WO2022262176A1 - 一种振动传感器 - Google Patents

一种振动传感器 Download PDF

Info

Publication number
WO2022262176A1
WO2022262176A1 PCT/CN2021/129151 CN2021129151W WO2022262176A1 WO 2022262176 A1 WO2022262176 A1 WO 2022262176A1 CN 2021129151 W CN2021129151 W CN 2021129151W WO 2022262176 A1 WO2022262176 A1 WO 2022262176A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
elastic element
buffer
mass
vibration sensor
Prior art date
Application number
PCT/CN2021/129151
Other languages
English (en)
French (fr)
Inventor
袁永帅
邓文俊
黄雨佳
周文兵
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110677119.2A external-priority patent/CN113286213A/zh
Priority claimed from PCT/CN2021/106947 external-priority patent/WO2023283966A1/zh
Priority claimed from PCT/CN2021/107978 external-priority patent/WO2022142291A1/zh
Priority claimed from PCT/CN2021/112014 external-priority patent/WO2022222315A1/zh
Priority claimed from PCT/CN2021/112017 external-priority patent/WO2023015478A1/zh
Priority claimed from PCT/CN2021/113419 external-priority patent/WO2023272906A1/zh
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to CN202180078575.3A priority Critical patent/CN117157998A/zh
Priority to TW111118332A priority patent/TW202301883A/zh
Publication of WO2022262176A1 publication Critical patent/WO2022262176A1/zh
Priority to US18/365,976 priority patent/US20230384147A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/04Frequency
    • G01H3/06Frequency by electric means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • H04R1/083Special constructions of mouthpieces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/46Special adaptations for use as contact microphones, e.g. on musical instrument, on stethoscope
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/18Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/283Enclosures comprising vibrating or resonating arrangements using a passive diaphragm
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/046Construction

Definitions

  • the present application relates to the field of acoustics, in particular to a vibration sensor.
  • the vibration sensor is one of the commonly used vibration detection devices, which converts the collected vibration signals into electrical signals or other forms of information output required by its internal transducing components. Sensitivity can represent the ratio of the output signal strength of the sensing device to the input signal strength. If the sensitivity is too small, it will affect the user experience. In order to make the vibration sensor have higher sensitivity, the height of the sensing cavity (for example, the acoustic cavity) in the vibration sensor is generally set to be small, so as to reduce the volume of the sensing cavity. However, when the vibration amplitude of the external vibration is relatively large, the vibration amplitude of the diaphragm of the vibration sensor will also be relatively large. , housing, etc.) collide, making the diaphragm easily damaged, affecting the use of the vibration sensor.
  • a vibration sensor including: a vibration assembly, the vibration assembly includes a mass element and an elastic element, the mass element is connected to the elastic element; a first acoustic cavity, the elastic element constitutes the first One of the side walls of the acoustic cavity, the vibrating component vibrates in response to an external vibration signal so that the volume of the first acoustic cavity changes; an acoustic transducer, the acoustic transducer and the first acoustic The cavity is connected, and the acoustic transducer generates an electrical signal in response to a volume change of the first acoustic cavity; a buffer, and the buffer limits the vibration amplitude of the vibrating assembly; wherein, the acoustic transducer Having a first resonant frequency, the vibrating component has a second resonant frequency, the second resonant frequency of the vibrating component is lower than the first resonant frequency.
  • the sensitivity of the vibration component is greater than or equal to -40 dB.
  • the second resonant frequency is 1 kHz to 10 kHz lower than the first resonant frequency.
  • the buffer member is disposed on the side wall perpendicular to the vibration direction of the vibration component in the first acoustic cavity, and the buffer member provides the vibration component along the vibration direction of the vibration component.
  • a buffering distance in the vibration direction, the buffering distance is greater than or equal to 0 and smaller than the maximum vibration amplitude of the vibration component.
  • the elastic element is disposed opposite to the acoustic transducer, and the buffer is connected to the elastic element or the acoustic transducer.
  • the buffer is arranged in block or sheet shape; alternatively, the buffer includes a plurality of buffer points or a plurality of buffer points distributed at intervals on the elastic element or the acoustic transducer particles, or multiple buffer columns.
  • the vibration sensor further includes a housing that receives the external vibration signal and transmits the external vibration signal to the vibration assembly.
  • the housing forms an acoustic cavity
  • the vibratory assembly is located in the acoustic cavity, and divides the acoustic cavity into the first acoustic cavity and the second acoustic cavity.
  • the buffer member is disposed in the first acoustic cavity and/or the second acoustic cavity, and the buffer member provides the vibration component with a buffer along the vibration direction of the vibration component distance.
  • the buffer distance is greater than or equal to 0 and smaller than the maximum vibration amplitude of the vibration component.
  • the buffer member includes a first buffer portion and a second buffer portion, and the first buffer portion and the second buffer portion are respectively arranged on the elastic element along the vibration direction of the vibration assembly. sides.
  • the first buffer part is connected with the housing or the elastic element
  • the second buffer part is connected with the elastic element or the acoustic transducer.
  • the first buffer portion includes a plurality of first buffer blocks
  • the second buffer portion includes a plurality of second buffer blocks.
  • one end of the buffer member along the vibration direction of the vibration component is connected to the elastic element, and the other end of the buffer member along the vibration direction of the vibration component is connected to the housing or the Acoustic transducer connection.
  • the buffer member includes a first buffer portion and a second buffer portion, and the first buffer portion and the second buffer portion are respectively arranged on the elastic element along the vibration direction of the vibration assembly. sides.
  • a plurality of buffer members are provided, and the plurality of buffer members are distributed at intervals along the circumferential direction of the elastic element.
  • the buffer includes a magnetic buffer for generating a magnetic field; the mass element includes a magnetic or magnetizable member, and the mass element is located within the magnetic field.
  • the magnetic buffer includes a coil mounted on a side wall of the acoustic transducer connected to the first acoustic cavity.
  • the coil is embedded in a side wall of the acoustic transducer connected to the first acoustic cavity.
  • the mass of polymer material in the mass element exceeds 80%.
  • the mass of polymer material in the elastic element exceeds 80%.
  • the mass element and the elastic element are made of the same material.
  • the number of the mass elements is greater than or equal to 3; the mass elements are not collinearly arranged.
  • the plurality of proof masses differ in at least one structural parameter, including size, mass, density, and shape.
  • one or more cantilever beam structures and one or more masses physically connected to each of the one or more cantilever beam structures are disposed in the first acoustic cavity.
  • the vibration assembly includes one or more sets of diaphragms and masses, and in each set of diaphragms and masses, the masses are physically connected to the diaphragm.
  • the one or more groups of diaphragms and mass blocks are arranged in sequence along the vibration direction of the diaphragm; the distance between adjacent diaphragms in the vibration assembly is not less than that of the adjacent diaphragms The maximum amplitude of the membrane.
  • each set of diaphragms and masses in the one or more sets of diaphragms and masses corresponds to a target frequency band, and the sensitivity of the vibration sensor in the corresponding target frequency band is greater than that of the acoustic transducer. Sensitivity of the transducer.
  • the resonant frequencies of at least two groups of diaphragms and masses among the plurality of groups of diaphragms and masses are different.
  • the vibration assembly further includes a support element for supporting the one or more sets of diaphragms and masses, the support element is physically connected to the acoustic transducer, and the set or Multiple sets of diaphragms and masses are connected to the support element.
  • the support element is made of an air-impermeable material, and the diaphragm includes an air-permeable membrane.
  • the elastic element includes a first elastic element and a second elastic element, and the first elastic element and the second elastic element are respectively connected to the mass element in the vibration direction of the vibration assembly Opposite sides.
  • the size, shape, material, or thickness of the first elastic element and the second elastic element are the same.
  • the first elastic element is connected to the first buffer part, and the second elastic element is connected to the second buffer part.
  • the mass element includes a first mass element and a second mass element, and the first mass element and the second mass element are respectively connected to the elastic element in the vibration direction of the vibration assembly. Opposite sides.
  • the size, shape, material, or thickness of the first mass element and the second mass element are the same.
  • the elastic element is connected around the side wall of the mass element, and the elastic element extends toward the acoustic transducer and is directly or indirectly connected to the acoustic transducer.
  • the vibration sensor further includes a substrate, the substrate is disposed on the acoustic transducer, and one end of the elastic element extending toward the acoustic transducer is connected to the substrate.
  • the buffer is arranged in the first acoustic cavity, the buffer is connected to the mass element and/or the acoustic transducer, and/or, the buffer is arranged in The second acoustic cavity, the buffer member are connected to the mass element and/or the housing.
  • the buffer element includes a coil for generating a magnetic field; the mass element includes a magnetic element or a magnetizable element, and the mass element is located in the magnetic field; the coil is mounted on the acoustic transducer Connectors are attached to the side walls of the first acoustic cavity.
  • the elastic element is disposed opposite to the acoustic transducer, a protruding structure is disposed on the side of the elastic element facing the first acoustic cavity, and the elastic element responds to the external A vibration signal causes the raised structure to move, and the movement of the raised structure changes the volume of the first acoustic cavity.
  • the protruding structure abuts against a sidewall of the first acoustic cavity opposite to the elastic element.
  • the protruding structure has elasticity, and when the protruding structure moves, the protruding structure produces elastic deformation, and the elastic deformation changes the volume of the first acoustic cavity.
  • the buffer is disposed in the second acoustic cavity, and the buffer is connected to the mass element and/or the housing.
  • the vibration assembly further includes a support element, the mass element and the support element are physically connected to both sides of the elastic element, and the support element is physically connected to the acoustic transducer;
  • the support element, the elastic element and the acoustic transducer form a first acoustic cavity.
  • the cross-sectional area of the mass element along the vibration direction perpendicular to the vibration assembly is larger than the cross-sectional area of the first acoustic cavity along the vibration direction perpendicular to the vibration assembly, and the elastic element is along The cross-sectional area perpendicular to the vibration direction of the vibration component is larger than the cross-sectional area of the first acoustic cavity along the vibration direction perpendicular to the vibration component; the mass element is configured to respond to the external vibration signal so that The area where the elastic element contacts the support element undergoes compression deformation, and the elastic element can vibrate to change the volume of the first acoustic cavity.
  • the support element comprises an annular structure.
  • the cross-sectional area of the mass element along the vibration direction perpendicular to the vibration component is greater than or equal to the cross-sectional area of the outer ring of the annular structure along the vibration direction perpendicular to the vibration component, and the elasticity The cross-sectional area of the element along the vibration direction perpendicular to the vibration component is greater than or equal to the cross-sectional area of the outer ring of the annular structure along the vibration direction perpendicular to the vibration component.
  • the cross-sectional area of the mass element along the vibration direction perpendicular to the vibration assembly is equal to the cross-sectional area of the elastic element along the vibration direction perpendicular to the vibration assembly.
  • the buffer is disposed in the second acoustic cavity, and the buffer is connected to the mass element and/or the housing.
  • FIG. 1 is an exemplary block diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 2 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 3 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 4 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 5 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 6 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 7 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 8 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 9 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 10 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 11 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 12 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 13 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 14 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 14A is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 14B is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 15 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 16 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 17 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 18 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 19 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 20 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 21 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 22 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 23 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 24 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 25 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 26 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 27 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 28 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 29 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 30 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 31 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 32 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 33 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 34 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 35 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 36 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 37 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • system means for distinguishing different components, elements, components, parts or assemblies of different levels.
  • the words may be replaced by other expressions if other words can achieve the same purpose.
  • the flow chart is used in this application to illustrate the operations performed by the system according to the embodiment of this application. It should be understood that the preceding or following operations are not necessarily performed in the exact order. Instead, various steps may be processed in reverse order or simultaneously. At the same time, other operations can be added to these procedures, or a certain step or steps can be removed from these procedures.
  • the embodiment of this specification provides a vibration sensor.
  • the vibration sensor may include an acoustic transducer and a vibration assembly.
  • the vibrating component may include a mass element and an elastic element, and the mass element is connected to the elastic element.
  • a first acoustic cavity can be formed between the elastic element and the acoustic transducer, the elastic element and the acoustic transducer respectively constitute one of the side walls of the first acoustic cavity, and the vibrating component can vibrate in response to an external vibration signal so that the first acoustic cavity The volume of the learning cavity changes.
  • An acoustic transducer is in communication with the first acoustic cavity (eg, through the sound inlet), and the acoustic transducer generates an electrical signal in response to a volume change of the first acoustic cavity.
  • the acoustic transducer may have a first resonant frequency and the vibratory assembly may have a second resonant frequency, the second resonant frequency of the vibratory assembly being different from the first resonant frequency.
  • the second resonant frequency is less than the first resonant frequency.
  • the vibration sensor may also include a bumper.
  • bumpers may be used to limit the vibration amplitude of the vibrating assembly.
  • the buffer member may be disposed in the first acoustic cavity to provide the vibration component with a buffer distance along the vibration direction of the vibration component.
  • buffer members (first buffer part and second buffer part) can be respectively arranged on both sides of the elastic element along the vibration direction of the vibration assembly, the first buffer part is connected with the shell or the elastic element, and the second buffer part The part is connected with an elastic element or an acoustic transducer.
  • a buffer is provided in the vibration sensor, which can limit the vibration amplitude of the vibration component, thereby preventing the vibration component from colliding with other components (such as acoustic transducers, housings) in the vibration sensor during the vibration process, and then Realize the protection of vibration components (especially elastic components), and improve the reliability of vibration sensors.
  • a vibration sensor 100 may include an acoustic transducer 110 and a vibration assembly 120 .
  • the vibration assembly 120 can pick up an external vibration signal and cause the acoustic transducer 110 to generate an electrical signal.
  • the vibration component 120 responds to the vibration of the external environment and transmits the signal to the acoustic transducer 110, and then the acoustic transducer 110 converts the signal into an electrical signal.
  • the vibration sensor 100 can be applied to mobile devices, wearable devices, virtual reality devices, augmented reality devices, etc., or any combination thereof.
  • a mobile device may include a smartphone, tablet computer, personal digital assistant (PDA), gaming device, navigation device, etc., or any combination thereof.
  • wearable devices may include smart bracelets, earphones, hearing aids, smart helmets, smart watches, smart clothing, smart backpacks, smart accessories, etc., or any combination thereof.
  • the virtual reality device and/or the augmented reality device may include a virtual reality helmet, virtual reality glasses, virtual reality patch, augmented reality helmet, augmented reality glasses, augmented reality patch, etc. or any combination thereof.
  • virtual reality devices and/or augmented reality devices may include Google Glass, Oculus Rift, Hololens, Gear VR, etc.
  • the acoustic transducer 110 may be used to convert a signal (eg, vibration signal, air conduction sound) into an electrical signal.
  • acoustic transducer 110 may include a microphone.
  • the microphone may be a microphone with bone conduction as one of the main modes of sound transmission or a microphone with air conduction as one of the main modes of sound transmission. Taking air conduction as one of the main transmission modes of sound as an example, the microphone can obtain the sound pressure change of the conduction channel (such as the sound pickup hole) and convert it into an electrical signal.
  • the acoustic transducer 110 may be an accelerometer, which is a specific application of a spring-vibration system, which receives vibration signals through sensitive devices to obtain electrical signals, and then processes the electrical signals to obtain acceleration.
  • the acoustic transducer 110 may have a first resonant frequency that is related to properties (eg, shape, material, structure, etc.) of the acoustic transducer 110 itself. In some embodiments, the acoustic transducer 110 may have a higher sensitivity around the first resonant frequency.
  • the vibration component 120 may have a second resonant frequency, which may be lower than the first resonant frequency.
  • the relationship between the second resonant frequency and the first resonant frequency can be adjusted , so that the second resonant frequency is lower than the first resonant frequency, thereby improving the sensitivity of the vibration sensor 100 in a lower frequency band.
  • the vibration sensor 100 when used as a microphone, the range of the target frequency band may be 200Hz-2kHz.
  • the vibration component 220 The second resonant frequency can be configured as 800Hz, 1kHz or 1.7kHz, etc.
  • the second resonant frequency may be 1 kHz-10 kHz lower than the first resonant frequency. In some embodiments, the second resonance frequency may be 0.5kHz-15kHz lower than the first resonance frequency. In some embodiments, the second resonant frequency may be 2kHz-8kHz lower than the first resonant frequency. In some embodiments, the sensitivity of the vibration component 120 can be adjusted by adjusting the structure and parameters of the vibration component 120 .
  • the vibration assembly 120 may include a mass element 121 and an elastic element 122 .
  • the mass element 121 can be arranged on the elastic element 122 .
  • the mass element 121 may be disposed on the upper surface and/or the lower surface of the elastic element 122 along the vibration direction of the mass element 121 .
  • the upper surface of the elastic element 122 along the vibration direction of the mass element 121 may be the surface of the elastic element 122 close to the acoustic transducer 110 along the vibration direction of the mass element 121 .
  • the lower surface of the elastic element 122 along the vibration direction of the mass element 121 may be a surface of the elastic element 122 away from the acoustic transducer 110 along the vibration direction of the mass element 121 .
  • the mass element 121 can also be called a proof mass.
  • the material of mass element 121 may be a material with a density greater than a certain density threshold (eg, 6 g/cm3).
  • the material of the mass element 121 may be metallic or non-metallic.
  • the metal material may include but not limited to steel (eg, stainless steel, carbon steel, etc.), light alloy (eg, aluminum alloy, beryllium copper, magnesium alloy, titanium alloy, etc.), or any combination thereof.
  • Non-metallic materials may include, but are not limited to, polymer materials, glass fibers, carbon fibers, graphite fibers, silicon carbide fibers, and the like.
  • the mass of the polymer material in the mass element 121 may exceed 80%.
  • the polymer material may include but not limited to polyurethane (Poly urethane, PU), polyamide (Poly amide, PA) (commonly known as nylon), polytetrafluoroethylene (Poly tetrafluoroethylene, PTFE), phenolic plastic (Phenol ⁇ Formaldehyde, PF) and so on.
  • the material density of the mass element 121 when the vibration component 120 is applied to a vibration sensor or a sound transmission device, the material density of the mass element 121 has a great influence on the resonant peak and sensitivity of the frequency response curve of the vibration sensor or the sound transmission device. Under the same volume, the greater the density of the mass element 121 is, the greater its mass will be, and the resonant peak of the vibration sensor or sound transmitting device will move to low frequency, so that the low frequency sensitivity of the vibration sensor or sound transmitting device will increase.
  • the material density of the mass element 121 is 6 ⁇ 20 g/cm 3 . In some embodiments, the material density of the mass element 121 is 6 ⁇ 15 g/cm 3 . In some embodiments, the material density of the mass element 121 is 6 ⁇ 10 g/cm 3 . In some embodiments, the material density of the mass element 121 is 6 ⁇ 8 g/cm 3 .
  • the projection of the mass element 121 along the vibration direction of the mass element 121 may be a regular and/or irregular polygon such as a circle, a rectangle, a pentagon, a hexagon, or the like.
  • the thickness of the mass element 121 along its vibration direction may be 6-1400um. In some embodiments, the thickness of the mass element 121 along its vibration direction may be 10-1000 um. In some embodiments, the thickness of the mass element 121 along its vibration direction may be 50-1000 um. In some embodiments, the thickness of the mass element 121 along its vibration direction may be 60-900um. In some embodiments, the thickness of the mass element 121 along its vibration direction may be 70-800um. In some embodiments, the thickness of the mass element 121 along its vibration direction may be 80-700um. In some embodiments, the thickness of the mass element 121 along its vibration direction may be 90-600um. In some embodiments, the thickness of the mass element 121 along its vibration direction may be 100-500 um.
  • the thickness of the mass element 121 along its vibration direction may be 100-400um. In some embodiments, the thickness of the mass element 121 along its vibration direction may be 100-300 um. In some embodiments, the thickness of the mass element 121 along its vibration direction may be 100-200 um. In some embodiments, the thickness of the mass element 121 along its vibration direction may be 100-150 um.
  • the elastic element 122 may also be referred to as an elastic membrane, a vibrating membrane, or the like.
  • the elastic element 122 may be an element capable of elastic deformation under the action of an external load.
  • the elastic element 122 may be a material with good elasticity (that is, easily elastically deformed), so that the vibration component 120 has good vibration response capability.
  • the material of the elastic element 122 may be one or more of polymer materials, rubber materials, and the like.
  • the polymer material can be polycarbonate (Polycarbonate, PC), polyamide (Polyamides, PA), acrylonitrile-butadiene-styrene copolymer (Acrylonitrile Butadiene Styrene, ABS), polystyrene (Polystyrene, PS), high impact polystyrene (High Impact Polystyrene, HIPS), polypropylene (Polypropylene, PP), polyethylene terephthalate (Polyethylene Terephthalate, PET), polyvinyl chloride (Polyvinyl Chloride, PVC ), polyurethane (Polyurethanes, PU), polyethylene (Polyethylene, PE), phenolic resin (Phenol Formaldehyde, PF), urea-formaldehyde resin (Urea-Formaldehyde, UF), melamine-formaldehyde resin (Melamine-Formaldehyde, MF),
  • PET is a kind of thermoplastic polyester, which is well formed, and the diaphragm made of it is often called Mylar (Mylar) film
  • PC has strong impact resistance and is stable in size after molding
  • PAR is an advanced form of PC.
  • Step version mainly for environmental protection considerations; PEI is softer than PET and has higher internal damping; PI is resistant to high temperature, has higher molding temperature and longer processing time; PEN has high strength and is relatively hard, which is characterized by coloring, dyeing, Coating; PU is often used in the damping layer or ring of composite materials, with high elasticity and high internal damping; PEEK is a new type of material, which is resistant to friction and fatigue.
  • composite materials can generally take into account the characteristics of various materials, such as double-layer structure (generally hot-pressed PU, increasing internal resistance), three-layer structure (sandwich structure, intermediate damping layer PU, acrylic glue, UV Adhesive, pressure-sensitive adhesive), five-layer structure (two layers of film are bonded by double-sided adhesive, and the double-sided adhesive has a base layer, usually PET).
  • double-layer structure generally hot-pressed PU, increasing internal resistance
  • three-layer structure sandwich structure, intermediate damping layer PU, acrylic glue, UV Adhesive, pressure-sensitive adhesive
  • five-layer structure two layers of film are bonded by double-sided adhesive, and the double-sided adhesive has a base layer, usually PET).
  • the Shore hardness of the elastic element 122 may be 1-50 HA. In some embodiments, the Shore hardness of the elastic element 122 may be 1-45 HA. In some embodiments, the Shore hardness of the elastic element 122 may be 1-40 HA. In some embodiments, the Shore hardness of the elastic element 122 may be 1-35 HA. In some embodiments, the Shore hardness of the elastic element 122 may be 1-30 HA. In some embodiments, the Shore hardness of the elastic element 122 may be 1-25 HA. In some embodiments, the Shore hardness of the elastic element 122 may be 1-20 HA. In some embodiments, the Shore hardness of the elastic element 122 may be 1-15 HA.
  • the Shore hardness of the elastic element 122 may be 1-10 HA. In some embodiments, the Shore hardness of the elastic element 122 may be 1-5 HA. In some embodiments, the Shore hardness of the elastic element 122 may be 14.9-15.1HA.
  • the projection of the elastic element 122 along the vibration direction of the mass element 121 may be a regular and/or irregular polygon such as a circle, a rectangle, a pentagon, a hexagon, or the like.
  • the structure of the elastic element 122 may be a membrane structure, a plate structure, and the like.
  • the plate-shaped structure may refer to a structure made of flexible or rigid materials that can be used to carry one or more mass elements 121 .
  • the elastic element 122 may include one or more plate-like structures, and each of the one or more plate-like structures is connected to one or more mass elements 121 .
  • a structure formed by a plate-like structure and a mass element 121 physically connected to the plate-like structure may be referred to as a resonant structure.
  • the vibration assembly 120 may further include a support element 123 .
  • the supporting element 123 can be connected with the elastic element 122 for supporting the elastic element 122 .
  • the support element 123 can be physically connected to both sides of the elastic element 122 respectively.
  • the supporting elements 123 may be respectively connected to the upper surface and/or the lower surface of the elastic element 122 .
  • the supporting element 123 can be physically connected to the acoustic transducer 110 , for example, one end of the supporting element 123 is connected to the surface of the elastic element 122 , and the other end of the supporting element 123 is connected to the acoustic transducer 110 .
  • the support element 123, the elastic element 122 and the acoustic transducer 110 may form a first acoustic cavity.
  • the first acoustic cavity is in acoustic communication with the acoustic transducer 110 .
  • the acoustic transducer 110 may be provided with a sound inlet hole (also called a sound pickup hole, a conduction channel), and the sound inlet hole may refer to a hole on the acoustic transducer 110 for receiving the volume change signal of the acoustic cavity.
  • the acoustic cavity may communicate with the sound inlet provided on the acoustic transducer 110 .
  • the acoustic communication between the first acoustic cavity and the acoustic transducer 110 may cause the acoustic transducer 110 to sense a change in the volume of the first acoustic cavity (ie, a change in sound pressure in the first acoustic cavity), and based on the first acoustic A change in the volume of the cavity generates an electrical signal.
  • the material of the supporting element 123 may be one or more of rigid materials, semiconductor materials, organic polymer materials, glue-like materials, and the like.
  • rigid materials may include, but are not limited to, metal materials, alloy materials, and the like.
  • the semiconductor material may include, but is not limited to, one or more of silicon, silicon dioxide, silicon nitride, silicon carbide, and the like.
  • the organic polymer material may include but not limited to one or more of polyimide (PI), Parylene, polydimethylsiloxane (Polydimethylsiloxane, PDMS), hydrogel and the like.
  • the glue material may include but not limited to one or more of gel, silicone, acrylic, polyurethane, rubber, epoxy, hot melt, light curing, and the like.
  • the cross-sectional shape of the supporting element 123 along the vibration direction of the mass element 121 may be a regular and/or irregular geometric shape such as a rectangle, a circle, an ellipse, and a pentagon.
  • the supporting element 123 is not a necessary component of the vibrating assembly 120 , that is, the vibrating assembly 120 may not include the supporting element 123 .
  • the vibration sensor 100 may further include a housing 130 .
  • the housing 130 may be a regular or irregular three-dimensional structure with a cavity (ie, a hollow portion) inside.
  • the housing 130 may be a hollow frame structure.
  • the hollow frame structure may include, but not limited to, regular shapes such as rectangular frames, circular frames, and regular polygonal frames, as well as any irregular shapes.
  • the housing 130 can be made of metal (for example, stainless steel, copper, etc.), plastic (for example, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS) And acrylonitrile-butadiene-styrene copolymer (ABS), etc.), composite materials (such as metal matrix composites or non-metal matrix composites), etc.
  • the vibrating component 120 and/or the acoustic transducer 110 may be located in a cavity formed by the housing 130 or at least partially suspended in the cavity of the housing 130 .
  • the housing 130 is not an essential component of the vibration sensor 100 , that is, the vibration sensor 100 may not include the housing 130 .
  • the housing 130 is physically connected to the acoustic transducer 110, at least part of the housing 130 and the acoustic transducer 110 form an acoustic cavity, and the vibrating assembly 120 is located in the space formed by the housing 130 and the acoustic transducer 110. in the acoustic cavity.
  • the vibrating assembly 120 is located in the cavity formed by the housing 130 or is at least partially suspended in the cavity of the housing 130, and is directly or indirectly connected to the housing 130, and can divide the acoustic cavity into a first An acoustic cavity and a plurality of acoustic cavities of the second acoustic cavity.
  • the vibration component 120 when the vibration component 120 includes the support element 123, one end of the support element 123 is connected to the elastic element 122, and the other end of the support element 123 is connected to the acoustic transducer 110, so that the support element 123, the elastic element 122 and the acoustic transducer A first acoustic cavity may be formed between the transducers 110 , and a second acoustic cavity may be formed between the supporting element 123 , the elastic element 122 and the housing 130 .
  • the peripheral side of the elastic element 122 is connected to the acoustic transducer 110, so that a first acoustic cavity is formed between the elastic element 122 and the acoustic transducer 110, and the acoustic cavity The remainder of the cavity forms a second acoustic cavity.
  • the peripheral side of the elastic element 122 is connected to the housing 130, so that a first acoustic cavity is formed between the elastic element 122, the acoustic transducer 110 and the housing 130 , the rest of the acoustic cavity forms the second acoustic cavity.
  • the buffer 140 can be used to limit the vibration amplitude of the vibration assembly 120 .
  • the buffer member 140 may be compressed by the vibration assembly 120 to provide a damping force for the vibration assembly 120 .
  • the buffer member 140 may be disposed on the side wall perpendicular to the vibration direction of the vibration component 120 in the first acoustic cavity and/or the second acoustic cavity, and the buffer member 140 may provide vibration components for the vibration component 120 along the vibration direction of the vibration component. The buffer distance of the vibration direction of 120.
  • the buffering distance refers to the moving distance of the vibrating assembly 120 (such as the mass element 121 or the elastic element 122 ) along the vibration direction before the buffering member 140 provides damping force for the movement of the vibrating assembly 120 .
  • the buffer distance may be greater than or equal to 0 and less than the maximum vibration amplitude of the vibration component 120 .
  • the shock absorber 140 is set in the vibration sensor 100 to limit the vibration amplitude of the vibration component 120, thereby preventing the vibration component 120 from colliding with other components (such as the acoustic transducer 110, the housing 130) in the vibration sensor 100 during the vibration process. ) collides, thereby realizing the protection of the vibration component 120 (especially the elastic element 122 ), and improving the reliability of the vibration sensor 100 .
  • the material of the buffer member 140 may be one or more of polymer materials, rubber materials, and the like.
  • the polymer material may include but not limited to polyimide (PI), Parylene (Parylene), polydimethylsiloxane (Polydimethylsiloxane, PDMS), hydrogel, etc. or more.
  • the glue material may include but not limited to one or more of gel, silicone, acrylic, polyurethane, rubber, epoxy, hot melt, light curing, and the like.
  • the modulus of elasticity of the buffer member 140 may be 1 MPa ⁇ 1000 MPa. In some embodiments, the modulus of elasticity of the buffer member 140 may be 1 MPa ⁇ 800 MPa.
  • the modulus of elasticity of the buffer member 140 may be 5 MPa ⁇ 800 MPa. In some embodiments, the modulus of elasticity of the buffer member 140 may be 5 MPa ⁇ 600 MPa. In some embodiments, the modulus of elasticity of the buffer member 140 may be 10MPa-600MPa. In some embodiments, the modulus of elasticity of the buffer member 140 may be 30 MPa ⁇ 500 MPa. In some embodiments, the modulus of elasticity of the buffer member 140 may be 50 MPa ⁇ 500 MPa. In some embodiments, the modulus of elasticity of the buffer member 140 may be 80MPa ⁇ 500MPa. In some embodiments, the modulus of elasticity of the buffer member 140 may be 80MPa ⁇ 300MPa.
  • the buffer 140 may also include a magnetic buffer that can generate a magnetic field.
  • Magnetic bumpers may include, but are not limited to, coils, magnets, and the like.
  • the magnetic field generated by the magnetic buffer is consistent with the vibration direction of the vibration component 120 .
  • the vibrating component 120 may include a magnetic or magnetizable component, and the magnetic or magnetizable component may be placed in the magnetic field generated by the magnetic buffer.
  • mass element 121 may include a magnetic or magnetizable member.
  • mass element 121 may comprise a ferromagnetic material or a magnet.
  • the mass element 121 attracts or repels the magnetic buffer, so that the magnetic buffer provides damping force for the vibration assembly 120 .
  • the stress on the mass element 121 during vibration can be changed.
  • the intensity of the magnetic field generated by the magnetic buffer is relatively large, the force on the mass element 121 is relatively large, so that the vibration component 120 is not easy to vibrate, and the sensitivity of the vibration sensor 100 is low; when the magnetic field generated by the magnetic buffer is strong
  • the strength is small, the force on the mass element 121 is small, so that the vibration component 120 is easy to vibrate, and the sensitivity of the vibration sensor 100 is high.
  • Fig. 2 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 3 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 4 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • the vibration sensor 200 may include an acoustic transducer 210 , a vibration component 220 , a housing 230 and a buffer 240 .
  • the acoustic transducer 210 and the processor 270 are respectively connected to the upper surface of the substrate 211 of the acoustic transducer 210, the substrate 211 is located in the cavity inside the housing 230, and the housing 230 is opposite to the acoustic transducer.
  • the processor 270 , the substrate 211 and the circuits and other components arranged thereon are sealed, and the substrate 211 divides the cavity inside the casing 230 into two chambers arranged up and down.
  • the vibrating component 220 is located in a cavity corresponding to the lower surface of the substrate 211 .
  • the acoustic transducer 210 may also have a housing, which is connected to the substrate 211 to package the internal components of the acoustic transducer 210 .
  • the housing 230 of the vibration sensor 200 can be a non-closed half-shell structure, the substrate 211 of the acoustic transducer 210 can be connected with the housing 230 to form a closed cavity, and the vibration component 220 is arranged in the cavity. cavity.
  • the vibration assembly 220 may include an elastic element 222 and a mass element 221 .
  • the elastic element 222 may be connected to the casing 230 through its peripheral side, for example, the elastic element 222 may be connected to the inner wall of the casing 230 by means of gluing, clamping or the like.
  • the mass element 221 is arranged on the elastic element 222 . Specifically, the mass element 221 may be disposed on the upper surface or the lower surface of the elastic element 222 .
  • the upper surface of the elastic element 222 may refer to the side of the elastic element 222 facing the substrate 211
  • the lower surface of the elastic element 222 may refer to the side of the elastic element 222 facing away from the substrate 211 .
  • a first acoustic cavity 250 may be formed between the elastic element 222 and the substrate 211 .
  • the upper surface of the elastic element 222 , the substrate 211 and the housing 230 may form a first acoustic cavity 250
  • the lower surface of the elastic element 222 and the housing 230 may form a second acoustic cavity 260 .
  • the vibration sensor 200 (for example, the housing 230 of the vibration sensor 200) vibrated in response to an external sound signal
  • the The elastic element 222 and the mass element 221 will move relative to the casing 230, and the elastic element 222 and the mass element 221 will cause the volume of the first acoustic cavity 250 to change during the vibration process relative to the casing 230, and the acoustic transducer 210 may convert an external sound signal into an electrical signal based on a volume change within the first acoustic cavity 250 .
  • the vibration of the elastic element 222 and the mass element 221 will cause air vibration in the first acoustic cavity 250, and the air vibration can act on the acoustic transducer 210 through the sound inlet hole 2111 provided on the substrate 211, and the acoustic transducer
  • the device 210 can convert air vibration into an electrical signal or generate an electrical signal based on the volume change of the first acoustic cavity 250 , and then process the electrical signal through the processor 270 .
  • the vibration sensor 200 can obtain an ideal frequency response by adjusting the mechanical parameters (for example, material, size, shape, etc.) of the mass element 221, so that the resonance frequency, sensitivity and The reliability of the vibration sensor 200 is ensured.
  • the mass element 221 may be in a regular or irregular shape such as a cuboid, cylinder, sphere, ellipsoid, or triangle.
  • the thickness of the mass element 221 may be within a certain range. In some embodiments, the thickness of the mass element 221 is 1 ⁇ m ⁇ 5000 ⁇ m. In some embodiments, the thickness of the mass element 221 is 1 ⁇ m ⁇ 3000 ⁇ m.
  • the mass element 221 has a thickness of 1 ⁇ m ⁇ 1000 ⁇ m. In some embodiments, the thickness of the mass element 221 is 1 ⁇ m ⁇ 500 ⁇ m. In some embodiments, the mass element 221 has a thickness of 1 ⁇ m ⁇ 200 ⁇ m. In some embodiments, the mass element 221 has a thickness of 1 ⁇ m ⁇ 50 ⁇ m.
  • the thickness of the mass element 221 has a great influence on the resonant peak and the sensitivity of the frequency response curve of the vibration sensor 200 . With the same area, the thicker the mass element 221 is, the greater its total mass will be, and the resonant peak of the vibration sensor 200 will move forward (which can also be understood as a decrease in resonant frequency), and the sensitivity will increase.
  • the area of the mass element 221 is within a certain range.
  • the mass element 221 has an area of 0.1 mm 2 to 100 mm 2 . In some embodiments, the mass element 221 has an area of 0.1 mm 2 to 50 mm 2 .
  • the mass element 221 has an area of 0.1 mm 2 to 10 mm 2 . In some embodiments, the mass element 221 has an area of 0.1 mm 2 -6 mm 2 . In some embodiments, the mass element 221 has an area of 0.1 mm 2 -3 mm 2 . In some embodiments, the mass element 221 has an area of 0.1 mm 2 -1 mm 2 .
  • the mass element 221 may contain polymer materials.
  • the polymer material may include an elastic polymer material, and the elastic properties of the elastic polymer material can absorb external impact loads, thereby effectively reducing the stress concentration at the joint between the elastic element 222 and the housing 230 to reduce The possibility of damage to the vibration sensor 200 due to external impact.
  • the mass of polymer material in mass element 221 may exceed 85%. In some embodiments, the mass of polymer material in mass element 221 may exceed 80%. In some embodiments, the mass of polymer material in mass element 221 may exceed 75%. In some embodiments, the mass of polymer material in mass element 221 may exceed 70%. In some embodiments, the mass of polymer material in mass element 221 may exceed 60%. In some embodiments, the mass element 221 and the elastic element 222 can be made of the same polymer material.
  • the stiffness of the elastic element 222 can be adjusted by adjusting the mechanical parameters of the elastic element 222 (for example, Young's modulus, tensile strength, elongation at break, and hardness shore A), thereby adjusting the vibration sensor 200. Resonant frequency and sensitivity.
  • the sensitivity of the vibration sensor 200 in the target frequency range can be improved by adjusting the Young's modulus parameter of the elastic element 222 .
  • the greater the Young's modulus of the elastic element 222 the greater the stiffness, and the higher the sensitivity of the vibration sensor 200 .
  • the Young's modulus of the elastic element 222 may be 1 MPa ⁇ 10 GPa.
  • the Young's modulus of the elastic element 222 may be 100 MPa ⁇ 8 GPa. In some embodiments, the Young's modulus of the elastic element 222 may be 1GPa ⁇ 8GPa. In some embodiments, the Young's modulus of the elastic element 222 may be 2GPa ⁇ 5GPa. It should be noted that the target frequency range can be adapted and adjusted according to different application scenarios of the vibration sensor 200 . For example, when the vibration sensor 200 is applied to pick up the sound signal when the user speaks, the specific frequency range may be the human voice frequency range. For another example, when the vibration sensor 200 is applied to the sound signal of the external environment, the specific frequency range may be 20 Hz-10000 Hz.
  • the sensitivity of the vibration sensor 200 in the target frequency range can be improved by adjusting the tensile strength of the elastic element 222 .
  • the tensile strength of the elastic element 222 may be the maximum tensile stress that the elastic element 222 can withstand when a necking phenomenon occurs (ie, concentrated deformation occurs).
  • the tensile strength of the elastic element 222 may be 0.5 MPa ⁇ 100 MPa.
  • the tensile strength of the elastic element 222 may be 5 MPa ⁇ 90 MPa. In some embodiments, the tensile strength of the elastic element 222 may be 10 MPa ⁇ 80 MPa. In some embodiments, the tensile strength of the elastic element 222 may be 20 MPa ⁇ 70 MPa. In some embodiments, the tensile strength of the elastic element 222 may be 30 MPa ⁇ 60 MPa.
  • the sensitivity of the vibration sensor 200 in the target frequency range can be improved by adjusting the elongation at break of the elastic element 222 .
  • the elongation at break of the elastic element 222 refers to the ratio of the elongation length before and after stretching to the length before stretching when the material of the elastic element 222 is broken by an external force.
  • the greater the elongation at break of the elastic element 222 the higher the sensitivity and the better the stability of the vibration sensor 200 in the target frequency range (eg, human voice frequency range).
  • the elongation at break of the elastic element 222 may range from 10% to 600%.
  • the elongation at break of the elastic element 222 may range from 20% to 500%. In some embodiments, the elongation at break of the elastic element 222 may range from 50% to 400%. In some embodiments, the elongation at break of the elastic element 222 may be 80%-200%.
  • the sensitivity of the vibration sensor 200 in the target frequency range can be improved by adjusting the hardness of the elastic element 222 .
  • the hardness of the elastic element 222 may refer to the Shore hardness (ie hardness Shore A) of the elastic element 222.
  • the Shore A hardness of the elastic member 222 is less than 200.
  • the Shore A hardness of the elastic member 222 is less than 150.
  • the Shore A hardness of the elastic member 222 is less than 100.
  • the Shore A hardness of the elastic member 222 is less than 60.
  • the Shore A hardness of the elastic member 222 is less than 30.
  • the Shore A hardness of the elastic member 222 is less than 10.
  • the mass element 221 and the elastic element 222 may be made of the same material. In some embodiments, the mass element 221 and the elastic element 222 may be partly made of the same material. In some embodiments, the materials of the mass element 221 and the elastic element 222 may be different.
  • the buffer member 240 may be disposed on a side wall of the first acoustic cavity 250 perpendicular to the vibration direction of the vibration component 220 .
  • the sidewall of the first acoustic cavity 250 may refer to the upper surface of the elastic element 222 along the vibration direction of the vibration assembly 220 and/or the lower surface of the substrate 211 of the acoustic transducer 210 .
  • the buffer member 240 can provide the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220 . In some embodiments, the buffer distance may be greater than or equal to 0 and less than the maximum vibration amplitude of the vibration component 220 .
  • the buffer distance may refer to the distance between the buffer member 240 and the other side wall of the first acoustic cavity 250 (ie, the side wall where the buffer member 240 is not provided).
  • the buffer member 240 is connected with the base plate 211, and the buffer distance provided by the buffer member 240 for the vibration assembly 220 at this time can be the lower surface and the elasticity of the buffer member 240 along the vibration direction of the vibration assembly 220. The distance between the upper surfaces of the elements 222 along the vibration direction of the vibration assembly 220 .
  • the vibration of the vibration component 220 when the vibration sensor 200 is working, if the buffer distance is equal to 0, the vibration of the vibration component 220 will directly squeeze the buffer member 240; if the buffer distance is greater than 0 and less than the maximum vibration amplitude of the vibration component 220, then The vibration component 220 vibrates to a certain amplitude (that is, the buffer distance, at this time, the elastic element 222 is in contact with the buffer component 240) to squeeze the buffer component 240, thereby limiting the vibration amplitude of the vibration component 220, thereby preventing the vibration component 220 from colliding with the substrate 211 , to improve the reliability of the vibration sensor 200 .
  • a certain amplitude that is, the buffer distance, at this time, the elastic element 222 is in contact with the buffer component 240
  • the vibration resistance can be achieved.
  • the sensitivity and working bandwidth of the sensor 200 are adjusted to improve the applicability of the vibration sensor 200 .
  • the structure of the buffer member 240 may be an integral structure, for example, the buffer member 240 is arranged in a block shape or a sheet shape.
  • the buffer member 240 may include a plurality of buffer points, a plurality of buffer particles, a plurality of buffer columns, etc. distributed at intervals on the elastic element 222 or the substrate 211 of the acoustic transducer 210 .
  • Multiple buffer points, multiple buffer particles, and multiple buffer columns can be arranged regularly (such as uniformly arranged) or irregularly (such as unevenly arranged).
  • the position of the buffer member 240 is not limited to the side wall perpendicular to the vibration direction of the vibration assembly 220 in the above-mentioned first acoustic cavity 250 (for example, the upper surface of the elastic element 222 along the vibration direction of the vibration assembly 220, the acoustic On the substrate 211) of the transducer 210, it can also be arranged at other positions of the vibration sensor 200.
  • the buffer member 240 may be disposed on the bottom wall 231 of the casing 230 perpendicular to the vibration direction of the vibrating assembly 220 in the second acoustic cavity 260 to prevent the mass element 221 from colliding with the casing 230 during vibration.
  • the buffer member 240 can be used to limit the vibration amplitude of the vibration component 220 .
  • the shock absorber 240 is set in the vibration sensor 200, which can limit the vibration amplitude of the vibration component 220, thereby preventing the vibration component 220 from colliding with other components (such as the acoustic transducer) in the vibration sensor 200 during the vibration process.
  • the housing 230 collides, thereby realizing the protection of the vibration component 220 (especially the elastic element 222), and improving the reliability of the vibration sensor 200.
  • the buffer 240 when the buffer 240 is disposed on the surface of the vibration component 220 along the vibration direction of the vibration component 220, the buffer 240 can also adjust the quality and damping of the vibration component 220, thereby adjusting the frequency bandwidth and sensitivity of the vibration sensor 200.
  • the buffer member 240 may be a composite structure composed of multiple structures.
  • the buffer member 240 may include a first buffer portion 241 and a second buffer portion 242, and the first buffer portion 241 and the second buffer portion 242 are respectively disposed on both sides of the elastic element 222 along the vibration direction of the vibration assembly 220 .
  • the first buffer portion 241 is connected to the housing 230 or the elastic element 222 (or the mass element 221 ).
  • the second buffer part 242 is connected with the acoustic transducer 210 or the elastic element 222 (or the mass element 221 ).
  • the first buffer portion 241 can provide the vibration component 220 with a first buffer distance along the vibration direction of the vibration component 220
  • the second buffer portion 242 can provide the vibration component 220 with a first buffer distance along the vibration direction of the vibration component 220 .
  • Buffer distance Taking the connection between the first buffer portion 241 and the bottom wall 231 of the housing 230 and the connection between the second buffer portion 242 and the substrate 211 in FIG. The distance between the upper surface and the lower surface of the quality element 221 along the vibration direction of the vibration assembly 220; the second buffer distance can be the lower surface of the second buffer portion 242 along the vibration direction of the vibration assembly 220 and the elastic element 222 along the vibration assembly 220 The distance between the upper surface of the vibration direction.
  • the first buffer distance and/or the second buffer distance may be greater than or equal to 0 and smaller than the maximum vibration amplitude of the vibration component 220 .
  • the first buffer distance and the second buffer distance may be the same.
  • the same first buffer distance and the second buffer distance can ensure that the vibration amplitude of the elastic element 222 is adjusted without damaging the vibration waveform of the elastic element 222. limit.
  • the first buffer distance may be different from the second buffer distance, for example, the first buffer distance may be slightly smaller than the second buffer distance.
  • the first buffer part 241 may include one or more first buffer blocks, and the one or more first buffer blocks may be arranged on the elastic element 222 (or mass element 221 ) at intervals, or connected to the elastic element 222 On the bottom wall 231 of the opposite housing 230 (as shown in FIG. 3 ), the buffer block is facing the elastic element 222 .
  • the second buffer part 242 may include one or more second buffer blocks, and one or more second buffer blocks may be arranged at intervals on the elastic element 222 (or mass element 221 ), or the acoustic transducer opposite to the elastic element 222 210 on the base plate 211 (as shown in FIG. 3 ), so that the buffer block is facing the elastic element 222 .
  • one or more first buffer blocks and one or more second buffer blocks can also be arranged alternately on both sides of the elastic element 222, that is, each first buffer block is in the vibration direction of the vibration assembly 220 Opposite to the gaps between the plurality of second buffer blocks, each second buffer block faces the gaps between the plurality of first buffer blocks in the vibration direction of the vibrating assembly 220 .
  • One or more first buffer blocks and second buffer blocks arranged alternately can provide support or limit for the elastic element 222 at different positions, preventing the elastic element 222 from vibrating too much.
  • the buffer member 240 can form protection on both sides of the vibration direction of the vibration component 220, and one or more buffer blocks (for example, the first Buffer block, the second buffer block) can realize protective effect in the vibration process of elastic element 222, make elastic element 222 have more buffer fulcrums, limit the vibration amplitude of elastic element 222, thereby avoid elastic element 222 and vibration sensor 200
  • Other components such as the acoustic transducer 210 and the housing 230 ) collide, improving the reliability of the vibration sensor 200 .
  • a buffer 240 may be connected between the elastic element 222 and the acoustic transducer 210 (and/or the housing 230 ).
  • the buffer member 240 may include a first buffer portion 241 and a second buffer portion 242 .
  • the first buffer portion 241 and the second buffer portion 242 are respectively disposed on two sides of the elastic element 222 along the vibration direction of the vibration assembly 220 .
  • two ends of the first buffer portion 241 along the vibration direction of the vibration assembly 220 are respectively connected to the bottom wall 231 of the housing 230 and the elastic element 222 .
  • Two ends of the second buffer portion 242 along the vibration direction of the vibration assembly 220 are respectively connected to the substrate 211 and the elastic element 222 of the acoustic transducer 210 .
  • both ends of the first buffer part 241 and the second buffer part 242 are fixed, which can effectively ensure the stability of the first buffer part 241 during the vibration process of the elastic element 222, and can also
  • the elastic element 222 plays a role of guiding and limiting during the vibration process, so as to ensure that the elastic element 222 is relatively stable in the vibration process.
  • a plurality of buffer members 240 may be provided, and the plurality of buffer members 240 may be distributed at intervals along the circumferential direction of the elastic element 222 .
  • the number of the first buffer portion 241 (and/or the second buffer portion 242) located on the same side of the elastic element 222 can be multiple, and the multiple first buffer portions 241 (and/or the second buffer portion portions 242 ) may be distributed at intervals along the circumferential direction of the elastic element 222 , and a plurality of first buffer portions 241 (and/or second buffer portions 242 ) are all connected to the elastic element 222 .
  • the buffer member 240 when the buffer member 240 is connected between the elastic element 222 and the acoustic transducer 210 (and/or the housing 230), for example, the buffer member 240 may be a buffer spring, and the elastic force direction of the buffer spring is along The vibration direction of the vibration component 220 is set.
  • the buffer member 240 can protect one or both sides of the elastic element 222, by limiting the vibration amplitude of the elastic element 222, thereby preventing the elastic element 222 from being damaged by the vibration amplitude. Too large will cause damage, thereby improving the reliability of the vibration sensor 200 .
  • the buffer member 240 is connected to the vibrating component 220 (elastic element 222 ), which can improve the stability of the buffer member 240 and the elastic element 222 during vibration.
  • Fig. 5 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 6 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 7 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • the structure of the vibration sensor 500 shown in FIGS. 5-7 is substantially the same as that of the vibration sensor 200 shown in FIGS. 2-4 , the difference lies in the difference of the elastic elements.
  • the elastic element 522 is a multilayer composite elastic element, which includes a first elastic element 5221 and a second elastic element 5222 .
  • the first elastic element 5221 and the second elastic element 5222 can be made of the same or different materials.
  • the stiffness of the first elastic element 5221 and the second elastic element 5222 are different, for example, the stiffness of the first elastic element 5221 may be greater or smaller than the stiffness of the second elastic element 5222 .
  • the second elastic element 5222 can provide the required damping for the vibration component 220, while the first elastic element 5221 has a higher stiffness , it can ensure that the elastic element 522 has a high strength, thereby ensuring the reliability of the vibration component 220 and even the entire vibration sensor 500 .
  • the number of elastic elements included in the elastic element 522 in FIGS. 5-7 and related descriptions is only for exemplary description, and does not limit the application to the scope of the illustrated embodiments. In some embodiments, the number of elastic elements in this embodiment may also be more than two, for example, the number of elastic elements may be three layers, four layers, five layers or more.
  • the elastic element may include a first elastic element, a second elastic element and a third elastic element connected sequentially from top to bottom, wherein the material, mechanical parameters, and dimensions of the first elastic element may be the same as those of the third elastic element The materials, mechanical parameters, and dimensions of the second elastic element may be different from those of the first elastic element or the third elastic element, their mechanical parameters, and dimensions.
  • the stiffness of the first elastic element or the third elastic element is greater than the stiffness of the second elastic element.
  • the mechanical parameters of the elastic elements can be adjusted by adjusting the material, mechanical parameters, size, etc. of the first elastic element, the second elastic element and/or the third elastic element, so as to ensure the stability of the vibration sensor 500 .
  • the elastic element 522 As a multi-layer elastic element, it is convenient to realize the adjustment of the stiffness of the elastic element 522, for example, by increasing or decreasing the number of elastic elements (for example, the first elastic element 5221 and/or the second elastic element 5222), To realize the adjustment of the stiffness and damping of the vibration component 220, so that the vibration sensor 500 can generate a new resonance peak in the desired frequency band (for example, near the target frequency band), and improve the sensitivity of the vibration sensor 500 in a specific frequency range.
  • two adjacent elastic elements (for example, the first elastic element 5221 and the second elastic element 5222 ) in the multilayer composite elastic element can be glued to form the elastic element 522 .
  • the mechanical parameters for example, material, Young's modulus, tensile strength, , elongation at break and hardness shore A
  • the stiffness of the elastic element 522 so that the vibration sensor 500 can obtain a more ideal frequency response, so that the resonance frequency and sensitivity of the vibration sensor 500 can be adjusted.
  • the tensile strength of at least one layer of elastic elements in the elastic element 522 can be adjusted so that the overall tensile strength of the elastic element 522 is within a certain range, so as to improve the vibration performance of the vibrating component 220 within the required frequency range. Sensitivity, and then improve the sensitivity of the vibration sensor 500.
  • the overall tensile strength of the elastic element 522 is 0.5MPa ⁇ 100MPa.
  • the overall tensile strength of the elastic element 522 is 5 MPa ⁇ 90 MPa. In some embodiments, by adjusting the material or size of the first elastic element 5221 and/or the second elastic element 5222 of the elastic element 522, the overall tensile strength of the elastic element 522 is 10MPa ⁇ 80MPa. In some embodiments, by adjusting the material or size of the first elastic element 5221 and/or the second elastic element 5222 of the elastic element 522 , the overall tensile strength of the elastic element 522 is 20MPa ⁇ 70MPa. In some embodiments, by adjusting the material, thickness or size of the first elastic element 5221 and/or the second elastic element 5222 of the elastic element 522, the overall tensile strength of the elastic element 522 is 30 MPa-60 MPa.
  • the elongation at break of at least one layer of elastic elements in the elastic element 522 can be adjusted so that the overall elongation at break of the elastic element 522 is within a certain range, so that the frequency range of the vibration sensor 500 can be improved. within the sensitivity. In some embodiments, the greater the elongation at break of at least one layer of the elastic elements 522 , the higher the sensitivity and the better the stability of the vibration sensor 500 . In some embodiments, the overall elongation at break of the elastic element 522 may be 10%-600%. In some embodiments, the overall elongation at break of the elastic element 522 may be 20%-500%. In some embodiments, the overall elongation at break of the elastic element 522 may be 50%-400%. In some embodiments, the overall elongation at break of the elastic element 522 may be 80%-200%.
  • the sensitivity of the vibration sensor 500 in the required frequency range can be improved by adjusting the hardness of at least one layer of elastic elements in the elastic elements 522 so that the overall hardness of the elastic elements 522 is within a certain range. In some embodiments, the lower the hardness of at least one layer of elastic elements in the elastic elements 522 is, the higher the sensitivity of the vibration sensor 500 is. In some embodiments, the overall Shore A hardness of the elastic member 522 is less than 200. In some embodiments, the overall Shore A hardness of the elastic member 522 is less than 150. In some embodiments, the overall Shore A hardness of the elastic member 522 is less than 100. In some embodiments, the overall Shore A hardness of the elastic member 522 is less than 60. In some embodiments, the overall Shore A hardness of the elastic member 522 is less than 30. In some embodiments, the overall Shore A hardness of the elastic member 522 is less than 10.
  • the sensitivity of the vibration sensor 500 can also be adjusted by adjusting the mechanical parameters (eg, material, size, shape, etc.) of the mass element 221 .
  • the mechanical parameters eg, material, size, shape, etc.
  • the parameters of the elastic element for example, Young's modulus, tensile strength, hardness, elongation at break, etc.
  • the electrical signal of the vibration sensor can be increased, thereby improving the acoustic-electric conversion effect of the vibration sensor.
  • the contact area between the mass element and the elastic element can be reduced to improve the efficiency of the elastic deformation of the elastic element, thereby increasing the electrical signal output by the sensing device.
  • the buffer member 240 can be used to limit the vibration amplitude of the vibration component 220 .
  • the vibration sensor 200 is provided with a buffer 240, the buffer 240 provides the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220, to limit the vibration amplitude of the vibration component 220, thereby preventing the vibration component 220 from vibrating.
  • it collides with other components in the vibration sensor 500 (such as the acoustic transducer 210 and the housing 230 ), so as to protect the vibration component 220 and improve the reliability of the vibration sensor 500 .
  • the structure and arrangement of the buffer member 240 are similar to those in FIG. 2 .
  • the buffer member 240 may be disposed on a side wall of the first acoustic cavity 250 perpendicular to the vibration direction of the vibration component 220 .
  • the buffer member 240 can provide the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220 .
  • the buffer member 240 is connected to the base plate 211.
  • the buffer distance can be the lower surface of the buffer member 240 along the vibration direction of the vibration assembly 220 and the distance between the first elastic element 5221 along the vibration assembly 220. The distance between the upper surfaces in the direction of vibration.
  • the buffer member 240 may include a first buffer portion 241 and a second buffer portion 242, and the first buffer portion 241 and the second buffer portion 242 are respectively disposed on two sides of the elastic element 522 along the vibration direction of the vibration assembly 220.
  • the first buffer portion 241 is connected to the housing 230 or the elastic element 522 .
  • the second buffer part 242 is connected with the acoustic transducer 210 or the elastic element 522 .
  • the first buffer portion 241 can provide the vibration component 220 with a first buffer distance along the vibration direction of the vibration component 220
  • the second buffer portion 242 can provide the vibration component 220 with a first buffer distance along the vibration direction of the vibration component 220 .
  • the first buffer distance can be the distance between the upper surface of the first buffer portion 241 along the vibration direction of the vibration assembly 220 and the lower surface of the mass element 221 along the vibration direction of the vibration assembly 220
  • the second buffer distance It may be the distance between the lower surface of the second buffer portion 242 along the vibration direction of the vibration assembly 220 and the upper surface of the first elastic element 5221 along the vibration direction of the vibration assembly 220 .
  • the buffer 240 may be connected between the elastic element 522 and the acoustic transducer 210 (and/or the housing 230).
  • the buffer 240 may include a first buffer part 241 and a second buffer part 242 .
  • the first buffer portion 241 and the second buffer portion 242 are respectively disposed on two sides of the elastic element 522 along the vibration direction of the vibration assembly 220 .
  • two ends of the first buffer portion 241 along the vibration direction of the vibration assembly 220 are respectively connected to the bottom wall 231 of the housing 230 and the second elastic element 5222 .
  • Two ends of the second buffer portion 242 along the vibration direction of the vibration assembly 220 are respectively connected to the substrate 211 of the acoustic transducer 210 and the first elastic element 5221 .
  • Fig. 8 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 9 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 10 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • the structure of the vibration sensor 800 shown in FIGS. 8-10 is substantially the same as the structure of the vibration sensor 200 shown in FIGS. 2-4 , the difference lies in the difference of the mass elements.
  • the mass element 821 can be an ellipsoid, and its contact area with the elastic element 222 is smaller than its projected area on the elastic element 222, which can ensure that the mass element 821 has the same volume or mass.
  • the mass element 821 and the elastic element have a small contact area.
  • the contact area between the elastic element 222 and the mass element 821 can be approximately regarded as not deformed.
  • the area where the elastic element 222 does not contact the mass element 821 can be increased, thereby increasing the area where the elastic element 222 deforms during the vibration process (that is, the elastic element 222 does not area in contact with the mass element 821), thereby increasing the amount of compressed air in the first acoustic cavity 250, so that the acoustic transducer 210 can output a larger electrical signal, thereby improving the acoustic-electric conversion of the vibration sensor 800 Effect.
  • the mass element 821 can also be a trapezoidal body, wherein the side of the trapezoidal body with a smaller area is connected to the elastic element 222, so that the contact area between the mass element 821 and the elastic element can be smaller than that of the mass element 821 when it is elastic.
  • the mass element 821 can also be an arched structure.
  • the two arched feet of the arched structure are connected to the upper surface or the lower surface of the elastic element 222, wherein the two arched
  • the contact area between the foot and the elastic element 222 is smaller than the projected area of the arch waist on the elastic element 222 , that is, the contact area between the mass element 821 of the arched structure and the elastic element 222 is smaller than its projected area on the elastic element 222 .
  • any regular or irregular shape or structure that can meet the requirement that the contact area between the mass element 821 and the elastic element is smaller than the projected area of the mass element 821 on the elastic element 222 belongs to the variation of the embodiment of this specification. Within the scope, this manual will not list them one by one.
  • mass element 821 may be a solid structure.
  • the mass element 821 may be a regular or irregular structure such as a solid cylinder, a solid cuboid, a solid ellipsoid, or a solid triangle.
  • the mass element 821 in order to reduce the contact area between the mass element 821 and the elastic element 222 and improve the sensitivity of the vibration sensor 800 in a specific frequency range to ensure that the mass element 821 has a constant mass, the mass element 821 can also be partially hollowed out. structure.
  • the mass element 821 is an annular cylinder, a rectangular cylindrical structure, and the like.
  • the mass element 821 may include multiple sub-mass blocks separated from each other, and the multiple sub-mass elements are located in different regions of the elastic element 222 .
  • the mass element may include two or more sub-mass elements separated from each other, for example, 3, 4, 5 and so on.
  • the mass, size, shape, material, etc. of the multiple separated sub-mass elements may be the same or different.
  • a plurality of separated sub-mass elements may be distributed on the elastic element 222 at equal intervals, at uneven intervals, symmetrically or asymmetrically.
  • a plurality of mutually separated sub-mass elements may be disposed on the upper surface and/or the lower surface of the elastic element 222 .
  • the deformation efficiency of the elastic element 222 can be improved to improve the vibration sensor 800.
  • sensitivity and can also improve the reliability of the vibration component 220 and the vibration sensor 800 .
  • the quality, size, shape, material and other parameters of the multiple mass elements can be adjusted so that the multiple sub-mass elements have different frequency responses, thereby further improving the sensitivity of the vibration sensor 800 in different frequency ranges.
  • the buffer member 240 can be used to limit the vibration amplitude of the vibrating assembly 220 .
  • the vibration sensor 800 is provided with a buffer 240, and the buffer 240 limits the vibration amplitude of the vibration component 220 by providing a buffer distance for the vibration component 220, thereby preventing the vibration component 220 from colliding with the vibration sensor 800 during the vibration process. Collisions of other components (such as the acoustic transducer 210 and the casing 230 ) can further protect the vibration component 220 and improve the reliability of the vibration sensor 800 .
  • the structure and arrangement of the buffer member 240 are similar to those in FIG. 2 .
  • the buffer member 240 may be disposed on a side wall of the first acoustic cavity 250 perpendicular to the vibration direction of the vibration component 220 .
  • the buffer member 240 can provide the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220 .
  • the buffer member 240 may include a first buffer portion 241 and a second buffer portion 242 , and the first buffer portion 241 and the second buffer portion 242 are respectively disposed on two sides of the elastic element 522 along the vibration direction of the vibration assembly 220 .
  • the difference is that when the mass element 821 is an ellipsoid, the distances between different positions on the lower surface of the mass element 821 and the upper surface of the first buffer portion 241 are different.
  • the first buffer distance provided by the first buffer portion 241 for the vibration assembly 220 may be the distance between the upper surface of the first buffer portion 241 along the vibration direction of the vibration assembly 220 and the lower surface of the mass element 221 along the vibration direction of the vibration assembly 220 the shortest distance between.
  • the buffer 240 may include a first buffer part 241 and a second buffer part 242 .
  • the first buffer portion 241 and the second buffer portion 242 are respectively disposed on two sides of the elastic element 522 along the vibration direction of the vibration assembly 220 .
  • Fig. 11 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 12 is an exemplary structural diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 13 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 14 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 14A is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 14B is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • a vibration sensor 1100 may include an acoustic transducer 210 and a vibration assembly 220 .
  • a first acoustic cavity 250 is formed between the vibration component 220 and the substrate 211 of the acoustic transducer 210 .
  • the vibration assembly 220 may include an elastic element 222 and a mass element 221 .
  • the elastic element 222 may include a plate-shaped structure connected to a mass element 221 .
  • the plate-like structure and the mass element 221 can be connected by clamping, bonding, or integral molding, and the connection method is not limited in this specification.
  • the elastic element 222 can be set to be air-permeable or air-impermeable. Exemplarily, in order to have a better sound pickup effect, in some embodiments, the elastic element 222 can be air-impermeable.
  • one elastic element or one plate structure shown in FIG. 11 is only for convenience of description, but does not limit the scope of protection of the present application.
  • a plurality of mass elements may be respectively disposed on two sides of the elastic element 222 .
  • multiple mass elements can also be disposed on the same side of the elastic element 222 .
  • the vibration assembly 220 includes an elastic element 222 and two mass elements 221 disposed on the elastic element 222 .
  • the structural parameters of the two mass elements 221 may be the same or different.
  • the two mass elements 221 are physically connected to the elastic element 222, and the two mass elements 221 may be disposed on the same side of the elastic element 222 in the vibration direction.
  • the two mass elements 221 are physically connected to the elastic element 222 , and the two mass elements 221 may be respectively disposed on both sides of the elastic element 222 in the vibration direction.
  • the two mass elements 221 may have the same cross-sectional shape in the vibration direction, for example, both are circular.
  • the two mass elements 221 may have different heights in the horizontal direction (direction perpendicular to the vibration direction).
  • the two mass elements 221 can make the vibration component 220 have multiple vibration modes in the target frequency band, so that the frequency response curve of the vibration sensor 1000 has two resonance peaks, thereby increasing the frequency range of high sensitivity of the vibration sensor 1000, so that The sensitivity of the vibration sensor 1000 in the frequency range near the two resonant frequencies (ie, the target frequency band) is improved, achieving the effect of widening the bandwidth of the frequency band and improving the sensitivity.
  • At least two resonant peaks can be formed on the frequency response curve of the vibration sensor 1100 with the vibration component 220 through the parameter settings of the elastic element 222 and the plurality of mass elements 221, thereby forming a plurality of high-sensitivity frequencies range and wider frequency bands.
  • the multiple resonant frequencies of the elastic element 222 and the plurality of mass elements 221 physically connected to the elastic element 222 are related to the parameters of the elastic element 222 and/or the mass elements 221, and the parameters include Young's of the elastic element 222 At least one of the modulus, the volume of the cavity formed between the acoustic transducer 210 and the elastic element 222 , the radius of the mass element 221 , the height of the mass element 221 and the density of the mass element 221 .
  • the parameters of the two mass elements 221, such as the height in the vibration direction can meet a preset ratio, such as in some embodiments, the height ratio of the two mass elements 221 can be 3:2, 2:1 , 3:4 or 3:1 etc.
  • the number of mass elements connected to the elastic element 222 may not be limited to two, for example, may be three, four or more than five.
  • the plurality of mass elements 221 may be arranged collinearly or not. Taking three mass elements 221 on the elastic element 222 as an example, the three mass elements 221 may not be collinearly arranged on the elastic element 222 . It can be understood that, when there are three mass elements 221 , the connecting lines between two of the three mass elements do not overlap. In some embodiments, the three mass elements 221 may be distributed in a triangle, and the distance between any two mass elements 221 is the same.
  • the three mass elements 221 can improve the sensitivity of the vibrating component 520 in frequency intervals near at least two frequency points in the target frequency band, thereby achieving the effect of widening the bandwidth of the frequency band and improving the sensitivity.
  • the four mass elements 221 may be arranged in an array (such as a circular array or a rectangular array).
  • at least two mass elements 221 among the four mass elements 221 have different resonance peaks.
  • the line connecting the center points of any two mass elements on the elastic element 222 will not overlap into a straight line.
  • an elastic element 222 and a plurality of mass elements 221 physically connected to the elastic element 222 correspond to multiple target frequency bands in one or more different target frequency bands, so that the sensitivity of the vibration sensor 1100 in the corresponding target frequency band Can be greater than the sensitivity of the acoustic transducer 210 .
  • the resonant frequencies of one elastic element 222 and the plurality of mass elements 221 physically connected to the elastic element 222 are the same or different.
  • the sensitivity of the vibration sensor 1100 after adding one or more sets of mass elements 221 and elastic elements 222 can be increased by 3dB-30dB compared with the acoustic transducer 210 in the target frequency band.
  • the method for measuring the sensitivity of the vibration sensor 100 and the acoustic transducer 110 can be: under the excitation of a given acceleration (such as 1g, g is the acceleration of gravity), collect the electrical signal of the device (such as -30dBV), then the sensitivity -30dBV/g.
  • a given acceleration such as 1g, g is the acceleration of gravity
  • the acoustic transducer 110 is an air conduction microphone
  • the aforementioned excitation source can be replaced with sound pressure, that is, the sound pressure in the specified frequency band is input as the excitation, and the measurement of the acquisition device electrical signal.
  • the sensitivity of the vibration sensor 1100 after the additional vibration component 220 can be increased by more than 30 dB compared with the acoustic transducer 210, such as multiple mass elements 221 physically connected to the elastic element 222 have the same harmonic peak.
  • the vibrating assembly 220 may further include a supporting element 223 for supporting one or more sets of elastic elements 222 and mass elements 221 .
  • the supporting element 223 is disposed between the substrate 211 of the acoustic transducer 210 and the vibration assembly 220 , the upper surface of the supporting element 233 is connected to the substrate 211 , and the lower surface of the supporting element 233 is connected to the elastic element 222 .
  • a first acoustic cavity 250 may be formed among the supporting member 233 , the substrate 211 and the elastic member 222 .
  • the support element 223 can be made of an air-impermeable material, and the air-impermeable support element 223 can cause the vibration signal in the air to change during the transmission process, causing the sound pressure in the support element 223 to change (or air vibration),
  • the internal vibration signal of the support element 223 is transmitted to the acoustic transducer 210 through the sound inlet hole 2111, and will not escape outward through the support element 223 during the transmission process, thereby ensuring the sound pressure intensity and improving the sound transmission effect.
  • the projection area of the mass element 221 does not overlap with the projection area of the support element 223 .
  • This arrangement is to prevent the vibration of the elastic element 222 and the mass element 221 from being restricted by the supporting element 223 .
  • the shape of the cross-section of the elastic element 222 in the vibration direction may include circular, rectangular, triangular or irregular figures, etc.
  • the shape of the elastic element 222 may also be based on the shape of the supporting element 223 Settings are not limited in this manual.
  • the elastic element 222 is selected to be circular in this embodiment of the present application.
  • the vibration sensor 1100 may further include a buffer 240 .
  • the buffer 240 can be used to limit the vibration amplitude of the vibration assembly 220 .
  • the vibration sensor 1100 is provided with a buffer 240, the buffer 240 provides the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220, so as to limit the vibration amplitude of the vibration component 220, so that the vibration component 220 can be avoided.
  • the vibration collides with other components in the vibration sensor 1100 (such as the acoustic transducer 210 ), so as to protect the vibration component 220 and improve the reliability of the vibration sensor 1100 .
  • the structure and arrangement of the buffer member 240 are similar to those in FIG. 2 .
  • the buffer member 240 may be disposed on a side wall of the first acoustic cavity 250 perpendicular to the vibration direction of the vibration component 220 .
  • the buffer member 240 can provide the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220 .
  • the buffer member 240 when the buffer member 240 is connected to the base plate 211 and covers the sound inlet hole 2111, the buffer member 240 can be configured as a ring structure, so that the hollow part inside the ring structure is opposite to the sound inlet hole 2111, thereby ensuring that the buffer member 240 A buffer distance can be provided for the vibration assembly 220 without blocking the sound inlet hole 2111 , so as to avoid affecting the pickup of the vibration signal by the sound pickup device 212 of the acoustic transducer 210 .
  • the vibration sensor 1100 may also include a housing (not shown), which is disposed on the periphery of the vibration component 220, so that the vibration component 220 is located in the acoustic cavity formed by the housing and the acoustic transducer 210, The vibration assembly 220 separates the acoustic cavity into a first acoustic cavity 250 and a second acoustic cavity.
  • the buffer member 240 may include a first buffer portion and a second buffer portion, and the first buffer portion and the second buffer portion are respectively disposed on two sides of the elastic element 222 along the vibration direction of the vibration assembly 220 .
  • the first buffer part is located in the second acoustic cavity and connected to the housing or the elastic element 222 .
  • the second buffer part 242 is located in the first acoustic cavity 250 and connected with the acoustic transducer 210 or the elastic element 222.
  • the first buffer portion 241 can provide the vibration component 220 with a first buffer distance along the vibration direction of the vibration component 220
  • the second buffer portion 242 can provide the vibration component 220 with a first buffer distance along the vibration direction of the vibration component 220 .
  • Buffer distance For more details about the cushioning member 240 disposed on both sides of the elastic element 222 along the vibration direction of the vibration assembly 220 , please refer to FIG. 3 and related descriptions.
  • the buffer 240 may also be connected between the elastic element 222 and the acoustic transducer 210 .
  • the buffer member 240 may include a second buffer part, and two ends of the second buffer part along the vibration direction of the vibration assembly 220 are respectively connected to the substrate 211 of the acoustic transducer 210 and the elastic element 222 .
  • the buffer member when the vibration sensor 1100 includes a housing, the buffer member may further include a first buffer portion, and two ends of the first buffer portion along the vibration direction of the vibration assembly 220 are respectively connected to the housing and the elastic element 222 . More details about the connection of the buffer member 240 between the elastic element 222 and the acoustic transducer 210 (and/or the housing) can be found in FIG. 4 and its related description.
  • the buffer 240 can include a magnetic buffer 243 that can be used to generate a magnetic field.
  • the magnetic buffer 243 may include a coil mounted on the side wall of the acoustic transducer 110 connected to the first acoustic cavity 250 .
  • the coil may be mounted on the lower surface of the substrate 211 along the vibration direction.
  • the coil can also be supported and positioned by a limiting structure, for example, a support net or a support frame is provided between the base plate 211 and the vibrating component 220 to install the coil and the like.
  • the coil can be embedded in the side wall of the acoustic transducer 110 connected to the first acoustic cavity.
  • the coil can be embedded in the substrate 211 .
  • the coil may be directly etched in the substrate 211 to form the coil.
  • the vibration sensor 1100 includes a housing
  • the magnetic buffer 243 can also be installed on the inner wall of the housing, and the inner wall of the housing is facing the vibration component 220 along the vibration direction of the vibration component 220 .
  • the magnetic buffer can also be embedded inside the inner wall of the casing.
  • the shape of the coil may be a concentric circular structure, a concentric rectangular structure, a concentric polygonal structure, etc., which are not particularly limited here.
  • the mass element 221 may include a magnetic element or a magnetizable element, and the mass element 221 is located in a magnetic field generated by a magnetic buffer element 243 (such as a coil).
  • a magnetic buffer element 243 such as a coil
  • the magnetizable element included in the mass element 221 can be understood as, before the vibration sensor 1100 works, the mass element 221 is magnetized to make it magnetic.
  • the magnetic field direction of the magnetic field generated by the coil is consistent with the vibration direction of the vibrating component 120 , and the mass element 221 and the coil attract or repel each other.
  • the material of the mass element 221 may be a magnetic material, a magnetizable material, or the like.
  • the magnetic material may refer to materials such as iron, cobalt, nickel and their alloys that can directly or indirectly generate magnetism.
  • Exemplary magnetic materials may include, but are not limited to, iron, ferrite, nickel oxide, cobalt oxide, and the like.
  • the magnetizable material may be a material capable of obtaining magnetism under the action of a magnetic field or an electric current.
  • magnetizable materials may include, but are not limited to, alloy oxides, metals, and the like.
  • one or more of some of the mass elements in the plurality of mass elements may include a magnetic element or a magnetizable element.
  • one of the plurality of mass elements may comprise a magnetic or magnetizable member.
  • two mass elements that are far apart from each other among the plurality of mass elements may include magnetic or magnetizable elements, and the remaining mass elements do not have magnetic or magnetizable elements.
  • Such an arrangement can make the vibration amplitude of the mass element with the magnetic or magnetizable element adjustable, and also avoid the mutual magnetic force between the mass elements including the magnetic or magnetizable element.
  • all mass elements of the plurality of mass elements may have magnetic or magnetizable members. In this arrangement, the magnetic force between the multiple mass elements can be adjusted by adjusting the magnetic permeability or magnetization of each of the multiple mass elements.
  • the magnetic buffer 243 (such as a coil) in the vibration sensor 1100
  • the magnetic buffer 243 is used to generate a magnetic field, so that the mass element 221 comprising a magnetic or magnetizable part has magnetism and can change The force on the mass element 221 , and then adjust the vibration amplitude of the mass element 221 , to avoid collision between the mass element 221 or the elastic element 222 and the acoustic transducer 210 or the housing 230 during the vibration of the mass element 221 .
  • the sensitivity of the vibration sensor 1100 can also be adjusted.
  • the force on the mass element 221 is large, so that the elastic element 222 is not easy to vibrate, and the sensitivity of the vibration sensor 1100 is low.
  • the force on the mass element 221 is small, so that the elastic element 222 is easy to vibrate, and the sensitivity of the vibration sensor 1100 is high.
  • the vibrating assembly 220 may further include one or more cantilever beam structures 224 .
  • One or more cantilever beam structures 224 are arranged in the first acoustic cavity 250, one end of the cantilever beam structure 224 is physically connected to one side of the support element 223, and the other end is a free end, and the free end of the cantilever beam structure 224 is physically connected with One or more masses.
  • the physical connection manner between the cantilever beam structure 224 and the supporting element 223 may include connection manners such as welding, clamping, bonding, or integral molding, and the connection manner is not limited here.
  • the vibrating component 220 may not include the supporting element 223, and the cantilever beam structure 224 may be arranged in the sound inlet 2111 along the radial section of the sound inlet 2111 (ie, the vibration direction of the vibrating component 220) or at Outside the sound inlet 2111 , the cantilever beam structure 224 does not completely cover the sound inlet 2111 .
  • the material of the cantilever beam structure 224 includes metallic materials and inorganic non-metallic materials.
  • Metal materials may include, but are not limited to, copper, aluminum, tin, etc. or other alloys.
  • the inorganic non-metallic material may include, but is not limited to, at least one of silicon, aluminum nitride, zinc oxide, lead zirconate titanate, and the like.
  • the mass element 221 can be arranged on any side of the cantilever beam structure 224 in the vibration direction. not shown in ) for illustration.
  • one or more mass elements 221 are disposed on either side of the free end of the cantilever beam structure 224 perpendicular to the vibration direction.
  • the dimensions of each mass element 221 may be partly or all the same, or all different.
  • the distances between adjacent mass elements 221 may be the same or different.
  • the structural parameters of the multiple mass elements 221 may be the same, partly or all different. In actual use, the structural parameters of the plurality of mass elements 221 can be designed according to the vibration modes.
  • the length of the cantilever beam structure 224 can be 500 ⁇ m to 1500 ⁇ m; in some embodiments, the thickness of the cantilever beam structure 224 can be 0.5 ⁇ m to 5 ⁇ m; in some embodiments, the mass element 221
  • the side length may be 50 ⁇ m ⁇ 1000 ⁇ m; in some embodiments, the height of the mass element 221 may be 50 ⁇ m ⁇ 5000 ⁇ m.
  • the length of the cantilever beam structure 224 can be 700 ⁇ m-1200 ⁇ m, the thickness of the cantilever beam structure 224 can be 0.8 ⁇ m-2.5 ⁇ m; the side length of the mass element 221 can be 200 ⁇ m-600 ⁇ m, and the height of the mass element 221 can be 200 ⁇ m-1000 ⁇ m .
  • the length of the cantilever beam structure 224 can be 1 mm to 20 cm, and the thickness of the cantilever beam structure 224 can be 0.1 mm to 10 mm; in some embodiments, the side length of the mass element 221 can be 0.2 mm to 5 cm, and the height of the mass element 221 It can be 0.1 mm to 10 mm. In some embodiments, the length of the cantilever beam structure 224 can be 1.5mm-10mm, the thickness of the cantilever beam structure 224 can be 0.2mm-5mm; the side length of the mass element 221 can be 0.3mm-5cm, and the height of the mass element 221 can be 0.5mm ⁇ 5cm.
  • Fig. 15 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 16 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 17 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • the vibration sensor 1500 may include an acoustic transducer (not shown in the figures), a vibration assembly 220 and a buffer 240 .
  • the vibration component 220 may include a mass element 221 and an elastic element 1522 , wherein the elastic element 1522 may include a first elastic element 15221 and a second elastic element 15222 .
  • the first elastic element 15221 and the second elastic element 15222 may be film-like structures.
  • the first elastic element 15221 and the second elastic element 15222 may be approximately symmetrically distributed relative to the mass element 221 in the vibration direction of the mass element 221 .
  • the first elastic element 15221 and the second elastic element 15222 may be connected to the housing 230 .
  • the first elastic element 15221 may be located on the side of the mass element 221 away from the substrate 211, the lower surface of the first elastic element 15221 may be connected to the upper surface of the mass element 221, the peripheral side of the first elastic element 15221 and the shell 230 Inner wall connection.
  • the second elastic element 15222 may be located on the side of the mass element 221 close to the substrate 211, the upper surface of the second elastic element 15222 is connected to the lower surface of the mass element 221, and the peripheral side of the second elastic element 15222 may be connected to the inner wall of the housing 230 .
  • the film-like structures of the first elastic element 15221 and the second elastic element 15222 can be regular and/or irregular structures such as rectangles and circles, and the shapes of the first elastic element 15221 and the second elastic element 15222 can be according to The cross-sectional shape of the housing 230 is adaptively adjusted.
  • the first elastic element 15221 and the second elastic element 15222 are arranged symmetrically with respect to the mass element 221 in the vibration direction of the mass element 221, so that the center of gravity of the mass element 221 approximately coincides with the centroid of the elastic element 1522, And the size, shape, material, or thickness of the first elastic element 15221 and the second elastic element 15222 can be the same, so that when the vibrating assembly 220 vibrates in response to the vibration of the housing 230, the mass element 221 can reduce the vibration of the mass element 221 perpendicular to the The vibration in the vibration direction of the mass element 221 reduces the response sensitivity of the vibration assembly 220 to the vibration of the housing 230 perpendicular to the vibration direction of the mass element 221 , thereby improving the direction selectivity of the vibration sensor 1500 .
  • the response sensitivity of the vibrating assembly 220 to the vibration of the housing 230 along the vibration direction of the mass element 221 can be changed (for example, improved) by adjusting the thickness, elastic coefficient, quality, and size of the mass element 221 of the elastic element 1522.
  • the distance between the centroid of at least one elastic element 1522 and the center of gravity of the mass element 221 along the vibration direction of the mass element 221 may be no greater than 1/3 of the thickness of the mass element 221 . In some embodiments, the distance between the centroid of at least one elastic element 1522 and the center of gravity of the mass element 221 along the vibration direction of the mass element 221 may be no greater than 1/2 of the thickness of the mass element 221 . In some embodiments, the distance between the centroid of at least one elastic element 1522 and the center of gravity of the mass element 221 along the vibration direction of the mass element 221 may be no greater than 1/4 of the thickness of the mass element 221 .
  • the distance between the centroid of at least one elastic element 1522 and the center of gravity of the mass element 221 in the direction perpendicular to the vibration direction of the mass element 221 is not greater than 1/3 of the side length or radius of the mass element 221. In some embodiments, the distance between the centroid of at least one elastic element 1522 and the center of gravity of the mass element 221 in a direction perpendicular to the vibration direction of the mass element 221 is not greater than 1/2 of the side length or radius of the mass element 221 .
  • the distance between the centroid of at least one elastic element 1522 and the center of gravity of the mass element 221 in a direction perpendicular to the vibration direction of the mass element 221 is not greater than 1/4 of the side length or radius of the mass element 221 .
  • the resonance frequency of the vibrating component 220 vibrating in the direction perpendicular to the vibration of the mass element 221 can be shifted to a high frequency. shift without changing the resonant frequency of the vibrating component 220 vibrating in the vibrating direction of the mass element 221.
  • the resonant frequency of the vibrating component 220 vibrating in the vibration direction of the mass element 221 can remain substantially unchanged, for example,
  • the resonant frequency at which the vibrating component 220 vibrates in the vibrating direction of the mass element 221 may be a frequency within a relatively strong frequency range (eg, 20Hz-2000Hz, 2000Hz-3000Hz, etc.) that is perceived by the human ear.
  • the resonant frequency of the vibrating component 220 vibrating in a direction perpendicular to the vibration of the mass element 221 may be shifted to a high frequency and be located in a relatively weak frequency range (for example, 5000Hz-9000Hz, 1kHz-14kHz, etc.) that the human ear perceives.
  • the resonant frequency of the vibrating assembly 220 vibrating in the vibrating direction of the mass element 221 remains substantially unchanged, which can make the vibrating assembly 220 in
  • the ratio of the resonant frequency of vibration perpendicular to the vibration direction of the mass element 221 to the resonance frequency of the vibration component 220 vibrating in the vibration direction of the mass element 221 is greater than or equal to 2.
  • the ratio of the resonant frequency of the vibrating component 220 vibrating in the direction perpendicular to the vibrating mass element 221 to the resonant frequency of the vibrating component 220 vibrating in the vibrating direction of the mass element 221 may also be greater than or equal to other values.
  • the ratio of the resonant frequency of the vibrating component 220 vibrating in the vibrating direction perpendicular to the mass element 221 to the resonant frequency of the vibrating component 220 vibrating in the vibrating direction of the mass component 221 may also be greater than or equal to 1.5.
  • the size of the upper surface or the lower surface of the mass element 221 is smaller than the size of the first elastic element 15221 and the second elastic element 15222, and the mass The side surface of the element 221 and the inner wall of the housing 230 form a ring or a rectangle with equal intervals.
  • the thickness of the first elastic element 15221 and the second elastic element 15222 may be 0.1 um ⁇ 500 um. In some embodiments, the thickness of the first elastic element 15221 and the second elastic element 15222 may be 0.05um ⁇ 200um. In some embodiments, the thickness of the first elastic element 15221 and the second elastic element 15222 may be 300um ⁇ 800um.
  • the thickness ratio of each elastic element (for example, the first elastic element 15221 or the second elastic element 15222 ) to the mass element 221 may be 2-100. In some embodiments, the thickness ratio of each elastic element to the mass element 221 may be 10-50. In some embodiments, the thickness ratio of each elastic element to the mass element 221 may be 20-40. In some embodiments, the thickness difference between the mass element 221 and each elastic element (eg, the first elastic element 15221 or the second elastic element 15222 ) may be 9 um ⁇ 500 um. In some embodiments, the thickness difference between the mass element 221 and each elastic element may be 50um ⁇ 400um. In some embodiments, the thickness difference between the mass element 221 and each elastic element may be 100um ⁇ 300um.
  • a gap 1501 may be formed between the first elastic element 15221 , the second elastic element 15222 , the mass element 221 , and the housing 230 corresponding to the acoustic cavity or the acoustic transducer. As shown in FIG. 15 , in some embodiments, the gap 1501 can be located on the peripheral side of the mass element 221. When the mass element 221 responds to an external vibration signal, when the mass element 221 vibrates relative to the housing 230, the gap 1501 can be in the To a certain extent, the mass element 221 is prevented from colliding with the housing 230 when it vibrates.
  • the gap 1501 may contain fillers, and the quality factor of the vibration sensor 1500 may be adjusted by setting the fillers in the gap 1501 .
  • the filling in the gap 1501 can make the quality factor of the vibration sensor 1500 be 0.7-10. More preferably, the filling in the gap 1501 can make the quality factor of the vibration sensor 1500 be 1-5.
  • the filler may be one or more of gas, liquid (eg, silicone oil), elastic material, and the like.
  • gases may include, but are not limited to, one or more of air, argon, nitrogen, carbon dioxide, and the like.
  • Exemplary elastic materials may include, but are not limited to, silicone gel, silicone rubber, and the like.
  • a first acoustic cavity 250 can be formed between the shell 230, the second elastic element 15222 and the substrate 211 of the acoustic transducer, and a second acoustic cavity 250 can be formed between the shell 230 and the first elastic element 15221. cavity 260 .
  • the first acoustic cavity 250 and the second acoustic cavity 260 have air inside, and when the vibrating assembly 220 vibrates relative to the housing 230, the vibrating assembly 220 compresses the air inside the two acoustic cavities, and the first acoustic cavity
  • the cavity 250 and the second acoustic cavity 260 can be approximately regarded as two air springs, and the volume of the second acoustic cavity 260 is greater than or equal to the volume of the first acoustic cavity 250, so that the vibration component 220 compresses the air to bring the air spring
  • the coefficients of are approximately equal, thereby further improving the symmetry of the elastic elements (including air springs) on the upper and lower sides of the mass element 221 .
  • the volumes of the first acoustic cavity 250 and the second acoustic cavity 260 may be 10 um 3 -1000 um 3 .
  • the volumes of the first acoustic cavity 250 and the second acoustic cavity 260 may be 50um 3 -500um 3 .
  • the vibration sensor 1500 may include a buffer 240 that may be used to limit the vibration component 220 the vibration amplitude.
  • the vibration sensor 1500 is provided with a buffer 240, the buffer 240 provides the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220, to limit the vibration amplitude of the vibration component 220, thereby preventing the vibration component 220 from vibrating During the process, it collides with other components in the vibration sensor 1500 (such as the acoustic transducer and the housing 230 ), so as to protect the vibration component 220 and improve the reliability of the vibration sensor 1500 .
  • the structure and arrangement of the buffer member 240 are similar to those in FIG. 2 .
  • the buffer member 240 may be disposed on a side wall of the first acoustic cavity 250 perpendicular to the vibration direction of the vibration component 220 .
  • the buffer member 240 can provide the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220 .
  • the buffer member 240 may also be disposed on a side wall perpendicular to the vibration direction of the vibration component 220 in the second acoustic cavity 260 , for example, on a side wall of the housing 230 opposite to the vibration component 220 .
  • the buffer member 240 may include a first buffer portion 241 and a second buffer portion 242 , and the first buffer portion 241 and the second buffer portion 242 are respectively disposed on two sides of the elastic element 1522 along the vibration direction of the vibration assembly 220 .
  • the first buffer part 241 is connected with the housing 230 or the first elastic element 15221 .
  • the second buffer part 242 is connected with the substrate 211 of the acoustic transducer or the second elastic element 15222 .
  • the first buffer portion 241 can provide the vibration component 220 with a first buffer distance along the vibration direction of the vibration component 220
  • the second buffer portion 242 can provide the vibration component 220 with a first buffer distance along the vibration direction of the vibration component 220 .
  • the structure and arrangement of the buffer member 240 are similar to those in FIG. 4 .
  • the bumper 240 may be connected between the elastic element 1522 and the acoustic transducer (and/or the housing 230).
  • the first buffer portion 241 and the second buffer portion 242 of the buffer member 240 are respectively disposed on two sides of the elastic element 1522 along the vibration direction of the vibration assembly 220 .
  • two ends of the first buffer portion 241 located in the second acoustic cavity 260 along the vibration direction of the vibration assembly 220 are respectively connected to the housing 230 and the first elastic element 15221 .
  • Two ends of the second buffer portion 242 located in the first acoustic cavity 250 along the vibration direction of the vibration assembly 220 are respectively connected to the substrate 211 of the acoustic transducer and the second elastic element 15222 .
  • the bumper 240 of the vibration sensor 1500 may include a magnetic bumper, which may be used to generate a magnetic field.
  • the magnetic buffer can be mounted on the side wall of the first acoustic cavity 250 where the acoustic transducer is connected. For example, the upper surface of the substrate 211 along the vibration direction.
  • the magnetic buffer can also be embedded in the side wall of the acoustic transducer connected to the first acoustic cavity 250 .
  • the magnetic buffer can also be installed on the side wall of the second acoustic cavity 260 along the vibration direction of the vibration component 220 .
  • the magnetic buffer can be installed on the side wall of the housing 230 , and the side wall of the housing 230 is facing the vibration component 220 along the vibration direction of the vibration component 220 .
  • the magnetic buffer can also be buried inside the side wall of the casing 230 .
  • the mass element 221 may include a magnetic element or a magnetizable element, the mass element 221 is located in the magnetic field generated by the magnetic buffer element, and the mass element 221 is subjected to the magnetic force of the magnetic field.
  • the magnetic buffer can be located on the side wall of the first acoustic cavity 250 and the side wall of the second acoustic cavity 260 at the same time, so that the magnetic field generated by the magnetic buffer is more uniform.
  • the magnetic field generated by the magnetic buffer can adjust the stress on the mass element 221 , thereby limiting the vibration amplitude of the mass element 221 . More on the magnetic bumpers can be found in Figures 14A and 14B, and their related contents.
  • Fig. 18 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 19 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 20 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • the structure of the vibration sensor 1800 shown in FIGS. 18-20 is substantially the same as that of the vibration sensor 1500 shown in FIGS. 15-17 , except for the vibration component.
  • the vibration assembly 220 of the vibration sensor 1800 may include at least one elastic element 222 and two mass elements (eg, a first mass element 18211 and a second mass element 18212 ).
  • mass element 1821 may include a first mass element 18211 and a second mass element 18212 .
  • the first mass element 18211 and the second mass element 18212 are arranged symmetrically with respect to the at least one elastic element 222 in the vibration direction thereof.
  • the first mass element 18211 may be located on the side of the at least one elastic element 222 away from the substrate 211 , and the lower surface of the first mass element 18211 is connected to the upper surface of the at least one elastic element 222 .
  • the second mass element 18212 may be located on the side of the at least one elastic element 222 facing the substrate 211 , and the upper surface of the second mass element 18212 is connected to the lower surface of the at least one elastic element 222 .
  • the size, shape, material, or thickness of the first mass element 18211 and the second mass element 18212 may be the same.
  • the first mass element 18211 and the second mass element 18212 are arranged symmetrically with respect to the at least one elastic element 222 in the vibration direction, so that the center of gravity of the mass element 1821 is approximate to the centroid of the at least one elastic element 222 overlap, so that when the vibrating assembly 220 vibrates in response to the vibration of the housing 230, the vibration of the mass element 1821 in the vibration direction perpendicular to the mass element 1821 can be reduced, thereby reducing the vibration of the vibrating assembly 220 perpendicular to the mass element 1821.
  • the response sensitivity of the vibration of the housing 230 in the vibration direction improves the direction selectivity of the vibration sensor 1800 .
  • a buffer 240 is provided in the vibration sensor 1800 to limit the vibration amplitude of the vibration component 220 .
  • the buffer member 240 can provide the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220, so as to limit the vibration amplitude of the vibration component 220, thereby preventing the vibration component 220 from colliding with the vibration sensor 1800 during the vibration process.
  • the collision of other components can protect the vibration component 220 and improve the reliability of the vibration sensor 1500 .
  • the structure and arrangement of the buffer member 240 are similar to those in FIG. 15 .
  • the buffer member 240 may be disposed on a side wall of the first acoustic cavity 250 or the second acoustic cavity 260 perpendicular to the vibration direction of the vibration component 220 .
  • the buffer member 240 can provide the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220 .
  • the buffer distance may refer to the distance between the non-contact surface of the buffer member 240 and the first mass element 18211 or the second mass element 18212 .
  • the buffer member 240 may include a first buffer portion 241 and a second buffer portion 242 , and the first buffer portion 241 and the second buffer portion 242 are respectively disposed on two sides of the elastic element 222 along the vibration direction of the vibration assembly 220 .
  • the first buffer part 241 is disposed in the second acoustic cavity 260 and connected to the housing 230 or the elastic element 222 .
  • the second buffer part 242 is disposed in the first acoustic cavity 250 and connected to the substrate 211 of the acoustic transducer or the elastic element 222 .
  • the first buffer portion 241 can provide the vibration component 220 with a first buffer distance along the vibration direction of the vibration component 220
  • the second buffer portion 242 can provide the vibration component 220 with a first buffer distance along the vibration direction of the vibration component 220 .
  • the first buffer distance may refer to the distance between the non-contact surface of the first buffer part 241 and the first mass element 18211 or the housing 230
  • the second buffer distance may refer to the distance between the non-contact surface of the second buffer part 242 and the second mass element 18212 or the substrate 211 .
  • a buffer 240 may be connected between the elastic element 222 and the acoustic transducer (and/or the housing 230).
  • the first buffer portion 241 and the second buffer portion 242 of the buffer member 240 are respectively disposed on two sides of the elastic element 222 along the vibration direction of the vibration assembly 220 .
  • the first buffer portion 241 is disposed in the second acoustic cavity 260 and its two ends along the vibration direction of the vibration assembly 220 are respectively connected to the housing 230 and the elastic element 222 .
  • the second buffer part 242 is disposed in the first acoustic cavity 250 and its two ends along the vibration direction of the vibration assembly 220 are respectively connected to the substrate 211 of the acoustic transducer and the elastic element 222 .
  • the bumper 240 of the vibration sensor 1800 may include a magnetic bumper, which may be used to generate a magnetic field.
  • the magnetic buffer can be installed on the side wall of the acoustic transducer connected to the first acoustic cavity 250 and/or the side wall of the second acoustic cavity 260 along the vibration direction of the vibrating assembly 220 .
  • the magnetic buffer can also be embedded in the side wall of the acoustic transducer connected to the first acoustic cavity 250 . For example, inside the substrate 211 .
  • the magnetic buffer can also be embedded in the side wall of the second acoustic cavity 260 along the vibration direction of the vibration component 220 , for example, the side wall of the casing 230 .
  • the mass element 221 may include a magnetic element or a magnetizable element, the mass element 221 is located in the magnetic field generated by the magnetic buffer element, and the mass element 221 is subjected to the magnetic force of the magnetic field.
  • the magnetic field generated by the magnetic buffer can adjust the stress on the mass element 221 , thereby limiting the vibration amplitude of the mass element 221 . More on the magnetic bumpers can be found in Figures 14A and 14B, and their related contents.
  • Fig. 21 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • the vibration sensor 2100 shown in FIG. 21 is similar to the vibration sensor 1500 shown in FIG. 15 , the difference lies in the structure and arrangement of the elastic element.
  • the first elastic element 15221 and the second elastic element 15222 of the vibration sensor 2100 can be columnar structures, and the first elastic element 15221 and the second elastic element 15222 can respectively vibrate along the mass element 221.
  • the direction extends and connects with the housing 230 or the substrate 211 of the acoustic transducer.
  • the columnar structures of the first elastic element 15221 and the second elastic element 15222 can be regular and/or irregular structures such as cylinders and square columns, and the shapes of the first elastic element 15221 and the second elastic element 15222 can be Adaptive adjustment is performed according to the cross-sectional shape of the housing 230 .
  • the thickness of the mass element 221 may be 10 um-1000 um. In some embodiments, the mass element 221 may have a thickness of 4um ⁇ 500um. In some embodiments, the mass element 221 may have a thickness ranging from 600 um to 1400 um. In some embodiments, the thickness of the first elastic element 15221 and the second elastic element 15222 may be 10um ⁇ 1000um. In some embodiments, the thickness of the first elastic element 15221 and the second elastic element 15222 may be 4um ⁇ 500um. In some embodiments, the thickness of the first elastic element 15221 and the second elastic element 15222 may be 600um ⁇ 1400um.
  • the difference between the thickness of each of the elastic elements 1522 (for example, the first elastic element 15221 and the second elastic element 15222 ) and the thickness of the mass element 221 may be 0 um ⁇ 500 um. In some embodiments, the difference between the thickness of each elastic element 1522 and the thickness of the mass element 221 may be 20um ⁇ 400um. In some embodiments, the difference between the thickness of each elastic element 1522 and the thickness of the mass element 221 may be 50um ⁇ 200um. In some embodiments, the ratio of the thickness of each elastic element 1522 to the thickness of the mass element 221 may be 0.01-100. In some embodiments, the ratio of the thickness of each elastic element 1522 to the thickness of the mass element 221 may be 0.5-80. In some embodiments, the ratio of the thickness of each elastic element 1522 to the thickness of the mass element 221 may be 1-40.
  • the first elastic element 15221 in the vibration sensor 2100 is connected between the mass element 221 and the housing 230
  • the second elastic element 15222 is connected between the mass element 221 and the substrate 211 .
  • the first elastic element 15221 and the second elastic element 15222 are squeezed, thereby limiting the vibration amplitude of the vibrating component 220 and preventing the vibrating component 220 from contacting the housing 230,
  • the substrate 211 collides, thereby improving the reliability of the vibration sensor 2100 .
  • Fig. 22 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 23 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • the vibration sensor 2200 shown in FIG. 22 is similar to the vibration sensor 1500 shown in FIG. 15 , except for the elastic element.
  • the first elastic element 15221 of the vibration sensor 2200 may include a first sub-elastic element 152211 and a second sub-elastic element 152212 .
  • the first sub-elastic element 152211 is connected to the housing 230 corresponding to the second acoustic cavity 260 through the second sub-elastic element 152212
  • the first sub-elastic element 152211 is connected to the upper surface of the mass element 221 .
  • the peripheral side of the first sub-elastic element 152211 and the peripheral side of the second sub-elastic element 152212 may or may not coincide.
  • the second elastic element 15222 of the vibration sensor 2200 may include a third sub-elastic element 152221 and a fourth sub-elastic element 152222 .
  • the third sub-elastic element 152221 is connected to the substrate 211 corresponding to the first acoustic cavity 250 through the fourth sub-elastic element 152222
  • the third sub-elastic element 152221 is connected to the lower surface of the mass element 221 .
  • the peripheral sides of the third sub-elastic element 152221 and the fourth sub-elastic element 152222 may or may not coincide.
  • the vibration sensor 2200 may further include a fixing piece 2201 .
  • the fixed piece 2201 can be distributed along the peripheral side of the mass element 221, the fixed piece 2201 is located between the first sub-elastic element 152211 and the third sub-elastic element 152221, and the upper surface and the lower surface of the fixed piece 2201 can be respectively connected to the first sub-elastic
  • the element 152211 is connected to the third sub-elastic element 152221.
  • the material of the fixing piece 2201 can be elastic material, such as foam, plastic, rubber, silicone and the like. In some embodiments, the material of the fixing piece 2201 can also be a rigid material, for example, metal, metal alloy and the like. In some embodiments, the fixed piece 2201 can realize the fixing function of the gap 1501, and the fixed piece 2201 can also be used as an additional mass element, thereby adjusting the resonant frequency of the vibration sensor 2200, thereby adjusting (for example, reducing) the sensitivity of the vibration sensor 2200.
  • the second sub-elastic element 152212 and the fourth sub-elastic element 152222 can be used to limit the vibration amplitude of the vibration component 220, thereby preventing the vibration component 220 from interacting with other components of the vibration sensor 2200 (such as the substrate 211, the shell Body 230) collides, improving the reliability of the vibration sensor 2200.
  • the vibration sensor 2300 shown in FIG. 23 is similar to the vibration sensor 1800 shown in FIG. 18 , the difference lies in the structure and connection method of the elastic element.
  • the elastic element 1522 of the vibration sensor 2300 shown in FIG. 23 may include a first elastic element 15221 , a second elastic element 15222 and a third elastic element 15223 .
  • the third elastic element 15223 is respectively connected to the housing 230 and the substrate 211 through the first elastic element 15221 and the second elastic element 15222 .
  • the vibration assembly 220 vibrates, the first elastic element 15221 and the second elastic element 15222 are squeezed, and the first elastic element 15221 and the second elastic element 15222 can limit the vibration amplitude of the vibration assembly 220, thereby preventing
  • the vibration component 220 collides with other components of the vibration sensor 2200 (such as the substrate 211 and the housing 230 ), which improves the reliability of the vibration sensor 2200 .
  • Fig. 24 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 25 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • the vibration transducer 2400 shown in FIG. 24-FIG. 25 is similar to the vibration transducer 200 shown in FIG. 2 , the difference lies in that the elastic element and the mass element are connected in different ways.
  • the vibration assembly 220 of the vibration transducer 2400 can include a mass element 221 and an elastic element 222, wherein the elastic element 222 can surround the side wall connected to the mass element 221, and the inner side of the elastic element 222 is connected to the mass element 221 side wall connections.
  • the inner side of the elastic element 222 may refer to a side where the space surrounded by the elastic element 222 is located.
  • the sidewall of the mass element 221 may refer to a side of the mass element 221 parallel to the vibration direction.
  • the elastic element 222 may extend toward the acoustic transducer 210 and be directly or indirectly connected to the acoustic-electric transducer 210 .
  • one end of the elastic element 222 extending toward the acoustic transducer 210 may be directly physically connected (eg, glued) to the acoustic transducer 210 .
  • the acoustic transducer 210 may include a substrate, and one end of the elastic element 222 extending toward the acoustic transducer 210 may be connected to the acoustic transducer 210 through the substrate.
  • a first acoustic cavity is formed between the mass element 221 , the elastic element 222 and the acoustic transducer 210 , and the acoustic transducer 210 communicates with the first acoustic cavity through the sound inlet hole 2111 .
  • the elastic element 222 surrounds the side wall connected to the mass element 221, when the vibrating assembly 220 vibrates along the vibration direction, the momentum of the mass element 221 is converted into a force on the elastic element 222, so that the elastic element 222 undergoes shear deformation.
  • the shear deformation reduces the spring constant of the elastic element 222, which reduces the resonant frequency of the vibration sensor 2400, thereby improving the vibration amplitude of the mass element 221 during the vibration process of the vibration assembly 220, improving The sensitivity of the vibration sensor 2400 is improved.
  • the elastic element 222 undergoes shear deformation, as the deformation amount of the shear deformation increases, the direction in which the shear force acts on the mass element 221 changes accordingly, and the proportion of the shear force in the vibration direction becomes larger. Therefore, the elastic element 222 can provide sufficient elastic force for the mass element 221 in the vibration direction, so as to ensure the vibration performance of the vibration assembly 220 .
  • At least one of the housing 230 and the mass element 221 of the vibration sensor 2400 may be provided with at least one pressure relief hole.
  • the housing 230 may be provided with at least one pressure relief hole 2301 .
  • the pressure relief hole 2301 may pass through the housing 230 .
  • the mass element 221 may be provided with at least one pressure relief hole 2211 .
  • the pressure relief hole 2211 may pass through the mass element 221 .
  • the pressure relief hole 2211 on the mass element 221 can allow the gas in the first acoustic cavity 250 to communicate with the second acoustic cavity 260, and the pressure relief hole 2301 on the housing 230 can allow the gas in the second acoustic cavity 260 to communicate with the outside world.
  • the air pressure changes inside the first acoustic cavity 250 and the second acoustic cavity 260 caused by temperature changes during the preparation process of the vibration sensor 2400 (for example, during reflow soldering) can be reduced or prevented. Damage to the components, such as cracking, deformation, etc.
  • the casing 230 may be provided with at least one pressure relief hole 2301 , and the pressure relief hole 2301 may be used to reduce the damping generated by the gas inside the second acoustic cavity 260 when the mass element 221 vibrates.
  • a buffer 240 may be provided in the vibration sensor 2400 , and the buffer 240 may be used to limit the vibration amplitude of the vibration component 220 .
  • the vibration sensor 2400 is provided with a buffer 240, which can provide the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220, thereby limiting the vibration amplitude of the vibration component 220, thereby preventing the vibration component 220 from During the vibration process, it collides with other components in the vibration sensor 2400 (such as the acoustic transducer 210 and the housing 230 ), so as to protect the vibration component 220 and improve the reliability of the vibration sensor 2400 .
  • the buffer member 240 may be disposed in the second acoustic cavity 260 and connected to the mass element 221 and/or the housing 230 .
  • the buffer member 240 may be disposed on a side wall perpendicular to the vibration direction of the vibration component 220 in the second acoustic cavity 260 , and the buffer member 240 is connected to the housing 230 .
  • the buffer member 240 can provide the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220 .
  • the buffer member 240 is connected to the side wall of the housing 230, and the buffer member 240 provides a buffer distance for the vibration assembly 220 It may be the distance between the lower surface of the buffer member 240 along the vibration direction of the vibration assembly 220 and the upper surface of the mass element 221 along the vibration direction of the vibration assembly 220 .
  • the buffer member 240 may also be disposed in the first acoustic cavity 250 and connected to the mass element 221 and/or the substrate of the acoustic transducer 210 .
  • the buffer member 240 may not cover the pressure relief hole 2211 or the pressure relief hole 2301 .
  • a hole facing the pressure relief hole 2211 or the pressure relief hole 2301 may be provided on the buffer member 240 so that the buffer member 240 does not block the pressure relief hole 2211 or the pressure relief hole 2301 .
  • the buffer 240 can include a magnetic buffer 243 that can be used to generate a magnetic field.
  • the magnetic bumper 243 can include a coil that can generate a magnetic field.
  • the magnetic buffer 243 may be installed on the side wall of the acoustic transducer 210 connected to the first acoustic cavity 250 .
  • the magnetic buffer 243 may also be embedded in the side wall of the acoustic transducer 210 connected to the first acoustic cavity 250 .
  • the substrate for example, within the substrate.
  • the magnetic buffer 243 can also be installed on the side wall of the casing 230 perpendicular to the vibration direction of the second acoustic cavity 260 , or embedded in the side wall of the casing 230 .
  • the mass element 221 may include a magnetic element or a magnetizable element, the mass element 221 is located in the magnetic field generated by the magnetic buffer element 243, and the mass element 221 is subjected to the magnetic force of the magnetic field. .
  • the magnetic field generated by the magnetic buffer 243 can adjust the force on the mass element 221 , thereby limiting the vibration amplitude of the mass element 221 . More on the magnetic bumpers can be found in Figures 14A and 14B, and their related contents.
  • Fig. 26 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 27 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • the vibration sensor 2600 shown in FIGS. 26-27 is substantially the same as the vibration sensor 2400 shown in FIGS. 24-25 , except for the elastic element.
  • the elastic element 2622 of the vibration sensor 2600 may include a first elastic part 2622A and a second elastic part 2622B. Both ends of the first elastic portion 2622A are respectively connected to the side wall of the mass element 221 and the second elastic portion 2622B.
