WO2022140921A1 - 一种振动传感器 - Google Patents

一种振动传感器 Download PDF

Info

Publication number
WO2022140921A1
WO2022140921A1 PCT/CN2020/140180 CN2020140180W WO2022140921A1 WO 2022140921 A1 WO2022140921 A1 WO 2022140921A1 CN 2020140180 W CN2020140180 W CN 2020140180W WO 2022140921 A1 WO2022140921 A1 WO 2022140921A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration sensor
elastic element
acoustic transducer
acoustic
mass
Prior art date
Application number
PCT/CN2020/140180
Other languages
English (en)
French (fr)
Inventor
郑金波
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to PCT/CN2020/140180 priority Critical patent/WO2022140921A1/zh
Priority to KR1020237017105A priority patent/KR20230091147A/ko
Priority to JP2023531069A priority patent/JP2023550511A/ja
Priority to EP20967273.2A priority patent/EP4203511A4/en
Priority to CN202080106635.3A priority patent/CN116391364A/zh
Priority to CN202180057727.1A priority patent/CN116250253A/zh
Priority to KR1020237013883A priority patent/KR20230074238A/ko
Priority to JP2023524771A priority patent/JP2023547160A/ja
Priority to CN202110833051.2A priority patent/CN114697779A/zh
Priority to PCT/CN2021/107978 priority patent/WO2022142291A1/zh
Priority to EP21913042.4A priority patent/EP4203512A4/en
Priority to JP2023521923A priority patent/JP2023544877A/ja
Priority to PCT/CN2021/129148 priority patent/WO2022142737A1/zh
Priority to BR112023004959A priority patent/BR112023004959A2/pt
Priority to KR1020237011481A priority patent/KR20230058525A/ko
Priority to EP21913481.4A priority patent/EP4187216A4/en
Priority to CN202111309102.8A priority patent/CN114697823A/zh
Priority to CN202180066637.9A priority patent/CN116584108A/zh
Priority to CN202111413109.4A priority patent/CN114697839A/zh
Priority to CN202122924309.8U priority patent/CN216391413U/zh
Priority to CN202111573072.1A priority patent/CN114697824B/zh
Priority to EP21914041.5A priority patent/EP4184134A4/en
Priority to BR112023003742A priority patent/BR112023003742A2/pt
Priority to PCT/CN2021/140090 priority patent/WO2022143302A1/zh
Priority to CN202180057471.4A priority patent/CN116171582A/zh
Priority to KR1020237011152A priority patent/KR20230058505A/ko
Priority to JP2023518843A priority patent/JP2023543765A/ja
Publication of WO2022140921A1 publication Critical patent/WO2022140921A1/zh
Priority to US18/168,585 priority patent/US20230199370A1/en
Priority to US18/173,043 priority patent/US20230199360A1/en
Priority to US18/181,537 priority patent/US20230217147A1/en
Priority to US18/185,352 priority patent/US20230224630A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/04Structural association of microphone with electric circuitry therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/08Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present application relates to the field of acoustics, and in particular, to a vibration sensor.
  • a vibration sensor is an energy conversion device that converts vibration signals into electrical signals.
  • the vibration sensor can be used as a bone conduction microphone.
  • the vibration sensor can detect the vibration signal transmitted through the skin when a person speaks, so as to detect the voice signal without being disturbed by external noise.
  • the common problem of the current vibration sensor is that due to the small vibration signal of the human body, the vibration sensor cannot receive a good vibration signal, and the voice quality is obviously degraded.
  • An embodiment of the present application provides a vibration sensor, which includes a housing structure and an acoustic transducer physically connected to the housing structure, wherein the housing structure and the acoustic transducer are at least partially formed by the housing structure and the acoustic transducer.
  • the vibration sensor further includes a vibration unit, the vibration unit is located in the first acoustic cavity and divides the first acoustic cavity into a second acoustic cavity and a third acoustic cavity, wherein the second acoustic cavity is in acoustic communication with the acoustic transducer; the housing structure is configured to vibrate based on an external vibration signal, the vibration unit being responsive to the housing
  • the vibration of the body structure changes the volume of the second acoustic cavity, and the acoustic transducer generates an electrical signal based on the change of the volume of the second acoustic cavity; the vibration unit acts on the second acoustic cavity
  • the body makes the resonance frequency of the vibration sensor 800Hz ⁇ 8000Hz.
  • the vibration unit, the housing structure and the acoustic transducer form a resonance system, and the quality factor of the resonance system is 0.7-10.
  • the vibration unit includes a mass element and an elastic element, the mass element being connected to the housing structure or the acoustic transducer through the elastic element.
  • the elastic strength of the elastic element ranges from 10 N/m to 2000 N/m.
  • the mass of the mass element ranges from 0.001 g to 1 g.
  • the elastic element is located on the side of the mass element away from the acoustic transducer, one end of the elastic element is connected to the housing body structure, and the other end of the elastic element is connected to the housing body structure. the quality element connection.
  • the side of the mass element facing away from the acoustic transducer is provided with a first protrusion.
  • the vibration sensor further includes a circuit board configured to receive and transmit electrical signals output by the acoustic transducer; wherein the circuit board is located between the acoustic transducer and the acoustic transducer.
  • the mass element is located on the opposite side.
  • the elastic element is located on a side of the mass element facing the acoustic transducer, one end of the elastic element is connected to the mass element, and the other end of the elastic element is connected to the acoustic transducer Transducer connection.
  • the side of the mass element facing the acoustic transducer is provided with a second protrusion.
  • a side of the mass element facing the acoustic transducer is provided with a third protrusion, the third protrusion at least partially protrudes into the acoustic transducer and communicates with the acoustic transducer
  • the diaphragms of the transducers are positioned relative to each other.
  • the elastic element is a planar structure, the elastic element is located on the side of the mass element facing the acoustic transducer, the elastic element is connected with the housing structure, and the mass element The side facing the acoustic transducer is connected to the elastic element.
  • the elastic element is located on the peripheral side of the mass element, the outer side of the elastic element is connected with the housing structure, and the inner side of the elastic element is connected with the mass element.
  • the elastic element is located on the peripheral side of the mass element, the inner side of the elastic element is connected to the mass element, and the end of the elastic element is connected to the housing structure or the acoustic transducer. energy connection.
  • the cross-sectional shape of the elastic element is a rectangle, a trapezoid, a parallelogram, an arc, or a wave.
  • the mass element is provided with at least one first pressure relief hole, and the at least one first pressure relief hole penetrates the mass element.
  • the elastic element is provided with at least one second pressure relief hole, and the at least one second pressure relief hole penetrates the elastic element.
  • the cross-sectional area of the mass element is larger than the cross-sectional area of the acoustic transducer.
  • the gap spacing between the elastic element and the mass element, the gap spacing between the elastic element and the housing structure, and the gap between the elastic element and the acoustic transducer is less than or equal to 0.1mm.
  • FIG. 1 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 2 is a frequency response curve diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 3 is a frequency response curve diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 4 is a frequency response curve diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 6 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 7 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 9 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 10 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 11 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 12 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 13 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 14 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 15 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 16 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • FIG. 17 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • system means for distinguishing different components, elements, parts, parts or assemblies at different levels.
  • device means for converting signals into signals.
  • unit means for converting signals into signals.
  • module means for converting signals into signals.
  • the vibration sensor is used as a bone conduction microphone, which can receive the vibration signals of human tissues such as bones and skin generated when a person speaks, and convert the vibration signals into electrical signals containing sound information.
  • the vibration sensor hardly collects the sound in the air, so it is suitable for collecting the voice signal of the user when speaking in a noisy environment.
  • the noisy environment may include a noisy restaurant, a meeting place, a street, near a road, a fire scene, or the like.
  • Vibration sensors are somewhat immune to the sounds of others speaking around them, the noise of passing vehicles, and various other environmental noises.
  • the vibration sensor may include a housing structure and a vibration unit, at least partially bounded by the housing structure and the vibration unit to form a first acoustic cavity.
  • the vibration unit is located in the first acoustic cavity and divides the first acoustic cavity into a second acoustic cavity and a third acoustic cavity, wherein the second acoustic cavity is in acoustic communication with the acoustic transducer.
  • the housing structure is configured to generate vibration based on an external vibration signal (eg, a signal generated by the vibration of bones, skin, etc. when the user speaks), and the vibration unit causes the second acoustic cavity to vibrate in response to the vibration of the housing structure.
  • the acoustic transducer generates an electrical signal based on the change in the volume of the second acoustic cavity.
  • the resonant frequency of the vibration sensor can be set to be 800 Hz to 8000 Hz, thereby improving the specific performance of the vibration sensor. Sensitivity for frequency bands (eg, less than 8000 Hz). It should be noted that this parameter may refer to the shape, size, material, etc. of the mass unit and/or the elastic unit.
  • the specific frequency band is not limited to less than 8000Hz in the above example, and can also be less than 6000Hz, less than 4500Hz, less than 3000Hz, less than 2500Hz, less than 2000Hz, etc., which is not further limited here.
  • vibration sensors may be applied to earphones (eg, air conduction earphones and bone conduction earphones), hearing aids, hearing aids, glasses, helmets, augmented reality (AR) devices, virtual reality (VR) devices, and the like.
  • earphones eg, air conduction earphones and bone conduction earphones
  • AR augmented reality
  • VR virtual reality
  • FIG. 1 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • the vibration sensor 100 may include a housing structure 110 , an acoustic transducer 120 and a vibration unit 130 .
  • the shape of the vibration sensor 100 may be a rectangular parallelepiped, a cylinder, or other regular or irregular structures.
  • the housing structure 110 and the acoustic transducer 120 are physically connected, and the physical connection here may include connection methods such as welding, clipping, bonding, or integral molding.
  • the housing structure 110 and the acoustic transducer 120 enclose a package structure having a first acoustic cavity 140 , wherein the vibration unit 130 may be located in the first acoustic cavity 140 of the package structure.
  • the housing structure 110 may independently form a package structure having a first acoustic cavity 140, wherein the vibration unit 130 and the acoustic transducer 120 may be located within the first acoustic cavity 140 of the package structure .
  • the vibration unit 130 divides the first acoustic cavity 140 into a second acoustic cavity 142 and a third acoustic cavity 141 .
  • the second acoustic cavity 142 is in acoustic communication with the acoustic transducer 120 .
  • the third acoustic cavity 141 may be an acoustically sealed cavity structure.
  • the vibration unit 130 may include a mass element 131 and an elastic element 132 .
  • the mass element 131 may be connected to the housing structure 110 through the elastic element 132 .
  • the elastic element 132 may be located on the side of the mass element 131 facing away from the acoustic transducer 120 , one end of the elastic element 132 is connected to the housing structure 110 , and the other end of the elastic element 132 is connected to the mass element 131 .
  • the elastic element 132 may also be located on the peripheral side of the mass element 131 , wherein the inner side of the elastic element 132 is connected to the peripheral side of the mass element 131 , and the outer side of the elastic element 132 or a side away from the acoustic transducer 120 The sides are connected to the housing structure 110 .
  • the circumferential side of the mass element 131 mentioned here is relative to the vibration direction of the mass element 131.
  • the vibration direction of the mass element 131 relative to the housing structure 110 is the axial direction.
  • the mass element 131 The circumferential side of the mass element 131 represents the side of the mass element 131 arranged around the axis.
  • the mass element 131 may also be connected with the acoustic transducer 120 through the elastic element 132 .
  • Exemplary elastic elements 132 may be round tubular, square tubular, special-shaped tubular, annular, flat, or the like.
  • the elastic element 132 may have a structure that is relatively easy to elastically deform (eg, a spring structure, a metal ring, etc.), and its material may be a material that is easily elastically deformable, such as silicone, rubber, and the like.
  • the elastic element 132 is more prone to elastic deformation than the housing structure 110 , so that the vibration element 130 can move relative to the housing structure 110 .
  • the mass element 131 and the elastic element 132 may be composed of the same or different materials, and then assembled together to form the vibration unit 130 .
  • the mass element 131 and the elastic element 132 may also be composed of the same material, and then the vibration unit 130 is formed by integral molding.
  • the mass element 131 reference may be made to the contents elsewhere in the specification of this application (eg, FIG. 5 and related contents).
  • the vibration sensor 100 may convert external vibration signals into electrical signals.
  • the external vibration signal may include a vibration signal when a person speaks, a vibration signal generated by the skin moving with the human body or working with a speaker close to the skin, etc., and a vibration signal generated by an object or air in contact with the vibration sensor, etc. , or any combination thereof.
  • the electrical signal generated by the vibration sensor can be input to an external electronic device.
  • the external electronic device may include a mobile device, a wearable device, a virtual reality device, an augmented reality device, etc., or any combination thereof.
  • mobile devices may include smartphones, tablet computers, personal digital assistants (PDAs), gaming devices, navigation devices, etc., or any combination thereof.
  • the wearable device may include a smart bracelet, earphones, hearing aids, smart helmets, smart watches, smart clothing, smart backpacks, smart accessories, etc., or any combination thereof.
  • the virtual reality device and/or augmented reality device may include a virtual reality headset, virtual reality glasses, virtual reality patch, augmented reality helmet, augmented reality glasses, augmented reality patch, etc., or any combination thereof.
  • virtual reality devices and/or augmented reality devices may include Google Glass, Oculus Rift, Hololens, Gear VR, and the like.
  • the vibration of the vibration unit 130 can cause the volume change of the second acoustic cavity 142 to cause the sound of the second acoustic cavity 142 to change. pressure changes.
  • the acoustic transducer 120 can detect the sound pressure change of the second acoustic cavity 142 and convert it into an electrical signal, which is transmitted to the external electronic device through the solder joint 1201 .
  • the solder joints 1201 here can be electrically connected with internal elements (eg, processors) of devices such as earphones, hearing aids, hearing aids, augmented reality glasses, augmented reality helmets, virtual reality glasses, etc.
  • the acoustic transducer 120 may include a diaphragm (not shown in FIG. 1 ), and when the sound pressure of the second acoustic cavity 142 changes, the air inside the second acoustic cavity 142 vibrates to act. On the diaphragm, the diaphragm is deformed, and the acoustic transducer 120 converts the vibration signal of the diaphragm into an electrical signal.
  • the vibration of the housing structure 110 can be expressed as:
  • l 1 ( ⁇ ) is the displacement of the casing structure 110 at the angular frequency ⁇
  • A( ⁇ ) is the maximum displacement of the casing structure 110 at the angular frequency ⁇ .
  • l 2 ( ⁇ ) is the displacement of the mass element 131
  • m is the mass of the mass element 131
  • k is the elastic strength of the elastic element 132
  • c is the vibration unit 130
  • the vibration phase of the mass element 131 is not the same as the vibration phase common to the housing structure 110 and the acoustic transducer 120, thereby causing the second acoustic cavity
  • the volume of the body 142 changes, thereby causing the sound pressure of the second acoustic cavity 142 to change.
  • the corresponding volume change of the second acoustic cavity 142 is:
  • S is the cross-sectional area of the mass element 131 perpendicular to the axis direction.
  • the sound pressure change of the second acoustic cavity 142 is:
  • V is the volume of the second acoustic cavity 142 in a natural state.
  • the acoustic transducer 120 can convert the change in sound pressure into a change in voltage or current, which is transmitted through the solder joint 1201 .
  • the natural state here may refer to a state when the vibration sensor is not working, that is, a non-working state.
  • FIG. 2 is a frequency response diagram of a vibration sensor provided according to some embodiments of the present application.
  • the resonance frequency of the vibration sensor can be in the range of 3000 Hz ⁇ 4000 Hz. Since the response of the vibration sensor to the external vibration signal is related to the change of the sound pressure of the second acoustic cavity 142, it can be known from formula (5) that the resonance frequency of the vibration sensor depends at least in part on the mass m of the mass element 131, and the elasticity of the elastic element 132 The strength k, and the damping c in the resonant system mainly originates from the elastic element 132 .
  • the vibration unit 130 acting on the second acoustic cavity 142 can make the vibration sensor resonate
  • the frequency is 800Hz ⁇ 20000Hz.
  • the vibration unit 130 acts on the second acoustic cavity 142 so that the resonance frequency of the vibration sensor is 900 Hz ⁇ 10000 Hz.
  • the vibration unit 130 acts on the second acoustic cavity 142 so that the resonance frequency of the vibration sensor is 1000 Hz ⁇ 8000 Hz.
  • the vibration unit 130 acts on the second acoustic cavity 142 so that the resonance frequency of the vibration sensor is 1150 Hz ⁇ 5500 Hz.
  • the vibration unit 130 acts on the second acoustic cavity 142 so that the resonance frequency of the vibration sensor is 1500 Hz ⁇ 3000 Hz.
  • the vibration unit 130 acts on the second acoustic cavity 142 so that the resonance frequency of the vibration sensor is 2000 Hz ⁇ 2800 Hz.
  • by adjusting the resonant frequency range of the vibration sensor in some cases, it can help to increase the sensitivity of the vibration sensor without affecting the performance of the vibration sensor to actually receive a valid vibration signal.
  • the vibration sensor can have the performance of recording music.
  • the frequency response curve of the vibration sensor below 800 Hz can be flatter, and the performance of recording voice can be better.
  • the resonant frequency of the vibration sensor can be expressed as:
  • FIG. 3 is a frequency response curve diagram of a vibration sensor provided according to some embodiments of the present application.
  • the sensitivity of the vibration sensor may be increased within a specific frequency range by reducing the resonant frequency.
  • the specific frequency range here may refer to 20 Hz to 3000 Hz. In other embodiments, the specific frequency range may be adjusted according to actual conditions, which is not further limited herein.
  • the resonance frequency of the vibration sensor when the resonance frequency of the vibration sensor is reduced from 3500Hz to 2500Hz, the sensitivity of the vibration sensor increases by about 6dB within the frequency range of less than 1000Hz; further, when the frequency is around 2500Hz, The sensitivity of the vibration sensor is increased by about 12dB.
  • the resonance frequency of the vibration sensor by adjusting the elastic strength k of the elastic element 132 and the mass m of the mass element 131, the resonance frequency of the vibration sensor can be located in a suitable frequency range, so that the sensitivity of the vibration sensor can be significantly improved within a certain frequency range , while not affecting the performance of the vibration sensor when it actually receives external vibration signals.
  • the first acoustic cavity is cylindrical (or approximately cylindrical), and the elastic strength of the elastic element can be expressed as:
  • E 1 is the elastic modulus of the elastic element
  • S 1 is the axial cross-sectional area of the elastic element
  • h 1 is the axial height of the elastic element (ie, the dimension of the elastic element along the axis direction).
  • the mass of the mass element can be expressed as:
  • the difference between the axial heights of the elastic element and the mass element is less than 50% of the axial height of the vibration unit. Further preferably, the difference between the axial heights of the elastic element and the mass element is less than 20% of the axial height of the vibration unit, and further preferably, the difference between the axial heights of the elastic element and the mass element is less than 5% of the axial height of the vibration unit. .
  • the vibration sensor by adjusting the shape, volume, or configuration of the mass element (eg, using a profiled mass element), it is possible to change the vibration sensor's size without increasing the axial height of the vibration unit and without increasing the volume of the vibration sensor.
  • Resonant frequency In some embodiments, the resonant frequency of the vibration sensor can also be reduced by reducing the axial cross-sectional area of the mass element.
  • the ratio of the axial cross-sectional area S 1 of the elastic element to the axial cross-sectional area S 2 of the mass element may be between 1:2 and 1:10, and further preferably, the axial cross-sectional area S 1 of the elastic element and the mass element
  • the ratio of the axial cross-sectional area S2 can be between 1: 2 and 1:5, and more preferably, the ratio of the axial cross-sectional area S1 of the elastic element to the axial cross-sectional area S2 of the mass element can be in the range of 1: 2 to 1 : between 4.
  • the vibration sensor may be a regular or irregular shape such as a rectangular parallelepiped, a truncated cone, or the like.
  • the elastic element can be a square tube, a special-shaped tube, a ring, a flat plate, or the like.
  • the mass element may be a cuboid, a trapezoid, a cone, a triangular pyramid, an irregular shape, or the like.
  • Those skilled in the art can apply the basic principles of the above-mentioned adjustment methods to vibration sensors with different shapes or with different shapes of their internal components.
  • the value of the elastic strength k of the elastic element 132 may be between 10 N/m and 2000 N/m; preferably, the value of the elastic strength k of the elastic element 132 may be between 100 N/m and 1000 N/m ; Further preferably, the value of the elastic strength k of the elastic element 132 may be between 400N/m and 700N/m.
  • the value of the mass m of the mass element 131 may be between 0.001 g and 1 g; preferably, the value of the mass m of the mass element 131 may be between 0.005 g and 0.5 g; further preferably, the value of the mass m of the mass element 131 It can be between 0.01g and 0.05g.
  • factors affecting the resonant frequency and sensitivity in the resonant system are integrated, taking into account the quality factor of the resonant system.
  • the expression for the quality factor of a resonant system is:
  • FIG. 4 is a frequency response curve diagram of a vibration sensor provided according to some embodiments of the present application.
  • the sensitivity of the vibration sensor in the high frequency band for example, 800Hz-8000Hz
  • the sensitivity of the vibration sensor in the middle and high frequency bands decreases rapidly, so that the sensitivity of the vibration sensor is lower in the middle and high frequencies.
  • the value of the quality factor Q of the resonance system can be within a certain range, so that the vibration sensor has Higher sensitivity, and the change of sensitivity is more stable.
  • the quality factor Q of the resonant system may have a value between 0.7-10.
  • the value of the quality factor Q of the resonance system may be between 0.8 and 5; further preferably, the value of the quality factor Q of the resonance system may be between 1 and 3; further preferably, the value of the quality factor Q of the resonance system The value of can be between 1.5 and 2.5.
  • the mass m of the mass element 131 and the elastic strength k of the elastic element 132 can be determined first to determine that the resonance frequency of the vibration sensor is within the range described above, for example, the elastic strength of the elastic element is 10 N/m ⁇ 2000N/m, the mass of the mass element is 0.001g ⁇ 1g, and then the damping c of the resonance system is determined so that the quality factor Q of the resonance system is 0.7 ⁇ 10, which further improves the sensitivity of the vibration sensor.
  • the elastic strength of the elastic element may be between 10N/m and 2000N/m, and the mass of the mass element may be between 0.02g and 0.03g. In some embodiments, the elastic strength of the elastic element may be between 0.02g and 0.03g.
  • the mass of the mass element can be between 0.01g ⁇ 0.05g; in some embodiments, the elastic strength of the elastic element can be between 30N/m ⁇ 2000N/m , and the mass of the mass element can be between 0.05g and 0.1g. In some embodiments, the value of the elastic strength k of the elastic element 132 may be 2000 N/m, and the value of the mass m of the mass element 131 may be 0.03 g, correspondingly, the resonance frequency of the vibration sensor is about 8000 Hz.
  • the value of the elastic strength k of the elastic element 132 may be 10 N/m, and the value of the mass m of the mass element 131 may be 0.015 g, correspondingly, the resonance frequency of the vibration sensor is about 800 Hz. In some embodiments, the value of the elastic strength k of the elastic element 132 may be 650 N/m, and the value of the mass m of the mass element 131 may be 0.1 g, correspondingly, the resonance frequency of the vibration sensor is about 2600 Hz.
  • the relationship between the sound pressure variation of the second acoustic cavity 142 and the angular frequency can be further transformed into the following expression:
  • the plane where the mass element 131 and the plane facing away from the elastic element 132 in FIG. 1 are located (the plane is represented by the dotted line in FIG. 1 ) is used as the dividing plane, and the second acoustic
  • the volume of the cavity 142 is divided into two parts.
  • the gap between the elastic element 132 and the housing structure 110 meets the requirements of the reserved space required for assembly and is minimal
  • the volume on the side away from the acoustic transducer 120 is V 1
  • the volume toward the side of the acoustic transducer 120 is V 1 .
  • the volume on the side of the acoustic transducer 120 is V 2 .
  • the volume V 1 on the side away from the acoustic transducer 120 does not change;
  • the volume V 2 varies with the size of the cross-sectional area S of the mass element 131 .
  • V 2 /S represents the distance between the mass element 131 and the acoustic transducer 120 . It can be seen from formula (11) that by increasing the cross-sectional area S of the mass element 131 or reducing the assembly gaps in the second acoustic cavity 142, the volume of the second acoustic cavity 142 can be reduced, thereby improving the vibration sensor. sensitivity.
  • the assembly gap is the space that must be reserved between various components to prevent the components from being unable to be loaded due to process errors or unwanted contact during the assembly process.
  • the assembly gap refers to the second acoustic cavity.
  • Other parts of the body other than V 2 may include the gap between the elastic element 132 and the mass element 131 , the gap between the elastic element 132 and the housing structure 110 , and the gap between the elastic element 132 and the acoustic transducer 120 gap.
  • the gap spacing between the elastic element 132 and the mass element 131 , the gap spacing between the elastic element 132 and the housing structure 110 , and the gap spacing between the elastic element 132 and the acoustic transducer 120 may be no greater than 0.1mm.
  • the selected acoustic transducer has a signal-to-noise ratio greater than 63 dB.
  • the signal-to-noise ratio of the selected acoustic transducer is greater than 65dB; further preferably, the signal-to-noise ratio of the selected acoustic transducer is greater than 70dB.
  • FIG. 5 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • the vibration sensor may include a housing structure 510 , an elastic element 532 , a mass element 531 , and an acoustic transducer 520 .
  • the vibration sensor shown in FIG. 5 may be the same as or similar to vibration sensor 100 .
  • Housing structure 510 may be the same as or similar to housing structure 110 .
  • the elastic element 532 may be the same as or similar to the elastic element 132 .
  • Mass element 531 may be the same as or similar to mass element 131 .
  • the elastic element 532 and the mass element 531 may collectively constitute a vibration unit identical to or similar to the vibration unit 130 of the vibration sensor 100 .
  • Acoustic transducer 520 may be the same as or similar to acoustic transducer 120 .
  • the second acoustic cavity 542 of the vibration sensor shown in FIG. 5 may be the same as or similar to the second acoustic cavity 142 of the vibration sensor 100 .
  • the elastic element 532 is located on the side of the mass element 531 facing away from the acoustic transducer 520 .
  • the elastic element 532 may be a hollow cylindrical structure distributed around the central axis of the mass element 531 (ie, the axis passing through the center of the mass element 531 ). As shown in FIG.
  • the bottom end of the elastic element 532 is fixedly connected to the side of the mass element 531 facing the top end of the housing structure 510 .
  • the top end of the element 532 is fixedly connected to the side of the housing structure 510 facing the mass element 531 .
  • the location where the elastic element 532 is connected to the housing structure 510 may be located on the sidewall of the housing structure 510 .
  • the material of the elastic element 532 may include a metallic material or a non-metallic material.
  • the metallic material may include, but is not limited to, steel (eg, stainless steel, carbon steel, etc.), light alloys (eg, aluminum alloy, beryllium copper, magnesium alloy, titanium alloy, etc.), etc., or any combination thereof.
  • Non-metallic materials may include, but are not limited to, polyurethane foam, glass fibers, carbon fibers, boron fibers, graphite fibers, graphene fibers, silicon carbide fibers, aramid fibers, and the like.
  • the types of materials of the elastic element 532 may also be classified in other ways, not limited to the above-mentioned metal materials and non-metallic materials, for example, the types of materials of the elastic elements 532 may also include a single material or a composite material.
  • the material used for the mass element 5321 may include the above-described metallic material or non-metallic material, which will not be repeated here.
  • the elastic element 532, the mass element 531 and the housing structure 510 may be bonded by adhesive, or other connection methods (eg, welding, snap connection, etc.) well-known to those skilled in the art may be used. , there is no restriction on this.
  • FIG. 6 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • the vibration sensor shown in FIG. 6 is substantially the same as the vibration sensor shown in FIG. 5 , except that in the vibration sensor shown in FIG. 6 , the elastic element 632 is located on the peripheral side of the mass element 631 , and the elastic element 632 The inner side of the elastic element 632 is connected with the mass element 631 , and the end of the elastic element 632 facing away from the acoustic transducer 620 is still connected with the housing structure 610 .
  • the height of the elastic element 632 in the axial direction of the mass element 631 may be smaller than, equal to or greater than the height of the mass element 631 in the axial direction.
  • the acoustic transducer 620 together with the housing structure 610 , the elastic element 632 and the mass element 631 together form a second acoustic cavity 642 .
  • FIG. 7 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • the vibration sensor shown in FIG. 7 is substantially the same as the vibration sensor shown in FIG. 5 , the difference is that the elastic element 732 is located on the peripheral side of the mass element 731 , wherein the outer side of the elastic element 732 is connected to the housing structure The side wall of 710 is connected, and the inner side of elastic element 732 is connected with mass element 731 .
  • the height of the elastic element 732 in the axial direction of the mass element 731 may be smaller than, equal to or greater than the height of the mass element 731 in the axial direction.
  • the acoustic transducer 720 together with the housing structure 710 , the elastic element 732 and the mass element 731 together form a second acoustic cavity 742 .
  • FIG. 8 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • the vibration sensor shown in FIG. 8 is substantially the same as the vibration sensor shown in FIG. 5 , except that the elastic element 832 shown in FIG. 8 has a different structure from the elastic element 532 shown in FIG. 5 , wherein , the cross-sectional shape of the elastic element 832 at the cross-section where the axis is located is a circular arc shape or a wave shape that is symmetrical on both sides.
  • the direction in which the mass element 831 vibrates relative to the housing structure 810 can be considered as the axial direction.
  • the section where the axis is located may be a section that is collinear or parallel to the axis of the vibration sensor.
  • the cross-sectional shape of the elastic element 832 may be an inwardly concave arc shape or a wave shape. In some embodiments, the cross-sectional shape of the elastic element 832 may also be an outwardly convex arc shape or a wave shape. In some embodiments, the cross-sectional shape of the elastic element may also be a regular or irregular shape such as a rectangle, a trapezoid, and a parallelogram.
  • the elastic coefficient of the elastic element 832 since the elastic coefficient of the elastic element 832 is related to its shape, the elastic coefficient of the elastic element 832 can be adjusted by changing the shape of the elastic element 832, thereby adjusting the resonant frequency of the vibration sensor and further improving the sensitivity of the vibration sensor.
  • the shape of the elastic element 832 may affect the cavity volume of the second acoustic cavity 842 during the deformation process, thereby improving the sensitivity of the vibration sensor.
  • the cross-sectional shape of the elastic element 832 is a concave arc
  • the deformation of the elastic element 832 can mainly come from the deformation of its shape.
  • the mass element 831 moves downward
  • the inwardly concave part of the elastic member 832 changes with the deformation.
  • the volume of the second acoustic cavity 842 can be further reduced, thereby improving the sensitivity of the vibration sensor.
  • FIG. 9 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • the vibration sensor shown in FIG. 9 may be the same as or similar to vibration sensor 100 .
  • Housing structure 910 may be the same as or similar to housing structure 110 .
  • Mass element 931 may be the same as or similar to mass element 131 .
  • the elastic element 932 and the mass element 931 may collectively constitute a vibration unit identical to or similar to the vibration unit 130 of the vibration sensor 100 .
  • Acoustic transducer 920 may be the same as or similar to acoustic transducer 120 .
  • the second acoustic cavity 942 of the vibration sensor shown in FIG. 9 may be the same as or similar to the second acoustic cavity 142 of the vibration sensor 100 .
  • the third acoustic cavity 941 of the vibration sensor shown in FIG. 9 may be the same as or similar to the second acoustic cavity 141 of the vibration sensor 100 .
  • the elastic element 932 may be a planar structure.
  • the elastic element 932 is located on the side of the mass element 931 facing the acoustic transducer 920 , wherein the elastic element 932 can be connected with the housing structure 910 .
  • the peripheral side of the elastic element 932 may be sealed with the side wall of the housing structure 910 , and the sealing connection here means that the elastic element 932 may connect the third acoustic cavity 941 and the second acoustic cavity 942 to each other. isolated.
  • the side of the mass element 931 opposite to the acoustic transducer 920 may be partially or fully abutted with the elastic element 932 .
  • the side of the mass element 931 opposite to the acoustic transducer 920 may be fully attached to the elastic element 932 .
  • the elastic element 932 is provided with a through portion, and the area of the through portion is smaller than or equal to the area of the side portion of the acoustic transducer 920 , and the mass element 931 can cover the through portion or interfere with the through portion.
  • the elastic element 932 , the housing structure 910 and the acoustic transducer 920 together form a second acoustic cavity 942 .
  • planar structure of the elastic element 932 is not limited to a straight plate-like structure.
  • the surfaces on both sides of the elastic element 932 may be non-planar such as concave, convex, etc.
  • the shape and structure of the elastic element 932 may be Adjust according to the specific situation.
  • FIG. 10 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • the vibration sensor shown in FIG. 10 is substantially the same as the vibration sensor shown in FIG. 5 except that the cross-sectional area of the mass element 1031 is larger than the cross-sectional area of the acoustic transducer 1020 .
  • the cross-sectional area of mass element 1031 is approximately 5 mm 2 and the cross-sectional area of acoustic transducer 1020 is approximately 4 mm 2 .
  • the size of the cross-sectional area of the mass element 1031 and the acoustic transducer 1020 can be adaptively adjusted according to the application scene of the vibration sensor. For example, when the size of the vibration sensor is larger, the cross-sectional areas of the mass element 1031 and the acoustic transducer 1020 may be simultaneously enlarged, or the cross-sectional area of the mass element 1031 may be increased, or the cross-sectional area of the acoustic transducer 1020 may be reduced.
  • the cross-sectional areas of the mass element 1031 and the acoustic transducer 1020 may be simultaneously reduced, or the cross-sectional area of the acoustic transducer 1020 may be reduced.
  • the cross-sectional area here may refer to the cross-sectional area perpendicular to the axis direction.
  • the elastic element 1032 and the mass element 1031 of the vibration sensor in FIG. 10 may have the same or similar structures as the elastic element 632 and the mass element 631 in FIG. 6 ; that is, the elastic element 1032 may be located on the peripheral side of the mass element 1031 , the inner side of the elastic element 1032 is connected with the mass element 1031 .
  • the elastic element 1032 and the mass element 1031 may have the same or similar structures as the elastic element 732 and the mass element 731 in FIG. 7 ; that is, the elastic element 1032 may be located on the peripheral side of the mass element 1031, wherein The outer side is connected with the side wall of the housing structure 1010 , and the inner side of the elastic element 1032 is connected with the mass element 1031 .
  • the elastic element 1032 may also have the same or similar structure as the elastic element 832 in FIG. 8 .
  • the elastic element 1032 and the mass element 1031 may have the same or similar structures as the elastic element 932 and the mass element 931 in FIG. 9 .
  • the elastic element 1032 and the mass element 1031 may also have other similar shape and position changes, for example, the elastic element 832 in FIG. This embodiment is not limited.
  • the sensitivity of the vibration sensor may also be improved by adjusting the mounting gaps throughout the components in the first acoustic cavity 1040 (eg, the second acoustic cavity 1042 and the third acoustic cavity 1041 ).
  • the gap spacing between the elastic element 1032 and the mass element 1031, the gap spacing between the elastic element 1032 and the housing structure 1010, and the gap spacing between the elastic element 1032 and the acoustic transducer 1020 are less than or equal to 0.1 mm.
  • FIG. 11 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • the vibration sensor shown in Figure 11 is substantially the same as the vibration sensor shown in Figure 5, with the difference that the mass element 1131 has a first protrusion 11311 that faces away from the acoustic transducer at the mass element 1131
  • One side of 1120 is located in the third acoustic cavity 1141 defined by the housing structure 1110 , the elastic element 1132 and the mass element 1131 .
  • disposing the first protrusion 11311 on the side of the mass element 1131 away from the acoustic transducer can increase the mass of the mass element 1131, adjust the resonance frequency of the vibration sensor, and further improve the sensitivity of the vibration sensor.
  • the elastic element 1132 and the mass element 1131 of the vibration sensor in FIG. 11 may have the same or similar structures as the elastic element 632 and the mass element 631 in FIG. 6 ; that is, the elastic element 1132 may be located on the peripheral side of the mass element 1131 , the inner side of the elastic element 1132 is connected with the mass element 1131 .
  • the elastic element 1132 and the mass element 1131 may have the same or similar structures as the elastic element 732 and the mass element 731 in FIG.
  • the elastic element 1132 may be located on the peripheral side of the mass element 1131 , wherein the elastic element 1132 The outer side is connected with the side wall of the housing structure 1110 , and the inner side of the elastic element 1132 is connected with the mass element 1131 .
  • the elastic element 1132 may have the same or similar structure as the elastic element 832 in FIG. 8 .
  • the elastic element 1132 and the mass element 1131 may have the same or similar structures as the elastic element 932 and the mass element 931 in FIG. 9 .
  • the elastic element 1132 and the mass element 1131 may also have other similar shape and position changes, for example, the elastic element 832 in FIG. This embodiment is not limited.
  • FIG. 12 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • the vibration sensor shown in FIG. 12 is substantially the same as the vibration sensor shown in FIG. 5 , except that the elastic element 1232 is located on the side of the mass element 1231 facing the acoustic transducer 1220 .
  • One end of the elastic element 1232 is connected with the mass element 1231 , and the other end of the elastic element 1232 is connected with the acoustic transducer 1220 .
  • the elastic element 1232 and the acoustic transducer 1220 can form the second acoustic cavity 1242, and the structure and connection method in this embodiment can further reduce the volume of the second acoustic cavity 1242, thereby improving the sensitivity of the vibration sensor.
  • the elastic element 1232 and the mass element 1231 of the vibration sensor in FIG. 12 may have the same or similar structures as the elastic element 632 and the mass element 631 in FIG. 6 , that is, the elastic element 1232 may be located on the peripheral side of the mass element 1231 , the inner side of the elastic element 1232 is connected with the mass element 1231 .
  • the elastic element 1232 may have the same or similar structure as the elastic element 832 in FIG. 8 .
  • the elastic element 1232 and the mass element 1231 may also have other similar shape and position changes, for example, the elastic element 832 in FIG. This embodiment is not limited.
  • FIG. 13 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • the vibration sensor shown in Figure 13 is substantially the same as the vibration sensor shown in Figure 12, with the difference that the mass element 1331 has a second protrusion 13312 that faces the acoustic transducer at the mass element 1331
  • One side of 1320 is located in the second acoustic cavity 1320 defined by the elastic element 1332 and the mass element 1131 .
  • providing the second protrusion 13312 on the side of the mass element 1331 facing the acoustic transducer 1320 can increase the mass of the mass element 1331 while further reducing the volume of the second acoustic cavity 1342 to adjust the vibration The resonant frequency of the sensor is improved, thereby improving the sensitivity of the vibration sensor without increasing the overall volume of the vibration sensor.
  • FIG. 14 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • the vibration sensor shown in FIG. 14 is substantially the same as the vibration sensor shown in FIG. 11, with the difference that the mass element 1431 also has a third protrusion 14313, wherein the third protrusion 14313 is located on the mass element 1431 facing the acoustic On one side of the transducer 1420 , the third protrusion 14313 at least partially protrudes into the acoustic transducer 1420 .
  • the acoustic transducer 1420 is provided with a groove opposite to the third protrusion 14313, and the third acoustic protrusion 14313 protrudes into the acoustic transducer 1420 through the groove.
  • the acoustic transducer 1420 may include an acoustic diaphragm 14202 positioned within the aforementioned groove.
  • FIG. 15 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • the vibration sensor shown in FIG. 15 may be the same as or similar to vibration sensor 100 .
  • Housing structure 1510 may be the same as or similar to housing structure 110 .
  • the elastic element 1532 may be the same as or similar to the elastic element 132 .
  • Mass element 1531 may be the same as or similar to mass element 131 .
  • the elastic element 1532 and the mass element 1531 may collectively constitute a vibration unit identical to or similar to the vibration unit 130 of the vibration sensor 100 .
  • Acoustic transducer 1520 may be the same as or similar to acoustic transducer 120 .
  • the mass element 1531 is provided with at least one first pressure relief hole 15311 , and the first pressure relief hole 15311 penetrates the mass element 1531 .
  • the first pressure relief hole 15311 can connect the second acoustic cavity 1542 and the third acoustic cavity 1541, which helps to balance the air pressure difference between the second acoustic cavity 1542 and the third acoustic cavity 1541. This air pressure difference is generally caused by assembly.
  • the environmental conditions and assembling methods when the third acoustic cavity 1541 and the second acoustic cavity 1542 are formed may be different, so that the third acoustic cavity 1541 and the second acoustic cavity 1542 are formed differently.
  • the air pressure inside is different, and there is an air pressure difference.
  • the elastic element 1532 can be installed on the housing structure 1510 first, and then the mass element 1531 can be installed on the elastic element 1532 to form the third acoustic cavity 1541, and finally the housing structure 1510 can be installed on the acoustic transducer On the transducer 1520, a second acoustic cavity 1542 is formed.
  • the first pressure relief hole 15311 can allow the air in the third acoustic cavity 1541 and the second acoustic cavity 1542 to circulate, thereby balancing the air pressure difference.
  • the first pressure relief hole 15311 may have a first acoustic impedance, and by adjusting the first acoustic impedance, a predetermined low frequency roll-off response of the vibration sensor may be set, that is, the vibration sensor response below a predetermined frequency may be reduced, in some cases , which can help eliminate noise signals below a predetermined frequency, and/or avoid overloading the device.
  • the shape of the low frequency roll-off response curve is related to the size of the first pressure relief hole.
  • a larger first pressure relief hole 15311 has a smaller first acoustic impedance, which can lead to a larger low frequency attenuation. It should be noted that the first pressure relief hole 15311 should not affect the acoustic sealing of the second acoustic cavity 1542 and the third acoustic cavity 1541 .
  • FIG. 16 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • the vibration sensor shown in FIG. 16 is substantially the same as the vibration sensor shown in FIG. 15 , the difference is that the elastic element 1632 is provided with at least one second pressure relief hole 16321 , and the second pressure relief hole 16321 penetrates the elastic element 1632 .
  • the second pressure relief hole 16321 has the same function as the first pressure relief hole 15311 .
  • the second pressure relief hole 16321 should not affect the acoustic sealing of the second acoustic cavity 1642 and the third acoustic cavity 1641 .
  • the vibration sensor may have both a first pressure relief hole on the mass element and a second pressure relief hole on the elastic element.
  • FIG. 17 is a schematic structural diagram of a vibration sensor provided according to some embodiments of the present application.
  • the vibration sensor shown in FIG. 17 is substantially the same as the vibration sensor shown in FIG. 5, except that the vibration sensor further includes a circuit board 17202 configured to receive and deliver electrical power from the acoustic transducer 1720. Signal.
  • the circuit board 17202 is located on the opposite side of the acoustic transducer 1720 from where the mass element 1731 is located.
  • the circuit board 17202 can be a PCB board or an FPC board, which is not limited.
  • the housing structure 1710, the elastic element 1732, and the mass element 1731 may be assembled after the acoustic transducer 1720 is assembled to the circuit board 17202, which may be Pre-assembled monolithic components, in some cases, facilitate assembly flexibility.
  • the elastic element 1732 and the mass element 1731 of the vibration sensor in FIG. 17 may have the same or similar structures as the elastic element 632 and the mass element 631 in FIG. 6 ; that is, the elastic element 1732 may be located on the peripheral side of the mass element 1731 , the inner side of the elastic element 1732 is connected with the mass element 1131 .
  • the elastic element 1732 and the mass element 1731 may have the same or similar structures as the elastic element 732 and the mass element 731 in FIG. 7 ; that is, the elastic element 1732 may be located on the peripheral side of the mass element 17131, wherein The outer side is connected with the side wall of the housing structure 1710 , and the inner side of the elastic element 1732 is connected with the mass element 1731 .
  • the elastic element 1732 may have the same or similar structure as the elastic element 832 in FIG. 8 .
  • the elastic element 1732 and the mass element 1731 may have the same or similar structures as the elastic element 932 and the mass element 931 in FIG. 9 .
  • the elastic element 1732 and the mass element 1731 may also have other similar shape and position changes, for example, the elastic element 832 in FIG. This embodiment is not limited.
  • the elastic element may have the same or similar structure as the elastic element 832 in FIG. Symmetrical arc or wave shape
  • the mass element can have the same or similar structure as the mass element 1131 in FIG. 11 , that is, the mass element has a first protrusion, and the first protrusion is on the side of the mass element away from the acoustic transducer ;
  • the mass element may have the same or similar structure as the mass element 1531 in FIG. 15 , that is, the mass element is provided with at least one first pressure relief hole.
  • aspects of this application may be illustrated and described in several patentable categories or situations, including any new and useful process, machine, product, or combination of matter, or combinations of them. of any new and useful improvements. Accordingly, various aspects of the present application may be performed entirely by hardware, entirely by software (including firmware, resident software, microcode, etc.), or by a combination of hardware and software.
  • the above hardware or software may be referred to as a "data block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of the present application may be embodied as a computer product comprising computer readable program code embodied in one or more computer readable media.
  • a computer storage medium may contain a propagated data signal with the computer program code embodied therein, for example, on baseband or as part of a carrier wave.
  • the propagating signal may take a variety of manifestations, including electromagnetic, optical, etc., or a suitable combination.
  • Computer storage media can be any computer-readable media other than computer-readable storage media that can communicate, propagate, or transmit a program for use by coupling to an instruction execution system, apparatus, or device.
  • Program code located on a computer storage medium may be transmitted by any suitable medium, including radio, cable, fiber optic cable, RF, or the like, or a combination of any of the foregoing.
  • the computer program coding required for the operation of the various parts of this application may be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python Etc., conventional procedural programming languages such as C language, VisualBasic, Fortran2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code may run entirely on the user's computer, or as a stand-alone software package on the user's computer, or partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any network, such as a local area network (LAN) or wide area network (WAN), or to an external computer (eg, through the Internet), or in a cloud computing environment, or as a service Use eg software as a service (SaaS).
  • LAN local area network
  • WAN wide area network
  • SaaS software as a service

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measuring Fluid Pressure (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

一种振动传感器(100),振动传感器(100)包括壳体结构(110,510,610,710,810,910, 1010,1110,1510,1710)和与壳体结构(110,510,610,710,810,910,1010,1110,1510, 1710)物理连接的声学换能器(120,520,620,720,820,920,1020,1120,1220,1320, 1420,1520,1720),其中,至少部分由壳体结构(110,510,610,710,810,910,1010, 1110,1510,1710)与声学换能器(120,520,620,720,820,920,1020,1120,1220,1320, 1420,1520, 1720)限制形成第一声学腔体(140,1040),以及位于第一声学腔体(140,1040)中的振动单元(130),振动单元(130)将第一声学腔体(140,1040)分隔为第二声学腔体(142,542,642,742,842,942,1042,1142,1242,1342,1442,1542,1642)和第三声学腔体(141,941,1041,1141,1541,1641),其中,第二声学腔体(142,542, 642,742,842,942, 1042,1142,1242,1342,1442,1542,1642)与声学换能器(120, 520,620,720,820,920, 1020,1120,1220,1320,1420,1520,1720)声学连通;壳体结构(110,510,610,710,810, 910,1010,1110,1510,1710)被配置为基于外部振动信号产生振动,振动单元(130)响应于壳体结构(110,510,610,710,810,910,1010,1110, 1510,1710)的振动使第二声学腔体(142,542,642,742,842,942,1042,1142,1242, 1342,1442,1542,1642)的体积改变,声学换能器(120,520,620,720,820,920,1020, 1120,1220,1320,1420,1520,1720)基于第二声学腔体(142,542,642,742,842,942, 1042,1142,1242,1342,1442,1542,1642)体积的改变产生电信号;振动单元(130)作用于第二声学腔体(142,542,642,742,842,942,1042,1142,1242,1342,1442,1542, 1642)使得振动传感器(100)的谐振频率800Hz~8000Hz,振动传感器(100)具有较高的灵敏度。

Description

一种振动传感器 技术领域
本申请涉及声学领域,特别涉及一种振动传感器。
背景技术
振动传感器是一种将振动信号转换为电信号的能量转换器件。目前振动传感器可以用作骨传导麦克风,振动传感器可以检测人说话时的经皮肤传递的振动信号,从而检测到语音信号,同时又不受外界噪声的干扰。目前的振动传感器普遍存在的问题是由于人体的振动信号较小,振动传感器无法接收到较好的振动信号,语音质量下降较为明显。
因此希望提供一种具有较高灵敏度的振动传感器从而满足骨传导麦克风的性能需求,同时振动传感器具有特定的谐振频率。
发明内容
本申请实施例提供一种振动传感器,所述振动传感器包括壳体结构和与所述壳体结构物理连接的声学换能器,其中,至少部分由所述壳体结构与所述声学换能器限制形成所述第一声学腔体;所述振动传感器还包括振动单元,所述振动单元位于第一声学腔体中,并将所述第一声学腔体分隔为第二声学腔体和第三声学腔体,其中,所述第二声学腔体与所述声学换能器声学连通;所述壳体结构被配置为基于外部振动信号产生振动,所述振动单元响应于所述壳体结构的振动,使所述第二声学腔体的体积改变,所述声学换能器基于所述第二声学腔体体积的改变产生电信号;所述振动单元作用于所述第二声学腔体使得所述振动传感器的谐振频率为800Hz~8000Hz。
在一些实施例中,所述振动单元、所述壳体结构和所述声学换能器形成谐振系统,所述谐振系统的品质因子为0.7~10。
在一些实施例中,所述振动单元包括质量元件和弹性元件,所述质量元件与所述壳体结构或所述声学换能器通过所述弹性元件连接。
在一些实施例中,所述弹性元件的弹性强度为10N/m~2000N/m。
在一些实施例中,所述质量元件的质量为0.001g~1g。
在一些实施例中,所述弹性元件位于所述质量元件背离所述声学换能器的一侧,所述弹性元件的一端与所述壳体本体结构连接,所述弹性元件的另一端与所述质量元件连接。
在一些实施例中,所述质量元件背离所述声学换能器的一侧设有第一突出部。
在一些实施例中,所述振动传感器还包括电路板,所述电路板被配置为接收并输送所述声学换能器输出的电信号;其中,所述电路板位于所述声学换能器与所述质量元件位置相对的一侧。
在一些实施例中,所述弹性元件位于所述质量元件朝向所述声学换能器的一侧,所述弹性元件的一端与所述质量元件连接,所述弹性元件的另一端与所述声学换能器连接。
在一些实施例中,所述质量元件朝向所述声学换能器的一侧设有第二突出部。
在一些实施例中,所述质量元件朝向所述声学换能器的一侧设有第三突出部,所述第三突出部至少部分伸入所述声学换能器中,并与所述声学换能器的振膜位置相对。
在一些实施例中,所述弹性元件为平面结构,所述弹性元件位于所述质量元件朝向所述声学换能器的一侧,所述弹性元件与所述壳体结构连接,所述质量元件朝向所述声学换能器的侧面与所述弹性元件连接。
在一些实施例中,所述弹性元件位于所述质量元件的周侧,所述弹性元件的外侧与所述壳体结构连接,所述弹性元件的内侧与所述质量元件连接。
在一些实施例中,所述弹性元件位于所述质量元件的周侧,所述弹性元件的内侧与所述质量元件连接,所述弹性元件的端部与所述壳体结构或所述声学换能器连接。
在一些实施例中,所述弹性元件的截面形状为长方形、梯形、平行四边形、圆弧形、波浪形。
在一些实施例中,所述质量元件上设有至少一个第一泄压孔,所述至少一个第一泄压孔贯穿所述质量元件。
在一些实施例中,所述弹性元件设有至少一个第二泄压孔,所述至少一个第二泄压孔贯穿所述弹性元件。
在一些实施例中,所述质量元件的截面积大于所述声学换能器的截面积。
在一些实施例中,所述弹性元件与所述质量元件之间的缝隙间距、所述弹性元件与所述壳体结构之间的缝隙间距以及所述弹性元件与所述声学换能器之间的缝隙间距小于等于0.1mm。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进 行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请一些实施例提供的振动传感器的结构示意图;
图2是根据本申请一些实施例提供的振动传感器的频率响应曲线图;
图3是根据本申请一些实施例提供的振动传感器的频率响应曲线图;
图4是根据本申请一些实施例提供的振动传感器的频率响应曲线图;
图5是根据本申请一些实施例提供的振动传感器的结构示意图;
图6是根据本申请一些实施例提供的振动传感器的结构示意图;
图7是根据本申请一些实施例提供的振动传感器的结构示意图;
图8是根据本申请一些实施例提供的振动传感器的结构示意图;
图9是根据本申请一些实施例提供的振动传感器的结构示意图;
图10是根据本申请一些实施例提供的振动传感器的结构示意图;
图11是根据本申请一些实施例提供的振动传感器的结构示意图;
图12是根据本申请一些实施例提供的振动传感器的结构示意图;
图13是根据本申请一些实施例提供的振动传感器的结构示意图;
图14是根据本申请一些实施例提供的振动传感器的结构示意图;
图15是根据本申请一些实施例提供的振动传感器的结构示意图;
图16是根据本申请一些实施例提供的振动传感器的结构示意图;以及
图17是根据本申请一些实施例提供的振动传感器的结构示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一 个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本说明书描述了一种振动传感器。该振动传感器作为骨传导麦克风使用,可以接收人说话时产生的骨骼、皮肤等人体组织振动信号,并将该振动信号转换为包含声音信息的电信号。该振动传感器几乎不采集空气中的声音,因此适合在嘈杂环境中采集用户说话时的语音信号。在一些实施例中,嘈杂环境可以包括嘈杂的餐厅、会场、街道、马路附近、火灾现场等场合。振动传感器可以一定程度地免受周围他人说话声音、车辆驶过产生的噪声和各种其他环境噪声的影响。在一些实施例中,振动传感器可以包括壳体结构和振动单元,至少部分由壳体结构和振动单元限制形成第一声学腔体。振动单元位于第一声学腔体中,并将第一声学腔体分隔为第二声学腔体和第三声学腔体,其中,第二声学腔体与所述声学换能器声学连通。进一步地,壳体结构被配置为基于外部振动信号(例如,用户说话时的骨骼、皮肤等振动产生的信号)产生振动,振动单元响应于所述壳体结构的振动使第二声学腔体的体积改变,所述声学换能器基于第二声学腔体体积的改变产生电信号。在一些实施例中,通过调整振动单元中的质量单元和/或弹性单元的参数以及相对于其他部件的位置、连接方式可以使得振动传感器的谐振频率为800Hz~8000Hz,进而提高振动传感器的在特定频段(例如,小于8000Hz)的灵敏度。需要注意的是,该参数可以是指质量单元和/或弹性单元的形状、尺寸、材料等。另外特定频段不限于上述示例的小于8000Hz,还可以为小于6000Hz、小于4500Hz、小于3000Hz、小于2500Hz、小于2000Hz等,在此不做进一步限定。
在一些实施例中,振动传感器可以应用于耳机(例如,空气传导耳机和骨传导耳机)、助听器、辅听器、眼镜、头盔、增强现实(AR)设备、虚拟现实(VR)设备等。
图1是根据本申请一些实施例提供的振动传感器的结构示意图。如图1所示,振动传感器100可以包括壳体结构110、声学换能器120和振动单元130。振动传感器100的形状可以是长方体,圆柱体或其他规则结构体或不规则结构体。在一些实施例中, 壳体结构110和声学换能器120通过物理方式连接,这里的物理方式连接可以包括焊接、卡接、粘接或一体成型等连接方式。在一些实施例中,壳体结构110和声学换能器120围成具有第一声学腔体140的封装结构,其中,振动单元130可以位于该封装结构的第一声学腔体140内。在一些实施例中,壳体结构110可独立形成具有第一声学腔体140的封装结构,其中,振动单元130和声学换能器120可以位于该封装结构的第一声学腔体140内。在一些实施例中,振动单元130将第一声学腔体140分隔为第二声学腔体142和第三声学腔体141。第二声学腔体142与声学换能器120声学连通。在一些实施例中,第三声学腔体141可以为声学密封的腔体结构。
在一些实施例中,振动单元130可以包括质量元件131和弹性元件132。在一些实施例中,质量元件131可以与壳体结构110通过弹性元件132连接。例如,弹性元件132可以位于质量元件131背离声学换能器120的一侧,弹性元件132的一端与壳体结构110连接,弹性元件132的另一端与质量元件131连接。在其它的实施例中,弹性元件132还可以位于质量元件131的周侧,其中,弹性元件132的内侧与质量元件131的周侧连接,弹性元件132的外侧或背离声学换能器120的一侧与壳体结构110连接。这里所说的质量元件131的周侧是相对于质量元件131的振动方向而言,为方便起见,可以认为质量元件131相对于壳体结构110振动的方向为轴线方向,此时,质量元件131的周侧表示质量元件131上环绕所述轴线设置的一侧。在一些实施例中,质量元件131还可以与声学换能器120通过弹性元件132连接。示例性的弹性元件132可以为圆管状、方管状、异形管状、环状、平板状等。在一些实施例中,弹性元件132可以具有较容易发生弹性形变的结构(例如,弹簧结构、金属环片等),其材质可以是容易发生弹性形变能力的材料,例如,硅胶、橡胶等。在本说明书的实施例中,弹性元件132相比于壳体结构110更容易发生弹性形变,使得振动元件130可以相对壳体结构110发生相对运动。需要注意的是,在一些实施例中,质量元件131和弹性元件的132可以是由相同或不同的材料所组成,再通过组装在一起形成振动单元130。在一些实施例中,质量元件131和弹性元件132也可以是由同种材料组成,再通过一体成型形成振动单元130。关于质量元件131的具体描述可以参考本申请说明书其它地方(例如图5及其相关内容)的内容。
振动传感器100可以将外部振动信号转换为电信号。在一些实施例中,外部振动信号可以包括人说话时的振动信号、皮肤随人体运动或随靠近皮肤的扬声器工作等原因产生的振动信号、和与振动传感器接触的物体或空气产生的振动信号等,或其任意组 合。进一步地,振动传感器产生的电信号可以输入外部电子设备。在一些实施例中,外部电子设备可以包括移动设备、可穿戴设备、虚拟现实设备、增强现实设备等,或其任意组合。在一些实施例中,移动设备可以包括智能手机、平板电脑、个人数字助理(PDA)、游戏设备、导航设备等,或其任何组合。在一些实施例中,可穿戴设备可以包括智能手环、耳机、助听器、智能头盔、智能手表、智能服装、智能背包、智能配件等,或其任意组合。在一些实施例中,虚拟现实设备和/或增强现实设备可以包括虚拟现实头盔、虚拟现实眼镜、虚拟现实补丁、增强现实头盔、增强现实眼镜、增强现实补丁等或其任何组合。例如,虚拟现实设备和/或增强现实设备可以包括Google Glass、Oculus Rift、Hololens、Gear VR等。振动传感器工作时,外部振动信号可以通过壳体结构110传递到振动单元130,振动单元130响应于壳体结构110的振动而发生振动。由于振动单元130的振动相位与壳体结构110和声学换能器120的振动相位不同,振动单元130的振动可以引起第二声学腔体142的体积变化,进而引起第二声学腔体142的声压变化。声学换能器120可以检测第二声学腔体142的声压变化并转换为电信号,通过焊点1201传递到外部电子设备。这里的焊点1201可以与耳机、助听器、辅听器、增强现实眼镜、增强现实头盔、虚拟现实眼镜等设备的内部元件(例如,处理器)通过数据线电连接,所述内部元件获取的电信号可以通过有线或无线的方式传递到外部电子设备。在一些实施例中,声学换能器120可以包括振膜(图1中未示出),第二声学腔体142的声压发生变化时,第二声学腔体142内部的空气发生振动而作用于振膜,使振膜发生形变,声学换能器120将振膜的振动信号转化为电信号。
仅仅作为示例,假设传递到振动传感器的外部振动信号为一个周期的振动,其振动频率为f,此时壳体结构110的振动可以表示为:
l 1(ω)=A(ω)cos(ωt),         (1)
其中,ω=2πf是角频率,l 1(ω)为壳体结构110的在角频率ω下的位移,A(ω)为角频率ω下的壳体结构110的最大位移。壳体结构110的振动通过弹性元件132传递到质量元件131,质量元件131发生位移而产生振动。质量元件131的振动可以表示为:
Figure PCTCN2020140180-appb-000001
其中,l 2(ω)是质量元件131的位移,m是质量元件131的质量,k为弹性元件132的弹性强度,c为振动单元130、壳体结构110和声学换能器120所形成的谐振系统的阻尼,谐振系统的阻尼c主要来源于弹性元件132。考虑到声学换能器120和壳体结构110 的振动相位相同或近似相同,质量元件131的振动相位与壳体结构110和声学换能器120共同的振动相位不相同,从而引起第二声学腔体142的体积变化,进而引起第二声学腔体142的声压变化。对应的第二声学腔体142的体积变化为:
Figure PCTCN2020140180-appb-000002
其中,S为质量元件131的垂直于轴线方向的截面面积。第二声学腔体142的声压变化为:
Figure PCTCN2020140180-appb-000003
其中,V是自然状态下第二声学腔体142的体积。声学换能器120可以将声压的变化转换成电压或电流的变化,通过焊点1201进行传递。需要注意的是,这里的自然状态可以是指振动传感器未进行工作的时状态,即非工作状态。
根据上述公式(1)、(2)和(3)推导,当外界周期振动在各个频率下的加速度相同时,即
Figure PCTCN2020140180-appb-000004
时,第二声学腔体142的声压变化与角频率频率之间的关系为:
Figure PCTCN2020140180-appb-000005
图2是根据本申请一些实施例提供的振动传感器频率响应图。如图2所示,振动单元130作用于第二声学腔体142可以使得振动传感器的谐振频率在3000Hz~4000Hz的范围内。由于振动传感器对外部振动信号的响应与第二声学腔体142的声压变化有关,由公式(5)可知,振动传感器的谐振频率至少部分取决于质量元件131的质量m,弹性元件132的弹性强度k,以及谐振系统中主要来源于弹性元件132的阻尼c。因此,在一些实施例中,当振动单元130的参数(例如,质量元件的质量,弹性元件的弹性强度)满足特定条件时,振动单元130作用于第二声学腔体142可以使得振动传感器的谐振频率为800Hz~20000Hz。优选地,振动单元130作用于第二声学腔体142可以使得振动传感器的谐振频率为900Hz~10000Hz。优选地,振动单元130作用于第二声学腔体142可以使得振动传感器的谐振频率为1000Hz~8000Hz。优选地,振动单元130作用于第二声学腔体142可以使得振动传感器的谐振频率为1150Hz~5500Hz。优选地,振动单元130作用于第二声学腔体142可以使得振动传感器的谐振频率为1500Hz~3000Hz。优选地,振动单元130作用于第二声学腔体142可以使得振动传感器的谐振频率为2000Hz~2800Hz。在一些实施例中,通过调节振动传感器的谐振频率范围,在一些情况下,可以有助于提高振动传感器的灵敏度,同时不影响振动传感器实际接收有效振 动信号的性能。例如,在一些实施例中,通过调节振动传感器的谐振频率至2000Hz左右,可以使振动传感器具有录制音乐的性能。又例如,在一些实施例中,通过调节振动传感器的谐振频率至1000Hz左右,可以使振动传感器在800Hz以下的频响曲线较平,具有较好的录制语音的性能。
为了更清楚地描述,振动传感器的谐振频率可以表示为:
Figure PCTCN2020140180-appb-000006
由公式(5)和(6)可知,当减小
Figure PCTCN2020140180-appb-000007
时,第二声学腔体142的声压变化量Δp变大,同时振动传感器的谐振频率降低。图3是根据本申请一些实施例提供的振动传感器的频率响应曲线图。在一些实施例中,通过降低谐振频率可以使得振动传感器的灵敏度在特定频率范围内得到提高。这里的特定频率范围可以是指20Hz~3000Hz。在其它的实施例中,所述特定频率范围可以根据实际情况进行调整,在此不做进一步限定。仅作为示例性说明,如图3所示,当振动传感器的谐振频率从3500Hz降低到2500Hz时,在频率小于1000Hz的范围内,振动传感器灵敏度增加了大约6dB;进一步地,频率在2500Hz左右时,振动传感器的灵敏度增加了大约12dB。在一些实施例中,通过调整弹性元件132的弹性强度k和质量元件131的质量m,可以使得振动传感器的谐振频率位于合适的频率范围,从而使振动传感器的灵敏度在一定频率范围内得到显著提高,同时不影响振动传感器实际接收外部振动信号时的性能。
以具有圆柱形壳体结构、圆管形的弹性元件、圆柱形质量元件的振动传感器为例,第一声学腔体为圆柱形(或者近似圆柱形),弹性元件的弹性强度可以表示为:
Figure PCTCN2020140180-appb-000008
其中,E 1是弹性元件的弹性模量,S 1是弹性元件的轴截面面积,h 1是弹性元件的轴向高度(即弹性元件沿着轴线方向的尺寸)。质量元件的质量可以表示为:
m=S 2h 2ρ,         (8)
其中,S 2是质量元件的轴截面面积,h 2是质量元件的轴向高度,ρ是质量元件的密度。由公式(7)和(8)可以推导出:
Figure PCTCN2020140180-appb-000009
由公式(9)可知,保持谐振频率ω 0不变,也即h 1h 2为一定值的情况下,当h 1=h 2时,振动单元的轴向高度h=h 1+h 2最小,因此通过调节弹性元件的轴向高度h 1和质 量元件的轴向高度h 2,使得两者的轴向高度相接近,以使振动传感器的体积较小,且不影响振动传感器的谐振频率。优选地,弹性元件与质量元件轴向高度的差值小于振动单元轴向高度的70%,进一步优选地,弹性元件与质量元件轴向高度的差值小于振动单元轴向高度的50%,更进一步优选地,弹性元件与质量元件轴向高度的差值小于振动单元轴向高度的20%,更进一步优选地,弹性元件与质量元件轴向高度的差值小于振动单元轴向高度的5%。
在一些实施例中,通过调整质量元件的形状、体积或结构(例如,使用异形质量元件),可以在振动单元的轴向高度不增加且振动传感器体积也不增加的情况下,改变振动传感器的谐振频率。在一些实施例中,还可以通过减小质量元件的轴截面面积,可以减小振动传感器的谐振频率。优选地,弹性元件的轴截面面积S 1与质量元件的轴截面面积S 2之比可以在1∶2~1∶10之间,进一步优选地,弹性元件的轴截面面积S 1与质量元件的轴截面面积S 2之比可以在1∶2~1∶5之间,更进一步优选地,弹性元件的轴截面面积S 1与质量元件的轴截面面积S 2之比可以在1∶2~1∶4之间。
需要注意的是,以上对调节振动传感器的谐振频率或质量单元体积的描述仅作为示例性说明,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解上述调节方式的基本原理后,可能在不背离这一原理的情况下,对实施振动传感器的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,振动传感器可以是长方体、圆台体等规则或不规则形状。又例如,弹性元件可以是方管状,异形管状,环状,平板等。再例如,质量元件可以是长方体、梯形体、圆锥体、三棱锥体、不规则形状等。本领域的专业人员可以将上述调节方式的基本原理应用于具有不同形状或其内部元件形状不同的振动传感器中。
在一些实施例中,弹性元件132的弹性强度k的值可以在10N/m~2000N/m之间;优选地,弹性元件132的弹性强度k的值可以在100N/m~1000N/m之间;进一步优选地,弹性元件132的弹性强度k的值可以在400N/m~700N/m之间。质量元件131的质量m的值可以在0.001g~1g之间;优选地,质量元件131的质量m的值可以在0.005g~0.5g之间;进一步优选地,质量元件131的质量m的值可以在0.01g~0.05g之间。
在一些实施例中,综合谐振系统中影响谐振频率和灵敏度的因素,考虑谐振系统的品质因子。谐振系统的品质因子的表达式为:
Figure PCTCN2020140180-appb-000010
图4是根据本申请一些实施例提供的振动传感器的频率响应曲线图。如图4所示,当谐振系统的品质因子Q的值较高时,振动传感器中高频频段(例如,800Hz-8000Hz)的灵敏度变化较大,不便于振动传感器对该频段的振动信号进行处理。当谐振系统的品质因子Q的值较低时,振动传感器在中高频频段的灵敏度下降较快,使得振动传感器在中高频时灵敏度较低。因此,可以通过调整谐振系统的阻尼c、质量元件131的质量m、弹性元件132的弹性强度k、使谐振系统的品质因子Q的值在一定范围之内,进而使得振动传感器在中高频频段具有较高的灵敏度,且灵敏度的变化较为稳定。例如,谐振系统的品质因子Q的值可以在0.7-10之间。优选地,谐振系统的品质因子Q的值可以在0.8~5之间;进一步优选地,谐振系统的品质因子Q的值可以在1~3之间;更进一步优选地,谐振系统的品质因子Q的值可以在1.5~2.5之间。在一些实施例中,可以先确定质量元件131的质量m和弹性元件132的弹性强度k以确定振动传感器的谐振频率在上文所述的范围中,例如,弹性元件的弹性强度为10N/m~2000N/m,质量元件的质量为0.001g~1g,再确定谐振系统的阻尼c,以使谐振系统的品质因子Q在0.7~10,使得振动传感器灵敏度的进一步提高。在一些实施例中,弹性元件的弹性强度可以在10N/m~2000N/m之间,此时质量元件的质量可以在0.02g~0.03g之间;在一些实施例中,弹性元件的弹性强度可以在10N/m~800N/m之间,此时质量元件的质量可以在0.01g~0.05g之间;在一些实施例中,弹性元件的弹性强度可以在30N/m~2000N/m之间,此时质量元件的质量可以在0.05g~0.1g之间。在一些实施例中,弹性元件132的弹性强度k的值可以是2000N/m,质量元件131的质量m的值可以是0.03g,对应地,振动传感器的谐振频率约为8000Hz。在一些实施例中,弹性元件132的弹性强度k的值可以是10N/m,质量元件131的质量m的值可以是0.015g,对应地,振动传感器的谐振频率约为800Hz。在一些实施例中,弹性元件132的弹性强度k的值可以是650N/m,质量元件131的质量m的值可以是0.1g,对应地,振动传感器的谐振频率约为2600Hz。
在一些实施例中,第二声学腔体142的声压变化与角频率频率之间的关系可以进一步转化为以下表达式:
Figure PCTCN2020140180-appb-000011
在公式(11)中,以图1为例,将图1中质量元件131与背离弹性元件132的面所在平面(该平面以图1中的虚线进行表示)作为划分平面,可以将第二声学腔体 142的体积划分为两部分,当弹性元件132与壳体结构110之间的缝隙满足装配所需预留空间要求且最小时,背离声学换能器120一侧的体积为V 1,朝向声学换能器120一侧的体积为V 2,此时若调整质量元件131的截面面积S,背离声学换能器120一侧的体积V 1不发生变化;朝向声学换能器120一侧的体积V 2随质量元件131的截面面积S大小变化而变化。V 2/S表示质量元件131与声学换能器120之间的距离。由公式(11)可知,通过增大质量元件131的截面面积S,或者减小第二声学腔体142中各处的装配缝隙,可以减小第二声学腔体142的体积,进而提高振动传感器灵敏度。装配缝隙是在各个元件之间必须预留的空间,以防元件在装配过程中由于工艺误差无法装入、或者发生不需要的接触,在一些实施例中,装配缝隙指的是第二声学腔体中除了V 2以外的其它部分,比如,可以包括弹性元件132与质量元件131之间的缝隙、弹性元件132与壳体结构110之间的缝隙以及弹性元件132与声学换能器120之间的缝隙。在一些实施例中,弹性元件132与质量元件131之间的缝隙间距、弹性元件132与壳体结构110之间的缝隙间距以及弹性元件132与声学换能器120之间的缝隙间距可以不大于0.1mm。
由于声学换能器会产生电信号底噪,使用信噪比较高的声学换能器,可以有助于提高振动传感器的信噪比。在一些实施例中,选用的声学换能器的信噪比大于63dB。优选地,选用的声学换能器的信噪比大于65dB;进一步优选地,选用的声学换能器的信噪比大于70dB的。
图5是根据本申请一些实施例提供的振动传感器的结构示意图。如图5所示,在一些实施例中,振动传感器可以包括壳体结构510,弹性元件532,质量元件531,声学换能器520。图5中所示的振动传感器可以与振动传感器100相同或类似。壳体结构510可以与壳体结构110相同或类似。弹性元件532可以与弹性元件132相同或类似。质量元件531可以与质量元件131相同或类似。弹性元件532和质量元件531可以共同组成与振动传感器100的振动单元130相同或类似的振动单元。声学换能器520可以与声学换能器120相同或类似。图5中所示的振动传感器的第二声学腔体542可以与振动传感器100的第二声学腔体142相同或类似。
声学换能器520与壳体结构510、弹性元件532和质量元件531共同围成第二声学腔体542。弹性元件532位于质量元件531背离声学换能器520的一侧,弹性元件532的一端与壳体结构510连接,弹性元件532的另一端与质量元件531连接。仅仅作为示例,弹性元件532可以是空心柱体的结构,其环绕质量元件531的中心轴线(即穿过质量元件531的中心的轴线)分布。如图5所示,假设壳体结构510的顶端为与人脸 接触且接收振动信号的一端,则弹性元件532的底端固定连接在质量元件531的朝向壳体结构510顶端的一侧,弹性元件532的顶端固定连接在壳体结构510的朝向质量元件531的一侧。在一些可替换的实施例中,弹性元件532与壳体结构510相连的位置可以位于壳体结构510的侧壁上。
在一些实施例中,弹性元件532的材料可以包括金属材料或非金属材料。金属材料可以包含但不限于钢材(例如,不锈钢、碳素钢等)、轻质合金(例如,铝合金、铍铜、镁合金、钛合金等)等,或其任意组合。非金属材料可以包括但不限于聚氨酯发泡材料、玻璃纤维、碳纤维、硼纤维、石墨纤维、石墨烯纤维、碳化硅纤维、芳纶纤维等。在一些实施例中,弹性元件532的材料的种类也可以按照其他方式进行分类,不限于上述的金属材料和非金属材料,例如,弹性元件532的材料的种类还可以包括单一材料或复合材料。在一些实施例中,质量元件5321所使用的材料可以包括上述描述的金属材料或非金属材料,在此不做赘述。
在一些实施例中,弹性元件532与质量元件531和壳体结构510之间可以采用粘结剂进行粘接,也可以采用本领域技术人员熟知的其它连接方式(例如,焊接、卡接等),对此不作限制。
图6是根据本申请一些实施例提供的振动传感器的结构示意图。图6中所示的振动传感器与图5中所示的振动传感器大致相同,其区别之处在于,图6中所示的振动传感器中,弹性元件632位于质量元件631的周侧,弹性元件632的内侧与质量元件631连接,弹性元件632背离声学换能器620的端部仍然与壳体结构610连接。弹性元件632在质量元件631的轴线方向上的高度可以小于、等于或大于质量元件631在轴线方向上的高度。声学换能器620与壳体结构610、弹性元件632和质量元件631共同围成第二声学腔体642。
图7是根据本申请一些实施例提供的振动传感器的结构示意图。图7中所示的振动传感器与图5中所示的振动传感器大致相同,其区别之处在于,弹性元件732位于所述质量元件731的周侧,其中,弹性元件732的外侧与壳体结构710的侧壁连接,弹性元件732的内侧与质量元件731连接。弹性元件732在质量元件731的轴线方向上的高度可以小于、等于或大于质量元件731在轴线方向上的高度。声学换能器720与壳体结构710、弹性元件732和质量元件731共同围成第二声学腔体742。
图8是根据本申请一些实施例提供的振动传感器的结构示意图。图8中所示的振动传感器与图5中所示的振动传感器大致相同,其区别之处在于,图8中所示的弹性 元件832与图5中所示的弹性元件532的结构不同,其中,弹性元件832在轴线所在截面的截面形状为两侧对称的圆弧形或波浪形。可以认为质量元件831相对于壳体结构810振动的方向为轴线方向。在一些实施例中,轴线所在截面可以是与振动传感器轴线共线或平行的截面。在一些实施例中,弹性元件832的截面形状可以为向内凹的圆弧形或波浪形。在一些实施例中,弹性元件832的截面形状也可以为向外凸的圆弧形或波浪形。在一些实施例中,弹性元件的截面形状还可以为长方形、梯形、平行四边形等规则或不规则的形状。一方面,由于弹性元件832的弹性系数与其形状有关,可以通过改变弹性元件832的形状以调节其弹性系数,进而可以调节振动传感器的谐振频率,进一步提高振动传感器的灵敏度。另一方面,弹性元件832的形状在变形过程中可以对第二声学腔体842的腔体体积造成影响,进而提高振动传感器的灵敏度。例如,当弹性元件832的截面形状为内凹弧形时,弹性元件832的形变主要可以来源于其形状的形变,当质量元件831向下移动时,弹性部件832向内凹陷的部分随形变而向外扩张,可以进一步减小第二声学腔体842的体积,进而提高振动传感器的灵敏度。
图9是根据本申请一些实施例提供的振动传感器的结构示意图。图9中所示的振动传感器可以与振动传感器100相同或类似。壳体结构910可以与壳体结构110相同或类似。质量元件931可以与质量元件131相同或类似。弹性元件932和质量元件931可以共同组成与振动传感器100的振动单元130相同或类似的振动单元。声学换能器920可以与声学换能器120相同或类似。图9中所示的振动传感器的第二声学腔体942可以与振动传感器100的第二声学腔体142相同或类似。图9中所示的振动传感器的第三声学腔体941可以与振动传感器100的第二声学腔体141相同或类似。在一些实施例中,弹性元件932可以为平面结构。弹性元件932位于质量元件931朝向声学换能器920的一侧,其中,弹性元件932可以与壳体结构910连接。在一些实施例中,弹性元件932的周侧可以与壳体结构910的侧壁密封连接,这里的密封连接指的是弹性元件932可以将第三声学腔体941和第二声学腔体942相隔绝。在一些实施例中,质量元件931上与声学换能器920相对的一侧可以部分或全部与弹性元件932贴合。例如,质量元件931上与声学换能器920相对的一侧可以全部贴合于弹性元件932。又例如,弹性元件932处设有贯通部,该贯通部的面积小于或等于声学换能器920侧部的面积,进而质量元件931可以覆盖该贯通部或与该贯通部过盈配合。弹性元件932、壳体结构910和声学换能器920共同围成第二声学腔体942。需要注意的是,弹性元件932为平面结构并不限于平直的板状结构,例如,弹性元件932两侧的表面可以为内凹、外凸等非平 面,关于弹性元件932的形状和结构可以根据具体情况进行调整。
图10是根据本申请一些实施例提供的振动传感器的结构示意图。图10中所示的振动传感器与图5中所示的振动传感器大致相同,其区别之处在于,质量元件1031的截面面积大于声学换能器1020的截面面积。由上述公式(10)可以知晓,当声学换能器1020的截面面积一定时,通过增大质量元件1031的截面面积可以提高振动传感器的灵敏度。仅作为示例性说明,质量元件1031截面面积约为5mm 2,声学换能器1020的截面面积约为4mm 2。需要注意的是,质量元件1031和声学换能器1020的截面面积的大小可以根据振动传感器应用的场景进行适应性调整。例如,当振动传感器的尺寸较大时,质量元件1031和声学换能器1020的截面面积可以同时放大,或增大质量元件1031的截面面积,或减小声学换能器1020的截面面积。又例如,当振动传感器的尺寸较小时,质量元件1031和声学换能器1020的截面面积可以同时缩小,或减小声学换能器1020的截面面积。另外,这里的截面面积可以是指垂直于轴线方向的截面面积。需要说明的是,图10中振动传感器的弹性元件1032和质量元件1031可以具有与图6中弹性元件632和质量元件631相同或类似的结构;即,弹性元件1032可以位于质量元件1031的周侧,弹性元件1032的内侧与质量元件1031连接。或者,弹性元件1032和质量元件1031可以具有与图7中弹性元件732和质量元件731相同或类似的结构;即,弹性元件1032可以位于所述质量元件1031的周侧,其中,弹性元件1032的外侧与壳体结构1010的侧壁连接,弹性元件1032的内侧与质量元件1031连接。或者,弹性元件1032也可以具有与图8中弹性元件832相同或类似的结构。或者,弹性元件1032和质量元件1031可以具有与图9中弹性元件932和质量元件931相同或类似的结构。或者,弹性元件1032和质量元件1031还可以具有其他类似的形状和位置变化,比如,使图8中的弹性元件832以类似图6中的弹性元件632的连接方式连接在质量元件的周侧,本实施例不作限制。
在一些实施例中,通过调整第一声学腔体1040(例如,第二声学腔体1042和第三声学腔体1041)中元件各处的装配缝隙,也可以提高振动传感器的灵敏度。在一些实施例中,弹性元件1032与质量元件1031之间的缝隙间距、弹性元件1032与壳体结构1010之间的缝隙间距以及弹性元件1032与声学换能器1020之间的缝隙间距小于等于0.1mm。
图11是根据本申请一些实施例提供的振动传感器的结构示意图。图11中所示的振动传感器与图5中所示的振动传感器大致相同,其区别之处在于,质量元件1131 具有第一突出部11311,第一突出部11311在质量元件1131背离声学换能器1120的一侧,位于壳体结构1110,弹性元件1132和质量元件1131所限定的第三声学腔体1141中。在一些实施例中,在质量元件1131背离声学换能器一侧设置第一突出部11311可以增大质量元件1131的质量,调节振动传感器的谐振频率,进而提高振动传感器的灵敏度。同时,由于第一突出部11311位于第三声学腔体1141中,在提高振动传感器的灵敏度的前提下,可以不增加振动传感器的整体体积。需要说明的是,图11中振动传感器的弹性元件1132和质量元件1131可以具有与图6中弹性元件632和质量元件631相同或类似的结构;即,弹性元件1132可以位于质量元件1131的周侧,弹性元件1132的内侧与质量元件1131连接。或者,弹性元件1132和质量元件1131可以具有与图7中弹性元件732和质量元件731相同或类似的结构;即,弹性元件1132可以位于所述质量元件1131的周侧,其中,弹性元件1132的外侧与壳体结构1110的侧壁连接,弹性元件1132的内侧与质量元件1131连接。或者,弹性元件1132可以具有与图8中弹性元件832相同或类似的结构。或者,弹性元件1132和质量元件1131可以具有与图9中弹性元件932和质量元件931相同或类似的结构。或者,弹性元件1132和质量元件1131还可以具有其他类似的形状和位置变化,比如,使图8中的弹性元件832以类似图6中的弹性元件632的连接方式连接在质量元件的周侧,本实施例不作限制。
图12是根据本申请一些实施例提供的振动传感器的结构示意图。图12中所示的振动传感器与图5中所示的振动传感器大致相同,其区别之处在于,弹性元件1232位于质量元件1231朝向声学换能器1220的一侧。弹性元件1232的一端与质量元件1231连接,弹性元件1232的另一端与声学换能器1220连接。弹性元件1232和声学换能器1220可以形成第二声学腔体1242,采用该实施例中的结构和连接方式可以进一步减小第二声学腔体1242的体积,进而可以提高振动传感器的灵敏度。需要说明的是,图12中振动传感器的弹性元件1232和质量元件1231可以具有与图6中弹性元件632和质量元件631相同或类似的结构,即,弹性元件1232可以位于质量元件1231的周侧,弹性元件1232的内侧与质量元件1231连接。或者,弹性元件1232可以具有与图8中弹性元件832相同或类似的结构。或者,弹性元件1232和质量元件1231还可以具有其他类似的形状和位置变化,比如,使图8中的弹性元件832以类似图6中的弹性元件632的连接方式连接在质量元件的周侧,本实施例不作限制。
图13是根据本申请一些实施例提供的振动传感器的结构示意图。图13中所示的振动传感器与图12中所示的振动传感器大致相同,其区别之处在于,质量元件1331 具有第二突出部13312,第二突出部13312在质量元件1331朝向声学换能器1320的一侧,位于弹性元件1332和质量元件1131所限定的第二声学腔体1320中。在一些实施例中,在质量元件1331朝向声学换能器1320的一侧设置第二突出部13312可以增大质量单元1331的质量,同时进一步减小第二声学腔体1342的体积,以调节振动传感器的谐振频率,进而提高振动传感器的灵敏度,同时不增加振动传感器的整体体积。
图14是根据本申请一些实施例提供的振动传感器的结构示意图。图14中所示的振动传感器与图11中所示的振动传感器大致相同,其区别之处在于,质量元件1431还具有第三突出部14313,其中,第三突出部14313位于质量元件1431朝向声学换能器1420的一侧,第三突出部14313至少部分伸入声学换能器1420中。在一些实施例中,声学换能器1420与第三突出部14313位置相对处设有凹槽,第三声学突出部14313通过该凹槽伸入声学换能器1420中。在一些实施例中,声学换能器1420可以包括声学振膜14202,声学振膜14202位于上述凹槽内。通过设置第三突出部14313,可以在不增加振动传感器整体体积的同时,进一步增大质量元件1431的体积,进而增大质量元件1431的质量,以调节振动传感器的谐振频率,减小第二声学腔体1442的体积,进而提高振动传感器的灵敏度。
图15是根据本申请一些实施例提供的振动传感器的结构示意图。图15中所示的振动传感器可以与振动传感器100相同或类似。壳体结构1510可以与壳体结构110相同或类似。弹性元件1532可以与弹性元件132相同或类似。质量元件1531可以与质量元件131相同或类似。弹性元件1532和质量元件1531可以共同组成与振动传感器100的振动单元130相同或类似的振动单元。声学换能器1520可以与声学换能器120相同或类似。图15中所示的振动传感器的第二声学腔体1542可以与振动传感器100的第二声学腔体142相同或类似。图15中所示的振动传感器的第三声学腔体1541可以与振动传感器100的第二声学腔体141相同或类似。如图15所示,质量元件1531上设有至少一个第一泄压孔15311,第一泄压孔15311贯穿质量元件1531。第一泄压孔15311可以使第二声学腔体1542和第三声学腔体1541连通,有助于平衡第二声学腔体1542和第三声学腔体1541的气压差,这种气压差一般是装配所导致的。例如,在声学输出装置的装配过程中,第三声学腔体1541形成和第二声学腔体1542形成时的环境条件和装配方式可能不同,使得第三声学腔体1541与第二声学腔体1542内的气压不同,具有气压差。在一些实施例中,可以先将弹性元件1532安装在壳体结构1510上,再将质量元件1531安装在弹性元件1532上,形成第三声学腔体1541,最后将壳体结构1510安 装在声学换能器1520上,形成第二声学腔体1542。第一泄压孔15311可以使第三声学腔体1541与第二声学腔体1542内的气体流通,进而平衡气压差。第一泄压孔15311可以具有第一声学阻抗,通过调整第一声阻抗,可以设定振动传感器的预定低频滚降响应,即可以减小低于预定频率的振动传感器响应,在一些情况下,可以有助于消除低于预定频率的噪声信号,和/或避免设备过载。低频滚降响应曲线的形状与第一泄压孔的尺寸有关,例如较大的第一泄压孔15311具有较小的第一声学阻抗,可以导致较大的低频衰减。需要注意的是,第一泄压孔15311不应影响第二声学腔体1542和第三声学腔体1541的声学密封。
图16是根据本申请一些实施例提供的振动传感器的结构示意图。图16中所示的振动传感器与图15中所示的振动传感器大致相同,其区别之处在于,弹性元件1632设有至少一个第二泄压孔16321,第二泄压孔16321贯穿弹性元件1632。第二泄压孔16321与第一泄压孔15311所起的作用相同。同样的,第二泄压孔16321不应影响第二声学腔体1642和第三声学腔体1641的声学密封。在一些实施例中,振动传感器可以同时具有质量元件上的第一泄压孔和弹性元件上的第二泄压孔。
图17是根据本申请一些实施例提供的振动传感器的结构示意图。图17中所示的振动传感器与图5中所示的振动传感器大致相同,其区别之处在于,振动传感器还包括电路板17202,电路板17202被配置为接收并输送声学换能器1720的电信号。电路板17202位于声学换能器1720与质量元件1731位置相对的一侧。电路板17202可以采用PCB板或FPC板等,对此不作限制。在一些实施例中,可以将声学换能器1720装配到电路板17202上之后,再装配壳体结构1710、弹性元件1732和质量元件1731,壳体结构1710、弹性元件1732和质量元件1731可以是预先装配好的整体部件,在一些情况下,有助于提高装配的灵活性。需要说明的是,图17中振动传感器的弹性元件1732和质量元件1731可以具有与图6中弹性元件632和质量元件631相同或类似的结构;即,弹性元件1732可以位于质量元件1731的周侧,弹性元件1732的内侧与质量元件1131连接。或者,弹性元件1732和质量元件1731可以具有与图7中弹性元件732和质量元件731相同或类似的结构;即,弹性元件1732可以位于所述质量元件17131的周侧,其中,弹性元件1732的外侧与壳体结构1710的侧壁连接,弹性元件1732的内侧与质量元件1731连接。或者,弹性元件1732可以具有与图8中弹性元件832相同或类似的结构。或者,弹性元件1732和质量元件1731可以具有与图9中弹性元件932和质量元件931相同或类似的结构。或者,弹性元件1732和质量元件1731还可以具有其 他类似的形状和位置变化,比如,使图8中的弹性元件832以类似图6中的弹性元件632的连接方式连接在质量元件的周侧,本实施例不作限制。
本领域技术人员可以将图5至图17所示实施例的方案以合理方式做任意组合,该类组合仍属于本申请示范实施例的精神和范围。比如,将图8、图11和图15所示实施例的方案结合,即弹性元件可以具有与图8中弹性元件832相同或类似的结构,即弹性元件在轴线所在截面的截面形状为两侧对称的圆弧形或波浪形,质量元件可以具有与图11中质量元件1131相同或类似的结构,即质量元件具有第一突出部,第一突出部在质量元背离声学换能器的一侧;同时质量元件可以具有与图15中质量元件1531相同或类似的结构,即质量元件上设有至少一个第一泄压孔。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行 传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、VisualBasic、Fortran2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内 容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (19)

  1. 一种振动传感器,其特征在于,所述振动传感器包括:
    壳体结构和声学换能器,其中,所述声学换能器与所述壳体结构物理连接,其中,至少部分由所述壳体结构与所述声学换能器限制形成所述第一声学腔体;
    振动单元,所述振动单元位于第一声学腔体中,并将所述第一声学腔体分隔为第二声学腔体和第三声学腔体,其中,所述第二声学腔体与所述声学换能器声学连通;
    所述壳体结构被配置为基于外部振动信号产生振动,所述振动单元响应于所述壳体结构的振动使所述第二声学腔体的体积改变,所述声学换能器基于所述第二声学腔体体积的改变产生电信号;
    所述振动单元作用于所述第二声学腔体使得所述振动传感器的谐振频率为800Hz~8000Hz。
  2. 根据权利要求1所述的振动传感器,其特征在于,
    所述振动单元、所述壳体结构和所述声学换能器形成谐振系统,所述谐振系统的品质因子为0.7~10。
  3. 根据权利要求1所述的振动传感器,其特征在于,
    所述振动单元包括质量元件和弹性元件,所述质量元件与所述壳体结构或所述声学换能器通过所述弹性元件连接。
  4. 根据权利要求3所述的振动传感器,其特征在于,
    所述弹性元件的弹性强度为10N/m~2000N/m。
  5. 根据权利要求3所述的振动传感器,其特征在于,
    所述质量元件的质量为0.001g~1g。
  6. 根据权利要求3所述的振动传感器,其特征在于,所述弹性元件位于所述质量元件背离所述声学换能器的一侧,所述弹性元件的一端与所述壳体结构连接,所述弹性元件的另一端与所述质量元件连接。
  7. 根据权利要求6所述的振动传感器,其特征在于,所述质量元件背离所述声学换能器的一侧设有第一突出部。
  8. 根据权利要求6所述的振动传感器,其特征在于,所述振动传感器还包括电路板,所述电路板被配置为接收并输送所述声学换能器输出的电信号;其中,所述电路板位于所述声学换能器与所述质量元件位置相对的一侧。
  9. 根据权利要求3所述的振动传感器,其特征在于,所述弹性元件位于所述质量元件朝向所述声学换能器的一侧,所述弹性元件的一端与所述质量元件连接,所述弹性元件的另一端与所述声学换能器连接。
  10. 根据权利要求9所述的振动传感器,其特征在于,所述质量元件朝向所述声学换能器的一侧设有第二突出部。
  11. 根据权利要求6-10任一所述的振动传感器,其特征在于,所述质量元件朝向所述声学换能器的一侧设有第三突出部,所述第三突出部至少部分伸入所述声学换能器中,并与所述声学换能器的振膜位置相对。
  12. 根据权利要求3所述的振动传感器,其特征在于,所述弹性元件为平面结构,所述弹性元件位于所述质量元件朝向所述声学换能器的一侧,所述弹性元件与所述壳体结构连接,所述质量元件朝向所述声学换能器的侧面与所述弹性元件连接。
  13. 根据权利要求3所述的振动传感器,其特征在于,所述弹性元件位于所述质量元件的周侧,所述弹性元件的外侧与所述壳体结构连接,所述弹性元件的内侧与所述质量元件连接。
  14. 根据权利要求3所述的振动传感器,其特征在于,所述弹性元件位于所述质量元件的周侧,所述弹性元件的内侧与所述质量元件连接,所述弹性元件的端部与所述壳体结构或所述声学换能器连接。
  15. 根据权利要求3所述的振动传感器,其特征在于,所述弹性元件的截面形状为长方形、梯形、平行四边形、圆弧形、或波浪形。
  16. 根据权利要求3所述的振动传感器,其特征在于,所述质量元件上设有至少一个第一泄压孔,所述至少一个第一泄压孔贯穿所述质量元件。
  17. 根据权利要求3所述的振动传感器,其特征在于,所述弹性元件设有至少一个第二泄压孔,所述至少一个第二泄压孔贯穿所述弹性元件。
  18. 根据权利要求3所述的振动传感器,其特征在于,所述质量元件的截面积大于所述声学换能器的截面积。
  19. 根据权利要求3所述的振动传感器,其特征在于,所述弹性元件与所述壳体结构之间的缝隙间距以及所述弹性元件与所述声学换能器之间的缝隙间距小于等于0.1mm。
PCT/CN2020/140180 2020-12-28 2020-12-28 一种振动传感器 WO2022140921A1 (zh)

Priority Applications (31)

Application Number Priority Date Filing Date Title
PCT/CN2020/140180 WO2022140921A1 (zh) 2020-12-28 2020-12-28 一种振动传感器
KR1020237017105A KR20230091147A (ko) 2020-12-28 2020-12-28 진동센서
JP2023531069A JP2023550511A (ja) 2020-12-28 2020-12-28 振動センサー
EP20967273.2A EP4203511A4 (en) 2020-12-28 2020-12-28 VIBRATION SENSOR
CN202080106635.3A CN116391364A (zh) 2020-12-28 2020-12-28 一种振动传感器
CN202180057727.1A CN116250253A (zh) 2020-12-28 2021-07-22 一种振动传感器
KR1020237013883A KR20230074238A (ko) 2020-12-28 2021-07-22 진동센서
JP2023524771A JP2023547160A (ja) 2020-12-28 2021-07-22 振動センサ
CN202110833051.2A CN114697779A (zh) 2020-12-28 2021-07-22 一种振动传感器
PCT/CN2021/107978 WO2022142291A1 (zh) 2020-12-28 2021-07-22 一种振动传感器
EP21913042.4A EP4203512A4 (en) 2020-12-28 2021-07-22 VIBRATION SENSOR
EP21913481.4A EP4187216A4 (en) 2020-12-28 2021-11-05 VIBRATION SENSOR
PCT/CN2021/129148 WO2022142737A1 (zh) 2020-12-28 2021-11-05 一种振动传感器
BR112023004959A BR112023004959A2 (pt) 2020-12-28 2021-11-05 Sensores de vibração
KR1020237011481A KR20230058525A (ko) 2020-12-28 2021-11-05 진동센서
JP2023521923A JP2023544877A (ja) 2020-12-28 2021-11-05 振動センサ
CN202111309102.8A CN114697823A (zh) 2020-12-28 2021-11-05 一种振动传感器
CN202180066637.9A CN116584108A (zh) 2020-12-28 2021-11-05 一种振动传感器
CN202111413109.4A CN114697839A (zh) 2020-12-28 2021-11-25 一种振动传感器及其装配方法
CN202122924309.8U CN216391413U (zh) 2020-12-28 2021-11-25 一种振动传感器
BR112023003742A BR112023003742A2 (pt) 2020-12-28 2021-12-21 Sensor de vibração
EP21914041.5A EP4184134A4 (en) 2020-12-28 2021-12-21 VIBRATION SENSOR
CN202111573072.1A CN114697824B (zh) 2020-12-28 2021-12-21 一种振动传感器
PCT/CN2021/140090 WO2022143302A1 (zh) 2020-12-28 2021-12-21 一种振动传感器
CN202180057471.4A CN116171582A (zh) 2020-12-28 2021-12-21 一种振动传感器
KR1020237011152A KR20230058505A (ko) 2020-12-28 2021-12-21 진동센서
JP2023518843A JP2023543765A (ja) 2020-12-28 2021-12-21 振動センサ
US18/168,585 US20230199370A1 (en) 2020-12-28 2023-02-14 Vibration sensor
US18/173,043 US20230199360A1 (en) 2020-12-28 2023-02-22 Vibration sensors
US18/181,537 US20230217147A1 (en) 2020-12-28 2023-03-09 Vibration sensors
US18/185,352 US20230224630A1 (en) 2020-12-28 2023-03-16 Vibration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140180 WO2022140921A1 (zh) 2020-12-28 2020-12-28 一种振动传感器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/185,352 Continuation US20230224630A1 (en) 2020-12-28 2023-03-16 Vibration sensor

Publications (1)

Publication Number Publication Date
WO2022140921A1 true WO2022140921A1 (zh) 2022-07-07

Family

ID=82258997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140180 WO2022140921A1 (zh) 2020-12-28 2020-12-28 一种振动传感器

Country Status (6)

Country Link
US (1) US20230224630A1 (zh)
EP (1) EP4203511A4 (zh)
JP (1) JP2023550511A (zh)
KR (1) KR20230091147A (zh)
CN (1) CN116391364A (zh)
WO (1) WO2022140921A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160014530A1 (en) * 2014-07-14 2016-01-14 Invensense, Inc. Packaging concept to improve performance of a micro-electro mechanical (mems) microphone
CN108513241A (zh) * 2018-06-29 2018-09-07 歌尔股份有限公司 振动传感器和音频设备
CN208434106U (zh) * 2018-08-01 2019-01-25 歌尔科技有限公司 一种用于振动传感器的振动组件及振动传感器
CN110603819A (zh) * 2018-12-29 2019-12-20 共达电声股份有限公司 Mems声音传感器、mems麦克风及电子设备
CN210093551U (zh) * 2019-06-27 2020-02-18 瑞声声学科技(深圳)有限公司 振动传感器和音频设备
CN210927933U (zh) * 2019-12-30 2020-07-03 瑞声声学科技(深圳)有限公司 驻极体骨导麦克风
CN211085470U (zh) * 2019-11-19 2020-07-24 歌尔微电子有限公司 用于振动感测装置的振动机构以及振动感测装置
CN111556419A (zh) * 2020-05-27 2020-08-18 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN211930820U (zh) * 2020-05-28 2020-11-13 青岛歌尔智能传感器有限公司 振动传感器和音频设备
CN211959556U (zh) * 2020-05-08 2020-11-17 无锡韦尔半导体有限公司 骨传导mems麦克风的封装结构及移动终端
CN212183709U (zh) * 2020-07-21 2020-12-18 山东新港电子科技有限公司 一种微型振动传感器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111131988B (zh) * 2019-12-30 2021-06-18 歌尔股份有限公司 振动传感器和音频设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160014530A1 (en) * 2014-07-14 2016-01-14 Invensense, Inc. Packaging concept to improve performance of a micro-electro mechanical (mems) microphone
CN108513241A (zh) * 2018-06-29 2018-09-07 歌尔股份有限公司 振动传感器和音频设备
CN208434106U (zh) * 2018-08-01 2019-01-25 歌尔科技有限公司 一种用于振动传感器的振动组件及振动传感器
CN110603819A (zh) * 2018-12-29 2019-12-20 共达电声股份有限公司 Mems声音传感器、mems麦克风及电子设备
CN210093551U (zh) * 2019-06-27 2020-02-18 瑞声声学科技(深圳)有限公司 振动传感器和音频设备
CN211085470U (zh) * 2019-11-19 2020-07-24 歌尔微电子有限公司 用于振动感测装置的振动机构以及振动感测装置
CN210927933U (zh) * 2019-12-30 2020-07-03 瑞声声学科技(深圳)有限公司 驻极体骨导麦克风
CN211959556U (zh) * 2020-05-08 2020-11-17 无锡韦尔半导体有限公司 骨传导mems麦克风的封装结构及移动终端
CN111556419A (zh) * 2020-05-27 2020-08-18 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN211930820U (zh) * 2020-05-28 2020-11-13 青岛歌尔智能传感器有限公司 振动传感器和音频设备
CN212183709U (zh) * 2020-07-21 2020-12-18 山东新港电子科技有限公司 一种微型振动传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4203511A4 *

Also Published As

Publication number Publication date
EP4203511A4 (en) 2023-11-29
EP4203511A1 (en) 2023-06-28
CN116391364A (zh) 2023-07-04
JP2023550511A (ja) 2023-12-01
KR20230091147A (ko) 2023-06-22
US20230224630A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
CN110611873B (zh) 一种骨传导扬声器的测试方法
CN218162856U (zh) 一种振动传感器
WO2022262639A1 (zh) 一种振动传感器
CN215300865U (zh) 一种振动传感器
US20230199360A1 (en) Vibration sensors
WO2022140921A1 (zh) 一种振动传感器
US20230288250A1 (en) Vibration sensors
WO2022142291A1 (zh) 一种振动传感器
WO2022142737A1 (zh) 一种振动传感器
RU2809948C1 (ru) Датчик вибрации
RU2818792C1 (ru) Датчики вибрации
CN114697823A (zh) 一种振动传感器
TW202242354A (zh) 振動感測器
WO2023193195A1 (zh) 一种压电式扬声器
WO2023272906A1 (zh) 一种振动传感器
JP2024520967A (ja) 音響出力装置及びウェアラブル機器
TW202303112A (zh) 振動感測器
TW202308402A (zh) 振動感測器
TW202316869A (zh) 聲學輸出裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020967273

Country of ref document: EP

Effective date: 20230323

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023006494

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237017105

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023531069

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 112023006494

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230406

NENP Non-entry into the national phase

Ref country code: DE