WO2022262639A1 - 一种振动传感器 - Google Patents

一种振动传感器 Download PDF

Info

Publication number
WO2022262639A1
WO2022262639A1 PCT/CN2022/097874 CN2022097874W WO2022262639A1 WO 2022262639 A1 WO2022262639 A1 WO 2022262639A1 CN 2022097874 W CN2022097874 W CN 2022097874W WO 2022262639 A1 WO2022262639 A1 WO 2022262639A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic element
vibration
mass
vibration sensor
elastic
Prior art date
Application number
PCT/CN2022/097874
Other languages
English (en)
French (fr)
Inventor
邓文俊
袁永帅
周文兵
黄雨佳
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to CN202280007750.4A priority Critical patent/CN116671125A/zh
Publication of WO2022262639A1 publication Critical patent/WO2022262639A1/zh
Priority to US18/353,101 priority patent/US20230358600A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R11/00Transducers of moving-armature or moving-core type
    • H04R11/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/04Structural association of microphone with electric circuitry therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • H04R1/083Special constructions of mouthpieces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • the embodiment of this specification relates to the field of sensors, in particular to a vibration sensor.
  • a vibration sensor is an energy conversion device that converts vibration signals into electrical signals.
  • vibration sensors can be used as bone conduction microphones.
  • the vibration sensor can detect the vibration signal transmitted through the skin when a person speaks, and convert the vibration signal transmitted by the human skin into an electrical signal, so as to achieve the effect of sound transmission.
  • the bone conduction microphone can reduce the interference of the airborne noise in the external environment on the target sound source, and achieve better sound transmission effect.
  • Vibration sensors may receive vibration signals other than the target sound source in actual application scenarios (for example, vibration signals of vibration speakers in earphones, vibration signals of earphones, etc.), thus affecting the vibration sensor Sound effects.
  • this specification provides a vibration sensor, which can be used to reduce the influence of non-target vibration signals, thereby improving the sound transmission effect of the vibration sensor on target vibration signals.
  • a vibration sensor including: a housing structure and an acoustic transducer, the acoustic transducer is physically connected to the housing structure, wherein at least part of the housing structure is connected to the The acoustic transducer forms an acoustic cavity; the vibration unit separates the acoustic cavity into a plurality of acoustic cavities including a first acoustic cavity, and the first acoustic cavity and the acoustic transducer
  • the vibration unit includes an elastic element and a mass element, the elastic element and the mass element are located in the acoustic cavity, and the mass element passes through the shell structure or the acoustic transducer
  • the elastic element is connected; the shell structure is configured to generate vibration based on an external vibration signal, the vibration unit changes the volume of the first acoustic cavity in response to the vibration of the shell structure, and the acoustic The transducer generates an electrical signal based on the volume change of the
  • the response sensitivity of the vibration unit to the vibration of the housing structure in the first direction is higher than the response sensitivity of the vibration unit to the vibration of the housing structure in the second direction, so The second direction is perpendicular to the first direction.
  • the ratio of the resonance frequency of the vibration unit vibrating in the second direction to the resonance frequency of the vibration unit vibrating in the first direction is greater than or equal to 2.
  • the difference between the response sensitivity of the vibration unit to the vibration of the housing structure in the second direction and the response sensitivity of the vibration unit to the vibration of the housing structure in the first direction is -20dB ⁇ -40dB.
  • the first direction is the thickness direction of the mass element, and the distance between the centroid of the elastic element and the center of gravity of the mass element in the first direction is not greater than 1% of the thickness of the mass block /3.
  • the distance between the centroid of the elastic element and the center of gravity of the mass element in the second direction is not greater than 1/3 of the side length or radius of the mass block.
  • the first elastic element and the second elastic element are connected to the shell structure corresponding to the acoustic chamber or the transducer device; the first elastic element and the second elastic element
  • the two elastic elements are approximately symmetrically distributed with respect to the mass element in the first direction, wherein the first direction is the thickness direction of the mass element, and the upper surface of the mass element is in contact with the first elastic element.
  • the element is connected, and the lower surface of the mass element is connected with the second elastic element.
  • the size, shape, material, or thickness of the first elastic element and the second elastic element are the same.
  • the first elastic element and the second elastic element are membrane structures, one side of the first elastic element is connected to the upper surface of the quality element, and the second elastic element One side is connected to the lower surface of the quality element, and the size of the upper surface or the lower surface of the quality element is smaller than the size of the first elastic element and the second elastic element.
  • the volume of the acoustic cavity formed between the first elastic element and the shell structure corresponding to the acoustic cavity or the transducer device is greater than or equal to that of the second elastic element and the volume of the first acoustic cavity formed between the shell structure corresponding to the acoustic cavity or the transducer device.
  • the first elastic element and the second elastic element are located between the peripheral side of the mass element and the housing, and the peripheral side of the mass element passes through the first elastic element and the housing.
  • the second elastic element is connected with the housing.
  • the volume of the acoustic cavity formed between the first elastic element, the mass element, and the shell structure corresponding to the acoustic cavity or the transducer device is greater than or equal to the The volume of the first acoustic cavity formed between the second elastic element, the mass element, and the shell structure corresponding to the acoustic cavity or the transducer device.
  • the thickness of the mass element is 10 um-1000 um; the thickness of the first elastic element and the second elastic element is 0.1 um-500 um.
  • the first elastic element and the second elastic element are columnar structures, the first elastic element and the second elastic element respectively extend along the thickness direction of the mass element and are connected to the The shell structure or the transducer device is connected.
  • the outer side of the first elastic element, the outer side of the second elastic element, the outer side of the mass element, and the housing structure or the transducer device corresponding to the acoustic chamber There is a gap between them, and there is a filler for adjusting the quality factor of the vibration sensor in the gap.
  • the thickness of the proof mass is 10 um-1000 um, and the thickness of the first elastic element and the second elastic element is 10 um-1000 um.
  • the first elastic element includes a first sub-elastic element and a second sub-elastic element, and the first sub-elastic element and the housing structure or transducer device corresponding to the acoustic chamber pass through The second sub-elastic element is connected, the first sub-elastic element is connected to the upper surface of the quality element; the second elastic element includes a third sub-elastic element and a fourth sub-elastic element, and the third bullet The elastic element is connected to the housing structure or the transducer device corresponding to the acoustic chamber through the fourth sub-elastic element, and the third sub-elastic element is connected to the lower surface of the mass element.
  • the peripheral side of the first sub-elastic element approximately coincides with the peripheral side of the second sub-elastic element, and the peripheral side of the third sub-elastic element coincides with the peripheral side of the fourth sub-elastic element.
  • the sides are approximately coincident.
  • the vibration sensor further includes a fixed piece, the fixed piece is distributed along the peripheral side of the mass element; the fixed piece is located between the first sub-elastic element and the third sub-elastic element between, and the upper surface and the lower surface of the fixing piece are respectively connected with the first sub-elastic element and the third sub-elastic element.
  • the gaps among the fixed piece, the mass element, the first sub-elastic element and the second sub-elastic element have fillers for adjusting the quality factor of the vibration sensor.
  • One or more embodiments of the present specification also provide a vibration sensor, the vibration sensor includes: a casing structure and an acoustic transducer, the acoustic transducer is physically connected to the casing structure, wherein at least part of the The shell structure and the acoustic transducer form an acoustic cavity; the vibration unit separates the acoustic cavity into a plurality of acoustic cavities including a first acoustic cavity, and the first acoustic cavity and The acoustic transducer is in acoustic communication; the vibration unit includes an elastic element and a mass element, the elastic element and the mass element are located in the acoustic cavity, and the mass element is connected to the shell structure or the The acoustic transducer is connected through the elastic element; the shell structure is configured to generate vibration based on an external vibration signal, and the vibration unit responds to the vibration of the shell structure to make the volume of the first acoustic cavity The acoustic
  • the response sensitivity of the vibration unit to the vibration of the housing structure in the first direction is higher than the response sensitivity of the vibration unit to the vibration of the housing structure in the second direction, so The second direction is perpendicular to the first direction.
  • the ratio of the resonant frequency of the vibration unit to the vibration of the housing structure in the second direction to the resonance frequency of the vibration unit to the vibration of the housing structure in the first direction is greater than or equal to 2.
  • the difference between the response sensitivity of the vibration unit to the vibration of the housing structure in the second direction and the response sensitivity of the vibration unit to the vibration of the housing structure in the first direction is -20dB ⁇ -40dB.
  • the distance between the centroid of the elastic element and the center of gravity of the mass element in the first direction is not greater than 1/3 of the thickness of the mass block.
  • the distance between the centroid of the elastic element and the center of gravity of the mass element in the second direction is not greater than 1/3 of the side length or radius of the mass block.
  • the mass element includes a first mass element and a second mass element, and the first mass element and the second mass element are arranged symmetrically with respect to the elastic element in the first direction .
  • Fig. 1 is an application scene diagram of a vibration sensor shown according to some embodiments of this specification
  • Fig. 2 is the schematic diagram according to the vibration signal of the vibration sensor shown in Fig. 1;
  • Fig. 3 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 4 is a vibration mode diagram of a vibration sensor shown in a first direction according to some embodiments of the present specification
  • Fig. 5 is a vibration mode diagram of a vibration sensor shown in a second direction according to some embodiments of the present specification
  • Fig. 6 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 7 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 8 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 9A is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 9B is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 9C is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • Figure 9D is a schematic diagram of an exemplary distribution of mass elements according to some embodiments of the present specification.
  • Fig. 10 is a frequency response graph of a vibration sensor according to some embodiments of the present specification.
  • Fig. 11 is a dynamic simulation diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 12 is a dynamic simulation diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 13 is a resonant frequency diagram of a vibrating unit according to some embodiments of the present specification.
  • Fig. 14A is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 14B is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 14C is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 15 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 16 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 17 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • system means for distinguishing different components, elements, components, parts or assemblies of different levels.
  • the words may be replaced by other expressions if other words can achieve the same purpose.
  • the vibration sensor may include a housing structure, a vibration unit and an acoustic transducer, the housing structure is physically connected to the acoustic transducer, at least part of the housing structure and the acoustic transducer form an acoustic cavity, and the vibration unit is located in the housing structure In the acoustic cavity formed with the acoustic transducer.
  • the vibration unit may include an elastic element and a mass element, and the elastic element and the mass element are located in the acoustic cavity.
  • the housing structure is configured to vibrate based on an external signal, and when the housing structure vibrates based on the external signal, the vibrating units vibrate simultaneously in response to the vibration of the housing structure, thereby changing the volume of the first acoustic cavity, and thereby the acoustic cavity
  • the transducer generates an electrical signal.
  • the elastic element may include a first elastic element and a second elastic element, the first elastic element and the second elastic element are respectively connected to the mass element and distributed at intervals along the vibration direction of the vibration unit.
  • the first elastic element and the second elastic element are distributed on opposite sides of the mass element in the vibration direction of the vibration unit.
  • first elastic element and the second elastic element may be located between the peripheral side of the mass element and the housing or the acoustic transducer.
  • the mass elements eg, the first mass element and the second mass element
  • the mass elements may also be distributed on opposite sides of the elastic element in the first direction.
  • the first elastic element and the second elastic element are respectively connected to the mass element and distributed at intervals along the vibration direction of the vibration unit, or the mass elements (for example, the first mass element and the second mass element) are placed between
  • the first direction is distributed on opposite sides of the elastic element, so that within the target frequency range (for example, below 3000 Hz), the response sensitivity of the vibration unit to the vibration of the housing structure in the first direction is higher than that of the vibration unit in the second direction.
  • the first elastic element and the second elastic element are respectively located on the upper surface and the lower surface of the mass element, wherein the first elastic element and the second elastic element can be approximately regarded as a whole, and the centroid of the whole is the same as the center of gravity of the mass element Approximate coincidence.
  • the vibration sensor can be used as a bone conduction microphone to collect vibration signals generated by facial muscles when the user speaks, and convert the vibration signals into electrical signals containing voice information.
  • the vibration sensor When the vibration sensor is integrated in the earphone, the vibration sensor will also receive other vibration signals (for example, the vibration signal of the speaker, the vibration signal of the earphone shell, the noise signal in the outside air, etc.) while receiving the facial muscle vibration signal when the user speaks. ), different vibration signals have different vibration directions.
  • setting the centroid of the elastic element to approximately coincide with the center of gravity of the mass element can make the response sensitivity of the vibration unit to the vibration of the shell structure in the first direction higher than the response of the vibration unit to the vibration of the shell structure in the second direction sensitivity.
  • the vibration sensor is used to collect the vibration signal when the user speaks
  • the first direction corresponds to the facial muscle vibration signal when the user speaks
  • the second direction corresponds to the vibration direction of other vibration signals (for example, the vibration signal of the speaker).
  • the first direction corresponds to the vibration direction of the noise signal of the external environment
  • the second direction corresponds to the vibration direction of other vibration signals (for example, the vibration signal of the speaker)
  • the direction selectivity of the vibration sensor is improved, and the interference caused by other vibration signals to the target signal to be collected by the vibration sensor is reduced.
  • the vibration sensor in the embodiments of this specification can be applied to mobile devices, wearable devices, virtual reality devices, augmented reality devices, etc., or any combination thereof.
  • a mobile device may include a smartphone, tablet computer, personal digital assistant (PDA), gaming device, navigation device, etc., or any combination thereof.
  • wearable devices may include smart bracelets, earphones, hearing aids, smart helmets, smart watches, smart clothing, smart backpacks, smart accessories, etc., or any combination thereof.
  • the virtual reality device and/or the augmented reality device may include a virtual reality helmet, virtual reality glasses, virtual reality patch, augmented reality helmet, augmented reality glasses, augmented reality patch, etc. or any combination thereof.
  • virtual reality devices and/or augmented reality devices may include Google Glass, Oculus Rift, Hololens, Gear VR, etc.
  • Fig. 1 is an application scenario diagram of a vibration sensor according to some embodiments of the present specification.
  • the earphone 100 may include a vibration speaker 110 and a vibration sensor 120 .
  • the vibration speaker 110 When the user wears the earphone 100 shown in FIG. 1, the earphone 100 is in contact with the skin area of the user's head.
  • the vibration speaker 110 When the earphone 100 is in the working state, on the one hand, the vibration speaker 110 generates a vibration signal based on the audio signal, and the vibration signal passes through the earphone 100.
  • the housing or other structure eg, vibrating plate
  • the vibration signal is transmitted to the skin of the user's head, and the vibration signal is transmitted to the user's auditory nerve through the bones or muscles of the head.
  • the vibration sensor 120 can collect the vibration signal based on the vibration of the shell structure. , and convert the vibration signal into an electrical signal containing voice information.
  • the vibration signal to be collected by the vibration sensor 120 is the vibration signal generated by the facial muscles when the user speaks, and the vibration signal here can be regarded as the target signal (
  • the vibration direction of the target vibration signal is the double arrow E) shown in FIG. 1
  • the target signal is the vibration signal to be collected by the vibration sensor 120 .
  • the vibration speaker 110 of the earphone 100 also generates a vibration signal when it is in working state, and external air vibration also acts on the earphone 100 to generate a vibration signal, and these vibration signals can be regarded as noise signals.
  • the vibration speaker 110 and the vibration sensor 120 in the earphone 100 can be arranged vertically or approximately vertically, where the vibration speaker 110 and the vibration sensor 120 are vertically or approximately vertically arranged to refer to the vibration direction of the vibration speaker 110 ( The double-headed arrow N) shown in FIG. 1 is perpendicular or approximately perpendicular to the vibration direction of the vibration sensor 120 (the first direction shown in FIG. 1 ).
  • the approximate vertical here may mean that the normal line of the vibration speaker 110 and the normal line of the vibration sensor 120 have an included angle within a certain angle range. In some embodiments, the included angle may range from 75° to 115°. Preferably, the range of the included angle may be 80°-100°.
  • the range of the included angle may be 85°-95°.
  • the vibration direction of the vibration speaker 110 can be at a certain angle ⁇ (for example, less than 90°) to the plane where the user's skin contact area is located. ) to set.
  • FIG. 2 is a schematic diagram of an exemplary vibration signal according to the vibration sensor shown in FIG. 1 . 1 and 2, the vibration direction of the vibration unit in the vibration sensor 120 is the first direction; the vibration signal generated by the vibration sensor 120 is S N , wherein, when the vibration direction of the vibration speaker 110 is not perpendicular to the user's skin contact area, the vibration The vibration signal SN produced by the loudspeaker 110 has a signal component S e in the first direction, and this signal component S e can also be regarded as a noise signal; the vibration signal (target signal) generated by the facial muscles when the user speaks is S E , wherein, S e is the signal component of the target signal S E in the first direction, and the signal component can be picked up by the vibration sensor 120 .
  • setting the centroid or center of gravity of the elastic element to approximately coincide with the center of gravity of the mass element can make the response sensitivity of the vibration unit to the vibration of the housing structure in the first direction higher than that of the vibration
  • the response sensitivity of the unit to the vibration of the housing structure in the second direction enables the vibration sensor 120 to better receive the effective component S e of the vibration signal (target signal S E ) generated by the facial muscles when the user speaks in the first direction, Simultaneously, the vibration signal S n of the vibration speaker 110 in the second direction has less impact on the vibration sensor 120, thereby improving the direction selectivity of the vibration sensor and reducing the interference caused by the non-target vibration signal to the target signal that the vibration sensor will collect.
  • the centroid of the elastic element and the center of gravity of the mass element approximately coincide.
  • the elastic element is a regular geometric structure with uniform density (for example, a cylindrical structure, a ring structure, a cuboid structure, etc.) and the centroid of the mass element
  • the centers of gravity of are approximately coincident, at this time the centroid of the elastic element can be regarded as the center of gravity of the elastic element.
  • the elastic element has an irregular structure or uneven density, it can be considered that the actual center of gravity of the elastic element approximately coincides with the center of gravity of the mass element.
  • Fig. 3 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • the vibration sensor 300 may include a housing structure 310 , an acoustic transducer, and a vibration unit 320 .
  • the shape of the vibration sensor 300 may be a cuboid, a cylinder or other irregular structures.
  • the shell structure 310 can be made of a material with a certain hardness, so that the shell structure 310 can protect the vibration sensor 300 and its internal components (eg, the vibration unit 320 ).
  • the material of the shell structure 310 may include but not limited to metal, alloy material, polymer material (for example, acrylonitrile-butadiene-styrene copolymer, polyvinyl chloride, polycarbonate, polypropylene etc.) etc. one or more.
  • the housing structure 310 is connected to the acoustic transducer, and the connection method here may include but not limited to welding, clamping, bonding or integral molding and other connection methods.
  • the shell structure 310 and the acoustic transducer may form an acoustic cavity, wherein the vibration unit 320 may be located within the acoustic cavity.
  • the vibration unit 320 may divide the acoustic cavity into a first acoustic cavity 360 and a second acoustic cavity 370 .
  • the acoustic transducer can convert the vibration signal of the acoustic cavity inside the shell structure 310 into an electrical signal. Specifically, when the vibration sensor 300 is working, an external vibration signal can be transmitted to the vibration unit 320 through the housing structure 310 , and the vibration unit 320 vibrates in response to the vibration of the housing structure 310 .
  • the vibration of the vibration unit 320 can cause the volume change of the first acoustic cavity 360 in the housing structure 310, thereby causing the first acoustic cavity 360 to change.
  • the acoustic transducer can detect the sound pressure change of the first acoustic cavity 360 and convert it into an electrical signal.
  • the acoustic transducer may include a substrate 340 through which the housing structure 310 may be connected to the acoustic transducer.
  • the substrate 340 may be a rigid circuit board (eg, PCB) and/or a flexible circuit board (eg, FPC).
  • the substrate 340 may include one or more sound inlet holes 330 , and the first acoustic cavity 360 may communicate with the acoustic transducer through the sound inlet holes 330 .
  • the acoustic transducer may further include at least one diaphragm (not shown in FIG. 3 ), and the diaphragm may be disposed at the sound inlet 330.
  • the second The sound pressure of the first acoustic cavity 360 changes, the diaphragm vibrates mechanically in response to the sound pressure change of the first acoustic cavity 360 , and the magnetic circuit system of the acoustic transducer generates an electrical signal based on the mechanical vibration of the diaphragm.
  • the vibration unit 320 may include an elastic element 3202 and a mass element 3201 , the mass element 3201 and the elastic element 3202 are located in the acoustic cavity, and the mass element 3201 is connected to the shell structure 310 through the elastic element 3202 .
  • the peripheral side of the elastic element 3202 is connected to the inner wall of the shell structure 310 , and the mass element 3201 may be located on the upper surface or the lower surface of the elastic element 3202 .
  • the upper surface of the elastic element 3202 can be the surface of the elastic element 3202 perpendicular to its vibration direction and away from the acoustic transducer (for example, the substrate 340); the lower surface of the elastic element 3202 can be the surface of the elastic element 3202 perpendicular to its vibration direction and close to the acoustic transducer.
  • the surface of the transducer eg, substrate 340.
  • the mass element 3201 can increase the vibration amplitude of the elastic element 3202 relative to the shell structure 310, so that the volume change value of the first acoustic cavity 360 can change significantly under the action of external vibration signals of different sound pressure levels and frequencies, Furthermore, the sensitivity of the vibration sensor 300 is improved.
  • the structure of the elastic element 3202 may be a membrane structure.
  • the mass element 3201 may be a regular structure such as a cuboid or a cylinder or an irregular structure.
  • the mass element 3201 can be made of metal or non-metal.
  • the metal material may include but not limited to steel (eg, stainless steel, carbon steel, etc.), light alloy (eg, aluminum alloy, beryllium copper, magnesium alloy, titanium alloy, etc.), or any combination thereof.
  • Non-metallic materials may include, but are not limited to, polyurethane foam materials, glass fibers, carbon fibers, graphite fibers, silicon carbide fibers, and the like.
  • the material of the elastic element 3202 may include but not limited to sponge, rubber, silica gel, plastic, foam, polydimethylsiloxane (PDMS), polyimide (PI), etc., or any combination thereof .
  • the thickness of the elastic element 3202 may range from 0.1 um to 500 um.
  • the thickness of the elastic element 3202 may be 0.5um-300um. More preferably, the thickness of the elastic element 3202 may be 1um ⁇ 50um.
  • the mass element 3201 may have a thickness of 10 um ⁇ 1000 um.
  • the mass element 3201 may have a thickness of 20um ⁇ 800um. Further preferably, the mass element 3201 may have a thickness of 50um ⁇ 500um.
  • the mass element 3201 may be located at the center of the elastic element 3202 .
  • the dimensions (eg, length and width) of the mass element 3201 may be smaller than the dimensions of the elastic element 3202, wherein the peripheral side of the mass element 3201 has a distance from the inner wall of the housing structure 310, which prevents the mass element from 3201 collides with the housing structure 310 when it vibrates.
  • the distance between the peripheral side of the mass element 3201 and the inner wall of the housing structure 310 may be 1 um ⁇ 1000 um.
  • the distance between the peripheral side of the mass element 3201 and the inner wall of the casing structure 310 is 20 um-800 um.
  • the distance between the peripheral side of the mass element 3201 and the inner wall of the casing structure 310 is 50 um-500 um.
  • the ratio of the resonant frequency of the vibration sensor 300 in the second direction to the resonant frequency in the first direction can be changed by adjusting the size (eg, length, width) of the mass element 3201 , so that the vibration sensor 300 is within the target frequency range, and on the premise that the sensitivity of the vibration sensor 300 in the first direction does not change greatly, the sensitivity of the vibration sensor 300 in the second direction is reduced.
  • the ratio of the vibration frequency of the vibration sensor in the second direction to the vibration frequency in the first direction may be greater than 1.
  • the ratio of the vibration frequency of the vibration sensor in the second direction to the vibration frequency in the first direction may also be greater than 1.5. Further preferably, the ratio of the vibration frequency of the vibration sensor in the second direction to the vibration frequency in the first direction may also be greater than 2.
  • the ratio of the dimension (eg, length or width) of the mass element 3201 to the dimension of the elastic element 3202 may be 0.2-0.9.
  • the ratio of the size of the mass element 3201 to the size of the elastic element 3202 may be 0.3-0.7. Further preferably, the ratio of the size of the mass element 3201 to the size of the elastic element 3202 may be 0.5-0.7.
  • the size (eg, length or width) of the mass element 3201 may be 1/2 the size of the elastic element 3202 .
  • the size (eg, length or width) of the mass element 3201 may be 3/4 of the size of the elastic element 3202 .
  • the first direction may refer to the thickness direction of the mass element 3201, and the second direction is perpendicular to the first direction.
  • the elastic element 3202 is more likely to be elastically deformed than the shell structure 310 , so that the vibration unit 320 can move relative to the shell structure 310 .
  • the shell structure 310 When the external vibration acts on the shell structure 310, the shell structure 310, the acoustic transducer, the vibration unit 320 and other components will vibrate at the same time, because the vibration phase of the vibration unit 320 and the shell structure 310, the acoustic transducer
  • the vibration phase of the acoustic cavity is not the same, which causes the volume change of the acoustic cavity, resulting in the change of the sound pressure of the acoustic cavity, which is converted into an electrical signal by the acoustic transducer to realize the sound pickup.
  • the shape of the elastic element 3202 is not limited to the membrane structure shown in FIG. 3 , but can also be other elastically deformable structures, such as spring structures, metal rings, ring structures, column structures, etc.
  • Fig. 4 is a vibration mode diagram of a vibration sensor in a first direction according to some embodiments of the present specification
  • Fig. 5 is a vibration mode diagram of a vibration sensor in a second direction according to some embodiments of this specification. As shown in FIG. 4 and FIG. 5 , when the vibration sensor 400 receives vibration signals in different vibration directions, the vibration conditions of the vibration unit 420 are also different.
  • the vibration sensor 400 when the vibration sensor 400 receives the vibration signal from the first direction, the mass element 421 of the vibration unit 420 vibrates along the first direction, and the elastic element 422 is under the action of the mass element 421 Elastic deformation is generated in the first direction, where the left and right sides of the mass element 421 have the same displacement in the first direction, and the left and right sides of the elastic element 422 have the same amount of elastic deformation in the first direction.
  • the vibration sensor 400 when the vibration sensor 400 receives a vibration signal from the second direction, the mass element 421 and the elastic element 422 generate a wave-like motion, for example, the vibration on the left side of the mass element 421 and the elastic element 422 and the vibration on the right side
  • the vibration amplitudes are different.
  • other vibration signals eg, signals with a different vibration direction from the target signal
  • the vibration unit 420 in order to reduce the interference of other signals as much as possible when the vibration sensor receives the target signal, the vibration unit 420 (eg, the elastic element 422 and the mass element 421 ) can be adjusted.
  • an elastic support structure may be provided in the first acoustic cavity, and the elastic support structure is connected between the elastic element and the substrate structure (or housing structure) for supporting the elastic element and preventing the elastic element from generating the vibration mode shown in Fig. 5
  • the elastic support structure is symmetrically supported on the left and right sides of the elastic element (for example, near the periphery of the mass element 421 on the elastic element 422), so that the vibrations on the left and right sides of the elastic element can be synchronized as much as possible.
  • Fig. 6 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • the vibration sensor 600 shown in FIG. 6 may include a housing structure 610 , an acoustic transducer, and a vibration unit 620 .
  • the vibration sensor 600 in FIG. 6 may be the same as or similar to the vibration sensor 300 in FIG. 3 .
  • the shell structure 610 of the vibration sensor 600 may be the same or similar to the shell structure 310 of the vibration sensor 300
  • the substrate structure 640 of the vibration sensor 600 may be the same or similar to the substrate 340 of the vibration sensor 300 .
  • the first acoustic cavity 660 of the vibration sensor 600 may be the same as or similar to the first acoustic cavity 360 of the vibration sensor 300 .
  • the vibration sensor 600 for example, the second acoustic cavity 670, the sound inlet 630, the mass element 621, etc., reference may be made to FIG. 3 and related descriptions.
  • the vibration unit 620 may include a mass element 621 and an elastic element 622 , the elastic element 622 is located on one side of the mass element 621 in the first direction, for example, the mass element 621 may be located on the upper surface of the elastic element 622 . In other embodiments, the mass element 621 can also be located on the lower surface of the elastic element 622 .
  • the main difference between the vibration sensor 600 in FIG. 6 and the vibration sensor 300 in FIG. 3 is that the elastic element 622 may include a first elastic element 6221 and a second elastic element 6222, and the first elastic element 6221 The second elastic element 6222 is located on the same side of the mass element 621. As shown in FIG. Structure 640 is connected.
  • the mass element 621, the second elastic element 6222, and the first elastic element 6221 are connected sequentially from top to bottom, wherein the lower surface of the first elastic element 6221 is connected to the substrate structure 640 of the acoustic transducer 600, and the first elastic element
  • the upper surface of the element 6221 is connected to the lower surface of the second elastic element 6222 , and the mass element 621 is located on the upper surface of the second elastic element 6222 .
  • the first elastic element 6221 can be an annular structure
  • the second elastic element 6222 can be a membrane structure
  • the substrate structure 640 forms a first acoustic cavity 660
  • the first acoustic cavity 660 communicates with the sound inlet hole 630 at the substrate structure 640 .
  • the first elastic element 6221 and the second elastic element 6222 can be made of the same or different materials. For the materials of the first elastic element 6221 and/or the second elastic element 6222, reference can be made to the description of the elastic element 3202 in FIG. I won't go into details.
  • the first elastic element 6221 and the second elastic element 6222 can be integrated or independent of each other.
  • the first elastic element 6222 can also be connected with the housing structure 610 through its peripheral side.
  • the first elastic element 6221 is symmetrically supported on the left and right sides of the second elastic element 6222 with the center line of the mass element 621 or the second elastic element 6222 (for example, the position of the mass element 621 on the second elastic element 6222
  • the surrounding side of the second elastic element 6222 and the left and right sides of the mass element 621 can be synchronized as much as possible, thereby reducing the response sensitivity of the vibration unit 620 to the vibration of the housing structure 610 in the second direction.
  • the ratio of the resonant frequency of the vibration sensor 600 in the second direction to the resonant frequency in the first direction can be changed by adjusting the size (eg, length, width) of the mass element 621 , so that the vibration sensor 600 is within the target frequency range, and on the premise that the sensitivity of the vibration sensor 600 in the first direction does not change greatly, the sensitivity of the vibration sensor 600 in the second direction is reduced.
  • the size of the mass element 621 and the specific content of the elastic element 622 reference may be made to the description elsewhere in this specification, for example, FIG. 3 and its related descriptions.
  • Fig. 7 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • the vibration sensor 700 may include a housing structure 710 , an acoustic transducer, and a vibration unit 720 .
  • the vibration sensor shown in FIG. 7 is the same as or similar to the vibration sensor 600 shown in FIG. 6 .
  • the housing structure 710 of the vibration sensor 700 is the same as or similar to the housing structure 610 of the vibration sensor 600 .
  • the first acoustic cavity 760 of the vibration sensor 700 is the same as or similar to the first acoustic cavity 660 of the vibration sensor 600 .
  • the substrate structure 740 and the sound inlet hole 730 of the vibration sensor 700 are the same as or similar to the substrate structure 640 and the sound inlet hole 630 of the vibration sensor 600 .
  • the vibration unit 720 includes a mass element 721 and an elastic element 722, and the mass element 721 is connected to the substrate structure 740 through the elastic element 722 , the elastic element 722 is connected to the substrate structure 740 of the acoustic transducer 700 .
  • the mass element 721, the elastic element 722 and the substrate structure 740 are connected sequentially from top to bottom, wherein the lower surface of the mass element 721 is connected to the upper surface of the elastic element 722, and the lower surface of the elastic element 722 is connected to the acoustic transducer 700.
  • the substrate structure 740 is connected.
  • the elastic element 722 is an annular structure, the inner side of the elastic element 722, the lower surface of the mass element 721 and the substrate structure 740 form a first acoustic cavity 760, and the first acoustic cavity 760 and the substrate The sound inlet hole 730 at the structure 740 communicates.
  • the material of the elastic element 722 reference may be made to the description of the elastic element 3202 in FIG. 3 , and details are not repeated here.
  • the elastic element 722 and the mass element 721 can be integrated or independent of each other.
  • the ratio of the resonant frequency of the vibration sensor in the second direction to the resonant frequency in the first direction can be changed by adjusting the size (eg, length, width) of the mass element 721,
  • the sensitivity of the vibration sensor 700 in the second direction is reduced on the premise that the sensitivity of the vibration sensor 700 in the first direction does not change greatly within the target frequency range.
  • the size of the mass element 721 and the specific content of the elastic element 722 reference may be made to the description elsewhere in this specification, for example, FIG. 3 and its related descriptions.
  • the hardness of the area of the elastic element that is in contact with the peripheral side of the mass element can be set to be greater than the hardness of other areas, so that The deformation of the elastic element in the second direction under the action of the mass element is small, which reduces the sensitivity of the vibration sensor in the second direction.
  • different regions of the elastic element can be made of different materials, so that different regions of the elastic element have different hardnesses.
  • an additional structure such as a glue layer
  • the vibration unit (for example, the elastic element and the mass element) may be adjusted.
  • the vibration unit for example, the elastic element and the mass element
  • the vibration unit may be adjusted. For example, by arranging elastic elements that are approximately symmetrically distributed in the first direction relative to the mass element in the vibration sensor, or setting approximately symmetrically distributed mass elements in the first direction relative to the elastic element, the center of gravity of the mass element and The distance between the centroids of the elastic elements is limited in a specific range (for example, the distance between the centroids of the elastic elements and the center of gravity of the mass element in the first direction is not greater than 1/3 of the thickness of the mass element), so that the vibration sensor can be reduced.
  • the sensitivity in the second direction further improves the direction selectivity of the vibration sensor and enhances the anti-noise interference capability of the vibration sensor.
  • the sensitivity in the second direction further improves the direction selectivity of the vibration sensor and enhances the anti-noise interference capability of the vibration sensor.
  • Fig. 8 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • the vibration sensor 800 may include a housing structure 810 , an acoustic transducer 820 and a vibration unit 830 .
  • the shape of the housing structure 810 may be a cuboid, a cylinder, or other regular or irregular structures.
  • the shell structure 810 can be made of a material with a certain hardness, so that the shell structure 810 can protect the vibration sensor 800 and its internal components (eg, the vibration unit 830 ).
  • the material of the shell structure 810 may include but not limited to metal, alloy material, polymer material (for example, acrylonitrile-butadiene-styrene copolymer, polyvinyl chloride, polycarbonate, polypropylene etc.) etc. one or more.
  • the housing structure 810 and the acoustic transducer 820 are physically connected, and the physical connection here may include but not limited to welding, clamping, bonding, or integral molding.
  • at least part of the housing structure 810 and the acoustic transducer 820 may form an acoustic cavity.
  • the housing structure 810 can independently form a packaging structure with an acoustic cavity, wherein the acoustic transducer 820 can be located in the acoustic cavity of the packaging structure.
  • the housing structure 810 may be hollow inside and have an open end at one end, and the acoustic transducer 820 is physically connected to the open end of the housing structure 810 for packaging, thereby forming an acoustic cavity.
  • the vibration unit 830 may be located in the acoustic cavity, and the vibration unit 830 may divide the acoustic cavity into a first acoustic cavity 840 and a second acoustic cavity 850 .
  • the first acoustic cavity 840 is in acoustic communication with the acoustic transducer 820
  • the second acoustic cavity 850 may be an acoustically sealed cavity structure.
  • the multiple acoustic cavities that the vibration unit 830 divides the acoustic cavity into are not limited to the first acoustic cavity 840 and the second acoustic cavity 850, but may also include more acoustic cavities, for example, the first acoustic cavity Three acoustic chambers, fourth acoustic chamber, etc.
  • the vibration sensor 800 may convert an external vibration signal into an electrical signal.
  • the external vibration signal may include the vibration signal when the person speaks, the vibration signal generated by the skin moving with the human body or working with the speaker close to the skin, and the vibration signal generated by the object or air in contact with the vibration sensor, etc. , or any combination thereof.
  • the electrical signal generated by the vibration sensor can be input to an external electronic device.
  • the external electronic device may include a mobile device, a wearable device, a virtual reality device, an augmented reality device, etc., or any combination thereof.
  • a mobile device may include a smartphone, tablet computer, personal digital assistant (PDA), gaming device, navigation device, etc., or any combination thereof.
  • wearable devices may include smart bracelets, earphones, hearing aids, smart helmets, smart watches, smart clothing, smart backpacks, smart accessories, etc., or any combination thereof.
  • the virtual reality device and/or the augmented reality device may include a virtual reality helmet, virtual reality glasses, virtual reality patch, augmented reality helmet, augmented reality glasses, augmented reality patch, etc. or any combination thereof.
  • virtual reality devices and/or augmented reality devices may include Google Glass, Oculus Rift, Hololens, Gear VR, etc.
  • an external vibration signal can be transmitted to the vibration unit 830 through the housing structure 810 , and the vibration unit 830 vibrates in response to the vibration of the housing structure 810 .
  • the vibration of the vibration unit 830 can cause the volume change of the first acoustic cavity 840, thereby causing the volume of the first acoustic cavity 840 to change. change in sound pressure.
  • the acoustic transducer 820 can detect the sound pressure change of the first acoustic cavity 840 and convert it into an electrical signal, which is transmitted to an external electronic device through a solder joint (not shown in FIG. 8 ).
  • the solder joints here can be electrically connected with internal components (for example, processors) of devices such as earphones, hearing aids, hearing aids, augmented reality glasses, augmented reality helmets, virtual reality glasses, etc., through data lines, and the electrical signals obtained by the internal components It can be transmitted to external electronic devices by wired or wireless means.
  • the acoustic transducer 820 may include at least one through hole 811 (also called a sound guide hole), the through hole 811 communicates with the first acoustic cavity 840, and a diaphragm is provided at the position of the through hole 811 (not shown in FIG.
  • the acoustic transducer 820 converts the vibration signal of the diaphragm into an electrical signal.
  • the vibration unit 830 may include a mass element 831 and an elastic element 832 located in the acoustic cavity formed by the shell structure 810 and the acoustic transducer 820 .
  • the elastic elements 832 may be distributed on opposite sides of the mass element 831 in the first direction.
  • the first direction may refer to a thickness direction of the mass element 831 .
  • the first direction may be the "first direction" indicated by the arrow in FIG. 8 .
  • the mass element 831 may be connected to the housing structure 810 and/or the acoustic transducer 820 through the elastic element 832 .
  • the elastic element 832 may include a first elastic element 8321 and a second elastic element 8322, and the first elastic element 8321 and the second elastic element 8322 are respectively connected to the mass element 831 and distributed at intervals along the first direction.
  • the first elastic element 8321 is located on the side of the mass element 831 away from the acoustic transducer 820.
  • the first elastic element 8231 is located on the upper surface of the mass element 831, wherein one end of the first elastic element 8321 is connected to the shell body structure 810, and the other end of the first elastic element 8321 is connected to the mass element 831.
  • the second elastic element 8232 may be located on the side of the mass element 831 close to the acoustic transducer 820.
  • the energy device 820 is connected, and the other end of the second elastic element 8232 is connected with the mass element 831.
  • the elastic element 832 can also be located on the peripheral side of the mass element 831, wherein the elastic element 832 is a ring structure, the inner side of the ring structure is connected to the peripheral side of the mass element 831, and the outer side of the ring structure is connected to the peripheral side of the mass element 831.
  • the housing structure 810 and/or the acoustic transducer 820 are connected.
  • the peripheral side of the mass element 831 mentioned here is relative to the vibration direction (for example, the first direction) of the mass element 831.
  • the vibration direction of the mass element 831 relative to the housing structure 810 is the axial direction
  • the peripheral side of the mass element 831 refers to the side of the mass element 831 disposed around the axis.
  • the mass element 831 may be a regular structure such as a cuboid or a cylinder or an irregular structure.
  • the mass element 831 can be made of metal or non-metal.
  • the metal material may include but not limited to steel (eg, stainless steel, carbon steel, etc.), light alloy (eg, aluminum alloy, beryllium copper, magnesium alloy, titanium alloy, etc.), or any combination thereof.
  • Non-metallic materials may include, but are not limited to, polyurethane foam materials, glass fibers, carbon fibers, graphite fibers, silicon carbide fibers, and the like.
  • the shape of the elastic element 832 may be a round tube, a square tube, a special-shaped tube, a ring, a flat plate, and the like.
  • the elastic element 832 can have a structure that is more likely to be elastically deformed (for example, a spring structure, a metal ring, a membrane structure, a columnar structure, etc.), and its material can be a material that is easily elastically deformable, such as , Silicone, rubber, etc.
  • the elastic element 832 is more likely to be elastically deformed than the shell structure 810 , so that the vibrating element 830 can move relative to the shell structure 810 .
  • any elastic element 832 of the mass element 831 and the elastic element 832 may be made of the same or different materials, and then assembled together to form the vibration unit 830 .
  • any elastic element 832 among the mass element 831 and the elastic element 832 may also be made of the same material, and then the vibration unit 830 is formed by integral molding.
  • the elastic element 832 can be bonded with the mass element 831, the acoustic transducer 820, and the shell structure 810 with an adhesive, or other connection methods (such as welding, clamping, etc.) well known to those skilled in the art can also be used. , there is no restriction on this.
  • the first elastic element 8321 and the second elastic element 8322 may be approximately symmetrically distributed with respect to the mass element 831 in the first direction.
  • the first elastic element 8321 and the second elastic element 8322 may be connected to the housing structure 810 or the acoustic transducer 820 .
  • the first elastic element 8321 can be located on the side of the mass element 831 away from the acoustic transducer 820, one end of the first elastic element 8321 is connected to the shell structure 810, and the other end of the first elastic element 8321 is connected to the top of the mass element 831. surface connection.
  • the second elastic element 8322 can be located on the side of the mass element 831 facing the acoustic transducer 820, one end of the second elastic element 8322 is connected to the acoustic transducer 820, and the other end of the second elastic element 8322 is connected to the lower surface of the mass element 831 connect.
  • the center of gravity of the mass element 831 is aligned with at least one elastic
  • the centroids of the elements 832 are approximately coincident, so that when the vibration unit 830 vibrates in response to the vibration of the housing structure 810, the vibration of the mass element 831 in the second direction can be reduced, thereby reducing the vibration of the vibration unit 830 in the second direction.
  • the vibration response sensitivity of the housing structure 810 further improves the direction selectivity of the vibration sensor 800 .
  • the second direction is perpendicular to the first direction.
  • the centroid of the elastic element 832 may refer to the geometric center of the elastic element 832 .
  • the centroid of the elastic element 832 is related to the shape and size of the elastic element 832 .
  • the elastic element 832 can be approximately regarded as a structure with uniform density, and the centroid of the elastic element 832 can be approximately regarded as the center of gravity of the elastic element 832 .
  • the first elastic element 8321 and the second elastic element 8322 may also be approximately symmetrically distributed with respect to the centerline of the mass element 831 along the first direction, but asymmetrically distributed in the first direction.
  • the first elastic element 8321 can be located between the peripheral side of the mass element 831 and the housing structure 810, and the peripheral side of the mass element 831 is connected to the housing structure 810 through the first elastic element 8321;
  • the second elastic element 8322 can be located between the mass On the lower surface of the element 831 , the mass element 831 is connected to the acoustic transducer 820 through the second elastic element 8322 .
  • the heights (dimensions in the first direction) of the first elastic element 8321 and the second elastic element 8322 are different.
  • the dimensions of the first elastic element 8321 and the second elastic element 8322 in the second direction are different.
  • the centerline of the mass element 831 along the first direction refers to a straight line passing through the centroid of the mass element 831 and approximately parallel to the first direction.
  • the size and shape of the first elastic element 8321 and the second elastic element 8322 , material, or thickness can be the same.
  • the structure of the first elastic element 8321 and the structure of the second elastic element 8322 can be a membrane structure, a column structure, a tube structure, a ring structure, etc., or any combination thereof.
  • the material of the first elastic element 8321 and the second elastic element 8322 may include but not limited to sponge, rubber, silicone, plastic, foam, polydimethylsiloxane (PDMS), polyimide ( PI), etc., or any combination thereof.
  • plastics may include, but are not limited to, polytetrafluoroethylene (PTFE), high molecular weight polyethylene, blown nylon, engineering plastics, etc., or any combination thereof. Rubber can refer to other single or composite materials that can achieve the same performance, including but not limited to general-purpose rubber and special-purpose rubber.
  • the general-purpose rubber may include, but is not limited to, natural rubber, isoprene rubber, styrene-butadiene rubber, butadiene rubber, neoprene rubber, etc., or any combination thereof.
  • the specialty rubber may include but not limited to nitrile rubber, silicone rubber, fluororubber, polysulfide rubber, polyurethane rubber, epichlorohydrin rubber, acrylate rubber, propylene oxide rubber, etc. or any combination thereof.
  • the styrene-butadiene rubber may include but not limited to emulsion polymerized styrene-butadiene rubber and solution-polymerized styrene-butadiene rubber.
  • the composite material may include, but is not limited to, reinforcing materials such as glass fiber, carbon fiber, boron fiber, graphite fiber, fiber, graphene fiber, silicon carbide fiber, or aramid fiber.
  • the size or thickness of the first elastic element 8321 can also be slightly larger or smaller than the size or thickness of the second elastic element 8322, so that the first elastic element 8321 and the second elastic element 8322 can move along with the mass element 831.
  • the centerlines in the first direction are approximately symmetrically distributed, but are asymmetrically distributed in the first direction.
  • the first elastic element 8321 and the second elastic element 8322 may both be film structures, one side of the first elastic element 8321 is connected to the upper surface of the mass element 831, and one side of the second elastic element 8322 is connected to the upper surface of the mass element 831.
  • the lower surface of the mass element 831 is connected, and the peripheral sides of the first elastic element 8321 and the second elastic element 8322 are respectively connected with the housing structure 810 .
  • the first elastic element 8321 , the mass element 831 and the second elastic element 8322 are sequentially arranged from top to bottom.
  • first elastic element 8321 and the second elastic element 8322 By arranging the first elastic element 8321 and the second elastic element 8322 to use the same material (for example, polytetrafluoroethylene), size and thickness, since the first elastic element 8321 and the second elastic element 8322 are relative to the mass in the first direction
  • the elements 831 are approximately symmetrically distributed, so that the centroid of the elastic element 832 coincides or approximately coincides with the center of gravity of the mass element 831, so that when the vibration unit 830 vibrates in response to the vibration of the housing structure 810, the mass element 831 can be reduced.
  • the vibration in the second direction reduces the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the second direction, thereby improving the direction selectivity of the vibration sensor 800 when receiving vibration signals.
  • the first elastic element 8321 and the second elastic element 8322 may also be located between the peripheral side of the mass element 831 and the shell structure 810 Between, the peripheral side of the mass element 831 is connected with the shell structure 810 through the first elastic element 8321 and the second elastic element 8322 .
  • This arrangement can also make the centroid of the elastic element 832 coincide or approximately coincide with the center of gravity of the mass element 831 , thereby improving the direction selectivity of the vibration sensor 800 when receiving vibration signals.
  • the first elastic element 8321 and the second elastic element 8322 can both be columnar structures with a hollow area in the middle (for example, an annular columnar structure or a similar annular columnar structure), the first elastic element 8321 and the second elastic
  • the elements 8322 respectively extend along the thickness direction of the mass element 831 and are connected with the shell structure 810 or the acoustic transducer. Both ends of the first elastic element 8321 are respectively connected to the upper surface of the shell structure 810 and the mass element 831 . Both ends of the second elastic element 8322 are respectively connected to the lower surface of the mass element 831 and the acoustic transducer 820 .
  • the centroid of the elastic element 832 can coincide or approximately coincide with the center of gravity of the mass element 831 .
  • the shapes and structures of the first elastic element 8321 and the second elastic element 8322 may also be different.
  • the first elastic element 8321 is a film structure
  • the first elastic element 8321 is located between the peripheral side of the mass element 831 and the housing structure 810, and the peripheral side of the mass element 831 is connected to the housing structure 810 through the first elastic element 8321 ;
  • the second elastic element 8322 is a columnar structure, and the second elastic element 8322 extends along the thickness direction of the mass element 831 and is connected with the acoustic transducer.
  • the first elastic element 8321 and the second elastic element 8322 are distributed on opposite sides of the mass element 831 in the first direction, where the first elastic element 8321 and the second elastic element 8322 can be approximately regarded as an elastic
  • the centroid of the elastic element coincides approximately with the center of gravity of the mass element, so that within the target frequency range (for example, below 3000 Hz), the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the first direction is higher than that of the vibration unit 830 Response sensitivity to vibration of housing structure 810 in the second direction.
  • the difference between the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the second direction and the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the first direction may be -20dB ⁇ -60dB. In some embodiments, the difference between the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the second direction and the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the first direction may be -25dB ⁇ -50dB.
  • the difference between the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the second direction and the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the first direction may be -30dB ⁇ -40dB.
  • the target frequency range may refer to a frequency range less than or equal to 3000 Hz.
  • the vibration unit 830 vibrates in a first direction in response to the vibration of the housing structure 810 .
  • the vibration in the first direction can be regarded as the sound signal expected to be picked up by the vibration sensor 800
  • the vibration in the second direction can be regarded as the noise signal. Therefore, during the working process of the vibration sensor 800, the vibration generated by the vibration unit 830 in the second direction can be reduced, thereby reducing the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the second direction, thereby improving the vibration sensor 800.
  • Directional selectivity reducing the interference of noise signals to sound signals.
  • the centroid of the elastic element 832 and the center of gravity of the mass element 831 may coincide or approximately coincide.
  • the vibration unit 830 vibrates in response to the vibration of the shell structure 810, the centroid of the elastic element 832 coincides with or approximately coincides with the center of gravity of the mass element 831, and the vibration unit 830 can move the shell in the first direction.
  • the vibration of the mass element 831 in the second direction is reduced, thereby reducing the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the second direction, thereby improving the vibration sensor 800. direction selectivity.
  • the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the first direction can be changed (eg, improved) by adjusting the thickness and elastic coefficient of the elastic element 832 , the mass and size of the mass element 831 .
  • centroid of the elastic element 832 and the center of gravity of the mass element 831 can be coincident or nearly coincident can be understood as that the centroid of the elastic element 832 and the center of gravity of the mass element 831 satisfy certain conditions in the first direction and the second direction.
  • the specific condition may be that the distance between the centroid of the elastic element 832 and the center of gravity of the mass element 831 in the first direction may not be greater than 1/4 of the thickness of the mass element 831, and the centroid and mass of the elastic element 832 The distance between the center of gravity of the element 831 in the second direction is not greater than 1/4 of the side length or radius of the mass element 831 .
  • the specific condition may be that the distance between the centroid of the elastic element 832 and the center of gravity of the mass element 831 in the first direction may not be greater than 1/3 of the thickness of the mass element 831, and the centroid and mass of the elastic element 832 The distance between the center of gravity of the element 831 in the second direction is not greater than 1/3 of the side length or radius of the mass element 831 .
  • the distance between the centroid of the elastic element 832 and the center of gravity of the mass element 831 in the first direction may not be greater than 1/2 of the thickness of the mass element 831, and the centroid of the elastic element 832 and the center of gravity of the mass element 831 The distance in the second direction is not greater than 1/2 of the side length or radius of the mass element 831 .
  • the distance between the centroid of the elastic element 832 and the center of gravity of the mass element 831 in the first direction is not greater than 1/3 of the thickness (side length) of the mass element 831, and the centroid of the elastic element 832
  • the distance between the center of gravity of the mass element 831 in the second direction is not greater than 1/3 of the side length of the mass element 831 .
  • the distance between the centroid of the elastic element 832 and the center of gravity of the mass element 831 in the first direction is not greater than 1/4 of the thickness (height) of the mass element 831, and the centroid of the elastic element 832
  • the distance from the center of gravity of the mass element 831 in the second direction is not greater than 1/4 of the circular radius of the upper surface (or lower surface) of the mass element 831 .
  • the resonance frequency of the vibration unit 830 vibrating in the second direction can be shifted to a high frequency without changing the vibration unit 830 at a resonant frequency of vibration in the first direction.
  • the resonant frequency of the vibrating unit 830 vibrating in the first direction can remain substantially unchanged, for example, the vibrating unit 830
  • the resonant frequency of vibration in one direction may be a frequency within a relatively strong frequency range (for example, 20 Hz-2000 Hz, 2000 Hz-3000 Hz, etc.) that is perceived by the human ear.
  • the resonant frequency of the vibrating unit 830 vibrating in the second direction may be shifted to a high frequency so as to be within a relatively weak frequency range (for example, 5000Hz-9000Hz, 1kHz-14kHz, etc.) that human ears perceive.
  • the resonant frequency of the vibrating unit 830 vibrating in the first direction remains substantially unchanged, which can make the resonant frequency of the vibrating unit 830 vibrating in the second direction
  • the ratio to the resonance frequency of the vibration unit 830 vibrating in the first direction is greater than or equal to 2.
  • the ratio of the resonant frequency of the vibrating unit 830 vibrating in the second direction to the resonant frequency of the vibrating unit 830 vibrating in the first direction may also be greater than or equal to other values.
  • the ratio of the resonant frequency of the vibrating unit 830 vibrating in the second direction to the resonant frequency of the vibrating unit 830 vibrating in the first direction may also be greater than or equal to 1.5.
  • the ratio of the resonant frequency of the vibration unit 830 vibrating in the second direction to the resonant frequency of the vibration unit 830 vibrating in the first direction may reflect the influence of the noise signal picked up by the vibration sensor 800 on the sound signal. For example, the greater the ratio of the resonant frequency of the vibrating unit 830 vibrating in the second direction to the resonant frequency of the vibrating unit 830 vibrating in the first direction, the higher the resonant frequency of the vibrating unit 830 vibrating in the second direction.
  • the vibration unit 830 has higher sensitivity to the sound of the lower frequency band (for example, below 2000 Hz) in the first direction, and the sensitivity of the vibration unit 830 to the sound of the higher frequency band (for example, above 2000 Hz) in the second direction is higher, and The human ear is not sensitive to sound signals in the higher frequency band (for example, greater than 2000 Hz), but sensitive to sound signals in the lower frequency band (for example, below 2000 Hz).
  • the vibration unit 830 picks up the noise in the higher frequency range of the second direction The signal interferes less with the target sound signal picked up in the first direction.
  • adjusting the size of the mass element 831 can also reduce the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the second direction.
  • the vibration unit 830 can vibrate in the second direction by reducing the thickness of the mass element 831 (or increasing the area of the upper surface and/or lower surface of the mass element 831).
  • the resonant frequency is located in a high frequency range (for example, greater than 3000 Hz), thereby reducing the response sensitivity of the vibration unit 830 to vibration in the second direction within the target frequency range (for example, less than 3000 Hz).
  • the vibration unit 830 is only an exemplary schematic structure diagram of the vibration sensor.
  • the structure is only used to indicate that the elastic element 832 is an elastic structure, rather than limiting the structural shape of the elastic element 832 .
  • the elastic element 832 and the mass element 831 in the vibration sensor 800 reference may be made to the relevant descriptions in Fig. 9A-Fig. 9D and Fig. 14A-Fig. 17 .
  • Fig. 9A is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • a vibration sensor 900A may include a housing structure 910 , an acoustic transducer, and a vibration unit 930 .
  • the shape of the shell structure 910 may be a cuboid, a cylinder, or other regular or irregular structures.
  • the housing structure 910 may be made of a material with a certain hardness, so that the housing structure 910 protects the vibration sensor 900A and its internal components (eg, the vibration unit 930 ).
  • the material of the shell structure 910 may include but not limited to one or more of metal, alloy material, polymer material and the like.
  • the housing structure 910 may be connected to the substrate structure 920 on the upper surface of the acoustic transducer, and the connection methods here may include but not limited to welding, clamping, bonding or integral molding and other connection methods.
  • the substrate structure 920 may be a rigid circuit board (eg, PCB) and/or a flexible circuit board (eg, FPC).
  • at least part of the housing structure 910 and the substrate structure 920 on the upper surface of the acoustic transducer may form an acoustic cavity.
  • the housing structure 910 may independently form a packaging structure with an acoustic cavity, wherein the acoustic transducer may be located within the acoustic cavity of the packaging structure.
  • the housing structure 910 may be hollow inside and have an open opening at one end, and the substrate structure 920 on the upper surface of the acoustic transducer is physically connected to the open end of the housing structure 910 to achieve packaging, thereby form an acoustic cavity.
  • the vibration unit 930 may be located within an acoustic cavity. The vibration unit 930 may divide the acoustic cavity into the first acoustic cavity 940 and the second acoustic cavity 950 .
  • the first acoustic cavity 940 can be in acoustic communication with the acoustic transducer through the through hole 921 on the substrate structure 920
  • the second acoustic cavity 950 can be an acoustically sealed cavity structure.
  • the multiple acoustic cavities that the vibration unit 930 divides the acoustic cavity into are not limited to the first acoustic cavity 940 and the second acoustic cavity 950, but may also include more acoustic cavities, for example, the first acoustic cavity Three acoustic chambers, fourth acoustic chamber, etc.
  • the vibration unit 930 may include a mass element 931 and an elastic element 932 , wherein the elastic element 932 may include a first elastic element 9321 and a second elastic element 9322 .
  • the first elastic element 9321 and the second elastic element 9322 may be film-like structures.
  • the first elastic element 9321 and the second elastic element 9322 may be approximately symmetrically distributed with respect to the mass element 931 in the first direction.
  • the first elastic element 9321 and the second elastic element 9322 can be connected with the housing structure 910 .
  • the first elastic element 9321 can be located on the side of the mass element 931 away from the substrate structure 920, the lower surface of the first elastic element 9321 can be connected to the upper surface of the mass element 931, and the peripheral side of the first elastic element 9321 can be connected to the housing
  • the inner walls of the structure 910 are connected.
  • the second elastic element 9322 can be located on the side of the mass element 931 facing the substrate structure 920, the upper surface of the second elastic element 9322 can be connected to the lower surface of the mass element 931, and the peripheral side of the second elastic element 9322 can be connected to the housing structure 910. inner wall connections.
  • the first elastic element 9321 or the second elastic element 9322 may also be approximately symmetrically distributed with respect to the centerline of the mass element 931 along the first direction.
  • the first elastic element 9321 is located between the peripheral side of the mass element 931 and the housing structure 910, the peripheral side of the mass element 931 is connected to the housing structure 910 through the first elastic element 9321, and the first elastic element 9321 is relatively 931 is approximately symmetrically distributed along the center line of the first direction;
  • the second elastic element 9322 is connected to the lower surface of the mass element 931, and the peripheral side of the second elastic element 9322 is connected to the housing structure 910, and the second elastic element 9322 can also be The distribution is approximately symmetrical with respect to the center line of the mass element 931 along the first direction.
  • the film-like structures of the first elastic element 9321 and the second elastic element 9322 can be regular and/or irregular structures such as rectangles and circles, and the shapes of the first elastic element 9321 and the second elastic element 9322 can be according to The cross-sectional shape of the shell structure 910 is adaptively adjusted.
  • Fig. 9B is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • the structure of the vibration sensor 900B shown in FIG. 9B is substantially the same as that of the vibration sensor 900A shown in FIG. 9A. The difference between the two is that the elastic element 932 shown in FIG. Element 932 is matingly connected.
  • the first elastic element 9321 may include a first concave area 93231
  • the first concave area 93231 may be located on the side of the first elastic element 9321 close to the upper surface of the mass element 931
  • the second elastic element 9322 may include a second concave area 93232
  • the second recessed area 93232 is located on the side of the second elastic element 9322 close to the lower surface of the mass element 931
  • the two ends of the mass element 931 cooperate with the first recessed area 93231 and the second recessed area 93232 respectively to realize the 931 and the engagement of the elastic element 932.
  • the recessed depth of the recessed region 9323 in the first direction can be set according to requirements, for example, the thickness and quality of the mass element 931 .
  • the shape of the recessed region 9323 can match the shape of the mass element 931 .
  • the mass element 931 is a cylindrical structure
  • the shape of the concave region 9323 is also a cylindrical structure. Cooperate to realize the embedding of the mass element 931 and the elastic element 932 .
  • the thickness and mass of the mass element 931 can be adjusted without changing the volumes of the first acoustic cavity 940 and the second acoustic cavity 950 .
  • the size of the upper surface or the lower surface of the mass element 931 is smaller than the size of the first elastic element 9321 and the second elastic element 9322, and the mass The side surface of the element 931 and the inner wall of the housing structure 910 form a ring or a rectangle with equal spacing.
  • Fig. 9C is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • the overall structure of the vibration sensor 900C shown in FIG. 9C is substantially the same as that of the vibration sensor 900A shown in FIG. 9A .
  • the difference between the two mainly lies in the position and connection relationship between the elastic element and the mass element.
  • the first elastic element 9321 and the second elastic element 9322 can be located between the peripheral side of the mass element 931 and the housing structure 910, and the peripheral side of the mass element 931 passes through the first elastic element 9321 and the second elastic element 9322 is connected to housing structure 910.
  • the elastic element 932 (for example, the first elastic element 9321 and the second elastic element 9322) can be an annular membrane structure or a ring structure, and the elastic element 932 covers It is arranged on the peripheral side of the mass element 931 and located between the peripheral side of the mass element 931 and the housing structure 910 .
  • the inner side of the annular membrane-like structure or the ring-shaped structure is connected to the periphery of the mass element 931
  • the outer side of the annular membrane-like structure or the ring-shaped structure is connected to the inner wall of the casing structure 910 .
  • the shape and structure of the elastic element 932 can be adaptively adjusted according to the shape and structure of the mass element 931 and the shell structure 910 .
  • the elastic element 932 can correspond to a square annular membrane structure, the inner side of the square annular membrane structure is connected with the circumference of the quality element 931, and the outer side of the square annular membrane structure is connected to the casing.
  • the inner walls of the structure 910 are connected around.
  • the volume of the first acoustic cavity 940 and the second acoustic cavity 950 can be increased without changing the size (for example, thickness) of the mass element 931, thereby improving the response of the vibration sensor 900. sensitivity.
  • the mass element 931 may have a thickness ranging from 10 um to 1000 um. In some embodiments, the mass element 931 may have a thickness of 6um ⁇ 500um. In some embodiments, the mass element 931 may have a thickness of 800um ⁇ 1400um. In some embodiments, the thickness of the first elastic element 9321 and the second elastic element 9322 may be 0.1 um ⁇ 500 um. In some embodiments, the thickness of the first elastic element 9321 and the second elastic element 9322 may be 0.05um ⁇ 200um. In some embodiments, the thickness of the first elastic element 9321 and the second elastic element 9322 may be 300um ⁇ 800um.
  • the thickness ratio of each elastic element (eg, the first elastic element 9321 or the second elastic element 9322 ) to the mass element 931 may be 2-100. In some embodiments, the thickness ratio of each elastic element to the mass element 931 may be 10-50. In some embodiments, the thickness ratio of each elastic element to the mass element 931 may be 20-40. In some embodiments, the thickness difference between the mass element 931 and each elastic element (eg, the first elastic element 9321 or the second elastic element 9322 ) may be 9 um-500 um. In some embodiments, the thickness difference between the mass element 931 and each elastic element may be 50 um-400 um. In some embodiments, the thickness difference between the mass element 931 and each elastic element may be 100um ⁇ 300um.
  • a gap 960 may be formed between the first elastic element 9321 , the second elastic element 9322 , the mass element 931 , and the housing structure 910 corresponding to the acoustic cavity or the acoustic transducer. As shown in FIGS. 9A-9C , in some embodiments, the gap 960 can be located on the peripheral side of the mass element 931. When the mass element 931 responds to an external vibration signal, when the mass element 931 vibrates relative to the shell structure 910, The gap 960 can prevent the mass element 931 from colliding with the shell structure 910 when vibrating.
  • the gap 960 may include a filler, and the quality factor of the vibration sensor (eg, the vibration sensor 900A, the vibration sensor 900B, and the vibration sensor 900C) may be adjusted by disposing the filler in the gap 960 .
  • the filling in the gap 960 can make the quality factor of the vibration sensor 900 be 0.7-10. More preferably, the filling in the gap 960 can make the quality factor of the vibration sensor 900 be 1-5.
  • the filler may be one or more of gas, liquid (eg, silicone oil), elastic material, and the like. Exemplary gases may include, but are not limited to, one or more of air, argon, nitrogen, carbon dioxide, and the like. Exemplary elastic materials may include, but are not limited to, silicone gel, silicone rubber, and the like.
  • the volume of the acoustic cavity (for example, the second acoustic cavity 950 ) formed between the first elastic element 9321 and the housing structure 910 corresponding to the acoustic cavity may be greater than or equal to that of the second elastic element 9322
  • the vibration unit 930 compresses the air inside the two acoustic cavities, and the first acoustic cavity
  • the body 940 and the second acoustic cavity 950 can be approximately regarded as two air springs, the volume of the second acoustic cavity 950 is greater than or equal to the volume of the first acoustic cavity 940, so that the vibration unit 930 compresses the air to bring The coefficients of the air springs are approximately equal, thereby further improving the symmetry of the elastic elements (including the air springs) on the upper and lower sides of the mass element 931.
  • the volume of the first acoustic cavity 940 and the volume of the second acoustic cavity 950 may be 10 um 3 -1000 um 3 .
  • the volume of the first acoustic cavity 940 and the volume of the second acoustic cavity 950 may be 50um 3 -500um 3 .
  • each mass element 931 may include a plurality of sub-mass elements arranged in an array. Multiple sub-mass elements are arranged in an array on the surface of the elastic element 932 .
  • the mass elements 931 may be arranged in an array at the center of the surface of the elastic element 932 .
  • the centroid of the mass element 931 may be the geometric center of the array shape formed by the arrangement of the plurality of sub-mass elements.
  • the centroid of the mass element 931 is related to the shape structure and size of the array shape formed by the arrangement of multiple sub-mass elements.
  • the centroid of the mass element 931 may be at the intersection of two diagonal lines of the rectangular plate structure.
  • the mass element 931 as a whole can be approximately regarded as a structure with uniform density, and at this time, the centroid of the mass element 931 can be approximately regarded as the center of gravity of the mass element 931 .
  • the number and/or shape of the sub-mass elements, the array pitch (that is, the distance between two adjacent sub-mass elements), the array shape (such as rectangle, circle, etc. ) can be reasonably set according to actual needs, and will not be further limited here.
  • the vibration unit 930 can be reasonably adjusted, for example, without changing the mass In the case of the thickness of the element 931, the mass of the mass element 931 should be adjusted reasonably.
  • FIG. 10 is a graph of the frequency response of a vibration sensor according to some embodiments of the present specification.
  • the horizontal axis represents the frequency in Hz
  • the vertical axis represents the sensitivity of the vibration sensor in dB.
  • Curve 1010 represents the sensitivity in a first direction of a vibration sensor including one elastic element (eg, vibration sensor 300 of FIG. 3 ).
  • Curve 1020 represents the sensitivity in the first direction of a vibration sensor comprising two approximately symmetrical elastic elements (for example, the first elastic element 9321 and the second elastic element 9322 shown in FIG. 9A ).
  • Curve 1030 represents the sensitivity in the second direction of a vibration sensor including one elastic element (eg, vibration sensor 300 of FIG. 3 ).
  • Curve 1040 represents the sensitivity in the second direction of a vibration sensor comprising two approximately symmetrical elastic elements (eg, the first elastic element 9321 and the second elastic element 9322 shown in FIG. 9A ).
  • the material and shape of the elastic element of the vibration sensor corresponding to the curve 1010 (or curve 1030) are the same as that of the two elastic elements of the vibration sensor corresponding to the curve 1020 (or curve 1040), the difference is that the curve 1010 (or curve 1030)
  • the thickness of the elastic element of the corresponding vibration sensor in is approximately equal to the total thickness of the two elastic elements of the corresponding vibration sensor in curve 1020 (or curve 1040 ). It should be noted that the error of approximate equality here is not more than 50%.
  • f1 is the resonance frequency of the resonance peak of the vibration sensor with one elastic element in the first direction
  • f2 is the resonance frequency of the vibration sensor with two approximately symmetrical elastic elements in the first direction
  • the resonant frequency of the peak, wherein the resonant frequency f1 of the resonant peak of the vibration sensor with one elastic element in the first direction is similar to the resonant frequency f2 of the resonant peak of the vibration sensor with two approximately symmetrical elastic elements in the first direction equal. That is to say, within a certain frequency range, the sensitivity in the first direction of the vibration sensor with one elastic element is approximately equal to the sensitivity in the first direction of the vibration sensor with two approximately symmetrical elastic elements.
  • the resonant frequency in the first direction in the vibration sensor has a mapping (also referred to as a component) in the second direction.
  • f3 is used to represent an elastic
  • the mapping of the resonant frequency of the first direction in the frequency response curve of the second direction in the vibration sensor of the component (it can also be understood as the component of the resonant frequency of the first direction in the frequency response curve of the second direction)
  • f5 has an elastic element
  • the resonant frequency of the vibration sensor in the second direction, in the curve 1040, f4 is used to characterize the mapping of the resonant frequency in the first direction in the frequency response curve of the second direction in the vibration sensor including two elastic elements, and f6 is the mapping with two elastic elements
  • the resonant frequency f3 in the third curve 1030 is approximately equal to the resonant frequency f1 in the first curve 1010
  • the resonant frequency f4 in the fourth curve 1040 is approximately equal to the resonant frequency f2 in the second curve 1020 . Comparing the curve 1030 and the curve 1040, it can be seen that in a specific frequency range (for example, below 3000 Hz), the sensitivity in the second direction (curve 1030 in FIG. 10 ) of a vibration sensor comprising one elastic element is greater than that comprising two approximately symmetrical The sensitivity of the vibration sensor of the elastic element in the second direction (curve 1040 in FIG. 10 ).
  • the vibration sensor with one elastic element has the first The resonant frequency f5 corresponding to the resonant peak in the two directions is obviously lower than the resonant frequency f6 corresponding to the resonant peak in the second direction of the vibration sensor including two approximately symmetrical elastic elements.
  • the resonance frequency of the resonance peak of the vibration sensor in the second direction can be located in a higher frequency range, thereby reducing the distance between the vibration sensor and the resonance frequency. Sensitivity in the mid to low frequency range at distant locations. Further, within a specific frequency range (3000Hz), the sensitivity (curve 1040 in FIG. 10 ) of the vibration sensor comprising two approximately symmetrical elastic elements in the second direction is relative to that of the vibration sensor comprising one elastic element in the second direction. The sensitivity on (curve 1030 in Figure 10) is flatter.
  • the resonance peak corresponding to the resonance peak in the second direction in the vibration sensor with two approximately symmetrical elastic elements may be greater than 2.
  • the resonant frequency f6 corresponding to the resonant peak in the second direction in the vibration sensor with two approximately symmetrical elastic elements is the same as that of the vibration sensor with one elastic element
  • the ratio of the resonant frequency f5 corresponding to the resonant peak of the sensor in the second direction may be greater than 3.5.
  • the resonant frequency f6 corresponding to the resonant peak in the second direction in the vibration sensor with two approximately symmetrical elastic elements is the same as that of the two approximately symmetrical elastic elements.
  • the ratio of the resonant frequency f5 corresponding to the resonant peak of the vibration sensor in the second direction may be greater than 5.
  • the resonant frequency f6 corresponding to the resonant peak in the second direction and the resonant frequency f2 corresponding to the resonant peak in the first direction of the vibration sensor with two approximately symmetrical elastic elements may be greater than 1.
  • the resonant frequency f6 corresponding to the resonant peak in the second direction and the resonant frequency f2 corresponding to the resonant peak in the first direction of the vibration sensor with two approximately symmetrical elastic elements may be greater than 1.5.
  • the resonant frequency f6 corresponding to the resonant peak in the second direction and the resonant frequency f2 corresponding to the resonant peak in the first direction of the vibration sensor with two approximately symmetrical elastic elements may be greater than 2.
  • FIG. 11 is a dynamic simulation diagram of a vibration sensor according to some embodiments of this specification
  • Fig. 12 is a dynamic simulation diagram of a vibration sensor according to some embodiments of this specification.
  • (a) in FIG. 11 shows the displacement of the mass element vibrating in the first direction in the vibration sensor including an elastic element, wherein the resonance frequency of the vibration sensor in the first direction is 1678.3 Hz.
  • (b) in FIG. 11 shows the displacement of the mass element vibrating in the second direction in the vibration sensor including an elastic element, wherein the resonance frequency of the vibration sensor in the second direction is 2372.2 Hz.
  • FIG. 11 shows the displacement of the mass element vibrating in the first direction in the vibration sensor including an elastic element, wherein the resonance frequency of the vibration sensor in the first direction is 1678.3 Hz.
  • (b) in FIG. 11 shows the displacement of the mass element vibrating in the second direction in the vibration sensor including an elastic element, wherein the resonance frequency of the vibration sensor in the second direction is 2372.2 Hz.
  • FIG. 12 shows the displacement of the mass element vibrating in the first direction in the vibration sensor including two approximately symmetrical elastic elements, wherein the resonance frequency of the vibration sensor in the first direction is 1678 Hz.
  • FIG. 12 shows the displacement of the mass element vibrating in the second direction in the vibration sensor including two approximately symmetrical elastic elements, wherein the resonance frequency of the vibration sensor in the second direction is 14795 Hz.
  • the resonance frequency (1678.3 Hz) of the vibration sensor comprising an elastic element in the first direction and the resonance frequency (2372.2 Hz) of the vibration sensor comprising an elastic element in the second direction are both within the target frequency range (for example , 0Hz-3000Hz). Therefore, the vibration signal of the mass element in the second direction has a great influence on the electrical signal finally output by the vibration sensor.
  • the resonance frequency (1678 Hz) in the first direction of the vibration sensor comprising two approximately symmetrical elastic elements is within the target frequency range (for example, 0 Hz-3000 Hz), and the vibration sensor comprising two approximately symmetrical elastic elements
  • the resonant frequency (14795Hz) in the second direction is much higher than the target frequency. Therefore, the vibration signal of the mass element in the second direction has less influence on the electrical signal finally output by the vibration sensor.
  • the displacement of the mass element is related to the resonant frequency of the vibration sensor in the first direction and/or the second direction. Specifically, the displacement of the mass element is inversely proportional to the square of the resonant frequency of the vibration sensor in the first direction and/or the second direction. That is to say, the higher the resonance frequency of the vibration sensor in the first direction and/or the second direction, the smaller the displacement of the mass element in the first direction and/or the second direction. In some embodiments, the smaller the displacement of the mass element in the first direction and/or the second direction, the smaller the influence on the output electrical signal of the vibration sensor.
  • the displacement of the mass element in the second direction can be reduced, that is, the resonance frequency of the vibration sensor in the second direction can be increased. Comparing Fig. 11 and Fig. 12, the displacement of the mass element of the vibration sensor in Fig. 12 in the second direction is smaller than the displacement of the mass element of the vibration sensor in Fig. 11 in the second direction.
  • the sensitivity of the vibration sensor in Figure 12 in the second direction is lower than that of the vibration sensor in Figure 11 in the second direction, that is, by arranging approximately symmetrical two elastic elements in the vibration sensor, it can The sensitivity of the vibration sensor in the second direction is reduced, thereby improving the direction selectivity of the vibration sensor and enhancing the anti-noise interference capability of the vibration sensor.
  • the resonant frequency of the vibration sensor in the first direction and the second direction can be adjusted by adjusting the dimensions (eg, length, width) of the mass element.
  • the ratio of the resonant frequency of the vibration sensor in the second direction to the resonant frequency in the first direction can be changed by adjusting the size (eg, length, width) of the mass element.
  • the ratio of the vibration frequency of the vibration sensor in the second direction to the vibration frequency in the first direction may be 1-2.5.
  • the ratio of the vibration frequency of the vibration sensor in the second direction to the vibration frequency in the first direction may also be 1.3-2.2.
  • the ratio of the vibration frequency of the vibration sensor in the second direction to the vibration frequency in the first direction may also be 1.5-2.
  • adjusting the resonant frequency of the vibration sensor in the first direction and the second direction and its ratio by adjusting the size of the mass element please refer to Fig. 13 and its related descriptions.
  • Fig. 13 is a diagram of the resonant frequency of the vibrating unit according to some embodiments of the present specification.
  • the horizontal axis represents the length of the mass element in mm
  • the vertical axis represents the frequencies corresponding to mass elements of different lengths in Hz.
  • the vibration sensor 300 in Fig. 3 is used as an example, where the mass element 3201 in the vibration unit 320 has a width of 1.5 mm and a thickness of 0.3 mm, and the length of the vibration unit 320 elastic element 3202 is 3 mm, a width of 2 mm, and a thickness of 3 mm. 0.01mm.
  • the curve 1310 represents the resonant frequency of the vibration sensor 300 in the first direction
  • the curve 1320 represents the resonant frequency of the vibration sensor 300 in the second direction.
  • the resonant frequency of the vibration sensor 300 in the first direction decreases as the length of the mass element 3201 increases.
  • the resonant frequency of the vibration sensor 300 in the second direction decreases as the length of the mass element 931 increases.
  • the resonant frequency of the vibration sensor 300 in the first direction increases as the length of the mass element 3201 increases.
  • the resonant frequency of the vibration sensor 300 in the second direction increases as the length of the mass element 3201 increases.
  • the ratio of the resonant frequency of the vibration sensor 300 in the second direction to the resonant frequency in the first direction can be changed with the length of the mass element 3201, that is, by adjusting the size of the mass element 3201 ( For example, length, width), the ratio of the resonant frequency of the vibration sensor 300 in the second direction to the resonant frequency in the first direction (also referred to as relative transverse sensitivity) can be changed.
  • the ratio of the resonant frequency of the vibration sensor in the second direction to the resonant frequency in the first direction may be 1-2.5.
  • the ratio of the resonant frequency of the vibration sensor in the second direction to the resonant frequency in the first direction may be 1.5-2.5.
  • the ratio of the resonant frequency of the vibration sensor in the second direction to the resonant frequency in the first direction may be greater than 2.
  • the resonant frequency of vibration sensor 300 in the second direction is about 2200Hz
  • the resonant frequency of vibration sensor 300 in the first direction is about 1000Hz
  • the resonant frequency of vibration sensor 300 in the first direction is about 1000Hz.
  • the ratio of the resonant frequency of 300 in the second direction to the resonant frequency in the first direction is about 2.2.
  • the resonance frequency of the vibration sensor 300 in the second direction is about 2000 Hz
  • the resonance frequency of the vibration sensor 300 in the first direction is about 800 Hz
  • the vibration sensor 300 in the second direction is about 800 Hz.
  • the ratio of the resonant frequency in the two directions to the resonant frequency in the first direction is about 2.
  • the size of the quality element By changing the size (length or width) of the quality element, the ratio of the resonant frequency of the vibration sensor in the second direction to the resonant frequency in the first direction changes, here, the mass of the quality element and the stiffness of the elastic element will also be simultaneously change, thereby affecting the resonant frequency of the vibration sensor in the second direction and the resonant frequency in the first direction.
  • the size of the mass element for example, The ratio of length or width
  • the ratio of length or width to the size of the elastic element may be 0.2-0.9.
  • the ratio of the size of the mass element to the size of the elastic element may be 0.3-0.7. Further preferably, the ratio of the size of the mass element to the size of the elastic element may be 0.5-0.7. As a specific example only, for example, the size (eg length or width) of the mass element may be 1/2 the size of the elastic element. As another example, the size (eg length or width) of the mass element may be 3/4 of the size of the elastic element.
  • Fig. 14A is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • a vibration sensor 1400A may include a housing structure 1410 , an acoustic transducer, and a vibration unit 1430 .
  • the vibration sensor 1400A shown in FIG. 14A may be the same as or similar to the vibration sensor 900A shown in FIG. 9A .
  • housing structure 1410 of vibration sensor 1400A may be the same as or similar to housing structure 910 of vibration sensor 900A.
  • the first acoustic cavity 1440 of the vibration sensor 1400A may be the same as or similar to the first acoustic cavity 940 of the vibration sensor 900A.
  • the substrate structure 1420 of the vibration sensor 1400A may be the same as or similar to the substrate structure 920 of the vibration sensor 900A.
  • the vibration sensor 1400A for example, the second acoustic cavity 1450, the through hole 1421, the mass element 1431, etc., reference may be made to FIG. 9A and its related descriptions.
  • the main difference between the vibration sensor shown in FIG. 14A and the vibration sensor 900A shown in FIG. 9A is that the first elastic element 14321 and the second elastic element 14322 of the vibration sensor 1400A can have The columnar structure in the hollow area, the first elastic element 14321 and the second elastic element 14322 can respectively extend along the thickness direction of the mass element 1431 and be connected with the shell structure 1410 or the substrate structure 1420 on the upper surface of the acoustic transducer.
  • the first elastic element 14321 and the second elastic element 14322 may be approximately symmetrically distributed with respect to the mass element 1431 in the first direction.
  • the first elastic element 14321 can be located on the side of the mass element 1431 away from the substrate structure 1420, the lower surface of the first elastic element 14321 can be connected to the upper surface of the mass element 1431, and the upper surface of the first elastic element 9321 It can be connected with the inner wall of the housing structure 1410 .
  • the second elastic element 14322 can be located on the side of the mass element 1431 facing the substrate structure 1420, the upper surface of the second elastic element 14322 can be connected to the lower surface of the mass element 1431, and the lower surface of the second elastic element 14322 It can be connected with the substrate structure 1420 on the upper surface of the acoustic transducer.
  • the peripheral sides of the elastic element 1432 (the first elastic element 14321 and the second elastic element 14322 ) and the peripheral sides of the mass element 1431 may be aligned.
  • the distance between the peripheral side of the elastic element 1432 and the sidewall of the casing structure 1410 is equal to the distance between the peripheral side of the mass element 1431 and the sidewall of the casing structure 1410 .
  • the peripheral sides of the elastic element 1432 (the first elastic element 14321 and the second elastic element 14322 ) and the peripheral side of the mass element 1431 may also be staggered (ie not aligned).
  • the distance between the peripheral side of the elastic element 1432 and the sidewall of the casing structure 1410 may be greater (or smaller) than the distance between the peripheral side of the mass element 1431 and the sidewall of the casing structure 1410 .
  • the columnar structures of the first elastic element 14321 and the second elastic element 14322 can be regular and/or irregular structures such as cylinders and square columns, and the shapes of the first elastic element 14321 and the second elastic element 14322 can be Adaptive adjustment is performed according to the cross-sectional shape of the housing structure 1410 .
  • the peripheral side of one of the elastic elements 1432 can be aligned with the peripheral side of the mass element 1431, and the peripheral side of the other elastic element is not aligned with the peripheral side of the mass element 1431, so that the first The elastic element 14321 and the second elastic element 14322 are asymmetrically distributed relative to the mass element 1431 in the first direction.
  • the thickness of the mass element 1431 may be 10 um-1000 um. In some embodiments, the mass element 1431 may have a thickness of 4um ⁇ 500um. In some embodiments, the mass element 1431 may have a thickness of 600um ⁇ 1400um. In some embodiments, the thickness of the first elastic element 14321 and the second elastic element 14322 may be 10um ⁇ 1000um. In some embodiments, the thickness of the first elastic element 14321 and the second elastic element 14322 may be 4um ⁇ 500um.
  • the thickness of the first elastic element 14321 and the second elastic element 14322 may be 600um ⁇ 1400um. In some embodiments, the difference between the thickness of each of the elastic elements 1432 (for example, the first elastic element 14321 and the second elastic element 14322 ) and the thickness of the mass element 1431 may be 0 um ⁇ 500 um. In some embodiments, the difference between the thickness of each elastic element 1432 and the thickness of the mass element 1431 may be 20um ⁇ 400um. In some embodiments, the difference between the thickness of each elastic element 1432 and the thickness of the mass element 1431 may be 50um ⁇ 200um. In some embodiments, the ratio of the thickness of each elastic element 1432 to the thickness of the mass element 1431 may be 0.01-100.
  • the ratio of the thickness of each elastic element 1432 to the thickness of the mass element 1431 may be 0.5-80. In some embodiments, the ratio of the thickness of each elastic element 1432 to the thickness of the mass element 1431 may be 1-40. In some embodiments, there may be a gap 1460 between the outside of the first elastic element 14321 , the outside of the second elastic element 14322 , the outside of the mass element 1431 and the housing structure 1410 or the acoustic transducer corresponding to the acoustic cavity. As shown in FIG. 14A , in some embodiments, a gap 1460 can be located on the peripheral side of the mass element 1431.
  • the gap 1460 can prevent the mass element 1431 from contacting the shell when vibrating.
  • Body structure 1410 collides.
  • the gap 1460 may include fillers, and for more descriptions about the fillers, reference may be made to FIG. 9A and its related descriptions, and details are not repeated here.
  • Fig. 14B is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 14C is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • the columnar structures may be straight columnar structures (as shown in FIG. 14A ).
  • the straight columnar structure may mean that the columnar structure does not bend along its extension direction (ie, the height direction of the columnar structure).
  • the first elastic element 14321 and the second elastic element 14322 can also be a structure with a bent part, and the extending direction of the bent part can form a preset angle (for example, 90°) with the extending direction of the columnar structure. ).
  • the first elastic element 14321 may include a first columnar portion 143211 and a first bent portion 143212 .
  • the first columnar portion 143211 is bent and connected to the first bent portion 143212 .
  • the bending connection may mean that the extension direction of the first columnar portion 143211 is connected with the extension direction of the first bending portion 143212 at a preset angle.
  • the extending direction of the first columnar portion 143211 is perpendicular to the extending direction of the first bent portion 143212 .
  • the extension direction of the first columnar part 143211 is basically consistent with the first direction, wherein one end of the first columnar part 143211 is connected to the upper surface of the mass element 1431, and the other end is bent and connected to the first bending part 143212.
  • a bent portion 143212 extends along the second direction and is connected to the side wall of the housing structure 1410 .
  • the second elastic element 14322 may include a second columnar portion 143221 and a second bent portion 143222 . The second columnar portion 143221 is bent and connected to the second bent portion 143222 .
  • One end of the second columnar part 143221 is connected to the lower surface of the mass element 1431 , and the other end is bent and connected to the second bending part 143222 , and the second bending part 143222 extends along the second direction and is connected to the side wall of the housing structure 1410 .
  • the peripheral sides of the cylindrical portion eg, the first cylindrical portion 143211 , the second cylindrical portion 143221
  • the peripheral side of the mass element 1431 may coincide (as shown in FIG. 14B ) or may not coincide.
  • the extension direction of the first columnar portion 143211 of the first elastic member 14321 is substantially consistent with the second direction, and one end of the first columnar portion 143211 is connected to the mass element 1431 On the peripheral side, the other end is bent and connected to the first bending portion 143212 , and the first bending portion 143212 extends along the first direction and is connected to the housing structure 1410 .
  • one end of the second columnar portion 143221 of the second elastic element 14322 is connected to the peripheral side of the mass element 1431, and the other end is bent and connected to the second bending portion 143222.
  • the second bending portion 143222 extends along the first direction and Connected to the substrate structure 1420 .
  • the extending direction of the columnar structure (for example, the first columnar portion 143211 and the second columnar portion 143221 ) may not be consistent with the first direction (or the second direction).
  • the volume of the acoustic cavity can be adjusted by adjusting the angle between the extending direction of the columnar structure and the first direction (or the second direction).
  • the preset angle formed between the extending direction of the columnar portion and the extending direction of the bent portion may not be limited to the above-mentioned 90 degrees, and may also be other suitable angles.
  • the preset angle formed between the extending direction of the columnar portion and the extending direction of the bent portion may be 45°-135°.
  • the preset angle formed between the extending direction of the columnar portion and the extending direction of the bent portion may be 60°-120°. More preferably, the preset angle formed between the extending direction of the columnar portion and the extending direction of the bent portion may be 80°-100°.
  • Fig. 15 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • a vibration sensor 1500 may include a housing structure 1510 , an acoustic transducer, and a vibration unit 1530 .
  • the vibration sensor 1500 shown in FIG. 15 may be the same as or similar to the vibration sensor 900A shown in FIG. 9A .
  • housing structure 1510 of vibration sensor 1500 may be the same as or similar to housing structure 910 of vibration sensor 900A.
  • the first acoustic cavity 1540 of the vibration sensor 1500 may be the same as or similar to the first acoustic cavity 940 of the vibration sensor 900A.
  • the substrate structure 1520 of the vibration sensor 1500 may be the same as or similar to the substrate structure 920 of the vibration sensor 900A.
  • the vibration sensor 1500 for example, the second acoustic cavity 1550, the through hole 1521, the mass element 1531, etc., reference may be made to FIG. 9A and its related descriptions.
  • the first elastic element 15321 of the vibration sensor 1500 may include a first sub-elastic element 153211 and a second sub-elastic element 153212 .
  • the first sub-elastic element 153211 is connected to the housing structure 1510 corresponding to the acoustic cavity through the second sub-elastic element 153212 , and the first sub-elastic element 153211 is connected to the upper surface of the mass element 1531 .
  • the upper surface of the mass element 1531 is connected to the lower surface of the first sub-elastic element 153211
  • the upper surface of the first sub-elastic element 153211 is connected to the lower surface of the second sub-elastic element 153212
  • the second sub-elastic element The upper surface of 153212 is connected with the inner wall of housing structure 1510 .
  • the peripheral side of the first sub-elastic element 153211 and the peripheral side of the second sub-elastic element 153212 may coincide or approximately coincide.
  • the second elastic element 15322 of the vibration sensor 1500 may include a third sub-elastic element 153221 and a fourth sub-elastic element 153222 .
  • the third sub-elastic element 153221 is connected to the corresponding acoustic transducer of the acoustic cavity through the fourth sub-elastic element 153222 , and the third sub-elastic element 153221 is connected to the lower surface of the mass element 1531 .
  • the lower surface of the mass element 1531 is connected to the upper surface of the third sub-elastic element 153221
  • the lower surface of the third sub-elastic element 153221 is connected to the upper surface of the fourth sub-elastic element 153222
  • the lower surface of 153222 is connected to the acoustic transducer through the substrate structure 1520 on the upper surface of the acoustic transducer.
  • the peripheral side of the third sub-elastic element 153221 and the peripheral side of the fourth sub-elastic element 153222 may coincide or approximately coincide.
  • the peripheral side of the first sub-elastic element 153211 and the peripheral side of the second sub-elastic element 153212 may not coincide.
  • the peripheral side of the first sub-elastic element 153211 can be connected with the inner wall of the housing structure 1510, and the second sub-elastic element 153212 There may be a gap between the peripheral side of and the inner wall of the housing structure 1510 .
  • the first sub-elastic elements 153211 and the third sub-elastic elements 153221 may be approximately symmetrically distributed with respect to the mass element 1531 in the first direction.
  • the size, shape, material, or thickness of the first sub-elastic element 153211 and the third sub-elastic element 153221 may be the same.
  • the second sub-elastic elements 153212 and the fourth sub-elastic elements 153222 may be approximately symmetrically distributed with respect to the mass element 1531 in the first direction.
  • the size, shape, material, or thickness of the second sub-elastic element 153212 and the fourth sub-elastic element 153222 may be the same.
  • the first sub-elastic element 153211 and the second sub-elastic element 153212 may have the same size, shape, material, or thickness.
  • the first sub-elastic element 153211 and the second sub-elastic element 153212 are made of polytetrafluoroethylene.
  • the first sub-elastic element 153211 and the second sub-elastic element 153212 (or the third sub-elastic element 153221 and the fourth sub-elastic element 153222 ) may be different in size, shape, material, or thickness.
  • the first sub-elastic element 153211 is a membrane structure
  • the second sub-elastic element 153212 is a columnar structure.
  • the vibration sensor 1500 may further include a fixing piece 1570 .
  • the fixing piece 1570 can be distributed along the peripheral side of the mass element 1531, the fixing piece 1570 is located between the first sub-elastic element 153211 and the third sub-elastic element 153221, and the upper surface and the lower surface of the fixing piece 1570 can be respectively connected with the first sub-elastic
  • the element 153211 is connected to the third sub-elastic element 153221.
  • the fixation sheet 1570 may be a separate structure.
  • the fixed piece 1570 can be a columnar structure with approximately the same thickness as the mass element 1531, the upper surface of the fixed piece 1570 can be connected with the lower surface of the first sub-elastic element 153211, and the lower surface of the fixed piece 1570 can be connected with the third sub-elastic element 153221 upper surface connection.
  • the fixing piece 1570 may also be integrally formed with other structures.
  • the fixing piece 1570 may be a columnar structure integrally formed with the first sub-elastic element 153211 and/or the third sub-elastic element 153221.
  • the fixing piece 1570 can also be a columnar structure penetrating through the first sub-elastic element 153211 and/or the third sub-elastic element 153221 .
  • the fixing piece 1570 may pass through the first sub-elastic element 153211 and be connected to the second sub-elastic element 153212 .
  • the structure of the fixing piece 1570 may be other types of structures besides the columnar structure, for example, a ring structure and the like.
  • the fixing piece 1570 when the fixing piece 1570 is a ring structure, the fixing piece 1570 is evenly distributed on the peripheral side of the mass element 1531, the upper surface of the fixing piece 1570 is connected with the lower surface of the first sub-elastic element 153211, and the fixing piece 1570 The lower surface of the third sub-elastic element 153221 is connected to the upper surface.
  • the thickness of the fixing piece 1570 and the thickness of the mass element 1531 may be the same. In some embodiments, the thickness of the fixing sheet 1570 and the thickness of the mass element 1531 may be different. For example, the thickness of the fixing sheet 1570 may be greater than the thickness of the mass element 1531 .
  • the material of the fixing sheet 1570 can be elastic material, such as foam, plastic, rubber, silicone and the like. In some embodiments, the material of the fixing piece 1570 can also be a rigid material, for example, metal, metal alloy and the like. Preferably, the material of the fixing sheet 1570 may be the same as that of the mass element 1531 .
  • the fixed piece 1570 can realize the fixing effect of the gap 1560, and the fixed piece 1570 can also be used as an additional mass element, so as to adjust the resonant frequency of the vibration sensor, thereby adjusting (for example, reducing) the vibration sensor in the second direction.
  • Fig. 16 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • a vibration sensor 1600 may include a housing structure 1610 , an acoustic transducer, and a vibration unit 1630 .
  • the vibration sensor 1600 shown in FIG. 16 may be the same as or similar to the vibration sensor 900A shown in FIG. 9A .
  • housing structure 1610 of vibration sensor 1600 may be the same as or similar to housing structure 910 of vibration sensor 900A.
  • the first acoustic cavity 1640 of the vibration sensor 1600 may be the same as or similar to the first acoustic cavity 940 of the vibration sensor 900A.
  • the substrate structure 1620 of the vibration sensor 1600 may be the same as or similar to the substrate structure 920 of the vibration sensor 900A.
  • the vibration sensor 1600 for example, the second acoustic cavity 1650, the through hole 1621, the acoustic transducer, etc., reference may be made to FIG. 9A and its related descriptions.
  • the vibration sensor 1600 differs from the vibration sensor 900A in that the structure of the vibration unit is different.
  • the vibration unit 1630 of the vibration sensor 1600 may include an elastic member 1632 and two mass members (eg, a first mass member 16311 and a second mass member 16312 ).
  • mass element 1631 may include a first mass element 16311 and a second mass element 16312 .
  • the first mass element 16311 and the second mass element 16312 are arranged symmetrically with respect to the elastic element 1632 in the first direction.
  • the first mass element 16311 may be located on the side of the elastic element 1632 away from the substrate structure 1620 , and the lower surface of the first mass element 16311 is connected to the upper surface of the elastic element 1632 .
  • the second mass element 16312 may be located on the side of the elastic element 1632 facing the substrate structure 1620 , and the upper surface of the second mass element 16312 is connected to the lower surface of the elastic element 1632 .
  • the size, shape, material, or thickness of the first mass element 16311 and the second mass element 16312 may be the same.
  • the first mass element 16311 and the second mass element 16312 are arranged symmetrically with respect to the elastic element 1632 in the first direction, so that the center of gravity of the mass element 1631 approximately coincides with the centroid of the elastic element 1632, thereby making
  • the vibration unit 1630 vibrates in response to the vibration of the housing structure 1610, it can reduce the vibration of the mass element 1631 in the second direction, thereby reducing the response sensitivity of the vibration unit 1630 to the vibration of the housing structure 1610 in the second direction, and further The direction selectivity of the vibration sensor 1600 is improved.
  • the first mass element 16311 and the second mass element 16312 are distributed on opposite sides of the elastic element 1632 in the first direction, where the first mass element 16311 and the second mass element 16312 can be approximately regarded as one
  • An integral mass element, the center of gravity of the integral mass element approximately coincides with the centroid of at least one elastic element 1632, can make the vibration unit 1630 vibrate the shell structure 1610 in the first direction within the target frequency range (for example, below 3000 Hz)
  • the response sensitivity of the vibration unit 1630 is higher than the response sensitivity of the vibration unit 1630 to the vibration of the casing structure 1610 in the second direction.
  • the difference between the response sensitivity of the vibration unit 1630 to the vibration of the housing structure 1610 in the second direction and the response sensitivity of the vibration unit 1630 to the vibration of the housing structure 1610 in the first direction may be -20dB ⁇ -60dB. In some embodiments, the difference between the response sensitivity of the vibration unit 1630 to the vibration of the housing structure 1610 in the second direction and the response sensitivity of the vibration unit 1630 to the vibration of the housing structure 1610 in the first direction may be -25dB ⁇ -50dB.
  • the difference between the response sensitivity of the vibration unit 1630 to the vibration of the housing structure 1610 in the second direction and the response sensitivity of the vibration unit 1630 to the vibration of the housing structure 1610 in the first direction may be -30dB ⁇ -40dB.
  • the vibration generated by the vibration unit 1630 in the second direction can be reduced, thereby reducing the response sensitivity of the vibration unit 1630 to the vibration of the housing structure 1610 in the second direction, thereby improving
  • the direction selectivity of the vibration sensor 1600 reduces the interference of the noise signal to the sound signal.
  • the centroid of the elastic element 1632 and the center of gravity of the mass element 1631 may coincide or approximately coincide.
  • the vibration unit 1630 vibrates in response to the vibration of the shell structure 1610, the centroid of the elastic element 1632 coincides or approximately coincides with the center of gravity of the mass element 1631, and the vibration unit 1630 can move the shell in the first direction.
  • the vibration of the mass element 1631 in the second direction is reduced, thereby reducing the response sensitivity of the vibration unit 1630 to the vibration of the housing structure 1610 in the second direction, thereby improving the vibration sensor 1600. direction selectivity.
  • the response sensitivity of the vibration unit 1630 to the vibration of the casing structure 1610 in the first direction can be changed (eg, improved) by adjusting the thickness and elastic coefficient of the elastic element 1632 , the mass and size of the mass element 1631 .
  • the distance between the centroid of the elastic element 1632 and the center of gravity of the mass element 1631 in the first direction may not be greater than 1/3 of the thickness of the mass element 1631 . In some embodiments, the distance between the centroid of the elastic element 1632 and the center of gravity of the mass element 1631 in the first direction may not be greater than 1/2 of the thickness of the mass element 1631 . In some embodiments, the distance between the centroid of the elastic element 1632 and the center of gravity of the mass element 1631 in the first direction may not be greater than 1/4 of the thickness of the mass element 1631 .
  • the distance between the centroid of the elastic element 1632 and the center of gravity of the mass element 1631 in the second direction is not greater than 1/3 of the side length or radius of the mass element 1631 . In some embodiments, the distance between the centroid of the elastic element 1632 and the center of gravity of the mass element 1631 in the second direction is not greater than 1/2 of the side length or radius of the mass element 1631 . In some embodiments, the distance between the centroid of the elastic element 1632 and the center of gravity of the mass element 1631 in the second direction is not greater than 1/4 of the side length or radius of the mass element 1631 .
  • the distance between the centroid of the elastic element 1632 and the center of gravity of the mass element 1631 in the second direction is not greater than 1/3 of the side length of the mass element 1631 .
  • the distance between the centroid of the elastic element 1632 and the center of gravity of the mass element 1631 in the second direction is not greater than 1/3 of the circular radius of the upper surface (or lower surface) of the mass element 1631 .
  • the resonant frequency of the vibration unit 1630 vibrating in the second direction can be shifted to a high frequency without changing the vibration unit 1630 A resonant frequency for vibrating in the first direction.
  • the resonant frequency of the vibration unit 1630 vibrating in the first direction can remain substantially unchanged, for example, the vibration unit 1630 in the second direction
  • the resonant frequency of vibration in one direction may be a frequency within a relatively strong frequency range (for example, 20 Hz-2000 Hz, 2000 Hz-3000 Hz, etc.) that is perceived by the human ear.
  • the resonant frequency of the vibrating unit 1630 vibrating in the second direction may be shifted to a high frequency so as to be located in a relatively weak frequency range (for example, 5000Hz-9000Hz, 1kHz-14kHz, etc.) perceived by the human ear.
  • the resonant frequency of the vibration unit 1630 in the first direction remains substantially unchanged, which can make the resonant frequency of the vibration unit 1630 vibrate in the second direction
  • the ratio to the resonance frequency of the vibration unit 1630 vibrating in the first direction is greater than or equal to 2.
  • the ratio of the resonant frequency of the vibrating unit 1630 vibrating in the second direction to the resonant frequency of the vibrating unit 1630 vibrating in the first direction may also be greater than or equal to other values.
  • the ratio of the resonant frequency of the vibrating unit 1630 vibrating in the second direction to the resonant frequency of the vibrating unit 1630 vibrating in the first direction may also be greater than or equal to 1.5.
  • Fig. 17 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • a vibration sensor 1700 may include a housing structure 1710 , an acoustic transducer, and a vibration unit 1730 .
  • the vibration sensor 1700 shown in FIG. 17 may be the same as or similar to the vibration sensor 1600 shown in FIG. 16 .
  • the housing structure 1710 of the vibration sensor 1700 may be the same as or similar to the housing structure 1610 of the vibration sensor 1600 .
  • the first acoustic cavity 1740 of the vibration sensor 1700 may be the same as or similar to the first acoustic cavity 1640 of the vibration sensor 1600 .
  • the acoustic transducer of the vibration sensor 1700 may be the same as or similar to the acoustic transducer of the vibration sensor 1600 .
  • the vibration sensor 1700 for example, the second acoustic cavity 1750, the through hole 1721, the mass element 1731, the first mass element 17311, the second mass element 17312, etc., reference can be made to FIG. 16 and its related descriptions.
  • the elastic element 1732 of the vibration sensor 1700 may further include a second elastic element 17322 and a third elastic element 17323 .
  • the first elastic element 17321 can be connected to the housing structure 1710 and/or the acoustic transducer through the second elastic element 17322 and the third elastic element 17323 respectively.
  • the first elastic element 17321 is a membrane structure
  • the second elastic element 17322 and the third elastic element 17323 are columnar structures.
  • the upper surface of the first elastic element 17321 is connected to the lower surface of the second elastic element 17322
  • the upper surface of the second elastic element 17322 is connected to the inner wall of the shell structure 1710 .
  • the lower surface of the first elastic element 17321 is connected to the upper surface of the third elastic element 17323, and the lower surface of the third elastic element 17323 is connected to the acoustic transducer through the substrate structure 1720 on the upper surface of the acoustic transducer.
  • the peripheral sides of the first elastic element 17321 , the second elastic element 17322 and the third elastic element 17323 may coincide or approximately coincide. In some embodiments, the peripheral sides of the first elastic element 17321 , the second elastic element 17322 and the third elastic element 17323 may not overlap.
  • the peripheral side of the first elastic element 17321 can be connected with the inner wall of the shell structure 1710, and the second elastic element There is a gap between the peripheral sides of 17322 and the third elastic element 17323 and the inner wall of the housing structure 1710 .
  • the structures of the first elastic element 17321 , the second elastic element 17322 and the third elastic element 17323 may also be the same.
  • the first elastic element 17321 , the second elastic element 17322 and the third elastic element 17323 are all film structures.
  • the material of the first elastic element 17321, the second elastic element 17322 and the third elastic element 17323 may be the same.
  • the materials of the first elastic element 17321 , the second elastic element 17322 and the third elastic element 17323 may be different.
  • gap 1760 may prevent mass element 1731 from colliding with housing structure 1710 when mass element 1731 vibrates in response to vibrations of housing structure 1710 .
  • the gap 1760 may include a filler, and for a specific description of the filler, reference may be made to FIG. 9A and its related contents, and details are not repeated here.
  • each mass element may include multiple submass components. Multiple sub-mass elements are arranged in an array on the surface of the elastic element. For example, a plurality of first sub-mass elements included in the first mass element are arranged in an array at the center of the upper surface of the elastic element; a plurality of second sub-mass elements included in the second mass element are arranged in an array under the elastic element. Surface center position. In some embodiments, the plurality of first sub-mass elements and the plurality of second sub-mass elements may be arranged symmetrically with respect to the elastic element in the first direction.
  • the centroid of the mass element may be the midpoint of the line connecting the geometric center of the array shape formed by the plurality of first sub-mass elements and the geometric center of the array shape formed by the plurality of second sub-mass elements.
  • the centroid of the mass element is related to the shape structure and size of the array shape formed by the arrangement of multiple first sub-mass elements and multiple second sub-mass elements. For example, when the shape of the array is a rectangular plate structure, the centroid of the first mass element can be at the intersection of two diagonal lines of the rectangular plate structure, and the centroid of the second mass element can also be at the intersection of the two diagonal lines of the rectangular plate structure.
  • the position of the intersection point of the diagonal lines, the centroid of the mass element as a whole is the midpoint position of the line connecting the two intersection points.
  • the mass element as a whole can be approximately regarded as a structure with uniform density, and at this time, the centroid of the mass element can be approximately regarded as the center of gravity of the mass element.
  • the vibration unit (for example, the vibration unit 830 shown in FIG. 8, the vibration unit 930 shown in FIGS. 9A-9C, the vibration unit shown in FIGS. 14A-14C) unit 1430, etc.) is set horizontally.
  • the set direction of the vibration unit can also be set in other directions (for example, set vertically or obliquely).
  • the first direction and the second direction follow the
  • the mass element eg, mass element 831 shown in FIG. 8 , mass element 931 shown in FIGS. 9A-9C , mass element 1431 shown in FIGS. 14A-14C , etc.
  • the mass element eg, mass element 831 shown in FIG. 8 , mass element 931 shown in FIGS. 9A-9C , mass element 1431 shown in FIGS. 14A-14C , etc.
  • the vibration unit 830 (mass element 831) of the vibration sensor 800 is arranged vertically
  • the first direction and the second direction also change with the rotation of the vibration unit 830 .
  • the working principle of the vibration sensor when the vibration unit is arranged vertically is similar to that of the vibration sensor when the vibration unit is arranged horizontally, and will not be repeated here.
  • aspects of this specification can be illustrated and described by several patentable categories or situations, including any new and useful process, machine, product or combination of substances, or any combination of them Any new and useful improvements.
  • various aspects of this specification may be entirely executed by hardware, may be entirely executed by software (including firmware, resident software, microcode, etc.), or may be executed by a combination of hardware and software.
  • the above hardware or software may be referred to as “block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of this specification may be embodied as a computer product comprising computer readable program code on one or more computer readable media.
  • a computer storage medium may contain a propagated data signal embodying a computer program code, for example, in baseband or as part of a carrier wave.
  • the propagated signal may have various manifestations, including electromagnetic form, optical form, etc., or a suitable combination.
  • a computer storage medium may be any computer-readable medium, other than a computer-readable storage medium, that can be used to communicate, propagate, or transfer the program for use by being connected to an instruction execution system, apparatus, or device.
  • Program code residing on a computer storage medium may be transmitted over any suitable medium, including radio, electrical cable, fiber optic cable, RF, or the like, or combinations of any of the foregoing.
  • the computer program codes required for the operation of each part of this manual can be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python etc., conventional procedural programming languages such as C language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code may run entirely on the user's computer, or as a stand-alone software package, or run partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer through any form of network, such as a local area network (LAN) or wide area network (WAN), or to an external computer (such as through the Internet), or in a cloud computing environment, or as a service Use software as a service (SaaS).
  • LAN local area network
  • WAN wide area network
  • SaaS service Use software as a service
  • numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifiers "about”, “approximately” or “substantially” in some examples. grooming. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the stated figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of this specification to confirm the breadth of the range are approximations, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本说明书实施例涉及一种振动传感器,包括壳体结构和声学换能器,声学换能器与壳体结构物理连接,其中,壳体结构与声学换能器形成声学腔体;振动单元,将声学腔体分隔为包含第一声学腔体的多个声学腔体,第一声学腔体与声学换能器声学连通;振动单元包括弹性元件和质量元件,弹性元件和质量元件位于声学腔体中,质量元件与壳体结构或声学换能器通过弹性元件连接;壳体结构被配置为基于外部振动信号产生振动,振动单元响应于壳体结构的振动使第一声学腔体的体积改变,声学换能器基于第一声学腔体体积的改变产生电信号,弹性元件包括第一弹性元件和第二弹性元件,第一弹性元件和第二弹性元件分别与质量元件连接并沿振动单元的振动方向间隔分布。

Description

一种振动传感器
交叉引用
本申请要求于2021年06月18日提交的中国申请号202110677119.2的优先权,其内容通过引用结合于此。
技术领域
本说明书实施例涉及传感器领域,特别涉及一种振动传感器。
背景技术
振动传感器是一种将振动信号转换为电信号的能量转换器件。在一些情况下,振动传感器可以用作骨传导麦克风。在骨传导麦克风中,振动传感器可以检测人说话时的经皮肤传递的振动信号,将人皮肤传递来的振动信号转换为电信号,从而达到传声的效果。骨传导麦克风可以减少外界环境中通过空气传播的噪声对目标声源的干扰,达到更好的传声效果。振动传感器(例如,骨传导麦克风)在实际的应用场景中可能接收除目标声源之外的其他振动信号(例如,耳机中振动扬声器的振动信号、耳机的振动信号等),从而影响振动传感器的传声效果。
基于上述问题,本说明书提供一种振动传感器,可以用来降低非目标振动信号的影响,从而提高振动传感器对目标振动信号的传声效果。
发明内容
本说明书一个或多个实施例提供一种振动传感器,包括:壳体结构和声学换能器,所述声学换能器与所述壳体结构物理连接,其中,至少部分所述壳体结构与所述声学换能器形成声学腔体;振动单元,将所述声学腔体分隔为包含第一声学腔体的多个声学腔体,所述第一声学腔体与所述声学换能器声学连通;所述振动单元包括弹性元件和质量元件,所述弹性元件和所述质量元件位于所述声学腔体中,所述质量元件与所述壳体结构或所述声学换能器通过所述弹性元件连接;所述壳体结构被配置为基于外部振动信号产生振动,所述振动单元响应于所述壳体结构的振动使所述第一声学腔体的体积改变,所述声学换能器基于所述第一声学腔体体积的改变产生电信号,其中,所述弹性元件包括第一弹性元件和第二弹性元件,所述第一弹性元件和所述第二弹性元件分别与所述质量元件连接并沿所述振动单元的振动方向间隔分布。
在一些实施例中,在目标频率范围内,所述振动单元对所述第一方向上壳体结构振动的响应灵敏度高于所述振动单元对第二方向上壳体结构振动的响应灵敏度,所述第二方向垂直于所述第一方向。
在一些实施例中,所述振动单元在所述第二方向上振动的谐振频率与所述振动单元在所述第一方向上振动的谐振频率的比值大于或等于2。
在一些实施例中,所述振动单元对所述第二方向上壳体结构振动的响应灵敏度与所述振动单元与所述第一方向上壳体结构振动的响应灵敏度的差值为-20dB~-40dB。
在一些实施例中,所述第一方向为所述质量元件的厚度方向,所述弹性元件的形心与所述质量元件的重心在第一方向上的距离不大于所述质量块厚度的1/3。
在一些实施例中,所述弹性元件的形心与所述质量元件的重心在第二方向上的距离不大于所述质量块边长或半径的1/3。
在一些实施例中,所述第一弹性元件和所述第二弹性元件与所述声学腔室对应的所述壳体结构或所述换能装置连接;所述第一弹性元件和所述第二弹性元件在所述第一方向上相对于所述质量元件呈近似对称分布,其中,所述第一方向为所述质量元件的厚度方向,所述质量元件的上表面与所述第一弹性元件连接,所述质量元件的下表面与所述第二弹性元件连接。
在一些实施例中,所述第一弹性元件和所述第二弹性元件的尺寸、形状、材质、或厚度相同。
在一些实施例中,所述第一弹性元件和所述第二弹性元件为膜状结构,所述第一弹性元件的一侧与所述质量元件的上表面连接,所述第二弹性元件的一侧与所述质量元件的下表面连接,所述质量元件的上表面或下表面的尺寸小于所述第一弹性元件和所述第二弹性元件的尺寸。
在一些实施例中,所述第一弹性元件和与所述声学腔室对应的所述壳体结构或所述换能装置之间形成的声学腔体的体积大于或等于所述第二弹性元件和与所述声学腔室对应的所述壳体结构或所述换能装置之间形成的第一声学腔体的体积。
在一些实施例中,所述第一弹性元件和所述第二弹性元件位于所述质量元件的周侧与所述壳体之间,所述质量元件的周侧通过所述第一弹性元件和所述第二弹性元件与所述壳体连接。
在一些实施例中,所述第一弹性元件、所述质量元件和与所述声学腔室对应的所述壳体结构或所述换能装置之间形成的声学腔体的体积大于或等于所述第二弹性元件、所述质量元件和与所述声学腔室对应的所述壳体结构或所述换能装置之间形成的第一声学腔体的体积。
在一些实施例中,所述第一弹性元件、所述第二弹性元件、所述质量元件以及与所述声学腔室对应的所述壳体结构或所述换能装置之间具有间隙,所述间隙中具有用于调节所述振动传感器的品质因子的填充物。
在一些实施例中,所述质量元件的厚度为10um~1000um;所述第一弹性元件和所述第二弹性元件的厚度为0.1um~500um。
在一些实施例中,所述第一弹性元件和所述第二弹性元件为柱状结构,所述第一弹性元件和所述第二弹性元件分别沿着所述质量元件的厚度方向延伸并与所述壳体结构或所述换能装置连接。
在一些实施例中,所述第一弹性元件的外侧、所述第二弹性元件的外侧、所述质量元件的外侧和与所述声学腔室对应的所述壳体结构或所述换能装置之间具有间隙,所述间隙中具有用于调节所述振动传感器品质因子的填充物。
在一些实施例中,所述质量块厚度为10um~1000um,所述第一弹性元件和所述第二弹性元件的厚度为10um~1000um。
在一些实施例中,所述第一弹性元件包括第一子弹性元件和第二子弹性元件,所述第一子弹性元件和与所述声学腔室相对应的壳体结构或换能装置通过所述第二子弹性元件连接,所述第一子弹性元件与所述质量元件的上表面连接;所述第二弹性元件包括第三子弹性元件和第四子弹性元件,所述第三子弹性元件和与所述声学腔室相对应的壳体结构或换能装置通过所述第四子弹性元件连接,所述第三子弹性元件与所述质量元件的下表面连接。
在一些实施例中,所述第一子弹性元件的周侧与所述第二子弹性元件的周侧近似重合,所述第三子弹性元件的周侧与所述第四子弹性元件的周侧近似重合。
在一些实施例中,所述振动传感器还包括固定片,所述固定片沿所述质量元件的周侧分布;所述固定片位于所述第一子弹性元件和所述第三子弹性元件之间,且所述固定片的上表面与下表面分别与所述第一子弹性元件和所述第三子弹性元件连接。
在一些实施例中,所述固定片、所述质量元件、所述第一子弹性元件以及所述第二子弹性元件之间的间隙具有用于调整所述振动传感器品质因子的填充物。
本说明书一个或多个实施例还提供一种振动传感器,所述振动传感器包括:壳体结构和声学换能器,所述声学换能器与所述壳体结构物理连接,其中,至少部分所述壳体结构与所述声学换能器形成声学腔体;振动单元,将所述声学腔体分隔为包含第一声学腔体的多个声学腔体,所述第一声学腔体与所述声学换能器声学连通;所述振动单元包括弹性元件和质量元件,所述弹性元件和所述质量元件位于所述声学腔体中,所述质量元件与所述壳体结构或所述声学换能器通过所述弹性元件连接;所述壳体结构被配置为基于外部振动信号产生振动,所述振动单元响应于所述壳体结构的振动使所述第一声学腔体的体积改变,所述声学换能器基于所述第一声学腔体体积的改变产生电信号;其中,所述质量元件在第一方向上分布在所述弹性元件相反的两侧。
在一些实施例中,在目标频率范围内,所述振动单元对所述第一方向上壳体结构振动的响应灵敏度高于所述振动单元对第二方向上壳体结构振动的响应灵敏度,所述第二方向垂直于所述第一方向。
在一些实施例中,所述振动单元对所述第二方向上壳体结构振动的谐振频率与所述振动单元对所述第一方向上壳体结构振动的谐振频率的比值大于或等于2。
在一些实施例中,所述振动单元对所述第二方向上壳体结构振动的响应灵敏度与所述振动单元与所述第一方向上壳体结构振动的响应灵敏度的差值为-20dB~-40dB。
在一些实施例中,所述弹性元件的形心与所述质量元件的重心在第一方向上的距离不大于所述质量块厚度的1/3。
在一些实施例中,所述弹性元件的形心与所述质量元件的重心在第二方向上的距离不大于 所述质量块边长或半径的1/3。
在一些实施例中,所述质量元件包括第一质量元件和第二质量元件,所述第一质量元件和所述第二质量元件在所述第一方向上相对于所述弹性元件呈对称设置。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书的一些实施例所示的振动传感器的应用场景图;
图2是根据图1所示的振动传感器的振动信号的示意图;
图3是根据本说明书一些实施例所示的振动传感器的结构示意图;
图4是根据本说明书的一些实施例所示的振动传感器在第一方向的振动模态图;
图5是根据本说明书的一些实施例所示的振动传感器在第二方向的振动模态图;
图6是根据本说明书一些实施例所示的振动传感器的结构示意图;
图7是根据本说明书一些实施例所示的振动传感器的结构示意图;
图8是根据本说明书的一些实施例所示的振动传感器的结构示意图;
图9A是根据本说明书的一些实施例所示的振动传感器的结构示意图;
图9B是根据本说明书的一些实施例所示的振动传感器的结构示意图;
图9C是根据本说明书的一些实施例所示的振动传感器的结构示意图;
图9D是根据本说明书的一些实施例所示的质量元件的示例性分布示意图;
图10是根据本说明书的一些实施例所示的振动传感器的频率响应曲线图;
图11是根据本说明书的一些实施例所示的振动传感器的动态模拟图;
图12是根据本说明书的一些实施例所示的振动传感器的动态模拟图;
图13是根据本说明书的一些实施例所示的振动单元的谐振频率图;
图14A是根据本说明书的一些实施例所示的振动传感器的结构示意图;
图14B是根据本说明书的一些实施例所示的振动传感器的结构示意图;
图14C是根据本说明书的一些实施例所示的振动传感器的结构示意图;
图15是根据本说明书的一些实施例所示的振动传感器的结构示意图;
图16是根据本说明书的一些实施例所示的振动传感器的结构示意图;
图17是根据本说明书的一些实施例所示的振动传感器的结构示意图。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本说明书实施例涉及振动传感器。振动传感器可以包括壳体结构、振动单元和声学换能器,壳体结构与声学换能器通过物理方式连接,至少部分壳体结构与声学换能器形成声学腔体,振动单元位于壳体结构与声学换能器形成的声学腔体中。在一些实施例中,振动单元可以包括弹性元件和质量元件,弹性元件和质量元件位于声学腔体中。壳体结构被配置为基于外部信号而产生振动,当壳体结构基于外部信号产生振动时,振动单元响应于壳体结构的振动同时振动,从而使第一声学腔 体的体积改变,进而声学换能器产生电信号。在一些实施例中,弹性元件可以包括第一弹性元件和第二弹性元件,第一弹性元件和第二弹性元件分别与质量元件连接并沿振动单元的振动方向间隔分布。例如,第一弹性元件和第二弹性元件在振动单元的振动方向上分布在质量元件相反的两侧。又例如,第一弹性元件和第二弹性元件可以位于质量元件的周侧和壳体或声学换能器之间。在一些实施例中,质量元件(例如,第一质量元件和第二质量元件)也可以在第一方向上分布在弹性元件相反的两侧。在一些实施例中,通过将第一弹性元件和第二弹性元件分别与质量元件连接并沿振动单元的振动方向间隔分布,或将质量元件(例如,第一质量元件和第二质量元件)在第一方向上分布在弹性元件相反的两侧,可以使得在目标频率范围内(例如,3000Hz以下),振动单元对第一方向上壳体结构振动的响应灵敏度高于振动单元对第二方向上壳体结构振动的响应灵敏度,其中,第二方向垂直于第一方向。例如,第一弹性元件和第二弹性元件分别位于质量元件的上表面和下表面,其中,第一弹性元件和第二弹性元件可以近似视为一个整体,该整体的形心与质量元件的重心近似重合。以振动传感器应用于耳机(例如,骨传导耳机)中作为示例,振动传感器可以作为骨传导麦克风采集用户说话时面部肌肉产生振动信号,并将振动信号转化为包含语音信息的电信号。振动传感器集成在耳机中时,振动传感器在接收用户讲话时的面部肌肉振动信号的同时也会接收其他振动信号(例如,扬声器的振动信号、耳机壳体的振动信号、外界空气中的噪声信号等),不同的振动信号具有不同的振动方向。本说明书实施例中将弹性元件的形心与质量元件的重心近似重合设置可以使得振动单元对第一方向上壳体结构振动的响应灵敏度高于振动单元对第二方向上壳体结构振动的响应灵敏度。在一些应用场景中,振动传感器用于采集用户讲话时的振动信号,第一方向对应用户讲话时的面部肌肉振动信号,第二方向对应其他振动信号(例如,扬声器的振动信号)的振动方向。在其他应用场景中,振动传感器用于采集外部环境的噪声信号时,第一方向对应外部环境的噪声信号的振动方向,第二方向对应其他振动信号(例如,扬声器的振动信号)的振动方向,进而提高振动传感器的方向选择性,降低其他振动信号对振动传感器所要采集的目标信号造成的干扰。
在一些实施例中,本说明书实施例中的振动传感器可以应用于移动设备、可穿戴设备、虚拟现实设备、增强现实设备等,或其任意组合。在一些实施例中,移动设备可以包括智能手机、平板电脑、个人数字助理(PDA)、游戏设备、导航设备等,或其任何组合。在一些实施例中,可穿戴设备可以包括智能手环、耳机、助听器、智能头盔、智能手表、智能服装、智能背包、智能配件等,或其任意组合。在一些实施例中,虚拟现实设备和/或增强现实设备可以包括虚拟现实头盔、虚拟现实眼镜、虚拟现实补丁、增强现实头盔、增强现实眼镜、增强现实补丁等或其任何组合。例如,虚拟现实设备和/或增强现实设备可以包括Google Glass、Oculus Rift、Hololens、Gear VR等。
图1是根据本说明书的一些实施例所示的振动传感器的应用场景图。以振动传感器应用于耳机(例如,骨传导耳机)作为示例,如图1所示,耳机100可以包括振动扬声器110和振动传感器120。当用户佩戴图1所示的耳机100时,耳机100与用户头部皮肤区域相接触,耳机100在工作状态时,一方面,振动扬声器110基于音频信号产生振动信号,该振动信号通过耳机100的壳体或其他结构(例如,振动板)传递至用户头部皮肤,该振动信号通过头部的骨骼或肌肉传递至用户的听觉神经。另一方面,用户在通话状态或录音时,用户讲话时声带发出的声音经过骨骼传导到皮肤表面,并带动耳机100的壳体产生振动信号,振动传感器120可以基于壳体结构的振动采集振动信号,并将该振动信号转化为包含语音信息的电信号。在一些应用场景中,例如,用户在使用耳机100进行通话或输入语音信息时,振动传感器120要采集的振动信号是用户讲话时面部肌肉产生的振动信号,这里的振动信号可以视为目标信号(目标振动信号的振动方向为图1中所示的双向箭头E),目标信号是振动传感器120所要采集的振动信号。耳机100的振动扬声器110在工作状态时也会产生振动信号,外部空气振动也会作用于耳机100产生振动信号,这些振动信号可以视为噪声信号。为了防止噪声信号对目标信号噪声影响,可以将耳机100中振动扬声器110与振动传感器120垂直或近似垂直设置,这里振动扬声器110与振动传感器120垂直或近似垂直设置是指振动扬声器110的振动方向(图1中所示的双向箭头N)与振动传感器120的振动方向(图1中所示的第一方向)相垂直或近似垂直。这里的近似垂直可以是指振动扬声器110的法线与振动传感器120的法线具有一定角度范围内的夹角。在一些实施例中,该夹角的范围可以为75°-115°。优选地,该夹角的范围可以为80°-100°。进一步优选地,该夹角的范围可以为85°-95°。在一些实施例中,为了减少耳机100与用户面部皮肤接触产生的振动对目标信号的影响,振动扬声器110的振动方向可以与用户皮肤接触区域所在的平面以一定夹角θ(例如,小于90°)进行设置。
图2是根据图1所示的振动传感器的示例性振动信号的示意图。结合图1和图2,振动传感器120中振动单元的振动方向为第一方向;振动传感器120产生的振动信号为S N,其中,振动扬 声器110的振动方向与用户皮肤接触区域不垂直时,振动扬声器110产生的振动信号S N在第一方向上具有信号分量S e,该信号分量S e也可以视为噪声信号;用户讲话时面部肌肉产生的振动信号(目标信号)为S E,其中,S e为目标信号S E在第一方向上的信号分量,该信号分量可以被振动传感器120拾取。本说明书实施例提供的振动传感器120中的振动单元中,将弹性元件的形心或重心与质量元件的重心近似重合设置可以使得振动单元对第一方向上壳体结构振动的响应灵敏度高于振动单元对第二方向上壳体结构振动的响应灵敏度,使得振动传感器120可以对用户讲话时面部肌肉产生的振动信号(目标信号S E)在第一方向的有效分量S e更好的进行接收,同时使得振动扬声器110在第二方向上的振动信号S n对于振动传感器120的影响较小,从而可以提高振动传感器的方向选择性,降低非目标振动信号对振动传感器所要采集的目标信号造成的干扰。需要注意的是,这里弹性元件的形心与质量元件的重心近似重合可以理解弹性元件为密度均匀的规则几何结构(例如,圆柱状结构、环状结构、长方体结构等)的形心与质量元件的重心近似重合,此时弹性元件的形心可以视为弹性元件的重心。在一些实施例中,弹性元件为不规则结构体时或密度不均匀时,则可视为弹性元件的实际重心与质量元件的重心近似重合。
图3是根据本说明书的一些实施例所示的振动传感器的结构示意图。如图3所示,振动传感器300可以包括壳体结构310、声学换能器、振动单元320。在一些实施例中,振动传感器300的形状可以是长方体、圆柱体或其他不规则结构体。在一些实施例中,壳体结构310可以为具有一定硬度的材料制成,从而使得壳体结构310对振动传感器300及其内部元件(例如,振动单元320)进行保护。在一些实施例中,壳体结构310的材质可以包括但不限于金属、合金材料、高分子材料(例如,丙烯腈-丁二烯-苯乙烯共聚物、聚氯乙烯、聚碳酸酯、聚丙烯等)等中的一种或多种。在一些实施例中,壳体结构310与声学换能器连接,这里的方式连接可以包括但不限于焊接、卡接、粘接或一体成型等连接方式。在一些实施例中,壳体结构310和声学换能器可以形成声学腔体,其中,振动单元320可以位于该声学腔体内。振动单元320可以将声学腔体分隔为第一声学腔体360和第二声学腔体370。声学换能器可以将壳体结构310内部声学腔体的振动信号转换为电信号。具体地,振动传感器300工作时,外部振动信号可以通过壳体结构310传递到振动单元320,振动单元320响应于壳体结构310的振动而发生振动。由于振动单元320的振动相位与壳体结构310和声学换能器的振动相位不同,振动单元320的振动可以引起壳体结构310中第一声学腔体360的体积变化,进而引起第一声学腔体360的声压变化,声学换能器可以检测第一声学腔体360的声压变化并转换为电信号。在一些实施例中,声学换能器可以包括基板340,壳体结构310可以通过基板340与声学换能器连接。在一些实施例中,基板340可以为刚性电路板(例如,PCB)和/或柔性电路板(例如,FPC)。在一些实施例中,基板340可以包括一个或多个进声孔330,第一声学腔体360可以通过进声孔330与声学换能器连通。在一些实施例中,声学换能器还可以包括至少一个振膜(图3中未示出),振膜可以设置于进声孔330处,当外部振动信号作用于壳体结构310时,第一声学腔体360的声压发生变化,振膜响应于第一声学腔体360的声压变化而发生机械振动,声学换能器的磁路系统基于振膜的机械振动产生电信号。
在一些实施例中,振动单元320可以包括弹性元件3202和质量元件3201,质量元件3201和弹性元件3202位于声学腔体内,质量元件3201与壳体结构310通过弹性元件3202连接。具体地,弹性元件3202的周侧与壳体结构310的内壁连接,质量元件3201可以位于弹性元件3202的上表面或下表面。弹性元件3202的上表面可以是弹性元件3202垂直于其振动方向且远离声学换能器(例如,基板340)的表面;弹性元件3202的下表面可以是弹性元件3202垂直于其振动方向且靠近声学换能器(例如,基板340)的表面。质量元件3201可以增大弹性元件3202相对于壳体结构310的振动幅度,使得第一声学腔体360的体积变化值可以在不同声压级和频率的外部振动信号的作用下发生明显变化,进而提高振动传感器300的灵敏度。在一些实施例中,弹性元件3202的结构可以是膜状结构。在一些实施例中,质量元件3201可以为长方体、圆柱体等规则结构体或不规则结构体。在一些实施例中,质量元件3201的材质可以金属材料或非金属材料。金属材料可以包括但不限于钢材(例如,不锈钢、碳素钢等)、轻质合金(例如,铝合金、铍铜、镁合金、钛合金等)等,或其任意组合。非金属材料可以包括但不限于聚氨酯发泡材料、玻璃纤维、碳纤维、石墨纤维、碳化硅纤维等。在一些实施例中,弹性元件3202的材质可以包括但不限于海绵、橡胶、硅胶、塑料、泡沫、聚二甲基硅氧烷(PDMS)、聚酰亚胺(PI)等,或其任意组合。在一些实施例中,弹性元件3202的厚度可以为0.1um~500um。优选地,弹性元件3202的厚度可以为0.5um~300um。更为优选地,弹性元件3202的厚度可以为1um~50um。在一些实施例中,质量元件3201的厚度可以为10um~1000um。优选地,质量元件3201的厚度可以为20um~800um。进一步优选地,质量元件3201 的厚度可以为50um~500um。在一些实施例中,质量元件3201可以位于弹性元件3202的中心位置。在一些实施例中,质量元件3201的尺寸(例如,长度和宽度)可以小于弹性元件3202的尺寸,其中,质量元件3201的周侧与壳体结构310的内壁具有间距,该间距可以防止质量元件3201相对于壳体结构310振动时发生碰撞。在一些实施例中,质量元件3201的周侧与壳体结构310内壁的间距可以为1um~1000um。优选地,质量元件3201的周侧与壳体结构310内壁的间距20um~800um。进一步优选地,质量元件3201的周侧与壳体结构310内壁的间距50um~500um。在一些实施例中,通过调整质量元件3201的尺寸(例如,长度、宽度)可以改变振动传感器300在第二方向的谐振频率与第一方向的谐振频率的比值(也被称为相对横向灵敏度),使得振动传感器300在目标频率范围内,在保证振动传感器300在第一方向上的灵敏度不发生较大变化的前提下,降低振动传感器300在第二方向上的灵敏度。在一些实施例中,振动传感器在第二方向上的振动频率与第一方向上的振动频率的比值可以大于1。优选地,振动传感器在第二方向上的振动频率与第一方向上的振动频率的比值也可以大于1.5。进一步优选地,振动传感器在第二方向上的振动频率与第一方向上的振动频率的比值也可以大于2。在一些实施例中,质量元件3201的尺寸(例如,长度或宽度)与弹性元件3202的尺寸的比值可以为0.2~0.9。优选地,质量元件3201的尺寸与弹性元件3202的尺寸的比值可以为0.3~0.7。进一步优选地,质量元件3201的尺寸与弹性元件3202的尺寸的比值可以为0.5-0.7。仅作为具体示例,例如,质量元件3201的尺寸(例如,长度或宽度)可以是弹性元件3202的尺寸的1/2。又例如,质量元件3201的尺寸(例如,长度或宽度)可以是弹性元件3202的尺寸的3/4。在一些实施例中,第一方向可以是指质量元件3201的厚度方向,第二方向与第一方向垂直。在本实施例中,弹性元件3202相比于壳体结构310更容易发生弹性形变,使得振动单元320可以相对壳体结构310发生相对运动。当外界的振动的作用于到壳体结构310时,壳体结构310、声学换能器、振动单元320等部件同时产生振动,由于振动单元320的振动相位与壳体结构310、声学换能器的振动相位不相同,从而引起了声学腔体的体积变化,导致声学腔体的声压产生变化,并由声学换能器将其转化为电信号,实现了对声音的拾取。
需要说明的是,弹性元件3202的形状不限于图3中所示的膜状结构,还可以为其它可以发生弹性形变的结构,例如,弹簧结构、金属环片、环状结构、柱状结构等。
图4是根据本说明书的一些实施例所示的振动传感器在第一方向的振动模态图;图5是根据本说明书的一些实施例所示的振动传感器在第二方向的振动模态图。如图4和图5所示,振动传感器400在接收不同振动方向的振动信号时,振动单元420的振动情况也有所不同。如图4所示,在一些实施例中,振动传感器400在接收来自第一方向的振动信号时,振动单元420的质量元件421沿第一方向振动,同时弹性元件422在质量元件421的作用下产生在第一方向的弹性形变,这里质量元件421左侧和右侧在第一方向的位移相同,弹性元件422的左侧和右侧在第一方向的弹性形变量也相同。如图5所示,振动传感器400在接收来自第二方向的振动信号时,质量元件421和弹性元件422产生类似波浪式的运动,比如,质量元件421和弹性元件422左侧的振动和右侧的振动幅度不同。由此可知,振动传感器400在接收目标信号时,其他振动信号(例如,与目标信号振动方向不同的信号)会对目标信号造成干扰。在一些实施例中,为了使得振动传感器在接收目标信号时尽可能降低其他信号的干扰,可以对振动单元420(例如,弹性元件422和质量元件421)进行调整。例如,可以在第一声学腔体中设置弹性支撑结构,弹性支撑结构连接于弹性元件和基板结构(或壳体结构)之间,用于支撑弹性元件并阻止弹性元件产生图5的振动模态,如弹性支撑结构呈对称式支撑在弹性元件的左右两侧(例如,弹性元件422上质量元件421所在位置的周侧附近),以使弹性元件左右两侧的振动能够尽量同步。
图6是根据本说明书的一些实施例所示的振动传感器的结构示意图。如图6所示的振动传感器600可以包括壳体结构610、声学换能器、振动单元620。图6中的振动传感器600可以与图3中的振动传感器300相同或相似。例如,振动传感器600的壳体结构610可以与振动传感器300的壳体结构310相同或相似,再例如,振动传感器600的基板结构640可以与振动传感器300的基板340相同或相似。又例如,振动传感器600的第一声学腔体660可以与振动传感器300的第一声学腔体360相同或相似。关于振动传感器600的更多结构(例如,第二声学腔体670、进声孔630、质量元件621等)可以参考图3及相关描述。
在一些实施例中,振动单元620可以包括质量元件621和弹性元件622,弹性元件622位于质量元件621在第一方向上的一侧,例如,质量元件621可以位于弹性元件622的上表面。在其他实施例中,质量元件621还可以位于弹性元件622的下表面。
在一些实施例中,图6中的振动传感器600与图3中的振动传感器300的主要区别之处在 于,弹性元件622可以包括第一弹性元件6221和第二弹性元件6222,第一弹性元件6221和第二弹性元件6222位于质量元件621的同一侧,如图6所示,质量元件621通过第二弹性元件6222与第一弹性元件6221连接,第一弹性元件6221与声学换能器600的基板结构640连接。具体地,质量元件621、第二弹性元件6222、第一弹性元件6221由上至下依次连接,其中,第一弹性元件6221的下表面与声学换能器600的基板结构640连接,第一弹性元件6221的上表面与第二弹性元件6222的下表面连接,质量元件621位于第二弹性元件6222的上表面。
在一些实施例中,第一弹性元件6221可以为圆环状结构,第二弹性元件6222为膜状结构,第一弹性元件6221的内侧、第二弹性元件6222的下表面和声学换能器的基板结构640形成第一声学腔体660,第一声学腔体660与基板结构640处的进声孔630连通。第一弹性元件6221和第二弹性元件6222可以由相同或不同的材料制成,关于第一弹性元件6221和/或第二弹性元件6222的材料可以参考图3中弹性元件3202的描述,在此不做赘述。在一些实施例中,第一弹性元件6221和第二弹性元件6222可以作为一体结构或相互独立的结构。在一些实施例中,第一弹性元件6222还可以通过其周侧与壳体结构610连接。在第二方向上,第一弹性元件6221以质量元件621或第二弹性元件6222的中心线对称支撑在第二弹性元件6222的左右两侧(例如,第二弹性元件6222上质量元件621所在位置的周侧),可以使第二弹性元件6222以及质量元件621左右两侧的振动能够尽量同步,从而降低振动单元620对第二方向上壳体结构610振动的响应灵敏度。在一些实施例中,通过调整质量元件621的尺寸(例如,长度、宽度)可以改变振动传感器600在第二方向的谐振频率与第一方向的谐振频率的比值(也被称为相对横向灵敏度),使得振动传感器600在目标频率范围内,在保证振动传感器600在第一方向上的灵敏度不发生较大变化的前提下,降低振动传感器600在第二方向上的灵敏度。关于质量元件621的尺寸和弹性元件622的具体内容可以参考本说明书中其它地方的描述,例如,图3及其相关描述。图7是根据本说明书的一些实施例所示的振动传感器的结构示意图。如图7所示,振动传感器700可以包括壳体结构710、声学换能器、振动单元720。图7中所示的振动传感器与图6中所示的振动传感器600相同或相似。例如,振动传感器700的壳体结构710与振动传感器600的壳体结构610相同或类似。又例如,振动传感器700的第一声学腔体760与振动传感器600的第一声学腔体660相同或类似。再例如,振动传感器700的基板结构740和进声孔730与振动传感器600的基板结构640和进声孔630相同或类似。
在一些实施例中,如图7所示,振动传感器700与振动传感器600的主要区别之处在于,振动单元720包括质量元件721和弹性元件722,质量元件721通过弹性元件722与基板结构740连接,弹性元件722与声学换能器700的基板结构740连接。具体地,质量元件721、弹性元件722和基板结构740由上到下依次连接,其中,质量元件721的下表面与弹性元件722的上表面连接,弹性元件722的下表面与声学换能器700基板结构740连接。
在一些实施例中,弹性元件722为一个圆环状结构,弹性元件722的内侧、质量元件721的下表面与基板结构740形成第一声学腔体760,第一声学腔体760与基板结构740处的进声孔730连通。关于弹性元件722的材料可以参考图3中弹性元件3202的描述,在此不做赘述。在一些实施例中,弹性元件722和质量元件721可以作为一体结构或相互独立的结构。在一些实施例中,通过调整质量元件721的尺寸(例如,长度、宽度)可以改变振动传感器在第二方向的谐振频率与第一方向的谐振频率的比值(也被称为相对横向灵敏度),使得振动传感器700在目标频率范围内,在保证振动传感器700在第一方向上的灵敏度不发生较大变化的前提下,降低振动传感器700在第二方向上的灵敏度。关于质量元件721的尺寸和弹性元件722的具体内容可以参考本说明书中其它地方的描述,例如,图3及其相关描述。
在一些实施例中,为了降低振动单元(例如,图3中的振动单元320)在第二方向的振动,可以设置弹性元件中与质量元件周侧接触的区域的硬度大于其他区域的硬度,使得弹性元件在质量元件的作用下产生在第二方向的形变较小,降低振动传感器在第二方向上的灵敏度。在一些实施例中,可以通过设置弹性元件的不同区域的材料不同,从而使得弹性元件不同区域具有不同的硬度。在一些实施例中,也可以采用其他方式来实现弹性元件不同区域的硬度不同,例如,可以在弹性元件中与质量元件接触的边沿区域的表面设置附加结构(如胶层)。
在一些实施例中,为了使得振动传感器在接收目标信号时尽可能降低其他信号的干扰,可以对振动单元(例如,弹性元件和质量元件)进行调整。例如,通过在振动传感器中设置相对于质量元件在第一方向上呈近似对称分布的弹性元件,或者设置相对于弹性元件在第一方向上呈近似对称分布的质量元件,使得质量元件的重心与弹性元件的形心之间的距离限定在特定范围(例如,弹性元件的形心与质量元件的重心在第一方向上的距离不大于质量元件厚度的1/3)内,从而可以降低 振动传感器在第二方向上的灵敏度,进而提高振动传感器的方向选择性,增强振动传感器的抗噪声干扰能力。在关于进一步提高振动传感器在第一方向的灵敏度的同时降低第二方向的灵敏度的内容可以参考图8-图17及其相关描述。
图8是根据本说明书的一些实施例所示的振动传感器的结构示意图。如图8所示,振动传感器800可以包括壳体结构810、声学换能器820和振动单元830。在一些实施例中,壳体结构810的形状可以是长方体、圆柱体或其他规则结构体或不规则结构体。在一些实施例中,壳体结构810可以为具有一定硬度的材料制成,从而使得壳体结构810对振动传感器800及其内部元件(例如,振动单元830)进行保护。在一些实施例中,壳体结构810的材质可以包括但不限于金属、合金材料、高分子材料(例如,丙烯腈-丁二烯-苯乙烯共聚物、聚氯乙烯、聚碳酸酯、聚丙烯等)等中的一种或多种。在一些实施例中,壳体结构810和声学换能器820通过物理方式连接,这里的物理方式连接可以包括但不限于焊接、卡接、粘接或一体成型等连接方式。在一些实施例中,至少部分壳体结构810和声学换能器820可以形成声学腔体。在一些实施例中,壳体结构810可独立形成具有声学腔体的封装结构,其中,声学换能器820可以位于该封装结构的声学腔体内。在一些实施例中,壳体结构810可以是内部中空且其一端具有开放式敞口的结构,声学换能器820与壳体结构810的敞口端物理连接实现封装,从而形成声学腔体。在一些实施例中,振动单元830可以位于声学腔体内,振动单元830可以将声学腔体分隔为第一声学腔体840和第二声学腔体850。在一些实施例中,第一声学腔体840与声学换能器820声学连通,第二声学腔体850可以为声学密封的腔体结构。需要说明的是,振动单元830将声学腔体分隔为的多个声学腔体不限于第一声学腔体840、第二声学腔体850,还可以包括更多个声学腔体,例如,第三声学腔体、第四声学腔体等。
振动传感器800可以将外部振动信号转换为电信号。在一些实施例中,外部振动信号可以包括人说话时的振动信号、皮肤随人体运动或随靠近皮肤的扬声器工作等原因产生的振动信号、和与振动传感器接触的物体或空气产生的振动信号等,或其任意组合。进一步地,振动传感器产生的电信号可以输入外部电子设备。在一些实施例中,外部电子设备可以包括移动设备、可穿戴设备、虚拟现实设备、增强现实设备等,或其任意组合。在一些实施例中,移动设备可以包括智能手机、平板电脑、个人数字助理(PDA)、游戏设备、导航设备等,或其任何组合。在一些实施例中,可穿戴设备可以包括智能手环、耳机、助听器、智能头盔、智能手表、智能服装、智能背包、智能配件等,或其任意组合。在一些实施例中,虚拟现实设备和/或增强现实设备可以包括虚拟现实头盔、虚拟现实眼镜、虚拟现实补丁、增强现实头盔、增强现实眼镜、增强现实补丁等或其任何组合。例如,虚拟现实设备和/或增强现实设备可以包括Google Glass、Oculus Rift、Hololens、Gear VR等。具体地,振动传感器800工作时,外部振动信号可以通过壳体结构810传递到振动单元830,振动单元830响应于壳体结构810的振动而发生振动。由于振动单元830的振动相位与壳体结构810和声学换能器820的振动相位不同,振动单元830的振动可以引起第一声学腔体840的体积变化,进而引起第一声学腔体840的声压变化。声学换能器820可以检测第一声学腔体840的声压变化并转换为电信号,通过焊点(图8中未示出)传递到外部电子设备。这里的焊点可以与耳机、助听器、辅听器、增强现实眼镜、增强现实头盔、虚拟现实眼镜等设备的内部元件(例如,处理器)通过数据线电连接,所述内部元件获取的电信号可以通过有线或无线的方式传递到外部电子设备。在一些实施例中,声学换能器820可以包括至少一个通孔811(也叫导声孔),通孔811与第一声学腔体840连通,在通孔811的位置处设有振膜(图8中未示出),第一声学腔体840的声压发生变化时,第一声学腔体840内部的空气发生振动并通过通孔811而作用于振膜,使振膜发生形变,声学换能器820将振膜的振动信号转化为电信号。
在一些实施例中,振动单元830可以包括质量元件831和弹性元件832,质量元件831和弹性元件832位于壳体结构810和声学换能器820形成的声学腔体中。在一些实施例中,弹性元件832可以在第一方向上分布在质量元件831相反的两侧。第一方向可以是指质量元件831的厚度方向。例如,第一方向可以为图8中箭头所示的“第一方向”。在一些实施例中,质量元件831可以与壳体结构810和/或声学换能器820通过弹性元件832连接。在一些实施例中,弹性元件832可以包括第一弹性元件8321和第二弹性元件8322,第一弹性元件8321和第二弹性元件8322分别与质量元件831连接并沿第一方向间隔分布。例如,第一弹性元件8321位于质量元件831背离声学换能器820的一侧,也可以理解为,第一弹性元件8231位于质量元件831的上表面,其中,第一弹性元件8321的一端与壳体结构810连接,第一弹性元件8321的另一端与质量元件831连接。第二弹性元件8232可以位于质量元件831靠近声学换能器820的一侧,也可以理解为,第二弹性元件8232位于质量元件831的下表面,其中,第二弹性元件8232的一端与声学换能器820连接,第二弹性元 件8232的另一端与质量元件831连接。在其它的实施例中,弹性元件832还可以位于质量元件831的周侧,其中,弹性元件832为环状结构,环状结构的内侧与质量元件831的周侧连接,环状结构的外侧与壳体结构810和/或声学换能器820连接。这里所说的质量元件831的周侧是相对于质量元件831的振动方向(例如,第一方向)而言,为方便起见,可以认为质量元件831相对于壳体结构810振动的方向为轴线方向,此时,质量元件831的周侧表示质量元件831上环绕所述轴线设置的一侧。在一些实施例中,质量元件831可以为长方体、圆柱体等规则结构体或不规则结构体。在一些实施例中,质量元件831的材质可以金属材料或非金属材料。金属材料可以包括但不限于钢材(例如,不锈钢、碳素钢等)、轻质合金(例如,铝合金、铍铜、镁合金、钛合金等)等,或其任意组合。非金属材料可以包括但不限于聚氨酯发泡材料、玻璃纤维、碳纤维、石墨纤维、碳化硅纤维等。在一些实施例中,弹性元件832的形状可以为圆管状、方管状、异形管状、环状、平板状等。在一些实施例中,弹性元件832可以具有较容易发生弹性形变的结构(例如,弹簧结构、金属环片、膜状结构、柱状结构等),其材质可以是容易发生弹性形变能力的材料,例如,硅胶、橡胶等。在本说明书的实施例中,弹性元件832相比于壳体结构810更容易发生弹性形变,使得振动元件830可以相对壳体结构810发生相对运动。需要注意的是,在一些实施例中,质量元件831和弹性元件832中的任一弹性元件832可以是由相同或不同的材料所组成,再通过组装在一起形成振动单元830。在一些实施例中,质量元件831和弹性元件832中的任一弹性元件832也可以是由同种材料组成,再通过一体成型形成振动单元830。弹性元件832与质量元件831、声学换能器820、壳体结构810之间可以采用粘结剂进行粘接,也可以采用本领域技术人员熟知的其它连接方式(例如,焊接、卡接等),对此不作限制。
在一些实施例中,第一弹性元件8321和第二弹性元件8322可以在第一方向上相对于质量元件831呈近似对称分布。在一些实施例中,第一弹性元件8321和第二弹性元件8322可以与壳体结构810或声学换能器820连接。例如,第一弹性元件8321可以位于质量元件831背离声学换能器820的一侧,第一弹性元件8321的一端与壳体结构810连接,第一弹性元件8321的另一端与质量元件831的上表面连接。第二弹性元件8322可以位于质量元件831朝向声学换能器820的一侧,第二弹性元件8322的一端与声学换能器820连接,第二弹性元件8322的另一端与质量元件831的下表面连接。在一些实施例中,通过在振动传感器800中设置相对于质量元件831在第一方向上呈近似对称分布的第一弹性元件8321和第二弹性元件8322,使得质量元件831的重心与至少一个弹性元件832的形心近似重合,进而使得振动单元830在响应于壳体结构810的振动而产生振动时,可以降低质量元件831在第二方向上的振动,从而降低振动单元830对第二方向上壳体结构810振动的响应灵敏度,进而提高振动传感器800的方向选择性。这里的第二方向垂直于第一方向。在一些实施例中,弹性元件832的形心可以是指弹性元件832的几何中心。弹性元件832的形心与弹性元件832的形状和尺寸相关。例如,弹性元件832为长方形板状结构时,弹性元件832的形心可以在长方形板状结构的两条对角线的交点位置。在一些实施例中,弹性元件832可以近似视为密度均匀的结构体,此时弹性元件832的形心可以近似视为弹性元件832的重心。
在一些实施例中,第一弹性元件8321和第二弹性元件8322也可以相对于质量元件831沿第一方向的中心线呈近似对称分布,而在第一方向上呈非对称分布。例如,第一弹性元件8321可以位于质量元件831的周侧和壳体结构810之间,质量元件831的周侧通过第一弹性元件8321与壳体结构810连接;第二弹性元件8322可以位于质量元件831的下表面,质量元件831通过第二弹性元件8322与声学换能器820连接。又例如,第一弹性元件8321和第二弹性元件8322的高度(在第一方向上的尺寸)不同。再例如,第一弹性元件8321和第二弹性元件8322在第二方向上的尺寸(例如,第一弹性元件8321和第二弹性元件8322的直径或宽度)不同。通过在振动传感器800中设置相对于质量元件831沿第一方向的中心线呈近似对称分布的第一弹性元件8321和第二弹性元件8322,也可以在一定程度上降低质量元件831在第二方向上的振动,从而降低振动单元830对第二方向上壳体结构810振动的响应灵敏度,进而提高振动传感器800的方向选择性。这里质量元件831沿第一方向的中心线是指过质量元件831的形心并与第一方向近似平行的直线。
为了保证第一弹性元件8321和第二弹性元件8322可以在第一方向上相对于质量元件831呈近似对称分布,在一些实施例中,第一弹性元件8321和第二弹性元件8322的尺寸、形状、材质、或厚度等可以相同。在一些实施例中,第一弹性元件8321的结构和第二弹性元件8322的结构可以是膜状结构、柱状结构、管状结构、环状结构等,或其任意组合结构。在一些实施例中,第一弹性元件8321和第二弹性元件8322的材质可以包括但不限于海绵、橡胶、硅胶、塑料、泡沫、聚二甲基硅氧烷(PDMS)、聚酰亚胺(PI)等,或其任意组合。在一些实施例中,塑料可以包括但不限于 聚四氟乙烯(PTFE)、高分子聚乙烯、吹塑尼龙、工程塑料等或其任意组合。橡胶,可以是指能达到同样性能的其他单一或复合材料,可以包括但不限于通用型橡胶和特种型橡胶。在一些实施例中,通用型橡胶可以包括但不限于天然橡胶、异戊橡胶、丁苯橡胶、顺丁橡胶、氯丁橡胶等或其任意组合。在一些实施例中,特种型橡胶可以包括但不限于丁腈橡胶、硅橡胶、氟橡胶、聚硫橡胶、聚氨酯橡胶、氯醇橡胶、丙烯酸酯橡胶、环氧丙烷橡胶等或其任意组合。其中,丁苯橡胶可以包括但不限于乳液聚合丁苯橡胶和溶液聚合丁苯橡胶。在一些实施例中,复合材料可以包括但不限于玻璃纤维、碳纤维、硼纤维、石墨纤维、纤维、石墨烯纤维、碳化硅纤维或芳纶纤维等增强材料。在一些实施例中,第一弹性元件8321的尺寸或厚度也可以略大于或小于第二弹性元件8322的尺寸或厚度,使得第一弹性元件8321和第二弹性元件8322可以相对于质量元件831沿第一方向的中心线呈近似对称分布,而在第一方向上呈非对称分布。
仅作为示例性说明,第一弹性元件8321和第二弹性元件8322可以均为膜状结构,第一弹性元件8321的一侧与质量元件831的上表面连接,第二弹性元件8322的一侧与质量元件831的下表面连接,第一弹性元件8321和第二弹性元件8322的周侧分别与壳体结构810连接。沿第一方向,第一弹性元件8321、质量元件831和第二弹性元件8322由上至下依次连接设置。通过设置第一弹性元件8321和第二弹性元件8322采用相同的材质(例如,聚四氟乙烯)、尺寸和厚度,由于第一弹性元件8321和第二弹性元件8322在第一方向上相对于质量元件831呈近似对称分布,可以使得弹性元件832的形心与质量元件831的重心重合或近似重合,进而使得振动单元830响应于壳体结构810的振动而产生振动时,可以降低质量元件831在第二方向上的振动,从而降低振动单元830对第二方向上壳体结构810振动的响应灵敏度,进而提高振动传感器800在接收振动信号时的方向选择性。
在一些实施例中,第一弹性元件8321和第二弹性元件8322均为膜状结构时,第一弹性元件8321和第二弹性元件8322也可以位于质量元件831的周侧与壳体结构810之间,质量元件831的周侧通过第一弹性元件8321和第二弹性元件8322与壳体结构810连接。这种设置方式同样可以使得弹性元件832的形心与质量元件831的重心重合或近似重合,从而提高振动传感器800在接收振动信号时的方向选择性。
仅作为示例性说明,第一弹性元件8321和第二弹性元件8322可以均为中部位置具有中空区域的柱状结构(例如,环形柱状结构或类似环形柱状结构),第一弹性元件8321和第二弹性元件8322分别沿着质量元件831的厚度方向延伸并与壳体结构810或声学换能器连接。第一弹性元件8321的两端分别与壳体结构810和质量元件831的上表面连接。第二弹性元件8322的两端分别与质量元件831的下表面和声学换能器820连接。通过设置第一弹性元件8321和第二弹性元件8322采用相同的材质(例如,聚四氟乙烯)、尺寸和厚度,可以使得弹性元件832的形心与质量元件831的重心重合或近似重合。
在一些实施例中,第一弹性元件8321和第二弹性元件8322的形状结构也可以不同。例如,第一弹性元件8321为膜状结构,第一弹性元件8321位于质量元件831的周侧与壳体结构810之间,质量元件831的周侧通过第一弹性元件8321与壳体结构810连接;第二弹性元件8322为柱状结构,第二弹性元件8322沿着质量元件831的厚度方向延伸并与声学换能器连接。
在一些实施例中,第一弹性元件8321和第二弹性元件8322在第一方向上分布在质量元件831相反的两侧,这里第一弹性元件8321和第二弹性元件8322可以近似视为一个弹性元件,该弹性元件的形心与质量元件的重心近似重合,可以使得目标频率范围(例如,3000Hz以下)内,振动单元830对第一方向上壳体结构810振动的响应灵敏度高于振动单元830对第二方向上壳体结构810振动的响应灵敏度。在一些实施例中,振动单元830对第二方向上壳体结构810振动的响应灵敏度与振动单元830对第一方向上壳体结构810振动的响应灵敏度的差值可以为-20dB~-60dB。在一些实施例中,振动单元830对第二方向上壳体结构810振动的响应灵敏度与振动单元830对第一方向上壳体结构810振动的响应灵敏度的差值可以为-25dB~-50dB。在一些实施例中,振动单元830对第二方向上壳体结构810振动的响应灵敏度与振动单元830对第一方向上壳体结构810振动的响应灵敏度的差值可以为-30dB~-40dB。在一些实施例中,目标频率范围可以指小于或等于3000Hz的频率范围。
在一些实施例中,振动单元830响应于壳体结构810的振动在第一方向产生振动。第一方向上的振动可以视为振动传感器800所期待拾取的声音信号,第二方向上的振动可以视为噪声信号。因此,在振动传感器800工作过程中,可以通过降低振动单元830在第二方向上产生的振动,从而降低振动单元830对第二方向上壳体结构810振动的响应灵敏度,进而提高振动传感器800的方向 选择性,降低噪声信号对声音信号的干扰。
在一些实施例中,弹性元件832的形心与质量元件831的重心可以重合或者近似重合。在一些实施例中,振动单元830响应于壳体结构810的振动而产生振动时,弹性元件832的形心与质量元件831的重心重合或者近似重合,可以在振动单元830对第一方向上壳体结构810振动的响应灵敏度基本不变的前提下,降低质量元件831在第二方向上的振动,从而降低振动单元830对第二方向上壳体结构810振动的响应灵敏度,进而提高振动传感器800的方向选择性。在一些实施例中,可以通过调整弹性元件832的厚度、弹性系数、质量元件831的质量、尺寸等改变(例如,提高)振动单元830对第一方向上壳体结构810振动的响应灵敏度。
关于弹性元件832的形心与质量元件831的重心可以重合或者近似重合可以理解为弹性元件832的形心与质量元件831的重心在第一方向上和第二方向上满足特定条件。在一些实施例中,特定条件可以为弹性元件832的形心与质量元件831的重心在第一方向上的距离可以不大于质量元件831厚度的1/4,以及弹性元件832的形心与质量元件831的重心在第二方向上的距离不大于质量元件831边长或半径的1/4。在一些实施例中,特定条件可以为弹性元件832的形心与质量元件831的重心在第一方向上的距离可以不大于质量元件831厚度的1/3,以及弹性元件832的形心与质量元件831的重心在第二方向上的距离不大于质量元件831边长或半径的1/3。在一些实施例中,弹性元件832的形心与质量元件831的重心在第一方向上的距离可以不大于质量元件831厚度的1/2,以及弹性元件832的形心与质量元件831的重心在第二方向上的距离不大于质量元件831边长或半径的1/2。例如,质量元件831为正方体时,弹性元件832的形心与质量元件831的重心在第一方向上的距离不大于质量元件831厚度(边长)的1/3,弹性元件832的形心与质量元件831的重心在第二方向上的距离不大于质量元件831边长的1/3。又例如,质量元件831为圆柱体时,弹性元件832的形心与质量元件831的重心在第一方向上的距离不大于质量元件831厚度(高度)的1/4,弹性元件832的形心与质量元件831的重心在第二方向上的距离不大于质量元件831上表面(或者下表面)圆形半径的1/4。
在一些实施例中,当弹性元件832的形心与质量元件831的重心重合或者近似重合时,可以使得振动单元830在第二方向上振动的谐振频率向高频偏移,而不改变振动单元830在第一方向上振动的谐振频率。在一些实施例中,当弹性元件832的形心与质量元件831的重心重合或者近似重合时,振动单元830在第一方向上振动的谐振频率可以保持基本不变,例如,振动单元830在第一方向上振动的谐振频率可以为人耳感知相对较强的频率范围(例如,20Hz-2000Hz、2000Hz-3000Hz等)内的频率。振动单元830在第二方向上振动的谐振频率可以向高频偏移而位于人耳感知相对较弱的频率范围(例如,5000Hz-9000Hz、1kHz-14kHz等)内的频率。基于振动单元830在第二方向上振动的谐振频率向高频偏移,振动单元830在第一方向上振动的谐振频率保持基本不变,可以使得振动单元830在第二方向上振动的谐振频率与振动单元830在第一方向上振动的谐振频率的比值大于或等于2。在一些实施例中,振动单元830在第二方向上振动的谐振频率与振动单元830在第一方向上振动的谐振频率的比值也可以大于或等于其他数值。例如,振动单元830在第二方向上振动的谐振频率与振动单元830在第一方向上振动的谐振频率的比值也可以大于或等于1.5。
在一些实施例中,振动单元830在第二方向上振动的谐振频率与振动单元830在第一方向上振动的谐振频率的比值的大小可以反映振动传感器800拾取的噪声信号对声音信号的影响。例如,振动单元830在第二方向上振动的谐振频率与振动单元830在第一方向上振动的谐振频率的比值越大,则振动单元830在第二方向上振动的谐振频率越高,此时,振动单元830对第一方向上较低频段(例如,2000Hz以下)的声音的灵敏度较高,振动单元830对第二方向上较高频段(例如,2000Hz以上)的声音的灵敏度较高,而人耳对较高频段(例如,大于2000Hz)的声音信号不敏感,而对较低频段(例如,2000Hz以下)的声音信号敏感,振动单元830拾取的第二方向的较高频段范围内的噪声信号对第一方向上拾取的目标声音信号的干扰较小。
在一些实施例中,调整质量元件831的尺寸也可以降低振动单元830对第二方向上壳体结构810振动的响应灵敏度。例如,在不改变质量元件831的质量的条件下,可以通过降低质量元件831的厚度(或者增加质量元件831的上表面和/或下表面的面积),使得振动单元830在第二方向上振动的谐振频率位于高频频率范围(例如,大于3000Hz),从而降低目标频率范围(例如,小于3000Hz)内振动单元830对第二方向上的振动的响应灵敏度。需要说明的是,图8中所示的振动传感器800的结构(例如,振动单元830)仅为振动传感器示例性原理结构图,图8中的第一弹性元件8321和第二弹性元件8322的弹簧结构仅用于表示弹性元件832为具有弹性的结构,而不是对弹性元件832的结构形状进行的限定。关于振动传感器800中弹性元件832和质量元件831的具体结 构和位置关系可以参考图9A-图9D、图14A-图17的相关描述。
图9A是根据本说明书的一些实施例所示的振动传感器的结构示意图。如图9A所示,振动传感器900A可以包括壳体结构910、声学换能器、振动单元930。在一些实施例中,壳体结构910的形状可以是长方体、圆柱体或其他规则结构体或不规则结构体。在一些实施例中,壳体结构910可以为具有一定硬度的材料制成,从而使得壳体结构910对振动传感器900A及其内部元件(例如,振动单元930)进行保护。在一些实施例中,壳体结构910的材质可以包括但不限于金属、合金材料、高分子材料等中的一种或多种。在一些实施例中,壳体结构910可以与声学换能器上表面的基板结构920连接,这里的连接的方式可以包括但不限于焊接、卡接、粘接或一体成型等连接方式。在一些实施例中,基板结构920可以为刚性电路板(例如,PCB)和/或柔性电路板(例如,FPC)。在一些实施例中,至少部分壳体结构910和声学换能器上表面的基板结构920可以形成声学腔体。在一些实施例中,壳体结构910可独立形成具有声学腔体的封装结构,其中,声学换能器可以位于封装结构的声学腔体内。在一些实施例中,壳体结构910可以是内部中空且其一端具有开放式敞口的结构,声学换能器上表面的基板结构920与壳体结构910的敞口端物理连接实现封装,从而形成声学腔体。在一些实施例中,振动单元930可以位于声学腔体内。振动单元930可以将声学腔体分隔第一声学腔体940和第二声学腔体950。在一些实施例中,第一声学腔体940可以通过位于基板结构920上的通孔921与声学换能器声学连通,第二声学腔体950可以为声学密封的腔体结构。需要说明的是,振动单元930将声学腔体分隔为的多个声学腔体不限于第一声学腔体940、第二声学腔体950,还可以包括更多个声学腔体,例如,第三声学腔体、第四声学腔体等。
在一些实施例中,振动单元930可以包括质量元件931和弹性元件932,其中,弹性元件932可以包括第一弹性元件9321和第二弹性元件9322。在一些实施例中,第一弹性元件9321和第二弹性元件9322可以为膜状结构。在一些实施例中,第一弹性元件9321和第二弹性元件9322可以在第一方向上相对于质量元件931呈近似对称分布。第一弹性元件9321和第二弹性元件9322可以与壳体结构910连接。例如,第一弹性元件9321可以位于质量元件931背离基板结构920的一侧,第一弹性元件9321的下表面可以和质量元件931的上表面连接,第一弹性元件9321的周侧可以和壳体结构910的内壁连接。第二弹性元件9322可以位于质量元件931朝向基板结构920的一侧,第二弹性元件9322的上表面可以和质量元件931的下表面连接,第二弹性元件9322的周侧可以和壳体结构910的内壁连接。在一些实施例中,第一弹性元件9321或第二弹性元件9322也可以相对于质量元件931沿第一方向的中心线呈近似对称分布。例如,第一弹性元件9321位于质量元件931的周侧和壳体结构910之间,质量元件931的周侧通过第一弹性元件9321与壳体结构910连接,第一弹性元件9321相对于质量元件931沿第一方向的中心线呈近似对称分布;第二弹性元件9322连接于质量元件931的下表面,且第二弹性元件9322的周侧与壳体结构910连接,第二弹性元件9322也可以相对于质量元件931沿第一方向的中心线呈近似对称分布。需要说明的是,第一弹性元件9321和第二弹性元件9322的膜状结构可以为矩形、圆形等规则和/或不规则结构,第一弹性元件9321和第二弹性元件9322的形状可以根据壳体结构910的截面形状进行适应性调整。
在一些实施例中,质量元件931也可以与弹性元件932嵌接。图9B是根据本说明书的一些实施例所示的振动传感器的结构示意图。图9B所示的振动传感器900B与图9A所示的振动传感器900A的结构大致相同,二者的区别之处在于图9B所示的弹性元件932可以包括凹陷区域9323,该凹陷区域9323可以与弹性元件932配合连接。具体地,第一弹性元件9321可以包括第一凹陷区域93231,第一凹陷区域93231可以位于第一弹性元件9321中靠近质量元件931上表面的一侧,第二弹性元件9322可以包括第二凹陷区域93232,第二凹陷区域93232位于第二弹性元件9322中靠近质量元件931下表面的一侧,质量元件931的两端分别与第一凹陷区域93231和第二凹陷区域93232相配合,以实现质量元件931与弹性元件932的嵌接。在一些实施例中,凹陷区域9323在第一方向上的凹陷深度可以根据需求进行设置,例如,质量元件931的厚度、质量等。在一些实施例中,凹陷区域9323的形状可以与质量元件931的形状相适配。例如,质量元件931为圆柱状结构时,凹陷区域9323的形状也为圆柱状结构,质量元件931的圆柱状结构的两端分别与第一凹陷区域93231和第二凹陷区域93232的圆柱状结构相配合,以实现质量元件931与弹性元件932的嵌接。通过在弹性元件932中设置凹陷区域9323,可以在不改变第一声学腔体940和第二声学腔体950的体积的情况下,对质量元件931厚度以及质量进行调整。
在一些实施例中,第一弹性元件9321和第二弹性元件9322为膜状结构时,质量元件931的上表面或下表面的尺寸小于第一弹性元件9321和第二弹性元件9322的尺寸,质量元件931的侧表面和壳体结构910的内壁形成间距相等的环形或矩形。
图9C是根据本说明书的一些实施例所示的振动传感器的结构示意图。图9C所示的振动传感器900C与图9A所示的振动传感器900A的整体结构大致相同,二者的区别之处主要在于弹性元件与质量元件的位置和连接关系不同。如图9C所示,第一弹性元件9321和第二弹性元件9322可以位于质量元件931的周侧与壳体结构910之间,质量元件931的周侧通过第一弹性元件9321和第二弹性元件9322与壳体结构910连接。在一些实施例中,以质量元件931为圆柱状结构作为示例,弹性元件932(例如,第一弹性元件9321和第二弹性元件9322)可以为环形膜状结构或环状结构,弹性元件932套设在质量元件931的周侧,并位于质量元件931的周侧与壳体结构910之间。环形膜状结构或环状结构的内侧与质量元件931的周侧环绕连接,环形膜状结构或环状结构的外侧与壳体结构910内壁环绕连接。在一些实施例中,弹性元件932的形状结构可以根据质量元件931以及壳体结构910的形状结构进行适应性调整。例如,质量元件931为方形柱状结构时,弹性元件932可以对应为方环形膜状结构,方环形膜状结构的内侧与质量元件931的周侧环绕连接,方环形膜状结构的外侧与壳体结构910内壁环绕连接。这种设置方式下,可以在不改变质量元件931的尺寸(例如,厚度)的条件下,增大第一声学腔体940以及第二声学腔体950的体积,从而提高振动传感器900的响应灵敏度。
在一些实施例中,质量元件931的厚度可以为10um~1000um。在一些实施例中,质量元件931的厚度可以为6um~500um。在一些实施例中,质量元件931的厚度可以为800um~1400um。在一些实施例中,第一弹性元件9321和第二弹性元件9322的厚度可以为0.1um~500um。在一些实施例中,第一弹性元件9321和第二弹性元件9322的厚度可以为0.05um~200um。在一些实施例中,第一弹性元件9321和第二弹性元件9322的厚度可以为300um~800um。在一些实施例中,每个弹性元件(例如,第一弹性元件9321或第二弹性元件9322)与质量元件931的厚度比可以为2~100。在一些实施例中,每个弹性元件与质量元件931的厚度比可以为10~50。在一些实施例中,每个弹性元件与质量元件931的厚度比可以为20~40。在一些实施例中,质量元件931与每个弹性元件(例如,第一弹性元件9321或第二弹性元件9322)的厚度差值可以为9um~500um。在一些实施例中,质量元件931与每个弹性元件的厚度差值可以为50um~400um。在一些实施例中,质量元件931与每个弹性元件的厚度差值可以为100um~300um。
在一些实施例中,第一弹性元件9321、第二弹性元件9322、质量元件931以及与声学腔体对应的壳体结构910或声学换能器之间可以形成间隙960。如图9A-图9C所示,在一些实施例中,间隙960可以位于质量元件931的周侧,当质量元件931响应于外部振动信号时,质量元件931在相对于壳体结构910振动时,间隙960可以防止质量元件931振动时与壳体结构910发生碰撞。在一些实施例中,间隙960中可以包括填充物,通过在间隙960中设置填充物可以对振动传感器(例如,振动传感器900A、振动传感器900B、振动传感器900C)的品质因子进行调整。优选地,间隙960中设置填充物可以使得振动传感器900的品质因子为0.7~10。较为优选地,间隙960中设置填充物可以使得振动传感器900的品质因子为1~5。在一些实施例中,填充物可以是气体、液体(例如,硅油)、弹性材料等中的一种或多种。示例性的气体可以包括但不限于空气、氩气、氮气、二氧化碳等中的一种或多种。示例性的弹性材料可以包括但不限于硅凝胶、硅橡胶等。
在一些实施例中,第一弹性元件9321和与声学腔体对应的壳体结构910之间形成的声学腔体(例如,第二声学腔体950)的体积可以大于或等于第二弹性元件9322和与声学腔体对应的壳体结构910、基板结构920之间形成的第一声学腔体940的体积,使得第一声学腔体940的体积与第二声学腔体950的体积相等或近似相等,从而提高振动传感器900的对称性。具体地,第一声学腔体940和第二声学腔体950内部具有空气,当振动单元930相对于壳体振动时,振动单元930压缩两个声学腔体内部的空气,第一声学腔体940和第二声学腔体950可以近似视为两个空气弹簧,第二声学腔体950的体积大于或等于第一声学腔体940的体积,使得振动单元930在振动时压缩空气带来的空气弹簧的系数近似相等,从而进一步提高质量元件931上下两侧弹性元件(包含空气弹簧)的对称性。在一些实施例中,第一声学腔体940的体积和第二声学腔体950的体积可以为10um 3~1000um 3。优选地,第一声学腔体940的体积和第二声学腔体950的体积可以为50um 3~500um 3
图9D是根据本说明书的一些实施例所示的质量元件的示例性分布示意图。在一些实施例中,每个质量元件931可以包括多个呈阵列排布的子质量元件。多个子质量元件呈阵列排布在弹性元件932的表面。例如,弹性元件932为膜状结构时,质量元件931可以呈阵列排布在弹性元件932的表面的中心位置。在一些实施例中,多个子质量元件呈阵列排布时,质量元件931的形心可以是多个子质量元件排列形成的阵列形状的几何中心。质量元件931的形心与多个子质量元件排列形成 的阵列形状的形状结构和尺寸相关。例如,阵列形状为长方形板状结构时,质量元件931的形心可以在长方形板状结构的两条对角线的交点位置。在一些实施例中,质量元件931的整体可以近似视为密度均匀的结构体,此时质量元件931的形心可以近似视为质量元件931的重心。在一些实施例中,质量元件931呈阵列式分布时,子质量元件的数量和/或形状、阵列间距(即相邻两个子质量元件之间的距离)、阵列形状(如矩形、圆形等)可以根据实际需求进行合理设置,在此不做进一步限定。通过将质量元件931设置为阵列排布,通过设置阵列参数(例如,子质量元件的数量和/或形状、阵列间距、阵列形状),可以对振动单元930进行合理调整,例如,在不改变质量元件931的厚度的情况下,合理调整质量元件931的质量。
图10是根据本说明书的一些实施例所示的振动传感器的频率响应曲线图。如图10所示,横轴表示频率,单位为Hz,纵轴表示振动传感器的灵敏度,单位为dB。曲线1010表示包括一个弹性元件的振动传感器(例如,图3的振动传感器300)在第一方向上的灵敏度。曲线1020表示包括两个近似对称的弹性元件(例如,图9A所示的第一弹性元件9321和第二弹性元件9322)的振动传感器在第一方向上的灵敏度。曲线1030表示包括一个弹性元件的振动传感器(例如,图3的振动传感器300)在第二方向上的灵敏度。曲线1040表示包括两个近似对称的弹性元件(例如,图9A所示的第一弹性元件9321和第二弹性元件9322)的振动传感器在第二方向上的灵敏度。曲线1010(或曲线1030)中对应的振动传感器的弹性元件与曲线1020(或曲线1040)中对应的振动传感器的两个弹性元件的材质和形状相同,区别之处在于曲线1010(或曲线1030)中对应的振动传感器的弹性元件的厚度近似等于曲线1020(或曲线1040)中对应的振动传感器的两个弹性元件的总厚度。需要注意的是,这里近似等于的误差不超过50%。
对比曲线1010和曲线1020可以看出,在特定频率范围(例如,3000Hz以下)内,具有一个弹性元件的振动传感器在第一方向上的灵敏度(图10中曲线1010)与具有两个近似对称的弹性元件的振动传感器在第一方向上的灵敏度(图10中曲线1020)近似相等。也可以理解为,在特定频率范围(例如,3000Hz以下)内,振动传感器包括的弹性元件的数量及分布情况对振动传感器在第一方向上的灵敏度的影响较小。另外,在曲线1010和曲线1020中,f1是具有一个弹性元件的振动传感器在第一方向上的谐振峰的谐振频率,f2是具有两个近似对称的弹性元件的振动传感器在第一方向上谐振峰的谐振频率,其中,具有一个弹性元件的振动传感器在第一方向上的谐振峰的谐振频率f1与具有两个近似对称的弹性元件的振动传感器在第一方向上谐振峰的谐振频率f2近似相等。也就是说,在特定频率范围内,具有一个弹性元件的振动传感器在第一方向的灵敏度与具有两个近似对称的弹性元件的振动传感器在第一方向的灵敏度近似相等。考虑到振动传感器为非理想性器件,导致振动传感器中第一方向的谐振频率在第二方向中具有映射(也被称为分量),相应地,在曲线1030中,f3用于表征具有一个弹性元件的振动传感器中第一方向的谐振频率在第二方向频响曲线中的映射(也可以理解为第一方向的谐振频率在第二方向频响曲线中的分量),f5是具有一个弹性元件的振动传感器在第二方向的谐振频率,在曲线1040中,f4用于表征包括两个弹性元件的振动传感器中第一方向的谐振频率在第二方向频响曲线中的映射,f6是具有两个近似对称的弹性元件的振动传感器在第二方向的谐振频率。由于映射关系的存在,第三曲线1030中的谐振频率f3与第一曲线1010中的谐振频率f1近似相等,第四曲线1040中的谐振频率f4与第二曲线1020中的谐振频率f2近似相等。对比曲线1030和曲线1040可以看出,在特定频率范围(例如,3000Hz以下)内,包括一个弹性元件的振动传感器中在第二方向上的灵敏度(图10中曲线1030)大于包括两个近似对称的弹性元件的振动传感器在第二方向上的灵敏度(图10中曲线1040)。也可以理解为,在特定频率范围(例如,3000Hz以下)内,振动传感器包括的弹性元件的数量及分布情况对振动传感器在第二方向上的灵敏度的影响较大。另外,结合曲线1030和曲线1040可以看出,f1与f2近似相等(或者,f3与f4近似相等)时,在特定频率范围(例如,3000Hz以下)内,具有一个弹性元件的振动传感器中在第二方向上的谐振峰对应的谐振频率f5明显小于包括两个近似对称的弹性元件的振动传感器在第二方向上的谐振峰对应的谐振频率f6。在一些实施例中,通过在振动传感器中设置两个近似对称的弹性元件,可以使得振动传感器在第二方向上的谐振峰的谐振频率位于更高频范围,从而降低振动传感器在距离谐振频率较远位置的中低频范围内的灵敏度。进一步地,在特定频率范围(3000Hz)内,包括两个近似对称的弹性元件的振动传感器在第二方向上的灵敏度(图10中曲线1040)相对于包括一个弹性元件的振动传感器在第二方向上的灵敏度(图10中曲线1030)更加平坦。
基于上述的曲线分析,可以知道,通过在振动传感器中设置近似对称的第一弹性元件和第二弹性元件,可以实现在特定频段(例如,3000Hz以下),在基本不改变振动传感器在第一方向上 的灵敏度的同时降低振动传感器在第二方向上的灵敏度的前提下,进而增大振动传感器在第二方向上的灵敏度与振动传感器在第一方向上的灵敏度的差值,提高振动传感器的方向选择性,增强振动传感器的抗噪声干扰能力。在一些实施例中,为了进一步降低第二方向的灵敏度,在特定频率范围(例如,3000Hz以下)内,具有两个近似对称的弹性元件的振动传感器中在第二方向上的谐振峰对应的谐振频率f6与具有一个弹性元件的振动传感器在第二方向上的谐振峰对应的谐振频率f5的比值可以大于2。在一些实施例中,在特定频率范围(例如,3000Hz以下)内,具有两个近似对称的弹性元件的振动传感器中在第二方向上的谐振峰对应的谐振频率f6与具有一个弹性元件的振动传感器在第二方向上的谐振峰对应的谐振频率f5的比值可以大于3.5。在一些实施例中,在特定频率范围(例如,3000Hz以下)内,具有两个近似对称的弹性元件的振动传感器中在第二方向上的谐振峰对应的谐振频率f6与两个近似对称的弹性元件的振动传感器在第二方向上的谐振峰对应的谐振频率f5的比值可以大于5。在一些实施例中,具有两个近似对称的弹性元件的振动传感器在第二方向上的谐振峰对应的谐振频率f6与其在第一方向上的谐振峰对应的谐振频率f2可以大于1。优选地,具有两个近似对称的弹性元件的振动传感器在第二方向上的谐振峰对应的谐振频率f6与其在第一方向上的谐振峰对应的谐振频率f2可以大于1.5。进一步优选地,具有两个近似对称的弹性元件的振动传感器在第二方向上的谐振峰对应的谐振频率f6与其在第一方向上的谐振峰对应的谐振频率f2可以大于2。
图11是根据本说明书的一些实施例所示的振动传感器的动态模拟图;图12是根据本说明书的一些实施例所示的振动传感器的动态模拟图。图11中的(a)示出了包括一个弹性元件的振动传感器中质量元件在第一方向上振动的位移,其中,振动传感器在第一方向上的谐振频率为1678.3Hz。图11中的(b)示出了包括一个弹性元件的振动传感器中质量元件在第二方向上振动的位移,其中振动传感器在第二方向上的谐振频率为2372.2Hz。图12中的(a)示出了包括两个近似对称的弹性元件的振动传感器中质量元件在第一方向上振动的位移,其中,振动传感器在第一方向上的谐振频率为1678Hz。图12中的(b)示出了包括两个近似对称的弹性元件的振动传感器中质量元件在第二方向上振动的位移,其中振动传感器在第二方向上的谐振频率为14795Hz。需要说明的是,在图11和图12中,除弹性元件的厚度不同外,弹性元件的长度、宽度及质量元件的长度、宽度、厚度均相同。
参照图11,包括一个弹性元件的振动传感器在第一方向上的谐振频率(1678.3Hz)与包括一个弹性元件的振动传感器在第二方向上的谐振频率(2372.2Hz)均位于目标频率范围(例如,0Hz-3000Hz)内。因此,质量元件在第二方向上的振动信号对振动传感器最终输出的电信号的影响较大。参照图12,包括两个近似对称的弹性元件的振动传感器在第一方向上的谐振频率(1678Hz)位于目标频率范围(例如,0Hz-3000Hz)内,包括两个近似对称的弹性元件的振动传感器在第二方向上的谐振频率(14795Hz)远高于目标频率。因此,质量元件在第二方向上的振动信号对振动传感器最终输出的电信号的影响较小。
在一些实施例中,质量元件的位移与振动传感器在第一方向和/或第二方向的谐振频率相关。具体地,质量元件的位移与振动传感器在第一方向和/或第二方向的谐振频率的平方成反比。也就是说,振动传感器在第一方向和/或第二方向的谐振频率越高,质量元件在第一方向和/或第二方向的位移越小。在一些实施例中,质量元件在第一方向和/或第二方向的位移越小,对振动传感器的输出电信号的影响越小。因此,为了降低质量元件在第二方向上的振动信号对振动传感器输出电信号的影响,可以减小质量元件在第二方向上的位移,即提高振动传感器在第二方向上的谐振频率。对比图11和图12,图12中的振动传感器的质量元件在第二方向上的位移小于图11中的振动传感器的质量元件在第二方向上的位移。因此,图12中的振动传感器在第二方向上的灵敏度相对于图11中的振动传感器在第二方向上的灵敏度更低,即,通过在振动传感器中设置近似对称的两个弹性元件,可以降低振动传感器在第二方向上的灵敏度,从而提高振动传感器的方向选择性,增强振动传感器的抗噪声干扰能力。
在一些实施例中,通过调整质量元件的尺寸(例如,长度、宽度)可以调整振动传感器在第一方向和第二方向上的谐振频率。在一些实施例中,通过调整质量元件的尺寸(例如,长度、宽度)可以改变振动传感器在第二方向的谐振频率与第一方向的谐振频率的比值。在一些实施例中,振动传感器在第二方向上的振动频率与第一方向上的振动频率的比值可以为1-2.5。优选地,振动传感器在第二方向上的振动频率与第一方向上的振动频率的比值也可以为1.3-2.2。进一步优选地,振动传感器在第二方向上的振动频率与第一方向上的振动频率的比值也可以为1.5-2。关于通过调整质量元件的尺寸来调整振动传感器在第一方向和第二方向上的谐振频率及其比值的内容可以参考图 13及其相关描述。
图13是根据本说明书的一些实施例所示的振动单元的谐振频率图。如图13所示,横轴表示质量元件的长度,单位为mm,纵轴表示不同长度的质量元件对应的频率,单位为Hz。这里以图3中的振动传感器300作为示例性说明,这里振动单元320中的质量元件3201的宽度为1.5mm、厚度为0.3mm,振动单元320弹性元件3202的长度为3mm、宽度为2mm、厚度为0.01mm。曲线1310表示振动传感器300在第一方向上的谐振频率,曲线1320表示振动传感器300在第二方向上的谐振频率。参照图13中的曲线1310,质量元件3201的长度在0.6mm-0.8mm的范围内时,振动传感器300在第一方向上的谐振频率随质量元件3201长度的增大而降低。参照图13中的曲线1320,质量元件3201的长度在0.6mm-1.2mm的范围内时,振动传感器300在第二方向上的谐振频率,随质量元件931长度的增大而降低。质量元件3201的长度在1.2mm-2.4mm的范围内时,振动传感器300在第一方向上的谐振频率随质量元件3201长度的增大而增大。质量元件3201的长度在1.4mm-2.4mm的范围内时,振动传感器300在第二方向上的谐振频率随质量元件3201长度的增大而增大。在一些实施例中,振动传感器300在第二方向上的谐振频率与第一方向上的谐振频率的比值,可以随质量元件3201的长度而改变,也就是说,通过调整质量元件3201的尺寸(例如,长度、宽度),可以改变振动传感器300在第二方向上的谐振频率与第一方向上的谐振频率的比值(也被称为相对横向灵敏度)。在一些实施例中,振动传感器在第二方向上的谐振频率与第一方向上的谐振频率的比值可以为1-2.5。优选地,振动传感器在第二方向上的谐振频率与第一方向上的谐振频率的比值可以为1.5-2.5。进一步优选地,振动传感器在第二方向上的谐振频率与第一方向上的谐振频率的比值可以大于2。例如,图13中,当质量元件3201的长度约为0.2mm时,振动传感器300在第二方向上的谐振频率约为2200Hz,振动传感器300在第一方向上的谐振频率约为1000Hz,振动传感器300在第二方向上的谐振频率与第一方向上的谐振频率的比值约为2.2。进一步地,当质量元件3201的长度约为0.8mm时,振动传感器300在第二方向上的谐振频率约为2000Hz,振动传感器300在第一方向上的谐振频率约为800Hz,振动传感器300在第二方向上的谐振频率与第一方向上的谐振频率的比值约为2。
通过改变质量元件的尺寸(长度或宽度)时,振动传感器在第二方向上的谐振频率与第一方向上的谐振频率的比值发生变化,这里,质量元件的质量与弹性元件的刚度也会同时发生变化,从而对振动传感器在第二方向上的谐振频率与第一方向上的谐振频率产生影响。在一些实施例中,为了在目标频率范围内,保证振动传感器在第一方向上的灵敏度不发生较大变化的前提下,降低振动传感器在第二方向上的灵敏度,质量元件的尺寸(例如,长度或宽度)与弹性元件的尺寸的比值可以为0.2~0.9。优选地,质量元件的尺寸与弹性元件的尺寸的比值可以为0.3~0.7。进一步优选地,质量元件的尺寸与弹性元件的尺寸的比值可以为0.5-0.7。仅作为具体示例,例如,质量元件的尺寸(例如,长度或宽度)可以是弹性元件的尺寸的1/2。又例如,质量元件的尺寸(例如,长度或宽度)可以是弹性元件的尺寸的3/4。
图14A是根据本说明书的一些实施例所示的振动传感器的结构示意图。如图14A所示,振动传感器1400A可以包括壳体结构1410、声学换能器、振动单元1430。图14A中所示的振动传感器1400A可以与图9A中所示的振动传感器900A相同或相似。例如,振动传感器1400A的壳体结构1410可以与振动传感器900A的壳体结构910相同或相似。又例如,振动传感器1400A的第一声学腔体1440可以与振动传感器900A的第一声学腔体940相同或相似。再例如,振动传感器1400A的基板结构1420可以与振动传感器900A的基板结构920相同或相似。关于振动传感器1400A的更多结构(例如,第二声学腔体1450、通孔1421、质量元件1431等)可以参考图9A及其相关描述。
在一些实施例中,图14A中所示的振动传感器与图9A所示的振动传感器900A的主要区别之处在于,振动传感器1400A的第一弹性元件14321和第二弹性元件14322可以为中部位置具有中空区域的柱状结构,第一弹性元件14321和第二弹性元件14322可以分别沿着质量元件1431的厚度方向延伸并与壳体结构1410或声学换能器上表面的基板结构1420连接。在一些实施例中,第一弹性元件14321和第二弹性元件14322可以在第一方向上相对于质量元件1431呈近似对称分布。在一些实施例中,第一弹性元件14321可以位于质量元件1431背离基板结构1420的一侧,第一弹性元件14321的下表面可以和质量元件1431的上表面连接,第一弹性元件9321的上表面可以和壳体结构1410的内壁连接。在一些实施例中,第二弹性元件14322可以位于质量元件1431朝向基板结构1420的一侧,第二弹性元件14322的上表面可以和质量元件1431的下表面连接,第二弹性元件14322的下表面可以和声学换能器上表面的基板结构1420连接。在一些实施例中,弹性元件1432 (第一弹性元件14321和第二弹性元件14322)的周侧与质量元件1431的周侧可以对齐。例如,弹性元件1432的周侧与壳体结构1410侧壁之间的距离等于质量元件1431的周侧与壳体结构1410侧壁之间的距离。在一些实施例中,弹性元件1432(第一弹性元件14321和第二弹性元件14322)的周侧与质量元件1431的周侧也可以错开(即不对齐)。例如,弹性元件1432的周侧与壳体结构1410侧壁之间的距离可以大于(或小于)质量元件1431的周侧与壳体结构1410侧壁之间的距离。需要说明的是,第一弹性元件14321和第二弹性元件14322的柱状结构可以为圆柱形、方柱形等规则和/或不规则结构,第一弹性元件14321和第二弹性元件14322的形状可以根据壳体结构1410的截面形状进行适应性调整。在一些实施例中,还可以设置弹性元件1432中的一个弹性元件的周侧与质量元件1431的周侧对齐,另一个弹性元件的周侧与质量元件1431的周侧不对齐,以使第一弹性元件14321和第二弹性元件14322在第一方向上相对于质量元件1431呈非对称分布。
在一些实施例中,第一弹性元件14321和第二弹性元件14322为中部位置具有中空区域的柱状结构时,质量元件1431的厚度可以为10um~1000um。在一些实施例中,质量元件1431的厚度可以为4um~500um。在一些实施例中,质量元件1431的厚度可以为600um~1400um。在一些实施例中,第一弹性元件14321和第二弹性元件14322的厚度可以为10um~1000um。在一些实施例中,第一弹性元件14321和第二弹性元件14322的厚度可以为4um~500um。在一些实施例中,第一弹性元件14321和第二弹性元件14322的厚度可以为600um~1400um。在一些实施例中,弹性元件1432中的每个弹性元件(例如,第一弹性元件14321和第二弹性元件14322)的厚度与质量元件1431的厚度差值可以为0um~500um。在一些实施例中,弹性元件1432中的每个弹性元件的厚度与质量元件1431的厚度差值可以为20um~400um。在一些实施例中,弹性元件1432中的每个弹性元件的厚度与质量元件1431的厚度差值可以为50um~200um。在一些实施例中,弹性元件1432中的每个弹性元件的厚度与质量元件1431的厚度比值可以为0.01~100。在一些实施例中,弹性元件1432中的每个弹性元件的厚度与质量元件1431的厚度比值可以为0.5~80。在一些实施例中,弹性元件1432中的每个弹性元件的厚度与质量元件1431的厚度比值可以为1~40。在一些实施例中,第一弹性元件14321的外侧、第二弹性元件14322的外侧、质量元件1431的外侧和与声学腔体对应的壳体结构1410或声学换能器之间可以具有间隙1460。如图14A所示,在一些实施例中,间隙1460可以位于质量元件1431的周侧,当质量元件1431响应于壳体结构1410的振动而振动时,间隙1460可以防止质量元件1431振动时与壳体结构1410发生碰撞。在一些实施例中,间隙1460中可以包括填充物,关于填充物的更多描述可以参考图9A及其相关描述,在此不做赘述。
图14B是根据本说明书的一些实施例所示的振动传感器的结构示意图。图14C是根据本说明书的一些实施例所示的振动传感器的结构示意图。在一些实施例中,第一弹性元件14321和第二弹性元件14322为中部位置具有中空区域的柱状结构时,该柱状结构可以是直筒柱状结构(如图14A所示)。直筒柱状结构可以是指柱状结构沿其延伸方向(即柱状结构的高度方向)不产生弯折。在一些实施例中,第一弹性元件14321和第二弹性元件14322也可以是具有弯折部的结构体,弯折部的延伸方向可以与柱状结构的延伸方向形成预设角度(例如,90°)。
参见图14B所示的振动传感器1400B,第一弹性元件14321可以包括第一柱状部143211和第一弯折部143212。第一柱状部143211和第一弯折部143212之间弯折连接。弯折连接可以是指第一柱状部143211的延伸方向与第一弯折部143212的延伸方向呈预设角度连接。例如,图14B中,第一柱状部143211的延伸方向与第一弯折部143212的延伸方向垂直。具体地,第一柱状部143211的延伸方向与第一方向基本一致,其中,第一柱状部143211的一端与质量元件1431的上表面连接,另一端与第一弯折部143212弯折连接,第一弯折部143212沿第二方向延伸并与壳体结构1410的侧壁连接。类似的,第二弹性元件14322可以包括第二柱状部143221和第二弯折部143222。第二柱状部143221和第二弯折部143222之间弯折连接。第二柱状部143221的一端与质量元件1431的下表面连接,另一端与第二弯折部143222弯折连接,第二弯折部143222沿第二方向延伸并与壳体结构1410的侧壁连接。在一些实施例中,柱状部(例如,第一柱状部143211、第二柱状部143221)的周侧与质量元件1431的周侧可以重合(如图14B所示)或不重合。
在一些实施例中,参见图14C所示的振动传感器1400C,第一弹性元件14321的第一柱状部143211的延伸方向与第二方向基本一致,第一柱状部143211的一端连接于质量元件1431的周侧,另一端与第一弯折部143212弯折连接,第一弯折部143212沿第一方向延伸并与壳体结构1410连接。类似的,第二弹性元件14322的第二柱状部143221的一端连接于质量元件1431的周侧,另一端与第二弯折部143222弯折连接,第二弯折部143222沿第一方向延伸并与基板结构1420连接。
在图14B和图14C的设置方式下,通过调整弹性元件1432的结构以及其与质量元件1431 的连接位置,可以在保证弹性元件1432的形心与质量元件1431的重心重合或近似重合的同时,增大第一声学腔体1440的体积,进一步提高振动传感器1400的响应灵敏度。在一些实施例中,柱状结构(例如,第一柱状部143211、第二柱状部143221)的延伸方向与第一方向(或第二方向)也可以不一致。在一些实施例中,可以通过调整柱状结构的延伸方向与第一方向(或第二方向)的角度来调整声学腔体的体积。在一些实施例中,柱状部的延伸方向与弯折部的延伸方向之间所形成的预设角度可以不限于上述的90度,也可以是其他合适的角度。例如,在一些实施例中,柱状部的延伸方向与弯折部的延伸方向之间所形成的预设角度可以位于45度-135度。优选地,柱状部的延伸方向与弯折部的延伸方向之间所形成的预设角度可以位于60度-120度。更为优选地,柱状部的延伸方向与弯折部的延伸方向之间所形成的预设角度可以位于80度-100度。
图15是根据本说明书的一些实施例所示的振动传感器的结构示意图。如图15所示,振动传感器1500可以包括壳体结构1510、声学换能器、振动单元1530。图15中所示的振动传感器1500可以与图9A中所示的振动传感器900A相同或相似。例如,振动传感器1500的壳体结构1510可以与振动传感器900A的壳体结构910相同或相似。又例如,振动传感器1500的第一声学腔体1540可以与振动传感器900A的第一声学腔体940相同或相似。再例如,振动传感器1500的基板结构1520可以与振动传感器900A的基板结构920相同或相似。关于振动传感器1500的更多结构(例如,第二声学腔体1550、通孔1521、质量元件1531等)可以参考图9A及其相关描述。
在一些实施例中,与振动传感器900A不同的是,振动传感器1500的第一弹性元件15321可以包括第一子弹性元件153211和第二子弹性元件153212。第一子弹性元件153211和声学腔体对应的壳体结构1510通过第二子弹性元件153212连接,第一子弹性元件153211与质量元件1531的上表面连接。如图15所示,质量元件1531的上表面与第一子弹性元件153211的下表面连接,第一子弹性元件153211的上表面与第二子弹性元件153212的下表面连接,第二子弹性元件153212的上表面与壳体结构1510的内壁连接。在一些实施例中,第一子弹性元件153211的周侧与第二子弹性元件153212的周侧可以重合或近似重合。在一些实施例中,振动传感器1500的第二弹性元件15322可以包括第三子弹性元件153221和第四子弹性元件153222。第三子弹性元件153221和声学腔体对应的声学换能器通过第四子弹性元件153222连接,第三子弹性元件153221与质量元件1531的下表面连接。如图15所示,质量元件1531的下表面与第三子弹性元件153221的上表面连接,第三子弹性元件153221的下表面与第四子弹性元件153222的上表面连接,第四子弹性元件153222的下表面通过声学换能器上表面的基板结构1520与声学换能器连接。在一些实施例中,第三子弹性元件153221的周侧与第四子弹性元件153222的周侧可以重合或近似重合。
在一些实施例中,第一子弹性元件153211的周侧与第二子弹性元件153212的周侧(或者第三子弹性元件153221的周侧与第四子弹性元件153222的周侧)也可以不重合。例如,当第一子弹性元件153211为膜状结构、第二子弹性元件153212为柱状结构时,第一子弹性元件153211的周侧可以与壳体结构1510的内壁连接,第二子弹性元件153212的周侧与壳体结构1510的内壁之间可以具有间隙。
在一些实施例中,第一子弹性元件153211与第三子弹性元件153221可以在第一方向上相对于质量元件1531呈近似对称分布。第一子弹性元件153211与第三子弹性元件153221的尺寸、形状、材质、或厚度可以相同。在一些实施例中,第二子弹性元件153212和第四子弹性元件153222可以在第一方向上相对于质量元件1531呈近似对称分布。第二子弹性元件153212和第四子弹性元件153222的尺寸、形状、材质、或厚度可以相同。在一些实施例中,第一子弹性元件153211与第二子弹性元件153212(或者第三子弹性元件153221和第四子弹性元件153222)的尺寸、形状、材质、或厚度可以相同。例如,第一子弹性元件153211与第二子弹性元件153212的材质均为聚四氟乙烯材料。在一些实施例中,第一子弹性元件153211与第二子弹性元件153212(或者第三子弹性元件153221和第四子弹性元件153222)的尺寸、形状、材质、或厚度可以不同。例如,第一子弹性元件153211为膜状结构,第二子弹性元件153212为柱状结构。
在一些实施例中,振动传感器1500还可以包括固定片1570。固定片1570可以沿质量元件1531的周侧分布,固定片1570位于第一子弹性元件153211与第三子弹性元件153221之间,且固定片1570的上表面和下表面可以分别与第一子弹性元件153211和第三子弹性元件153221连接。在一些实施例中,固定片1570可以是独立的结构。例如,固定片1570可以是厚度与质量元件1531近似相同的柱状结构,固定片1570的上表面可以与第一子弹性元件153211的下表面连接,固定片1570的下表面可以与第三子弹性元件153221的上表面连接。在一些实施例中,固定片1570也可以是与其他结构一体成型的结构。例如,固定片1570可以是与第一子弹性元件153211和/或第三子弹 性元件153221一体成型的柱状结构。在一些实施例中,固定片1570也可以为贯穿第一子弹性元件153211和/或第三子弹性元件153221的柱状结构。例如,固定片1570可以贯穿第一子弹性元件153211与第二子弹性元件153212连接。在一些实施例中,固定片1570的结构除了柱状结构,也可以是其他类型结构,例如,环状结构等。在一些实施例中,固定片1570为环状结构时,固定片1570均匀的分布在质量元件1531的周侧,固定片1570的上表面与第一子弹性元件153211的下表面连接,固定片1570的下表面与第三子弹性元件153221的上表面连接。
在一些实施例中,固定片1570的厚度与质量元件1531的厚度可以相同。在一些实施例中,固定片1570的厚度与质量元件1531的厚度可以不同。例如,固定片1570的厚度可以大于质量元件1531的厚度。在一些实施例中,固定片1570的材料可以为弹性材料,例如,泡沫、塑料、橡胶、硅胶等。在一些实施例中,固定片1570的材料也可以为刚性材料,例如,金属、金属合金等。优选地,固定片1570的材料可以与质量元件1531的材料相同。在一些实施例中,固定片1570可以实现间隙1560的固定作用,固定片1570还可以作为附加质量元件,从而调节振动传感器的谐振频率,进而调节(例如,降低)振动传感器在第二方向上的灵敏度与振动传感器在第一方向上的灵敏度的差值。
在一些实施例中,固定片1570、质量元件1531、第一子弹性元件153211、第二子弹性元件153212之间可以具有间隙1560。在一些实施例中,弹性元件1532的周侧、固定片1570的周侧、壳体结构1510的内壁、声学换能器之间也可以具有间隙1560。在一些实施例中,当质量元件1531响应于壳体结构1510的振动而振动时,间隙1560可以防止质量元件1531振动时与壳体结构1510发生碰撞。在一些实施例中,间隙1560可以包括填充物,关于填充物的更多描述可以参考图9A及其相关描述,在此不做赘述。
图16是根据本说明书的一些实施例所示的振动传感器的结构示意图。如图16所示,振动传感器1600可以包括壳体结构1610、声学换能器和振动单元1630。图16中所示的振动传感器1600可以与图9A中所示的振动传感器900A相同或相似。例如,振动传感器1600的壳体结构1610可以与振动传感器900A的壳体结构910相同或相似。又例如,振动传感器1600的第一声学腔体1640可以与振动传感器900A的第一声学腔体940相同或相似。再例如,振动传感器1600的基板结构1620可以与振动传感器900A的基板结构920相同或相似。关于振动传感器1600的更多结构(例如,第二声学腔体1650、通孔1621、声学换能器等)可以参考图9A及其相关描述。
在一些实施例中,振动传感器1600与振动传感器900A的不同之处在于振动单元的结构不同。振动传感器1600的振动单元1630可以包括弹性元件1632和两个质量元件(例如,第一质量元件16311和第二质量元件16312)。在一些实施例中,质量元件1631可以包括第一质量元件16311和第二质量元件16312。第一质量元件16311和第二质量元件16312在第一方向上相对于弹性元件1632呈对称设置。在一些实施例中,第一质量元件16311可以位于弹性元件1632背离基板结构1620的一侧,第一质量元件16311的下表面与弹性元件1632的上表面连接。第二质量元件16312可以位于弹性元件1632朝向基板结构1620的一侧,第二质量元件16312的上表面与弹性元件1632的下表面连接。在一些实施例中,第一质量元件16311和第二质量元件16312的尺寸、形状、材质、或厚度可以相同。在一些实施例中,第一质量元件16311和第二质量元件16312在第一方向上相对于弹性元件1632呈对称设置,可以使得质量元件1631的重心与弹性元件1632的形心近似重合,进而使得振动单元1630在响应与壳体结构1610的振动而产生振动时,可以降低质量元件1631在第二方向上的振动,从而降低振动单元1630对第二方向上壳体结构1610振动的响应灵敏度,进而提高振动传感器1600的方向选择性。
在一些实施例中,第一质量元件16311和第二质量元件16312在第一方向上分布在弹性元件1632相反的两侧,这里的第一质量元件16311和第二质量元件16312可以近似视为一个整体的质量元件,该整体的质量元件的重心与至少一个弹性元件1632的形心近似重合,可以使得目标频率范围(例如,3000Hz以下)内,振动单元1630对第一方向上壳体结构1610振动的响应灵敏度高于振动单元1630对第二方向上壳体结构1610振动的响应灵敏度。在一些实施例中,振动单元1630对第二方向上壳体结构1610振动的响应灵敏度与振动单元1630对第一方向上壳体结构1610振动的响应灵敏度的差值可以为-20dB~-60dB。在一些实施例中,振动单元1630对第二方向上壳体结构1610振动的响应灵敏度与振动单元1630对第一方向上壳体结构1610振动的响应灵敏度的差值可以为-25dB~-50dB。在一些实施例中,振动单元1630对第二方向上壳体结构1610振动的响应灵敏度与振动单元1630对第一方向上壳体结构1610振动的响应灵敏度的差值可以为-30dB~-40dB。
在一些实施例中,在振动传感器1600工作过程中,可以通过降低振动单元1630在第二方 向上产生的振动,从而降低振动单元1630对第二方向上壳体结构1610振动的响应灵敏度,进而提高振动传感器1600的方向选择性,降低噪声信号对声音信号的干扰。
在一些实施例中,弹性元件1632的形心与质量元件1631的重心可以重合或者近似重合。在一些实施例中,振动单元1630响应于壳体结构1610的振动而产生振动时,弹性元件1632的形心与质量元件1631的重心重合或者近似重合,可以在振动单元1630对第一方向上壳体结构1610振动的响应灵敏度基本不变的前提下,降低质量元件1631在第二方向上的振动,从而降低振动单元1630对第二方向上壳体结构1610振动的响应灵敏度,进而提高振动传感器1600的方向选择性。在一些实施例中,可以通过调整弹性元件1632的厚度、弹性系数、质量元件1631的质量、尺寸等改变(例如,提高)振动单元1630对第一方向上壳体结构1610振动的响应灵敏度。
在一些实施例中,弹性元件1632的形心与质量元件1631的重心在第一方向上的距离可以不大于质量元件1631厚度的1/3。在一些实施例中,弹性元件1632的形心与质量元件1631的重心在第一方向上的距离可以不大于质量元件1631厚度的1/2。在一些实施例中,弹性元件1632的形心与质量元件1631的重心在第一方向上的距离可以不大于质量元件1631厚度的1/4。在一些实施例中,弹性元件1632的形心与质量元件1631的重心在第二方向上的距离不大于质量元件1631边长或半径的1/3。在一些实施例中,弹性元件1632的形心与质量元件1631的重心在第二方向上的距离不大于质量元件1631边长或半径的1/2。在一些实施例中,弹性元件1632的形心与质量元件1631的重心在第二方向上的距离不大于质量元件1631边长或半径的1/4。例如,质量元件1631为正方体时,弹性元件1632的形心与质量元件1631的重心在第二方向上的距离不大于质量元件1631边长的1/3。又例如,质量元件1631为圆柱体时,弹性元件1632的形心与质量元件1631的重心在第二方向上的距离不大于质量元件1631上表面(或者下表面)圆形半径的1/3。
在一些实施例中,当弹性元件1632的形心与质量元件1631的重心重合或者近似重合时,可以使得振动单元1630在第二方向上振动的谐振频率向高频偏移,而不改变振动单元1630在第一方向上振动的谐振频率。在一些实施例中,当弹性元件1632的形心与质量元件1631的重心重合或者近似重合时,振动单元1630在第一方向上振动的谐振频率可以保持基本不变,例如,振动单元1630在第一方向上振动的谐振频率可以为人耳感知相对较强的频率范围(例如,20Hz-2000Hz、2000Hz-3000Hz等)内的频率。振动单元1630在第二方向上振动的谐振频率可以向高频偏移而位于人耳感知相对较弱的频率范围(例如,5000Hz-9000Hz、1kHz-14kHz等)内的频率。基于振动单元1630在第二方向上振动的谐振频率向高频偏移,振动单元1630在第一方向上振动的谐振频率保持基本不变,可以使得振动单元1630在第二方向上振动的谐振频率与振动单元1630在第一方向上振动的谐振频率的比值大于或等于2。在一些实施例中,振动单元1630在第二方向上振动的谐振频率与振动单元1630在第一方向上振动的谐振频率的比值也可以大于或等于其他数值。例如,振动单元1630在第二方向上振动的谐振频率与振动单元1630在第一方向上振动的谐振频率的比值也可以大于或等于1.5。
图17是根据本说明书的一些实施例所示的振动传感器的结构示意图。如图17所示,振动传感器1700可以包括壳体结构1710、声学换能器、振动单元1730。图17中所示的振动传感器1700可以与图16中所示的振动传感器1600相同或相似。例如,振动传感器1700的壳体结构1710可以与振动传感器1600的壳体结构1610相同或相似。又例如,振动传感器1700的第一声学腔体1740可以与振动传感器1600的第一声学腔体1640相同或相似。再例如,振动传感器1700的声学换能器可以与振动传感器1600的声学换能器相同或相似。关于振动传感器1700的更多结构(例如,第二声学腔体1750、通孔1721、质量元件1731、第一质量元件17311、第二质量元件17312等)可以参考图16及其相关描述。
与振动传感器1600不同的是,振动传感器1700的弹性元件1732还可以包括第二弹性元件17322和第三弹性元件17323。在一些实施例中,第一弹性元件17321可以分别通过第二弹性元件17322和第三弹性元件17323与壳体结构1710和/或声学换能器连接。如图17所示,第一弹性元件17321为膜状结构,第二弹性元件17322和第三弹性元件17323为柱状结构。第一弹性元件17321的上表面与第二弹性元件17322的下表面连接,第二弹性元件17322的上表面与壳体结构1710的内壁连接。第一弹性元件17321的下表面与第三弹性元件17323的上表面连接,第三弹性元件17323的下表面通过声学换能器上表面的基板结构1720与声学换能器连接。在一些实施例中,第一弹性元件17321、第二弹性元件17322和第三弹性元件17323的周侧可以重合或近似重合。在一些实施例中,第一弹性元件17321、第二弹性元件17322和第三弹性元件17323的周侧可以不重合。例如,第一弹性元件17321为膜状结构,第二弹性元件17322和第三弹性元件17323为柱状结构时,第一 弹性元件17321的周侧可以与壳体结构1710的内壁连接,第二弹性元件17322和第三弹性元件17323的周侧与壳体结构1710的内壁之间存在空隙。
在一些实施例中,第一弹性元件17321与第二弹性元件17322和第三弹性元件17323的结构也可以相同。例如,第一弹性元件17321与第二弹性元件17322和第三弹性元件17323均为膜状结构。在一些实施例中,第一弹性元件17321与第二弹性元件17322和第三弹性元件17323的材质可以相同。在一些实施例中,第一弹性元件17321与第二弹性元件17322和第三弹性元件17323的材质可以不同。
在一些实施例中,第一弹性元件17321的外侧、第二弹性元件17322的外侧、第三弹性元件17323的外侧和与声学腔体对应的壳体结构1710或声学换能器之间可以具有间隙1760。在一些实施例中,当质量元件1731响应于壳体结构1710的振动而振动时,间隙1760可以防止质量元件1731与壳体结构1710发生碰撞。在一些实施例中,间隙1760中可以包括填充物,关于填充物的具体描述可以参考图9A及其相关内容,在此不做赘述。
在一些实施例中,质量元件的数量为两个时(例如,图16中所示的质量元件1631、图17中所示的质量元件1731),每个质量元件可以包括多个呈阵列排布的子质量元件。多个子质量元件呈阵列排布在弹性元件的表面。例如,第一质量元件包括的多个第一子质量元件呈阵列排布在弹性元件的上表面中心位置;第二质量元件包括的多个第二子质量元件呈阵列排布在弹性元件的下表面中心位置。在一些实施例中,多个第一子质量元件和多个第二子质量元件可以在第一方向上关于弹性元件呈对称设置。在一些实施例中,质量元件的形心可以是多个第一子质量元件形成的阵列形状的几何中心与多个第二子质量元件形成的阵列形状的几何中心的连线的中点。质量元件的形心与多个第一子质量元件以及多个第二子质量元件排列形成的阵列形状的形状结构和尺寸相关。例如,阵列形状为长方形板状结构时,第一质量元件的形心可以在长方形板状结构的两条对角线的交点位置,第二质量元件的形心也在长方形板状结构的两条对角线的交点位置,质量元件整体的形心即为两个交点连线的中点位置。在一些实施例中,质量元件的整体可以近似视为密度均匀的结构体,此时质量元件的形心可以近似视为质量元件的重心。
需要说明的是,本说明书实施例所示的振动传感器的振动单元(例如,图8所示的振动单元830、图9A-图9C所示的振动单元930、图14A-图14C所示的振动单元1430等)的设置方向为横向设置,在一些实施例中,振动单元的设置方向也可以为其他方向设置(例如,纵向设置或斜向设置),相应地,第一方向和第二方向随质量元件(例如,图8所示的质量元件831、图9A-图9C所示的质量元件931、图14A-图14C所示的质量元件1431等)的变化而改变。例如,振动传感器800的振动单元830(的质量元件831)纵向设置时,这里可以近似视为图8所示的振动单元830整体沿顺时针(或逆时针)方向旋转90°,相应地,第一方向和第二方向也随振动单元830的旋转而发生变化。振动单元纵向设置时的振动传感器的工作原理与振动单元横向设置时的振动传感器的工作原理相似,在此不做赘述。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本说明书的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本说明书的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本说明书的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至 一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本说明书各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的说明书历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (28)

  1. 一种振动传感器,包括:
    壳体结构和声学换能器,所述声学换能器与所述壳体结构物理连接,其中,至少部分所述壳体结构与所述声学换能器形成声学腔体;
    振动单元,将所述声学腔体分隔为包含第一声学腔体的多个声学腔体,所述第一声学腔体与所述声学换能器声学连通;所述振动单元包括弹性元件和质量元件,所述弹性元件和所述质量元件位于所述声学腔体中,所述质量元件与所述壳体结构或所述声学换能器通过所述弹性元件连接;
    所述壳体结构被配置为基于外部振动信号产生振动,所述振动单元响应于所述壳体结构的振动使所述第一声学腔体的体积改变,所述声学换能器基于所述第一声学腔体体积的改变产生电信号,其中,
    所述弹性元件包括第一弹性元件和第二弹性元件,所述第一弹性元件和所述第二弹性元件分别与所述质量元件连接并沿所述振动单元的振动方向间隔分布。
  2. 根据权利要求1所述的振动传感器,在目标频率范围内,所述振动单元对所述第一方向上壳体结构振动的响应灵敏度高于所述振动单元对第二方向上壳体结构振动的响应灵敏度,所述第二方向垂直于所述第一方向。
  3. 根据权利要求1所述的振动传感器,所述振动单元在所述第二方向上振动的谐振频率与所述振动单元在所述第一方向上振动的谐振频率的比值大于或等于2。
  4. 根据权利要求3所述的振动传感器,所述振动单元对所述第二方向上壳体结构振动的响应灵敏度与所述振动单元与所述第一方向上壳体结构振动的响应灵敏度的差值为-20dB~-40dB。
  5. 根据权利要求1所述的振动传感器,所述第一方向为所述质量元件的厚度方向,所述弹性元件的形心与所述质量元件的重心在第一方向上的距离不大于所述质量块厚度的1/3。
  6. 根据权利要求5所述的振动传感器,所述弹性元件的形心与所述质量元件的重心在第二方向上的距离不大于所述质量块边长或半径的1/3。
  7. 根据权利要求1所述的振动传感器,其中,所述第一弹性元件和所述第二弹性元件与所述声学腔室对应的所述壳体结构或所述换能装置连接;
    所述第一弹性元件和所述第二弹性元件在所述第一方向上相对于所述质量元件呈近似对称分布,其中,所述第一方向为所述质量元件的厚度方向,所述质量元件的上表面与所述第一弹性元件连接,所述质量元件的下表面与所述第二弹性元件连接。
  8. 根据权利要求7所述的振动传感器,其中,所述第一弹性元件和所述第二弹性元件的尺寸、形状、材质、或厚度相同。
  9. 根据权利要求7所述的振动传感器,其中,所述第一弹性元件和所述第二弹性元件为膜状结构,所述第一弹性元件的一侧与所述质量元件的上表面连接,所述第二弹性元件的一侧与所述质量元件的下表面连接,所述质量元件的上表面或下表面的尺寸小于所述第一弹性元件和所述第二弹性元件的尺寸。
  10. 根据权利要求9所述的振动传感器,其中,所述第一弹性元件和与所述声学腔室对应的所述壳体结构或所述换能装置之间形成的声学腔体的体积大于或等于所述第二弹性元件和与所述声学腔室对应的所述壳体结构或所述换能装置之间形成的第一声学腔体的体积。
  11. 根据权利要求7所述的振动传感器,其中,所述第一弹性元件和所述第二弹性元件位于所述质量元件的周侧与所述壳体结构之间,所述质量元件的周侧通过所述第一弹性元件和所述第二弹性元件与所述壳体结构连接。
  12. 根据权利要求11所述的振动传感器,其中,所述第一弹性元件、所述质量元件和与所述声学腔室对应的所述壳体结构或所述换能装置之间形成的声学腔体的体积大于或等于所述第二弹性 元件、所述质量元件和与所述声学腔室对应的所述壳体结构或所述换能装置之间形成的第一声学腔体的体积。
  13. 根据权利要求9-12任一项所述的振动传感器,其中,所述第一弹性元件、所述第二弹性元件、所述质量元件以及与所述声学腔室对应的所述壳体结构或所述换能装置之间具有间隙,所述间隙中具有用于调节所述振动传感器的品质因子的填充物。
  14. 根据权利要求9-12任一项所述的振动传感器,其中,所述质量元件的厚度为10um~1000um;所述第一弹性元件和所述第二弹性元件的厚度为0.1um~500um。
  15. 根据权利要求7所述的振动传感器,其中,所述第一弹性元件和所述第二弹性元件为柱状结构,所述第一弹性元件和所述第二弹性元件分别沿着所述质量元件的厚度方向延伸并与所述壳体结构或所述换能装置连接。
  16. 根据权利要求15所述的振动传感器,其中,所述第一弹性元件的外侧、所述第二弹性元件的外侧、所述质量元件的外侧和与所述声学腔室对应的所述壳体结构或所述换能装置之间具有间隙,所述间隙中具有用于调节所述振动传感器品质因子的填充物。
  17. 根据权利要求15所述的振动传感器,其中,所述质量块厚度为10um~1000um,所述第一弹性元件和所述第二弹性元件的厚度为10um~1000um。
  18. 根据权利要求7所述的振动传感器,其中,所述第一弹性元件包括第一子弹性元件和第二子弹性元件,所述第一子弹性元件和与所述声学腔室相对应的壳体结构或换能装置通过所述第二子弹性元件连接,所述第一子弹性元件与所述质量元件的上表面连接;
    所述第二弹性元件包括第三子弹性元件和第四子弹性元件,所述第三子弹性元件和与所述声学腔室相对应的壳体结构或换能装置通过所述第四子弹性元件连接,所述第三子弹性元件与所述质量元件的下表面连接。
  19. 根据权利要求18所述的振动传感器,其中,所述第一子弹性元件的周侧与所述第二子弹性元件的周侧近似重合,所述第三子弹性元件的周侧与所述第四子弹性元件的周侧近似重合。
  20. 根据权利要求19所述的振动传感器,其中,所述振动传感器还包括固定片,所述固定片沿所述质量元件的周侧分布;所述固定片位于所述第一子弹性元件和所述第三子弹性元件之间,且所述固定片的上表面与下表面分别与所述第一子弹性元件和所述第三子弹性元件连接。
  21. 根据权利要求20所述的振动传感器,其中,所述固定片、所述质量元件、所述第一子弹性元件以及所述第二子弹性元件之间的间隙具有用于调整所述振动传感器品质因子的填充物。
  22. 一种振动传感器,其中,所述振动传感器包括:
    壳体结构和声学换能器,所述声学换能器与所述壳体结构物理连接,其中,至少部分所述壳体结构与所述声学换能器形成声学腔体;
    振动单元,将所述声学腔体分隔为包含第一声学腔体的多个声学腔体,所述第一声学腔体与所述声学换能器声学连通;所述振动单元包括弹性元件和质量元件,所述弹性元件和所述质量元件位于所述声学腔体中,所述质量元件与所述壳体结构或所述声学换能器通过所述弹性元件连接;
    所述壳体结构被配置为基于外部振动信号产生振动,所述振动单元响应于所述壳体结构的振动使所述第一声学腔体的体积改变,所述声学换能器基于所述第一声学腔体体积的改变产生电信号;
    其中,所述质量元件在第一方向上分布在所述弹性元件相反的两侧。
  23. 根据权利要求22所述的振动传感器,在目标频率范围内,所述振动单元对所述第一方向上壳体结构振动的响应灵敏度高于所述振动单元对第二方向上壳体结构振动的响应灵敏度,所述第二方向垂直于所述第一方向。
  24. 根据权利要求22所述的振动传感器,其中,所述振动单元对所述第二方向上壳体结构振动的谐振频率与所述振动单元对所述第一方向上壳体结构振动的谐振频率的比值大于或等于2。
  25. 根据权利要求24所述的振动传感器,其中,所述振动单元对所述第二方向上壳体结构振动的响应灵敏度与所述振动单元与所述第一方向上壳体结构振动的响应灵敏度的差值为-20dB~-40dB。
  26. 根据权利要求25所述的振动传感器,其中,所述弹性元件的形心与所述质量元件的重心在第一方向上的距离不大于所述质量块厚度的1/3。
  27. 根据权利要求26所述的振动传感器,其中,所述弹性元件的形心与所述质量元件的重心在第二方向上的距离不大于所述质量块边长或半径的1/3。
  28. 根据权利要求27所述的振动传感器,其中,所述质量元件包括第一质量元件和第二质量元件,所述第一质量元件和所述第二质量元件在所述第一方向上相对于所述弹性元件呈对称设置。
PCT/CN2022/097874 2021-06-18 2022-06-09 一种振动传感器 WO2022262639A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280007750.4A CN116671125A (zh) 2021-06-18 2022-06-09 一种振动传感器
US18/353,101 US20230358600A1 (en) 2021-06-18 2023-07-16 Vibration sensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110677119.2A CN113286213A (zh) 2021-06-18 2021-06-18 一种振动传感器
CN202110677119.2 2021-06-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/353,101 Continuation US20230358600A1 (en) 2021-06-18 2023-07-16 Vibration sensors

Publications (1)

Publication Number Publication Date
WO2022262639A1 true WO2022262639A1 (zh) 2022-12-22

Family

ID=77285024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097874 WO2022262639A1 (zh) 2021-06-18 2022-06-09 一种振动传感器

Country Status (3)

Country Link
US (1) US20230358600A1 (zh)
CN (2) CN113286213A (zh)
WO (1) WO2022262639A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117157998A (zh) * 2021-06-18 2023-12-01 深圳市韶音科技有限公司 一种振动传感器
CN113286213A (zh) * 2021-06-18 2021-08-20 深圳市韶音科技有限公司 一种振动传感器
CN114838812B (zh) * 2022-04-14 2024-01-19 南京高华科技股份有限公司 自启动微机械声波传感器及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1589064A (zh) * 2004-09-06 2005-03-02 深圳市韶音科技有限公司 一种接触式送话器
US20200322732A1 (en) * 2019-04-08 2020-10-08 Db Hitek Co., Ltd. Mems microphone and method of manufacturing the same
CN211930820U (zh) * 2020-05-28 2020-11-13 青岛歌尔智能传感器有限公司 振动传感器和音频设备
CN212572961U (zh) * 2020-06-30 2021-02-19 瑞声声学科技(深圳)有限公司 振动传感器及具有其的音频设备
CN213186548U (zh) * 2020-09-08 2021-05-11 无锡韦尔半导体有限公司 Mems声音传感器及mems麦克风
CN113286213A (zh) * 2021-06-18 2021-08-20 深圳市韶音科技有限公司 一种振动传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1589064A (zh) * 2004-09-06 2005-03-02 深圳市韶音科技有限公司 一种接触式送话器
US20200322732A1 (en) * 2019-04-08 2020-10-08 Db Hitek Co., Ltd. Mems microphone and method of manufacturing the same
CN211930820U (zh) * 2020-05-28 2020-11-13 青岛歌尔智能传感器有限公司 振动传感器和音频设备
CN212572961U (zh) * 2020-06-30 2021-02-19 瑞声声学科技(深圳)有限公司 振动传感器及具有其的音频设备
CN213186548U (zh) * 2020-09-08 2021-05-11 无锡韦尔半导体有限公司 Mems声音传感器及mems麦克风
CN113286213A (zh) * 2021-06-18 2021-08-20 深圳市韶音科技有限公司 一种振动传感器

Also Published As

Publication number Publication date
CN113286213A (zh) 2021-08-20
CN116671125A (zh) 2023-08-29
US20230358600A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2022262639A1 (zh) 一种振动传感器
CN218162856U (zh) 一种振动传感器
CN215300865U (zh) 一种振动传感器
US20230288250A1 (en) Vibration sensors
US20230199360A1 (en) Vibration sensors
TW202301882A (zh) 振動感測器
WO2022140921A1 (zh) 一种振动传感器
WO2022142737A1 (zh) 一种振动传感器
WO2022142291A1 (zh) 一种振动传感器
US20230384147A1 (en) Vibration sensors
WO2023272906A1 (zh) 一种振动传感器
US20230362525A1 (en) Vibration sensor
RU2809948C1 (ru) Датчик вибрации
TW202242354A (zh) 振動感測器
CN114697823A (zh) 一种振动传感器
TW202303112A (zh) 振動感測器
TW202308402A (zh) 振動感測器
TW202301881A (zh) 振動感測器
CN115623392A (zh) 一种振动传感器
CN117203981A (zh) 一种压电式扬声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824119

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007750.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE