WO2023015478A1 - 一种振动传感器 - Google Patents

一种振动传感器 Download PDF

Info

Publication number
WO2023015478A1
WO2023015478A1 PCT/CN2021/112017 CN2021112017W WO2023015478A1 WO 2023015478 A1 WO2023015478 A1 WO 2023015478A1 CN 2021112017 W CN2021112017 W CN 2021112017W WO 2023015478 A1 WO2023015478 A1 WO 2023015478A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration sensor
diaphragm
vibration
diaphragms
mass
Prior art date
Application number
PCT/CN2021/112017
Other languages
English (en)
French (fr)
Inventor
袁永帅
邓文俊
周文兵
黄雨佳
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to CN202180013922.4A priority Critical patent/CN116034254A/zh
Priority to EP21921636.3A priority patent/EP4167596A4/en
Priority to PCT/CN2021/112017 priority patent/WO2023015478A1/zh
Priority to BR112022017044A priority patent/BR112022017044A2/pt
Priority to KR1020227033038A priority patent/KR20230024873A/ko
Priority to JP2022556200A priority patent/JP7462787B2/ja
Priority to CN202180083432.1A priority patent/CN116636235A/zh
Priority to PCT/CN2021/113419 priority patent/WO2023272906A1/zh
Priority to CN202111307655.XA priority patent/CN115623392A/zh
Priority to CN202180078575.3A priority patent/CN117157998A/zh
Priority to CN202180092553.2A priority patent/CN117426108A/zh
Priority to PCT/CN2021/129153 priority patent/WO2022262177A1/zh
Priority to CN202111309103.2A priority patent/CN115623393A/zh
Priority to PCT/CN2021/129151 priority patent/WO2022262176A1/zh
Priority to CN202180079858.XA priority patent/CN117441349A/zh
Priority to PCT/CN2021/138440 priority patent/WO2022262226A1/zh
Priority to TW111114825A priority patent/TW202301881A/zh
Priority to TW111117622A priority patent/TWI820703B/zh
Priority to TW111118332A priority patent/TW202301883A/zh
Priority to TW111119260A priority patent/TW202303112A/zh
Priority to US17/814,533 priority patent/US11662248B2/en
Publication of WO2023015478A1 publication Critical patent/WO2023015478A1/zh
Priority to US18/320,229 priority patent/US20230288250A1/en
Priority to US18/323,396 priority patent/US20230300519A1/en
Priority to US18/351,489 priority patent/US20230362525A1/en
Priority to US18/353,049 priority patent/US20230358602A1/en
Priority to US18/365,976 priority patent/US20230384147A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H13/00Measuring resonant frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/222Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only  for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • H04R1/245Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges of microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/283Enclosures comprising vibrating or resonating arrangements using a passive diaphragm
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/08Plane diaphragms comprising a plurality of sections or layers comprising superposed layers separated by air or other fluid
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/26Damping by means acting directly on free portion of diaphragm or cone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/08Microphones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/04Structural association of microphone with electric circuitry therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/03Reduction of intrinsic noise in microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms

Definitions

  • This description relates to the field of sensors, in particular to a vibration sensor including a vibration component.
  • a vibration sensor is an energy conversion device that converts vibration signals into electrical signals, and its uses include as microphones (such as air conduction microphones, bone conduction microphones, etc.) or monitoring equipment. Vibration sensors can obtain vibration amplitude and direction data and convert them into electrical signals or other required forms for further analysis and processing.
  • This specification provides a vibration sensor, which increases the sensitivity of the vibration sensor without adding transducers.
  • a vibration sensor including: an acoustic transducer and a vibration component connected to the acoustic transducer.
  • the vibration assembly is configured to transmit an external vibration signal to the acoustic transducer to generate an acoustic signal, the vibration assembly includes one or more sets of diaphragms and masses, the masses are physically connected to the diaphragms ; the vibration assembly is configured to make the vibration sensor more sensitive than the acoustic transducer in one or more target frequency bands.
  • the one or more groups of diaphragms and mass blocks are arranged in sequence along the vibration direction of the diaphragm; the distance between adjacent diaphragms in the vibration assembly is not less than that of the adjacent diaphragms The maximum amplitude of the membrane.
  • the projected area of the proof mass is located within the projected area of the diaphragm.
  • each set of diaphragms and masses in the one or more sets of diaphragms and masses corresponds to one of the one or more different target frequency bands, so that in the corresponding target frequency band
  • the sensitivity of the vibration sensor is greater than the sensitivity of the acoustic transducer.
  • the resonance frequency of the one or more sets of diaphragms and masses is lower than the resonance frequency of the acoustic transducer such that the sensitivity of the vibration sensor in the one or more target frequency bands is greater than The sensitivity of the acoustic transducer.
  • the difference between the resonance frequency of the one or more sets of diaphragms and masses and the resonance frequency of the acoustic transducer is within 1 kHz to 10 kHz.
  • the resonant frequencies of at least two groups of diaphragms and masses among the plurality of groups of diaphragms and masses are different.
  • the difference between two adjacent resonance frequencies among the resonance frequencies of the plurality of sets of diaphragms and masses is less than 2 kHz.
  • the difference between the resonance frequencies of two adjacent resonance frequencies among the plurality of sets of diaphragms and mass blocks is not more than 1 kHz.
  • the resonance frequency of the one or more sets of diaphragms and masses is within 1 kHz ⁇ 10 kHz.
  • the resonance frequency of the one or more sets of diaphragms and masses is within 1kHz ⁇ 5kHz.
  • the resonant frequencies of the one or more groups of diaphragms and masses are related to parameters of the diaphragm and/or the mass, the parameters including the modulus of the diaphragm, the At least one of the volume of the cavity formed between the acoustic transducer and the diaphragm, the radius of the mass block, the height of the mass block, and the density of the mass block.
  • the modulus of the diaphragm is within 1GPa ⁇ 10GPa.
  • the radius of the proof mass is within 500 ⁇ m ⁇ 3 mm.
  • the frequency response curve of the vibration sensor under the action of the one or more sets of diaphragms and masses has multiple resonance peaks.
  • the vibration assembly further includes a support structure for supporting the one or more sets of diaphragms and masses, the support structure is physically connected to the acoustic transducer, and the set or Multiple sets of diaphragms and masses are connected to the supporting structure.
  • the support structure is made of an air impermeable material.
  • the projected area of the proof mass does not overlap with the projected area of the support structure.
  • the mass is arranged concentrically with the diaphragm.
  • the diaphragm is configured to allow passage of air.
  • the diaphragm furthest from said acoustic transducer is configured not to allow passage of air.
  • through holes are set on the diaphragm.
  • the diaphragm includes a gas-permeable membrane.
  • the diaphragm comprises polytetrafluoroethylene, expanded polytetrafluoroethylene, polyethersulfone, polyvinylidene fluoride, polypropylene, polyethylene terephthalate, nylon, nitrocellulose, or At least one of mixed cellulose.
  • the vibrating component further includes a limiting structure; the limiting structure is configured to make the distance between adjacent vibrating membranes in the vibrating component not smaller than the maximum vibration amplitude of the adjacent vibrating membranes.
  • the acoustic transducer is an air conduction microphone; the resonance frequency of the one or more target frequency bands is configured to be 1 kHz to 10 kHz lower than the resonance frequency of the air conduction microphone.
  • the air conduction microphone includes a sound pickup hole, and the one or more sets of diaphragms and mass blocks are arranged in the sound pickup hole parallel to the radial section of the sound pickup hole; or, It is arranged on the outside of the sound pickup hole.
  • the mass is not in contact with the inner wall of the sound pickup hole.
  • One of the embodiments of the present specification provides an audio input device, which includes any vibration sensor mentioned above.
  • Fig. 1 is a modular schematic diagram of a vibration sensor according to some embodiments of the present specification
  • Fig. 2 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification
  • Fig. 3 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 4 is a schematic structural diagram of a vibrating assembly according to some embodiments of the present specification.
  • FIG. 5 is a frequency response curve diagram of a vibration sensor according to some embodiments of the present specification.
  • Fig. 6 is a schematic structural diagram of a vibration sensor based on some embodiments according to this specification.
  • the terms “a”, “an”, “an” and/or “the” are not specific to the singular and may include the plural unless the context clearly indicates an exception.
  • the terms “comprising” and “comprising” only suggest the inclusion of clearly identified steps and elements, and these steps and elements do not constitute an exclusive list, and the method or device may also contain other steps or elements.
  • the term “based on” is “based at least in part on”.
  • the term “one embodiment” means “at least one embodiment”; the term “another embodiment” means “at least one further embodiment”. Relevant definitions of other terms will be given in the description below.
  • the means for converting the vibration into an electrical signal includes an acoustic transducer.
  • the acoustic transducer there is only one resonance peak in a single acoustic transducer, and the acoustic transducer has relatively high sensitivity only around the frequency of the resonance peak.
  • a plurality of acoustic transducers with different resonance peaks are arranged to increase the receiving frequency range and sensitivity, but increasing the number of acoustic transducers will lead to the volume and Increased manufacturing costs.
  • this specification relates to a vibration sensor, which makes the sensitivity of the vibration sensor in the target frequency band greater than that of the acoustic transducer through a vibration component connected to the acoustic transducer.
  • the vibration sensor may be used to receive external vibration signals and convert the vibration signals into electrical signals capable of reflecting sound information, wherein the external signals may include mechanical vibration signals or acoustic signals.
  • the vibrating assembly may include one or more sets of diaphragms and masses, the masses being physically connected to the diaphragms. The vibration assembly is configured such that the sensitivity of the vibration sensor is greater than the sensitivity of the acoustic transducer in one or more frequency bands of interest.
  • the vibration sensor 100 may include an acoustic transducer 120 and a vibration component 130 .
  • the acoustic transducer 120 is connected to a vibration assembly 130 configured to transmit an external vibration signal to the acoustic transducer to generate an electrical signal.
  • the vibration component 130 responds to the vibration of the external environment and transmits the vibration signal to the acoustic transducer 120, and then the acoustic transducer 120 converts the vibration signal into an electrical signal.
  • the vibration sensor 100 can be applied to mobile devices, wearable devices, virtual reality devices, augmented reality devices, etc., or any combination thereof.
  • a mobile device may include a smartphone, tablet computer, personal digital assistant (PDA), gaming device, navigation device, etc., or any combination thereof.
  • wearable devices may include smart bracelets, earphones, hearing aids, smart helmets, smart watches, smart clothing, smart backpacks, smart accessories, etc., or any combination thereof.
  • the virtual reality device and/or the augmented reality device may include a virtual reality helmet, virtual reality glasses, virtual reality patch, augmented reality helmet, augmented reality glasses, augmented reality patch, etc. or any combination thereof.
  • virtual reality devices and/or augmented reality devices may include Google Glass, Oculus Rift, Hololens, Gear VR, etc.
  • the vibration assembly 130 includes a diaphragm 131 and a mass 132 , wherein the mass 132 is physically connected to the diaphragm 131 .
  • Vibration assembly 130 is configured such that the sensitivity of vibration sensor 100 is greater than the sensitivity of acoustic transducer 120 in one or more frequency bands of interest.
  • one or more groups of diaphragms 131 and masses 132 are arranged in sequence along the vibration direction of the diaphragms 131; the distance between adjacent diaphragms 131 in the vibration assembly 130 is not less than the adjacent The maximum amplitude of the diaphragm 131.
  • the diaphragm 131 is configured to allow air to pass through.
  • each set of diaphragm 131 and mass 132 in one or more sets of diaphragm 131 and mass 312 corresponds to one target frequency band in one or more different target frequency bands, so that all frequencies within the corresponding target frequency band
  • the sensitivity of the vibration sensor 100 may be greater than that of the acoustic transducer 120 .
  • the sensitivity of the vibration sensor 100 after adding one or more sets of masses 132 and diaphragm 131 can be increased by 3dB-30dB compared with the acoustic transducer 120 in the target frequency band.
  • the sensitivity of the vibration sensor 100 after adding one or more sets of masses 132 and diaphragm 131 can be increased by more than 30dB compared with the acoustic transducer 120, such as multiple sets of masses 132 and the diaphragm 131 have the same resonance peak.
  • the method for measuring the sensitivity of the vibration sensor 100 and the acoustic transducer 120 can be: under the excitation of a given acceleration (such as 1g, g is the acceleration of gravity), collect the electrical signal of the device (such as -30dBV), then the sensitivity -30dBV/g.
  • a given acceleration such as 1g, g is the acceleration of gravity
  • the electrical signal of the device such as -30dBV
  • the acoustic transducer 120 is an air conduction microphone
  • the aforementioned excitation source can be replaced with sound pressure, that is, the sound pressure in the specified frequency band is input as the excitation, and the measurement of the acquisition device electrical signal.
  • the frequency response curve of the vibration sensor 100 under the action of one or more sets of diaphragms 131 and masses 132 may have multiple resonance peaks.
  • the resonance frequency of one or more groups of mass blocks 132 and diaphragm 131 is within 1 kHz ⁇ 10 kHz. In some embodiments, the resonance frequency of one or more groups of mass blocks 132 and diaphragm 131 is within 1 kHz ⁇ 5 kHz. In some embodiments, at least two groups of the mass blocks 132 and the diaphragm 131 among the multiple groups of the mass blocks 132 and the diaphragm 131 have different resonant frequencies. In some embodiments, the difference between two adjacent resonance frequencies among the multiple sets of masses 132 and the diaphragm 131 is less than 2 kHz.
  • two adjacent resonant frequencies refer to two resonant frequencies that are numerically adjacent in magnitude of the resonant frequencies. Since the sensitivity of the vibration sensor 100 corresponding to frequencies other than the resonance frequency will decrease rapidly, by controlling the difference of the resonance frequency, the vibration sensor 100 has higher sensitivity in a wider frequency band while the sensitivity does not fluctuate greatly.
  • the difference between two adjacent resonance frequencies among the multiple sets of masses 132 and the diaphragm 131 is no more than 1.5 kHz. In some embodiments, the difference between two adjacent resonance frequencies among the multiple sets of masses 132 and the diaphragm 131 is no more than 1 kHz, such as 500 Hz, 700 Hz or 800 Hz. In some embodiments, the difference between two adjacent resonance frequencies among the multiple groups of mass blocks 132 and the diaphragm 131 is no more than 500 Hz.
  • the vibrating membrane 131 may include a gas-permeable membrane. More descriptions about the vibrating components can refer to the detailed descriptions in FIGS. 2-6 .
  • Fig. 2 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • the vibration sensor 200 described in FIG. 2 may be an implementation of the vibration sensor 100 in FIG. 1 .
  • the vibration sensor 200 includes an acoustic transducer 220 and a vibration assembly 230 .
  • the acoustic transducer 220 may include an air conduction microphone, which is also called an air conduction microphone, and can acquire sound pressure changes in the sound pickup area (such as at the sound pickup hole 211 ) and convert them into electrical signals.
  • an air conduction microphone is used for description.
  • the acoustic transducer may also be in other forms, such as a liquid microphone and a laser microphone.
  • an air conduction microphone includes a housing 210 and a sound pickup device 221.
  • the sound pickup device 221 may include capacitive, piezoelectric, and other forms of energy conversion according to the principle of energy conversion. device, this manual does not limit it.
  • the shape of the shell structure 210 may be a cuboid, an approximate cuboid, a cylinder, a sphere, or any other shape.
  • the housing structure 210 encloses an accommodation space, and the sound pickup device 221 is disposed in the accommodation space.
  • the sound pickup device 221 is physically connected to the housing structure 210.
  • the physical connection may include welding, clipping, bonding, or integral molding, and the connection method is not limited here.
  • the housing structure 210 can be made of a material with a certain hardness, so that the housing structure 210 can protect the sound pickup device 221 and internal components.
  • the material of the housing structure 210 may include, but not limited to, metals, alloy materials (such as aluminum alloys, chrome-molybdenum steels, scandium alloys, magnesium alloys, titanium alloys, magnesium-lithium alloys, nickel alloys, etc.), glass fibers Or one or more of carbon fiber, polymer material (for example, acrylonitrile-butadiene-styrene copolymer, polyvinyl chloride, polycarbonate, polypropylene, etc.) and the like.
  • alloy materials such as aluminum alloys, chrome-molybdenum steels, scandium alloys, magnesium alloys, titanium alloys, magnesium-lithium alloys, nickel alloys, etc.
  • glass fibers Or one or more of carbon fiber, polymer material (for example, acrylonitrile-butadiene-styrene copolymer, polyvinyl chloride, polycarbonate, polypropylene, etc.) and the like.
  • the shell structure 210 defines a sound pickup hole 211 for sound pickup.
  • the vibration assembly 230 is disposed close to the sound pickup hole 211 of the housing structure 210 .
  • the one or more sets of diaphragms and masses are arranged outside the sound pickup hole.
  • the vibrating component 230 is physically connected to the housing structure.
  • the physical connection may include welding, clipping, bonding, or integral molding, and the connection method is not limited here.
  • one or more groups of second-generation diaphragms and mass blocks can also be arranged in the sound pickup hole parallel to the radial section of the sound pickup hole, for details, please refer to the following Figure 5 related description.
  • the vibration sensor 200 when the external environment generates vibrations (for example, sound waves), one or more groups of diaphragms and mass blocks on the diaphragms respond to the vibrations of the external environment. Vibration is generated, because the diaphragm can allow air to pass through, and the vibration generated by the diaphragm and the mass together with the external vibration signal (for example, sound wave) can cause the sound pressure change (or air vibration) in the sound pickup hole 211 to make the vibration signal pass through the pickup hole 211.
  • vibrations for example, sound waves
  • the sound hole 211 transmits to the sound pickup device 221 and converts it into an electrical signal, so as to realize the process that the vibration signal is strengthened in one or more target frequency bands and then converted into an electrical signal.
  • the target frequency band may be a frequency range in which the resonant frequency (or resonant frequency) corresponding to a group of vibrating membranes and masses is located.
  • the range of the target frequency range may be 200Hz-2kHz.
  • the resonance frequency of the vibration component 230 can be configured to 1kHz.
  • a conductive shell can be provided outside the sound pickup hole 211, and the acoustic transducer 220 and the conductive shell can form an accommodation space, one or more groups The vibrating membrane and the mass block are arranged in the accommodation space.
  • the vibrating component for example, a vibrating element
  • the housing can be physically connected to the housing.
  • the vibration When the external environment vibrates, the vibration is received through the conductive housing and causes the vibrating component to vibrate, and the vibration of the vibrating component can cause the accommodation space
  • the vibration sensor 200 includes three sets of diaphragms and masses, specifically, the three sets of diaphragms and masses can have different resonant frequencies, each set of diaphragms and masses can be Resonance is generated under different frequency vibrations in the external vibration signal, so that the sound signal acquired by the vibration sensor 200 is more sensitive than the acoustic transducer 220 in the three target frequency bands relative to the acoustic transducer 220 . It should be noted that, in some embodiments, multiple sets of diaphragms and masses may have the same resonance frequency, so that the sensitivity in the target frequency band can be greatly improved.
  • the resonance frequencies of multiple groups of diaphragms and mass blocks can be configured to a value within the detection range (such as 5.3 kHz), so that The vibration sensor 200 has higher sensitivity within the detection range than when only one set of diaphragm and mass is provided.
  • the number of sets of diaphragms and mass blocks shown in FIG. 2 is only for illustration and description, and does not limit the scope of the present invention.
  • the number of groups of the diaphragm and the mass block can be one group, two groups, four groups, etc.
  • the diaphragm furthest from the acoustic transducer 220 is configured not to allow air to pass through.
  • the third diaphragm 2313 in the figure can be configured so as not to allow air to pass through.
  • a closed space is formed between the third diaphragm 2313 and the acoustic transducer 220 , which can better respond vibration information.
  • the diaphragm farthest from the acoustic transducer 220 can be configured to allow air to pass through.
  • the body and the acoustic transducer 220 form an accommodation space, and the air in the accommodation space can well reflect vibration information.
  • Fig. 3 is a schematic structural diagram of a vibration sensor according to some embodiments of the present specification.
  • the vibration component 330 in the vibration sensor 300 may include a set of diaphragm 331 and a mass 332 , connected to the acoustic sensor 320 through a support structure 333 .
  • the mass block 332 is physically connected to the diaphragm 331 , and the mass block 332 is disposed outside the diaphragm 331 .
  • the mass block 332 resonates in response to the vibration of the external environment at the same time, and the resonance generated by the diaphragm 331 and the mass block 332 is transmitted to the acoustic transducer 320 through the external vibration signal, thereby strengthening the resonance of the vibration assembly 330 Sensitivity near the frequency is the process in which the vibration signal is strengthened in the target frequency band and then converted into an electrical signal.
  • the vibration sensor 300 since the vibration sensor 300 only includes a set of diaphragm 331 and mass 332 , in order to have a better sound pickup effect, in some embodiments, the diaphragm 331 may be airtight.
  • the resonant frequency of each set of diaphragm and mass is related to the parameters of the diaphragm and/or mass, the parameters include the modulus of the diaphragm, the volume of the cavity formed between the acoustic transducer and the diaphragm , the radius of the mass block, the height of the mass block, the medium density of the mass block or a combination thereof.
  • the parameters include the modulus of the diaphragm, the volume of the cavity formed between the acoustic transducer and the diaphragm , the radius of the mass block, the height of the mass block, the medium density of the mass block or a combination thereof.
  • the vibrating assembly 230 may include a first diaphragm 2311, a second diaphragm 2312, and a third diaphragm 2313 arranged sequentially in the direction of vibration;
  • the distance between any two adjacent diaphragms among the first diaphragm 2311, the second diaphragm 2312 and the third diaphragm 2313 is not less than the maximum vibration amplitude of the two adjacent diaphragms, This setting is used to ensure that the diaphragm will not interfere with the adjacent diaphragm when vibrating, thereby affecting the transmission effect of the vibration signal.
  • the vibration assembly 230 includes multiple sets of diaphragms and mass blocks, the diaphragms are arranged in sequence along the vibration direction perpendicular to the diaphragms. In some embodiments, the distances between adjacent diaphragms can be the same or can be different.
  • the gap between the diaphragm and its adjacent diaphragms may form a plurality of cavities, and the plurality of cavities between the diaphragm and its adjacent diaphragms may contain air and allow the diaphragm to vibrate therein.
  • the vibrating assembly 230 may further include a limiting structure (not shown in the figure), which is configured to make the distance between adjacent vibrating membranes in the vibrating assembly not less than the distance between the adjacent vibrating membranes. maximum amplitude.
  • the limiting structure may be connected to the edge of the diaphragm, and by controlling the damping of the limiting structure so as not to interfere with the vibration of the diaphragm.
  • the mass blocks in the multiple sets of vibrating components 230 may include multiple masses, and the multiple mass blocks may be respectively arranged on both sides of the diaphragm.
  • a set of vibrating components includes two mass blocks, and the two mass blocks are symmetrically arranged on both sides of the diaphragm.
  • the mass blocks in the multiple groups of vibrating components 230 may be located on the same side of the diaphragm, wherein the mass blocks may be arranged on the outside or inside of the diaphragm, wherein the side of the diaphragm close to the acoustic transducer 220 is The inner side, the side away from the acoustic transducer 220 is the outer side.
  • the mass blocks in multiple groups of vibrating assemblies can be located on different sides of the diaphragm, for example, the first mass block 1321 and the second mass block 2322 are located on the outside of the corresponding diaphragm, and the third mass block 2323 Located on the inner side of the corresponding diaphragm.
  • the vibrating membrane is configured as a film-like structure capable of allowing air to pass through, and in some embodiments, the vibrating membrane may be a gas-permeable membrane.
  • the diaphragm is configured to allow air to pass through, so that the vibration signal can cause the vibration component 230 to vibrate, and at the same time, further penetrate the air-permeable film and be received by the acoustic transducer, thereby improving the sensitivity in the target frequency band.
  • the material of the diaphragm is a material that can produce elastic deformation within a certain range.
  • the diaphragm can be made of at least the following materials: PTFE (polytetrafluoroethylene), ePTFE (expanded polytetrafluoroethylene), PES (polyethersulfone), PVDF (polyvinylidene fluoride), PP (polypropylene ), PETE (polyethylene terephthalate), nylon, NC (nitrocellulose) and MCE (mixed cellulose), etc.
  • the vibrating membrane and the mass block can be connected by clamping, bonding, or integral molding, and the connection method is not limited in this specification.
  • the thickness of the diaphragm may be 0.05 ⁇ m ⁇ 100 ⁇ m.
  • the thickness of the diaphragm is related to the material of the diaphragm.
  • ePTFE expanded polytetrafluoroethylene
  • its thickness is 0.5 ⁇ m to 100 ⁇ m
  • the preferred thickness of the ePTFE film is 1 ⁇ m to 10 ⁇ m.
  • the minimum air permeability of the ePTFE film can be controlled to not be less than 10L/hr to ensure good air permeability, while the ePTFE film provides a certain degree of waterproof performance to protect internal components.
  • other air-permeable materials whose modulus of the vibrating membrane is 1 GPa-10 GPa or one-tenth to one-hundredth of the modulus of the sensitive element 222 in the acoustic transducer 220 can also be selected.
  • the sensitive element is a device in the acoustic transducer 220 for receiving vibration signals.
  • the materials and sizes of the multiple diaphragms in the vibration assembly 230 can be different or the same.
  • the first diaphragm 2311 can be made of nylon, and the second diaphragm 2312 can be made of ePTFE material ;
  • the radius of the third diaphragm 2313 may be larger than that of the first diaphragm 2311 and the second diaphragm 2312 .
  • the material of the diaphragm when the diaphragm is configured to be airtight, can be a polymer film, such as polyurethane, epoxy resin, acrylate, etc., or a metal film, such as copper, Aluminum, tin or other alloys and their composite films, etc.
  • the air-permeable film can also be obtained by processing (such as covering the air-permeable holes).
  • the vibrating membrane may be a thin film material with through holes, specifically, the diameter of the through holes is 0.01 ⁇ m ⁇ 10 ⁇ m.
  • the diameter of the through hole may be 0.1 ⁇ m ⁇ 5 ⁇ m, such as 0.2 ⁇ m, 0.5 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 2 ⁇ m and so on.
  • the diameters of the through holes on multiple diaphragms in the vibrating assembly 230 may be the same or different, and the diameters of the through holes on a single diaphragm may be the same or different.
  • the diameter of the through holes may also be greater than 5 ⁇ m.
  • the pore diameter of the through hole is greater than 5 ⁇ m
  • other materials such as silica gel, etc.
  • the material of the proof mass may be one or more of copper, tin or other alloys and composite materials thereof.
  • the vibration sensor 200 can be applied to MEMS device design.
  • the diaphragm can be a single-layer material along its thickness direction, such as Si, SiO2, SiNx, SiC, etc., and can be double-layered or multi-layered.
  • Layer composite materials such as Si/SiO2, SiO2/Si, Si/SiNx, SiNx/Si/SiO2, etc.
  • the counterweight can be a single-layer material, such as Si, Cu, etc., or a double-layer or multi-layer composite material, such as Si/SiO2, SiO2/Si, Si/SiNx, SiNx/Si/SiO2, etc.
  • the vibrating assembly 230 may further include a support structure 233 for supporting one or more sets of diaphragms and masses.
  • the support structure 233 is physically connected to the acoustic transducer 220 (eg, the housing structure 210 ), and one or more sets of diaphragms and masses are connected to the support structure 233 .
  • the support structure 233 is physically connected to the shell structure 210, and the physical connection method may include clamping, bonding, or integral molding.
  • the support structure 233 is connected to the shell structure 210 through Adhesive connection, the adhesive material may include but not limited to epoxy glue and silica gel.
  • the support structure can also be connected with the support structure 233 to achieve fixed support to control the distance between adjacent diaphragms, so as to ensure the transmission effect of vibration signals.
  • Fig. 4 is a schematic structural diagram of a vibrating assembly according to some embodiments of the present specification.
  • one or more sets of diaphragms and masses in the vibration assembly are located in the space enclosed by the support structure 233 and are physically connected to the support structure 233 .
  • the physical connection method here may be bonding, clamping and other methods.
  • the bonding material can include but not limited to epoxy glue and silica gel.
  • the supporting structure 233 may have a hollow tubular structure with openings at both ends, and the cross section of the tubular structure may be rectangular, triangular, circular or other shapes.
  • the cross-sectional area of the tubular structure may or may not be the same everywhere, for example, the end near the acoustic transducer 220 has a larger cross-sectional area.
  • a set of diaphragms and masses in the vibrating assembly 230 may be installed at the opening of the support structure 233 .
  • the diaphragm can be embedded on the inner wall of the support structure 233 or embedded in the support structure 233 .
  • the vibrating membrane can vibrate in the space inside the supporting structure 233 while the vibrating membrane can completely cover the opening of the supporting structure, that is, the area of the vibrating membrane can be greater than or equal to the opening area of the supporting structure.
  • the air vibration (for example, sound wave) can pass through the diaphragm as completely as possible and then the vibration can be picked up by the sound pickup device 221, which can effectively improve the sound pickup quality.
  • the support structure 233 is made of an air-impermeable material, and the air-impermeable support structure 233 can cause the vibration signal in the air to change during the transmission process, causing the sound pressure in the support structure 233 to change (or air vibration), so that The internal vibration signal of the support structure 233 is transmitted to the acoustic transducer 220 through the sound pickup hole 211, and will not escape outward through the support structure 233 during the transmission process, thereby ensuring the sound pressure intensity and improving the sound transmission effect.
  • the support structure 233 may include, but is not limited to, metals, alloy materials (such as aluminum alloys, chrome-molybdenum steels, scandium alloys, magnesium alloys, titanium alloys, magnesium-lithium alloys, nickel alloys, etc.), hard plastics, foam One or more of cotton etc.
  • alloy materials such as aluminum alloys, chrome-molybdenum steels, scandium alloys, magnesium alloys, titanium alloys, magnesium-lithium alloys, nickel alloys, etc.
  • hard plastics foam One or more of cotton etc.
  • the projection area of the mass in the vibration direction of the diaphragm, is located in the projection area of the diaphragm, that is, in the direction parallel to the surface connected to the diaphragm and the mass (i.e. perpendicular to the vibration direction). direction), the cross-sectional area of the mass block is smaller than the cross-sectional area of the diaphragm.
  • the first mass 2321 is located in the projection area of the first diaphragm 2311;
  • the second mass 2322 is located in the projection area of the second diaphragm 2312;
  • the third mass 2323 is located in the projection area of the third diaphragm 2313 within the projection area.
  • the projected area of the proof mass does not overlap with the projected area of the supporting structure. This arrangement is limited by the support structure 233 in order to avoid the vibration of the diaphragm and the mass.
  • the shape of the diaphragm can include circular, rectangular, triangular or irregular figures, etc. In some embodiments, the shape of the diaphragm can also be set according to the shape of the support structure or the conduit. In this specification No restrictions. In some embodiments, the shape of the proof mass can be a cylinder, a truncated cone, a cone, a cube, a triangle, etc., and its size and material will be described later, and the shape is not limited in this description.
  • the mass when the mass or the diaphragm has a circular outer contour, the mass can be arranged concentrically with the diaphragm. When the mass arranged concentrically vibrates, the kinetic energy is more evenly dispersed on the diaphragm, so that the diaphragm Better response to vibration.
  • the mass block can also be arranged at other positions of the diaphragm, such as an eccentric position.
  • the eccentric position means that the mass block is not concentrically arranged with the diaphragm.
  • the eccentric distance between the mass block and the diaphragm can be different. More than 50 ⁇ m.
  • the resonant frequency of one or more sets of diaphragms and masses is less than the resonant frequency of the acoustic transducer such that the sensitivity of the vibration sensor is greater than the sensitivity of the acoustic transducer in one or more frequency bands of interest, in
  • the relationship between the diaphragm, the mass and the resonance frequency and sensitivity of the acoustic transducer can be referred to the frequency response curve of the vibration sensor in FIG. 5 .
  • multiple sets of masses and diaphragms can be configured so that the resonance frequency is 1kHz-10kHz lower than the resonance frequency of the acoustic transducer, such as 2kHz, 3kHz, 5kHz or 7.5kHz, etc., so that the vibration sensor Overall sensitivity has been improved.
  • the acoustic transducer is the air conduction microphone in the foregoing examples
  • multiple groups of masses and diaphragms are configured to make the sensitivity of the vibration sensor greater than that of the acoustic transducer in one or more target frequency bands.
  • the resonance frequency of one or more target frequency bands is configured to be 1 kHz to 10 kHz lower than the resonance frequency of the air conduction microphone. Specifically, it may be 1.5kHz, 2kHz, 3kHz or 5kHz, etc.
  • FIG. 5 is a frequency response curve diagram of a vibration sensor according to some embodiments of the present specification.
  • the frequency response curve of the vibration sensor under the action of the one or more sets of diaphragms and masses has multiple resonance peaks.
  • f 1 , f 2 and f 3 respectively correspond to the resonant peaks of the multiple groups of masses and diaphragms added
  • f 0 is the resonant peak of the acoustic transducer.
  • each set of diaphragms and masses in one or more sets of diaphragms and masses corresponds to one of the one or more different target frequency bands, so that all frequencies within the corresponding target frequency band
  • the sensitivity of the vibration sensor is greater than the sensitivity of the acoustic transducer.
  • the solid line is the frequency response curve 500 of the vibration sensor after adding multiple groups of masses and diaphragms. After adding one or more groups of diaphragms and masses whose resonance frequency is lower than that of the acoustic transducer, the vibration sensor correspondingly adds one or more resonance peaks.
  • the frequency response curve 500 of the vibration sensor has four resonance peaks, and its sensitivity is at least increased by ⁇ S compared to the acoustic transducer.
  • the frequency response curve of the acoustic transducer that is, the curve where the resonant peak f 0 is located
  • the vibration sensor has higher sensitivity in the frequency range of f 1 to f 3.
  • the diaphragm and The quality block increases the width of the frequency band with higher sensitivity of the vibration sensor, so that it can receive vibration signals in a larger frequency range, and increases the receiving frequency range and sensitivity of the vibration sensor.
  • the overall volume of the device is reduced, the cost is reduced, and it has a stronger performance on the basis of higher integration. performance.
  • the resonant frequencies corresponding to the resonance peaks f 1 , f 2 and f 3 of the three groups of diaphragms can be 1.5kHz, 2kHz and 2.5kHz respectively.
  • the vibration sensor can obtain better sound pickup capability, in particular, it can better obtain sound information in the frequency band corresponding to the voice.
  • the resonant frequency of one or more sets of diaphragms and masses is related to parameters of the diaphragm and/or mass, including the modulus of the diaphragm, the cavity formed between the acoustic transducer and the diaphragm At least one of the volume of the body, the radius of the mass, the height of the mass and the density of the mass.
  • the relationship between the resonance frequency and the sensitivity of multiple groups of diaphragms and mass blocks can be expressed as:
  • S is the sensitivity of the vibration sensor after the vibration component is set
  • f is the resonance frequency of the vibration component
  • Kfilm is the stiffness of the diaphragm
  • Kfoam is the stiffness of the supporting structure
  • Vcavity is the volume of the cavity
  • Rm is the radius of the mass block
  • hm is the mass block Height
  • rm is mass density.
  • the cavity volume Vcavity is the space volume formed between the sensitive element 222 on the sound pickup device 221 and the vibrating membrane in the vibrating assembly 230 closest to it (such as the first vibrating membrane 2311 in FIG. 2 ).
  • the sensitivity S decreases with the increase of the diaphragm stiffness K film , decreases with the increase of the support structure stiffness K foam , increases first and then decreases with the increase of the cavity volume V cavity, and then decreases with the increase of the cavity volume V cavity .
  • the mass block radius R m first increases and then decreases, increases with the mass block height h m , and increases with the mass block density r m .
  • the resonant frequency f of the vibration component increases with the increase of the diaphragm stiffness K film , increases with the increase of the support structure stiffness K foam , decreases first and then increases with the increase of the radius R m of the mass block, and increases with the increase of the mass block height h m increases and decreases, and decreases as the mass block density r m increases.
  • the sensitivity and resonance frequency can be adjusted by controlling the stiffness of the diaphragm, the volume of the cavity, and the material and size of the mass.
  • Fig. 6 is a schematic structural diagram of a vibration sensor based on some embodiments according to this specification.
  • one or more groups of diaphragms and mass blocks in the vibration sensor 600 may be arranged in the sound pickup hole parallel to the radial section of the sound pickup hole (ie, perpendicular to the vibration direction).
  • a conduit 611 may be provided at the sound pickup hole, and the diaphragm and the mass block include a first radial section parallel to the sound pickup hole that is arranged in the sound pickup hole.
  • the conduit 611 can be made of an air-tight material, and its function is similar to that of the support structure 233 in the aforementioned vibration sensor 200.
  • the stiffness K foam of the support structure can be taken as the conduit 611 The stiffness of the material.
  • the mass block in order to ensure the free vibration of the mass block, the mass block does not contact the inner wall of the sound pickup hole or the conduit 611 . It should be noted that the arrangement of the conduit 611 is only a specific embodiment, and cannot limit the scope of the present invention.
  • the conduit 611 may not be provided, and one or more sets of diaphragms and mass blocks are directly connected to the sound pickup hole, or a support structure is set in the sound pickup hole, and supports one or more sets Diaphragm and Mass.
  • the first mass 6321 and the second mass 6322 can resonate simultaneously in response to the vibration of the external environment, the first diaphragm 6311, the second diaphragm 6312 and the first mass 6321 and the second mass
  • the resonance signal generated by 6322 communicates with the external vibration signal through the catheter 611 to the acoustic sensor 620 and converted into an electrical signal, so that the vibration signal is strengthened in one or more target frequency bands and then converted into an electrical signal.
  • the number of groups of the diaphragm and mass shown in Figure 6 is two groups only for illustration, and will not limit the protection scope of the present invention.
  • the number of groups of the diaphragm and mass can be one group, three group or otherwise.
  • a sound input device which includes the vibration sensor in the foregoing embodiments, and collects sound through the vibration sensor and converts it into an electrical signal for further processing.
  • aspects of this specification can be illustrated and described by several patentable categories or situations, including any new and useful process, machine, product or combination of substances or their combination Any new and useful improvements.
  • various aspects of this specification may be entirely executed by hardware, may be entirely executed by software (including firmware, resident software, microcode, etc.), or may be executed by a combination of hardware and software.
  • the above hardware or software may be referred to as “block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of this specification may be embodied as a computer product comprising computer readable program code on one or more computer readable media.
  • numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use modifiers such as "about”, “approximately” or “substantially” in some examples. to modify. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the stated figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical data used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical data should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and data used in certain embodiments of this specification to confirm the breadth of the ranges are approximations, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

本说明书实施例公开了一种振动传感装置,包括:声学换能器;与所述声学换能器连接的振动组件,所述振动组件被配置于将外部振动信号传递至所述声学换能器以产生电信号,所述振动组件包括一组或多组振膜和质量块,所述质量块物理连接于所述振膜;所述振动组件被配置成在一个或多个目标频段内使所述振动传感器的灵敏度大于所述声学换能器的灵敏度。

Description

一种振动传感器 技术领域
本说明书涉及传感器领域,特别涉及一种包括振动组件的振动传感器。
背景技术
振动传感器是一种将振动信号转换为电信号的能量转换器件,其用途包括作为麦克风(如气导麦克风、骨导麦克风等)或监控设备等。振动传感器可以通过获取振动的振幅和方向等数据,并将其转化为电信号或其他所需要的形式,以供进一步分析和处理。
本说明书提供一种振动传感器,其在不增加换能器的前提下,增加该振动传感器的灵敏度。
发明内容
本说明书实施例之一提供一种振动传感器,包括:声学换能器和与声学换能器连接的振动组件。所述振动组件被配置于将外部振动信号传递至所述声学换能器以产生声音信号,所述振动组件包括一组或多组振膜和质量块所述质量块物理连接于所述振膜;所述振动组件被配置成在一个或多个目标频段内使所述振动传感器的灵敏度大于所述声学换能器的灵敏度。
在一些实施例中,所述一组或多组振膜和质量块沿所述振膜的振动方向上依次设置;所述振动组件中相邻振膜之间的距离不小于所述相邻振膜的最大振幅。
在一些实施例中,所述振膜的振动方向上,所述质量块的投影区域位于所述振膜的投影区域内。
在一些实施例中,所述一组或多组振膜和质量块中每组振膜和质量块对应所述一个或多个不同目标频段中的一个目标频段,使在所述对应的目标频段内所述振动传感器的灵敏度大于所述声学换能器的灵敏度。
在一些实施例中,所述一组和多组振膜和质量块的共振频率小于所述声学换能器的共振频率以使在所述一个或多个目标频段内所述振动传感器的灵敏度大于所述声学换能器的灵敏度。
在一些实施例中,所述一组和多组振膜和质量块的所述共振频率与所述声学换能器的所述共振频率之间的差值在1kHz~10kHz之内。
在一些实施例中,所述多组振膜和质量块中至少两组振膜和质量块的共振频率不同。
在一些实施例中,所述多组振膜和质量块的共振频率中相邻两个共振频率相差小于2kHz。
在一些实施例中,所述多组振膜和质量块的共振频率中相邻两个共振频率相差不大于1kHz。
在一些实施例中,所述一组和多组振膜和质量块的共振频率在1kHz~10kHz之内。
在一些实施例中,所述一组和多组振膜和质量块的共振频率在1kHz~5kHz之内。
在一些实施例中,所述一组和多组振膜和质量块的共振频率与所述振膜和/或所述质量块的参数有关,所述参数包括所述振膜的模量、所述声学换能器与所述振膜之间形成腔体的体积、所述质量块的半径、所述质量块的高度和所述质量块的密度中至少一个。
在一些实施例中,所述振膜的模量在1GPa~10GPa之内。
在一些实施例中,所述质量块的半径为500μm~3mm之内。
在一些实施例中,所述振动传感器在所述一组或多组振膜和质量块作用下的频响曲线具有多个谐振峰。
在一些实施例中,所述振动组件进一步包括支撑结构,用于支撑所述一组或多组振膜和质量块,所述支撑结构物理连接于所述声学换能器,所述一组或多组振膜和质量块连接于所述支撑结构。
在一些实施例中,所述支撑结构由不透气的材料制成。
在一些实施例中,在与所述振膜和所述质量块连接的表面垂直方向上,所述质量块的投影区域与所述支撑结构的投影区域不重叠。
在一些实施例中,所述质量块与所述振膜同心设置。
在一些实施例中,所述振膜被构造成能够使空气通过。
在一些实施例中,多个所述振膜中,距离所述声学换能器最远的振膜被构造成不能够使空气通过。在一些实施例中,所述振膜上设置贯穿孔。
在一些实施例中,所述振膜包括透气膜。
在一些实施例中,所述振膜包括聚四氟乙烯、膨体聚四氟乙烯、聚醚砜、聚偏氟乙烯、聚丙烯、聚对苯二甲酸乙二酯、尼龙、硝酸纤维素或混合纤维素中的至少一种。
在一些实施例中,振动组件还包括限位结构;所述限位结构被配置成用于使所述振动组件中相邻振膜之间的距离不小于所述相邻振膜的最大振幅。
在一些实施例中,所述声学换能器为气导麦克风;所述一个或多个目标频段的共振频率被配置成低于所述气导麦克风的共振频率1kHz~10kHz。
在一些实施例中,所述气导麦克风包括拾音孔,所述一组或多组振膜和质量块平行于所述拾音孔的径向截面设于所述拾音孔内;或,设于所述拾音孔的外侧。
在一些实施例中,所述质量块不与所述拾音孔的内壁接触。
本说明书实施例之一提供一种声音输入装置,其包括上述任一种振动传感器。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示类似的结构,其中:
图1是根据本说明书一些实施例所示的振动传感器的模块化示意图;
图2是根据本说明书一些实施例所示的振动传感器结构示意图;
图3是根据本说明书一些实施例所示的振动传感器结构示意图;
图4是根据本说明书一些实施例所示的振动组件的结构示意图;
图5为根据本说明书一些实施例所示的振动传感器频响曲线图;以及
图6是根据本说明书基于一些实施例所示的振动传感器结构示意图。
具体实施方式
为了更清楚地说明本说明书的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其他类似情景。应当理解,给出这些示例性实施例仅仅是为了使相关领域的技术人员能够更好地理解进而实现本发明,而并非以任何方式限制本发明的范围。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”。其他术语的相关定义将在下文描述中给出。
在一些实施例中,振动传感器作为麦克风(如气导麦克风、骨导麦克风等)时,其中用于将振动转换为电信号的装置包括声学换能器。通常单一声学换能器仅存在一个谐振峰,该声学换能器仅在谐振峰的频率附近存在较高灵敏度。在一些实施例中,为了提高振动传感器的灵敏度,通过设置多个具有不同谐振峰的声学换能器,以增加接收频率范围以及灵敏度,但增加声学换能器的数量会导致振 动传感器的体积和制造成本的增加。
有鉴于此,本说明书涉及一种振动传感器,其通过与声学换能器连接的振动组件,使得振动传感器在目标频段内的灵敏度大于声学换能器的灵敏度。该振动传感器可以用于接收外界的振动信号,并将该振动信号转换为能够反映声音信息的电信号,其中,外部信号可以包括机械振动信号或声学信号等。振动组件可以包括一组或多组振膜和质量块,质量块物理连接于振膜。振动组件被配置成在一个或多个目标频段内使所述振动传感器的灵敏度大于所述声学换能器的灵敏度。
如图1所示,振动传感器100可以包括声学换能器120和振动组件130。在一些实施例中,声学换能器120与振动组件130连接,振动组件130被配置为将外部振动信号传递至声学换能器以产生电信号。当外部环境中出现振动时,振动组件130响应于外界环境的振动并将振动信号传递给声学换能器120,再由声学换能器120将振动信号转化为电信号。振动传感器100可以应用于移动设备、可穿戴设备、虚拟现实设备、增强现实设备等,或其任意组合。在一些实施例中,移动设备可以包括智能手机、平板电脑、个人数字助理(PDA)、游戏设备、导航设备等,或其任何组合。在一些实施例中,可穿戴设备可以包括智能手环、耳机、助听器、智能头盔、智能手表、智能服装、智能背包、智能配件等,或其任意组合。在一些实施例中,虚拟现实设备和/或增强现实设备可以包括虚拟现实头盔、虚拟现实眼镜、虚拟现实补丁、增强现实头盔、增强现实眼镜、增强现实补丁等或其任何组合。例如,虚拟现实设备和/或增强现实设备可以包括Google Glass、Oculus Rift、Hololens、Gear VR等。
如图1所示,振动组件130包括振膜131和质量块132,其中,质量块132物理连接于振膜131。振动组件130被配置成在一个或多个目标频段内使振动传感器100的灵敏度大于声学换能器120的灵敏度。
在一些实施例中,一组或多组振膜131和质量块132沿所述振膜131的振动方向上依次设置;振动组件130中相邻振膜131之间的距离不小于所述相 邻振膜131的最大振幅。在一些实施例中,所述振膜131被构造成能够使空气通过。
在一些实施例中,一组或多组振膜131和质量块312中每组振膜131和质量块132对应一个或多个不同目标频段中的一个目标频段,使在对应的目标频段内所述振动传感器100的灵敏度可以大于声学换能器120的灵敏度。在一些实施例中,附加一组或多组质量块132和振膜131后的振动传感器100在目标频段内较声学换能器120的灵敏度可提升3dB~30dB。需要说明的是,在一些实施例中,附加一组或多组质量块132和振膜131后的振动传感器100较声学换能器120的灵敏度还可以可提升30dB以上,如多组质量块132和振膜131具有相同谐振峰。
在一些实施例中,测量振动传感器100和声学换能器120灵敏度的方法可以是:在给定加速度(如1g,g为重力加速度)激励下,采集器件电学信号(如-30dBV),则灵敏度为-30dBV/g。在一些实施例中,如声学换能器120为气导麦克风时,在测量灵敏度时,可以把前述激励源换成声压即可,即输入指定频段内的声压作为激励,测量采集器件的电学信号。
在一些实施例中,所述振动传感器100在一组或多组振膜131和质量块132作用下的频响曲线可以具有多个谐振峰。
在一些实施例中,一组和多组质量块132和振膜131的共振频率在1kHz~10kHz之内。在一些实施例中,一组和多组质量块132和振膜131的共振频率在1kHz~5kHz之内。在一些实施例中,多组质量块132和振膜131中至少两组质量块132和振膜131的共振频率不同。在一些实施例中,多组质量块132和振膜131的共振频率中相邻两个共振频率相差小于2kHz。其中,相邻的两个共振频率指共振频率的大小上数值相邻的两个共振频率。由于振动传感器100在共振频率外的频率所对应的灵敏度会快速下降,通过控制共振频率差,使得振动传感器100在较宽的频段上具有较高灵敏度的同时,灵敏度不会出现较大的波动。在一些实施例中,多组质量块132和振膜131的共振频率中相邻两个共振 频率相差不大于1.5kHz。在一些实施例中,多组质量块132和振膜131的共振频率中相邻两个共振频率相差不大于1kHz,如500Hz、700Hz或800Hz等。在一些实施例中,多组质量块132和振膜131的共振频率中相邻两个共振频率相差不大于500Hz。
在一些实施例中,振膜131可以包括透气膜。关于振动组件的更多描述可以参考图2-6中的详细描述。
图2是根据本说明书一些实施例所示的振动传感器的结构示意图。
图2中所述的振动传感器200可以是图1中的振动传感器100的一种实施方式。在一些实施例中,振动传感器200包括声学换能器220以及振动组件230。声学换能器220可以包括气导麦克风,气导麦克风又称空气传导麦克风,可以获取拾音区域(如拾音孔211处)的声压变化,并转换为电信号。为了便于描述,在后文中,均通过气导麦克风进行说明,需要说明的是,在一些其他实施例中,声学换能器还可以是其他形式,如液体传声器和激光传声器。
参考图2,在一些实施例中,气导麦克风包括壳体210和拾音装置221,在一些实施例中,拾音装置221根据换能原理可以包括电容式、压电式等形式的换能器,本说明书不做限制。
在一些实施例中,壳体结构210的形状可以为长方体、近似长方体、圆柱体、球体或其他任意形状。壳体结构210围成容纳空间,拾音装置221设于容纳空间内。在一些实施例中,拾音装置221与壳体结构210通过物理方式连接,具体的,物理连接方式可以包括焊接、卡接、粘接或者一体成型等连接方式,此处不对其连接方式加以限定。在一些实施例中,壳体结构210可以为具有一定硬度的材料制成,从而使壳体结构210可以对拾音装置221和内部元件进行保护。在一些实施例中,壳体结构210的材质可以包括但不限于金属、合金材料(如铝合金、铬钼钢、钪合金、镁合金、钛合金、镁锂合金、镍合金等)、玻璃纤维或碳纤维、高分子材料(例如,丙烯腈-丁二烯-苯乙烯共聚物、聚氯乙烯、聚碳酸酯、聚丙烯等)等中的一种或多种。
在一些实施例中,壳体结构210开设有用于拾音的拾音孔211。在一些实施例中,振动组件230靠近壳体结构210的拾音孔211处设置。在一些实施例中,所述一组或多组振膜和质量块设于所述拾音孔的外侧。在一些实施例中,振动组件230与壳体结构通过物理方式连接,具体的,物理连接方式可以包括焊接、卡接、粘接或者一体成型等连接方式,此处不对其连接方式加以限定。需要说明的是,在一些实施例中,二代一组或多组振膜和质量块还可以平行于所述拾音孔的径向截面设于所述拾音孔内,具体可以参见后文中图5相关描述。
在一些实施例中,振动传感器200用于进行气导拾音时,当外界环境产生振动(例如,声波)时,一组或多组振膜及振膜上的质量块响应外界环境的振动而产生振动,由于振膜能够使空气通过,振膜和质量块产生的振动连同外界的振动信号(例如,声波),可以导致拾音孔211内声压变化(或空气振动)使振动信号通过拾音孔211传递至拾音装置221转化为电信号,从而实现振动信号在一个或多个目标频段内加强后被转化为电信号的过程。其中,目标频段可以是一组振膜和质量块所对应的共振频率(或谐振频率)所在的频率范围。示例性的,当振动传感器200用于作为麦克风时,目标频段的范围可以是200Hz~2kHz,具体的,在一些实施例中,若声学换能器的共振频率为2kHz,振动组件230的共振频率可以配置成1kHz。
在一些实施例中,振动传感器200用于进行骨导拾音时,可以在拾音孔211外侧设置传导壳体,声学换能器220和传导壳体可以围成容纳空间,一组或多组振膜和质量块设置于容纳空间内。在一些实施例中,振动组件(例如,振动件)可以与壳体进行物理连接,当外界环境产生振动时,通过传导壳体接收振动并导致振动组件产生振动,振动组件的振动可以导致容纳空间内空气振动,振膜和质量块产生的振动连同容纳空间内的振动信号,通过拾音孔211传递至拾音装置221转化为电信号。
如图2所示,在一些实施例中,振动传感器200包括三组振膜和质量块,具体的,三组振膜和质量块可以具备不同的共振频率,每组振膜和质量块可以在 外界振动信号中不同频率振动作用下产生共振,以使得振动传感器200所获取的声音信号中,相对于声学换能器220在三个目标频段内灵敏度大于声学换能器220的灵敏度。需要说明的是,在一些实施例中,多组振膜和质量块可以具有相同的共振频率,以使目标频段内的灵敏度获得较大提升。示例性的,当该振动传感器200被用于主要检测5kHz~5.5kHz的机械振动时,可以将多组振膜和质量块的共振频率配置成该检测范围内的值(如5.3kHz),使得振动传感器200在检测范围内相对于仅设置一组振膜和质量块的情况下具有更高灵敏度。需要说明的是,图2中所示振膜和质量块的组数只是为了解释说明,并不能限制本发明的范围。例如,振膜和质量块的组数可以是一组、两组、四组等。
在一些实施例中,在振动组件230具备多个振膜情况下,距离声学换能器220最远的振膜被构造成不能够使空气通过。由图2所示,图中第三振膜2313可以被构造成不能够使空气通过,通过该设置方式使得第三振膜2313和声学换能器220之间形成密闭空间,能够更好的反应振动信息。需要说明的是,在一些实施例中,距离声学换能器220最远的振膜可以被构造成能够使空气通过,示例性的,如在拾音孔211外侧设置传导壳体时,传导壳体与声学换能器220围成容纳空间,该容纳空间中的空气可以良好的反应振动信息。
图3是根据本说明书一些实施例所示的振动传感器结构示意图。
如图3所示,在一些实施例中,振动传感器300中的振动组件330可以包括一组振膜331和质量块332,通过支撑结构333与声音传感器320连接。具体的,质量块332物理连接于振膜331,质量块332设置为振膜331的外侧。在一些实施例中,质量块332响应外界环境的振动而同时产生共振,振膜331和质量块332产生的共振连通外界的振动信号传递至声学换能器320,从而加强该振动组件330的共振频率附近灵敏度,实现振动信号在该目标频段内加强后被转化为电信号的过程。
在一些实施例中,由于振动传感器300中仅包括一组振膜331和质量块332,为了使其具备更好的拾音效果,在一些实施例中,振膜331可以是不透气 的。
在一些实施例中,每组振膜和质量块的共振频率与振膜和/或质量块的参数有关,参数包括振膜的模量、声学换能器与振膜之间形成腔体的体积、质量块的半径、质量块的高度、质量块的密度中等或其组合。具体的,共振频率与参数之间的数学关系可以参见说明书中的公式1相关描述。
请继续参考图2,实施例中,振动组件230可以包括在振动方向上依次设置的第一振膜2311、第二振膜2312和第三振膜2313;质量块可以包括在振动方向上依次设置的第一质量块2321、第二质量块2322和第三质量块2323,第一振膜2311与第一质量块2321连接,第二振膜2312与第二质量块2322连接,第三振膜2313与第三质量块2323连接。在一些实施例中,第一振膜2311、第二振膜2312和第三振膜2313中任意两个相邻振膜之间的距离不小于与该两个相邻的振膜的最大振幅,此设置用于确保振膜在振动时不会与相邻的振膜产生干扰,从而影响振动信号的传递效果。在一些实施例中,振动组件230包括多组振膜和质量块时,振膜沿垂直于振膜的振动方向依次设置,在一些实施例中,相邻振膜之间的距离可以相同也可以不同。在一些实施例中,振膜可以与其相邻的振膜之间的间隙形成多个腔体,振膜与其相邻振膜之间的多个腔体可以容纳空气和供振膜在其中振动。
在一些实施例中,振动组件230还可以包括限位结构(图中未示出),其被配置成用于使振动组件中相邻振膜之间的距离不小于所述相邻振膜的最大振幅。在一些实施例中,限位结构可以与振膜边缘连接,并通过控制该限位结构的阻尼使其不会对振膜的振动产生干扰。
在一些实施例中,多组振动组件230中的质量块可以包括多个,多个质量块可以分别设于振膜两侧。示例性的,假设一组振动组件包括两个质量块,两个质量块对称设置与振膜的两侧。在一些实施例中,多组振动组件230中的质量块可以位于振膜同一侧,其中,质量块可以设置于振膜的外侧或者内侧,其中,振膜靠近声学换能器220的一侧为内侧,远离声学换能器220的一侧为外侧。 需要说明的是,在一些实施例中,多组振动组件中的质量块可以位于振膜不同侧,如第一质量块1321和第二质量块2322位于对应振膜的外侧,第三质量块2323位于对应振膜的内侧。
在一些实施例中,振膜被构造成能够使空气通过的薄膜状结构,在一些实施例中,振膜可以为透气膜。将振膜构造成能够使空气通过,使得振动信号能够使振动组件230产生振动的同时,进一步穿透透气膜,被声学换能器所接收,从而提高在目标频段的灵敏度。在一些实施例中,振膜的材料为可在一定范围内产生弹性形变的材料。具体的,振膜可以至少通过以下材料制成:PTFE(聚四氟乙烯)、ePTFE(膨体聚四氟乙烯)、PES(聚醚砜)、PVDF(聚偏氟乙烯)、PP(聚丙烯)、PETE(聚对苯二甲酸乙二酯)、尼龙、NC(硝酸纤维素)和MCE(混合纤维素)等中的一种或多种制成。在一些实施例中,振膜与质量块可以通过卡接、粘接或者一体成型等方式实现连接,在本说明书中不对其连接方式加以限定。在一些实施例中,振膜的厚度可以为0.05μm~100μm。具体的,振膜的厚度与振膜的材料相关,如选用选择ePTFE(膨体聚四氟乙烯)作为振膜材料时,其厚度为0.5μm~100μm,优选的ePTFE薄膜厚度为1μm~10μm,如2μm、5μm、7μm等。在一些实施例中,优选的,可以控制ePTFE薄膜最小透气量不低于10L/hr,以保证良好的透气性能,同时ePTFE薄膜提供一定程度上防水性能,保护内部元器件。在一些实施例中,还可以选择振膜的模量为1GPa~10GPa或声学换能器220中敏感元件222的模量的十分之一~百分之一的其他透气材料,在此不一一举例,敏感元件为声学换能器220中用于接受振动信号的器件。在一些实施例中,振动组件230中的多个振膜的材料以及尺寸可以不同或相同,示例性的,第一振膜2311可以通过尼龙制成,第二振膜2312可以通过ePTFE材料制成;第三振膜2313的半径可以较第一振膜2311和第二振膜2312更大。
在一些实施例中,当振膜被配置成不透气时,振膜的材料可以是是高分子薄膜,如聚氨酯类、环氧树脂类、丙烯酸酯类等,也可以是金属薄膜,如铜、铝、锡或其他合金及其复合薄膜等。在一些实施例中,还可以上述透气膜经过处理 (如将透气孔覆盖)得到。
在一些实施例中,振膜可以是具有贯穿孔的薄膜材料,具体的,贯穿孔的孔径为0.01μm~10μm。优选的,贯穿孔的孔径可以为0.1μm~5μm,如0.2μm、0.5μm、0.8μm、1μm、2μm等。在一些实施例中,振动组件230中的多个振膜上贯穿孔的直径可以相同也可以不同,单一振膜上的贯穿孔的直径可以相同也可以不同。在一些实施例中,贯穿孔的孔径还可以大于5μm。当贯穿孔的孔径大于5μm时,可以在不影响透气的前提下,在振膜上设置其他材料(如硅胶等)对部分贯穿孔或贯穿孔的部分区域进行覆盖。
在一些实施例中,质量块的材料可以是铜、锡或其他合金及其复合材料中的一种或多种。在一些实施例中,振动传感器200可以应用于MEMS器件设计,在MEMS器件工艺中,振膜沿其厚度方向可以是单层材料,例如Si、SiO2、SiNx、SiC等,可以为双层或多层复合材料,例如Si/SiO2,SiO2/Si,Si/SiNx,SiNx/Si/SiO2等。配重块可以是单层材料,如Si、Cu等,也可以是双层或多层复合材料,如Si/SiO2,SiO2/Si,Si/SiNx,SiNx/Si/SiO2等。
在一些实施例中,振动组件230可以进一步包括支撑结构233,支撑结构233用于支撑一组或多组振膜和质量块。支撑结构233物理连接于声学换能器220(例如,壳体结构210),一组或多组振膜和质量块连接于支撑结构233。具体的,支撑结构233与壳体结构210物理连接,物理连接方式可以包括卡接、粘接或者一体成型等连接方式,在一些实施例中,优选的,将支撑结构233与壳体结构210通过粘结连接,粘结材料可以包括但不仅限于环氧胶和硅胶等。
在一些实施例中,支撑结构还可以与支撑结构233连接,实现固定支撑以控制相邻振膜之间的间距,以保证振动信号的传输效果。
图4是根据本说明书一些实施例所示的振动组件的结构示意图。
同时参考图2和图4,在一些实施例中,振动组件中的一组或多组振膜和质量块位于支撑结构233围成的空间内且物理连接于支撑结构233上。具体的,此处的物理连接方式可以为粘接、卡接等方式。优选的,可以通过粘结连接,粘 结材料可以包括但不仅限于环氧胶和硅胶等。在一些实施例中,支撑结构233可以具备中空且两端具有开口的管状结构,管状结构的截面可以是矩形、三角形、圆形或其他形状。在一些实施例中,管状结构的横截面积可以处处相同,也可以不完全相同,如靠近声学换能器220的一端具有更大横截面积。在一些实施例中,振动组件230中的一组振膜和质量块可以安装于支撑结构233的开口处。
在一些实施例中,振膜可以嵌入设置在支撑结构233的内壁上或嵌入支撑结构233内。在一些实施例中,振膜可在支撑结构233内部的空间内振动同时振膜可完全遮挡支撑结构开口,即振膜的面积可以大于或等于支撑结构的开口面积,此种设置使外界环境中的空气振动(例如,声波)可尽可能完全通过振膜进而利用拾音装置221拾取该振动,能够有效提高拾音质量。
在一些实施例中,支撑结构233由不透气的材料制成,不透气的支撑结构233可使空气中的振动信号在传递过程中,导致支撑结构233内声压变化(或空气振动),使支撑结构233内部振动信号通过拾音孔211传递至声学换能器220内,在传递过程中不会穿过支撑结构233向外逸散,进而保证声压强度,提升传声效果。在一些实施例中,支撑结构233可以包括但不限于金属、合金材料(如铝合金、铬钼钢、钪合金、镁合金、钛合金、镁锂合金、镍合金等)、硬质塑料、泡棉等中的一种或多种。
参考图4,在一些实施例中,在振膜的振动方向上,质量块的投影区域位于振膜的投影区域内,即在与振膜和质量块连接的表面平行方向上(即垂直于振动方向),质量块的横截面面积小于振膜的横截面面积。结合图2,例如,第一质量块2321位于第一振膜2311的投影区域内;第二质量块2322位于第二振膜2312的投影区域内,第三质量块2323位于第三振膜2313的投影区域内。通过保证质量块的横截面尺寸小于振膜的横截面,从而使质量块不会干扰振膜的振动。
在一些实施例中,在与振膜和质量块连接的表面垂直方向上(即垂直于振动方向),质量块的投影区域与支撑结构的投影区域不重叠。此种设置为了避免 振膜和质量块的振动受到支撑结构233的限制。
在一些实施例中,振膜的形状可以包括圆形、矩形、三角形或不规则图形等,在一些实施例中,振膜的形状还可以根据支撑结构或导管的形状进行设置,在本说明书中不做限制。在一些实施例中,质量块的形状可以是圆柱体、圆台、圆锥、立方体、三角体等,其大小和材质将在后文中进行说明,在本说明书中不对齐形状进行限制。
在一些实施例中,质量块或振膜具有圆形外轮廓时,质量块可以与振膜同心设置,同心设置的质量块在振动时,动能较为均匀的分散于振膜上,从而使振膜可更好的响应振动。在一些其他实施例中,质量块还可以设置在振膜的其他位置,如偏心位置,偏心位置是指质量块不与振膜同心设置,优选的,可以使质量块与振膜的偏心距离不超过50μm。在一些实施例中,一组和多组振膜和质量块的共振频率小于声学换能器的共振频率以使在一个或多个目标频段内振动传感器的灵敏度大于声学换能器的灵敏度,在一些实施例中,振膜和质量块与声学换能器共振频率和灵敏度的关系可以参见图5中振动传感器的频响曲线图。
具体的,在一些实施例中,多组质量块和振膜可以被配置为共振频率较声学换能器的共振频率低1kHz~10kHz,如2kHz、3kHz、5kHz或7.5kHz等,以使得振动传感器整体的灵敏度得到提升。在一些实施例中,当声学换能器为前述示例中的气导麦克风时,多组质量块和振膜被配置成在一个或多个目标频段内使振动传感器的灵敏度大于声学换能器的灵敏度,其中,一个或多个目标频段的共振频率被配置成低于所述气导麦克风的共振频率1kHz~10kHz。具体的,可以是1.5kHz、2kHz、3kHz或5kHz等。
图5为根据本说明书一些实施例所示的振动传感器频响曲线图。
如图5所示,在一些实施例中,振动传感器在所述一组或多组振膜和质量块作用下的频响曲线具有多个谐振峰。图中,f 1、f 2和f 3分别对应所添加的多组质量块和振膜的谐振峰,f 0为声学换能器的谐振峰。在一些实施例中,一组或多组振膜和质量块中每组振膜和质量块对应所述一个或多个不同目标频段中的 一个目标频段,使在所述对应的目标频段内所述振动传感器的灵敏度大于所述声学换能器的灵敏度。图中,实线为添加了多组质量块和振膜后的振动传感器的频响曲线500。在添加一组或多组共振频率小于声学换能器的振膜和质量块后,振动传感器对应增加了一个或多个谐振峰。
由图中可以看出,振动传感器的频响曲线500具有4个谐振峰,同时其相对于声学换能器,灵敏度至少提高了ΔS。同时,由声学换能器的频响曲线(即谐振峰f 0所在的曲线)可以看出,振动传感器在f 1~f 3的频段内,具有更高的灵敏度,可以看出,振膜和质量块增加了振动传感器的具有较高灵敏度频段的宽度,使其可以在更大的频率范围内接收振动信号,增加了振动传感器的接收频率范围以及灵敏度。相比通过增加多组具有不同谐振峰的声学换能器来增加接收频率范围的方式,减小了设备整体的体积、减小了成本,使其在集成性更高的基础上具有更强的性能。
示例性的,以图4中3组振膜和质量块为例,3组振膜的谐振峰f 1、f 2和f 3对应的共振频率可以分别为1.5kHz、2kHz和2.5kHz,在一些实施例中,通过该设置方式,使得该振动传感器能够获得更好的拾音能力,特别的,能够更好的获取语音对应频段内的声音信息。
在一些实施例中,一组和多组振膜和质量块的共振频率与振膜和/或质量块的参数有关,参数包括振膜的模量、声学换能器与振膜之间形成腔体的体积、质量块的半径、质量块的高度和质量块的密度中至少一个。在一些实施例中,多组振膜和质量块的共振频率与灵敏度的关系可以表示为:
(S,f)=g(K film,K foam,V cavity,R m,h m,ρ m)          (1)。
其中,S为设置振动组件后的振动传感器的灵敏度,f为振动组件的共振频率,Kfilm为振膜刚度,Kfoam为支撑结构刚度,Vcavity为腔体体积,Rm为质量块半径,hm为质量块高度,rm为质量块密度。腔体体积Vcavity为拾音装置221上的敏感元件222与其最接近的振动组件230中的振膜(如图2中第一振膜2311)之间形成的空间体积。
具体的,在一些实施例中,灵敏度S随振膜刚度K film增大而降低、随支撑结构刚度K foam增大而降低、随腔体体积V cavity的增大先增大后减小、随质量块半径R m先增大后减小、随质量块高度h m增大而增大、随质量块密度r m增大而提升。振动组件的共振频率f随振膜刚度K film增大而增大、随支撑结构刚度K foam增大而增大、随质量块半径R m的增大先减小后增大、随质量块高度h m增大而减小、随质量块密度r m增大而减小。在一些实施例中,可以通过控制振膜的刚度、腔体体积以及质量块的材料和大小,调整灵敏度的大小以及共振频率。
图6是根据本说明书基于一些实施例所示的振动传感器结构示意图。
在一些实施例中,振动传感器600中的一组或多组振膜和质量块可以平行于所述拾音孔的径向截面(即垂直与振动方向)设于所述拾音孔内。如图6所示,在一些实施例中,拾音孔处可以设置有导管611,振膜和质量块包括平行于所述拾音孔的径向截面设于所述拾音孔内的第一振膜6311、第二振膜6312以及第一质量块6321和第二质量块6322。在一些实施例中,导管611可以是不透气材料制成,其作用与前述振动传感器200中的支撑结构233相似,在计算灵敏度及振动组件的共振频率时,支撑结构刚度K foam可以取导管611材料的刚度。在一些实施例中,为了保证质量块的自由振动,质量块不与拾音孔的内壁或导管611接触。需要说明的是,设置导管611只是一种具体的实施例,并不能限制本发明的范围。例如,在一些实施例中,还可以不设置导管611,一组或多组振膜和质量块直接与拾音孔连接,或将支撑结构设于拾音孔内,并支撑一组或多组振膜和质量块。
在一些实施例中,第一质量块6321和第二质量块6322可以响应外界环境的振动而同时产生共振,第一振膜6311、第二振膜6312以及第一质量块6321和第二质量块6322产生的共振连通外界的振动信号通过导管611传递至声学传感器620并转化为电信号,从而实现振动信号在一个或多个目标频段内加强后被转化为电信号的过程。需要说明的是,图6中所示振膜和质量块的组数为两组只是为了说明,不会限制本发明的保护范围,例如,振膜和质量块的组数可以 为一组、三组或其他。
在本说明书的一些实施例中,还提供了一种声音输入装置,其包括前述实施例中的振动传感器,通过振动传感器进行拾音并转化为电信号,以供进一步处理。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本说明书的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合或对他们的任何新的和有用的改进。相应地,本说明书的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本说明书的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施 例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”等来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值数据均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值数据应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和数据为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (29)

  1. 一种振动传感器,包括:
    声学换能器;
    与所述声学换能器连接的振动组件,所述振动组件被配置于将外部振动信号传递至所述声学换能器以产生电信号,所述振动组件包括一组或多组振膜和质量块,所述质量块物理连接于所述振膜;
    所述振动组件被配置成在一个或多个目标频段内使所述振动传感器的灵敏度大于所述声学换能器的灵敏度。
  2. 根据权利要求1所述的振动传感器,其中,所述一组或多组振膜和质量块沿所述振膜的振动方向上依次设置;所述振动组件中相邻振膜之间的距离不小于所述相邻振膜的最大振幅。
  3. 根据权利要求1所述的振动传感器,其中,所述振膜的振动方向上,所述质量块的投影区域位于所述振膜的投影区域内。
  4. 根据权利要求1所述的振动传感器,其中,所述一组或多组振膜和质量块中每组振膜和质量块对应所述一个或多个不同目标频段中的一个目标频段,使在所述对应的目标频段内所述振动传感器的灵敏度大于所述声学换能器的灵敏度。
  5. 根据权利要求4所述的振动传感器,其中,所述一组和多组振膜和质量块的共振频率小于所述声学换能器的共振频率以使在所述一个或多个目标频段内所述振动传感器的灵敏度大于所述声学换能器的灵敏度。
  6. 根据权利要求5所述的振动传感器,其中,所述一组和多组振膜和质量块的所述共振频率与所述声学换能器的所述共振频率之间的差值在1kHz~10kHz之内。
  7. 根据权利要求4所述的振动传感器,其中,所述多组振膜和质量块中至少两组振膜和质量块的共振频率不同。
  8. 根据权利要求7所述的振动传感器,其中,所述多组振膜和质量块的共振频率中相邻两个共振频率相差小于2kHz。
  9. 根据权利要求7所述的振动传感器,其中,所述多组振膜和质量块的共振频率中相邻两个共振频率相差不大于1kHz。
  10. 根据权利要求4所述的振动传感器,其中,所述一组和多组振膜和质量块的共振频率在1kHz~10kHz之内。
  11. 根据权利要求4所述的振动传感器,其中,所述一组和多组振膜和质量块的共振频率在1kHz~5kHz之内。
  12. 根据权利要求4所述的振动传感器,其中,所述一组和多组振膜和质量块的共振频率与所述振膜和/或所述质量块的参数有关,所述参数包括所述振膜的模量、所述声学换能器与所述振膜之间形成腔体的体积、所述质量块的半径、所述质量块的高度和所述质量块的密度中至少一个。
  13. 根据权利要求12所述的振动传感器,其中,所述振膜的模量在1GPa~10GPa之内。
  14. 根据权利要求12所述的振动传感器,其中,所述质量块的半径为500μm~3mm之内。
  15. 根据权利要求1所述的振动传感器,其中,所述振动传感器在所述一组或多组振膜和质量块作用下的频响曲线具有多个谐振峰。
  16. 根据权利要求1所述的振动传感器,其中,所述振动组件进一步包括支撑结构,用于支撑所述一组或多组振膜和质量块,所述支撑结构物理连接于所述声学换能器,所述一组或多组振膜和质量块连接于所述支撑结构。
  17. 根据权利要求16所述的振动传感器,其中,所述支撑结构由不透气的材料制成。
  18. 根据权利要求16所述的振动传感器,其中,
    在与所述振膜和所述质量块连接的表面垂直方向上,所述质量块的投影区域与所述支撑结构的投影区域不重叠。
  19. 根据权利要求1所述的振动传感器,其中,
    所述质量块与所述振膜同心设置。
  20. 根据权利要求1所述的振动传感器,其中,所述振膜被构造成能够使空气通过。
  21. 根据权利要求20所述的振动传感器,其中,所述振膜上设置贯穿孔。
  22. 根据权利要求20所述的振动传感器,其中,所述振膜包括透气膜。
  23. 根据权利要求22所述的振动传感器,其中,所述振膜包括聚四氟乙烯、膨体聚四氟乙烯、聚醚砜、聚偏氟乙烯、聚丙烯、聚对苯二甲酸乙二酯、尼龙、硝酸纤维素或混合纤维素中的至少一种。
  24. 根据权利要求20所述的振动传感器,其中,多个所述振膜中,距离所述声学换能器最远的振膜被构造成不能够使空气通过。
  25. 根据权利要求2所述的振动传感器,振动组件还包括限位结构;所述限位结构被配置成用于使所述振动组件中相邻振膜之间的距离不小于所述相邻振膜的最大振幅。
  26. 根据权利要求1所述的振动传感器,其中,所述声学换能器为气导麦克风;
    所述一个或多个目标频段的共振频率被配置成低于所述气导麦克风的共振频率1kHz~10kHz。
  27. 根据权利要求26所述的振动传感器,其中,所述气导麦克风包括拾音孔,所述一组或多组振膜和质量块平行于所述拾音孔的径向截面设于所述拾音孔内;或,
    设于所述拾音孔的外侧。
  28. 根据权利要求27所述的振动传感器,其中,所述质量块不与所述拾音孔的内壁接触。
  29. 一种声音输入装置,其包括上述权利要求1~28中任一种所述的振动传感器。
PCT/CN2021/112017 2021-06-18 2021-08-11 一种振动传感器 WO2023015478A1 (zh)

Priority Applications (26)

Application Number Priority Date Filing Date Title
CN202180013922.4A CN116034254A (zh) 2021-08-11 2021-08-11 一种振动传感器
EP21921636.3A EP4167596A4 (en) 2021-08-11 2021-08-11 VIBRATION SENSOR
PCT/CN2021/112017 WO2023015478A1 (zh) 2021-08-11 2021-08-11 一种振动传感器
BR112022017044A BR112022017044A2 (pt) 2021-08-11 2021-08-11 Sensor de vibração
KR1020227033038A KR20230024873A (ko) 2021-08-11 2021-08-11 진동센서
JP2022556200A JP7462787B2 (ja) 2021-08-11 2021-08-11 振動センサ
CN202180083432.1A CN116636235A (zh) 2021-07-02 2021-08-19 一种振动传感器
PCT/CN2021/113419 WO2023272906A1 (zh) 2021-07-02 2021-08-19 一种振动传感器
PCT/CN2021/129151 WO2022262176A1 (zh) 2021-06-18 2021-11-05 一种振动传感器
CN202180078575.3A CN117157998A (zh) 2021-06-18 2021-11-05 一种振动传感器
CN202180092553.2A CN117426108A (zh) 2021-06-18 2021-11-05 一种振动传感器
PCT/CN2021/129153 WO2022262177A1 (zh) 2021-06-18 2021-11-05 一种振动传感器
CN202111309103.2A CN115623393A (zh) 2021-07-16 2021-11-05 一种振动传感器
CN202111307655.XA CN115623392A (zh) 2021-07-16 2021-11-05 一种振动传感器
CN202180079858.XA CN117441349A (zh) 2021-06-18 2021-12-15 一种振动传感器
PCT/CN2021/138440 WO2022262226A1 (zh) 2021-06-18 2021-12-15 一种振动传感器
TW111114825A TW202301881A (zh) 2021-06-18 2022-04-21 振動感測器
TW111117622A TWI820703B (zh) 2021-06-18 2022-05-11 振動感測器
TW111118332A TW202301883A (zh) 2021-06-18 2022-05-17 振動感測器
TW111119260A TW202303112A (zh) 2021-07-02 2022-05-24 振動感測器
US17/814,533 US11662248B2 (en) 2021-08-11 2022-07-25 Vibration sensors
US18/320,229 US20230288250A1 (en) 2021-08-11 2023-05-19 Vibration sensors
US18/323,396 US20230300519A1 (en) 2021-07-02 2023-05-24 Vibration sensors
US18/351,489 US20230362525A1 (en) 2021-06-18 2023-07-12 Vibration sensor
US18/353,049 US20230358602A1 (en) 2021-06-18 2023-07-14 Vibration sensors
US18/365,976 US20230384147A1 (en) 2021-06-18 2023-08-05 Vibration sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/112017 WO2023015478A1 (zh) 2021-08-11 2021-08-11 一种振动传感器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/814,533 Continuation US11662248B2 (en) 2021-08-11 2022-07-25 Vibration sensors

Publications (1)

Publication Number Publication Date
WO2023015478A1 true WO2023015478A1 (zh) 2023-02-16

Family

ID=85178136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112017 WO2023015478A1 (zh) 2021-06-18 2021-08-11 一种振动传感器

Country Status (7)

Country Link
US (2) US11662248B2 (zh)
EP (1) EP4167596A4 (zh)
JP (1) JP7462787B2 (zh)
KR (1) KR20230024873A (zh)
CN (1) CN116034254A (zh)
BR (1) BR112022017044A2 (zh)
WO (1) WO2023015478A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7462787B2 (ja) * 2021-08-11 2024-04-05 シェンツェン・ショックス・カンパニー・リミテッド 振動センサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209314103U (zh) * 2019-03-27 2019-08-27 歌尔科技有限公司 振动传感器和音频设备
CN209526879U (zh) * 2019-03-27 2019-10-22 歌尔科技有限公司 一种骨声纹传感器及电子设备
CN209659621U (zh) * 2019-03-27 2019-11-19 歌尔科技有限公司 振动传感器和音频设备
CN212086490U (zh) * 2020-06-16 2020-12-04 荣成歌尔电子科技有限公司 振动传感器和电子设备
CN213342678U (zh) * 2020-09-25 2021-06-01 瑞声声学科技(深圳)有限公司 一种骨导麦克风及移动终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19648986C1 (de) * 1996-11-26 1998-04-09 Raida Hans Joachim Gerichteter Stabstrahler
US20040140415A1 (en) 2003-01-21 2004-07-22 Nikon Corporation Vibration-attenuation devices having low lateral stiffness, and apparatus comprising same
US8396228B2 (en) * 2008-02-27 2013-03-12 Stethoscope Technologies, Inc. Floating ballast mass active stethoscope or sound pickup device
CN208434106U (zh) 2018-08-01 2019-01-25 歌尔科技有限公司 一种用于振动传感器的振动组件及振动传感器
TWI732617B (zh) * 2020-03-25 2021-07-01 美律實業股份有限公司 振動感測器
US11611835B2 (en) * 2020-06-09 2023-03-21 Infineon Technologies Ag Combined corrugated piezoelectric microphone and corrugated piezoelectric vibration sensor
CN212785847U (zh) * 2020-06-30 2021-03-23 瑞声声学科技(深圳)有限公司 振动传感器
JP7462787B2 (ja) * 2021-08-11 2024-04-05 シェンツェン・ショックス・カンパニー・リミテッド 振動センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209314103U (zh) * 2019-03-27 2019-08-27 歌尔科技有限公司 振动传感器和音频设备
CN209526879U (zh) * 2019-03-27 2019-10-22 歌尔科技有限公司 一种骨声纹传感器及电子设备
CN209659621U (zh) * 2019-03-27 2019-11-19 歌尔科技有限公司 振动传感器和音频设备
CN212086490U (zh) * 2020-06-16 2020-12-04 荣成歌尔电子科技有限公司 振动传感器和电子设备
CN213342678U (zh) * 2020-09-25 2021-06-01 瑞声声学科技(深圳)有限公司 一种骨导麦克风及移动终端

Also Published As

Publication number Publication date
US20230288250A1 (en) 2023-09-14
EP4167596A4 (en) 2023-04-26
US11662248B2 (en) 2023-05-30
BR112022017044A2 (pt) 2024-02-27
CN116034254A (zh) 2023-04-28
JP7462787B2 (ja) 2024-04-05
EP4167596A1 (en) 2023-04-19
JP2023539965A (ja) 2023-09-21
US20230046902A1 (en) 2023-02-16
KR20230024873A (ko) 2023-02-21

Similar Documents

Publication Publication Date Title
US20090085441A1 (en) Piezoelectric transducers and associated methods
WO2023015478A1 (zh) 一种振动传感器
WO2022262639A1 (zh) 一种振动传感器
US20230045906A1 (en) Microphones
Bauer et al. Influence of microphone housing on the directional response of piezoelectric MEMS microphones inspired by Ormia ochracea
CN115243178A (zh) 一种振动传感器
WO2016206560A1 (zh) 接触式拾音麦克风和听诊器
Gibbons et al. Design of a biomimetic directional microphone diaphragm
CN101442695A (zh) 麦克风系统、声音输入设备和制造所述系统和设备的方法
CN109199353A (zh) 电子血压监测器、血压测量方法和电子听诊器
WO2016007469A1 (en) Apparatus and method for protecting a micro-electro-mechanical system
TW202308402A (zh) 振動感測器
RU2801712C1 (ru) Датчик вибрации
WO2023272906A1 (zh) 一种振动传感器
Gazengel et al. A dome shaped pvdf loudspeaker model
WO2022143302A1 (zh) 一种振动传感器
CN116636235A (zh) 一种振动传感器
TWI834214B (zh) 感測裝置
WO2023283966A1 (zh) 传感装置
CN116170725A (zh) 传声器
TW202243493A (zh) 傳聲器
TW202306396A (zh) 感測裝置
CN116547988A (zh) 传声器
TW202308404A (zh) 傳聲器
TW202242354A (zh) 振動感測器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021921636

Country of ref document: EP

Effective date: 20220802

ENP Entry into the national phase

Ref document number: 2022556200

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022017044

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022017044

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220825

NENP Non-entry into the national phase

Ref country code: DE