  • the second elastic portion 2622B extends toward the acoustic transducer 210 and is directly or indirectly connected to the acoustic transducer 210 .
  • the first elastic part 2622A is not connected/contacted with the acoustic transducer 210 or the substrate, which can effectively reduce the stiffness of the elastic element 2622, thereby increasing the vibration amplitude of the mass element 221 during the vibration process of the vibration assembly 220 , and further reduce the resonance frequency of the vibration sensor 2600 to increase the sensitivity of the vibration sensor 2600 .
  • the resonance frequency of the vibration sensor 2600 may be 1000Hz ⁇ 4000Hz.
  • the resonance frequency of the vibration sensor 2600 may be 1000Hz-3000Hz. More preferably, the resonance frequency of the vibration sensor 2600 may be 1000Hz-2000Hz. More preferably, the resonance frequency of the vibration sensor 2600 may be 1000Hz ⁇ 1500Hz.
  • the resonance frequency of the vibration sensor 2600 may be 2000Hz-4000Hz. More preferably, the resonance frequency of the vibration sensor 2600 may be 3000Hz-4000Hz. More preferably, the resonance frequency of the vibration sensor 2600 may be 2000Hz-3500Hz. More preferably, the resonance frequency of the vibration sensor 2600 may be 2500Hz-3000Hz.
  • the first elastic portion 2622A and the second elastic portion 2622B can be made of the same or different materials.
  • the Shore hardness of the first elastic portion 2622A and the second elastic portion 2622B may be 0.1-100HA.
  • the Shore hardness of the first elastic part 2622A and the second elastic part 2622B may be 0.2-95HA. More preferably, the Shore hardness of the first elastic part 2622A and the second elastic part 2622B may be 0.4-85HA. More preferably, the Shore hardness of the first elastic part 2622A and the second elastic part 2622B may be 0.6-75HA. More preferably, the Shore hardness of the first elastic part 2622A and the second elastic part 2622B may be 0.8-65HA.
  • the Shore hardness of the first elastic portion 2622A and the second elastic portion 2622B may be 1-55HA. More preferably, the Shore hardness of the first elastic part 2622A and the second elastic part 2622B may be 1-50 HA. More preferably, the Shore hardness of the first elastic portion 2622A and the second elastic portion 2622B may be 1-40HA. More preferably, the Shore hardness of the first elastic portion 2622A and the second elastic portion 2622B may be 1-30HA. More preferably, the Shore hardness of the first elastic part 2622A and the second elastic part 2622B may be 1-20HA. More preferably, the Shore hardness of the first elastic portion 2622A and the second elastic portion 2622B may be 1-10HA.
  • the thickness of the first elastic portion 2622A along the vibration direction of the vibration component 220 is 10-300 um.
  • the thickness of the first elastic portion 2622A along the vibration direction of the vibration component 220 is 30-260um. More preferably, the thickness of the first elastic portion 2622A along the vibration direction of the vibration component 220 is 50-240um. More preferably, the thickness of the first elastic portion 2622A along the vibration direction of the vibration component 220 is 50-200um. More preferably, the thickness of the first elastic portion 2622A along the vibration direction of the vibration component 220 is 70-160 um. More preferably, the thickness of the first elastic portion 2622A along the vibration direction of the vibration component 220 is 90-120 um. More preferably, the thickness of the first elastic portion 2622A along the vibration direction of the vibration component 220 is 100-110 um.
  • the length of the first elastic portion 2622A along the direction perpendicular to the vibration direction of the mass element 221 (that is, the width from one side close to the mass element 221 to the other side away from the mass element 221 ) is 10 -300um. In some embodiments, the width of the first elastic portion 2622A from one side close to the mass element 221 to the other side away from the mass element 221 is 40-240 um. In some embodiments, the width of the first elastic portion 2622A from one side close to the mass element 221 to the other side away from the mass element 221 is 60-180 um.
  • the width of the first elastic portion 2622A from one side close to the mass element 221 to the other side away from the mass element 221 is 90-120 um. In some embodiments, the width of the first elastic portion 2622A from one side close to the mass element 221 to the other side away from the mass element 221 is 100-110 um. In some embodiments, the width of the second elastic portion 2622B from one side close to the mass element 221 to the other side away from the mass element 221 is 20-280 um. In some embodiments, the width of the second elastic portion 2622B from one side close to the mass element 221 to the other side away from the mass element 221 is 50-240 um.
  • the width of the second elastic portion 2622B from one side close to the mass element 221 to the other side away from the mass element 221 is 50-220 um. In some embodiments, the width of the second elastic portion 2622B from one side close to the mass element 221 to the other side away from the mass element 221 is 70-160 um. In some embodiments, the width of the second elastic portion 2622B from one side close to the mass element 221 to the other side away from the mass element 221 is 90-120 um. In some embodiments, the width of the second elastic portion 2622B from one side close to the mass element 221 to the other side away from the mass element 221 is 100-110 um.
  • the vibration sensor 2600 may also be provided with a buffer 240 , and the buffer 240 may be used to limit the vibration amplitude of the vibration component 220 .
  • the vibration sensor 2600 is provided with a buffer 240, which can provide the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220, thereby limiting the vibration amplitude of the vibration component 220, thereby preventing the vibration component 220 from During the vibration, it collides with other components in the vibration sensor 2600 (such as the acoustic transducer 210 and the housing 230 ), so as to protect the vibration component 220 and improve the reliability of the vibration sensor 2600 .
  • the structure and arrangement of the buffer in FIG. 26 are substantially the same as those in FIG. 24 .
  • the buffer member 240 may be disposed in the second acoustic cavity 260 and connected to the mass element 221 and/or the housing 230 .
  • the buffer member 240 may also be disposed in the first acoustic cavity 250 and connected to the mass element 221 and/or the substrate of the acoustic transducer 210 .
  • the buffer member 240 can provide the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220 .
  • the buffer 240 may include a magnetic buffer 243 that may be used to generate a magnetic field.
  • the mass element 221 may include a magnetic element or a magnetizable element, the mass element 221 is located in the magnetic field generated by the magnetic buffer element 243, and the mass element 221 is subjected to the magnetic force of the magnetic field.
  • the magnetic field generated by the magnetic buffer 243 can adjust the force on the mass element 221 , thereby limiting the vibration amplitude of the mass element 221 . More on the magnetic bumpers can be found in Figures 14A and 14B, and their related contents.
  • the structure and arrangement of the buffer member 240 may also be similar to that of FIG. 3 .
  • the buffer member 240 may include a first buffer portion and a second buffer portion, and the first buffer portion and the second buffer portion are respectively disposed on two sides of the elastic element 2622 along the vibration direction of the vibration assembly 220 .
  • the first buffer part is connected to the housing 230 or the first elastic part 2622A.
  • the second buffer part is connected with the acoustic transducer or the second elastic element 15222 .
  • the first buffer portion can provide the vibration component 220 with a first buffer distance along the vibration direction of the vibration component 220
  • the second buffer portion can provide the vibration component 220 with a second buffer distance along the vibration direction of the vibration component 220 distance.
  • the structure and arrangement of the buffer member 240 may be similar to that of FIG. 4 .
  • the buffer 240 may be connected between the first elastic portion 2622A and the acoustic transducer 210 (and/or the housing 230).
  • the first buffer portion and the second buffer portion of the buffer member 240 are respectively disposed on two sides of the first elastic portion 2622A along the vibration direction of the vibration assembly 220 .
  • two ends of the first buffer portion located in the second acoustic cavity 260 along the vibration direction of the vibration assembly 220 are respectively connected to the housing 230 and the first elastic portion 2622A.
  • the two ends of the second buffer part located in the first acoustic cavity 250 along the vibration direction of the vibration assembly 220 are respectively connected to the acoustic transducer 210 and the first elastic part 2622A.
  • Fig. 28 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 29 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • the elastic element 2822 of the vibration assembly 220 shown in FIGS. 28-29 is disposed opposite to the acoustic transducer 210 , and the first acoustic cavity 250 is formed between the elastic element 2822 and the acoustic transducer 210 .
  • the elastic element 2822 may include an elastic film 28221 , and the side of the elastic film 28221 facing the first acoustic cavity 250 is provided with a protruding structure 28222 .
  • the raised structure 28222 and the elastic film 28221 can form the first acoustic cavity 250 together with the acoustic transducer 210, wherein the elastic film 28221 forms the first side wall of the first acoustic cavity 250, and the acoustic transducer 210 is perpendicular to the vibration component
  • the upper surface in the vibration direction of 220 forms the second side wall of the first acoustic cavity 250 .
  • the outer edge of the elastic membrane 28221 can be physically connected to the acoustic transducer 210 .
  • the connection between the top of the protruding structure 28222 disposed on the periphery of the elastic membrane 28221 and the surface of the acoustic transducer 210 can be sealed by the sealing member 2801, so that the protruding structure 28222, the elastic membrane 28221, the sealing member 2801 and the acoustic transducer 210 together form a closed first acoustic cavity 250. It can be understood that the location of the sealing member 2801 is not limited to the above description.
  • the sealing member 2801 may not be limited to be disposed at the joint between the top of the protruding member 28222 and the surface of the acoustic transducer 210, but may also be disposed on the protruding structure 28222 for forming the first acoustic cavity 250.
  • the outer side that is, the side of the protruding structure 28222 away from the first acoustic cavity 250.
  • a sealing structure may also be provided inside the first acoustic cavity 250 .
  • the sealing member 2801 can be made of materials such as silica gel and rubber, so as to further improve the sealing performance of the sealing member 2801 .
  • the type of the sealing component 2801 may include one or more of a sealing ring, a sealing gasket, and a sealing strip.
  • the protruding structure 28222 may be disposed on at least a partial area of the side of the elastic film 28221 facing the first acoustic cavity 250 (ie, the lower surface of the elastic film 28221 ). In some embodiments, the protruding structure 28222 may be disposed on all areas of the side of the elastic film 28221 facing the first acoustic cavity 250 (ie, the lower surface of the elastic film 28221 ). In some embodiments, the ratio of the area of the lower surface of the elastic film 28221 occupied by the protruding structure 28222 to the area of the lower surface of the elastic film 28221 may be less than three quarters.
  • the ratio of the area occupied by the protruding structure 28222 to the area of the lower surface of the elastic film 28221 may be less than two thirds. In some embodiments, the ratio of the area occupied by the protruding structure 28222 to the area of the lower surface of the elastic film 28221 may be less than half. In some embodiments, the ratio of the area occupied by the protruding structure 28222 to the area of the lower surface of the elastic film 28221 may be less than a quarter. In some embodiments, the ratio of the area occupied by the protruding structure 28222 to the area of the lower surface of the elastic film 28221 may be less than one-sixth.
  • the protruding structure 28222 may have certain elasticity. Since the protruding structure 28222 has elasticity, it will be elastically deformed when pressed by an external force. In some embodiments, the top of the protruding structure 28222 abuts against the side wall of the first acoustic cavity 250 opposite to the elastic element 2822 (ie, the second side wall of the first acoustic cavity 250 ). In some embodiments, the top refers to the end of the protruding structure 28222 away from the elastic film 28221 . When the protruding structure 28222 abuts against the second side wall of the first acoustic cavity 250 , the vibration of the elastic element 2822 will drive the protruding structure 28222 to move.
  • the protruding structure 28222 is pressed against the second side wall of the first acoustic cavity 250, so that the protruding structure 28222 is elastically deformed.
  • the elastic deformation can make the protruding structure 28222 protrude further into the first acoustic cavity 250 , reducing the volume of the first acoustic cavity 250 . Therefore, the volume change of the first acoustic cavity 250 can be further increased, thereby improving the sensitivity of the vibration sensor 2800 .
  • the volume V 0 of the first acoustic cavity 250 is related to the density of the raised structures 28222 that make up the first acoustic cavity 250 . It can be understood that the smaller the distance between adjacent protruding structures 28222, the higher the density of the protruding structures 28222, and therefore the smaller the volume V 0 of the first acoustic cavity 250 formed by the protruding structures 28222.
  • the interval between adjacent raised structures 28222 may refer to the distance between centers of adjacent raised structures 28222 . The center here can be understood as the centroid on the cross section of the protruding structure 28222 . For the convenience of description, the interval between adjacent protruding structures 28222 can be represented by L1 in FIG.
  • the interval L1 between adjacent protruding structures 28222 may be in the range of 1 ⁇ m-2000 ⁇ m. In some embodiments, the interval L1 between adjacent protruding structures 28222 may be in the range of 4 ⁇ m-1500 ⁇ m. In some embodiments, the interval L1 between adjacent protruding structures 28222 may be in the range of 8 ⁇ m-1000 ⁇ m. In some embodiments, the interval L1 between adjacent protruding structures 28222 may be in the range of 10 ⁇ m-500 ⁇ m.
  • the volume V 0 of the first acoustic cavity 250 is related to the width of the raised structure 28222 .
  • the width of the protruding structure 28222 can be understood as the dimension of the protruding structure 28222 in a direction perpendicular to the vibration direction of the mass element 221 .
  • the dimension of the protruding structure 28222 perpendicular to the vibration direction of the mass element 221 can be represented by L2 in FIG. 28 .
  • the width L2 of a single raised structure 28222 may be in the range of 1 ⁇ m-1000 ⁇ m. In some embodiments, the width L2 of a single raised structure 28222 may be in the range of 2 ⁇ m-800 ⁇ m.
  • the width L2 of a single raised structure 28222 may be in the range of 3 ⁇ m-600 ⁇ m. In some embodiments, the width L2 of a single raised structure 28222 may be in the range of 6 ⁇ m-400 ⁇ m. In some embodiments, the width of a single raised structure 28222 may be in the range of 10 ⁇ m-300 ⁇ m.
  • the ratio of the width L2 of the raised structures 28222 to the interval L1 between adjacent raised structures 28222 is within a certain range. In some embodiments, the ratio of the width L2 of the raised structures 28222 to the interval L1 between adjacent raised structures 28222 is in the range of 0.05-20. In some embodiments, the ratio of the width L2 of the raised structures 28222 to the interval L1 between adjacent raised structures 28222 is in the range of 0.1-20. In some embodiments, the ratio of the width L2 of the raised structures 28222 to the interval L1 between adjacent raised structures 28222 is in the range of 0.1-10.
  • the ratio of the width L2 of the raised structures 28222 to the interval L1 between adjacent raised structures 28222 is in the range of 0.5-8. In some embodiments, the ratio of the width L2 of the raised structures 28222 to the interval L1 between adjacent raised structures 28222 is in the range of 1-6. In some embodiments, the ratio of the width L2 of the raised structures 28222 to the interval L1 between adjacent raised structures 28222 is in the range of 2-4.
  • the volume V 0 of the first acoustic cavity 250 is related to the height H1 of the raised structure 28222 .
  • the height of the protruding structure 28222 can be understood as the size of the protruding structure 28222 in the vibration direction of the mass element 221 when the protruding structure 28222 is in a natural state (for example, when the protruding structure 28222 is not compressed and elastically deformed).
  • the size of the protruding structure 28222 in the vibration direction of the mass element 221 can be represented by H1 in FIG. 28 .
  • the height H1 of the raised structures 28222 may be in the range of 1 ⁇ m-1000 ⁇ m.
  • the height H1 of the raised structures 28222 may be in the range of 2 ⁇ m-800 ⁇ m. In some embodiments, the height H1 of the raised structures 28222 may be in the range of 4 ⁇ m-600 ⁇ m. In some embodiments, the height H1 of the raised structures 28222 may be in the range of 6 ⁇ m-500 ⁇ m. In some embodiments, the height H1 of the raised structures 28222 may be in the range of 8 ⁇ m-400 ⁇ m. In some embodiments, the height H1 of the raised structures 28222 may be in the range of 10 ⁇ m-300 ⁇ m.
  • the difference between the height of the first acoustic cavity 250 and the height of the raised structure 28222 is within a certain range.
  • at least a portion of raised structure 28222 may not be in contact with acoustic transducer 210 .
  • the gap between the raised structure 28222 and the surface of the acoustic transducer 210 refers to the distance between the top of the raised structure 28222 and the surface of the acoustic transducer 210 .
  • the gap may be formed during the process of processing the protruding structure 28222 or installing the elastic element 2822 .
  • the height of the first acoustic cavity 250 can be understood as the dimension in the first direction of the first acoustic cavity 250 in a natural state (for example, when the first side wall and the second side wall do not vibrate or elastically deform). .
  • the size of the first acoustic cavity 250 in the vibration direction of the mass element 221 can be represented by H2 in FIG. 28 .
  • the difference between the height H1 of the raised structure 28222 and the height H2 of the first acoustic cavity 250 may be within 20%.
  • the difference between the height H1 of the raised structure 28222 and the height H2 of the first acoustic cavity 250 may be within 15%.
  • the difference between the height H1 of the raised structure 28222 and the height H2 of the first acoustic cavity 250 may be within 10%. In some embodiments, the difference between the height H1 of the raised structure 28222 and the height H2 of the first acoustic cavity 250 may be within 5%. In some embodiments, the gap between the raised structures 28222 and the surface of the acoustic transducer 210 may be within 10 ⁇ m. In some embodiments, the gap between the raised structures 28222 and the surface of the acoustic transducer 210 may be within 5 ⁇ m. In some embodiments, the gap between the raised structures 28222 and the surface of the acoustic transducer 210 may be within 1 ⁇ m.
  • the elastic element 2822 When the vibration sensor 2800 is working, the elastic element 2822 will vibrate or elastically deform after receiving an external signal (for example, a vibration signal) and drive the protruding structure 28222 to move along the vibration direction of the mass element 221, so that the first acoustic The cavity 250 shrinks or expands, and the resulting volume change of the first acoustic cavity 250 can be expressed as ⁇ V1. Because the movement amplitude of the elastic element 2822 and the protruding structure 28222 in the vibration direction of the mass element 221 is relatively small, for example, the movement amplitude of the protruding structure 28222 in the vibration direction of the mass element 221 is usually less than 1 ⁇ m. During this process, the protruding The structure 28222 may not be in contact with the surface of the acoustic transducer 210, so ⁇ V1 is independent of the raised structure 28222, and the value of ⁇ V1 is small.
  • an external signal for example, a vibration signal
  • the ratio or difference between the height H1 of the protruding structure 28222 and the thickness of the elastic film 28221 is within a certain range. In some embodiments, the ratio of the height H1 of the protruding structure 28222 to the thickness H3 of the elastic film 28221 is in the range of 0.5-500. In some embodiments, the ratio of the height H1 of the protruding structure 28222 to the thickness H3 of the elastic film 28221 is in the range of 1-500.
  • the ratio of the height H1 of the protruding structure 28222 to the thickness H3 of the elastic film 28221 is in the range of 1-200. In some embodiments, the ratio of the height H1 of the protruding structure 28222 to the thickness H3 of the elastic film 28221 is in the range of 1-100. In some embodiments, the ratio of the height H1 of the protruding structure 28222 to the thickness H3 of the elastic film 28221 is in the range of 10-90. In some embodiments, the ratio of the height H1 of the protruding structure 28222 to the thickness H3 of the elastic film 28221 is in the range of 20-80. In some embodiments, the ratio of the height H1 of the protruding structure 28222 to the thickness H3 of the elastic film 28221 is in the range of 40-60.
  • the ratio of the projected area of the mass element 221 in the vibration direction of the mass element 221 to the projected area of the first acoustic cavity 250 in the vibration direction of the mass element 221 may be within a certain range. In some embodiments, the ratio of the projected area of the mass element 221 in the vibration direction of the mass element 221 to the projected area of the first acoustic cavity 250 in the vibration direction of the mass element 221 may be in the range of 0.05-0.95. In some embodiments, the ratio of the projected area of the mass element 221 in the vibration direction of the mass element 221 to the projected area of the first acoustic cavity 250 in the vibration direction of the mass element 221 may be in the range of 0.2-0.9.
  • the ratio of the projected area of the mass element 221 in the vibration direction of the mass element 221 to the projected area of the first acoustic cavity 250 in the vibration direction of the mass element 221 may be in the range of 0.4-0.7. In some embodiments, the ratio of the projected area of the mass element 221 in the vibration direction of the mass element 221 to the projected area of the first acoustic cavity 250 in the vibration direction of the mass element 221 may be in the range of 0.5-0.6.
  • the buffer member 240 may be disposed in the second acoustic cavity 260 , and the buffer member 240 is connected to the mass element 221 and/or the housing 230 .
  • the buffer member 240 can provide the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220 .
  • the buffer distance provided by the buffer member 240 for the vibration component may be 240 is the distance between the lower surface of the vibration component 220 and the upper surface of the mass element 221 along the vibration direction.
  • the vibrating component 220 vibrates to a certain amplitude (that is, when the mass element 221 is in contact with the buffer member 240), it will squeeze the buffer member 240, thereby limiting the vibration amplitude of the mass element 221, and then Prevent the mass element 221 from colliding with the housing 230 and improve the reliability of the vibration sensor 2800 .
  • the protruding structure 28222 of the elastic element 2822 abuts against the side wall of the first acoustic cavity 250 opposite to the elastic element 2822 (eg, the substrate of the acoustic transducer 210 ), the protruding The protruding structure 28222 has elasticity, and when the vibrating component 220 vibrates, the protruding structure 28222 can produce elastic deformation under the action of the vibrating component 220 .
  • the vibration amplitude of the vibration component 220 can be limited, thereby preventing the elastic film 28221 from colliding with the acoustic transducer 210 due to excessive vibration amplitude, thereby improving the reliability of the vibration sensor 2800.
  • the buffer 240 is disposed in the second acoustic cavity 260 , and the buffer 240 may also be connected between the vibrating assembly 220 and the casing 230 .
  • two ends of the buffer member 240 along the vibration direction of the vibration assembly 220 may be respectively connected to the housing 230 and the elastic film 28221 of the elastic element 2822 .
  • two ends of the buffer member 240 along the vibration direction of the vibration assembly 220 may be respectively connected to the housing 230 and the mass element 221 .
  • the number of buffers 240 may be multiple, and two ends of each buffer 240 along the vibration direction of the vibration assembly 220 are respectively connected to the housing 230 and the vibration assembly 220 .
  • the buffer member 240 when the buffer member 240 is connected between the vibration assembly 220 and the housing 230 , the buffer member 240 provides the vibration assembly 220 with a buffer distance along the vibration direction of the vibration assembly 220 .
  • the buffering distance may be a difference distance between the natural length of the buffering member 240 and the length when the buffering member 240 undergoes maximum deformation.
  • the buffer 240 can include a magnetic buffer 243 that can be used to generate a magnetic field.
  • the magnetic buffer 243 (such as a coil) can be installed on the side wall of the second acoustic cavity 260 , such as the housing 230 facing the side wall of the mass element 221 along the vibration direction of the vibrating assembly 220 .
  • the magnetic buffer 243 (such as a coil) may also be embedded in the sidewall of the second acoustic cavity 260 , for example, the housing 230 faces the sidewall of the mass element 221 along the vibration direction of the vibrating assembly 220 .
  • the magnetic buffer 243 (such as a coil) can also be embedded in the substrate of the acoustic transducer 210 .
  • the mass element 221 may include a magnetic element or a magnetizable element, the mass element 221 is located in the magnetic field generated by the magnetic buffer element 243, and the mass element 221 is subjected to the magnetic force of the magnetic field.
  • the magnetic field generated by the magnetic buffer 243 can adjust the force on the mass element 221 , thereby limiting the vibration amplitude of the mass element 221 . More information about the magnetic bumper can be found in FIGS. 14A and 14B and their related contents.
  • Fig. 30 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 31 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 32 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • the structure of the vibration sensor 3000 shown in FIGS. 30-32 is substantially the same as that of the vibration sensor 200 shown in FIGS. 2-4 , except for the vibration component.
  • the vibration assembly 220 of the vibration sensor 3000 may include a mass element 221 , an elastic element 222 and a support element 223 .
  • the mass element 221 and the supporting element 223 are physically connected to two sides of the elastic element 222 respectively.
  • the mass member 221 and the supporting member 223 may be connected to the upper surface and the lower surface of the elastic member 222, respectively.
  • the supporting element 223 is physically connected to the acoustic transducer 210 , for example, the upper end of the supporting element 223 may be connected to the lower surface of the elastic element 222 , and the lower end thereof may be connected to the acoustic transducer 210 .
  • the support member 223 , the elastic member 222 and the acoustic transducer 210 may form a first acoustic cavity 250 .
  • the mass element 221 can compress the area where the elastic element 222 contacts the support element 223 during the vibration process, and the compression deformation of the elastic element 222 can The volume of the first acoustic cavity 250 is changed, so that the acoustic transducer 210 can generate electrical signals based on the volume change of the first acoustic cavity 250 .
  • the cross-sectional area of the mass element 221 along the vibration direction perpendicular to the vibration component 220 is greater than the cross-sectional area of the first acoustic cavity 250 along the vibration direction perpendicular to the vibration component 220 .
  • the cross-sectional area of the elastic element 222 along the vibration direction perpendicular to the vibration component 220 is greater than the cross-sectional area of the first acoustic cavity 250 along the vibration direction perpendicular to the vibration component 220 .
  • the cross-sectional area of the mass element 221 along the vibration direction perpendicular to the vibration component 220 is larger than the cross-sectional area of the first acoustic cavity 250 along the vibration direction perpendicular to the vibration component 220, it can be understood that the mass element 221 can The upper opening of an acoustic chamber 250 is completely covered.
  • the cross-sectional area of the elastic element 222 along the vibration direction perpendicular to the vibration assembly 220 may be larger than the cross-sectional area of the first acoustic cavity 250 along the vibration direction perpendicular to the vibration assembly 220, it can be understood that the elastic element 222 can connect the first acoustic cavity 250 The upper opening is completely covered.
  • the deformed area of the vibration assembly 220 can be formed by the elastic element 222 and the elastic element 222.
  • the first acoustic cavity 250 described in this specification may refer to the area of the cross-section perpendicular to the vibration direction of the vibration component 220 on the side of the first acoustic cavity 250 close to the elastic element 222 .
  • the support element 223 when the mass element 221 vibrates, only the area where the elastic element 222 contacts with the support element 223 undergoes compression deformation, and the contact portion between the elastic element 222 and the support element 223 is equivalent to a spring, and the support element 223 can be provided to increase Vibration sensor 3000 sensitivity.
  • the first acoustic cavity 250 may directly communicate with the sound inlet hole 2111 of the acoustic transducer 210 to form an acoustic connection between the first acoustic cavity 250 and the acoustic transducer 210 .
  • the supporting element 223 may be a rigid material (eg, metal, plastic, etc.) to support the elastic element 222 and the mass element 221 .
  • the rigid support element 223 cooperates with the elastic element 222 and the mass element 221 to change the volume of the first acoustic cavity 250, the rigid support element 223 is easy to process, and can be processed into a thinner acoustic cavity.
  • the supporting element 223 is more convenient to precisely limit the height of the first acoustic cavity 250 (for example, the height of the first acoustic cavity 250 can be made smaller), thereby improving the sensitivity of the vibration sensor 3300 .
  • the thickness of the support element 223 may be the distance between the lower surface of the support element 223 and its upper surface. In some embodiments, the thickness of the support element 223 may be greater than a first thickness threshold (eg, 1 um). In some embodiments, the thickness of the support element 223 may be less than a second thickness threshold (eg, 1000 um). For example, the thickness of the supporting element 223 may be 1um ⁇ 1000um. For another example, the thickness of the supporting element 223 may be 5um ⁇ 600um. For another example, the thickness of the supporting element 223 may be 10um ⁇ 200um.
  • a first thickness threshold eg, 1 um
  • a second thickness threshold eg, 1000 um
  • the thickness of the supporting element 223 may be 1um ⁇ 1000um.
  • the thickness of the supporting element 223 may be 5um ⁇ 600um.
  • the thickness of the supporting element 223 may be 10um ⁇ 200um.
  • the height of the first acoustic cavity 250 may be equal to the thickness of the support member 223 . In other embodiments, the height of the first acoustic cavity 250 may be smaller than the thickness of the supporting element 223 .
  • support element 223 may comprise a ring structure.
  • the first acoustic cavity 250 can be located in the hollow portion of the ring structure, and the elastic element 222 can be arranged above the ring structure and close the hollow portion of the ring structure to form the first acoustic cavity 250.
  • the ring structure may include a circular ring structure, a triangular ring structure, a rectangular ring structure, a hexagonal ring structure, an irregular ring structure and the like.
  • the annular structure may include an inner edge and an outer edge surrounding the inner edge.
  • the shape of the inner and outer edges of the ring can be the same.
  • the inner edge and the outer edge of the ring structure can be both circular, and the ring structure at this time is a circular ring structure;
  • the structure is a hexagonal ring.
  • the shape of the inner and outer edges of the annular structure can be different.
  • the inner edge of the annular structure may be circular, and the outer edge of the annular structure may be rectangular.
  • the outer edge of the mass element 221 and the outer edge of the elastic element 222 may both be located on the supporting element 223 .
  • the outer edge of the mass element 221 and the outer edge of the elastic element 222 may both be located on the upper surface of the ring structure, or the outer edge of the mass element 221 and the outer edge of the elastic element 222 may be flush with the outer ring of the ring structure.
  • the outer edge of the mass element 221 and the outer edge of the elastic element 222 may both be located outside the supporting element 223 .
  • the outer edge of the mass element 221 and the outer edge of the elastic element 222 may both be located outside the outer ring of the ring structure.
  • the difference between the inner and outer diameters of the annular structure may be greater than a first difference threshold (eg, 1 um). In some embodiments, the difference between the inner and outer diameters of the annular structure may be less than a second difference threshold (eg, 300um). For example, the difference between the inner diameter and the outer diameter of the annular structure may be 1um ⁇ 300um. For another example, the difference between the inner diameter and the outer diameter of the annular structure may be 5um ⁇ 200um. For another example, the difference between the inner diameter and the outer diameter of the annular structure may be 10um ⁇ 100um.
  • a first difference threshold eg, 1 um
  • a second difference threshold eg, 300um
  • the difference between the inner diameter and the outer diameter of the annular structure may be 1um ⁇ 300um.
  • the difference between the inner diameter and the outer diameter of the annular structure may be 5um ⁇ 200um.
  • the difference between the inner diameter and the outer diameter of the annular structure may be 10um ⁇ 100um.
  • the area of the area where the elastic element 222 contacts the supporting element 223 can be defined, therefore, by setting the difference between the inner diameter and the outer diameter of the annular structure within the above range, it is possible to Increase the sensitivity of the vibration sensor 3000.
  • the buffer member 240 may be disposed in the second acoustic cavity 260 , and the buffer member 240 is connected to the mass element 221 and/or the housing 230 .
  • the buffer member 240 can provide the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220 .
  • the buffer member 240 is disposed in the second acoustic cavity 260 and connected to the side wall of the housing 230 facing the mass element 221 along the vibration direction of the vibration component 220.
  • the buffer member 240 provides a buffer distance for the vibration component It may be the distance between the lower surface of the buffer member 240 along the vibration direction of the vibration assembly 220 and the upper surface of the mass element 221 .
  • the vibration component 220 vibrates to a certain amplitude (that is, when the mass element 221 is in contact with the buffer member 240) and will squeeze the buffer member 240, thereby limiting the vibration amplitude of the mass element 221, thereby preventing The collision between the mass element 221 and the housing 230 improves the reliability of the vibration sensor 3000 .
  • the buffer member 240 is disposed in the second acoustic cavity 260 , and the buffer member 240 may be connected between the vibration assembly 220 and the housing 230 .
  • two ends of the buffer member 240 along the vibration direction of the vibration assembly 220 may be respectively connected to the housing 230 and the mass element 221 .
  • the number of buffers 240 may be multiple, and the two ends of the plurality of buffers 240 along the vibration direction of the vibration assembly 220 are respectively connected to the housing 230 and the vibration assembly 220 .
  • the buffer member 240 when the buffer member 240 is connected between the vibration assembly 220 and the housing 230 , the buffer member 240 provides the vibration assembly 220 with a buffer distance along the vibration direction of the vibration assembly 220 .
  • the buffering distance may be a difference distance between the natural length of the buffering member 240 and the length when the buffering member 240 undergoes maximum deformation.
  • the bumper 240 can include a magnetic bumper 243 that can be used to generate a magnetic field.
  • the magnetic buffer 243 (such as a coil) can be installed on the side wall of the second acoustic cavity 260 , such as the housing 230 facing the side wall of the mass element 221 along the vibration direction of the vibrating assembly 220 .
  • the magnetic buffer 243 (such as a coil) may also be embedded in the sidewall of the second acoustic cavity 260 , for example, the housing 230 faces the sidewall of the mass element 221 along the vibration direction of the vibrating assembly 220 .
  • the magnetic buffer 243 (such as a coil) can also be embedded in the substrate of the acoustic transducer 210 .
  • the mass element 221 may include a magnetic element or a magnetizable element, the mass element 221 is located in the magnetic field generated by the magnetic buffer element 243, and the mass element 221 is subjected to the magnetic force of the magnetic field.
  • the magnetic field generated by the magnetic buffer 243 can adjust the force on the mass element 221 , thereby limiting the vibration amplitude of the mass element 221 . More on the magnetic bumpers can be found in Figures 14A and 14B, and their related contents.
  • Fig. 33 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 34 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • Fig. 35 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • the vibration sensor 3300 shown in FIGS. 33-35 is similar to the vibration sensor 3000 shown in FIG. 30 , the difference lies in the elastic element and the supporting element.
  • the vibration sensor 3300 replaces the structure of the support element 223 and the elastic element 222 of the vibration sensor 3000 with the elastic support element 3324, that is, the vibration component 220 of the vibration sensor 3300 includes the mass element 221 and the elastic support element 3324.
  • the elastic support member 3324 may be a material with certain elasticity.
  • polymer elastic materials such as polytetrafluoroethylene and polydimethylsiloxane are included.
  • the thickness of the support element 223 can be smaller than the thickness of the elastic support element 3324, so that the size of the first acoustic cavity 250 of the vibration sensor 3000 is smaller, so that The vibration sensor 3000 has higher sensitivity.
  • the cross-sectional area of the support element 223 along the vibration direction perpendicular to the vibration assembly 220 can be larger than that of the elastic support element 3324
  • the cross-sectional area perpendicular to the vibration direction of the vibration assembly 220 is made smaller, so that the area for compressive deformation is smaller, so that the equivalent stiffness of the vibration assembly 220 of the vibration sensor 3000 is smaller, and the smaller equivalent stiffness means with a lower resonant frequency.
  • the vibration sensor 3300 may further include a buffer 240 , and the structure and arrangement of the buffer 240 are substantially the same as those in FIG. 30 .
  • the buffer member 240 may be disposed in the second acoustic cavity 260 , and the buffer member 240 is connected to the mass element 221 and/or the housing 230 .
  • the buffer member 240 can provide the vibration component 220 with a buffer distance along the vibration direction of the vibration component 220 .
  • the vibration component 220 vibrates to a certain amplitude (that is, when the mass element 221 is in contact with the buffer member 240), it will squeeze the buffer member 240, thereby limiting the vibration amplitude of the mass element 221, and then Prevent the mass element 221 from colliding with the housing 230 and improve the reliability of the vibration sensor 3000 .
  • the elastic support element 3324 since the elastic support element 3324 has certain elasticity, when the vibration assembly 220 vibrates, the elastic support element 3324 can produce elastic deformation under the action of the vibration assembly 220 .
  • the elastic support element 3324 can limit the vibration amplitude of the mass element 221 during elastic deformation, so as to prevent the mass element 221 from colliding with the acoustic transducer 210 due to excessive vibration amplitude, thereby improving the reliability of the vibration sensor 3300 .
  • the structure and arrangement of the buffer member 240 are substantially the same as those in FIG. 31 .
  • the buffer member 240 is disposed in the second acoustic cavity 260 , and the buffer member 240 may be connected between the vibration assembly 220 and the casing 230 .
  • two ends of the buffer member 240 along the vibration direction of the vibration assembly 220 may be respectively connected to the housing 230 and the mass element 221 .
  • the number of buffers 240 may be multiple, and the two ends of the plurality of buffers 240 along the vibration direction of the vibration assembly 220 are respectively connected to the housing 230 and the vibration assembly 220 .
  • the buffer member 240 when the buffer member 240 is connected between the vibration assembly 220 and the housing 230 , the buffer member 240 provides the vibration assembly 220 with a buffer distance along the vibration direction of the vibration assembly 220 .
  • the buffer 240 may include a magnetic buffer 243 which may be used to generate a magnetic field.
  • the magnetic buffer 243 (such as a coil) can be installed on the side wall of the second acoustic cavity 260, or embedded in the side wall of the second acoustic cavity 260, and the side wall can be the housing 230 along the The vibration direction of the vibration assembly 220 is directly opposite to the side wall of the mass element 221 .
  • the magnetic buffer 243 (such as a coil) can also be embedded in the substrate of the acoustic transducer 210 .
  • the mass element 221 when the buffer element 240 includes a magnetic buffer element 243, the mass element 221 may include a magnetic element or a magnetizable element, the mass element 221 is located in the magnetic field generated by the magnetic buffer element 243, and the mass element 221 is subjected to the magnetic force of the magnetic field. .
  • the magnetic field generated by the magnetic buffer 243 can adjust the force on the mass element 221 , thereby limiting the vibration amplitude of the mass element 221 .
  • Fig. 36 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • vibration assembly 220 of vibration sensor 3600 may include one or more sets of elastic elements and mass elements.
  • the elastic element may be a diaphragm
  • the mass element may be a mass, that is, the vibration component 220 of the vibration sensor 3600 may include one or more sets of diaphragms and masses.
  • One or more sets of elastic elements may include a first elastic element 3621 (namely the first diaphragm), a second elastic element 3622 (i.e.
  • One or more groups of mass elements may include a first mass element 3611 (ie, a first mass block), a second mass element 3612 (ie, a second mass block) and a third mass element arranged in sequence along the vibration direction of the vibration assembly 220 3613 (ie the third mass block).
  • the first elastic element 3621 is connected to the first mass element 3611
  • the second elastic element 3622 is connected to the second mass element 3612
  • the third elastic element 3623 is connected to the third mass element 3613 .
  • the distance between any two adjacent elastic elements in the first elastic element 3621, the second elastic element 3622 and the third elastic element 3623 is not less than the maximum amplitude of the two adjacent elastic elements . This arrangement can ensure that the elastic element will not interfere with adjacent elastic elements when vibrating, thereby affecting the transmission effect of the vibration signal.
  • the vibrating component 220 includes multiple groups of elastic elements and mass elements, the elastic elements are arranged sequentially along the vibration direction of the vibrating component 220 , and the distances between adjacent elastic elements can be the same or different.
  • gaps between the elastic element and its adjacent elastic elements can form multiple cavities, and the multiple cavities between the elastic element and its adjacent elastic elements can accommodate air and allow the elastic element to vibrate therein.
  • the vibrating assembly 220 may further include a limiting structure (not shown in the figure), which is configured to make the distance between adjacent elastic elements in the vibrating assembly 220 not less than the distance between the adjacent elastic elements maximum amplitude.
  • the limiting structure may be connected to the edge of the elastic element, and by controlling the damping of the limiting structure so as not to interfere with the vibration of the elastic element.
  • each set of elastic elements and mass elements may include multiple mass elements, and the multiple mass elements may be respectively arranged on both sides of the elastic element.
  • a group of vibrating components includes two mass elements, and the two mass elements are symmetrically arranged on both sides of the elastic element.
  • the mass elements in multiple groups of vibrating components can be located on the same side of the elastic element, wherein the mass element can be arranged on the outside or inside of the elastic element, wherein the side of the elastic element close to the acoustic transducer 210 is the inner side , the side away from the acoustic transducer 210 is the outer side.
  • the mass elements in multiple groups of vibrating components can be located on different sides of the elastic elements, for example, the first mass element 3611 and the second mass element 3612 are located on the outside of the corresponding elastic element, and the third mass element 3613 Located on the inner side of the corresponding elastic element.
  • the elastic element may be configured as a film-like structure capable of allowing air to pass through, and in some embodiments, the elastic element may be a gas-permeable membrane.
  • the elastic element is configured to allow air to pass through, so that the vibration signal can vibrate the vibrating component 220 and at the same time further penetrate the air-permeable membrane and be received by the acoustic transducer, thereby improving the sensitivity in the target frequency band.
  • the materials and sizes of the multiple elastic elements in the vibrating assembly 220 can be different or the same.
  • the radius of the third elastic element 3623 can be larger than the radius of the first elastic element 3621 and the second elastic element 3622 bigger.
  • the material of the elastic element when the elastic element is configured to be airtight, can be a polymer film, such as polyurethane, epoxy resin, acrylic ester, etc., or a metal film, such as copper, Aluminum, tin or other alloys and their composite films, etc. In some embodiments, it can also be obtained by using the above-mentioned air-permeable film after treatment (such as covering the air-permeable holes).
  • the elastic element may be a film material with through holes, specifically, the diameter of the through holes is 0.01 ⁇ m ⁇ 10 ⁇ m.
  • the diameter of the through hole may be 0.1 ⁇ m ⁇ 5 ⁇ m, such as 0.2 ⁇ m, 0.5 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 2 ⁇ m and so on.
  • the diameters of the through holes on multiple elastic elements in the vibrating assembly 220 may be the same or different, and the diameters of the through holes on a single elastic element may be the same or different.
  • the diameter of the through holes may also be greater than 5 ⁇ m.
  • the pore diameter of the through hole is greater than 5 ⁇ m
  • other materials such as silica gel, etc.
  • the elastic element furthest from the acoustic transducer 210 is configured not to allow air to pass through.
  • the third elastic element 3623 in the figure can be configured so as not to allow air to pass through.
  • a closed space is formed between the third elastic element 3623 , the acoustic transducer 210 and the support element 223, which can Better response to vibration information.
  • the elastic element farthest from the acoustic transducer 210 can be configured to allow air to pass through.
  • the body and the acoustic transducer 210 form an accommodation space, and the air in the accommodation space can well reflect vibration information.
  • the vibration assembly 220 may further include a supporting element 223 for supporting one or more sets of elastic elements and mass elements.
  • the supporting element 223 is physically connected to the acoustic transducer 210 (eg, the substrate 211 ), and one or more sets of elastic elements and mass elements are connected to the supporting element 223 .
  • the supporting element 223 can be connected with the elastic element to achieve fixed support to control the distance between adjacent elastic elements, so as to ensure the transmission effect of the vibration signal.
  • the supporting element 223 may have a hollow tubular structure with openings at both ends, and the cross section of the tubular structure may be rectangular, triangular, circular or other shapes.
  • the cross-sectional area of the tubular structure may be the same everywhere, or may not be completely the same, for example, the end near the acoustic transducer 210 has a larger cross-sectional area.
  • one or more sets of mass elements and elastic elements in the vibrating assembly 220 may be installed at the opening of the support element 223 .
  • the elastic element can be embedded on the inner wall of the support element 223 or embedded in the support element 223 .
  • the elastic element can vibrate in the space inside the supporting element 223 while the elastic element can completely cover the opening of the supporting element, that is, the area of the elastic element can be greater than or equal to the opening area of the supporting element.
  • the air vibration (for example, sound wave) can pass through the elastic element as completely as possible and then the vibration can be picked up by the sound pickup device 212, which can effectively improve the sound pickup quality.
  • the support element 223 can be made of an air-impermeable material, and the air-impermeable support element 223 can cause the vibration signal in the air to change during the transmission process, causing the sound pressure in the support element 223 to change (or air vibration),
  • the internal vibration signal of the support element 223 is transmitted to the acoustic transducer 210 through the sound inlet hole 2111, and will not escape outward through the support element 223 during the transmission process, thereby ensuring the sound pressure intensity and improving the sound transmission effect.
  • the support element 223 may include, but is not limited to, metals, alloy materials (such as aluminum alloys, chrome-molybdenum steels, scandium alloys, magnesium alloys, titanium alloys, magnesium-lithium alloys, nickel alloys, etc.), hard plastics, foam One or more of cotton etc.
  • alloy materials such as aluminum alloys, chrome-molybdenum steels, scandium alloys, magnesium alloys, titanium alloys, magnesium-lithium alloys, nickel alloys, etc.
  • hard plastics foam One or more of cotton etc.
  • each set of elastic elements and mass elements in one or more sets of elastic elements and mass elements corresponds to one target frequency band in one or more different target frequency bands, so that the vibration sensor 3600 in the corresponding target frequency band
  • the sensitivity of can be greater than the sensitivity of the acoustic transducer 210.
  • the sensitivity of the vibration sensor 3600 after adding one or more sets of mass elements and elastic elements can be increased by 3dB-30dB compared with the acoustic transducer 210 in the target frequency band.
  • the sensitivity of the vibration sensor 3600 after adding one or more sets of mass elements and elastic elements can be increased by more than 30dB compared with the acoustic transducer 210, such as multiple sets of mass elements and elastic elements have the same resonance peak.
  • the resonant frequency of one or more sets of mass elements and elastic elements is within 1 kHz to 10 kHz. In some embodiments, the resonant frequency of one or more sets of mass elements and elastic elements is within 1 kHz to 5 kHz. In some embodiments, at least two groups of mass elements and elastic elements among the multiple groups of mass elements and elastic elements have different resonant frequencies. In some embodiments, the difference between two adjacent resonance frequencies among the multiple groups of mass elements and elastic elements is less than 2 kHz. Wherein, two adjacent resonant frequencies refer to two resonant frequencies that are numerically adjacent in magnitude of the resonant frequencies.
  • the vibration sensor 3600 Since the sensitivity of the vibration sensor 3600 corresponding to frequencies other than the resonance frequency will decrease rapidly, by controlling the resonance frequency difference, the vibration sensor 3600 has a higher sensitivity in a wider frequency band and at the same time, the sensitivity does not fluctuate greatly.
  • the difference between two adjacent resonance frequencies among the multiple groups of mass elements and elastic elements is no more than 1.5 kHz. In some embodiments, the difference between two adjacent resonance frequencies among the multiple groups of mass elements and elastic elements is no more than 1 kHz, such as 500 Hz, 700 Hz or 800 Hz. In some embodiments, the difference between two adjacent resonance frequencies among the multiple groups of mass elements and elastic elements is no more than 500 Hz.
  • multiple sets of elastic elements and mass elements may have the same resonant frequency, so that the sensitivity in the target frequency band can be greatly improved.
  • the vibration sensor 3600 when the vibration sensor 3600 is mainly used to detect mechanical vibrations of 5 kHz to 5.5 kHz, the resonant frequencies of multiple sets of elastic elements and mass elements can be configured as values within the detection range (such as 5.3 kHz), so that The vibration sensor 3600 has higher sensitivity within the detection range compared with the case where only one set of elastic elements and mass elements is provided.
  • the number of sets of elastic elements and mass elements shown in FIG. 36 is only for explanation, and does not limit the scope of the present invention. For example, the number of sets of elastic elements and mass elements can be one set, two sets, four sets, etc.
  • the vibration sensor 3600 may further include a buffer 240 .
  • the buffer member 240 may be disposed on a side wall of the first acoustic cavity 250 along the vibration direction of the vibration component 220 (for example, the base plate 211 , the first elastic element 3621 ).
  • the first acoustic cavity 250 is formed by the base plate 211 , the first elastic element 3621 and the supporting element 223 .
  • the buffer member 240 may be connected to the base plate 211 and/or the first elastic element 3621 .
  • the buffer 240 can provide a buffer distance along the vibration direction of the vibration assembly 220 for the vibration assembly 220 (especially a set of elastic elements and mass elements closest to the substrate 211 , such as the first elastic element 3621 and the first mass element 3611 ).
  • the vibration component 220 vibrates to a certain amplitude (that is, when the first elastic element 3621 is in contact with the buffer component 240 ), it will squeeze the buffer component 240, thereby limiting the vibration amplitude of the vibration component 220 , thereby preventing the vibration component 220 from colliding with the substrate 211 and improving the reliability of the vibration sensor 3600 .
  • bumper 240 may include a magnetic bumper that may be used to generate a magnetic field.
  • the magnetic buffer can be installed on the sidewall of the first acoustic cavity 250 , or embedded in the sidewall of the first acoustic cavity 250 , and the sidewall can refer to the substrate 211 .
  • the mass element when the buffer element 240 includes a magnetic buffer element, the mass element may include a magnetic element or a magnetizable element, the mass element is located in the magnetic field generated by the magnetic buffer element, and is subjected to the magnetic force of the magnetic field.
  • the magnetic field generated by the magnetic buffer can adjust the stress on the mass element, thereby limiting the vibration amplitude of the mass element.
  • the vibration sensor 3600 when the vibration sensor 3600 has a plurality of mass elements, some of the mass elements in the plurality of mass elements may have magnetic elements or magnetizable elements. Preferably, two mass elements farther apart among the plurality of mass elements may have magnetic or magnetizable elements, and the remaining mass elements have no magnetic or magnetizable elements.
  • the first mass element 3611 may have magnetic or magnetizable elements
  • the second mass element 3612 and the third mass element 3613 have no magnetic or magnetizable elements.
  • the first mass element 3611 and the third mass element 3613 have magnetic or magnetizable elements
  • the second mass element 3612 has no magnetic or magnetizable elements.
  • all mass elements of the plurality of mass elements may have magnetic or magnetizable members.
  • the magnetic force between the multiple mass elements can be adjusted by adjusting the magnetic permeability or magnetization of each of the multiple mass elements.
  • Fig. 37 is an exemplary structure diagram of a vibration sensor according to some embodiments of the present application.
  • the vibration sensor 3700 shown in FIG. 37 is substantially the same as the vibration sensor 3600 shown in FIG. 36 , except that the positions of the vibration components are different.
  • the vibration component 220 in the vibration sensor 3700 can be disposed in the sound inlet 2111 parallel to the radial section of the sound inlet 2111 (ie perpendicular to the vibration direction of the vibration component 220 ).
  • the elastic element of the vibrating assembly 220 may include a first elastic element 3621 and a second elastic element 3622 disposed in the sound inlet 2111 parallel to the radial section of the sound inlet 2111, and the mass element may include a diameter parallel to the sound inlet 2111.
  • the first mass element 3611 and the second mass element 3612 are arranged in the sound inlet hole 2111 in cross-section.
  • a conduit 2112 may be provided at the sound inlet 2111, and the conduit 2112 may be made of an air-impermeable material, and its function is similar to that of the support element 223 in the aforementioned vibration sensor 3600.
  • the mass element in order to ensure the free vibration of the mass element, the mass element is not in contact with the inner wall of the sound inlet hole 2111 or the conduit 2112 . It should be noted that the arrangement of the catheter 2112 is only a specific embodiment, and cannot limit the scope of the present invention.
  • the duct 2112 may not be provided, and one or more sets of elastic elements and mass elements are directly connected to the sound inlet hole 2111, or the support element is arranged in the sound inlet hole 2111, and supports one or more Multiple sets of elastic elements and mass elements.
  • the first mass element 3611 and the second mass element 3612 can simultaneously generate resonance in response to the vibration of the external environment, the first elastic element 3621, the second elastic element 3622 and the first mass element 3611 and the second mass element
  • the resonance signal generated by 3612 communicates with the external vibration signal through the catheter 2112 to the acoustic transducer 210 and converted into an electrical signal, so that the vibration signal is strengthened in one or more target frequency bands and then converted into an electrical signal.
  • the number of groups of elastic elements and mass elements shown in Figure 37 is two groups only for illustration and will not limit the protection scope of the present invention.
  • the number of groups of elastic elements and quality elements can be one group, three group or otherwise.
  • the buffer when the vibrating component 220 is disposed in the sound inlet 2111 , the buffer may include a magnetic buffer, and the magnetic buffer may be used to generate a magnetic field.
  • the magnetic buffer can include a coil, and the coil can be buried in the side wall of the first acoustic cavity 250 opposite to the substrate 211 (that is, the housing of the vibration sensor 3700 away from the substrate 211 ), or installed on the side wall. on the wall.
  • the coil when the coil is embedded in the substrate 211 , the coil may be directly etched in the substrate 211 to form the coil.
  • the mass element when the buffer member includes a magnetic buffer member, the mass element may include a magnetic member or a magnetizable member, the mass element is located in a magnetic field generated by the magnetic buffer member, and is subjected to the magnetic force of the magnetic field.
  • the magnetic field generated by the magnetic buffer can adjust the stress of the mass element, thereby limiting the vibration amplitude of the vibration component 220 and preventing the vibration component 220 from interacting with other components of the vibration sensor 3700 (such as the pickup device 212). collision.
  • the vibration sensor 3600 when the vibration sensor 3600 has a plurality of mass elements, some of the mass elements in the plurality of mass elements may have magnetic elements or magnetizable elements.
  • the mass elements close to the sound pickup device 212 may include magnetic or magnetizable elements, and the remaining mass elements may not include magnetic or magnetizable elements.
  • the distribution of the mass elements with magnetic or magnetizable components among the multiple mass elements please refer to FIG. 14B and FIG. 36 and their related descriptions.
  • aspects of the present application may be illustrated and described in several patentable categories or circumstances, including any new and useful process, machine, product or combination of substances, or any combination of them Any new and useful improvements.
  • various aspects of the present application may be entirely executed by hardware, may be entirely executed by software (including firmware, resident software, microcode, etc.), or may be executed by a combination of hardware and software.
  • the above hardware or software may be referred to as “block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of the present application may be embodied as a computer product comprising computer readable program code on one or more computer readable media.
  • a computer storage medium may contain a propagated data signal embodying a computer program code, for example, in baseband or as part of a carrier wave.
  • the propagated signal may have various manifestations, including electromagnetic form, optical form, etc., or a suitable combination.
  • a computer storage medium may be any computer-readable medium, other than a computer-readable storage medium, that can be used to communicate, propagate, or transfer a program for use by being coupled to an instruction execution system, apparatus, or device.
  • Program code residing on a computer storage medium may be transmitted over any suitable medium, including radio, electrical cable, fiber optic cable, RF, or the like, or combinations of any of the foregoing.
  • the computer program codes required for the operation of each part of this application can be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python etc., conventional procedural programming languages such as C language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code may run entirely on the user's computer, or as a stand-alone software package, or run partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer through any form of network, such as a local area network (LAN) or wide area network (WAN), or to an external computer (such as through the Internet), or in a cloud computing environment, or as a service Use software as a service (SaaS).
  • LAN local area network
  • WAN wide area network
  • SaaS service Use software as a service
  • numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifiers "about”, “approximately” or “substantially” in some examples. grooming. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the stated figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that may vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of the present application to confirm the breadth of the scope are approximate values, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本说明书的一个或多个实施例涉及一种振动传感器,所述振动传感器包括:振动组件,所述振动组件包括质量元件和弹性元件,所述质量元件与所述弹性元件连接;第一声学腔,所述弹性元件构成所述第一声学腔的侧壁之一,所述振动组件响应于外部振动信号振动使得所述第一声学腔的体积发生变化;声学换能器,所述声学换能器与所述第一声学腔连通,所述声学换能器响应于所述第一声学腔的体积变化而产生电信号;缓冲件,所述缓冲件限制所述振动组件的振动幅度;其中,所述声学换能器具有第一谐振频率,所述振动组件具有第二谐振频率,所述振动组件被配置成在一个或多个目标频段内使的所述第二谐振频率低于所述第一谐振频率。

Description

一种振动传感器
交叉引用
本申请要求2021年06月18日提交的中国申请号202110677119.2的优先权,2021年07月16日提交的国际申请号PCT/CN2021/106947的优先权,2021年08月11日提交的中国申请号202110917789.7的优先权,2021年07月22日提交的国际申请号PCT/CN2021/107978的优先权,2021年08月11日提交的国际申请号PCT/CN2021/112014的优先权,2021年08月11日提交的国际申请号PCT/CN2021/112017的优先权,2021年08月19日提交的国际申请号PCT/CN2021/113419的优先权,其内容通过引用结合于此。
技术领域
本申请涉及声学领域,特别涉及一种振动传感器。
背景技术
振动传感器是常用的振动检测装置之一,通过其内部的换能部件将采集到的振动信号转换为电信号或者所需要的其他形式的信息输出。灵敏度可以表示传感装置的输出信号强度与输入信号强度的比值,若灵敏度过小,则会影响用户的使用体验。为了使振动传感器具有较高的灵敏度,通常振动传感器中的传感腔(例如,声学腔)的高度设置得较小,以减小传感腔的体积。但是,在外部振动的振动幅度较大时,振动传感器的振膜的振动幅度同样会较大,在传感腔体积较小的情况下,可能造成振膜与振动传感器的其他组件(如,基板、壳体等)发生碰撞,使得振膜容易损坏,影响振动传感器的使用。
因此,有必要提出一种振动传感器,以提高振动传感器的可靠性。
发明内容
本说明书提供一种振动传感器,包括:振动组件,所述振动组件包括质量元件和弹性元件,所述质量元件与所述弹性元件连接;第一声学腔,所述弹性元件构成所述第一声学腔的侧壁之一,所述振动组件响应于外部振动信号振动使得所述第一声学腔的体积发生变化;声学换能器,所述声学换能器与所述第一声学腔连通,所述声学换能器响应于所述第一声学腔的体积变化而产生电信号;缓冲件,所述缓冲件限制所述振动组件的振动幅度;其中,所述声学换能器具有第一谐振频率,所述振动组件具有第二谐振频率,所述振动组件的所述第二谐振频率低于所述第一谐振频率。
在一些实施例中,在频率小于1000Hz时,所述振动组件的灵敏度大于或等于-40dB。
在一些实施例中,所述第二谐振频率低于所述第一谐振频率1kHz~10kHz。
在一些实施例中,所述缓冲件设置于所述第一声学腔内垂直于所述振动组件的振动方向的侧壁上,所述缓冲件为所述振动组件提供沿所述振动组件的振动方向的缓冲距离,所述缓冲距离大于或等于0,且小于所述振动组件的最大振动幅度。
在一些实施例中,所述弹性元件与所述声学换能器相对设置,所述缓冲件与所述弹性元件或所述声学换能器连接。
在一些实施例中,所述缓冲件呈块状或片状设置;或者,所述缓冲件包括在所述弹性元件或所述声学换能器上间隔分布的多个缓冲点、或多个缓冲颗粒、或多个缓冲柱。
在一些实施例中,所述振动传感器还包括壳体,所述壳体接收所述外部振动信号,并将所述外部振动信号传递至所述振动组件。
在一些实施例中,所述壳体形成声学腔,所述振动组件位于所述声学腔中,并将所述声学腔分隔为所述第一声学腔和第二声学腔。
在一些实施例中,所述缓冲件设置于所述第一声学腔和/或所述第二声学腔内,所述缓冲件为所述振动组件提供沿所述振动组件的振动方向的缓冲距离。
在一些实施例中,所述缓冲距离大于或等于0,且小于所述振动组件的最大振动幅度。
在一些实施例中,所述缓冲件包括第一缓冲部和第二缓冲部,所述第一缓冲部和所述第二缓冲部沿所述振动组件的振动方向分别设于所述弹性元件的两侧。
在一些实施例中,所述第一缓冲部与所述壳体或所述弹性元件连接,所述第二缓冲部与所 述弹性元件或所述声学换能器连接。
在一些实施例中,所述第一缓冲部包括多个第一缓冲块,所述第二缓冲部包括多个第二缓冲块。
在一些实施例中,所述缓冲件沿所述振动组件的振动方向的一端与所述弹性元件连接,所述缓冲件沿所述振动组件的振动方向的另一端与所述壳体或所述声学换能器连接。
在一些实施例中,所述缓冲件包括第一缓冲部和第二缓冲部,所述第一缓冲部和所述第二缓冲部沿所述振动组件的振动方向分别设于所述弹性元件的两侧。
在一些实施例中,所述缓冲件设置有多个,多个所述缓冲件沿所述弹性元件的周向间隔分布。
在一些实施例中,所述缓冲件包括磁性缓冲件,用于产生磁场;所述质量元件包括磁性件或可磁化件,所述质量元件位于所述磁场内。
在一些实施例中,所述磁性缓冲件包括线圈,所述线圈安装于所述声学换能器连接所述第一声学腔的侧壁。
在一些实施例中,所述线圈埋设于所述声学换能器连接所述第一声学腔的侧壁内。
在一些实施例中,所述质量元件中高分子材料的质量超过80%。
在一些实施例中,所述弹性元件中高分子材料的质量超过80%。
在一些实施例中,所述质量元件和所述弹性元件的材质相同。
在一些实施例中,所述质量元件的数量为多个,多个所述质量元件与所述弹性元件连接。
在一些实施例中,所述质量元件的数量大于或等于3;所述质量元件不共线设置。
在一些实施例中,所述多个质量块的至少一个结构参数不同,所述结构参数包括尺寸、质量、密度以及形状。
在一些实施例中,所述第一声学腔内设置有一个或多个悬臂梁结构以及与所述一个或多个悬臂梁结构中的每一个物理连接的一个或多个质量块。
在一些实施例中,所述振动组件包括一组或多组振膜和质量块,在每组振膜和质量块中,质量块物理连接于振膜。
在一些实施例中,所述一组或多组振膜和质量块沿所述振膜的振动方向上依次设置;所述振动组件中相邻振膜之间的距离不小于所述相邻振膜的最大振幅。
在一些实施例中,所述一组或多组振膜和质量块中每组振膜和质量块对应一个目标频段,在所述对应的目标频段内所述振动传感器的灵敏度大于所述声学换能器的灵敏度。
在一些实施例中,所述多组振膜和质量块中至少两组振膜和质量块的共振频率不同。
在一些实施例中,所述振动组件进一步包括支撑元件,用于支撑所述一组或多组振膜和质量块,所述支撑元件物理连接于所述声学换能器,所述一组或多组振膜和质量块连接于所述支撑元件。
在一些实施例中,所述支撑元件由不透气的材料制成,所述振膜包括透气膜。
在一些实施例中,所述弹性元件包括第一弹性元件和第二弹性元件,所述第一弹性元件和所述第二弹性元件在所述振动组件的振动方向上分别连接在所述质量元件相反的两侧。
在一些实施例中,所述第一弹性元件和所述第二弹性元件的尺寸、形状、材质、或厚度相同。
在一些实施例中,所述第一弹性元件与所述第一缓冲部连接,所述第二弹性元件与所述第二缓冲部连接。
在一些实施例中,所述质量元件包括第一质量元件和第二质量元件,所述第一质量元件和所述第二质量元件在所述振动组件的振动方向上分别连接在所述弹性元件相反的两侧。
在一些实施例中,所述第一质量元件和所述第二质量元件的尺寸、形状、材质、或厚度相同。
在一些实施例中,所述弹性元件环绕连接于所述质量元件的侧壁,所述弹性元件向所述声学换能器延伸并直接或间接连接所述声学换能器。
在一些实施例中,所述振动传感器进一步包括基板,所述基板设置于所述声学换能器上,所述弹性元件向所述声学换能器延伸的一端与所述基板连接。
在一些实施例中,所述缓冲件设置于所述第一声学腔,所述缓冲件与所述质量元件和/或所述声学换能器连接,和/或,所述缓冲件设置于所述第二声学腔,所述缓冲件与所述质量元件和/或所述壳体连接。
在一些实施例中,所述缓冲件包括线圈,用于产生磁场;所述质量元件包括磁性件或可磁化件,所述质量元件位于所述磁场内;所述线圈安装于所述声学换能器连接所述第一声学腔的侧壁。
在一些实施例中,所述弹性元件与所述声学换能器相对设置,所述弹性元件朝向所述第一声学腔的一侧设置有凸起结构,所述弹性元件响应于所述外部振动信号而使得所述凸起结构运动,所述凸起结构的运动改变所述第一声学腔的体积。
在一些实施例中,所述凸起结构抵接于所述第一声学腔中与所述弹性元件相对的侧壁。
在一些实施例中,所述凸起结构具有弹性,当所述凸起结构运动时,所述凸起结构产生弹性形变,所述弹性形变改变所述第一声学腔的体积。
在一些实施例中,所述缓冲件设置于所述第二声学腔,所述缓冲件与所述质量元件和/或所述壳体连接。
在一些实施例中,所述振动组件还包括支撑元件,所述质量元件与所述支撑元件分别与所述弹性元件的两侧物理连接,所述支撑元件与所述声学换能器物理连接;所述支撑元件、所述弹性元件和所述声学换能器形成第一声学腔。
在一些实施例中,所述质量元件沿垂直于所述振动组件的振动方向的截面面积大于所述第一声学腔沿垂直于所述振动组件的振动方向的截面面积,所述弹性元件沿垂直于所述振动组件的振动方向的截面面积大于所述第一声学腔沿垂直于所述振动组件的振动方向的截面面积;所述质量元件被配置为响应于所述外部振动信号而使得所述弹性元件与所述支撑元件相接触的区域发生压缩形变,且所述弹性元件能够振动而使得所述第一声学腔的体积发生改变。
在一些实施例中,所述支撑元件包括环形结构。
在一些实施例中,所述质量元件沿垂直于所述振动组件的振动方向的截面面积大于或等于所述环形结构的外环沿垂直于所述振动组件的振动方向的截面面积,所述弹性元件沿垂直于所述振动组件的振动方向的截面面积大于或等于所述环形结构的外环沿垂直于所述振动组件的振动方向的截面面积。
在一些实施例中,所述质量元件沿垂直于所述振动组件的振动方向的截面面积等于所述弹性元件沿垂直于所述振动组件的振动方向的截面面积。
在一些实施例中,所述缓冲件设置于所述第二声学腔,所述缓冲件与所述质量元件和/或所述壳体连接。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请的一些实施例所示的振动传感器的示例性框架图;
图2是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图3是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图4是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图5是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图6是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图7是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图8是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图9是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图10是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图11是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图12是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图13是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图14是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图14A是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图14B是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图15是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图16是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图17是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图18是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图19是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图20是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图21是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图22是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图23是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图24是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图25是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图26是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图27是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图28是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图29是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图30是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图31是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图32是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图33是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图34是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图35是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图36是根据本申请的一些实施例所示的振动传感器的示例性结构图;
图37是根据本申请的一些实施例所示的振动传感器的示例性结构图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本说明书实施例中提供了一种振动传感器。该振动传感器可以包括声学换能器和振动组件。在一些实施例中,振动组件可以包括质量元件和弹性元件,质量元件与弹性元件连接。弹性元件与声学换能器之间可以形成第一声学腔,弹性元件和声学换能器分别构成第一声学腔的侧壁之一,振动组件可以响应于外部振动信号振动使得第一声学腔的体积发生变化。声学换能器与第一声学腔连通(例如,通过进声孔),声学换能器响应于第一声学腔的体积变化而产生电信号。在一些实施例中,声学换能器可以具有第一谐振频率,振动组件可以具有第二谐振频率,振动组件的第二谐振频率不同于第一谐振频率。在一些实施例中,所述第二谐振频率小于所述第一谐振频率。如此设置,可以提高振动传感器在一个或多个目标频段内(例如,低于第二谐振频率的频段)的灵敏度。
在一些实施例中,振动传感器还可以包括缓冲件。在一些实施例中,缓冲件可以用于限制振动组件的振动幅度。在一些实施例中,缓冲件可以设置于第一声学腔内,为振动组件提供沿振动组件的振动方向的缓冲距离。在一些实施例中,缓冲件(第一缓冲部和第二缓冲部)可以沿振动组件的振动方向分别设置于弹性元件的两侧,第一缓冲部与壳体或弹性元件连接,第二缓冲部与弹性元件或声学换能器连接。在一些实施例中,振动传感器中设置缓冲件,可以限制振动组件的振动幅度,从而避免振动组件在振动过程中与振动传感器中的其他组件(如声学换能器、壳体)发生碰撞,进而实现对振动组件(尤其是弹性元件)的保护,提高振动传感器的可靠性。
在一些实施例中,参见图1,振动传感器100可以包括声学换能器110和振动组件120。在 一些实施例中,振动组件120可以拾取外部振动信号并引起声学换能器110产生电信号。当外部环境中出现振动时,振动组件120响应于外界环境的振动并将信号传递给声学换能器110,再由声学换能器110将信号转化为电信号。在一些实施例中,振动传感器100可以应用于移动设备、可穿戴设备、虚拟现实设备、增强现实设备等,或其任意组合。
在一些实施例中,移动设备可以包括智能手机、平板电脑、个人数字助理(PDA)、游戏设备、导航设备等,或其任何组合。在一些实施例中,可穿戴设备可以包括智能手环、耳机、助听器、智能头盔、智能手表、智能服装、智能背包、智能配件等,或其任意组合。在一些实施例中,虚拟现实设备和/或增强现实设备可以包括虚拟现实头盔、虚拟现实眼镜、虚拟现实补丁、增强现实头盔、增强现实眼镜、增强现实补丁等或其任何组合。例如,虚拟现实设备和/或增强现实设备可以包括Google Glass、Oculus Rift、Hololens、Gear VR等。
在一些实施例中,声学换能器110可以用于将信号(例如,振动信号、气导声音)转换为电信号。在一些实施例中,声学换能器110可以包括麦克风。具体的,麦克风可以是以骨传导为声音主要传播方式之一的麦克风或以空气传导为声音主要传播方式之一的麦克风。以空气传导为声音主要传播方式之一的麦克风为例,麦克风可以获取传导通道(如拾音孔处)的声压变化,并转换为电信号。在一些实施例中,声学换能器110可以是加速度仪,加速度仪是弹簧-振动系统的具体应用,其通过敏感器件接收振动信号得到电信号,再根据电信号处理得到加速度。在一些实施例中,声学换能器110可以具有第一谐振频率,第一谐振频率与声学换能器110本身的属性(例如,形状、材料、结构等)有关。在一些实施例中,声学换能器110可以在第一谐振频率附近存在较高的灵敏度。
在一些实施例中,振动组件120可以具有第二谐振频率,第二谐振频率可以低于第一谐振频率。在一些实施例中,通过调整振动传感器100和/或振动组件120本身的属性,例如,调节振动组件120的结构、材料等,可以对第二谐振频率和第一谐振频率之间的关系进行调节,使得第二谐振频率低于第一谐振频率,从而提高振动传感器100在较低频段的灵敏度。示例性的,当振动传感器100用于作为麦克风时,目标频段的范围可以是200Hz~2kHz,具体的,在一些实施例中,若声学换能器的第一谐振频率为2kHz,振动组件220的第二谐振频率可以配置成800Hz、1kHz或1.7kHz等。
在一些实施例中,第二谐振频率可以低于第一谐振频率1kHz-10kHz。在一些实施例中,第二谐振频率可以低于第一谐振频率0.5kHz-15kHz。在一些实施例中,第二谐振频率可以低于第一谐振频率2kHz-8kHz。在一些实施例中,通过调整振动组件120的结构、参数等,可以调整振动组件120的灵敏度。
振动组件120可以包括质量元件121和弹性元件122。质量元件121可以设置在弹性元件122上。具体的,质量元件121可以设置于弹性元件122沿质量元件121的振动方向的上表面和/或下表面。在一些实施例中,弹性元件122沿质量元件121的振动方向的上表面可以是弹性元件122沿质量元件121的振动方向靠近声学换能器110的表面。弹性元件122沿质量元件121的振动方向的下表面可以是弹性元件122沿质量元件121的振动方向远离声学换能器110的表面。
质量元件121也可以称为质量块。在一些实施例中,质量元件121的材料可以为密度大于一定密度阈值(例如,6g/cm3)的材料。在一些实施例中,质量元件121的材质可以是金属材料或非金属材料。金属材料可以包括但不限于钢材(例如,不锈钢、碳素钢等)、轻质合金(例如,铝合金、铍铜、镁合金、钛合金等)等,或其任意组合。非金属材料可以包括但不限于高分子材料、玻璃纤维、碳纤维、石墨纤维、碳化硅纤维等。在一些实施例中,质量元件121中的高分子材料的质量可以超过80%。在一些实施例中,高分子材料可以包括但不限于聚氨酯(Poly urethane,PU)、聚酰胺(Poly amide,PA)(俗称尼龙)、聚四氟乙烯(Poly tetra fluoro ethylene,PTFE)、酚醛塑料(Phenol~Formaldehyde,PF)等。振动组件120接收振动信号时,质量元件121响应于振动信号进行振动。在一些实施例中,当振动组件120应用于振动传感器或传声装置时,质量元件121的材料密度对振动传感器或传声装置的频率响应曲线的谐振峰和灵敏度有较大影响。同等体积下,质量元件121的密度越大,其质量越大,振动传感器或传声装置的谐振峰向低频移动,使振动传感器或传声装置的低频灵敏度上升。在一些实施例中,质量元件121的材料密度为6~20g/cm 3。在一些实施例中,质量元件121的材料密度为6~15g/cm 3。在一些实施例中,质量元件121的材料密度为6~10g/cm 3。在一些实施例中,质量元件121的材料密度为6~8g/cm 3
在一些实施例中,质量元件121沿质量元件121的振动方向的投影可以为圆形、矩形、五边形、六边形等规则和/或不规则多边形。
在一些实施例中,质量元件121沿其振动方向的厚度可以为6-1400um。在一些实施例中, 质量元件121沿其振动方向的厚度可以为10-1000um。在一些实施例中,质量元件121沿其振动方向的厚度可以为50-1000um。在一些实施例中,质量元件121沿其振动方向的厚度可以为60-900um。在一些实施例中,质量元件121沿其振动方向的厚度可以为70-800um。在一些实施例中,质量元件121沿其振动方向的厚度可以为80-700um。在一些实施例中,质量元件121沿其振动方向的厚度可以为90-600um。在一些实施例中,质量元件121沿其振动方向的厚度可以为100-500um。在一些实施例中,质量元件121沿其振动方向的厚度可以为100-400um。在一些实施例中,质量元件121沿其振动方向的厚度可以为100-300um。在一些实施例中,质量元件121沿其振动方向的厚度可以为100-200um。在一些实施例中,质量元件121沿其振动方向的厚度可以为100-150um。
弹性元件122也可以称为弹性膜、振膜等。弹性元件122可以是在外部载荷的作用下能够发生弹性形变的元件。在一些实施例中,弹性元件122可以为具有良好弹性(即易发生弹性形变)的材料,使得振动组件120具有良好的振动响应能力。在一些实施例中,弹性元件122的材质可以是高分子材料、胶类材料等中的一种或多种。在一些实施例中,高分子材料可以为聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile Butadiene Styrene,ABS)、聚苯乙烯(Polystyrene,PS)、高冲击聚苯乙烯(High Impact Polystyrene,HIPS)、聚丙烯(Polypropylene,PP)、聚对苯二甲酸乙二酯(Polyethylene Terephthalate,PET)、聚氯乙烯(Polyvinyl Chloride,PVC)、聚氨酯(Polyurethanes,PU)、聚乙烯(Polyethylene,PE)、酚醛树脂(Phenol Formaldehyde,PF)、尿素-甲醛树脂(Urea-Formaldehyde,UF)、三聚氰胺-甲醛树脂(Melamine-Formaldehyde,MF)、聚芳酯(Polyarylate,PAR)、聚醚酰亚胺(Polyetherimide,PEI)、聚酰亚胺(Polyimide,PI)、聚萘二甲酸乙二醇酯(Polyethylene Naphthalate two formic acid glycol ester,PEN)、聚醚醚酮(Polyetheretherketone,PEEK)、硅胶等中的任意一种或其组合。其中,PET是一种热塑性聚酯,成型好,由其制成的振膜常被称为Mylar(麦拉)膜;PC具有较强的抗冲击性能,成型后尺寸稳定;PAR是PC的进阶版,主要出于环保考虑;PEI比PET更为柔软,内阻尼更高;PI耐高温,成型温度更高,加工时间久;PEN强度高,较硬,其特点是可涂色、染色、镀层;PU常用于复合材料的阻尼层或折环,高弹性,内阻尼高;PEEK是一种更为新型的材料,耐摩擦,耐疲劳。值得注意的是:复合材料一般可以兼顾多种材料的特性,常见的比如双层结构(一般热压PU,增加内阻)、三层结构(三明治结构,中间夹阻尼层PU、亚克力胶、UV胶、压敏胶)、五层结构(两层薄膜通过双面胶粘接,双面胶有基层,通常为PET)。
在一些实施例中,弹性元件122的邵氏硬度可以为1-50HA。在一些实施例中,弹性元件122的邵氏硬度可以为1-45HA。在一些实施例中,弹性元件122的邵氏硬度可以为1-40HA。在一些实施例中,弹性元件122的邵氏硬度可以为1-35HA。在一些实施例中,弹性元件122的邵氏硬度可以为1-30HA。在一些实施例中,弹性元件122的邵氏硬度可以为1-25HA。在一些实施例中,弹性元件122的邵氏硬度可以为1-20HA。在一些实施例中,弹性元件122的邵氏硬度可以为1-15HA。在一些实施例中,弹性元件122的邵氏硬度可以为1-10HA。在一些实施例中,弹性元件122的邵氏硬度可以为1-5HA。在一些实施例中,弹性元件122的邵氏硬度可以为14.9-15.1HA。
在一些实施例中,弹性元件122沿质量元件121的振动方向的投影可以为圆形、矩形、五边形、六边形等规则和/或不规则多边形。
在一些实施例中,弹性元件122的结构可以是膜状结构、板状结构等。以弹性元件122为板状结构为例,板状结构可以指能够用于承载一个或多个质量元件121的柔性或刚性材料制成的结构。弹性元件122可以包括一个或多个板状结构,一个或多个板状结构中每个板状结构与一个或多个质量元件121连接。在一些实施例中,一个板状结构和与该板状结构物理连接的质量元件121形成的结构可以称为谐振结构。通过一个或多个板状结构中每个板状结构与一个或多个质量元件121中连接,可以使得振动组件120具有一个或多个谐振结构,从而提高振动传感器100在一个或多个目标频段内的灵敏度。
在一些实施例中,振动组件120还可以包括支撑元件123。支撑元件123可以与弹性元件122连接,用于支撑弹性元件122。在一些实施例中,支撑元件123可以分别与弹性元件122的两侧物理连接。例如,支撑元件123可以分别与弹性元件122的上表面和/或下表面连接。在一些实施例中,支撑元件123可以与声学换能器110物理连接,例如,支撑元件123的一端与弹性元件122的表面相连,支撑元件123的另一端与声学换能器110相连。在一些实施例中,支撑元件123、弹性元件122和声学换能器110可以形成第一声学腔。在一些实施例中,第一声学腔与声学换能器110声学连通。例如,声学换能器110上可以设有进声孔(也叫拾音孔、传导通道),进声孔可以是指声学换能器110上用于接收声学腔体积变化信号的孔,第一声学腔可以与声学换能器110上设置的 进声孔相连通。第一声学腔与声学换能器110的声学连通可以使得声学换能器110感应第一声学腔的体积的改变(即第一声学腔内声压的改变),并基于第一声学腔的体积的改变产生电信号。
在一些实施例中,支撑元件123的材质可以是刚性材料、半导体材料、有机高分子材料、胶类材料等中的一种或多种。在一些实施例中,刚性材料可以包括但不限于金属材料、合金材料等。半导体材料可以包括但不限于硅、二氧化硅、氮化硅、碳化硅等中的一种或多种。有机高分子材料可以包括但不限于聚酰亚胺(PI)、派瑞林(Parylene)、聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)、水凝胶等中的一种或多种。胶类材料可以包括但不限于凝胶类、有机硅胶、丙烯酸类、聚氨酯类、橡胶类、环氧类、热熔类、光固化类等中的一种或多种。在一些实施例中,支撑元件123在沿质量元件121的振动方向的截面上的截面形状可以是长方形、圆形、椭圆形、五边形等规则和/或不规则几何形状。
需要说明的是,支撑元件123不是振动组件120的必需组成元件,即,振动组件120可以不包括支撑元件123。
在一些实施例中,振动传感器100还可以包括壳体130。在一些实施例中,壳体130可以为内部具有腔体(即中空部分)的规则或不规则的立体结构。在一些实施例中,壳体130可以是中空的框架结构体。在一些实施例中,中空的框架结构体可以包括但不限于矩形框、圆形框、正多边形框等规则形状,以及任何不规则形状。在一些实施例中,壳体130可以采用金属(例如,不锈钢、铜等)、塑料(例如,聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)及丙烯腈─丁二烯─苯乙烯共聚合物(ABS)等)、复合材料(如金属基复合材料或非金属基复合材料)等。在一些实施例中,振动组件120和/或声学换能器110可以位于壳体130形成的腔体或者至少部分悬空设置于壳体130的腔体。
需要说明的是,壳体130不是振动传感器100的必需组成元件,即,振动传感器100可以不包括壳体130。
在一些实施例中,壳体130与声学换能器110通过物理方式连接,至少部分壳体130与声学换能器110形成声学腔,振动组件120位于壳体130与声学换能器110形成的声学腔中。
在一些实施例中,振动组件120位于壳体130形成的腔体内或者至少部分悬空设置于壳体130的腔体,并与壳体130直接连接或间接连接,可以将声学腔分隔为包括第一声学腔和第二声学腔的多个声学腔。
在一些实施例中,振动组件120包括支撑元件123时,支撑元件123的一端与弹性元件122连接,支撑元件123的另一端与声学换能器110连接,使得支撑元件123、弹性元件122和声学换能器110之间可以形成第一声学腔,支撑元件123、弹性元件122和壳体130之间形成第二声学腔。在一些实施例中,振动组件120不包括支撑元件123时,弹性元件122的周侧与声学换能器110连接,使得弹性元件122、声学换能器110之间形成第一声学腔,声学腔的其余部分形成第二声学腔。在一些实施例中,振动组件120不包括支撑元件123时,弹性元件122的周侧与壳体130连接,使得弹性元件122、声学换能器110和壳体130之间形成第一声学腔,声学腔的其余部分形成第二声学腔。
在一些实施例中,缓冲件140可以用于限制振动组件120的振动幅度。在一些实施例中,缓冲件140可以被振动组件120压缩而为振动组件120提供阻尼力。在一些实施例中,缓冲件140可以设置于第一声学腔和/或第二声学腔内垂直于振动组件120的振动方向的侧壁上,缓冲件140可以为振动组件120提供沿振动组件120的振动方向的缓冲距离。缓冲距离是指缓冲件140为振动组件120的运动提供阻尼力之前,振动组件120(如质量元件121或弹性元件122)沿振动方向的运动距离。在一些实施例中,缓冲距离可以大于或等于0,且小于振动组件120的最大振动幅度。在一些实施例中,振动传感器100中设置缓冲件140限制振动组件120的振动幅度,从而避免振动组件120在振动过程中与振动传感器100中的其他组件(如声学换能器110、壳体130)发生碰撞,进而实现对振动组件120(尤其是弹性元件122)的保护,提高振动传感器100的可靠性。
在一些实施例中,缓冲件140的材质可以是高分子材料、胶类材料等中的一种或多种。在一些实施例中,高分子材料可以包括但不限于聚酰亚胺(PI)、派瑞林(Parylene)、聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)、水凝胶等中的一种或多种。胶类材料可以包括但不限于凝胶类、有机硅胶、丙烯酸类、聚氨酯类、橡胶类、环氧类、热熔类、光固化类等中的一种或多种。在一些实施例中,缓冲件140的弹性模量可以在1MPa~1000MPa。在一些实施例中,缓冲件140的弹性模量可以在1MPa~800MPa。在一些实施例中,缓冲件140的弹性模量可以在5MPa~800MPa。在一些实施例中,缓冲件140的弹性模量可以在5MPa~600MPa。在一些实施例中,缓冲件140的弹性 模量可以在10MPa~600MPa。在一些实施例中,缓冲件140的弹性模量可以在30MPa~500MPa。在一些实施例中,缓冲件140的弹性模量可以在50MPa~500MPa。在一些实施例中,缓冲件140的弹性模量可以在80MPa~500MPa。在一些实施例中,缓冲件140的弹性模量可以在80MPa~300MPa。
在一些实施例中,缓冲件140也可以包括磁性缓冲件,磁性缓冲件可以产生磁场。磁性缓冲件可以包括但不限于线圈、磁铁等。在一些实施例中,磁性缓冲件产生的磁场与振动组件120的振动方向一致。在一些实施例中,振动组件120可以包括磁性件或可磁化件,该磁性件或可磁化件可以置于磁性缓冲件所产生的磁场之中。在一些实施例中,质量元件121可以包括磁性件或可磁化件。例如,质量元件121可以包括铁磁材料或磁铁。在一些实施例中,在振动组件120的振动过程中,质量元件121与磁性缓冲件相吸或相斥,使磁性缓冲件为振动组件120提供阻尼力。通过调节磁性缓冲件所产生的磁场的强度可以改变质量元件121在振动过程中的受力情况。在一些实施例中,当磁性缓冲件产生的磁场的强度较大时,质量元件121受力较大,使得振动组件120不易振动,振动传感器100的灵敏度较低;当磁性缓冲件产生的磁场的强度较小时,质量元件121受力较小,使得振动组件120容易振动,振动传感器100的灵敏度较高。
图2是根据本申请的一些实施例所示的振动传感器的示例性结构图。图3是根据本申请的一些实施例所示的振动传感器的示例性结构图。图4是根据本申请的一些实施例所示的振动传感器的示例性结构图。
在一些实施例中,参见图2-图4所示,振动传感器200可以包括声学换能器210、振动组件220、壳体230和缓冲件240。在一些实施例中,声学换能器210和处理器270分别连接于声学换能器210的基板211的上表面,基板211位于壳体230内部的空腔中,壳体230对声学换能器210、处理器270、基板211及其上设置的电路和其他元器件进行密封,基板211将壳体230内部的空腔分隔为呈上下设置的两个腔室。振动组件220位于基板211下表面对应的腔室中。在一些实施例中,声学换能器210也可以具有壳体,该壳体与基板211连接实现对声学换能器210的内部器件的封装。在一些实施例中,振动传感器200的壳体230可以为非封闭的半壳状结构,声学换能器210的基板211可以与壳体230连接形成封闭的空腔,振动组件220设置于该空腔中。
在一些实施例中,振动组件220可以包括弹性元件222和质量元件221。弹性元件222可以通过其周侧与壳体230连接,例如,弹性元件222可以通过胶接、卡接等方式与壳体230的内壁连接。质量元件221设置在弹性元件222上。具体地,质量元件221可以设置在弹性元件222的上表面或下表面上。弹性元件222的上表面可以是指弹性元件222朝向基板211的一面,弹性元件222的下表面可以是指弹性元件222背离基板211的一面。在一些实施例中,质量元件221的数量可以为多个,多个质量元件221可以同时位于弹性元件222的上表面或下表面质量元件221。在一些实施例中,多个质量元件221中的部分可以设置于弹性元件222的上表面,另一部分质量元件221可以位于弹性元件222的下表面。在一些实施中,质量元件221还可以嵌于弹性元件222中。
在一些实施例中,弹性元件222和基板211之间可以形成第一声学腔250。具体地,弹性元件222的上表面、基板211和壳体230可以形成第一声学腔250,弹性元件222的下表面和壳体230可以形成第二声学腔260。当振动传感器200(例如,振动传感器200的壳体230)响应于外部声音信号产生振动时,由于振动组件220(弹性元件222和质量元件221)与壳体230的自身特性不同,振动组件220的弹性元件222和质量元件221会相对于壳体230而运动,弹性元件222和质量元件221在相对于壳体230的振动过程中会使得第一声学腔250的体积发生变化,声学换能器210可以基于第一声学腔内250的体积变化将外部声音信号转换为电信号。具体而言,弹性元件222和质量元件221的振动会引起第一声学腔250内的空气振动,空气振动可以通过基板211上设置的进声孔2111作用于声学换能器210,声学换能器210可以将空气振动转换为电信号或基于第一声学腔250的体积变化生成电信号,再通过处理器270对电信号进行信号处理。
在一些实施例中,可以通过调节质量元件221的力学参数(例如,材料、尺寸、形状等),以使振动传感器200获得较为理想的频率响应,从而能够调节振动传感器200的谐振频率、灵敏度以及保证振动传感器200的可靠性。在一些实施例中,质量元件221可以是长方体、圆柱体、球体、椭圆体等三角形等规则或不规则的形状。在一些实施例中,质量元件221的厚度可以在一定范围内。在一些实施例中,质量元件221的厚度为1μm~5000μm。在一些实施例中,质量元件221的厚度为1μm~3000μm。在一些实施例中,质量元件221的厚度为1μm~1000μm。在一些实施例中,质量元件221的厚度为1μm~500μm。在一些实施例中,质量元件221的厚度为1μm~200μm。在一些实施例中,质量元件221的厚度为1μm~50μm。
在一些实施例中,质量元件221的厚度对振动传感器200的频响曲线的谐振峰和灵敏度有 较大影响。同等面积下质量元件221越厚,其总质量越大,振动传感器200的谐振峰前移(也可以理解为谐振频率减小),灵敏度上升。在一些实施例中,质量元件221的面积在一定范围内。在一些实施例中,质量元件221的面积为0.1mm 2~100mm 2。在一些实施例中,质量元件221的面积为0.1mm 2~50mm 2。在一些实施例中,质量元件221的面积为0.1mm 2~10mm 2。在一些实施例中,质量元件221的面积为0.1mm 2~6mm 2。在一些实施例中,质量元件221的面积为0.1mm 2~3mm 2。在一些实施例中,质量元件221的面积为0.1mm 2~1mm 2
在一些实施例中,质量元件221中可以含有高分子材料。在一些实施例中,高分子材料可以包括弹性高分子材料,弹性高分子材料的弹性特质可以对外界冲击载荷进行吸收,进而有效减小弹性元件222与壳体230连接处的应力集中,以减少振动传感器200因外界冲击而损坏的可能性。在一些实施例中,质量元件221中高分子材料的质量可以超过85%。在一些实施例中,质量元件221中高分子材料的质量可以超过80%。在一些实施例中,质量元件221中高分子材料的质量可以超过75%。在一些实施例中,质量元件221中高分子材料的质量可以超过70%。在一些实施例中,质量元件221中高分子材料的质量可以超过60%。在一些实施例中,质量元件221和弹性元件222可以由同一种高分子材料制成。
在一些实施例中,可以通过调弹性元件222的力学参数(例如,杨氏模量、拉伸强度、断裂伸长率以及硬度shore A)来调整弹性元件222的刚度,从而调节振动传感器200的谐振频率和灵敏度。在一些实施例中,可以通过调整弹性元件222的杨氏模量参数,提高振动传感器200在目标频段范围(例如,人声频段范围)内的灵敏度。在一些实施例中,弹性元件222的杨氏模量越大,刚度就越大,振动传感器200的灵敏度就越高。在一些实施例中,弹性元件222的杨氏模量可以为1MPa~10GPa。在一些实施例中,弹性元件222的杨氏模量可以为100MPa~8GPa。在一些实施例中,弹性元件222的杨氏模量可以为1GPa~8GPa。在一些实施例中,弹性元件222的杨氏模量可以为2GPa~5GPa。需要注意的是,目标频段范围可以根据振动传感器200在不同的应用场景进行适应调整。例如,振动传感器200应用于拾取用户说话时的声音信号时,特定频段范围可以为人声频段范围。又例如,振动传感器200应用于外部环境的声音信号时,特定频段范围可以为20Hz-10000Hz。
在一些实施例中,可以通过调整弹性元件222的拉伸强度,提高振动传感器200在目标频段范围(例如,人声频段范围)内的灵敏度。其中,弹性元件222的拉伸强度可以是弹性元件222在出现缩颈现象(即产生集中变形)时所能承受的最大拉应力。在一些实施例中,弹性元件222的拉伸强度越大,振动传感器200在特定频段范围(例如,人声频段范围)内的灵敏度就越高。在一些实施例中,弹性元件222的拉伸强度可以为0.5MPa~100MPa。在一些实施例中,弹性元件222的拉伸强度可以为5MPa~90MPa。在一些实施例中,弹性元件222的拉伸强度可以为10MPa~80MPa。在一些实施例中,弹性元件222的拉伸强度可以为20MPa~70MPa。在一些实施例中,弹性元件222的拉伸强度可以为30MPa~60Mpa。
在一些实施例中,可以通过调整弹性元件222的断裂伸长率,提高振动传感器200在目标频段范围(例如,人声频段范围)内的灵敏度。其中,弹性元件222的断裂伸长率是指弹性元件222的材料受外力作用至拉断时,拉伸前后的伸长长度与拉伸前长度的比值。在一些实施例中,弹性元件222的断裂伸长率越大,振动传感器200在目标频段范围(例如,人声频段范围)的灵敏度就越高,稳定性也越好。在一些实施例中,弹性元件222的断裂伸长率可以为10%~600%。在一些实施例中,弹性元件222的断裂伸长率可以为20%~500%。在一些实施例中,弹性元件222的断裂伸长率可以为50%~400%。在一些实施例中,弹性元件222的断裂伸长率可以为80%~200%。
在一些实施例中,可以通过调整弹性元件222的硬度,提高振动传感器200在目标频段范围(例如,人声频段范围)内的灵敏度。其中,弹性元件222的硬度可以是指弹性元件222的邵氏硬度(即硬度Shore A)。在一些实施例中,弹性元件222的硬度越小,振动传感器200的灵敏度就越高。在一些实施例中,弹性元件222的硬度Shore A小于200。在一些实施例中,弹性元件222的硬度Shore A小于150。在一些实施例中,弹性元件222的硬度Shore A小于100。在一些实施例中,弹性元件222的硬度Shore A小于60。在一些实施例中,弹性元件222的硬度Shore A小于30。在一些实施例中,弹性元件222的硬度Shore A小于10。
在一些实施例中,质量元件221和弹性元件222的材质可以相同。在一些实施例中,质量元件221和弹性元件222的材质可以部分相同。在一些实施例中,质量元件221和弹性元件222的材质可以不同。
在一些实施例中,参见图2,缓冲件240可以设置于第一声学腔250内垂直于振动组件220 的振动方向的侧壁上。这里的第一声学腔250的侧壁可以是指弹性元件222沿振动组件220的振动方向的上表面和/或声学换能器210的基板211的下表面。缓冲件240可以为振动组件220提供沿振动组件220的振动方向的缓冲距离。在一些实施例中,缓冲距离可以大于或等于0,且小于振动组件220的最大振动幅度。在一些实施例中,缓冲距离可以是指缓冲件240与第一声学腔250的另一侧壁(即不设置缓冲件240的侧壁)之间的距离。以缓冲件240设置于基板211上为例,缓冲件240与基板211连接,此时缓冲件240为振动组件220提供的缓冲距离可以是缓冲件240沿振动组件220的振动方向的下表面与弹性元件222沿振动组件220的振动方向的上表面之间的距离。在一些实施例中,当振动传感器200工作时,若缓冲距离等于0,则振动组件220发生振动就会直接挤压缓冲件240;若缓冲距离大于0且小于振动组件220的最大振动幅度,则振动组件220振动到一定幅度(即缓冲距离,此时弹性元件222与缓冲件240接触)才会挤压缓冲件240,从而限制振动组件220的振动幅度,进而防止振动组件220与基板211发生碰撞,提高振动传感器200的可靠性。在一些实施例中,通过调整缓冲件240的缓冲距离、缓冲件240在垂直于振动组件220的振动方向上的投影面积、缓冲件240的材质等中的一种或多种,可以实现对振动传感器200的灵敏度、工作带宽等调整,以提高振动传感器200的适用性。
在一些实施例中,缓冲件240的结构可以是一体式结构体,如缓冲件240呈块状、片状设置等。在一些实施例中,缓冲件240可以包括在弹性元件222或声学换能器210的基板211上间隔分布的多个缓冲点、多个缓冲颗粒、多个缓冲柱等。多个缓冲点、多个缓冲颗粒、多个缓冲柱可以规律性(如均匀排布)或不规律性排布(如不均匀排布)。
需要说明的是,缓冲件240的位置不限于上述的第一声学腔250内垂直于振动组件220的振动方向的侧壁(例如,弹性元件222沿振动组件220的振动方向的上表面、声学换能器210的基板211)上,还可以设置于振动传感器200的其他位置。例如,缓冲件240可以设置于第二声学腔260内垂直于振动组件220的振动方向的壳体230的底壁231上,以防止质量元件221在振动过程中与壳体230发生碰撞。
在一些实施例中,图2这种设置方式下,缓冲件240可以用于限制振动组件220的振动幅度。在一些实施例中,一方面,振动传感器200中设置缓冲件240,可以限制振动组件220的振动幅度,从而避免振动组件220在振动过程中与振动传感器200中的其他组件(如声学换能器210、壳体230)发生碰撞,进而实现对振动组件220(尤其是弹性元件222)的保护,提高振动传感器200的可靠性。另一方面,缓冲件240设置于振动组件220沿振动组件220的振动方向的表面时,缓冲件240还可以调节振动组件220的质量和阻尼,从而调节振动传感器200的频带宽度和灵敏度。
在一些实施例中,参见图3,缓冲件240可以是多个结构组合成的复合式结构体。在一些实施例中,缓冲件240可以包括第一缓冲部241和第二缓冲部242,第一缓冲部241和第二缓冲部242沿振动组件220的振动方向分别设置于弹性元件222的两侧。在一些实施例中,第一缓冲部241与壳体230或弹性元件222(或质量元件221)连接。第二缓冲部242与声学换能器210或弹性元件222(或质量元件221)连接。在一些实施例中,第一缓冲部241可以为振动组件220提供沿振动组件220的振动方向的第一缓冲距离,第二缓冲部242可以为振动组件220提供沿振动组件220的振动方向的第二缓冲距离。以图3中第一缓冲部241与壳体230的底壁231连接,第二缓冲部242与基板211连接为例,第一缓冲距离可以是第一缓冲部241沿振动组件220的振动方向的上表面与质量元件221沿振动组件220的振动方向的下表面之间的距离;第二缓冲距离可以是第二缓冲部242沿振动组件220的振动方向的下表面与弹性元件222沿振动组件220的振动方向的上表面之间的距离。在一些实施例中,第一缓冲距离和/或第二缓冲距离可以大于或等于0,且小于振动组件220的最大振动幅度。在一些实施例中,第一缓冲距离与第二缓冲距离可以相同。在一些实施例中,由于弹性元件222的振动是均匀振动的,所以第一缓冲距离和第二缓冲距离相同可以保证在不损坏弹性元件222振动波形的情况下,对弹性元件222的振动幅度进行限制。在一些实施例中,第一缓冲距离与第二缓冲距离也可以不相同,例如第一缓冲距离可以略小于第二缓冲距离。
在一些实施例中,第一缓冲部241可以包括一个或多个第一缓冲块,一个或多个第一缓冲块可以间隔设置于弹性元件222(或质量元件221)上,或者与弹性元件222相对的壳体230的底壁231上(如图3所示),使得缓冲块正对于弹性元件222。第二缓冲部242可以包括一个或多个第二缓冲块,一个或多个第二缓冲块可以间隔设置于弹性元件222(或质量元件221)上,或者与弹性元件222相对的声学换能器210的基板211上(如图3所示),使得缓冲块正对于弹性元件222。在一些实施例中,一个或多个第一缓冲块和一个或多个第二缓冲块也可以交错设置于弹性元件222的两侧,即每个第一缓冲块在振动组件220的振动方向上正对于多个第二缓冲块之间的空隙处,每个 第二缓冲块在振动组件220的振动方向上正对于多个第一缓冲块之间的空隙处。交错设置的一个或多个第一缓冲块和第二缓冲块可以在不同位置处为弹性元件222提供支撑或限位,防止弹性元件222的振动幅度过大。
在一些实施例中,图3这种设置方式下,缓冲件240可以在振动组件220的振动方向的两侧均形成保护,并且振动传感器200中设置的一个或多个缓冲块(例如,第一缓冲块、第二缓冲块)可以在弹性元件222的振动过程中实现保护作用,使得弹性元件222具有较多的缓冲支点,限制弹性元件222的振动幅度,从而避免弹性元件222与振动传感器200中的其他组件(如声学换能器210、壳体230)发生碰撞,提高振动传感器200的可靠性。
在一些实施例中,参见图4,缓冲件240可以连接于弹性元件222和声学换能器210(和/或壳体230)之间。在一些实施例中,缓冲件240可以包括第一缓冲部241和第二缓冲部242。第一缓冲部241和第二缓冲部242沿振动组件220的振动方向分别设置于弹性元件222的两侧。具体地,第一缓冲部241沿振动组件220的振动方向的两个端部分别连接于壳体230的底壁231和弹性元件222。第二缓冲部242沿振动组件220的振动方向的两个端部分别连接于声学换能器210的基板211和弹性元件222。在一些实施例中,第一缓冲部241和第二缓冲部242的两个端部均固定,可以有效的保证第一缓冲部241在弹性元件222的振动过程中的设置稳定性,同时也可以对弹性元件222的振动过程中起到导向和限位的作用,保证弹性元件222的振动过程较为平稳的进行。
在一些实施例中,缓冲件240可以设置为多个,多个缓冲件240可以沿弹性元件222的周向间隔分布。在一些实施例中,位于弹性元件222的同一侧的第一缓冲部241(和/或第二缓冲部242)的数量可以为多个,多个第一缓冲部241(和/或第二缓冲部242)可以沿弹性元件222的周向间隔分布,且多个第一缓冲部241(和/或第二缓冲部242)均连接于弹性元件222。
在一些实施例中,缓冲件240连接于弹性元件222和声学换能器210(和/或壳体230)之间时,示例性的,缓冲件240可以是缓冲弹簧,缓冲弹簧的弹力方向沿振动组件220的振动方向设置。
在一些实施例中,图4这种设置方式下,缓冲件240可以对弹性元件222的一侧或两侧起到保护作用,通过限制弹性元件222的振动幅度,从而防止弹性元件222因振动幅度过大而造成损坏,进而提高振动传感器200的可靠性。另一方面,缓冲件240与振动组件220(弹性元件222)连接,可以提高缓冲件240与弹性元件222振动过程中的稳定性。
图5是根据本申请的一些实施例所示的振动传感器的示例性结构图。图6是根据本申请的一些实施例所示的振动传感器的示例性结构图。图7是根据本申请的一些实施例所示的振动传感器的示例性结构图。
图5-图7所示的振动传感器500的结构分别与图2-图4所示振动传感器200的结构大致相同,区别之处在于弹性元件的不同。在一些实施例中,参见图5-图7,弹性元件522为多层复合弹性元件,其包括第一弹性元件5221和第二弹性元件5222。在一些实施例中,第一弹性元件5221和第二弹性元件5222可以采用相同或不同材料制成。在一些实施例中,第一弹性元件5221和第二弹性元件5222的刚度不同,例如,第一弹性元件5221的刚度可以大于或小于第二弹性元件5222的刚度。在本实施例中,以第一弹性元件5221的刚度大于第二弹性元件5222的刚度为例,第二弹性元件5222可以为振动组件220提供所需的阻尼,而第一弹性元件5221刚度较高,则可以保证弹性元件522具有较高的强度,从而保证振动组件220甚至整个振动传感器500的可靠性。
需要注意的是,图5-图7以及相关描述中关于弹性元件522中包括的弹性元件的数量仅用于示例性描述,并不能把本申请限制在所举实施例范围之内。在一些实施例中,本实施例中的弹性元件的数量也可以是两个以上,例如弹性元件的数量可以为三层、四层、五层或者更多。仅作为示例性说明,弹性元件可以包括由上至下依次连接的第一弹性元件、第二弹性元件和第三弹性元件,其中第一弹性元件的材料、力学参数、尺寸可以和第三弹性元件的材料、力学参数、尺寸相同,第二弹性元件的材料、力学参数、尺寸可以和第一弹性元件或第三弹性元件的材料、力学参数、尺寸不同。例如,第一弹性元件或第三弹性元件的刚度大于第二弹性元件的刚度。在一些实施例中,可以通过调整第一弹性元件、第二弹性元件和/或第三弹性元件的材料、力学参数、尺寸等调节弹性元件的力学参数,从而保证振动传感器500的稳定性。
通过将弹性元件522设置为多层弹性元件,便于实现弹性元件522的刚度调节,例如,可以通过增加或减少弹性元件(例如,第一弹性元件5221和/或第二弹性元件5222)的数量,来实现对振动组件220的刚度和阻尼调节,从而可以使得振动传感器500在所需频段(例如,目标频段附近)内产生新的谐振峰,提高振动传感器500在特定频段范围的灵敏度。在一些实施例中,多层复 合弹性元件中的相邻两个弹性元件(例如,第一弹性元件5221和第二弹性元件5222)可以通过胶接的方式以形成弹性元件522。
在一些实施例中,可以通过调整弹性元件522中的至少一层弹性元件(第一弹性元件5221和/或第二弹性元件5222)的力学参数(例如,材料、杨氏模量、拉伸强度、断裂伸长率以及硬度shore A)来调整弹性元件522的刚度,以使振动传感器500获得较为理想的频率响应,从而能够调节振动传感器500的谐振频率和灵敏度。
在一些实施例中,可以通过调整弹性元件522中的至少一层弹性元件的拉伸强度,使得弹性元件522的整体拉伸强度在一定范围内,来提高振动组件220在所需频段范围内的灵敏度,进而提高振动传感器500的灵敏度。在一些实施例中,可以通过调整弹性元件522的第一弹性元件5221和/或第二弹性元件5222的材料、厚度或尺寸,使得弹性元件522整体的拉伸强度为0.5MPa~100MPa。在一些实施例中,可以通过调整弹性元件522的第一弹性元件5221和/或第二弹性元件5222的材料或尺寸,使得弹性元件522整体的拉伸强度为5MPa~90MPa。在一些实施例中,可以通过调整弹性元件522的第一弹性元件5221和/或第二弹性元件5222的材料或尺寸,使得弹性元件522整体的拉伸强度为10MPa~80MPa。在一些实施例中,可以通过调整弹性元件522的第一弹性元件5221和/或第二弹性元件5222的材料或尺寸,使得弹性元件522整体的拉伸强度为20MPa~70MPa。在一些实施例中,可以通过调整弹性元件522的第一弹性元件5221和/或第二弹性元件5222的材料、厚度或尺寸,使得弹性元件522整体的拉伸强度为30MPa~60Mpa。
在一些实施例中,可以通过调整弹性元件522中的至少一层弹性元件的断裂伸长率,使得弹性元件522的整体断裂伸长率在一定范围内,来提高振动传感器500在所需频段范围内的灵敏度。在一些实施例中,弹性元件522中的至少一层弹性元件的断裂伸长率越大,振动传感器500的灵敏度就越高,稳定性也越好。在一些实施例中,弹性元件522整体的断裂伸长率可以为10%~600%。在一些实施例中,弹性元件522整体的断裂伸长率可以为20%~500%。在一些实施例中,弹性元件522整体的断裂伸长率可以为50%~400%。在一些实施例中,弹性元件522整体的断裂伸长率可以为80%~200%。
在一些实施例中,可以通过调整弹性元件522中的至少一层弹性元件的硬度,使得弹性元件522的整体硬度在一定范围内,来提高振动传感器500在所需频段范围内的灵敏度。在一些实施例中,弹性元件522中的至少一层弹性元件的硬度越小,振动传感器500的灵敏度就越高。在一些实施例中,弹性元件522的整体硬度Shore A小于200。在一些实施例中,弹性元件522的整体硬度Shore A小于150。在一些实施例中,弹性元件522的整体硬度Shore A小于100。在一些实施例中,弹性元件522的整体硬度Shore A小于60。在一些实施例中,弹性元件522的整体硬度Shore A小于30。在一些实施例中,弹性元件522的整体硬度Shore A小于10。
在一些实施例中,也可以通过调整质量元件221的力学参数(例如,材料、尺寸、形状等)来调节振动传感器500的灵敏度。关于如何调整质量元件221的力学参数来实现对振动传感器500的灵敏度调节可以参考图2中关于调整质量元件221的力学参数来实现对振动传感器200的灵敏度调节的相关描述。
在一些实施例中,在弹性元件的参数(例如,杨氏模量、拉伸强度、硬度、断裂伸长率等)以及质量元件的体积或质量一定时,通过提高弹性元件的弹性形变的效率可以增大振动传感器的电信号,从而提高振动传感器的声电转换效果。在一些实施例中,可以减小质量元件与弹性元件接触的面积来提高弹性元件的弹性形变的效率,进而增大传感装置输出的电信号,具体参见图8-图10,及其相关描述。
在一些实施例中,参见图5-图7,缓冲件240可以用于限制振动组件220的振动幅度。在一些实施例中,振动传感器200中设置缓冲件240,缓冲件240为振动组件220提供沿振动组件220的振动方向的缓冲距离,以限制振动组件220的振动幅度,从而避免振动组件220在振动过程中与振动传感器500中的其他组件(如声学换能器210、壳体230)发生碰撞,进而实现对振动组件220的保护,提高振动传感器500的可靠性。
在一些实施例中,参见图5,缓冲件240的结构和设置方式与图2类似。缓冲件240可以设置于第一声学腔250内垂直于振动组件220的振动方向的侧壁上。缓冲件240可以为振动组件220提供沿振动组件220的振动方向的缓冲距离。以缓冲件240设置于基板211上为例,缓冲件240与基板211连接,此时缓冲距离可以是缓冲件240沿振动组件220的振动方向的下表面与第一弹性元件5221沿振动组件220的振动方向的上表面之间的距离。
在一些实施例中,参见图6,缓冲件240的结构和设置方式与图3类似。缓冲件240可以 包括第一缓冲部241和第二缓冲部242,第一缓冲部241和第二缓冲部242沿振动组件220的振动方向分别设置于弹性元件522的两侧。第一缓冲部241与壳体230或弹性元件522连接。第二缓冲部242与声学换能器210或弹性元件522连接。在一些实施例中,第一缓冲部241可以为振动组件220提供沿振动组件220的振动方向的第一缓冲距离,第二缓冲部242可以为振动组件220提供沿振动组件220的振动方向的第二缓冲距离。这种连接方式下,第一缓冲距离可以是第一缓冲部241沿振动组件220的振动方向的上表面与质量元件221沿振动组件220的振动方向的下表面之间的距离;第二缓冲距离可以是第二缓冲部242沿振动组件220的振动方向的下表面与第一弹性元件5221沿振动组件220的振动方向的上表面之间的距离。
在一些实施例中,参见图7,缓冲件240的结构和设置方式与图4类似。缓冲件240可以连接于弹性元件522和声学换能器210(和/或壳体230)之间。缓冲件240可以包括第一缓冲部241和第二缓冲部242。第一缓冲部241和第二缓冲部242沿振动组件220的振动方向分别设置于弹性元件522的两侧。具体地,第一缓冲部241沿振动组件220的振动方向的两个端部分别连接于壳体230的底壁231和第二弹性元件5222。第二缓冲部242沿振动组件220的振动方向的两个端部分别连接于声学换能器210的基板211和第一弹性元件5221。
图8是根据本申请的一些实施例所示的振动传感器的示例性结构图。图9是根据本申请的一些实施例所示的振动传感器的示例性结构图。图10是根据本申请的一些实施例所示的振动传感器的示例性结构图。
图8-图10所示的振动传感器800的结构与图2-图4所示振动传感器200的结构大致相同,区别之处在于质量元件的不同。在一些实施例中,参见图8-图10,质量元件821可以为椭圆球体,其与弹性元件222的接触面积小于其在弹性元件222的投影面积,这样可以保证质量元件821在同等体积或质量下,质量元件821与弹性元件具有较小的接触面积,当振动传感器800的壳体230振动带动质量元件821振动时,弹性元件222与质量元件821的接触区域的可以近似视为不发生变形,通过减小弹性元件222与质量元件821的接触区域可以增大弹性元件222不与质量元件821接触的区域面积,从而增大弹性元件222在振动过程发生变形的区域面积(也就是弹性元件222不与质量元件821接触的区域面积),从而可以增大第一声学腔250内被压缩的空气量,使得声学换能器210可以输出更大的电信号,进而提高振动传感器800的声电转换效果。
在一些实施例中,质量元件821还可以为梯形体,其中,梯形体的面积较小的一面与弹性元件222连接,这样也能实现质量元件821与弹性元件接触的面积小于质量元件821在弹性元件222的投影面积。在一些实施例中,质量元件821还可以是拱形结构,当质量元件821为拱形结构时,拱形结构的两个拱脚与弹性元件222的上表面或下表面连接,其中两个拱脚与弹性元件222的接触面积小于拱腰在弹性元件222上的投影面积,即拱形结构的质量元件821与弹性元件222的接触面积小于其在弹性元件222上的投影面积。需要说明的是,在本实施例中,任何能够满足质量元件821与弹性元件接触的面积小于质量元件821在弹性元件222的投影面积的规则或不规则形状或结构,均属于本说明书实施例变化范围内,本说明书不再一一列举。
在一些实施例中,质量元件821可以为实心结构体。例如,质量元件821可以为实心圆柱体、实心长方体、实心椭圆球体、实心三角形体等规则或不规则的结构体。在一些实施例中,为了保证质量元件821在质量不变时,减小质量元件821与弹性元件222的接触面积,提高振动传感器800在特定频段范围的灵敏度,质量元件821还可以为局部掏空的结构体。例如,质量元件821为环形柱体、矩形筒状的结构体等。
在一些实施例中,质量元件821可以包括多个相互分离的子质量块,且多个子质量元件位于弹性元件222的不同区域。在一些实施例中,质量元件可以包括两个或以上相互分离的子质量元件,例如,3个、4个、5个等。在一些实施例中,多个相互分离的子质量元件的质量、尺寸、形状、材料等可以相同或不同。在一些实施例中,多个相互分离的子质量元件可以在弹性元件222上等间距分布、不等间距分布、对称分布或非对称分布。在一些实施例中,多个相互分离的子质量元件可以设置在弹性元件222的上表面和/或下表面上。通过在弹性元件222的中部区域设置多个相互分离的子质量元件,不仅可以增加弹性元件222在壳体230带动振动下的变形区域的面积,提高弹性元件222的变形效率,以提高振动传感器800的灵敏度,而且还可以提高振动组件220以及振动传感器800的可靠性。在一些实施例中,还可以通过调整多个质量元件的质量、尺寸、形状、材料等参数,使得多个子质量元件具有不同的频率响应,从而进一步提高振动传感器800在不同频段范围内的灵敏度。
在一些实施例中,参见图8-图10,缓冲件240可以用于限制振动组件220的振动幅度。在 一些实施例中,振动传感器800中设置缓冲件240,缓冲件240通过为振动组件220提供缓冲距离以限制振动组件220的振动幅度,从而避免振动组件220在振动过程中与振动传感器800中的其他组件(如声学换能器210、壳体230)发生碰撞,进而实现对振动组件220的保护,提高振动传感器800的可靠性。
在一些实施例中,参见图8,缓冲件240的结构和设置方式与图2类似。缓冲件240可以设置于第一声学腔250内垂直于振动组件220的振动方向的侧壁上。缓冲件240可以为振动组件220提供沿振动组件220的振动方向的缓冲距离。
在一些实施例中,参见图9,缓冲件240的结构和设置方式与图3类似。缓冲件240可以包括第一缓冲部241和第二缓冲部242,第一缓冲部241和第二缓冲部242沿振动组件220的振动方向分别设置于弹性元件522的两侧。区别之处在于,质量元件821为椭圆球体时,质量元件821下表面的不同位置处与第一缓冲部241的上表面之间的距离不同。基于此,第一缓冲部241为振动组件220提供的第一缓冲距离可以是第一缓冲部241沿振动组件220的振动方向的上表面与质量元件221沿振动组件220的振动方向的下表面之间的最短距离。
在一些实施例中,参见图10,缓冲件240的结构和设置方式与图4类似。缓冲件240可以包括第一缓冲部241和第二缓冲部242。第一缓冲部241和第二缓冲部242沿振动组件220的振动方向分别设置于弹性元件522的两侧。
图11是根据本申请的一些实施例所示的振动传感器的示例性结构图。图12是根据本申请的一些实施例所示的振动传感器的示例性结构图。图13是根据本申请的一些实施例所示的振动传感器的示例性结构图。图14是根据本申请的一些实施例所示的振动传感器的示例性结构图。图14A是根据本申请的一些实施例所示的振动传感器的示例性结构图。图14B是根据本申请的一些实施例所示的振动传感器的示例性结构图。
在一些实施例中,参见图11-图12,振动传感器1100可以包括声学换能器210和振动组件220。图11-图12所示的振动传感器1100与图2所示的振动传感器200的区别之处在于,振动组件220沿振动组件220的振动方向设于声学换能器210的进声孔2111内或如图11-图12所示的设于进声孔2111的外侧。振动组件220与声学换能器210的基板211之间形成第一声学腔250。
在一些实施例中,振动组件220可以包括弹性元件222和质量元件221。在一些实施例中,弹性元件222可以包括板状结构,板状结构与一个质量元件221连接。在一些实施例中,板状结构与质量元件221可以通过卡接、粘接或者一体成型等方式实现连接,在本说明书中不对其连接方式加以限定。在一些实施例中,弹性元件222可以设置为透气或不透气的,示例性的为了使其具备更好的拾音效果,在一些实施例中,弹性元件222可以是不透气的。
需要注意的是,图11中示出一个弹性元件或一个板状结构仅为了描述方便,但并不限制本申请的保护范围,在一些实施例中,质量元件可以包括多个。在一些实施例中,多个质量元件可以分别设于弹性元件222两侧。在一些实施例中,多个质量元件也可以设于弹性元件222的同一侧。
在一些实施例中,参见图13-图14,振动组件220包括弹性元件222以及设置在弹性元件222上的两个质量元件221。在一些实施例中,两个质量元件221的结构参数可以相同,也可以不同。在一些实施例中,两个质量元件221物理连接于弹性元件222上,两个质量元件221可以设置于弹性元件222在振动方向上的同一侧。在一些实施例中,两个质量元件221物理连接于弹性元件222上,两个质量元件221可以分别设置于弹性元件222在振动方向上的两侧。在一些实施例中,两个质量元件221在振动方向上可以具有相同截面形状,例如,皆为圆形。在一些实施例中,两个质量元件221在水平方向上(与振动方向垂直的方向)可以具有不同高度。由此,两个质量元件221可以使振动组件220在目标频段内具有多振动模态,从而使得振动传感器1000的频响曲线具有两个谐振峰,进而增加振动传感器1000高灵敏度的频率区间,使振动传感器1000在两个谐振频率附近的频率区间(即目标频段)的灵敏度得到提升,达到了拓宽频段带宽、提高灵敏度的效果。
在一些实施例中,通过弹性元件222及多个质量元件221的参数设置,可以在具有振动组件220的振动传感器1100的频率响应曲线上形成至少两个谐振峰,从而形成多个高灵敏度的频率区间以及更宽的频段。在一些实施例中,弹性元件222以及与弹性元件222物理连接的多个质量元件221具有的多个谐振频率与弹性元件222和/或质量元件221的参数有关,参数包括弹性元件222的杨氏模量、声学换能器210与弹性元件222之间形成腔体的体积、质量元件221的半径、质量元件221的高度和质量元件221的密度中至少一个。
在一些实施例中,两个质量元件221的参数,如在振动方向上的高度可以满足预设比例,如在一些实施例中,两质量元件221的高度比可以是3:2、2:1、3:4或3:1等。
需要说明的是,弹性元件222上连接的质量元件的个数可以不限于两个,例如,可以是三个、四个或五个以上。在一些实施例中,多个质量元件221可以共线设置或不共线设置。以弹性元件222上质量元件221的数量为三个作为示例,三个质量元件221在弹性元件222上可以不共线设置。可以理解的是,当质量元件221包括三个时,三个质量元件中两两之间的连线不重合。在一些实施例中,三个质量元件221可以呈三角形分布,且质量元件221两两之间的距离相同。在一些实施例中,三个质量元件221可以使振动组件520在目标频段内至少两个频点附近的频率区间的灵敏度得到提升,达到了拓宽频段带宽、提高灵敏度的效果。再以弹性元件222上质量元件221的数量为四个作为示例,四个质量元件221可以按阵列(如环形阵列或矩形阵列)设置。在一些实施例中,四个质量元件221中至少两个质量元件221具有不同谐振峰。在一些实施例中,当质量元件221包括四个及以上时,任意两质量元件在弹性元件222上中心点的连线,不会重合为一条直线。
在一些实施例中,一个弹性元件222以及与弹性元件222物理连接的多个质量元件221对应一个或多个不同目标频段中的多个目标频段,使在对应的目标频段内振动传感器1100的灵敏度可以大于声学换能器210的灵敏度。在一些实施例中,一个弹性元件222以及与弹性元件222物理连接的多个质量元件221的多个谐振频率相同或不同。在一些实施例中,附加一组或多组质量元件221和弹性元件222后的振动传感器1100在目标频段内较声学换能器210的灵敏度可提升3dB~30dB。在一些实施例中,测量振动传感器100和声学换能器110灵敏度的方法可以是:在给定加速度(如1g,g为重力加速度)激励下,采集器件电学信号(如-30dBV),则灵敏度为-30dBV/g。在一些实施例中,如声学换能器110为气导麦克风时,在测量灵敏度时,可以把前述激励源换成声压即可,即输入指定频段内的声压作为激励,测量采集器件的电学信号。需要说明的是,在一些实施例中,附加振动组件220后的振动传感器1100较声学换能器210的灵敏度还可以可提升30dB以上,如与弹性元件222物理连接的多个质量元件221具有相同谐振峰。
在一些实施例中,参见图11-图14,振动组件220可以进一步包括支撑元件223,支撑元件223用于支撑一组或多组弹性元件222和质量元件221。支撑元件223设置于声学换能器210的基板211和振动组件220之间,支撑元件233的上表面与基板211连接,支撑元件233的下表面与弹性元件222连接。支撑元件233、基板211和弹性元件222之间可以形成第一声学腔250。
在一些实施例中,支撑元件223可以由不透气的材料制成,不透气的支撑元件223可使空气中的振动信号在传递过程中,导致支撑元件223内声压变化(或空气振动),使支撑元件223内部振动信号通过进声孔2111传递至声学换能器210内,在传递过程中不会穿过支撑元件223向外逸散,进而保证声压强度,提升传声效果。
在一些实施例中,在与弹性元件222和质量元件221连接的表面垂直的方向上(即振动方向),质量元件221的投影区域与支撑元件223的投影区域不重叠。此种设置为了避免弹性元件222和质量元件221的振动受到支撑元件223的限制。在一些实施例中,弹性元件222在振动方向上的横截面的形状可以包括圆形、矩形、三角形或不规则图形等,在一些实施例中,弹性元件222的形状还可以根据支撑元件223形状进行设置,在本说明书中不做限制。在一些实施例中,为防止非平滑的曲线过度导致角点处应力过于集中,因此,本申请实施例选择弹性元件222为圆形。
在一些实施例中,参见图12和图14,振动传感器1100还可以包括缓冲件240。缓冲件240可以用于限制振动组件220的振动幅度。在一些实施例中,振动传感器1100中设置缓冲件240,缓冲件240为振动组件220提供沿振动组件220的振动方向的缓冲距离,以限制振动组件220的振动幅度,从而可以避免振动组件220在振动过程中与振动传感器1100中的其他组件(如声学换能器210)发生碰撞,进而实现对振动组件220的保护,提高振动传感器1100的可靠性。
在一些实施例中,参见图12和图14,缓冲件240的结构和设置方式与图2类似。缓冲件240可以设置于第一声学腔250内垂直于振动组件220的振动方向的侧壁上。缓冲件240可以为振动组件220提供沿振动组件220的振动方向的缓冲距离。在一些实施例中,当缓冲件240连接于基板211且覆盖进声孔2111时,缓冲件240可以设置为环形结构,使得环形结构内部掏空部分与进声孔2111相对,进而保证缓冲件240可以为振动组件220提供缓冲距离的同时不堵塞进声孔2111,避免影响声学换能器210的拾音装置212对振动信号的拾取。
在一些实施例中,振动传感器1100也可以包括壳体(未示出),壳体罩设于振动组件220的外围,使得振动组件220位于壳体与声学换能器210形成的声学腔中,振动组件220将该声学腔分隔为第一声学腔250和第二声学腔。在一些实施例中,缓冲件240可以包括第一缓冲部和第二缓冲部,第一缓冲部和第二缓冲部沿振动组件220的振动方向分别设置于弹性元件222的两侧。第一缓冲部位于第二声学腔内与壳体或弹性元件222连接。第二缓冲部242位于第一声学腔250内与声 学换能器210或弹性元件222连接。在一些实施例中,第一缓冲部241可以为振动组件220提供沿振动组件220的振动方向的第一缓冲距离,第二缓冲部242可以为振动组件220提供沿振动组件220的振动方向的第二缓冲距离。关于缓冲件240沿振动组件220的振动方向分别设置于弹性元件222的两侧的更多内容可以参见图3,及其相关描述。
在一些实施例中,缓冲件240也可以连接于弹性元件222和声学换能器210之间。缓冲件240可以包括第二缓冲部,第二缓冲部沿振动组件220的振动方向的两个端部分别连接于声学换能器210的基板211和弹性元件222。在一些实施例中,振动传感器1100包括壳体时,缓冲件还可包括第一缓冲部,第一缓冲部沿振动组件220的振动方向的两个端部分别连接于壳体和弹性元件222。关于缓冲件240连接于弹性元件222和声学换能器210(和/或壳体)之间的更多内容可以参见图4,及其相关描述。
在一些实施例中,参见图14A-图14B,缓冲件240可以包括磁性缓冲件243,磁性缓冲件243可以用于产生磁场。在一些实施例中,磁性缓冲件243可以包括线圈,线圈安装于声学换能器110连接第一声学腔250的侧壁。例如,线圈可以安装于基板211沿振动方向的下表面。在其他实施例中,也可以利用限位结构对线圈进行支撑和定位,例如在基板211与振动组件220之间设置支撑网或支撑架,以安装线圈等。在一些实施例中,线圈可以埋设于声学换能器110连接第一声学腔的侧壁内。例如,线圈可以埋设于基板211内。在一些实施例中,线圈埋设于基板211内时,可以直接在基板211内蚀刻形成线圈。在其他实施例中,振动传感器1100包括壳体时,磁性缓冲件243也可以安装于壳体内壁上,所述壳体内壁沿振动组件220的振动方向正对于振动组件220。在另一些实施例中,磁性缓冲件还可以埋设于壳体的内壁内部。
在一些实施例中,线圈的形状可以同心圆结构、同心矩形结构、同心多边形结构等,在此不做特别限定。
在一些实施例中,质量元件221可以包括磁性件或可磁化件,质量元件221位于磁性缓冲件243(如线圈)所产生的磁场中。在一些实施例中,质量元件221包括的可磁化元件可以理解为,在振动传感器1100工作前,对质量元件221磁化,使其具有磁性。在一些实施例中,线圈产生的磁场的磁场方向与振动组件120的振动方向一致,质量元件221与线圈之间相吸或相斥。在一些实施例中,质量元件221的材质可以是磁性材料、可磁化材料等。在一些实施例中,磁性材料可以是指由铁、钴、镍及其合金等能够直接或间接产生磁性的材料。示例性的磁性材料可以包括但不限于铁、铁氧体、氧化镍、氧化钴等。在一些实施例中,可磁化材料可以是在磁场或电流的作用下能够获得磁性的材料。在一些实施例中,可磁化材料可以包括但不限于合金氧化物、金属等。
在一些实施例中,振动传感器1100具有多个质量元件时,多个质量元件中的部分质量元件中的一个或多个可以包括磁性件或可磁化件。在一些实施例中,多个质量元件中的其中一个质量元件可以包括磁性件或可磁化件。在一些实施例中,多个质量元件中的相距较远的两个质量元件可以包括磁性件或可磁化件,剩余的质量元件不具有磁性件或可磁化件。这样的设置可以使得具有磁性件或可磁化件的质量元件的振动幅度可以调节的情况下,还能避免包括磁性件或可磁化件的质量元件之间的相互磁力作用。在一些实施例中,多个质量元件中的全部质量元件都可以具有磁性件或可磁化件。这种设置方式下,可以通过调节多个质量元件中的每一个质量元件的磁导率或磁化强度,从而调节多个质量元件之间的磁力作用。
在一些实施例中,一方面,通过在振动传感器1100中设置磁性缓冲件243(如线圈),利用磁性缓冲件243产生磁场,使得包括磁性件或可磁化件的质量元件221具有磁性,可以改变质量元件221的受力情况,进而调节质量元件221的振动幅度,避免出现质量元件221振动过程中造成质量元件221或弹性元件222与声学换能器210或壳体230发生碰撞。另一方面,通过磁性缓冲件243产生的磁场调节质量元件221的受力情况,也可以调节振动传感器1100的灵敏度。在一些实施例中,磁性缓冲件243产生的磁场的磁场强度较大时,质量元件221受力较大,使得弹性元件222不易振动,振动传感器1100的灵敏度较低。在一些实施例中,磁性缓冲件243产生的磁场的磁场强度较小时,质量元件221受力较小,使得弹性元件222容易振动,振动传感器1100的灵敏度较高。
在一些实施例中,参见图11,为了在较小的体积空间内设置多组振动结构,振动组件220还可以包括一个或多个悬臂梁结构224。一个或多个悬臂梁结构224设置于第一声学腔250内,悬臂梁结构224的一端与支撑元件223的一侧物理连接,另一端为自由端,悬臂梁结构224的自由端物理连接有一个或多个质量块。具体地,悬臂梁结构224与支撑元件223的物理连接方式可以包括焊接、卡接、粘接或者一体成型等连接方式,此处不对其连接方式加以限定。在一些实施例中,振动组件220还可以不包括支撑元件223,悬臂梁结构224可以沿进声孔2111的径向(即振动组件 220的振动方向)截面设于进声孔2111内或设于进声孔2111的外侧,悬臂梁结构224不完全覆盖进声孔2111。
在一些实施例中,悬臂梁结构224的材料包括金属材料和无机非金属材料。金属材料可以包括但不限于铜、铝、锡等或其他合金。无机非金属材料可以包括但不限于硅、氮化铝、氧化锌、锆钛酸铅等中的至少一种。在一些实施例中,质量元件221可以设于悬臂梁结构224在振动方向上的任意一侧,在本实施例中,以质量元件221设于悬臂梁结构224振动方向远离声学换能器(图中未示出)的一侧进行说明。
在一些实施例中,悬臂梁结构224自由端垂直于振动方向的任一侧上设置有一个或多个质量元件221。各个质量元件221的尺寸可以部分相同或全部相同,或全部不同。在一些实施例中,相邻质量元件221之间的距离可以相同,也可以不同。在一些实施例中,悬臂梁结构224上的质量元件221为多个时,多个质量元件221的结构参数可以相同、可以部分不同或均不相同。在实际使用时,多个质量元件221的结构参数可以根据振动模态进行设计。
在MEMS器件工艺中,在一些实施例中,悬臂梁结构224长度可以为500μm~1500μm;在一些实施例中,悬臂梁结构224厚度可以为0.5μm~5μm;在一些实施例中,质量元件221边长可以为50μm~1000μm;在一些实施例中,质量元件221高度可以为50μm~5000μm。在一些实施例中,悬臂梁结构224长度可以为700μm~1200μm,悬臂梁结构224厚度可以为0.8μm~2.5μm;质量元件221边长可以为200μm~600μm,质量元件221高度可以为200μm~1000μm。
在宏观器件中,悬臂梁结构224长度可以为1mm~20cm,悬臂梁结构224厚度可以为0.1mm~10mm;在一些实施例中,质量元件221边长可以为0.2mm~5cm,质量元件221高度可以为0.1mm~10mm。在一些实施例中,悬臂梁结构224长度可以为1.5mm~10mm,悬臂梁结构224厚度可以为0.2mm~5mm;质量元件221边长可以为0.3mm~5cm,质量元件221高度可以为0.5mm~5cm。
图15是根据本申请的一些实施例所示的振动传感器的示例性结构图。图16是根据本申请的一些实施例所示的振动传感器的示例性结构图。图17是根据本申请的一些实施例所示的振动传感器的示例性结构图。
在一些实施例中,参见图15-图17,振动传感器1500可以包括声学换能器(图中未示出)、振动组件220和缓冲件240。在一些实施例中,振动组件220可以包括质量元件221和弹性元件1522,其中,弹性元件1522可以包括第一弹性元件15221和第二弹性元件15222。在一些实施例中,第一弹性元件15221和第二弹性元件15222可以为膜状结构。在一些实施例中,第一弹性元件15221和第二弹性元件15222可以在质量元件221振动方向上相对于质量元件221呈近似对称分布。在一些实施例中,第一弹性元件15221和第二弹性元件15222可以与壳体230连接。例如,第一弹性元件15221可以位于质量元件221远离基板211的一侧,第一弹性元件15221的下表面可以和质量元件221的上表面连接,第一弹性元件15221的周侧和壳体230的内壁连接。第二弹性元件15222可以位于质量元件221靠近基板211的一侧,第二弹性元件15222的上表面和质量元件221的下表面连接,第二弹性元件15222的周侧可以和壳体230的内壁连接。需要说明的是,第一弹性元件15221和第二弹性元件15222的膜状结构可以为矩形、圆形等规则和/或不规则结构,第一弹性元件15221和第二弹性元件15222的形状可以根据壳体230的截面形状进行适应性调整。
在一些实施例中,第一弹性元件15221和第二弹性元件15222在质量元件221振动方向上相对于质量元件221呈对称设置,可以使得质量元件221的重心与弹性元件1522的形心近似重合,并且第一弹性元件15221和第二弹性元件15222的尺寸、形状、材质、或厚度可以相同,进而使得振动组件220在响应与壳体230的振动而产生振动时,可以降低质量元件221在垂直于质量元件221的振动方向上的振动,从而降低振动组件220对垂直于质量元件221的振动方向上壳体230振动的响应灵敏度,进而提高振动传感器1500的方向选择性。
在一些实施例中,可以通过调整弹性元件1522的厚度、弹性系数、质量元件221的质量、尺寸等改变(例如,提高)振动组件220对沿质量元件221振动方向上壳体230振动的响应灵敏度。
在一些实施例中,至少一个弹性元件1522的形心与质量元件221的重心在沿质量元件221振动方向上的距离可以不大于质量元件221厚度的1/3。在一些实施例中,至少一个弹性元件1522的形心与质量元件221的重心在沿质量元件221振动方向上的距离可以不大于质量元件221厚度的1/2。在一些实施例中,至少一个弹性元件1522的形心与质量元件221的重心在沿质量元件221振动方向上的距离可以不大于质量元件221厚度的1/4。
在一些实施例中,至少一个弹性元件1522的形心与质量元件221的重心在垂直于质量元 件221的振动方向上的距离不大于质量元件221边长或半径的1/3。在一些实施例中,至少一个弹性元件1522的形心与质量元件221的重心在垂直于质量元件221的振动方向上的距离不大于质量元件221边长或半径的1/2。在一些实施例中,至少一个弹性元件1522的形心与质量元件221的重心在垂直于质量元件221的振动方向上的距离不大于质量元件221边长或半径的1/4。
在一些实施例中,当至少一个弹性元件1522的形心与质量元件221的重心重合或者近似重合时,可以使得振动组件220在垂直于质量元件221的振动方向上振动的谐振频率向高频偏移,而不改变振动组件220在质量元件221的振动方向上振动的谐振频率。在一些实施例中,当至少一个弹性元件1522的形心与质量元件221的重心重合或者近似重合时,振动组件220在质量元件221的振动方向上振动的谐振频率可以保持基本不变,例如,振动组件220在质量元件221的振动方向上振动的谐振频率可以为人耳感知相对较强的频率范围(例如,20Hz-2000Hz、2000Hz-3000Hz等)内的频率。振动组件220在垂直于质量元件221的振动方向上振动的谐振频率可以向高频偏移而位于人耳感知相对较弱的频率范围(例如,5000Hz-9000Hz、1kHz-14kHz等)内的频率。基于振动组件220在垂直于质量元件221的振动方向上振动的谐振频率向高频偏移,振动组件220在质量元件221的振动方向上振动的谐振频率保持基本不变,可以使得振动组件220在垂直于质量元件221的振动方向上振动的谐振频率与振动组件220在质量元件221的振动方向上振动的谐振频率的比值大于或等于2。在一些实施例中,振动组件220在垂直于质量元件221的振动方向上振动的谐振频率与振动组件220在质量元件221的振动方向上振动的谐振频率的比值也可以大于或等于其他数值。例如,振动组件220在垂直于质量元件221的振动方向上振动的谐振频率与振动组件220在质量元件221的振动方向上振动的谐振频率的比值也可以大于或等于1.5。
在一些实施例中,第一弹性元件15221和第二弹性元件15222为膜状结构时,质量元件221的上表面或下表面的尺寸小于第一弹性元件15221和第二弹性元件15222的尺寸,质量元件221的侧表面和壳体230的内壁形成间距相等的环形或矩形。在一些实施例中,第一弹性元件15221和第二弹性元件15222的厚度可以为0.1um~500um。在一些实施例中,第一弹性元件15221和第二弹性元件15222的厚度可以为0.05um~200um。在一些实施例中,第一弹性元件15221和第二弹性元件15222的厚度可以为300um~800um。在一些实施例中,每个弹性元件(例如,第一弹性元件15221或第二弹性元件15222)与质量元件221的厚度比可以为2~100。在一些实施例中,每个弹性元件与质量元件221的厚度比可以为10~50。在一些实施例中,每个弹性元件与质量元件221的厚度比可以为20~40。在一些实施例中,质量元件221与每个弹性元件(例如,第一弹性元件15221或第二弹性元件15222)的厚度差值可以为9um~500um。在一些实施例中,质量元件221与每个弹性元件的厚度差值可以为50um~400um。在一些实施例中,质量元件221与每个弹性元件的厚度差值可以为100um~300um。
在一些实施例中,第一弹性元件15221、第二弹性元件15222、质量元件221以及与声学腔体对应的壳体230或声学换能器之间可以形成间隙1501。如图15所示,在一些实施例中,间隙1501可以位于质量元件221的周侧,当质量元件221响应于外部振动信号时,质量元件221在相对于壳体230振动时,间隙1501可以在一定程度上防止质量元件221振动时与壳体230发生碰撞。在一些实施例中,间隙1501中可以包括填充物,通过在间隙1501中设置填充物可以对振动传感器1500的品质因子进行调整。优选地,间隙1501中设置填充物可以使得振动传感器1500的品质因子为0.7~10。较为优选地,间隙1501中设置填充物可以使得振动传感器1500的品质因子为1~5。在一些实施例中,填充物可以是气体、液体(例如,硅油)、弹性材料等中的一种或多种。示例性的气体可以包括但不限于空气、氩气、氮气、二氧化碳等中的一种或多种。示例性的弹性材料可以包括但不限于硅凝胶、硅橡胶等。
在一些实施例中,壳体230、第二弹性元件15222和声学换能器的基板211之间可以形成第一声学腔250,壳体230和第一弹性元件15221之间可以形成第二声学腔260。在一些实施例中,第一声学腔250和第二声学腔260内部具有空气,当振动组件220相对于壳体230振动时,振动组件220压缩两个声学腔内部的空气,第一声学腔250和第二声学腔260可以近似视为两个空气弹簧,第二声学腔260的体积大于或等于第一声学腔250的体积,使得振动组件220在振动时压缩空气带来的空气弹簧的系数近似相等,从而进一步提高质量元件221上下两侧弹性元件(包含空气弹簧)的对称性。在一些实施例中,第一声学腔250的体积和第二声学腔260的体积可以为10um 3~1000um 3。优选地,第一声学腔250的体积和第二声学腔260的体积可以为50um 3~500um 3
在一些实施例中,参见图15-图17,为了进一步防止质量元件221振动时与壳体230发生碰撞的可能性,振动传感器1500可以包括缓冲件240,缓冲件240可以用于限制振动组件220的振 动幅度。在一些实施例中,振动传感器1500中设置缓冲件240,缓冲件240为振动组件220提供沿振动组件220的振动方向的缓冲距离,以限制振动组件220的振动幅度,从而避免振动组件220在振动过程中与振动传感器1500中的其他组件(如声学换能器、壳体230)发生碰撞,进而实现对振动组件220的保护,提高振动传感器1500的可靠性。
在一些实施例中,参见图15,缓冲件240的结构和设置方式与图2类似。缓冲件240可以设置于第一声学腔250内垂直于振动组件220的振动方向的侧壁上。缓冲件240可以为振动组件220提供沿振动组件220的振动方向的缓冲距离。在一些实施例中,缓冲件240也可以设置于第二声学腔260内垂直于振动组件220的振动方向的侧壁上,例如壳体230与振动组件220相对的侧壁上。
在一些实施例中,参见图16,缓冲件240的结构和设置方式与图3类似。缓冲件240可以包括第一缓冲部241和第二缓冲部242,第一缓冲部241和第二缓冲部242沿振动组件220的振动方向分别设置于弹性元件1522的两侧。第一缓冲部241与壳体230或第一弹性元件15221连接。第二缓冲部242与声学换能器的基板211或第二弹性元件15222连接。在一些实施例中,第一缓冲部241可以为振动组件220提供沿振动组件220的振动方向的第一缓冲距离,第二缓冲部242可以为振动组件220提供沿振动组件220的振动方向的第二缓冲距离。
在一些实施例中,参见图17,缓冲件240的结构和设置方式与图4类似。缓冲件240可以连接于弹性元件1522和声学换能器(和/或壳体230)之间。缓冲件240的第一缓冲部241和第二缓冲部242沿振动组件220的振动方向分别设置于弹性元件1522的两侧。具体地,第一缓冲部241位于第二声学腔260内沿振动组件220的振动方向的两个端部分别连接于壳体230和第一弹性元件15221。第二缓冲部242位于第一声学腔250内沿振动组件220的振动方向的两个端部分别连接于声学换能器的基板211和第二弹性元件15222。
在一些实施例中,振动传感器1500的缓冲件240可以包括磁性缓冲件,磁性缓冲件可以用于产生磁场。在一些实施例中,磁性缓冲件可以安装于声学换能器连接第一声学腔250的侧壁。例如,基板211沿振动方向的上表面。在一些实施例中,磁性缓冲件也可以埋设于声学换能器连接第一声学腔250的侧壁内。例如,基板211内。在一些实施例中,磁性缓冲件也可以安装于第二声学腔260沿振动组件220的振动方向的侧壁。例如,磁性缓冲件可以安装于壳体230的侧壁上,所述壳体230的侧壁沿振动组件220的振动方向正对于振动组件220。在一些实施例中,磁性缓冲件还可以埋设于壳体230的侧壁内部。在一些实施例中,缓冲件240包括磁性缓冲件时,质量元件221可以包括磁性件或可磁化件,质量元件221位于磁性缓冲件所产生的磁场中,质量元件221受到磁场的磁力作用。在一些实施例中,磁性缓冲件可以同时位于第一声学腔250的侧壁和第二声学腔260的侧壁,使得磁性缓冲件产生的磁场更加均匀。在一些实施例中,通过磁性缓冲件产生的磁场可以调节质量元件221的受力情况,进而限制质量元件221的振动幅度。关于磁性缓冲件的更多内容可以参见图14A和图14B,及其相关内容。
图18是根据本申请的一些实施例所示的振动传感器的示例性结构图。图19是根据本申请的一些实施例所示的振动传感器的示例性结构图。图20是根据本申请的一些实施例所示的振动传感器的示例性结构图。
图18-图20所示的振动传感器1800的结构分别与图15-图17所示的振动传感器1500的结构大致相同,区别之处在于振动组件。振动传感器1800的振动组件220可以包括至少一个弹性元件222和两个质量元件(例如,第一质量元件18211和第二质量元件18212)。在一些实施例中,质量元件1821可以包括第一质量元件18211和第二质量元件18212。第一质量元件18211和第二质量元件18212在其振动方向上相对于至少一个弹性元件222呈对称设置。在一些实施例中,第一质量元件18211可以位于至少一个弹性元件222背离基板211的一侧,第一质量元件18211的下表面与至少一个弹性元件222的上表面连接。第二质量元件18212可以位于至少一个弹性元件222朝向基板211的一侧,第二质量元件18212的上表面与至少一个弹性元件222的下表面连接。在一些实施例中,第一质量元件18211和第二质量元件18212的尺寸、形状、材质、或厚度可以相同。在一些实施例中,第一质量元件18211和第二质量元件18212在其振动方向上相对于至少一个弹性元件222呈对称设置,可以使得质量元件1821的重心与至少一个弹性元件222的形心近似重合,进而使得振动组件220在响应与壳体230的振动而产生振动时,可以降低质量元件1821在垂直于质量元件1821的振动方向上的振动,从而降低振动组件220对垂直于质量元件1821的振动方向上壳体230振动的响应灵敏度,进而提高振动传感器1800的方向选择性。
在一些实施例中,参见图18-图20,振动传感器1800中设置缓冲件240用于限制振动组件 220的振动幅度。在一些实施例中,缓冲件240可以为振动组件220提供沿振动组件220的振动方向的缓冲距离,以限制振动组件220的振动幅度,从而避免振动组件220在振动过程中与振动传感器1800中的其他组件(如声学换能器、壳体230)发生碰撞,进而实现对振动组件220的保护,提高振动传感器1500的可靠性。
在一些实施例中,参见图18,缓冲件240的结构和设置方式与图15类似。缓冲件240可以设置于第一声学腔250或第二声学腔260内垂直于振动组件220的振动方向的侧壁上。缓冲件240可以为振动组件220提供沿振动组件220的振动方向的缓冲距离。这种结构设置下,所述缓冲距离可以是指缓冲件240的非接触表面与第一质量元件18211或第二质量元件18212之间的距离。
在一些实施例中,参见图19,缓冲件240的结构和设置方式与图16类似。缓冲件240可以包括第一缓冲部241和第二缓冲部242,第一缓冲部241和第二缓冲部242沿振动组件220的振动方向分别设置于弹性元件222的两侧。第一缓冲部241设置于第二声学腔260内并与壳体230或弹性元件222连接。第二缓冲部242设置于第一声学腔250内并与声学换能器的基板211或弹性元件222连接。在一些实施例中,第一缓冲部241可以为振动组件220提供沿振动组件220的振动方向的第一缓冲距离,第二缓冲部242可以为振动组件220提供沿振动组件220的振动方向的第二缓冲距离。第一缓冲距离可以是指第一缓冲部241的非接触表面与第一质量元件18211或壳体230之间的距离。第二缓冲距离可以是指第二缓冲部242的非接触表面与第二质量元件18212或基板211之间的距离。
在一些实施例中,参见图20,缓冲件240的结构和设置方式与图17类似。缓冲件240可以连接于弹性元件222和声学换能器(和/或壳体230)之间。缓冲件240的第一缓冲部241和第二缓冲部242沿振动组件220的振动方向分别设置于弹性元件222的两侧。具体地,第一缓冲部241设置于第二声学腔260内并沿振动组件220的振动方向的两个端部分别连接于壳体230和弹性元件222。第二缓冲部242设置于第一声学腔250内并沿振动组件220的振动方向的两个端部分别连接于声学换能器的基板211和弹性元件222。
在一些实施例中,振动传感器1800的缓冲件240可以包括磁性缓冲件,磁性缓冲件可以用于产生磁场。在一些实施例中,磁性缓冲件可以安装于声学换能器连接第一声学腔250的侧壁和/或沿振动组件220的振动方向的第二声学腔260的侧壁。在一些实施例中,磁性缓冲件也可以埋设于声学换能器连接第一声学腔250的侧壁内。例如,基板211内。在一些实施例中,磁性缓冲件也可以埋设于第二声学腔260沿振动组件220的振动方向的侧壁,例如,壳体230的侧壁。在一些实施例中,缓冲件240包括磁性缓冲件时,质量元件221可以包括磁性件或可磁化件,质量元件221位于磁性缓冲件所产生的磁场中,质量元件221受到磁场的磁力作用。在一些实施例中,通过磁性缓冲件产生的磁场可以调节质量元件221的受力情况,进而限制质量元件221的振动幅度。关于磁性缓冲件的更多内容可以参见图14A和图14B,及其相关内容。
图21是根据本申请的一些实施例所示的振动传感器的示例性结构图。
图21所示的振动传感器2100与图15所示的振动传感器1500类似,区别之处在于弹性元件的结构和设置方式。在一些实施例中,参见图21,振动传感器2100的第一弹性元件15221和第二弹性元件15222可以为柱状结构,第一弹性元件15221和第二弹性元件15222可以分别沿着质量元件221的振动方向延伸并与壳体230或声学换能器的基板211连接。需要说明的是,第一弹性元件15221和第二弹性元件15222的柱状结构可以为圆柱形、方柱形等规则和/或不规则结构,第一弹性元件15221和第二弹性元件15222的形状可以根据壳体230的截面形状进行适应性调整。
在一些实施例中,第一弹性元件15221和第二弹性元件15222为柱状结构时,质量元件221的厚度可以为10um~1000um。在一些实施例中,质量元件221的厚度可以为4um~500um。在一些实施例中,质量元件221的厚度可以为600um~1400um。在一些实施例中,第一弹性元件15221和第二弹性元件15222的厚度可以为10um~1000um。在一些实施例中,第一弹性元件15221和第二弹性元件15222的厚度可以为4um~500um。在一些实施例中,第一弹性元件15221和第二弹性元件15222的厚度可以为600um~1400um。在一些实施例中,弹性元件1522中的每个弹性元件(例如,第一弹性元件15221和第二弹性元件15222)的厚度与质量元件221的厚度差值可以为0um~500um。在一些实施例中,弹性元件1522中的每个弹性元件的厚度与质量元件221的厚度差值可以为20um~400um。在一些实施例中,弹性元件1522中的每个弹性元件的厚度与质量元件221的厚度差值可以为50um~200um。在一些实施例中,弹性元件1522中的每个弹性元件的厚度与质量元件221的厚度比值可以为0.01~100。在一些实施例中,弹性元件1522中的每个弹性元件的厚度与质量元件221的厚度比值可以为0.5~80。在一些实施例中,弹性元件1522中的每个弹性元件的厚度与 质量元件221的厚度比值可以为1~40。
在一些实施例中,振动传感器2100中的第一弹性元件15221连接于质量元件221和壳体230之间,第二弹性元件15222连接于质量元件221和基板211之间。这种连接方式下,当振动组件220振动时,第一弹性元件15221和第二弹性元件15222被挤压,从而可以限制振动组件220的振动幅度,防止振动组件220过度振动时与壳体230、基板211发生碰撞,从而提高振动传感器2100的可靠性。
图22是根据本申请的一些实施例所示的振动传感器的示例性结构图。图23是根据本申请的一些实施例所示的振动传感器的示例性结构图。
图22所示的振动传感器2200与图15所示的振动传感器1500类似,区别之处在于弹性元件。在一些实施例中,参见图22,振动传感器2200的第一弹性元件15221可以包括第一子弹性元件152211和第二子弹性元件152212。第一子弹性元件152211和第二声学腔260对应的壳体230通过第二子弹性元件152212连接,第一子弹性元件152211与质量元件221的上表面连接。在一些实施例中,第一子弹性元件152211的周侧与第二子弹性元件152212的周侧可以重合或不重合。在一些实施例中,振动传感器2200的第二弹性元件15222可以包括第三子弹性元件152221和第四子弹性元件152222。第三子弹性元件152221和第一声学腔250对应的基板211通过第四子弹性元件152222连接,第三子弹性元件152221与质量元件221的下表面连接。在一些实施例中,第三子弹性元件152221的周侧与第四子弹性元件152222的周侧可以重合或不重合。
在一些实施例中,振动传感器2200还可以包括固定片2201。固定片2201可以沿质量元件221的周侧分布,固定片2201位于第一子弹性元件152211与第三子弹性元件152221之间,且固定片2201的上表面和下表面可以分别与第一子弹性元件152211和第三子弹性元件152221连接。
在一些实施例中,固定片2201的材料可以为弹性材料,例如,泡沫、塑料、橡胶、硅胶等。在一些实施例中,固定片2201的材料也可以为刚性材料,例如,金属、金属合金等。在一些实施例中,固定片2201可以实现间隙1501的固定作用,固定片2201还可以作为附加质量元件,从而调节振动传感器2200的谐振频率,进而调节(例如,降低)振动传感器2200的灵敏度。
在一些实施例中,通过在第一弹性元件15221中设置第一子弹性元件152211和第二子弹性元件152212,以及在第二弹性元件15222中设置第三子弹性元件152221和第四子弹性元件152222,这种设置方式下,第二子弹性元件152212和第四子弹性元件152222可以用于限制振动组件220的振动幅度,进而防止振动组件220与振动传感器2200的其他组件(如基板211、壳体230)发生碰撞,提高振动传感器2200的可靠性。
在一些实施例中,参见图23,图23所示的振动传感器2300与图18所示的振动传感器1800类似,区别之处在于弹性元件的结构和连接方式。图23所示的振动传感器2300的弹性元件1522可以包括第一弹性元件15221、第二弹性元件15222和第三弹性元件15223。其中,第三弹性元件15223通过第一弹性元件15221和第二弹性元件15222分别与壳体230和基板211连接。这种设置方式下,振动组件220进行振动时,第一弹性元件15221和第二弹性元件15222被挤压,第一弹性元件15221和第二弹性元件15222可以限制振动组件220的振动幅度,进而防止振动组件220与振动传感器2200的其他组件(如基板211、壳体230)发生碰撞,提高振动传感器2200的可靠性。
图24是根据本申请的一些实施例所示的振动传感器的示例性结构图。图25是根据本申请的一些实施例所示的振动传感器的示例性结构图。
图24-图25所示的振动换能器2400与图2所示的振动换能器200类似,区别在于弹性元件与质量元件的连接方式不同。在一些实施例中,振动换能器2400的振动组件220可以包括质量元件221和弹性元件222,其中,弹性元件222可以环绕连接于质量元件221的侧壁,弹性元件222的内侧与质量元件221的侧壁连接。弹性元件222的内侧可以指被弹性元件222所环绕的空间所在的一侧。质量元件221的侧壁可以指的是质量元件221与振动方向平行的一侧。在一些实施例中,弹性元件222可以向声学换能器210延伸并直接或间接连接于声电换能器210。例如,弹性元件222向声学换能器210延伸的一端可以直接物理连接(例如,胶接)到声学换能器210。又例如,声学换能器210可以包括基板,弹性元件222向声学换能器210延伸的一端可以通过基板与声学换能器210连接。在一些实施例中,质量元件221、弹性元件222和声学换能器210之间形成第一声学腔,声学换能器210通过进声孔2111与第一声学腔连通。在一些实施例中,由于弹性元件222环绕连接于质量元件221的侧壁,在振动组件220沿着振动方向振动过程中,质量元件221的动量转换为对弹性元件222的作用力,使弹性元件222发生剪切形变。相比于拉伸和压缩形变,剪切形变降低了弹性元件222的弹簧系数,这降低了振动传感器2400的谐振频率,从而提高了在振动组件220振 动过程中,质量元件221的振动幅度,提高了振动传感器2400的灵敏度。并且,由于弹性元件222发生剪切形变时,随着剪切变形的变形量增大,剪切力对质量元件221的作用方向随之改变,剪切力在振动方向的分量占比变大,因此,弹性元件222能够在振动方向为质量元件221提供足够的弹性力,从而保障振动组件220的振动性能。
在一些实施例中,振动传感器2400的壳体230和质量元件221中的至少一个可以设有至少一个泄压孔。在一些实施例中,壳体230上可以设有至少一个泄压孔2301。泄压孔2301可以贯穿壳体230。在一些实施例中,质量元件221上可以设有至少一个泄压孔2211。泄压孔2211可以贯穿质量元件221。质量元件221上的泄压孔2211可以使第一声学腔250与第二声学腔260内的气体流通,壳体230上的泄压孔2301可以使第二声学腔260和外界的气体流通,从而平衡振动传感器2400的制备过程中(例如,回流焊过程中)的温度变化引起的第一声学腔250和第二声学腔260内部的气压变化,减少或防止该气压变化引起的振动传感器2400的部件的损坏,例如,开裂、变形等。在一些实施例中,壳体230上可以设有至少一个泄压孔2301,当质量元件221振动时,泄压孔2301可以用于减小第二声学腔260内部的气体产生的阻尼。
在一些实施例中,参见图24-图25,振动传感器2400中可以设置缓冲件240,缓冲件240可以用于限制振动组件220的振动幅度。在一些实施例中,振动传感器2400中设置缓冲件240,缓冲件240可以为振动组件220提供沿振动组件220的振动方向的缓冲距离,从而限制振动组件220的振动幅度,从而避免振动组件220在振动过程中与振动传感器2400中的其他组件(如声学换能器210、壳体230)发生碰撞,进而实现对振动组件220的保护,提高振动传感器2400的可靠性。
在一些实施例中,参见图24,缓冲件240可以设置于第二声学腔260,并与质量元件221和/或壳体230连接。例如,缓冲件240可以设置于第二声学腔260内垂直于振动组件220的振动方向的侧壁上,缓冲件240与壳体230连接。缓冲件240可以为振动组件220提供沿振动组件220的振动方向的缓冲距离。以缓冲件240设置于第二声学腔260内垂直于振动方向的壳体230的侧壁上为例,缓冲件240与壳体230的侧壁连接,缓冲件240为振动组件220提供的缓冲距离可以是缓冲件240沿振动组件220的振动方向的下表面与质量元件221沿振动组件220的振动方向的上表面之间的距离。在一些实施例中,缓冲件240也可以设置于第一声学腔250,并与质量元件221和/或声学换能器210的基板连接。在一些实施例中,当质量元件221上设置泄压孔2211,或者壳体230上设置泄压孔2301时,缓冲件240可以不覆盖泄压孔2211或泄压孔2301。例如,缓冲件240上可以设置与泄压孔2211或泄压孔2301正对的孔洞,使得缓冲件240不堵塞泄压孔2211或泄压孔2301。
在一些实施例中,参见图25,缓冲件240可以包括磁性缓冲件243,磁性缓冲件243可以用于产生磁场。在一些实施例中,磁性缓冲件243可以包括线圈,线圈可以产生磁场。在一些实施例中,磁性缓冲件243可以安装于声学换能器210连接第一声学腔250的侧壁。例如,基板沿振动方向的上表面。在一些实施例中,磁性缓冲件243也可以埋设于声学换能器210连接第一声学腔250的侧壁内。例如,基板内。在其他实施例中,磁性缓冲件243还可以安装于第二声学腔260垂直于振动方向的壳体230的侧壁上,或者埋设于所述壳体230的侧壁内。在一些实施例中,缓冲件240包括磁性缓冲件243时,质量元件221可以包括磁性件或可磁化件,质量元件221位于磁性缓冲件243所产生的磁场中,质量元件221受到磁场的磁力作用。在一些实施例中,通过磁性缓冲件243产生的磁场可以调节质量元件221的受力情况,进而限制质量元件221的振动幅度。关于磁性缓冲件的更多内容可以参见图14A和图14B,及其相关内容。
图26是根据本申请的一些实施例所示的振动传感器的示例性结构图。图27是根据本申请的一些实施例所示的振动传感器的示例性结构图。
图26-图27所示的振动传感器2600与图24-图25所示的振动传感器2400大致相同,不同之处在于弹性元件。参见图26-图27,振动传感器2600的弹性元件2622可以包括第一弹性部2622A和第二弹性部2622B。第一弹性部2622A的两端分别与质量元件221的侧壁和第二弹性部2622B连接。第二弹性部2622B向声学换能器210延伸并与声学换能器210直接或间接连接。在本实施例中,第一弹性部2622A不与声学换能器210或基板连接/接触,这可以有效降低弹性元件2622的刚度,从而提高在振动组件220振动过程中,质量元件221的振动幅度,进而降低振动传感器2600的谐振频率,提高振动传感器2600的灵敏度。在一些实施例中,振动传感器2600的谐振频率可以为1000Hz~4000Hz。优选地,振动传感器2600的谐振频率可以为1000Hz~3000Hz。更优选地,振动传感器2600的谐振频率可以为1000Hz~2000Hz。更优选地,振动传感器2600的谐振频率可以为1000Hz~1500Hz。更优选地,振动传感器2600的谐振频率可以为2000Hz~4000Hz。更优选地,振动传感器2600的谐振频率可以为3000Hz~4000Hz。更优选地,振动传感器2600的谐振频率可以 为2000Hz~3500Hz。更优选地,振动传感器2600的谐振频率可以为2500Hz~3000Hz。
在一些实施例中,第一弹性部2622A和第二弹性部2622B可以为相同或不同的材料制备。在一些实施例中,第一弹性部2622A和第二弹性部2622B的邵氏硬度可以为0.1-100HA。优选地,第一弹性部2622A和第二弹性部2622B的邵氏硬度可以为0.2-95HA。更优选地,第一弹性部2622A和第二弹性部2622B的邵氏硬度可以为0.4-85HA。更优选地,第一弹性部2622A和第二弹性部2622B的邵氏硬度可以为0.6-75HA。更优选地,第一弹性部2622A和第二弹性部2622B的邵氏硬度可以为0.8-65HA。更优选地,第一弹性部2622A和第二弹性部2622B的邵氏硬度可以为1-55HA。更优选地,第一弹性部2622A和第二弹性部2622B的邵氏硬度可以为1-50HA。更优选地,第一弹性部2622A和第二弹性部2622B的邵氏硬度可以为1-40HA。更优选地,第一弹性部2622A和第二弹性部2622B的邵氏硬度可以为1-30HA。更优选地,第一弹性部2622A和第二弹性部2622B的邵氏硬度可以为1-20HA。更优选地,第一弹性部2622A和第二弹性部2622B的邵氏硬度可以为1-10HA。
在一些实施例中,第一弹性部2622A沿振动组件220的振动方向的厚度为10-300um。优选地,第一弹性部2622A沿振动组件220的振动方向的厚度为30-260um。更优选地,第一弹性部2622A沿振动组件220的振动方向的厚度为50-240um。更优选地,第一弹性部2622A沿振动组件220的振动方向的厚度为50-200um。更优选地,第一弹性部2622A沿振动组件220的振动方向的厚度为70-160um。更优选地,第一弹性部2622A沿振动组件220的振动方向的厚度为90-120um。更优选地,第一弹性部2622A沿振动组件220的振动方向的厚度为100-110um。
在一些实施例中,第一弹性部2622A沿垂直于质量元件221的振动方向的方向上的长度为(即从靠近质量元件221的一侧到远离质量元件221的另一侧的宽度)为10-300um。在一些实施例中,第一弹性部2622A从靠近质量元件221的一侧到远离质量元件221的另一侧的宽度为40-240um。在一些实施例中,第一弹性部2622A从靠近质量元件221的一侧到远离质量元件221的另一侧的宽度为60-180um。在一些实施例中,第一弹性部2622A从靠近质量元件221的一侧到远离质量元件221的另一侧的宽度为90-120um。在一些实施例中,第一弹性部2622A从靠近质量元件221的一侧到远离质量元件221的另一侧的宽度为100-110um。在一些实施例中,第二弹性部2622B从靠近质量元件221的一侧到远离质量元件221的另一侧的宽度为20-280um。在一些实施例中,第二弹性部2622B从靠近质量元件221的一侧到远离质量元件221的另一侧的宽度为50-240um。在一些实施例中,第二弹性部2622B从靠近质量元件221的一侧到远离质量元件221的另一侧的宽度为50-220um。在一些实施例中,第二弹性部2622B从靠近质量元件221的一侧到远离质量元件221的另一侧的宽度为70-160um。在一些实施例中,第二弹性部2622B从靠近质量元件221的一侧到远离质量元件221的另一侧的宽度为90-120um。在一些实施例中,第二弹性部2622B从靠近质量元件221的一侧到远离质量元件221的另一侧的宽度为100-110um。
在一些实施例中,参见图26-图27,振动传感器2600中还可以设置缓冲件240,缓冲件240可以用于限制振动组件220的振动幅度。在一些实施例中,振动传感器2600中设置缓冲件240,缓冲件240可以为振动组件220提供沿振动组件220的振动方向的缓冲距离,从而限制振动组件220的振动幅度,从而避免振动组件220在振动过程中与振动传感器2600中的其他组件(如声学换能器210、壳体230)发生碰撞,进而实现对振动组件220的保护,提高振动传感器2600的可靠性。
在一些实施例中,参见图26,图26中缓冲件的结构和设置方式与图24大致相同。在一些实施例中,缓冲件240可以设置于第二声学腔260,并与质量元件221和/或壳体230连接。在一些实施例中,缓冲件240也可以设置于第一声学腔250,并与质量元件221和/或声学换能器210的基板连接。缓冲件240可以为振动组件220提供沿振动组件220的振动方向的缓冲距离。
在一些实施例中,参见图27,图27中缓冲件240的结构和设置方式与图25大致相同。在一些实施例中,缓冲件240可以包括磁性缓冲件243,磁性缓冲件243可以用于产生磁场。在一些实施例中,缓冲件240包括磁性缓冲件243时,质量元件221可以包括磁性件或可磁化件,质量元件221位于磁性缓冲件243所产生的磁场中,质量元件221受到磁场的磁力作用。在一些实施例中,通过磁性缓冲件243产生的磁场可以调节质量元件221的受力情况,进而限制质量元件221的振动幅度。关于磁性缓冲件的更多内容可以参见图14A和图14B,及其相关内容。
在一些实施例中,缓冲件240的结构和设置方式也可以与图3类似。缓冲件240可以包括第一缓冲部和第二缓冲部,第一缓冲部和第二缓冲部沿振动组件220的振动方向分别设置于弹性元件2622的两侧。第一缓冲部与壳体230或第一弹性部2622A连接。第二缓冲部与声学换能器或第二弹性元件15222连接。在一些实施例中,第一缓冲部可以为振动组件220提供沿振动组件220的 振动方向的第一缓冲距离,第二缓冲部可以为振动组件220提供沿振动组件220的振动方向的第二缓冲距离。
在一些实施例中,缓冲件240的结构和设置方式可以与图4类似。缓冲件240可以连接于第一弹性部2622A和声学换能器210(和/或壳体230)之间。缓冲件240的第一缓冲部和第二缓冲部沿振动组件220的振动方向分别设置于第一弹性部2622A的两侧。具体地,第一缓冲部位于第二声学腔260内沿振动组件220的振动方向的两个端部分别连接于壳体230和第一弹性部2622A。第二缓冲部位于第一声学腔250内沿振动组件220的振动方向的两个端部分别连接于声学换能器210和第一弹性部2622A。
图28是根据本申请的一些实施例所示的振动传感器的示例性结构图。图29是根据本申请的一些实施例所示的振动传感器的示例性结构图。
在一些实施例中,图28-图29所示的振动组件220的弹性元件2822与声学换能器210相对设置,弹性元件2822与声学换能器210之间形成第一声学腔250。在一些实施例中,弹性元件2822可以包括弹性薄膜28221,弹性薄膜28221朝向第一声学腔250的一侧设置有凸起结构28222。凸起结构28222和弹性薄膜28221能够与声学换能器210共同形成第一声学腔250,其中弹性薄膜28221形成第一声学腔250的第一侧壁,声学换能器210垂直于振动组件220振动方向的上表面形成第一声学腔250的第二侧壁。
在一些实施例中,弹性薄膜28221的外沿可以与声学换能器210物理连接。在一些实施例中,设置于弹性薄膜28221外围的凸起结构28222的顶端与声学换能器210表面的连接处可以通过密封部件2801进行密封,以使得凸起结构28222、弹性薄膜28221、密封部件2801和声学换能器210共同形成封闭的第一声学腔250。可以理解的是,密封部件2801的设置位置不限于上述描述。在一些实施例中,密封部件2801可以不仅限于设置在凸起部件28222的顶端与声学换能器210表面的连接处,还可以设置在用于形成第一声学腔250的凸起结构28222的外侧(即凸起结构28222的远离第一声学腔250的一侧)。在一些实施例,为了进一步提高密封性,也可以在第一声学腔250的内部也设置密封结构。通过密封部件2801将弹性元件2822与声学换能器210连接处进行密封,可以保证整个第一声学腔250的密封性,进而有效提高振动传感器2800的可靠性和稳定性。在一些实施例中,密封部件2801可以采用硅胶、橡胶等材料制成,进一步提高密封部件2801的密封性能。在一些实施例中,密封部件2801的种类可以包括密封圈、密封垫片、密封胶条中的一种或多种。
在一些实施例中,凸起结构28222可以设置于弹性薄膜28221朝向第一声学腔250的一侧(即弹性薄膜28221的下表面)的至少部分区域。在一些实施例中,凸起结构28222可以设置于弹性薄膜28221朝向第一声学腔250的一侧(即弹性薄膜28221的下表面)的所有区域。在一些实施例中,凸起结构28222占据的弹性薄膜28221下表面的面积与弹性薄膜28221的下表面的面积之比可以小于四分之三。在一些实施例中,凸起结构28222占据的面积与弹性薄膜28221的下表面的面积之比可以小于三分之二。在一些实施例中,凸起结构28222占据的面积与弹性薄膜28221的下表面的面积之比可以小于二分之一。在一些实施例中,凸起结构28222占据的面积与弹性薄膜28221的下表面的面积之比可以小于四分之一。在一些实施例中,凸起结构28222占据的面积与弹性薄膜28221的下表面的面积之比可以小于六分之一。
在一些实施例中,凸起结构28222可以具有一定弹性。由于凸起结构28222具有弹性,在受到外力挤压时将发生弹性形变。在一些实施例中,凸起结构28222的顶端抵接于第一声学腔250中与弹性元件2822相对的侧壁(即第一声学腔250的第二侧壁)。在一些实施例中,所述顶端是指凸起结构28222远离弹性薄膜28221的端部。当凸起结构28222与第一声学腔250的第二侧壁抵接后,弹性元件2822的振动会带动凸起结构28222发生运动。此时,凸起结构28222与第一声学腔250的第二侧壁发生挤压,使得凸起结构28222发生弹性形变。所述弹性形变可以使凸起结构28222进一步向第一声学腔250内部凸出,减小第一声学腔250的体积。因此可以进一步提高第一声学腔250的体积变化量,从而提高振动传感器2800的灵敏度。
在一些实施例中,第一声学腔250的体积V 0与构成第一声学腔250的凸起结构28222的密度有关。可以理解的是,当相邻凸起结构28222的间隔越小时,表明凸起结构28222的密度越大,因此由凸起结构28222构成的第一声学腔250的体积V 0也就越小。相邻凸起结构28222之间的间隔可以是指相邻凸起结构28222的中心之间的距离。这里的中心可以理解为凸起结构28222横截面上的形心。为了方便说明,相邻凸起结构28222之间的间隔可以由图28的L1表示,即相邻凸起结构的顶端或中心之间的距离。在一些实施例中,相邻的凸起结构28222之间的间隔L1可以在1μm- 2000μm范围内。在一些实施例中,相邻的凸起结构28222之间的间隔L1可以在4μm-1500μm范围内。在一些实施例中,相邻的凸起结构28222之间的间隔L1可以在8μm-1000μm范围内。在一些实施例中,相邻的凸起结构28222之间的间隔L1可以在10μm-500μm范围内。
在一些实施例中,第一声学腔250的体积V 0与凸起结构28222的宽度相关。凸起结构28222的宽度可以理解为凸起结构28222在垂直于质量元件221振动方向上的尺寸。为了方便说明,凸起结构28222在垂直于质量元件221振动方向的尺寸可以通过图28的L2表示。在一些实施例中,单个凸起结构28222的宽度L2可以在1μm-1000μm范围内。在一些实施例中,单个凸起结构28222的宽度L2可以在2μm-800μm范围内。在一些实施例中,单个凸起结构28222的宽度L2可以在3μm-600μm范围内。在一些实施例中,单个凸起结构28222的宽度L2可以在6μm-400μm范围内。在一些实施例中,单个凸起结构28222的宽度可以在10μm-300μm范围内。
对于不同类型和/或尺寸的振动传感器2800,凸起结构28222的宽度L2与相邻的凸起结构28222之间的间隔L1之比在一定范围内。在一些实施例中,凸起结构28222的宽度L2与相邻的凸起结构28222之间的间隔L1之比在0.05-20范围内。在一些实施例中,凸起结构28222的宽度L2与相邻的凸起结构28222之间的间隔L1之比在0.1-20范围内。在一些实施例中,凸起结构28222的宽度L2与相邻的凸起结构28222之间的间隔L1之比在0.1-10范围内。在一些实施例中,凸起结构28222的宽度L2与相邻的凸起结构28222之间的间隔L1之比在0.5-8范围内。在一些实施例中,凸起结构28222的宽度L2与相邻的凸起结构28222之间的间隔L1之比在1-6范围内。在一些实施例中,凸起结构28222的宽度L2与相邻的凸起结构28222之间的间隔L1之比在2-4范围内。
在一些实施例中,第一声学腔250的体积V 0与凸起结构28222的高度H1相关。凸起结构28222的高度可以理解为凸起结构28222处于自然状态时(例如,凸起结构28222未受挤压而产生弹性形变的情况下)在质量元件221振动方向上的尺寸。为了方便说明,凸起结构28222在质量元件221振动方向上的尺寸可以通过图28的H1表示。在一些实施例中,凸起结构28222的高度H1可以在1μm-1000μm范围内。在一些实施例中,凸起结构28222的高度H1可以在2μm-800μm范围内。在一些实施例中,凸起结构28222的高度H1可以在4μm-600μm范围内。在一些实施例中,凸起结构28222的高度H1可以在6μm-500μm范围内。在一些实施例中,凸起结构28222的高度H1可以在8μm-400μm范围内。在一些实施例中,凸起结构28222的高度H1可以在10μm-300μm范围内。
在一些实施例中,第一声学腔250的高度与凸起结构28222的高度的差值在一定范围内。例如,至少部分凸起结构28222可以不与声学换能器210接触。此时凸起结构28222与声学换能器210的表面存在一定间隙。凸起结构28222与声学换能器210的表面之间的间隙是指凸起结构28222的顶端与声学换能器210表面之间的距离。该间隙可以通过在加工凸起结构28222或安装弹性元件2822的过程中时形成。第一声学腔250的高度可以理解为第一声学腔250在自然状态下(例如,其第一侧壁和第二侧壁未发生振动或弹性形变的情况下)第一方向上的尺寸。为了方便说明,第一声学腔250在质量元件221振动方向上的尺寸可以通过图28的H2表示。在一些实施例中,凸起结构28222的高度H1与第一声学腔250的高度H2的差值可以在20%以内。在一些实施例中,凸起结构28222的高度H1与第一声学腔250的高度H2的差值可以在15%以内。在一些实施例中,凸起结构28222的高度H1与第一声学腔250的高度H2的差值可以在10%以内。在一些实施例中,凸起结构28222的高度H1与第一声学腔250的高度H2的差值可以在5%以内。在一些实施例中,凸起结构28222与声学换能器210的表面之间的间隙可以在10μm以内。在一些实施例中,凸起结构28222与声学换能器210的表面之间的间隙可以在5μm以内。在一些实施例中,凸起结构28222与声学换能器210的表面之间的间隙可以在1μm以内。
在振动传感器2800工作的过程中,弹性元件2822接收到外部信号(例如,振动信号)之后会产生振动或弹性形变并带动凸起结构28222沿质量元件221振动方向上进行运动,使得第一声学腔250发生收缩或扩张,引起的第一声学腔250的体积变化量可以表示为ΔV1。由于弹性元件2822以及凸起结构28222在质量元件221振动方向上的运动幅度较小,例如,凸起结构28222在质量元件221振动方向上的运动幅度通常在小于1μm,在此过程中,凸起结构28222可能不会与声学换能器210的表面接触,因此ΔV1与凸起结构28222无关,且ΔV1的值较小。
对于不同类型和/或尺寸的振动传感器2800,凸起结构28222的高度H1与弹性薄膜28221的厚度(弹性薄膜28221的厚度可以通过图28中的H3表示)之比或之差在一定范围内。在一些实施例中,凸起结构28222的高度H1与弹性薄膜28221的厚度H3之比在0.5-500范围内。在一些实施例中,凸起结构28222的高度H1与弹性薄膜28221的厚度H3之比在1-500范围内。在一些实施 例中,凸起结构28222的高度H1与弹性薄膜28221的厚度H3之比在1-200范围内。在一些实施例中,凸起结构28222的高度H1与弹性薄膜28221的厚度H3之比在1-100范围内。在一些实施例中,凸起结构28222的高度H1与弹性薄膜28221的厚度H3之比在10-90范围内。在一些实施例中,凸起结构28222的高度H1与弹性薄膜28221的厚度H3之比在20-80范围内。在一些实施例中,凸起结构28222的高度H1与弹性薄膜28221的厚度H3之比在40-60范围内。
对于不同类型和/或尺寸的振动传感器2800,质量元件221在质量元件221振动方向上的投影面积与第一声学腔250在质量元件221振动方向上的投影面积之比可以在一定范围内。在一些实施例中,质量元件221在质量元件221振动方向上的投影面积与第一声学腔250在质量元件221振动方向上的投影面积之比可以在0.05-0.95范围内。在一些实施例中,质量元件221在质量元件221振动方向上的投影面积与第一声学腔250在质量元件221振动方向上的投影面积之比可以在0.2-0.9范围内。在一些实施例中,质量元件221在质量元件221振动方向上的投影面积与第一声学腔250在质量元件221振动方向上的投影面积之比可以在0.4-0.7范围内。在一些实施例中,质量元件221在质量元件221振动方向上的投影面积与第一声学腔250在质量元件221振动方向上的投影面积之比可以在0.5-0.6范围内。
在一些实施例中,参见图28,缓冲件240可以设置于第二声学腔260内,缓冲件240与质量元件221和/或壳体230连接。缓冲件240可以为振动组件220提供沿振动组件220的振动方向的缓冲距离。以缓冲件240设置于第二声学腔260内并与壳体230沿振动组件220的振动方向正对于质量元件221的侧壁连接为例,缓冲件240为振动组件提供的缓冲距离可以是缓冲件240沿振动组件220的振动方向的下表面与质量元件221的上表面之间的距离。在一些实施例中,当振动传感器2800工作时,振动组件220振动到一定幅度(即质量元件221与缓冲件240接触时)就会挤压缓冲件240,从而限制质量元件221的振动幅度,进而防止质量元件221与壳体230发生碰撞,提高振动传感器2800的可靠性。
在一些实施例中,参见图28,由于弹性元件2822的凸起结构28222抵接于第一声学腔250中与弹性元件2822相对的侧壁(如,声学换能器210的基板),凸起结构28222具有弹性,振动组件220进行振动时,凸起结构28222在振动组件220的作用下可以产生弹性形变。凸起结构28222产生弹性形变的过程中可以限制振动组件220的振动幅度,从而避免弹性薄膜28221由于振动幅度过大而与声学换能器210发生碰撞,进而提高振动传感器2800的可靠性。
在一些实施例中,缓冲件240设置于第二声学腔260,缓冲件240也可以连接于振动组件220和壳体230之间。在一些实施例中,缓冲件240沿振动组件220的振动方向的两个端部可以分别连接于壳体230和弹性元件2822的弹性薄膜28221。在一些实施例中,缓冲件240沿振动组件220的振动方向的两个端部可以分别连接于壳体230和质量元件221。在一些实施例中,缓冲件240的数量可设置为多个,每个缓冲件240沿振动组件220的振动方向的两个端部分别连接于壳体230和振动组件220。在一些实施例中,缓冲件240连接于振动组件220和壳体230之间时,缓冲件240为振动组件220提供沿振动组件220的振动方向的缓冲距离。所述缓冲距离可以是缓冲件240的自然长度与缓冲件240发生最大形变时的长度之间的差值距离。
在一些实施例中,参见图29,缓冲件240可以包括磁性缓冲件243,磁性缓冲件243可以用于产生磁场。在一些实施例中,磁性缓冲件243(如线圈)可以安装于第二声学腔260的侧壁上,如壳体230沿振动组件220的振动方向正对于质量元件221的侧壁。在一些实施例中,磁性缓冲件243(如线圈)也可以埋设于第二声学腔260的侧壁内,如壳体230沿振动组件220的振动方向正对于质量元件221的侧壁。在一些实施例中,磁性缓冲件243(如线圈)也可以埋设于声学换能器210的基板内。在一些实施例中,缓冲件240包括磁性缓冲件243时,质量元件221可以包括磁性件或可磁化件,质量元件221位于磁性缓冲件243所产生的磁场中,质量元件221受到磁场的磁力作用。在一些实施例中,通过磁性缓冲件243产生的磁场可以调节质量元件221的受力情况,进而限制质量元件221的振动幅度。关于磁性缓冲件的更多内容可以参见图14A和图14B及其相关内容。
图30是根据本申请的一些实施例所示的振动传感器的示例性结构图。图31是根据本申请的一些实施例所示的振动传感器的示例性结构图。图32是根据本申请的一些实施例所示的振动传感器的示例性结构图。
在一些实施例中,图30-图32所示的振动传感器3000与图2-图4所示的振动传感器200的结构大致相同,区别之处在于振动组件。在一些实施例中,振动传感器3000的振动组件220可以包括质量元件221、弹性元件222和支撑元件223。质量元件221与支撑元件223分别与弹性元件222的两侧物理连接。例如,质量元件221和支撑元件223可以分别与弹性元件222的上表面和下 表面连接。支撑元件223与声学换能器210物理连接,例如,支撑元件223可以是上端与弹性元件222的下表面相连,而其下端与声学换能器210相连。支撑元件223、弹性元件222和声学换能器210可以形成第一声学腔250。在一些实施例中,振动组件220响应于壳体230的振动信号时,质量元件221可以在振动过程中使得弹性元件222与支撑元件223相接触的区域发生压缩形变,弹性元件222的压缩形变能够使得第一声学腔250的体积发生改变,进而使得声学换能器210可以基于第一声学腔250的体积变化而产生电信号。
在一些实施例中,质量元件221沿垂直于振动组件220的振动方向的截面面积大于第一声学腔250沿垂直于振动组件220的振动方向的截面面积。在一些实施例中,弹性元件222沿垂直于振动组件220的振动方向的截面面积大于第一声学腔250沿垂直于振动组件220的振动方向的截面面积。
在一些实施例中,质量元件221沿垂直于振动组件220的振动方向的截面面积大于第一声学腔250沿垂直于振动组件220的振动方向的截面面积,可以理解为质量元件221可以将第一声学腔250的上端开口完全覆盖。弹性元件222沿垂直于振动组件220的振动方向的截面面积可以大于第一声学腔250沿垂直于振动组件220的振动方向的截面面积,可以理解为弹性元件222可以将第一声学腔250的上端开口完全覆盖。通过质量元件221沿垂直于振动组件220的振动方向的截面面积、以及弹性元件222沿垂直于振动组件220的振动方向的截面面积的设计,可以使得振动组件220发生变形的区域为弹性元件222与支撑元件223相接触的区域。
需要说明的是,当第一声学腔250沿垂直于振动组件220的振动方向的截面面积随着高度不同而出现变化时,本说明书中所述的第一声学腔250沿垂直于振动组件220的振动方向的截面面积可以是指,第一声学腔250的靠近弹性元件222的一侧的沿垂直于振动组件220的振动方向的截面的面积。
在一些实施例中,当质量元件221振动时,只有弹性元件222与支撑元件223接触的区域发生压缩形变,弹性元件222与支撑元件223的接触部分等效于弹簧,通过设置支撑元件223可以增加振动传感器3000的灵敏度。
在一些实施例中,第一声学腔250可以与声学换能器210的进声孔2111直接连通,以形成第一声学腔250和声学换能器210的声学连接。
在一些实施例中,支撑元件223可以为刚性材料(例如,金属、塑料等),以支撑弹性元件222和质量元件221。通过将支撑元件223设置为刚性材料,刚性的支撑元件223与弹性元件222和质量元件221配合而改变第一声学腔250的体积,刚性的支撑元件223便于加工,可以加工出厚度更小的支撑元件223,从而更加便于精确地限制第一声学腔250的高度(如可以使得第一声学腔250的高度更小),从而提高振动传感器3300的灵敏度。
在一些实施例中,支撑元件223的厚度可以是支撑元件223的下表面与其上表面之间的距离。在一些实施例中,支撑元件223的厚度可以大于第一厚度阈值(例如,1um)。在一些实施例中,支撑元件223的厚度可以小于第二厚度阈值(例如,1000um)。例如,支撑元件223的厚度可以为1um~1000um。又例如,支撑元件223的厚度可以为5um~600um。再例如,支撑元件223的厚度可以为10um~200um。
在一些实施例中,第一声学腔250的高度可以等于支撑元件223的厚度。在另一些实施例中,第一声学腔250的高度可以小于支撑元件223的厚度。
在一些实施例中,支撑元件223可以包括环形结构。当支撑元件223包括环状结构时,第一声学腔250可以位于环形结构的中空部分,弹性元件222可以设于环形结构的上方,并封闭环形结构的中空部分,以形成第一声学腔250。
可以理解地,环形结构可以包括圆环形结构、三角环形结构、矩形环形结构、六边形环形结构以及不规则环形结构等。在本申请中,环形结构可以包括内边缘以及环绕在内边缘外的外边缘。环形的内边缘和外边缘的形状可以一样。例如,环形结构的内边缘和外边缘可以均为圆形,此时的环形结构即为圆环形结构;又例如,环形结构的内边缘和外边缘可以均为六边形,此时的环形结构即为六边形环形。环形结构的内边缘和外边沿的形状可以不同。例如,环形结构的内边缘可以为圆形,环形结构的外边缘可以为矩形。
在一些实施例中,质量元件221的外边缘以及弹性元件222的外边缘可以均位于支撑元件223上。仅作为示例,当支撑元件223包括环形结构时,质量元件221的外边缘以及弹性元件222的外边缘可以均位于环形结构的上表面,或质量元件221的外边缘以及弹性元件222的外边缘可以与环形结构的外环平齐。在一些实施例中,质量元件221的外边缘以及弹性元件222的外边缘可以 均位于支撑元件223的外侧。例如,当支撑元件223包括环形结构时,质量元件221的外边缘以及弹性元件222的外边缘可以均位于环形结构的外环的外侧。
在一些实施例中,环形结构的内径和外径的差值可以大于第一差值阈值(例如,1um)。在一些实施例中,环形结构的内径和外径的差值可以小于第二差值阈值(例如,300um)。例如,环形结构的内径和外径的差值可以为1um~300um。又例如,环形结构的内径和外径的差值可以为5um~200um。又例如,环形结构的内径和外径的差值可以为10um~100um。通过限定环形结构的内径和外径的差值,可以限定弹性元件222与支撑元件223相接触的区域的面积,因此,通过将环形结构的内径和外径的差值设置在上述范围内,可以提高振动传感器3000的灵敏度。
在一些实施例中,参见图30,缓冲件240可以设置于第二声学腔260,缓冲件240与质量元件221和/或壳体230连接。缓冲件240可以为振动组件220提供沿振动组件220的振动方向的缓冲距离。在一些实施例中,缓冲件240设置于第二声学腔260内并与壳体230上沿振动组件220的振动方向正对于质量元件221的侧壁连接,缓冲件240为振动组件提供的缓冲距离可以是缓冲件240沿振动组件220的振动方向的下表面与质量元件221的上表面之间的距离。在一些实施例中,当振动传感器3000工作时,振动组件220振动到一定幅度(即质量元件221与缓冲件240接触时)会挤压缓冲件240,从而限制质量元件221的振动幅度,进而防止质量元件221与壳体230发生碰撞,提高振动传感器3000的可靠性。
在一些实施例中,参见图31,缓冲件240设置于第二声学腔260,缓冲件240,可以连接于振动组件220和壳体230之间。在一些实施例中,缓冲件240沿振动组件220的振动方向的两个端部可以分别连接于壳体230和质量元件221。在一些实施例中,缓冲件240的数量可设置为多个,多个缓冲件240沿振动组件220的振动方向的两个端部分别连接于壳体230和振动组件220。在一些实施例中,缓冲件240连接于振动组件220和壳体230之间时,缓冲件240为振动组件220提供沿振动组件220的振动方向的缓冲距离。所述缓冲距离可以是缓冲件240的自然长度与缓冲件240发生最大形变时的长度之间的差值距离。
在一些实施例中,参见图32,缓冲件240可以包括磁性缓冲件243,磁性缓冲件243可以用于产生磁场。在一些实施例中,磁性缓冲件243(如线圈)可以安装于第二声学腔260的侧壁上,如壳体230沿振动组件220的振动方向正对于质量元件221的侧壁。在一些实施例中,磁性缓冲件243(如线圈)也可以埋设于第二声学腔260的侧壁内,如壳体230沿振动组件220的振动方向正对于质量元件221的侧壁。在一些实施例中,磁性缓冲件243(如线圈)也可以埋设于声学换能器210的基板内。在一些实施例中,缓冲件240包括磁性缓冲件243时,质量元件221可以包括磁性件或可磁化件,质量元件221位于磁性缓冲件243所产生的磁场中,质量元件221受到磁场的磁力作用。在一些实施例中,通过磁性缓冲件243产生的磁场可以调节质量元件221的受力情况,进而限制质量元件221的振动幅度。关于磁性缓冲件的更多内容可以参见图14A和图14B,及其相关内容。
图33是根据本申请的一些实施例所示的振动传感器的示例性结构图。图34是根据本申请的一些实施例所示的振动传感器的示例性结构图。图35是根据本申请的一些实施例所示的振动传感器的示例性结构图。
图33-图35所示的振动传感器3300与图30所示的振动传感器3000类似,区别之处在于弹性元件和支撑元件。在一些实施例中,振动传感器3300将振动传感器3000的支撑元件223和弹性元件222的结构替换为弹性支撑元件3324,即振动传感器3300的振动组件220包括质量元件221和弹性支撑元件3324。在一些实施例中,弹性支撑件3324可以为具有一定弹性的材料。例如,包括聚四氟乙烯、聚二甲基硅氧烷等高分子弹性材料。在一些实施例中,结合图33和图30所示,支撑元件223的厚度可以比弹性支撑元件3324的厚度更小,从而使得振动传感器3000的第一声学腔250的尺寸更小,从而使得振动传感器3000的灵敏度更高。以环状的支撑元件223和环状的弹性支撑元件3324为例,由于支撑元件223的加工难度较低,支撑元件223的沿垂直于振动组件220的振动方向的截面面积可以比弹性支撑元件3324沿垂直于振动组件220的振动方向的截面面积制造得更小,从而使得产生压缩形变的面积更小,以使得振动传感器3000的振动组件220的等效刚度更小,更小的等效刚度意味着更小的谐振频率。
在一些实施例中,参见图33,振动传感器3300还可以包括缓冲件240,缓冲件240的结构和设置方式与图30大致相同。在一些实施例中,缓冲件240可以设置于第二声学腔260,缓冲件240与质量元件221和/或壳体230连接。缓冲件240可以为振动组件220提供沿振动组件220的振动方向的缓冲距离。在一些实施例中,当振动传感器3300工作时,振动组件220振动到一定幅度(即质量元件221与缓冲件240接触时)就会挤压缓冲件240,从而限制质量元件221的振动幅度, 进而防止质量元件221与壳体230发生碰撞,提高振动传感器3000的可靠性。
在一些实施例中,由于弹性支撑元件3324具有一定的弹性,振动组件220进行振动时,弹性支撑元件3324在振动组件220的作用下可以产生弹性形变。弹性支撑元件3324产生弹性形变的过程中可以限制质量元件221的振动幅度,从而避免质量元件221由于振动幅度过大而与声学换能器210发生碰撞,进而提高振动传感器3300的可靠性。
在一些实施例中,参见图34,缓冲件240的结构和设置方式与图31大致相同。缓冲件240设置于第二声学腔260,缓冲件240可以连接于振动组件220和壳体230之间。在一些实施例中,缓冲件240沿振动组件220的振动方向的两个端部可以分别连接于壳体230和质量元件221。在一些实施例中,缓冲件240的数量可设置为多个,多个缓冲件240沿振动组件220的振动方向的两个端部分别连接于壳体230和振动组件220。在一些实施例中,缓冲件240连接于振动组件220和壳体230之间时,缓冲件240为振动组件220提供沿振动组件220的振动方向的缓冲距离。
在一些实施例中,参见图35,缓冲件240的结构和设置方式与图32大致相同。缓冲件240可以包括磁性缓冲件243,磁性缓冲件243可以用于产生磁场。在一些实施例中,磁性缓冲件243(如线圈)可以安装于第二声学腔260的侧壁上,或者埋设于第二声学腔260的侧壁内,所述侧壁可以是壳体230沿振动组件220的振动方向正对于质量元件221的侧壁。在一些实施例中,磁性缓冲件243(如线圈)也可以埋设于声学换能器210的基板内。在一些实施例中,缓冲件240包括磁性缓冲件243时,质量元件221可以包括磁性件或可磁化件,质量元件221位于磁性缓冲件243所产生的磁场中,质量元件221受到磁场的磁力作用。在一些实施例中,通过磁性缓冲件243产生的磁场可以调节质量元件221的受力情况,进而限制质量元件221的振动幅度。
图36是根据本申请的一些实施例所示的振动传感器的示例性结构图。
图36所示的振动传感器3600与图11所示的振动传感器1100类似,区别之处在于振动组件。在一些实施例中,振动传感器3600的振动组件220可以包括一组或多组弹性元件和质量元件。在一些实施例中,弹性元件可以是振膜,质量元件可以是质量块,即振动传感器3600的振动组件220可以包括一组或多组振膜和质量块。一组或多组弹性元件可以包括沿振动组件220的振动方向上依次设置的第一弹性元件3621(即第一振膜)、第二弹性元件3622(即第二振膜)和第三弹性元件3623(即第三振膜)。一组或多组质量元件可以包括沿振动组件220的振动方向上依次设置的第一质量元件3611(即第一质量块)、第二质量元件3612(即第二质量块)和第三质量元件3613(即第三质量块)。第一弹性元件3621与第一质量元件3611连接,第二弹性元件3622与第二质量元件3612连接,第三弹性元件3623与第三质量元件3613连接。
在一些实施例中,第一弹性元件3621、第二弹性元件3622和第三弹性元件3623中任意两个相邻弹性元件之间的距离不小于与所述两个相邻的弹性元件的最大振幅。这种设置方式可以确保弹性元件在振动时不会与相邻的弹性元件产生干扰,从而影响振动信号的传递效果。在一些实施例中,振动组件220包括多组弹性元件和质量元件时,弹性元件沿振动组件220的振动方向依次设置,相邻弹性元件之间的距离可以相同也可以不同。在一些实施例中,弹性元件可以与其相邻的弹性元件之间的间隙形成多个腔体,弹性元件与其相邻弹性元件之间的多个腔体可以容纳空气和供弹性元件在其中振动。
在一些实施例中,振动组件220还可以包括限位结构(图中未示出),其被配置成用于使振动组件220中相邻弹性元件之间的距离不小于所述相邻弹性元件的最大振幅。在一些实施例中,限位结构可以与弹性元件边缘连接,并通过控制该限位结构的阻尼使其不会对弹性元件的振动产生干扰。
在一些实施例中,每一组弹性元件和质量元件(也可以称为一组振动结构)中的质量元件可以包括多个,多个质量元件可以分别设于弹性元件两侧。示例性的,假设一组振动组件包括两个质量元件,两个质量元件对称设置于弹性元件的两侧。在一些实施例中,多组振动组件中的质量元件可以位于弹性元件同一侧,其中,质量元件可以设置于弹性元件的外侧或者内侧,其中,弹性元件靠近声学换能器210的一侧为内侧,远离声学换能器210的一侧为外侧。需要说明的是,在一些实施例中,多组振动组件中的质量元件可以位于弹性元件不同侧,如第一质量元件3611和第二质量元件3612位于对应弹性元件的外侧,第三质量元件3613位于对应弹性元件的内侧。
在一些实施例中,弹性元件可以被构造成能够使空气通过的薄膜状结构,在一些实施例中,弹性元件可以为透气膜。将弹性元件构造成能够使空气通过,使得振动信号能够使振动组件220产生振动的同时,进一步穿透透气膜,被声学换能器所接收,从而提高在目标频段的灵敏度。在一些实施例中,振动组件220中的多个弹性元件的材料以及尺寸可以不同或相同,示例性的,第三弹性 元件3623的半径可以较第一弹性元件3621和第二弹性元件3622的半径更大。
在一些实施例中,当弹性元件被配置成不透气时,弹性元件的材料可以是是高分子薄膜,如聚氨酯类、环氧树脂类、丙烯酸酯类等,也可以是金属薄膜,如铜、铝、锡或其他合金及其复合薄膜等。在一些实施例中,还可以利用上述透气膜经过处理(如将透气孔覆盖)得到。
在一些实施例中,弹性元件可以是具有贯穿孔的薄膜材料,具体的,贯穿孔的孔径为0.01μm~10μm。优选的,贯穿孔的孔径可以为0.1μm~5μm,如0.2μm、0.5μm、0.8μm、1μm、2μm等。在一些实施例中,振动组件220中的多个弹性元件上贯穿孔的孔径可以相同也可以不同,单一弹性元件上的贯穿孔的孔径可以相同也可以不同。在一些实施例中,贯穿孔的孔径还可以大于5μm。当贯穿孔的孔径大于5μm时,可以在不影响透气的前提下,在弹性元件上设置其他材料(如硅胶等)对部分贯穿孔或贯穿孔的部分区域进行覆盖。
在一些实施例中,在振动组件220具备多个弹性元件的情况下,距离声学换能器210最远的弹性元件被构造成不能够使空气通过。由图36所示,图中第三弹性元件3623可以被构造成不能够使空气通过,通过该设置方式使得第三弹性元件3623、声学换能器210和支撑元件223之间形成密闭空间,能够更好的反应振动信息。需要说明的是,在一些实施例中,距离声学换能器210最远的弹性元件可以被构造成能够使空气通过,示例性的,如在进声孔2111外侧设置传导壳体时,传导壳体与声学换能器210围成容纳空间,该容纳空间中的空气可以良好的反应振动信息。
在一些实施例中,振动组件220可以进一步包括支撑元件223,支撑元件223用于支撑一组或多组弹性元件和质量元件。支撑元件223物理连接于声学换能器210(例如,基板211),一组或多组弹性元件和质量元件连接于支撑元件223。在一些实施例中,支撑元件223可以与弹性元件连接,实现固定支撑以控制相邻弹性元件之间的间距,以保证振动信号的传输效果。
在一些实施例中,支撑元件223可以具备中空且两端具有开口的管状结构,管状结构的截面可以是矩形、三角形、圆形或其他形状。在一些实施例中,管状结构的横截面积可以处处相同,也可以不完全相同,如靠近声学换能器210的一端具有更大横截面积。在一些实施例中,振动组件220中的一组或多组质量元件和弹性元件可以安装于支撑元件223的开口处。
在一些实施例中,弹性元件可以嵌入设置在支撑元件223的内壁上或嵌入支撑元件223内。在一些实施例中,弹性元件可在支撑元件223内部的空间内振动同时弹性元件可完全遮挡支撑元件开口,即弹性元件的面积可以大于或等于支撑元件的开口面积,此种设置使外界环境中的空气振动(例如,声波)可尽可能完全通过弹性元件进而利用拾音装置212拾取该振动,能够有效提高拾音质量。
在一些实施例中,支撑元件223可以由不透气的材料制成,不透气的支撑元件223可使空气中的振动信号在传递过程中,导致支撑元件223内声压变化(或空气振动),使支撑元件223内部振动信号通过进声孔2111传递至声学换能器210内,在传递过程中不会穿过支撑元件223向外逸散,进而保证声压强度,提升传声效果。在一些实施例中,支撑元件223可以包括但不限于金属、合金材料(如铝合金、铬钼钢、钪合金、镁合金、钛合金、镁锂合金、镍合金等)、硬质塑料、泡棉等中的一种或多种。
在一些实施例中,一组或多组弹性元件和质量元件中每组弹性元件和质量元件对应一个或多个不同目标频段中的一个目标频段,使在对应的目标频段内所述振动传感器3600的灵敏度可以大于声学换能器210的灵敏度。在一些实施例中,附加一组或多组质量元件和弹性元件后的振动传感器3600在目标频段内较声学换能器210的灵敏度可提升3dB~30dB。需要说明的是,在一些实施例中,附加一组或多组质量元件和弹性元件后的振动传感器3600较声学换能器210的灵敏度还可以可提升30dB以上,如多组质量元件和弹性元件具有相同谐振峰。
在一些实施例中,一组和多组质量元件和弹性元件的共振频率在1kHz~10kHz之内。在一些实施例中,一组和多组质量元件和弹性元件的共振频率在1kHz~5kHz之内。在一些实施例中,多组质量元件和弹性元件中至少两组质量元件和弹性元件的共振频率不同。在一些实施例中,多组质量元件和弹性元件的共振频率中相邻两个共振频率相差小于2kHz。其中,相邻的两个共振频率指共振频率的大小上数值相邻的两个共振频率。由于振动传感器3600在共振频率外的频率所对应的灵敏度会快速下降,通过控制共振频率差,使得振动传感器3600在较宽的频段上具有较高灵敏度的同时,灵敏度不会出现较大的波动。在一些实施例中,多组质量元件和弹性元件的共振频率中相邻两个共振频率相差不大于1.5kHz。在一些实施例中,多组质量元件和弹性元件的共振频率中相邻两个共振频率相差不大于1kHz,如500Hz、700Hz或800Hz等。在一些实施例中,多组质量元件和弹性元件的共振频率中相邻两个共振频率相差不大于500Hz。
需要说明的是,在一些实施例中,多组弹性元件和质量元件可以具有相同的共振频率,以使目标频段内的灵敏度获得较大提升。示例性的,当该振动传感器3600被用于主要检测5kHz~5.5kHz的机械振动时,可以将多组弹性元件和质量元件的共振频率配置成该检测范围内的值(如5.3kHz),使得振动传感器3600在检测范围内相对于仅设置一组弹性元件和质量元件的情况下具有更高灵敏度。需要说明的是,图36中所示弹性元件和质量元件的组数只是为了解释说明,并不能限制本发明的范围。例如,弹性元件和质量元件的组数可以是一组、两组、四组等。
在一些实施例中,参见图36,振动传感器3600还可以包括缓冲件240。缓冲件240可以设置于第一声学腔250沿振动组件220的振动方向的侧壁(例如,基板211、第一弹性元件3621)上。所述第一声学腔250由基板211、第一弹性元件3621和支撑元件223形成。在一些实施例中,缓冲件240可以与基板211和/或第一弹性元件3621连接。缓冲件240可以为振动组件220(尤其是最靠近基板211的一组弹性元件和质量元件,如第一弹性元件3621和第一质量元件3611)提供沿振动组件220的振动方向的缓冲距离。在一些实施例中,当振动传感器3600工作时,振动组件220振动到一定幅度(即第一弹性元件3621与缓冲件240接触时)就会挤压缓冲件240,从而限制振动组件220的振动幅度,进而防止振动组件220与基板211发生碰撞,提高振动传感器3600的可靠性。
在一些实施例中,缓冲件240可以包括磁性缓冲件,磁性缓冲件可以用于产生磁场。在一些实施例中,磁性缓冲件可以安装于第一声学腔250的侧壁上,或者埋设于第一声学腔250的侧壁内,所述侧壁可以指基板211。在一些实施例中,缓冲件240包括磁性缓冲件时,质量元件可以包括磁性件或可磁化件,质量元件位于磁性缓冲件所产生的磁场中,质量元件受到磁场的磁力作用。在一些实施例中,通过磁性缓冲件产生的磁场可以调节质量元件的受力情况,进而限制质量元件的振动幅度。
在一些实施例中,当振动传感器3600具有多个质量元件时,多个质量元件中的部分质量元件可以具有磁性件或可磁化件。优选地,多个质量元件中的相距较远的两个质量元件可以具有磁性件或可磁化件,剩余的质量元件不具有磁性件或可磁化件。以图36中所示的三个质量元件为例,其中,第一质量元件3611可以具有磁性件或可磁化件,第二质量元件3612和第三质量元件3613不具有磁性件或可磁化件。又例如,第一质量元件3611和第三质量元件3613具有磁性件或可磁化件,第二质量元件3612不具有磁性件或可磁化件。这样的设置可以使得具有磁性件或可磁化件的质量元件的振动幅度可以调节的情况下,还能避免具有磁性件或可磁化件的质量元件之间的相互磁力作用。在一些实施例中,多个质量元件中的全部质量元件都可以具有磁性件或可磁化件。这种设置方式下,可以通过调节多个质量元件中的每一个质量元件的磁导率或磁化强度,从而调节多个质量元件之间的磁力作用。
图37是根据本申请的一些实施例所示的振动传感器的示例性结构图。
图37所示的振动传感器3700与图36所示的振动传感器3600大致相同,不同之处在于振动组件的位置不同。在一些实施例中,振动传感器3700中的振动组件220可以平行于进声孔2111的径向截面(即垂直于振动组件220的振动方向)设于进声孔2111内。振动组件220的弹性元件可以包括平行于进声孔2111的径向截面设于进声孔2111内的第一弹性元件3621和第二弹性元件3622,质量元件可以包括平行于进声孔2111的径向截面设于进声孔2111内的第一质量元件3611和第二质量元件3612。在一些实施例中,进声孔2111处可以设置有导管2112,导管2112可以是不透气材料制成,其作用与前述振动传感器3600中的支撑元件223相似。在一些实施例中,为了保证质量元件的自由振动,质量元件不与进声孔2111的内壁或导管2112接触。需要说明的是,设置导管2112只是一种具体的实施例,并不能限制本发明的范围。例如,在一些实施例中,还可以不设置导管2112,一组或多组弹性元件和质量元件直接与进声孔2111连接,或将支撑元件设于进声孔2111内,并支撑一组或多组弹性元件和质量元件。
在一些实施例中,第一质量元件3611和第二质量元件3612可以响应外界环境的振动而同时产生共振,第一弹性元件3621、第二弹性元件3622以及第一质量元件3611和第二质量元件3612产生的共振连通外界的振动信号通过导管2112传递至声学换能器210并转化为电信号,从而实现振动信号在一个或多个目标频段内加强后被转化为电信号的过程。需要说明的是,图37中所示弹性元件和质量元件的组数为两组只是为了说明,不会限制本发明的保护范围,例如,弹性元件和质量元件的组数可以为一组、三组或其他。
在一些实施例中,当振动组件220设于进声孔2111内时,缓冲件可以包括磁性缓冲件,磁性缓冲件可以用于产生磁场。在一些实施例中,磁性缓冲件可以包括线圈,线圈可以埋设于第一声学腔250中与基板211相对的侧壁(即振动传感器3700远离基板211的壳体)内,或安装于该侧 壁上。在一些实施例中,线圈埋设于基板211内时,可以直接在基板211内蚀刻形成线圈。在一些实施例中,缓冲件包括磁性缓冲件时,质量元件可以包括磁性件或可磁化件,质量元件位于磁性缓冲件所产生的磁场中,质量元件受到磁场的磁力作用。在一些实施例中,通过磁性缓冲件产生的磁场可以调节质量元件的受力情况,进而限制振动组件220的振动幅度,防止振动组件220与振动传感器3700的其他组件(如拾音装置212)发生碰撞。
在一些实施例中,当振动传感器3600具有多个质量元件时,多个质量元件中的部分质量元件可以具有磁性件或可磁化件。优选地,靠近拾音装置212的质量元件可以包括磁性件或可磁化件,剩余的质量元件不包括磁性件或可磁化件。关于多个质量元件中具有磁性件或可磁化件的质量元件的分布情况可以参见图14B和图36及其相关描述。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书 和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (51)

  1. 一种振动传感器,包括:
    振动组件,所述振动组件包括质量元件和弹性元件,所述质量元件与所述弹性元件连接;
    第一声学腔,所述弹性元件构成所述第一声学腔的侧壁之一,所述振动组件响应于外部振动信号振动使得所述第一声学腔的体积发生变化;
    声学换能器,所述声学换能器与所述第一声学腔连通,所述声学换能器响应于所述第一声学腔的体积变化而产生电信号;
    缓冲件,所述缓冲件限制所述振动组件的振动幅度;
    其中,所述声学换能器具有第一谐振频率,所述振动组件具有第二谐振频率,所述振动组件的所述第二谐振频率低于所述第一谐振频率。
  2. 根据权利要求1所述的振动传感器,其中,在频率小于1000Hz时,所述振动组件的灵敏度大于或等于-40dB。
  3. 根据权利要求1所述的振动传感器,其中,所述第二谐振频率低于所述第一谐振频率1kHz~10kHz。
  4. 根据权利要求1所述的振动传感器,其中,所述缓冲件设置于所述第一声学腔内垂直于所述振动组件的振动方向的侧壁上,所述缓冲件为所述振动组件提供沿所述振动组件的振动方向的缓冲距离,所述缓冲距离大于或等于0,且小于所述振动组件的最大振动幅度。
  5. 根据权利要求4所述的振动传感器,其中,所述弹性元件与所述声学换能器相对设置,所述缓冲件与所述弹性元件或所述声学换能器连接。
  6. 根据权利要求5所述的振动传感器,其中,所述缓冲件呈块状或片状设置;或者,所述缓冲件包括在所述弹性元件或所述声学换能器上间隔分布的多个缓冲点、或多个缓冲颗粒、或多个缓冲柱。
  7. 根据权利要求1所述的振动传感器,其中,所述振动传感器还包括壳体,所述壳体接收所述外部振动信号,并将所述外部振动信号传递至所述振动组件。
  8. 根据权利要求7所述的振动传感器,其中,所述壳体形成声学腔,所述振动组件位于所述声学腔中,并将所述声学腔分隔为所述第一声学腔和第二声学腔。
  9. 根据权利要求8所述的振动传感器,其中,所述缓冲件设置于所述第一声学腔和/或所述第二声学腔内,所述缓冲件为所述振动组件提供沿所述振动组件的振动方向的缓冲距离。
  10. 根据权利要求9所述的振动传感器,其中,所述缓冲距离大于或等于0,且小于所述振动组件的最大振动幅度。
  11. 根据权利要求10所述的振动传感器,其中,所述缓冲件包括第一缓冲部和第二缓冲部,所述第一缓冲部和所述第二缓冲部沿所述振动组件的振动方向分别设于所述弹性元件的两侧。
  12. 根据权利要求11所述的振动传感器,其中,所述第一缓冲部与所述壳体或所述弹性元件连接,所述第二缓冲部与所述弹性元件或所述声学换能器连接。
  13. 根据权利要求12所述的振动传感器,其中,所述第一缓冲部包括多个第一缓冲块,所述第二缓冲部包括多个第二缓冲块。
  14. 根据权利要求9所述的振动传感器,其中,所述缓冲件沿所述振动组件的振动方向的一端与所述弹性元件连接,所述缓冲件沿所述振动组件的振动方向的另一端与所述壳体或所述声学换能器连接。
  15. 根据权利要求14所述的振动传感器,其中,所述缓冲件包括第一缓冲部和第二缓冲部,所述第一缓冲部和所述第二缓冲部沿所述振动组件的振动方向分别设于所述弹性元件的两侧。
  16. 根据权利要求14所述的振动传感器,其中,所述缓冲件设置有多个,多个所述缓冲件沿所述弹性元件的周向间隔分布。
  17. 根据权利要求8所述的振动传感器,其中,所述缓冲件包括磁性缓冲件,用于产生磁场;所述质量元件包括磁性件或可磁化件,所述质量元件位于所述磁场内。
  18. 根据权利要求17所述的振动传感器,其中,所述磁性缓冲件包括线圈,所述线圈安装于所述声学换能器连接所述第一声学腔的侧壁。
  19. 根据权利要求18所述的振动传感器,其中,所述线圈埋设于所述声学换能器连接所述第一声学腔的侧壁内。
  20. 根据权利要求1-16任一项所述的振动传感器,其中,所述质量元件中高分子材料的质量超过80%。
  21. 根据权利要求20所述的振动传感器,其中,所述弹性元件中高分子材料的质量超过80%。
  22. 根据权利要求21所述的振动传感器,其中,所述质量元件和所述弹性元件的材质相同。
  23. 根据权利要求1-19任一项所述的振动传感器,其中,所述质量元件的数量为多个,多个所述质量元件与所述弹性元件连接。
  24. 根据权利要求23所述的振动传感器,其中,所述质量元件的数量大于或等于3;所述质量元件不共线设置。
  25. 根据权利要求23所述的振动传感器,其中,所述多个质量块的至少一个结构参数不同,所述结构参数包括尺寸、质量、密度以及形状。
  26. 根据权利要求23任一项所述的振动传感器,其中,所述第一声学腔内设置有一个或多个悬臂梁结构以及与所述一个或多个悬臂梁结构中的每一个物理连接的一个或多个质量块。
  27. 根据权利要求17-19任一项所述的振动传感器,其中,所述振动组件包括一组或多组振膜和质量块,在每组振膜和质量块中,质量块物理连接于振膜。
  28. 根据权利要求27所述的振动传感器,其中,所述一组或多组振膜和质量块沿所述振膜的振动方向上依次设置;所述振动组件中相邻振膜之间的距离不小于所述相邻振膜的最大振幅。
  29. 根据权利要求28所述的振动传感器,其中,所述一组或多组振膜和质量块中每组振膜和质量块对应一个目标频段,在所述对应的目标频段内所述振动传感器的灵敏度大于所述声学换能器的灵敏度。
  30. 根据权利要求27所述的振动传感器,其中,所述多组振膜和质量块中至少两组振膜和质量块的共振频率不同。
  31. 根据权利要求27所述的振动传感器,其中,所述振动组件进一步包括支撑元件,用于支撑所述一组或多组振膜和质量块,所述支撑元件物理连接于所述声学换能器,所述一组或多组振膜和质量块连接于所述支撑元件。
  32. 根据权利要求31所述的振动传感器,其中,所述支撑元件由不透气的材料制成,所述振膜包括透气膜。
  33. 根据权利要求1-19任一项所述的振动传感器,其中,所述弹性元件包括第一弹性元件和第二弹性元件,所述第一弹性元件和所述第二弹性元件在所述振动组件的振动方向上分别连接在所述质量元件相反的两侧。
  34. 根据权利要求33所述的振动传感器,其中,所述第一弹性元件和所述第二弹性元件的尺寸、形状、材质、或厚度相同。
  35. 根据权利要求33所述的振动传感器,其中,所述第一弹性元件与所述第一缓冲部连接,所述第二弹性元件与所述第二缓冲部连接。
  36. 根据权利要求1-19任一项所述的振动传感器,其中,所述质量元件包括第一质量元件和第二质量元件,所述第一质量元件和所述第二质量元件在所述振动组件的振动方向上分别连接在所述弹性元件相反的两侧。
  37. 根据权利要求36所述的振动传感器,其中,所述第一质量元件和所述第二质量元件的尺寸、形状、材质、或厚度相同。
  38. 根据权利要求1或8所述的振动传感器,其中,所述弹性元件环绕连接于所述质量元件的侧壁,所述弹性元件向所述声学换能器延伸并直接或间接连接所述声学换能器。
  39. 根据权利要求38所述的振动传感器,其中,所述振动传感器进一步包括基板,所述基板设置于所述声学换能器上,所述弹性元件向所述声学换能器延伸的一端与所述基板连接。
  40. 根据权利要求39所述的振动传感器,其中,所述缓冲件设置于所述第一声学腔,所述缓冲件与所述质量元件和/或所述声学换能器连接,和/或,所述缓冲件设置于所述第二声学腔,所述缓冲件与所述质量元件和/或所述壳体连接。
  41. 根据权利要求39所述的振动传感器,其中,所述缓冲件包括线圈,用于产生磁场;所述质量元件包括磁性件或可磁化件,所述质量元件位于所述磁场内;所述线圈安装于所述声学换能器连接所述第一声学腔的侧壁。
  42. 根据权利要求8所述的振动传感器,其中,所述弹性元件与所述声学换能器相对设置,所述弹性元件朝向所述第一声学腔的一侧设置有凸起结构,所述弹性元件响应于所述外部振动信号而使得所述凸起结构运动,所述凸起结构的运动改变所述第一声学腔的体积。
  43. 根据权利要求42所述的振动传感器,其中,所述凸起结构抵接于所述第一声学腔中与所述弹性元件相对的侧壁。
  44. 根据权利要求43所述的振动传感器,其中,所述凸起结构具有弹性,当所述凸起结构运动时,所述凸起结构产生弹性形变,所述弹性形变改变所述第一声学腔的体积。
  45. 根据权利要求44所述的振动传感器,其中,所述缓冲件设置于所述第二声学腔,所述缓冲件与所述质量元件和/或所述壳体连接。
  46. 根据权利要求8所述的振动传感器,其中,所述振动组件还包括支撑元件,所述质量元件与所述支撑元件分别与所述弹性元件的两侧物理连接,所述支撑元件与所述声学换能器物理连接;所述支撑元件、所述弹性元件和所述声学换能器形成第一声学腔。
  47. 根据权利要求46所述的振动传感器,其中,所述质量元件沿垂直于所述振动组件的振动方向的截面面积大于所述第一声学腔沿垂直于所述振动组件的振动方向的截面面积,所述弹性元件沿 垂直于所述振动组件的振动方向的截面面积大于所述第一声学腔沿垂直于所述振动组件的振动方向的截面面积;
    所述质量元件被配置为响应于所述外部振动信号而使得所述弹性元件与所述支撑元件相接触的区域发生压缩形变,且所述弹性元件能够振动而使得所述第一声学腔的体积发生改变。
  48. 如权利要求47所述的振动传感器,其特征在于,所述支撑元件包括环形结构。
  49. 如权利要求48所述的振动传感器,其特征在于,所述质量元件沿垂直于所述振动组件的振动方向的截面面积大于或等于所述环形结构的外环沿垂直于所述振动组件的振动方向的截面面积,所述弹性元件沿垂直于所述振动组件的振动方向的截面面积大于或等于所述环形结构的外环沿垂直于所述振动组件的振动方向的截面面积。
  50. 如权利要求49所述的振动传感器,其特征在于,所述质量元件沿垂直于所述振动组件的振动方向的截面面积等于所述弹性元件沿垂直于所述振动组件的振动方向的截面面积。
  51. 根据权利要求50所述的振动传感器,其中,所述缓冲件设置于所述第二声学腔,所述缓冲件与所述质量元件和/或所述壳体连接。
PCT/CN2021/129151 2021-06-18 2021-11-05 一种振动传感器 WO2022262176A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180078575.3A CN117157998A (zh) 2021-06-18 2021-11-05 一种振动传感器
TW111118332A TW202301883A (zh) 2021-06-18 2022-05-17 振動感測器
US18/365,976 US20230384147A1 (en) 2021-06-18 2023-08-05 Vibration sensors

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN202110677119.2A CN113286213A (zh) 2021-06-18 2021-06-18 一种振动传感器
CN202110677119.2 2021-06-18
PCT/CN2021/106947 WO2023283966A1 (zh) 2021-07-16 2021-07-16 传感装置
CNPCT/CN2021/106947 2021-07-16
CNPCT/CN2021/107978 2021-07-22
PCT/CN2021/107978 WO2022142291A1 (zh) 2020-12-28 2021-07-22 一种振动传感器
PCT/CN2021/112014 WO2022222315A1 (zh) 2021-04-23 2021-08-11 一种传感装置
CNPCT/CN2021/112014 2021-08-11
CNPCT/CN2021/112017 2021-08-11
CN202110917789.7A CN115243178A (zh) 2021-04-23 2021-08-11 一种振动传感器
PCT/CN2021/112017 WO2023015478A1 (zh) 2021-08-11 2021-08-11 一种振动传感器
CN202110917789.7 2021-08-11
CNPCT/CN2021/113419 2021-08-19
PCT/CN2021/113419 WO2023272906A1 (zh) 2021-07-02 2021-08-19 一种振动传感器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/365,976 Continuation US20230384147A1 (en) 2021-06-18 2023-08-05 Vibration sensors

Publications (1)

Publication Number Publication Date
WO2022262176A1 true WO2022262176A1 (zh) 2022-12-22

Family

ID=84525814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129151 WO2022262176A1 (zh) 2021-06-18 2021-11-05 一种振动传感器

Country Status (4)

Country Link
US (1) US20230384147A1 (zh)
CN (1) CN117157998A (zh)
TW (1) TW202301883A (zh)
WO (1) WO2022262176A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644718A (zh) * 2009-07-02 2010-02-10 中国科学院声学研究所 一种带声学腔的电容式加速度传感器
US9661411B1 (en) * 2015-12-01 2017-05-23 Apple Inc. Integrated MEMS microphone and vibration sensor
CN111510834A (zh) * 2020-05-27 2020-08-07 潍坊歌尔微电子有限公司 骨声纹传感器模组和电子设备
CN211930820U (zh) * 2020-05-28 2020-11-13 青岛歌尔智能传感器有限公司 振动传感器和音频设备
CN113286213A (zh) * 2021-06-18 2021-08-20 深圳市韶音科技有限公司 一种振动传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644718A (zh) * 2009-07-02 2010-02-10 中国科学院声学研究所 一种带声学腔的电容式加速度传感器
US9661411B1 (en) * 2015-12-01 2017-05-23 Apple Inc. Integrated MEMS microphone and vibration sensor
CN111510834A (zh) * 2020-05-27 2020-08-07 潍坊歌尔微电子有限公司 骨声纹传感器模组和电子设备
CN211930820U (zh) * 2020-05-28 2020-11-13 青岛歌尔智能传感器有限公司 振动传感器和音频设备
CN113286213A (zh) * 2021-06-18 2021-08-20 深圳市韶音科技有限公司 一种振动传感器

Also Published As

Publication number Publication date
TW202301883A (zh) 2023-01-01
CN117157998A (zh) 2023-12-01
US20230384147A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
CN218162856U (zh) 一种振动传感器
US20170034625A1 (en) Electronic device having a mode damped diaphragm
WO2022262639A1 (zh) 一种振动传感器
US20100092011A1 (en) Membrane for an electroacoustic transducer and acoustic device
CN215300865U (zh) 一种振动传感器
WO2022262176A1 (zh) 一种振动传感器
WO2022262226A1 (zh) 一种振动传感器
KR20230058525A (ko) 진동센서
CN115623392A (zh) 一种振动传感器
JP2023539965A (ja) 振動センサ
RU2800551C1 (ru) Датчики
WO2023272906A1 (zh) 一种振动传感器
WO2023283966A1 (zh) 传感装置
WO2022151791A1 (zh) 扬声器
US20230217147A1 (en) Vibration sensors
TW202301881A (zh) 振動感測器
CN115615471A (zh) 传感装置
CN116848853A (zh) 振动组件及扬声器
CN114697823A (zh) 一种振动传感器
TW202303112A (zh) 振動感測器
CN117426108A (zh) 一种振动传感器
CN116193328A (zh) 振动组件及扬声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE