,第一弹性部21221与第二弹性部21222密封连接。在一些实施例中,第一弹性部21221的两端可以分别与第一质量元件21211的侧壁与第二弹性部21222连接。在一些实施例中,第一弹性部21221的两端可以分别与第一质量元件21211的侧壁与第二弹性部21222密封连接。第一弹性部21221可以包括第一侧面21221a和第二侧面21221b,第一侧面21221a与第一质量元件21211的侧壁连接,第二侧面21221b与第二质量元件21212上暴露在第二声学腔体214的表面连接。第一弹性部21221的第二侧面21221b可以与第二质量元件21212的台阶面连接,第二质量元件21212的台阶面对第一弹性部21221具有支撑作用。第一弹性部21221的第二侧面21221b可以与第二弹性部21222连接。第二质量元件21212的侧壁与第二弹性部21222连接。在一些实施例中,第二弹性部21222向声学换能器220延伸并与声学换能器220(例如,基板222)连接。在一些实施例中,第二弹性部21222的两端可以分别与第二质量元件21212的侧壁、声学换能器220连接,与第二质量元件21212的侧壁连接的第二弹性部21222的一端还可以与第一弹性部21221连接。在一些实施例中,第一弹性部21221的第一侧面21221a的形状与第一质量元件21211的侧壁形状相适应,例如,第一质量元件21211上与其振动方向垂直的截面形状可以为三角形、四边形、圆形、椭圆形、扇形、圆角矩形、等规则或不规则形状,在沿第一质量元件21211振动方向上的每个高度下,第一侧面21221a的与第一质量元件21211振动方向垂直的截面形状与第一质量元件21211的截面形状相同。在一些实施例中,第二弹性部21222的靠近第二质量元件21212侧壁的侧面形状与第二质量元件21212的侧壁形状相适应,例如,第二质量元件21212的与其振动方向垂直的截面形状可以为三角形、四边形、圆形、椭圆形、扇形、圆角矩形、等规则或不规则形状,在振动方向上的每 个高度下,第二弹性部21222的靠近第二质量元件21212侧壁的侧面的与振动方向垂直的截面形状与第二质量元件21212侧壁的与振动方向垂直的截面形状相同。本说明书对第一弹性部21221远离第一质量元件21211侧壁的侧面形状及第二弹性部21222远离第二质量元件21212侧壁的侧面形状不作限制,例如,其侧面形状可以包括圆柱形、椭圆柱形、锥形、圆角矩形柱、矩形柱、多边形柱、不规则柱形等或其任意组合。在一些实施例中,第一弹性部21221和第二弹性部21222的材料可以相同或不相同,仅作为示例,第一弹性部21221或第二弹性部21222的材料可以包括硅橡胶、硅凝胶、硅密封胶等或其任意组合。
在一些实施例中,质量元件2121还可以包括第一孔部21213,第一孔部21213连通第一声学腔体213和第二声学腔体214。第一孔部21213可以贯穿质量元件2121,第一孔部21213可以使第一声学腔体213与第二声学腔体214内的气体流通,从而平衡振动传感器200的制备过程中(例如,回流焊过程中)由于温度变化引起的第一声学腔体213和第二声学腔体214内部的气压变化,减少或防止该气压变化引起的振动传感器200的部件的损坏,例如,开裂、变形等。
在一些实施例中,第一孔部21213可以为单孔结构。在一些实施例中,该单孔的直径可以为1-50um。优选地,该单孔的直径可以为2-45um。更优选地,该单孔的直径可以为3-40um。更优选地,该单孔的直径可以为4-35um。更优选地,该单孔的直径可以为5-30um。更优选地,该单孔的直径可以为5-25um。更优选地,该单孔的直径可以为5-20um。更优选地,该单孔的直径可以为6-15um。更优选地,该单孔的直径可以为7-10um。在一些实施例中,第一孔部21213可以为一定数量的微孔组成的阵列。仅作为示例,微孔的数量可以为2-10个。在一些实施例中,每个微孔的直径可以为0.1-25um。优选地,每个微孔的直径可以为0.5-20um。更优选地,每个微孔的直径可以为0.5-25um。更优选地,每个微孔的直径可以为0.5-20um。更优选地,每个微孔的直径可以为0.5-15um。更优选地,每个微孔的直径可以为0.5-10um。更优选地,每个微孔的直径可以为0.5-5um。更优选地,每个微孔的直径可以为0.5-4um。更优选地,每个微孔的直径可以为0.5-3um。更优选地,每个微孔的直径可以为0.5-2um。更优选地,每个微孔的直径可以为0.5-1um。
在一些实施例中,质量元件2121也可以不设置第一孔部21213。在一些实施例中,当质量元件2121不设置第一孔部21213时,可以通过提高质量元件2121与弹性元件2122之间的连接强度(例如,增强质量元件2121与弹性元件2122之间的胶水的粘接强度),避免振动传感器200的部件因第一声学腔体213内部的气压变化而发生损坏。
在一些实施例中,声学换能器220可以包括基板222。基板222可以用于固定和/或支撑振动接收器210。在一些实施例中,基板222可以设置于声学换能器220上,壳体211与基板222通过物理方式连接以围成声学腔体。在一些实施例中,弹性元件2122向声学换能器220延伸的一端可以与基板222连接,基板222可以用于固定和支撑振动单元212。基板222的设置使得振动接收器210可以作为独立的部件加工、生产和销售。具有基板222的振动接收器210可以直接与声学换能器220物理连接(例如,胶接)以获得振动传感器200,这简化了振动传感器200的生产工艺,提高了生产振动传感器200的工艺灵活性。在一些实施例中,基板222的厚度可以为10um~300um。优选地,基板222的厚度可以为20um~280um。更优选地,基板222的厚度可以为30um~270um。更优选地,基板222的厚度可以为40um~250um。更优选地,基板222的厚度可以为80um~90um。在一些实施例中,基板222的材料可以包括金属(例如,铁、铜、不锈钢等)、合金、非金属(塑料、橡胶、树脂)等或其任意组合。
在一些实施例中,拾音孔2221可以位于基板222上,拾音孔2221沿振动方向贯穿基板222。第一声学腔体213内的声压变化可以通过拾音孔2221作用于声学换能器220以产生电信号。
应当注意的是,上述有关振动传感器200及其部件的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对振动传感器200进行各种修正和改变,例如,振动传感器200可以包括至少一个第一孔部21213,第一孔部21213可以贯穿弹性元件2122设置。这些修正和改变仍在本说明书的范围之内。
为了保证弹性元件与质量元件具有较大的连接面积,进而提高弹性元件与质量元件之间的连接强度,满足质量元件背离声学换能器的一侧的面积小于质量元件靠近声学换能器的一侧的面积的质量元件还可以为其它结构。图3是根据本申请一些实施例所示的振动单元312的结构示意图。如图3所示,质量元件3121背离声学换能器的一侧的面积小于质量元件3121靠近声学换能器的一侧的面积,在质量元件312沿其振动方向(如图3所示)的截面中,质量元件312背离声学换能器一侧的边缘与质量元件312靠近声学换能器的一侧的边缘之间衔接的侧面为倾斜面,弹性元件3122与质量元件312背离声学换能器的一侧与质量元件312靠近声学换能器的一侧之间衔接的倾斜面连 接,保证了弹性元件3122与质量元件3121具有较大的连接面积,进而提高弹性元件3122与质量元件3121之间的连接强度。
在一些实施例中,质量元件3121背离声学换能器的一侧与质量元件3121靠近声学换能器的一侧之间衔接的侧面可以为表面平滑的倾斜面。在一些实施例中,质量元件3121背离声学换能器的一侧与质量元件3121靠近声学换能器的一侧之间衔接的侧面可以为具有多个凹凸的倾斜面,例如,倾斜面的表面可以为波浪状或锯齿状结构。在一些实施例中,在质量元件3121沿其振动方向的截面中,质量元件3121背离声学换能器一侧的边缘与质量元件3121靠近声学换能器的一侧的边缘之间的连线与质量元件3121振动方向形成夹角,该夹角c可以为10°-80°,设定该夹角c的取值范围,可以避免夹角c过小时,弹性元件3122与质量元件3121之间的连接强度优化效果不明显,也可以避免夹角c过大时,会使质量元件3121背离声学换能器一侧的面积过小,从而导致造成质量元件3121的质量太小。优选地,该夹角c可以为20°-70°。更优选地,该夹角c可以为30°-60°。更优选地,该夹角c可以为40°-50°。更优选地,该夹角c可以为42°-48°。更优选地,该夹角c可以为44°-46°。
在一些实施例中,弹性元件3122环绕连接于质量元件3121背离声学换能器的一侧与质量元件3121靠近声学换能器的一侧之间衔接的侧面。在一些实施例中,弹性元件3122的一端与质量元件3121的倾斜面连接,弹性元件3122的另一端与声学换能器连接。质量元件3121靠近声学换能器的一侧面、弹性元件3122及声学换能器之间形成第一声学腔体313。在一些实施例中,弹性元件3122与质量元件3121的倾斜面连接的端面形状与质量元件3121的倾斜面形状相适应,例如,衔接的侧面的边缘为波浪状或锯齿状的曲线,弹性元件3122与衔接的侧面连接的端面外缘也为波浪状或锯齿状的曲线。本说明书对弹性元件3122暴露于第二声学腔体的一侧面形状不作限制,例如,在质量元件3121沿其振动方向的截面中,弹性元件3122暴露于第二声学腔体的一侧的边缘可以为具有多个凹凸的不规则曲线。
在一些实施例中,质量元件3121还可以包括第一孔部31213,第一孔部31213贯穿质量元件3121,使第一声学腔体313与第二声学腔体内的气体流通。在一些实施例中,第一孔部31213可以为单孔结构。在一些实施例中,第一孔部31213可以为一定数量的微孔组成的阵列。仅作为示例,微孔的数量可以为2-10个。
在一些实施例中,基板322可以用于固定和/或支撑振动单元312。在一些实施例中,弹性元件3122与声学换能器连接的一端可以与基板322连接,使得基板322可以用于固定和支撑振动单元312。在一些实施例中,基板322可以包括用于使第一声学腔体313与声学换能器声学连通的拾音孔2221。
应当注意的是,上述有关振动单元312及其部件的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对振动单元312进行各种修正和改变,例如,振动传感器200可以包括至少两个弹性元件,弹性元件与弹性元件连接,靠近质量元件的弹性元件与质量元件连接,靠近声学换能器的质量元件与声学换能器连接。这些修正和改变仍在本说明书的范围之内。
在质量元件上开设第一孔部的过程中,可能会损毁声学换能器的部分元件(例如,基板),为了防止第一孔部的开设对声学换能器造成损毁,在一些实施例中,质量元件可以包括一个或多个第二孔部(也被称为凹槽),第一孔部与第二孔部连通。。图4是根据本申请一些实施例所示的振动单元412的结构示意图。如图4所示,弹性元件4122的两端分别与质量元件4121的侧壁、声学换能器通过物理方式连接,例如胶接,质量元件4121靠近声学换能器的一侧面、弹性元件4122及声学换能器之间形成第一声学腔体413。
在质量元件4121需要设置第一孔部41213的情况下,由于质量元件4121沿其振动方向的整体厚度较大,不便于加工第一孔部41213。在一些实施例中,质量元件4121上可以设置第二孔部41214,第一孔部41213与第二孔部41214连通。在一些实施例中,质量元件4121可以包括一个或多个第二孔部41214。第二孔部41214的设置使质量元件4121的局部结构变薄,以便于在变薄的局部结构处开设第一孔部41213,同时便于控制第一孔部41213的加工力度,在第一孔部41213的加工过程中不对振动传感器的其它部件(例如,基板422、声学换能器)造成损坏。在一些实施例中,第二孔部41214位于质量元件4121沿其振动方向的侧部。例如,第二孔部41214可以位于质量元件4121靠近或远离基板422的侧部。在一些实施例中,第一孔部41213及第二孔部41214沿质量元件4121的振动方向设置,其中,第一孔部41213及第二孔部41214贯穿质量元件4121。在一些实施例中,第二孔部41214可以与质量元件4121同心设置,也可以不与质量元件4121同心设置。 在一些实施例中,第一孔部41213可以与第二孔部41214同心设置,也可以不与第二孔部41214同心设置。
在一些实施例中,第二孔部41214和/或第一孔部41213可以为方孔、多边形孔、圆孔、不规则孔等或其任意组合,本说明书对第二孔部41214、第一孔部41213的孔形状不作限制。在一些实施例中,第一孔部41213可以与第二孔部41214的孔形状相同,也可以不相同。在一些实施例中,第一孔部41213、第二孔部41214均可以为单孔结构。在一些实施例中,第二孔部41214可以为单孔结构,第一孔部31213可以为一定数量的微孔组成的阵列。
在一些实施例中,第二孔部41214的尺寸大于第一孔部41213的尺寸,便于在第二孔部41214内加工第一孔部41213。在一些实施例中,第二孔部41214的与质量元件4121振动方向垂直的截面面积大于第一孔部41213的与质量元件4121振动方向垂直的截面面积。当第二孔部41214及第一孔部41213均为圆孔时,第二孔部41214的孔径可以为100um~1600um,第一孔部41213的孔径可以为1um~50um。优选地,第二孔部4121的孔径可以为110um~1400um,第一孔部41213的孔径可以为2um~45um。优选地,第二孔部41214的孔径可以为120um~1200um,第一孔部41213的孔径可以为3um~40um。优选地,第二孔部41214的孔径可以为130um~1000um,第一孔部41213的孔径可以为4um~35um。优选地,第二孔部41214的孔径可以为140um~800um,第一孔部41213的孔径可以为5um~30um。优选地,第二孔部41214的孔径可以为160um~600um,第一孔部41213的孔径可以为5um~25um。优选地,第二孔部41214的孔径可以为180um~500um,第一孔部41213的孔径可以为5um~20um。优选地,第二孔部41214的孔径可以为200um~400um,第一孔部41213的孔径可以为10um~15um。
图5是图4中所示的质量元件4121的结构示意图,第二孔部41214设置于质量元件4121靠近声学换能器的一侧,第一孔部41213设置于质量元件4121背离声学换能器的一侧,第二孔部41214、第一孔部41213贯穿质量元件4121设置。
图6A是根据本申请一些实施例所示的振动单元412的结构示意图。如图6A所示,第二孔部41214还可以位于质量元件4121背离声学换能器的一侧,第一孔部41213设置于质量元件4121靠近声学换能器的一侧,第二孔部41214、第一孔部41213贯穿质量元件4121。在一些实施例中,第一孔部41213沿质量元件4121振动方向的深度可以大于、小于或等于第二孔部41214沿质量元件4121振动方向的深度,仅作为示例,图6B是根据本申请一些实施例所示的振动单元412的结构示意图。如图6B所示,第二孔部41214位于质量元件4121背离声学换能器的一侧,第一孔部41213位于质量元件4121靠近声学换能器的一侧,第二孔部41214、第一孔部41213贯穿质量元件4121,第一孔部41213沿质量元件4121振动方向的深度大于第二孔部41214沿质量元件4121振动方向的深度。图6C是根据本申请一些实施例所示的振动单元412的结构示意图。如图6C所示,在一些实施例中,质量元件4121靠近、背离声学换能器的两侧均设置有第二孔部41214,质量元件4121上两侧的第二孔部41214通过第一孔部41213连通。在一些实施例中,振动单元412可以包括多层叠加的质量元件4121,多层的质量元件4121的材料可以相同或不完全相同或完全不相同,第一孔部41213贯穿部分质量元件4121设置,第二孔部41214贯穿部分质量元件4121设置,第一孔部41213与第二孔部41214连通,仅作为示例,图6D是根据本申请一些实施例所示的振动单元412的结构示意图。如图6D所示,振动单元412可以包括两层叠加的质量元件4121,两层的质量元件4121的材料不相同,第一孔部41213贯穿背离声学换能器的质量元件4121设置,第二孔部41214贯穿靠近的质量元件4121设置,第一孔部41213与第二孔部41214连通。
应当注意的是,上述有关振动单元412及其部件的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对振动单元412进行各种修正和改变,例如,第二孔部41214及第一孔部41213可以贯穿质量元件4121的侧壁设置。这些修正和改变仍在本说明书的范围之内。需要说明的是,图4-图6D所示的第二孔部41214还可以应用于图2A所示的振动传感器200中。另外,图4-图6D的质量元件4121仅作为示例性说明,其具体形状和结构可以参考图2A和2B的内容,在此不做进一步赘述。
在一些实施例中,在加工过程中,当弹性元件处于半流动状态时,或高温工艺中弹性元件发生形变时,弹性元件的尺寸,尤其是弹性元件的尺寸不便于控制,导致其占据较大的声学腔体空间。在一些实施例中,振动传感器还可以包括限位件,限位件位于弹性元件与壳体之间,以限制弹性元件在高温状态时的流动轨迹,以便于控制弹性元件的尺寸。图7是根据本申请一些实施例所示的振动传感器500的结构示意图。如图7所示,振动传感器500包括振动接收器510、声学换能器520及限位件530。振动接收器510可以包括壳体511和振动单元512。壳体511可以与声学换能器 520连接以围成具有声学腔体的封装结构。振动单元512可以位于声学腔体内。振动单元512可以将声学腔体分隔为第一声学腔体513和第二声学腔体514。振动单元512可以包括质量元件5121和弹性元件5122。弹性元件5122可以环绕连接于质量元件5121的侧壁,并向声学换能器520延伸且直接连接基板522,基板522设置于声学换能器520上,振动接收器510可以设置于基板522上。振动传感器500的结构和部件与图2A中描述的振动传感器200的结构和部件相同或相似,具体可以参见图2A中的描述,在此不再赘述。
在一些实施例中,限位件530位于弹性元件5122与壳体511之间,限位件530对弹性元件5122的外壁起限制作用,可以控制振动接收器510的制备过程中弹性元件5122的流动,以更好的控制弹性元件5122的尺寸和形状。
在一些实施例中,限位件530可以环绕弹性元件5122设置,弹性元件5122靠近质量元件5121的一侧与质量元件5121物理连接,弹性元件5122靠近限位件53的一侧与限位件53物理连接。在一些实施例中,限位件530可以与基板522物理连接。在一些实施例中,限位件530可以不与壳体511接触,或者与壳体511接触。
在一些实施例中,限位件530沿质量元件5121振动方向的高度可以为100um~1000um。优选地,限位件530沿质量元件5121振动方向的高度可以为110um~900um。优选地,限位件530沿质量元件5121振动方向的高度可以为120um~800um。优选地,限位件530沿质量元件5121振动方向的高度可以为130um~700um。优选地,限位件530沿质量元件5121振动方向的高度可以为140um~600um。优选地,限位件530沿质量元件5121振动方向的高度可以为150um~500um。优选地,限位件530沿质量元件5121振动方向的高度可以为160um~400um。优选地,限位件530沿质量元件5121振动方向的高度可以为170um~300um。优选地,限位件530沿质量元件5121振动方向的高度可以为180um~200um。更优先地,限位件530沿质量元件5121振动方向的高度与质量元件5121的高度相等。本说明书对限位件530的材料和/密度不作限制,例如,限位件530可以采用非导磁金属材料。
在一些实施例中,壳体511上可以设置至少一个第三孔部5111,第三孔部5111贯穿壳体511。第三孔部5111的结构与第一孔部21213的结构相同或相似,具体可以参见图2A中的描述,在此不再赘述。第三孔部5111可以使第二声学腔体514与和外界的气体流通,从而平衡振动传感器500的制备过程中(例如,回流焊过程中)的温度变化引起的第二声学腔体514内部的气压变化,减少或防止该气压变化引起的振动传感器500的部件的损坏,例如,开裂、变形等。此外,当质量元件5121振动时,第三孔部5111可以用于减小第二声学腔514内部的气体产生的阻尼。
在一些实施例中,环境中的气导声音可能会影响到振动传感器500的使用性能。为了减少环境中气导声音的影响,在振动传感器500的制备完成后,例如,回流焊后,可以使用密封材料将壳体511上的第三孔部5111密封。仅作为示例,该密封材料可以包括环氧胶、硅密封胶等或其任意组合。在一些实施例中,壳体511也可以不设置第三孔部5111。
应当注意的是,上述图7有关振动传感器500及其部件的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对振动传感器500进行各种修正和改变。例如,壳体511与声学换能器520可以接触(例如,物理连接)或间接连接。这些修正和改变仍在本说明书的范围之内。需要说明的是,图7所示的限位件530还可以应用于图2A-图6D所示的振动传感器中。另外,图7的质量元件5121仅作为示例性说明,其具体形状和结构可以参考图2A-图6D的内容,在此不做进一步赘述。
图8是根据本申请一些实施例所示的振动传感器600的结构示意图。如图8所示,振动传感器600包括振动接收器610和声学换能器620。振动接收器610可以包括壳体611和振动单元612。壳体611可以与声学换能器620连接以围成具有声学腔体的封装结构,振动单元612可以位于声学腔体内,振动单元612可以将声学腔体分隔为第一声学腔体613和第二声学腔体614。振动单元612可以包括质量元件6121和弹性元件6122,质量元件6121通过弹性元件6122与壳体611连接。振动传感器600的结构和部件与图2A中描述的振动传感器200的结构和部件相同或相似,具体可以参见图2A中的描述,在此不再赘述。
在一些实施例中,弹性元件6122套设在质量元件6121的外侧,其中,弹性元件6122的内侧与质量元件6121物理连接,弹性元件6122的外侧与壳体611物理连接。在一些实施例中,弹性元件6122与基板622在质量元件6121的振动方向上具有一定间距,其中,弹性元件6122、质量元件6121、壳体611和基板622形成第一声学腔体613,弹性元件6122、质量元件6121和壳体611形成第二声学腔体614。形成第一声学腔体613及第二声学腔体614时,可以通过治具(图8中未 示出)控制质量元件6121的高度,例如,将质量元件6121放置于治具上,利用治具本身的高度抬起质量元件6121,然后将质量元件6121与壳体611通过弹性元件6122连接,实现对质量元件6121的高度控制,这样可以更为稳定的控制第一声学腔体613及第二声学腔体614的高度。在一些实施例中,弹性元件6122的沿质量元件6121振动方向的厚度等于质量元件6121的厚度。在一些实施例中,弹性元件6122的沿质量元件6121振动方向的厚度小于或大于质量元件6121的厚度。
图9是根据本申请一些实施例所示的振动收发器610的结构示意图。如图9所示,在一些实施例中,弹性元件6122的沿质量元件6121振动方向的厚度大于质量元件6121的厚度,其中,弹性元件6122沿质量元件6121振动方向的两侧可以相对于质量元件6121的两侧凸出,如此可以增加弹性元件6122与质量元件6121的连接面积,从而增加两者之之间的连接强度。
在一些实施例中,质量元件6121可以开设有孔部630。孔部630可以贯穿质量元件6121以连通第一声学腔体613和第二声学腔体614,从而平衡由于振动传感器600的制备过程中(例如,回流焊过程中)的温度变化引起的第一声学腔体613和第二声学腔体614内部的气压变化,减少或防止该气压变化引起的振动传感器200的部件的损坏,例如,开裂、变形等。在一些实施例中,壳体611可以开设有孔部630,孔部630可以贯穿壳体611以连通第二声学腔体614和外界,当质量元件6121振动时,孔部630可以用于减小第二声学腔体614内部的气体产生的阻尼。孔部630的形状和结构可以参考本说明书实施例其他地方的关于第一孔部、第二孔部及第三孔部的相关描述,例如图2A及其相关内容。
应当注意的是,上述图8及图9有关振动传感器600及其部件的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对振动传感器600进行各种修正和改变。例如,壳体611和质量元件6121都不设置孔部630,或壳体611和质量元件6121均设置孔部630。这些修正和改变仍在本说明书的范围之内。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、 或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (23)

  1. 一种振动传感器,包括:
    振动接收器,包括壳体和振动单元,所述壳体形成声学腔体,所述振动单元位于所述声学腔体中,并将所述声学腔体分隔为第一声学腔体和第二声学腔体;以及
    声学换能器,与所述第一声学腔体声学连通,其中:
    所述壳体被配置为基于外部振动信号产生振动,所述振动单元响应于所述壳体的振动而改变所述第一声学腔体内的声压,使得所述声学换能器产生电信号;
    所述振动单元包括质量元件和弹性元件,所述质量元件背离所述声学换能器一侧的面积小于所述质量元件靠近所述声学换能器的一侧的面积,所述弹性元件环绕连接于所述质量元件的侧壁。
  2. 根据权利要求1所述的振动传感器,其中,所述质量元件包括第一质量元件和第二质量元件,所述第二质量元件靠近所述声学换能器,所述第一质量元件位于所述第二质量元件背离所述声学换能器的一侧,所述第一质量元件中垂直所述质量元件振动方向的截面积小于所述第二质量元件中垂直所述质量元件振动方向的截面积。
  3. 根据权利要求2所述的振动传感器,其中,所述第一质量元件位于所述第二质量元件的中部区域,且所述第一质量元件的侧壁与所述第二质量元件的侧壁之间具有特定间距。
  4. 根据权利要求3所述的振动传感器,其中,所述特定间距的范围为10um~500um。
  5. 根据权利要求3所述的振动传感器,其中,所述弹性元件包括第一弹性部和第二弹性部,所述第一弹性部的两端分别与所述第一质量元件的侧壁和所述第二弹性部连接,所述第二弹性部向所述声学换能器延伸并与所述声学换能器连接。
  6. 根据权利要求5所述的振动传感器,其中,所述第一弹性部包括第一侧面和第二侧面,所述第一侧面与所述第一质量元件的侧壁连接,所述第二侧面与所述第二质量元件上暴露在所述第二声学腔体的表面连接。
  7. 根据权利要求6所述的振动传感器,其中,所述第二质量元件的侧壁与所述第二弹性部连接。
  8. 根据权利要求5所述的振动传感器,其中,所述声学换能器包括基板,所述第二弹性元件向所述基板延伸并与所述基板连接,所述基板、所述第二质量元件和所述第二弹性元件形成所述第一声学腔体。
  9. 根据权利要求2所述的振动传感器,其中,沿所述质量元件的振动方向,所述第一质量元件的厚度为50um~1000um,所述第二质量元件的厚度为10um~150um。
  10. 根据权利要求9所述的振动传感器,其中,沿所述质量元件的振动方向,所述第一质量元件的厚度大于所述第二质量元件的厚度。
  11. 根据权利要求1所述的振动传感器,其中,在所述质量元件沿其振动方向获取的截面中,所述质量元件背离所述声学换能器一侧的边缘与所述质量元件靠近所述声学换能器的一侧的边缘之间的连线与所述质量元件振动方向形成夹角,所述夹角的范围为10°-80°。
  12. 根据权利要求1所述的振动传感器,其中,所述质量元件包括第一孔部,所述第一孔部连通所述第一声学腔体和所述第二声学腔体。
  13. 根据权利要求12所述的振动传感器,其中,所述第一孔部的半径为1um~50um。
  14. 根据权利要求1所述的振动传感器,所述壳体上包括第三孔部,所述第二声学腔体通过所述第三孔部与外部连通。
  15. 一种振动传感器,包括:
    振动接收器,包括壳体和振动单元,所述壳体形成声学腔体,所述振动单元位于所述声学腔体中,并将所述声学腔体分隔为第一声学腔体和第二声学腔体;以及
    声学换能器,与所述第一声学腔体声学连通,其中:
    所述壳体被配置为基于外部振动信号产生振动,所述振动单元响应于所述壳体的振动而改变所述第一声学腔体内的声压,使得所述声学换能器产生电信号;
    所述振动单元包括质量元件和弹性元件,所述弹性元件环绕连接于所述质量元件的侧壁,所述弹性件与所述壳体之间具有限位件。
  16. 根据权利要求15所述的振动传感器,其中,沿所述质量元件的振动方向,所述限位件的高度为100um~1000um。
  17. 一种振动传感器,包括:
    振动接收器,包括壳体和振动单元,所述壳体形成声学腔体,所述振动单元位于所述声学腔体中,并将所述声学腔体分隔为第一声学腔体和第二声学腔体;以及
    声学换能器,与所述第一声学腔体声学连通,其中:
    所述壳体被配置为基于外部振动信号产生振动,所述振动单元响应于所述壳体的振动而改变所述第一声学腔体内的声压,使得所述声学换能器产生电信号;
    所述振动单元包括质量元件和弹性元件,所述弹性元件环绕连接于所述质量元件的侧壁,所述质量元件包括凹槽,所述凹槽位于所述质量元件沿其振动方向的侧部。
  18. 根据权利要求17所述的振动传感器,其中,所述质量元件包括第一孔部,所述第一孔部连通所述第一声学腔体和所述第二声学腔体,所述第一孔部位于所述凹槽处。
  19. 根据权利要求18所述的振动传感器,其中,所述第一孔部的半径为1um~50um。
  20. 根据权利要求19所述的振动传感器,其中,所述凹槽的尺寸大于所述第一孔部的尺寸。
  21. 一种振动传感器,包括振动接收器,包括壳体和振动单元,所述壳体形成声学腔体,所述振动单元位于所述声学腔体中,并将所述声学腔体分隔为第一声学腔体和第二声学腔体;以及
    声学换能器,与所述第一声学腔体声学连通,其中:
    所述壳体被配置为基于外部振动信号产生振动,所述振动单元响应于所述壳体的振动而改变所述第一声学腔体内的声压,使得所述声学换能器产生电信号,
    所述振动单元包括质量元件和弹性元件,所述弹性元件环绕连接于所述质量元件的侧壁,并延伸到所述壳体。
  22. 根据权利要求21所述的振动传感器,其中,沿所述质量元件的振动方向,所述弹性元件的厚度大于所述质量元件的厚度。
  23. 根据权利要求21所述的振动传感器,其中,所述质量元件或所述壳体上开设有孔部,所述孔部的半径为1um~50um。
PCT/CN2021/129148 2020-12-28 2021-11-05 一种振动传感器 WO2022142737A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2023521923A JP2023544877A (ja) 2020-12-28 2021-11-05 振動センサ
KR1020237011481A KR20230058525A (ko) 2020-12-28 2021-11-05 진동센서
EP21913481.4A EP4187216A4 (en) 2020-12-28 2021-11-05 VIBRATION SENSOR
CN202180066637.9A CN116584108A (zh) 2020-12-28 2021-11-05 一种振动传感器
BR112023004959A BR112023004959A2 (pt) 2020-12-28 2021-11-05 Sensores de vibração
CN202111573072.1A CN114697824B (zh) 2020-12-28 2021-12-21 一种振动传感器
BR112023003742A BR112023003742A2 (pt) 2020-12-28 2021-12-21 Sensor de vibração
EP21914041.5A EP4184134A4 (en) 2020-12-28 2021-12-21 VIBRATION SENSOR
CN202180057471.4A CN116171582A (zh) 2020-12-28 2021-12-21 一种振动传感器
PCT/CN2021/140090 WO2022143302A1 (zh) 2020-12-28 2021-12-21 一种振动传感器
KR1020237011152A KR20230058505A (ko) 2020-12-28 2021-12-21 진동센서
JP2023518843A JP2023543765A (ja) 2020-12-28 2021-12-21 振動センサ
US18/168,585 US20230199370A1 (en) 2020-12-28 2023-02-14 Vibration sensor
US18/173,043 US20230199360A1 (en) 2020-12-28 2023-02-22 Vibration sensors

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
PCT/CN2020/140180 WO2022140921A1 (zh) 2020-12-28 2020-12-28 一种振动传感器
CNPCT/CN2020/140180 2020-12-28
CN202110445739 2021-04-23
CN202110445739.3 2021-04-23
PCT/CN2021/107978 WO2022142291A1 (zh) 2020-12-28 2021-07-22 一种振动传感器
CNPCT/CN2021/107978 2021-07-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/173,043 Continuation US20230199360A1 (en) 2020-12-28 2023-02-22 Vibration sensors

Publications (1)

Publication Number Publication Date
WO2022142737A1 true WO2022142737A1 (zh) 2022-07-07

Family

ID=82260170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129148 WO2022142737A1 (zh) 2020-12-28 2021-11-05 一种振动传感器

Country Status (6)

Country Link
US (1) US20230217147A1 (zh)
EP (1) EP4203512A4 (zh)
JP (1) JP2023547160A (zh)
KR (1) KR20230074238A (zh)
CN (1) CN116250253A (zh)
WO (1) WO2022142737A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075866A (en) * 1998-02-17 2000-06-13 U.S. Philips Corporation Electroacoustic transducer having axially extending corrugated supporting means for the diaphragm
CN202551344U (zh) * 2012-03-30 2012-11-21 瑞声光电科技(常州)有限公司 骨导传声器
US20140112503A1 (en) * 2012-10-22 2014-04-24 Google Inc. Compact Bone Conduction Audio Transducer
CN110560351A (zh) * 2019-08-15 2019-12-13 武汉大学 基于Helmholtz共振腔的可调频声波接收装置
CN211085470U (zh) * 2019-11-19 2020-07-24 歌尔微电子有限公司 用于振动感测装置的振动机构以及振动感测装置
CN211930820U (zh) * 2020-05-28 2020-11-13 青岛歌尔智能传感器有限公司 振动传感器和音频设备
CN212086490U (zh) * 2020-06-16 2020-12-04 荣成歌尔电子科技有限公司 振动传感器和电子设备
CN212183709U (zh) * 2020-07-21 2020-12-18 山东新港电子科技有限公司 一种微型振动传感器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209882085U (zh) * 2019-07-18 2019-12-31 东莞市瑞勤电子有限公司 驻极体骨导振动传声器
CN210958796U (zh) * 2019-12-30 2020-07-07 瑞声声学科技(深圳)有限公司 一种骨导式麦克风

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075866A (en) * 1998-02-17 2000-06-13 U.S. Philips Corporation Electroacoustic transducer having axially extending corrugated supporting means for the diaphragm
CN202551344U (zh) * 2012-03-30 2012-11-21 瑞声光电科技(常州)有限公司 骨导传声器
US20140112503A1 (en) * 2012-10-22 2014-04-24 Google Inc. Compact Bone Conduction Audio Transducer
CN110560351A (zh) * 2019-08-15 2019-12-13 武汉大学 基于Helmholtz共振腔的可调频声波接收装置
CN211085470U (zh) * 2019-11-19 2020-07-24 歌尔微电子有限公司 用于振动感测装置的振动机构以及振动感测装置
CN211930820U (zh) * 2020-05-28 2020-11-13 青岛歌尔智能传感器有限公司 振动传感器和音频设备
CN212086490U (zh) * 2020-06-16 2020-12-04 荣成歌尔电子科技有限公司 振动传感器和电子设备
CN212183709U (zh) * 2020-07-21 2020-12-18 山东新港电子科技有限公司 一种微型振动传感器

Also Published As

Publication number Publication date
US20230217147A1 (en) 2023-07-06
EP4203512A1 (en) 2023-06-28
JP2023547160A (ja) 2023-11-09
KR20230074238A (ko) 2023-05-26
EP4203512A4 (en) 2024-02-28
CN116250253A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
CN107360517A (zh) 扬声器箱
CN218162856U (zh) 一种振动传感器
CN107343247A (zh) 扬声器箱
WO2022262639A1 (zh) 一种振动传感器
CN215499559U (zh) 发声装置和电子设备
US20230199360A1 (en) Vibration sensors
WO2022142737A1 (zh) 一种振动传感器
WO2022142291A1 (zh) 一种振动传感器
CN114697823A (zh) 一种振动传感器
RU2818792C1 (ru) Датчики вибрации
WO2022140921A1 (zh) 一种振动传感器
RU2809948C1 (ru) Датчик вибрации
TW202242354A (zh) 振動感測器
WO2023272906A1 (zh) 一种振动传感器
TW202303112A (zh) 振動感測器
CN214177567U (zh) 微机电系统mems麦克风芯片及mems麦克风
WO2022262176A1 (zh) 一种振动传感器
US20230362525A1 (en) Vibration sensor
CN207354590U (zh) 扬声器箱
TW202308402A (zh) 振動感測器
JP2023544074A (ja) マイクロフォン
CN116170725A (zh) 传声器
CN116547988A (zh) 传声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021913481

Country of ref document: EP

Effective date: 20230224

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023004959

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237011481

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180066637.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2023521923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023004959

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230316