WO2023283966A1 - 传感装置 - Google Patents

传感装置 Download PDF

Info

Publication number
WO2023283966A1
WO2023283966A1 PCT/CN2021/106947 CN2021106947W WO2023283966A1 WO 2023283966 A1 WO2023283966 A1 WO 2023283966A1 CN 2021106947 W CN2021106947 W CN 2021106947W WO 2023283966 A1 WO2023283966 A1 WO 2023283966A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
elastic
cavity
sensing device
protruding structure
Prior art date
Application number
PCT/CN2021/106947
Other languages
English (en)
French (fr)
Inventor
邓文俊
袁永帅
周文兵
黄雨佳
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to JP2022559379A priority Critical patent/JP7512411B2/ja
Priority to CN202180012406.XA priority patent/CN116210232A/zh
Priority to KR1020227032951A priority patent/KR20230013187A/ko
Priority to PCT/CN2021/106947 priority patent/WO2023283966A1/zh
Priority to EP21920144.9A priority patent/EP4142308A4/en
Priority to CN202111309103.2A priority patent/CN115623393A/zh
Priority to PCT/CN2021/129153 priority patent/WO2022262177A1/zh
Priority to CN202111307655.XA priority patent/CN115623392A/zh
Priority to CN202180092553.2A priority patent/CN117426108A/zh
Priority to CN202180078575.3A priority patent/CN117157998A/zh
Priority to PCT/CN2021/129151 priority patent/WO2022262176A1/zh
Priority to CN202180079858.XA priority patent/CN117441349A/zh
Priority to PCT/CN2021/138440 priority patent/WO2022262226A1/zh
Priority to TW111114825A priority patent/TW202301881A/zh
Priority to TW111117622A priority patent/TWI820703B/zh
Priority to TW111118332A priority patent/TW202301883A/zh
Priority to US17/812,179 priority patent/US11698292B2/en
Publication of WO2023283966A1 publication Critical patent/WO2023283966A1/zh
Priority to US18/321,007 priority patent/US12055432B2/en
Priority to US18/351,489 priority patent/US20230362525A1/en
Priority to US18/353,049 priority patent/US20230358602A1/en
Priority to US18/365,976 priority patent/US20230384147A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/08Microphones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/03Reduction of intrinsic noise in microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers

Definitions

  • the present application relates to the field of sensors, in particular to a sensor device with a raised structure on a thin film.
  • the sensing device is one of the commonly used detection devices, and the collected sensing signal is converted into an electrical signal or other required forms of information output through its internal transducing components. Sensitivity can represent the ratio of the output signal strength of the sensing device to the input signal strength. If the sensitivity is too small, it will affect the user experience. When the sensing device is working, the sensitivity of the sensing device is related to the volume and volume change of the sensing cavity in the sensing device.
  • the present application provides a sensing device, which can not only improve the reliability, but also effectively improve the sensitivity of the sensing device.
  • a sensing device comprising: an elastic component; a sensing cavity, the elastic component constituting a first side wall of the sensing cavity; and a transducing component, used to obtain a sensing signal and convert it into an electrical signal, the The transducing component is in communication with the sensing cavity, and the sensing signal is related to the volume change of the sensing cavity, wherein the elastic component is provided with a protruding structure on one side facing the sensing cavity, and the The elastic component moves the protruding structure in response to an external signal, and the movement of the protruding structure changes the volume of the sensing cavity.
  • the protruding structure abuts against a second sidewall of the sensing cavity, and the second sidewall is opposite to the first sidewall.
  • the protruding structure has elasticity, and when the protruding structure moves, the protruding structure produces elastic deformation, and the elastic deformation reduces and changes the volume of the sensing cavity.
  • the protruding structures are arranged in an array on at least part of the surface of the elastic member.
  • the shape of the protrusion structure is at least one of pyramid shape, hemispherical shape or stripe shape.
  • the interval between adjacent raised structures is 1 ⁇ m-2000 ⁇ m.
  • the interval between adjacent raised structures is 10 ⁇ m-500 ⁇ m.
  • the height of the raised structures is 1 ⁇ m-1000 ⁇ m.
  • the height of the raised structures is 10 ⁇ m-300 ⁇ m.
  • the elastic component includes an elastic film and an elastic microstructure layer, and the protruding structure is disposed on the elastic microstructure layer.
  • the elastic microstructure layer and the elastic film are made of the same material.
  • the elastic microstructure layer and the elastic film are made of different materials.
  • the thickness of the elastic film is 0.1 ⁇ m-500 ⁇ m.
  • the thickness of the elastic film is 1 ⁇ m-200 ⁇ m.
  • the difference between the height of the raised structure and the height of the sensing cavity is within 10%.
  • the sensing device further includes: a mass unit disposed on the other side surface of the elastic component, and the mass unit and the elastic component jointly generate vibrations in response to an external signal; and a housing , the elastic component, the mass unit, the sensing chamber and the transducing component are accommodated in the housing.
  • the transducing component is an acoustic transducer.
  • the elastic member is disposed above the acoustic transducer, and the sensing cavity is formed between the elastic member and the acoustic transducer.
  • the outer edge of the elastic member is fixedly connected to the acoustic transducer through a sealing member, and the elastic member, the sealing member and the acoustic transducer jointly form the sensing cavity.
  • the outer edge of the elastic component is fixedly connected to the housing, and the elastic component, the housing and the acoustic transducer jointly form the sensing chamber.
  • the mass unit has a thickness of 1 ⁇ m-1000 ⁇ m.
  • the thickness of the mass unit is 50 ⁇ m-500 ⁇ m.
  • the resonance frequency of the resonance system formed by the mass unit and the elastic component is 1500Hz-6000Hz.
  • the resonance frequency of the resonance system formed by the mass unit and the elastic component is 1500Hz-3000Hz.
  • the sensing device further includes: another elastic component, disposed symmetrically with the elastic component on both sides of the mass unit, and the other elastic component is fixedly connected to the housing.
  • a sensing element comprising: an elastic component; and a first sensing cavity, the elastic component constituting a first side wall of the first sensing cavity, wherein the elastic component faces the first sensing cavity
  • a protruding structure is provided on one side, the elastic component moves the protruding structure in response to an external signal, and the movement of the protruding structure changes the volume of the first sensing cavity.
  • the sensing element is configured to be bonded to the transducer, and the transducer is placed opposite to the elastic member to form a closed sensing chamber, and the transducer combines the closed sensing chamber.
  • the volume change of the sensing cavity is converted into an electrical signal.
  • a vibration sensing device an elastic vibration component, including a diaphragm; an acoustic transducer, an acoustic cavity is formed between the acoustic transducer and the elastic diaphragm, and the acoustic transducer is used to acquire sensing signals and converted into an electrical signal, the sensing signal is related to the volume change of the acoustic cavity, wherein the diaphragm is provided with a convex structure on the side facing the acoustic cavity, and the elastic vibrating component responds to the external signal While causing the raised structure to move, the movement of the raised structure changes the volume of the acoustic cavity.
  • a sensing element comprising: an elastic component; and a sensing cavity, the elastic component constituting a first side wall of the sensing cavity, wherein the elastic component is disposed on a side surface facing the sensing cavity
  • the Young's modulus of the elastic protruding structure is 100kPa-1MPa
  • the elastic component makes at least one of the motion and deformation of the protruding structure in response to an external signal
  • the protruding At least one of movement and deformation of the structure changes the volume of the sensing cavity.
  • Fig. 1 is a structural block diagram of a sensing device according to some embodiments of the present application.
  • FIG. 2 is a schematic diagram of a sensing device according to some embodiments of the present application.
  • FIG. 3A and FIG. 3B are cross-sectional schematic diagrams showing the abutment of the protrusion structure and the second side wall of the sensing chamber according to some embodiments of the present application;
  • Fig. 4 is a structural schematic diagram of a raised structure according to some embodiments of the present application.
  • Fig. 5 is a structural schematic diagram of a raised structure according to other embodiments of the present application.
  • Fig. 6 is a structural schematic diagram of a raised structure according to some other embodiments of the present application.
  • Fig. 7 is a schematic diagram of a sensing device according to other embodiments of the present application.
  • FIG. 8 is a schematic diagram of a sensing device according to some embodiments of the present application.
  • Fig. 9 is a schematic diagram of a sensing device according to some embodiments of the present application.
  • Fig. 10 is a schematic diagram showing the connection between the sensing element and the housing according to some embodiments of the present application.
  • Fig. 11 is a schematic diagram of a simplified mechanical model of a system composed of an elastic component and a mass unit according to some embodiments of the present application.
  • the sensing device may include an elastic component, a sensing cavity and a transducing component.
  • the elastic component constitutes a first side wall of the sensing cavity.
  • the transducing component communicates with the sensing chamber for acquiring a sensing signal and converting it into an electrical signal, the sensing signal being related to the volume change of the sensing chamber.
  • the sensitivity of the sensing device increases as the volume of the sensing cavity decreases, and increases as the volume change increases.
  • a protruding structure is provided on the side of the elastic component facing the sensing cavity. The raised structure can reduce the volume of the sensing cavity to increase the sensitivity of the sensing device.
  • the protruding structure can be configured to abut against the second side wall of the sensing cavity.
  • the elastic member will drive the protruding structure to vibrate and contact the second side wall of the sensing cavity.
  • the side walls are squeezed, resulting in elastic deformation.
  • the volume change of the sensing cavity can be increased, thereby improving the sensitivity of the sensing device.
  • the existence of the protruding structure can effectively reduce the contact area between the elastic member and the second side wall of the sensing cavity, so it can prevent adhesion with the second side wall constituting the sensing cavity, and effectively improve the stability of the sensing device. sex and reliability.
  • Fig. 1 is a schematic diagram of a sensing device according to some embodiments of the present application.
  • the sensing device 10 can collect external signals and generate desired signals (eg, electrical signals) based on the external signals.
  • the external signal may include a mechanical vibration signal, an acoustic signal, an optical signal, an electrical signal, and the like.
  • Types of sensing devices 10 may include, but are not limited to, pressure sensing devices, vibration sensing devices, tactile sensing devices, and the like.
  • the sensing device 10 can be applied to mobile devices, wearable devices, virtual reality devices, augmented reality devices, etc., or any combination thereof.
  • a mobile device may include a smartphone, tablet computer, personal digital assistant (PDA), gaming device, navigation device, etc., or any combination thereof.
  • wearable devices may include smart bracelets, earphones, hearing aids, smart helmets, smart watches, smart clothing, smart backpacks, smart accessories, etc., or any combination thereof.
  • the virtual reality device and/or the augmented reality device may include a virtual reality helmet, virtual reality glasses, virtual reality patch, augmented reality helmet, augmented reality glasses, augmented reality patch, etc. or any combination thereof.
  • virtual reality devices and/or augmented reality devices may include Google Glass, Oculus Rift, Hololens, Gear VR, etc.
  • the sensing device 10 may include an elastic component 20 , a transducing component 30 , a housing 40 and a sensing chamber 50 .
  • the interior of the housing 40 may have an accommodating space for accommodating at least one component of the sensing device 10 .
  • the housing 40 can accommodate the elastic component 20 and other components (eg, the mass unit 260 and the sealing unit 270 shown in FIG. 2 ).
  • the housing 40 can be connected with other components of the sensing device 10 (eg, the elastic component 20 , the transducing component 30 , etc.) to form the accommodating space.
  • the casing 240 may be connected with the transducing component 230 to form the accommodating space 241 .
  • the housing 40 can be configured in different shapes.
  • the housing 40 can be configured as a cube, a cuboid, an approximate cuboid (for example, a structure in which eight corners of a cuboid are replaced with arcs), an ellipsoid, a sphere, or any other shape.
  • the housing 40 can be made of a material with certain hardness or strength, so that the housing 40 can protect the sensing device 10 and its internal components (eg, the elastic component 20 ).
  • the materials for making the housing 40 include but are not limited to PCB boards (such as FR-1 phenolic paper substrate, FR-2 phenolic paper substrate, FR-3 epoxy paper substrate, FR-4 epoxy glass cloth board , CEM-1 epoxy glass cloth-paper composite board, CEM-3 epoxy glass cloth-glass stand board, etc.), acrylonitrile butadiene styrene copolymer (Acrylonitrile butadiene styrene, ABS), polystyrene ( Polystyrene, PS), high impact polystyrene (High impact polystyrene, HIPS), polypropylene (Polypropylene, PP), polyethylene terephthalate (Polyethylene terephthalate, PET), polyester (Polyester, PES), polyethylene Carbonate (Pol
  • the material for making the housing 40 is any combination of glass fiber, carbon fiber, polycarbonate (PC), polyamide (Polyamides, PA) and other materials.
  • the material for making the shell 40 may be made by mixing carbon fiber and polycarbonate (Polycarbonate, PC) according to a certain ratio.
  • the material for making the housing 40 may be made by mixing carbon fiber, glass fiber and polycarbonate (Polycarbonate, PC) according to a certain ratio.
  • the material for making the shell 40 can be made by mixing glass fiber and polycarbonate (Polycarbonate, PC) according to a certain ratio, or by mixing glass fiber and polyamide (Polyamides, PA) according to a certain ratio. become.
  • the sensing cavity 50 is disposed inside the sensing device 10 .
  • the sensing cavity 50 may be related to the sensing signal acquired by the transducing component 30 .
  • Sensing chamber 50 may be a closed or semi-closed chamber formed by one or more components of sensing device 10 .
  • the sensing cavity 50 may be a closed or semi-closed cavity formed by the elastic component 20 and other components.
  • the sensing cavity 50 may be a closed cavity formed by the elastic component 20 , the transducing component 30 and the housing 40 .
  • the sensing cavity 50 has a certain volume, and the inside thereof can be filled with gas.
  • the gas may be a gas with stable properties (for example, a gas that is not easy to liquefy, combust, or explode).
  • the gas may include air, nitrogen, inert gases, and the like.
  • the sensing chamber 50 includes at least two opposite side walls.
  • the two opposite side walls include a first side wall and a second side wall.
  • the first side wall (or part of the structure disposed thereon) and/or the second side wall (or part of the structure disposed thereon) of the sensing chamber 50 will be relatively displaced, thereby As a result, the volume of the sensing cavity 50 changes.
  • the first sidewall and/or the second sidewall may be formed by one or more components of the sensing device 10 .
  • the first side wall may be formed by the elastic member 20 or one or more elements/units thereof.
  • the second side wall may be formed by the transducing component 30 or one or more elements/units thereof.
  • the elastic component 20 or the microstructure disposed on the surface (also called the inner surface) of the elastic component 20 facing the sensing cavity 50 ) constituting the first side wall of the sensing cavity 50,
  • a protruding structure and/or the transducing component 30 constituting the second side wall of the sensing cavity 50 will undergo relative motion under the drive of the external vibration signal (for example, because the first side wall and the second side wall respond to the vibration Inconsistency causes relative movement), the distance between the inner surfaces of the first side wall and the second side wall changes, and then the volume of the sensing cavity 50 changes.
  • the transducing component 30 refers to an element capable of acquiring sensing signals and converting them into desired signals.
  • the sensory signal may include an acoustic signal.
  • the transducing component 30 can convert the sensing signal into an electrical signal.
  • the transducing component 30 may convert an acoustic signal (eg, sound pressure) into an electrical signal.
  • the transducing component 30 may convert mechanical vibration signals into electrical signals.
  • the transducing component 30 can communicate with the sensing chamber 50 to acquire sensing signals.
  • one surface of the transducing component 30 or its elements/units for example, elements in the transducing component 30 for acquiring sensing signals
  • the transducing component 30 communicates with the inside of the sensing chamber 50 to obtain sensing signals.
  • the sensing signal may be related to one or more parameters of the sensing chamber 50 .
  • the one or more parameters may include cavity height, volume size, volume change, air pressure, and the like.
  • the sensing signal may be related to a volume change of the sensing chamber 50 .
  • the transducing component 30 may be an acoustic transducer.
  • the transducing component 30 may be an air conduction microphone (also known as an air conduction microphone). The air conduction microphone can acquire the sound pressure change of the sensing cavity 50 and convert it into an electrical signal.
  • the elastic member 20 may vibrate or elastically deform in response to an external signal (eg, vibration) (the elastic member 20 has certain elasticity).
  • the elastic member 20 can constitute the first side wall of the sensing cavity 50 .
  • the position of the inner surface of the first side wall changes.
  • the position of the second sidewall of the sensing chamber 50 remains fixed or substantially fixed.
  • the distance between the inner surface of the first side wall and the inner surface of the second side wall changes relatively, and the volume of the sensing cavity 50 changes (assuming that the side wall between the first side wall and the second side wall remain relatively constant).
  • the position of the second sidewall of the sensing cavity 50 is also changed.
  • both the second sidewall and the first sidewall of the sensing chamber 50 vibrate. If the vibration phase of the second side wall is different from the vibration phase of the first side wall, the distance between the inner surface of the first side wall and the inner surface of the second side wall changes relatively, and the sensing cavity 50 changes in volume (assuming that the sidewall between the first sidewall and the second sidewall remains relatively fixed).
  • both the second sidewall and the first sidewall of the sensing chamber 50 are elastically deformed. If the elastic deformation of the second side wall is different from the elastic deformation of the first side wall, the distance between the inner surface of the first side wall and the inner surface of the second side wall changes relatively, and the sensor The volume of cavity 50 changes (assuming the side walls between the first and second side walls remain relatively fixed).
  • the elastic component 20 and the transducing component 30 or elements/units thereof may constitute the first side wall and the second side of the sensing cavity 50 respectively. wall.
  • the external signal is mechanical vibration.
  • the mechanical vibration is transmitted to the transducing component 30 and the elastic component 20 through the housing 40 .
  • both the transducing member 30 and the elastic member 20 vibrate. Since the vibration phases of the transducing component 30 and the elastic component 20 are different, the distance between the inner surfaces of the first side wall and the second side wall changes, and the volume of the sensing cavity 50 changes.
  • a protruding structure 23 may be provided on the inner surface of the elastic member 20 (ie, the surface facing the sensing chamber 50 ).
  • the protruding structure 23 may be disposed on at least a partial area of the inner surface of the elastic component 20 .
  • the protruding structure 23 may be disposed on all areas of the inner surface of the elastic member 20 .
  • the protruding structure 23 may only be disposed on a part of the inner surface of the elastic member 20 .
  • the ratio of the area of the inner surface occupied by the raised structure 23 to the area of the inner surface of the elastic member 20 may be less than three quarters.
  • the ratio of the area of the inner surface occupied by the protruding structure 23 to the area of the inner surface of the elastic member 20 may be less than two-thirds. In some embodiments, the ratio of the area of the inner surface occupied by the protruding structure 23 to the area of the inner surface of the elastic member 20 may be less than half. In some embodiments, the ratio of the area occupied by the protruding structure 23 to the area of the inner surface of the elastic member 20 may be less than one-third. In some embodiments, the ratio of the area occupied by the protruding structure 23 to the area of the inner surface of the elastic member 20 may be less than 1/4.
  • the ratio of the area occupied by the protruding structure 23 to the area of the inner surface of the elastic member 20 is less than one-fifth. In some embodiments, the ratio of the area occupied by the protruding structure 23 to the area of the inner surface of the elastic member 20 may be less than one-sixth.
  • the inner surface of the elastic member 20 may be divided into a central portion and a peripheral portion. The protruding structure 23 may be disposed on the peripheral portion, while the central portion is not provided with the protruding structure 23 .
  • the ratio of the inner surface area occupied by the peripheral portion to the inner surface area of the elastic member 20 may be less than three-quarters, two-thirds, one-half, one-third, one-fourth, or fifth One, one-sixth, etc.
  • the protruding structures 23 may be uniformly or non-uniformly disposed on the inner surface of the elastic component 20 .
  • the protruding structures 23 may be arranged in an array on the inner surface of the elastic member 20 .
  • adjacent protruding structures 23 are disposed on the inner surface of the elastic component 20 at equal intervals.
  • the distribution of the raised structures 23 on the inner surface of the elastic member 20 may be uneven.
  • the distance between adjacent protruding structures 23 varies with the position of the protruding structures 23 .
  • the protruding structure 23 may have a specific shape.
  • the specific shape includes pyramidal shape, hemispherical shape, stripe shape, terraced shape, cylindrical shape and other regular shapes.
  • the specific shape may be any irregular shape.
  • the protruding structure 23 which serves as the first side wall of the sensing cavity 50, during the vibration process, it may be in contact with the second side wall of the sensing cavity 50 (for example, due to the large vibration amplitude).
  • the transduction component 30 is adhered, causing the sensing device 10 to fail to work normally.
  • the existence of the protruding structure 23 can effectively reduce the contact area between the elastic member 20 and the second side wall of the sensing cavity 50, so it can prevent adhesion with the second side wall constituting the sensing cavity 50, and effectively improve the sensing device. 10 stability and reliability.
  • the raised structures 23 can have an influence on the sensitivity of the sensor device 10 .
  • Sensitivity is an important index reflecting the performance of the sensing device 10 . Sensitivity can be understood as the magnitude of the response of the sensing device 10 to a specific external signal during operation.
  • the transducing component 30 communicates with the sensing cavity 50 .
  • the sensing signal acquired by the transducing component 30 is related to the volume change of the sensing cavity 50 .
  • the sensitivity of the sensing device 10 is related to the volume size and/or volume change of the sensing cavity 50 .
  • the sensitivity of the sensing device 10 can be changed by changing the volume of the sensing cavity 50 and/or the variation of the volume of the sensing cavity 50 during the working process of the sensing device 10 .
  • the protruding structure 23 protrudes toward the inside of the sensing cavity 50, it occupies part of the volume of the sensing cavity 50, making the volume of the sensing cavity 50 smaller than that of the elastic member 20 without the protruding structure 23, so that The sensing device 10 has a higher sensitivity.
  • the protruding structure 23 may have certain elasticity. Since the protruding structure 23 has elasticity, it will be elastically deformed when pressed by an external force. In some embodiments, the raised structure 23 may abut against a second sidewall of the sensing cavity 50 (eg, a surface of the transducing component 30 or one or more components thereof). When the protruding structure 23 abuts against the second side wall of the sensing cavity 50 , the vibration of the elastic component 20 will drive the protruding structure 23 to move. At this time, the protruding structure 23 is pressed against the second side wall of the sensing cavity 50 , so that the protruding structure 23 undergoes elastic deformation.
  • a second sidewall of the sensing cavity 50 eg, a surface of the transducing component 30 or one or more components thereof.
  • the elastic deformation can further protrude the protruding structure 23 to the inside of the sensing cavity 50 , reducing the volume of the sensing cavity 50 . Therefore, the volume change of the sensing cavity 50 can be further increased, thereby improving the sensitivity of the sensing device 10 .
  • the raised structure and how the raised structure improves the sensitivity of the sensing device please refer to the specific embodiments in FIG. 2 to FIG. 6 , which will not be repeated here.
  • the elastic member 20 may include an elastic film 21 .
  • the protruding structure 23 may be disposed on the surface (ie, the inner surface) of the elastic film 21 facing the sensing cavity 50 .
  • the material for making the elastic film 21 may include polyimide (Polyimide, PI), polydimethylsiloxane (Polydimethylsiloxane, PDMS), polytetrafluoroethylene (Poly tetrafluoroethylene, PTFE), etc. Polymer Materials.
  • Polyimide Polyimide, PI
  • polydimethylsiloxane Polydimethylsiloxane
  • PDMS polydimethylsiloxane
  • polytetrafluoroethylene Poly tetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • the sensing device 10 may include one or more other components, for example, a mass unit (mass unit 260 shown in FIG. 2 ), a sealing unit (sealing unit 270 shown in FIG. 2 ), etc. or any combination thereof. In some embodiments, multiple components of sensing device 10 may be combined into a single component.
  • the mass unit can be integrated on the elastic component 20 to form a resonant system together with the elastic component 20 .
  • the resonant system vibrates in response to an external signal.
  • a component of sensing device 10 may be broken down into one or more subcomponents.
  • the elastic component 20 can be divided into an elastic film (such as the elastic film 721 shown in FIG. 7 ) and an elastic microstructure layer (such as the elastic microstructure layer 725 shown in FIG. 7 ).
  • the protruding structure 23 is disposed on the elastic microstructure layer.
  • Fig. 2 is a schematic diagram of a sensing device according to some embodiments of the present application.
  • the sensing device 210 may be a vibration sensing device.
  • the vibration sensing device can collect vibration signals and convert them into electrical signals.
  • sensing device 210 may be part of a microphone, such as a bone conduction microphone (also known as a bone conduction microphone).
  • the bone conduction microphone can convert vibration signals into voice signals, for example, collect vibration signals generated by facial muscles when the user speaks, and convert the vibration signals into electrical signals containing voice information.
  • the sensing device 210 may include an elastic component 220 , a transducing component 230 , a housing 240 , a mass unit 260 and a sealing unit 270 .
  • the casing 240 may have an accommodating space 241 for accommodating one or more components of the sensing device 210 (eg, the elastic component 220 , the mass unit 260 and the sealing unit 270 ).
  • the casing 240 is a semi-closed casing, and is connected with the transducing component 230 to form the accommodating space 241 .
  • the casing 240 is disposed above the transducing component 230 to form an accommodating space 241 .
  • the sensing device 210 shown in FIG. 2 can be used as a vibration sensing device in the field of microphones, for example, a bone conduction microphone.
  • the sensing cavity 250 may also be called an acoustic cavity
  • the transducing component 230 may be an acoustic transducer.
  • the acoustic transducer acquires the sound pressure change of the acoustic cavity and converts it into an electrical signal.
  • the elastic member 220 is disposed above the acoustic transducer (ie, the transducing member 230 ), and a sensing cavity 250 is formed between the elastic member 220 and the acoustic transducer.
  • the elastic member 220 may include an elastic film 221 .
  • a protruding structure 223 is provided on the surface (also known as the inner surface) of the elastic film 221 near the transducing component 230 .
  • the protruding structure 223 and the elastic film 221 (forming the first side wall of the sensing cavity 250 ) can form the sensing cavity 250 together with the transducing component 230 (forming the second side wall of the sensing cavity 250 ).
  • the sensing cavity 250 may also be referred to as an acoustic cavity.
  • the elastic film 221 can also be called a diaphragm.
  • the outer edge of the elastic membrane 221 may be physically connected to the transducing component 230 .
  • the physical connection may include bonding, nailing, snapping, and connecting through additional connecting components (eg, sealing unit 270 ).
  • the outer edge of the elastic film 221 can be bonded with the transducing component 230 by adhesive to form the sensing cavity 250 .
  • the sealing performance of the adhesive bonding is poor, which reduces the sensitivity of the sensing device 210 to a certain extent.
  • the top of the protruding structure 223 abuts against the surface of the transducing component 230 .
  • the top end refers to the end of the protruding structure 223 away from the elastic film 221 .
  • the connection between the top of the protruding structure 223 arranged on the periphery of the elastic film 221 and the surface of the transducing component 230 can be sealed by the sealing unit 270, so that the protruding structure 223, the elastic film 221, the sealing unit 270 and the transducing component 230 are in common A closed sensing cavity 250 is formed. It can be understood that the location of the sealing member 270 is not limited to the above description.
  • the sealing member 270 may not be limited to be disposed at the connection between the top of the protruding structure 223 and the surface of the transducing member 230, but may also be disposed on the outside of the protruding structure 223 used to form the sensing cavity 250 (ie the side of the protruding structure 223 away from the sensing cavity 250).
  • a sealing structure may also be provided inside the sensing chamber 250 . Sealing the connection between the elastic component 220 and the transducing component 230 by the sealing unit 270 can ensure the sealing of the entire sensing cavity 250 , thereby effectively improving the reliability and stability of the sensing device 210 .
  • the sealing unit 270 can be made of materials such as silica gel and rubber, so as to further improve the sealing performance of the sealing unit 270 .
  • the type of the sealing unit 270 may include one or more of a sealing ring, a sealing gasket, and a sealing strip.
  • the elastic film 221 may have a certain thickness, and the thickness of the elastic film 221 refers to the dimension of the elastic film 221 in the first direction.
  • the thickness of the elastic film 221 can be represented by H3 in FIG. 2 .
  • the thickness H3 of the elastic film 221 may be in the range of 0.1 ⁇ m-500 ⁇ m.
  • the thickness H3 of the elastic film 221 may be in the range of 0.2 ⁇ m-400 ⁇ m.
  • the thickness H3 of the elastic film 221 may be in the range of 0.4 ⁇ m-350 ⁇ m.
  • the thickness H3 of the elastic film 221 may be in the range of 0.6 ⁇ m-300 ⁇ m. In some embodiments, the thickness H3 of the elastic film 221 may be in the range of 0.8 ⁇ m-250 ⁇ m. In some embodiments, the thickness H3 of the elastic film may be in the range of 1 ⁇ m-200 ⁇ m.
  • the mass unit 260 may be connected with the elastic member 220 and located on a side of the elastic member 220 away from the sensing cavity 250 .
  • the mass unit 260 may be disposed on the elastic membrane 221 at a side away from the sensing cavity 250 .
  • the mass unit 260 and the elastic component 220 can form a resonance system together to generate vibration.
  • the mass unit 260 has a certain mass, so the vibration amplitude of the elastic member 220 relative to the housing 240 can be increased, so that the volume change of the sensing cavity 250 can change significantly under the action of external vibrations of different intensities, thereby improving the sensor Sensitivity of the sensing device 210.
  • the mass unit 260 may be a regular structure such as a cylinder, a cube, a cuboid or other irregular structures. As shown in FIG. 2 , the mass unit 260 may be a cylindrical structure.
  • the mass unit 260 may be made of a material with a higher density.
  • the mass unit 260 may use copper, iron, stainless steel, lead, tungsten, molybdenum and other materials.
  • the mass unit 260 may be made of copper.
  • the mass unit 260 may be made of a material with certain elasticity.
  • the mass unit 260 made of the above-mentioned elastic material may be disposed on the side of the elastic member 220 facing the transducing member 230 .
  • the protruding structure 223 may be directly provided on the surface of the mass unit 260 facing the transducing component 230 (for example, processed by cutting, injection molding, bonding, etc.).
  • the protruding structure 223 provided on the mass unit 260 is also elastic.
  • the mass unit 260 can reduce the volume of the sensing cavity 250, which improves the sensitivity of the sensing device 210 to a certain extent.
  • the top of the protruding structure 223 disposed on the mass unit 260 may abut against the surface of the transducing component 230 .
  • the Young's modulus of the elastic film 221 and the Young's modulus of the mass unit 260 may have different values.
  • the Young's modulus of the elastic film 221 may be less than 500Mpa.
  • the Young's modulus of the elastic film 221 may be less than 300Mpa.
  • the Young's modulus of the elastic film 221 may be less than 200Mpa.
  • the Young's modulus of the elastic film 221 may be less than 100Mpa.
  • the Young's modulus of the elastic film 221 may be less than 80 MPa.
  • the Young's modulus of the elastic film 221 may be less than 60Mpa. In some embodiments, the Young's modulus of the elastic film 221 may be less than 40Mpa. In some embodiments, the Young's modulus of the mass unit 260 may be greater than 10 GPa. In some embodiments, the Young's modulus of the mass unit 260 may be greater than 50 GPa. In some embodiments, the Young's modulus of the mass unit 260 may be greater than 80 GPa. In some embodiments, the Young's modulus of the mass unit 260 may be greater than 100 GPa. In some embodiments, the Young's modulus of the mass unit 260 may be greater than 200 GPa. In some embodiments, the Young's modulus of the mass unit 260 may be greater than 500 GPa. In some embodiments, the Young's modulus of the mass unit 260 may be greater than 1000 GPa.
  • the mass unit 260 has a certain thickness.
  • the thickness of the mass unit may refer to the dimension of the mass unit 260 in the first direction.
  • the thickness of the mass unit 260 can be represented by H4 in FIG. 2 .
  • the thickness H4 of the mass unit 260 is in the range of 1 ⁇ m-1000 ⁇ m.
  • the thickness H4 of the mass unit 260 is in the range of 10 ⁇ m-900 ⁇ m.
  • the thickness H4 of the mass unit 260 is in the range of 20 ⁇ m-800 ⁇ m.
  • the thickness H4 of the mass unit 260 is in the range of 30 ⁇ m-700 ⁇ m.
  • the thickness H4 of the mass unit 260 is in the range of 40 ⁇ m-600 ⁇ m.
  • the thickness H4 of the mass unit 260 is in the range of 50 ⁇ m-500 ⁇ m.
  • the ratio or difference between the thickness H4 of the mass unit 260 and the thickness H3 of the elastic membrane 221 is within a certain range. In some embodiments, the ratio of the thickness H4 of the mass unit 260 to the thickness H3 of the elastic membrane 221 is in the range of 1-100000. In some embodiments, the ratio of the thickness H4 of the mass unit 260 to the thickness H3 of the elastic membrane 221 is in the range of 1-50000. In some embodiments, the ratio of the thickness H4 of the mass unit 260 to the thickness H3 of the elastic membrane 221 is in the range of 10-10000.
  • the ratio of the thickness H4 of the mass unit 260 to the thickness H3 of the elastic membrane 221 is in the range of 100-5000. In some embodiments, the ratio of the thickness H4 of the mass unit 260 to the thickness H3 of the elastic membrane 221 is in the range of 100-1000. In some embodiments, the ratio of the thickness H4 of the mass unit 260 to the thickness H3 of the elastic membrane 221 is in the range of 100-5000. In some embodiments, the ratio of the thickness H4 of the mass unit 260 to the thickness H3 of the elastic film 221 is in the range of 500-2000.
  • the mass unit 260 may be located in the middle of the elastic member 220 (eg, the elastic film 221 ).
  • the middle part refers to the middle part of the elastic member 220 in the second direction.
  • the elastic membrane 221 is circular, and the mass unit 260 is a cylindrical structure.
  • the mass unit 260 can be disposed at the middle part of the elastic film 221 .
  • the distance between the axis of the mass unit 260 and the center point of the elastic membrane 221 in the second direction may be lower than a threshold distance.
  • the threshold distance may be 50 ⁇ m, 0.1 mm, 0.5 mm, 1 mm, 2 mm and so on.
  • the center point of the elastic membrane 221 is on the axis of the mass unit 260 .
  • the projected area of the mass unit 260 in the first direction may be smaller than the projected area of the elastic member 220 in the first direction.
  • the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the elastic member 220 in the first direction may be within a certain range. In some embodiments, the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the elastic member 220 in the first direction may be in the range of 0.05-0.95. In some embodiments, the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the elastic member 220 in the first direction may be in the range of 0.1-0.9.
  • the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the elastic member 220 in the first direction may be in the range of 0.2-0.9. In some embodiments, the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the elastic member 220 in the first direction may be in the range of 0.3-0.8. In some embodiments, the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the elastic member 220 in the first direction may be in the range of 0.4-0.7. In some embodiments, the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the elastic member 220 in the first direction may be in the range of 0.5-0.6.
  • the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the sensing cavity 250 in the first direction may be within a certain range. In some embodiments, the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the sensing cavity 250 in the first direction may be in the range of 0.05-0.95. In some embodiments, the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the sensing cavity 250 in the first direction may be in the range of 0.1-0.9. In some embodiments, the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the sensing cavity 250 in the first direction may be in the range of 0.2-0.9.
  • the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the sensing cavity 250 in the first direction may be in the range of 0.3-0.8. In some embodiments, the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the sensing cavity 250 in the first direction may be in the range of 0.4-0.7. In some embodiments, the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the sensing cavity 250 in the first direction may be in the range of 0.5-0.6.
  • the elastic component 220 (for example, the elastic film 221 ) is more likely to be elastically deformed than the casing 240 , so that the elastic component 220 can move relative to the casing 240 .
  • the housing 240, the transducing component 230, the elastic component 220 and other components will all vibrate. Since the vibration phase of the elastic component 220 is different from the vibration phase of the transducing component 230, the volume of the sensing cavity 250 (that is, the acoustic cavity) changes, resulting in a change in the sound pressure of the acoustic cavity, and the transducing component 230 It is converted into an electrical signal to realize the picking up of bone conduction sound.
  • the structure composed of the elastic member 220 (including the elastic film 221 and the protruding structure 223) and the mass unit 260 can be simplified and equivalent to the mass-spring-damping system model shown in Figure 11, wherein the elastic member 220 is The system provides the spring and damping action, and the mass unit 260 provides the mass action for the system.
  • the mass-spring-damping system model is forced to move under the action of the exciting force, and its vibration law conforms to the law of the mass-spring-damping system.
  • the motion of the system can be described by the differential equation of formula (1):
  • M is the mass of the system
  • R is the damping of the system
  • K is the elastic coefficient of the system
  • F is the amplitude of the driving force
  • x is the displacement of the system
  • is the circular frequency of the driving force.
  • f can represent the frequency of the system
  • f 0 represents the resonant frequency of the system
  • Q M can represent the mechanical quality factor
  • the volume V0 of the sensing cavity 250 When the mass unit 260 vibrates under the excitation of the external vibration signal, the volume V0 of the sensing cavity 250 will be compressed or expanded, and the volume change of the sensing cavity 250 when compressed or expanded is ⁇ V.
  • Sensitivity of the sensing device 210 That is, the sensitivity S of the sensing device 210 is proportional to the volume change ⁇ V of the sensing chamber 250 and inversely proportional to the volume V 0 of the sensing chamber 250 . Based on the above principles, in some embodiments, the sensitivity of the sensing device 210 can be improved by increasing the volume change ⁇ V of the sensing cavity 250 and/or the sensing can be improved by reducing the volume V 0 of the sensing cavity 250. Sensitivity of device 210.
  • the sensing cavity 250 is composed of the elastic component 220, the transducing component 230 and other components.
  • the sensing cavity 250 is composed of the elastic component 220 , the transducing component 230 and the sealing unit 270 .
  • the elastic component eg, the elastic film 221 and the protruding structure 223
  • the transducing component eg, the transducing component 230
  • serve as the first sidewall and the second sidewall of the sensing chamber 250 respectively.
  • the structures of the elastic component 220 and the transducing component 230 will affect the volume V 0 of the sensing cavity 250 of the sensing device 210 and the volume change ⁇ V of the sensing cavity 250 when the sensing device 210 is working.
  • the elastic member 220 since the inner surface of the elastic film 221 is provided with a protruding structure 223, and the protruding structure 223 protrudes into the sensing cavity 250, reducing the volume V 0 of the sensing cavity 250, so it can The sensitivity of the sensing device 210 is increased.
  • the volume V 0 of the sensing cavity 250 is related to the density of the protruding structures 223 constituting the sensing cavity 250 . It can be understood that the smaller the distance between adjacent protruding structures 223, the higher the density of the protruding structures 223, and therefore the smaller the volume V 0 of the sensing cavity 250 formed by the protruding structures 223.
  • the interval between adjacent protruding structures 223 may refer to the distance between centers of adjacent protruding structures 223 .
  • the center here can be understood as the centroid on the cross section of the protruding structure 223 .
  • the interval between adjacent protruding structures 223 may be represented by L1 in FIG.
  • the interval L1 between adjacent protruding structures 223 may be in the range of 1 ⁇ m-2000 ⁇ m. In some embodiments, the interval L1 between adjacent protruding structures 223 may be in the range of 4 ⁇ m-1500 ⁇ m. In some embodiments, the interval L1 between adjacent protruding structures 223 may be in the range of 8 ⁇ m-1000 ⁇ m. In some embodiments, the interval L1 between adjacent protruding structures 223 may be in the range of 10 ⁇ m-500 ⁇ m.
  • the volume V 0 of the sensing cavity 250 is related to the width of the raised structure 223 .
  • the width of the protruding structure 223 can be understood as the dimension of the protruding structure 223 in the second direction.
  • the size of the protruding structure 223 in the second direction can be represented by L2 in FIG. 2 .
  • the width L2 of a single protrusion structure 223 may be in the range of 1 ⁇ m-1000 ⁇ m. In some embodiments, the width L2 of a single protrusion structure 223 may be in the range of 2 ⁇ m-800 ⁇ m.
  • the width L2 of a single protrusion structure 223 may be in the range of 3 ⁇ m-600 ⁇ m. In some embodiments, the width L2 of a single protrusion structure 223 may be in the range of 6 ⁇ m-400 ⁇ m. In some embodiments, the width of a single protrusion structure 223 may be in the range of 10 ⁇ m-300 ⁇ m.
  • the ratio of the width L2 of the protruding structures 223 to the interval L1 between adjacent protruding structures 223 is within a certain range. In some embodiments, the ratio of the width L2 of the protruding structures 223 to the interval L1 between adjacent protruding structures 223 is in the range of 0.05-20. In some embodiments, the ratio of the width L2 of the protruding structures 223 to the interval L1 between adjacent protruding structures 223 is in the range of 0.1-20. In some embodiments, the ratio of the width L2 of the protruding structures 223 to the interval L1 between adjacent protruding structures 223 is in the range of 0.1-10.
  • the ratio of the width L2 of the protruding structures 223 to the interval L1 between adjacent protruding structures 223 is in the range of 0.5-8. In some embodiments, the ratio of the width L2 of the protruding structures 223 to the interval L1 between adjacent protruding structures 223 is in the range of 1-6. In some embodiments, the ratio of the width L2 of the protruding structures 223 to the interval L1 between adjacent protruding structures 223 is in the range of 2-4.
  • the volume V 0 of the sensing cavity 250 is related to the height H1 of the raised structure 223 .
  • the height of the protruding structure 223 can be understood as the size of the protruding structure 223 in the first direction when the protruding structure 223 is in a natural state (for example, the protruding structure 223 is not compressed and elastically deformed).
  • the size of the protruding structure 223 in the first direction can be represented by H1 in FIG. 2 .
  • the height H1 of the protrusion structure 223 may be in the range of 1 ⁇ m-1000 ⁇ m.
  • the height H1 of the protrusion structure 223 may be in the range of 2 ⁇ m-800 ⁇ m. In some embodiments, the height H1 of the protrusion structure 223 may be in the range of 4 ⁇ m-600 ⁇ m. In some embodiments, the height H1 of the protrusion structure 223 may be in the range of 6 ⁇ m-500 ⁇ m. In some embodiments, the height H1 of the protrusion structure 223 may be in the range of 8 ⁇ m-400 ⁇ m. In some embodiments, the height H1 of the protrusion structure 223 may be in the range of 10 ⁇ m-300 ⁇ m.
  • the difference between the height of the sensing cavity 250 and the height of the protruding structure 223 is within a certain range.
  • at least part of the protruding structure 223 may not be in contact with the transducing component 230 .
  • the gap between the protruding structure 223 and the surface of the transducing component 230 refers to the distance between the top of the protruding structure 223 and the surface of the transducing component 230 .
  • the gap may be formed during the process of processing the protruding structure 223 or installing the elastic component 220 .
  • the height of the sensing cavity 250 can be understood as the size of the sensing cavity 250 in the first direction in a natural state (for example, when the first side wall and the second side wall are not vibrated or elastically deformed).
  • the size of the sensing cavity 250 in the first direction can be represented by H2 in FIG. 2 .
  • the difference between the height H1 of the protruding structure 223 and the height H2 of the sensing cavity 250 may be within 20%.
  • the difference between the height H1 of the protruding structure 223 and the height H2 of the sensing cavity 250 may be within 15%.
  • the difference between the height H1 of the protruding structure 223 and the height H2 of the sensing cavity 250 may be within 10%. In some embodiments, the difference between the height H1 of the protruding structure 223 and the height H2 of the sensing cavity 250 may be within 5%. In some embodiments, the gap between the raised structure 223 and the surface of the transducing component 230 may be within 10 ⁇ m. In some embodiments, the gap between the raised structure 223 and the surface of the transducing component 230 may be within 5 ⁇ m. In some embodiments, the gap between the raised structure 223 and the surface of the transducing component 230 may be within 1 ⁇ m.
  • the elastic member 220 will vibrate or elastically deform after receiving an external signal (for example, a vibration signal) and drive the protruding structure 223 to move along the first direction shown in FIG. 2 , so that The volume change of the sensing cavity 250 caused by the contraction or expansion of the sensing cavity 250 can be expressed as ⁇ V1.
  • an external signal for example, a vibration signal
  • the range of motion of the elastic member 220 and the protruding structure 223 in the first direction is small, for example, the range of motion of the protruding structure 223 in the first direction is usually less than 1 ⁇ m, during this process, the protruding structure 223 may not will be in contact with the surface of the transducing component 230, so ⁇ V1 has nothing to do with the protruding structure 223, and the value of ⁇ V1 is small.
  • the ratio or difference between the height H1 of the protruding structure 223 and the thickness H3 of the elastic film 221 is within a certain range. In some embodiments, the ratio of the height H1 of the protruding structure 223 to the thickness H3 of the elastic film 221 is in the range of 0.5-500. In some embodiments, the ratio of the height H1 of the protruding structure 223 to the thickness H3 of the elastic film 221 is in the range of 1-500. In some embodiments, the ratio of the height H1 of the protruding structure 223 to the thickness H3 of the elastic film 221 is in the range of 1-200.
  • the ratio of the height H1 of the protruding structure 223 to the thickness H3 of the elastic film 221 is in the range of 1-100. In some embodiments, the ratio of the height H1 of the protruding structure 223 to the thickness H3 of the elastic film 221 is in the range of 10-90. In some embodiments, the ratio of the height H1 of the protruding structure 223 to the thickness H3 of the elastic film 221 is in the range of 20-80. In some embodiments, the ratio of the height H1 of the protruding structure 223 to the thickness H3 of the elastic film 221 is in the range of 40-60.
  • the protruding structure 223 may be in direct contact with the surface of the transducing component 230 .
  • the height H1 of the protruding structure 223 is the same or similar to the height H2 of the sensing cavity 250 .
  • 3A and 3B are schematic diagrams showing the abutment of the protrusion structure with the second side wall of the sensing chamber according to some embodiments of the present application. As shown in FIG. 3A , the protruding structure 223 can abut against the second sidewall of the sensing cavity 250 .
  • the protruding structure 223 may have certain elasticity.
  • the elastic component 220 when the elastic component 220 is excited by an external force to move, it will drive the protruding structure 223 to move towards the direction of the transducing component 230 .
  • the volume of the sensing cavity 250 will decrease, and the volume change of the sensing cavity 250 can be expressed as ⁇ V1.
  • the protruding structure 223 since the protruding structure 223 itself abuts against the transducing component 230 , the protruding structure 223 will be pressed against the transducing component 230 under the action of an external force. Since the protruding structure 223 itself has a certain degree of elasticity, the force generated by extrusion will cause the protruding structure 223 to undergo elastic deformation.
  • FIG. 3B shows the amplitude of the movement of the protruding structure 223 in the first direction and the resulting elastic deformation.
  • the solid line P1 shows the shape profile and position of the protruding structure 223 after extrusion.
  • the dashed line P2 shows the shape profile and position of the raised structure 223 before extrusion. It can be seen from the figure that due to the elastic deformation of the protruding structure 223, the volume of the sensing cavity 250 is further reduced.
  • the value of the volume change of the sensing cavity 250 caused by the extrusion between the protruding structure 223 and the second side wall of the sensing cavity 250 can be expressed as ⁇ V2.
  • the volume change ⁇ V of the sensing cavity 250 is the sum of ⁇ V1 and ⁇ V2 . Therefore, the volume change ⁇ V of the sensing cavity 250 is larger than ⁇ V1, which can further improve the sensitivity of the sensing device 210 .
  • the dimension of the protruding structure 223 in the first direction becomes smaller, so the height H2 of the sensing cavity 250 is smaller than that of the protruding structure 223 in the natural state.
  • the dimension in the first direction ie H1).
  • the volume change ⁇ V2 of the sensing cavity 250 may be related to the material of the protruding structure 223 .
  • the protruding structure 223 can be selected from a material with certain characteristics.
  • the protrusion structure 223 may have a specific Young's modulus.
  • the Young's modulus of the protruding structure 223 is 10 kPa-10 MPa.
  • the Young's modulus of the protruding structure 223 is 20 kPa-8 MPa.
  • the Young's modulus of the protruding structure 223 is 50 kPa-5 MPa.
  • the Young's modulus of the protruding structure 223 is 80kPa-2MPa. In some embodiments, the Young's modulus of the protruding structure 223 is 100 kPa-1 MPa.
  • the ratio or difference between the Young's modulus of the protruding structure 223 and the Young's modulus of the elastic film 221 may be within a certain range. In some embodiments, the ratio of the Young's modulus 223 of the protrusion structure to the Young's modulus of the elastic film 221 may be in the range of 0.005-1.
  • the ratio of the Young's modulus of the protruding structure 223 to the Young's modulus of the elastic film 221 may be in the range of 0.01-1. In some embodiments, the ratio of the Young's modulus of the protruding structure 223 to the Young's modulus of the elastic film 221 may be in the range of 0.05-0.8. In some embodiments, the ratio of the Young's modulus 223 of the protruding structure to the Young's modulus of the elastic film 221 may be in the range of 0.1-0.6. In some embodiments, the ratio of the Young's modulus 223 of the protrusion structure to the Young's modulus of the elastic film 221 may be in the range of 0.2-0.4.
  • the material for making the protruding structure 223 may include silica gel, silicone gel, silicone rubber, polydimethylsiloxane (Polydimethylsiloxane, PDMS), styrene-butadiene-styrene block copolymer (Styrenic Block Copolymers, SBS), to ensure that the raised structure 223 has higher elasticity, and the elastic deformation is larger when subjected to the same magnitude of external force, so that the volume change ⁇ V2 of the sensing cavity 250 is more Big.
  • PDMS polydimethylsiloxane
  • SBS Styrenic Block Copolymers
  • the volume change ⁇ V2 of the sensing cavity 250 may also be related to the shape of the protruding structure 223 .
  • the shape of the protruding structure 223 can be various shapes.
  • Fig. 4-Fig. 6 respectively show three kinds of protrusion structures with different shapes.
  • the protruding structure 423 in FIG. 4 is in the shape of a pyramid, and is distributed on the inner surface of the elastic member 420 in a dot array.
  • the protruding structure 523 in FIG. 5 is hemispherical in shape and distributed on the inner surface of the elastic member 520 in a dot array.
  • the protruding structure 223 can also be in other possible shapes. For example, terraced, cylindrical, ellipsoidal, etc.
  • the shape of the protruding structure 223 is pyramidal. Compared with other shapes (for example, hemispherical), when the protruding structure 223 is subjected to an external force, the pyramidal protruding structure 223 will cause stress to concentrate on top. For protruding structures 223 of different shapes, if the Young's modulus is the same, the equivalent stiffness of the pyramid-shaped protruding structure 223 will be lower, the elastic coefficient will be lower, and the deformation amount of elastic deformation will be larger, so that The greater the volume change ⁇ V2 of the sensing chamber 250 , the greater the increase in sensitivity to the sensing device 210 .
  • the sensitivity of the sensing device 210 is related to the resonant frequency ⁇ 0 (ie, f 0 in formula (3)) of the system composed of the mass unit 260 and the elastic member 220 . specific, when reduced , the variation ⁇ p of the sound pressure of the sensing cavity 250 of the sensing device 210 will become larger, and the resonance frequency ⁇ 0 of the system will decrease at the same time. The resonant frequency ⁇ 0 will affect the sensitivity of the sensing device 210 within a certain frequency range before and after the resonant frequency of the system.
  • the resonant frequency of the sensing device 210 is in the range of 1500 Hz-6000 Hz. In some embodiments, the resonant frequency of the sensing device 210 is in the range of 1500 Hz-5000 Hz. In some embodiments, the resonant frequency of the sensing device 210 is in the range of 1500 Hz-4000 Hz. In some embodiments, the resonant frequency of the sensing device 210 is in the range of 1500 Hz-3000 Hz.
  • Fig. 7 is a schematic diagram of a sensing device according to other embodiments of the present application. Similar to the sensing device 210 , the sensing device 710 may include a transducing component 230 , a housing 240 , a sensing chamber 250 , a mass unit 260 , a sealing unit 270 and an elastic component 720 .
  • the casing 240 is disposed above the transducing component 230 to form an accommodating space 241 .
  • the elastic member 720 , the mass unit 260 and the sealing unit 270 may be accommodated in the accommodation space 241 .
  • the outer edge of the elastic component 720 is fixedly connected with the transducing component 230 through the sealing unit 270 .
  • the elastic component 720 , the transducing component 230 and the sealing unit 270 together constitute the sensing cavity 250 .
  • the mass unit 260 is disposed on the side of the elastic component 720 facing away from the sensing chamber 250 , and is used to increase the vibration amplitude of the elastic component 720 .
  • the sensing device 710 shown in FIG. 7 can be used as a vibration sensing device in the field of microphones, for example, a bone conduction microphone.
  • the sensing cavity 250 may also be called an acoustic cavity
  • the transducing component 230 may be an acoustic transducer.
  • the acoustic transducer acquires the sound pressure change of the acoustic cavity and converts it into an electrical signal.
  • the elastic component 720 may include an elastic film 721 and an elastic microstructure layer 725 .
  • One side of the elastic microstructure layer 725 is connected to the elastic film 721 , and the other side is provided with a protruding structure 223 .
  • the protruding structure 223 can be processed in two ways. Wherein, method (1) is to etch a groove on the silicon wafer, and the shape of the groove corresponds to the shape of the protruding structure 223 to be fabricated.
  • the material (for example, PDMS) for making the protruding structure 223 is coated on the silicon wafer, and the PDMS will fill the groove of the silicon wafer and form a layer of PDMS film on the surface of the silicon wafer. Then, before the PDMS in the groove and the PDMS film on the surface of the silicon wafer are cured, the material for making the elastic film 721 , such as polyimide (PI), is coated on the surface of the PDMS film. Finally, wait for the PDMS film, the elastic film 721 and the protruding structure 223 to solidify before taking them out. Mode (2) is also to etch grooves on the silicon wafer.
  • PI polyimide
  • the material (for example, PDMS) for making the protruding structure 223 is coated on the silicon wafer, and after the PDMS in the groove and the PDMS film on the surface of the silicon wafer are cured, the material (for example, PI) for making the elastic film 721 Coating on the surface of PDMS film or adding glue before coating. Finally wait for the elastic film 721 to solidify and take it out.
  • the PDMS film is the elastic microstructure layer 725 .
  • the elastic microstructure layer 725 and the elastic film 721 can be made of the same material.
  • the elastic microstructure layer 725 and the elastic film 721 can both be made of PDMS.
  • a layer of PDMS film can be coated on the surface of the PDMS film (that is, the elastic microstructure layer 725 ) as the elastic film 721 .
  • the elastic microstructure layer 725 and the elastic film 721 may be made of different materials.
  • the elastic microstructure layer 725 can be made of PDMS, and the elastic film 721 can be made of PI.
  • the elastic microstructure layer 725 can be made of PDMS, and the elastic film 721 can be made of polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the thickness of the elastic film 721 may be the same as or different from that of the elastic film 221 in the foregoing embodiments.
  • the thickness of the elastic microstructure layer 725 refers to the size of the elastic microstructure layer 725 in the first direction, which can be represented by H5 in FIG. 7 .
  • the thickness H5 of the elastic microstructure layer 725 may be in the range of 1 ⁇ m-1000 ⁇ m.
  • the thickness H5 of the elastic microstructure layer 725 may be in the range of 10 ⁇ m-200 ⁇ m.
  • the thickness H5 of the elastic microstructure layer 725 may be in the range of 20 ⁇ m-100 ⁇ m.
  • the ratio of the thickness H5 of the elastic microstructure layer 725 to the thickness of the elastic member 720 may be in the range of 0.5-1 . In some embodiments, the ratio of the thickness H5 of the elastic microstructure layer 725 to the thickness of the elastic member 720 is in the range of 0.8-1. In some embodiments, the ratio of the thickness H5 of the elastic microstructure layer 725 to the thickness of the elastic member 720 is in the range of 0.9-1.
  • Fig. 8 is a schematic diagram of a sensing device according to some embodiments of the present application.
  • the sensing device 810 may include the transducing component 230 , the housing 240 , the sensing cavity 250 , the mass unit 260 and the elastic component 820 .
  • the sensing device 810 shown in FIG. 8 is similar to the sensing device 710 shown in FIG. 7 except that the sensing cavity 250 is sealed differently.
  • the outer edge of the elastic component 820 of the sensing device 810 is directly fixedly connected to the casing 240 , and then the sensing chamber 250 is jointly formed by the transducing component 230 , the casing 240 and the elastic component 820 .
  • the elastic member 820 may include an elastic film 821 and an elastic microstructure layer 825 .
  • the raised structures 223 may be part of the elastic microstructure layer 825 .
  • the side of the elastic microstructure layer 825 facing away from the sensing cavity 250 is connected to the elastic film 821 .
  • the elastic microstructure layer 825 is disposed on the protruding structure 223 at a side close to the sensing cavity 250 .
  • the elastic film 821 and/or the elastic microstructure layer 825 may be directly connected to the casing 240 by means of bonding, clamping, riveting, nailing, and the like. Exemplarily, as shown in FIG.
  • the edge of the elastic film 821 can be directly embedded in the side wall of the housing 240, and the elastic microstructure layer 825 can be closely attached to the inner wall of the housing 240 to ensure the sealing of the sensing chamber 250. sex.
  • the elastic member 820 is directly connected to the housing 240, on the one hand, it can ensure that the sensing cavity 250 has good sealing performance, on the other hand, the sealing unit is omitted, and the structure of the sensing device 810 is simplified. The manufacturing process of the sensing device 810 is simplified.
  • the projected area of the mass unit 260 in the first direction is smaller than the projected area of the sensing cavity 250 in the first direction.
  • the elastic member 820 for example, the elastic film 821 of the elastic member 820, the elastic microstructure layer 825
  • the projected area of the sensing cavity 250 in the first direction needs to be larger than that of the mass unit 260
  • the projected area in the first direction is such that there is a certain gap between the edge of the mass unit 260 and the housing 240 so that the mass unit 260 can vibrate in the first direction.
  • the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the sensing cavity 250 in the first direction is in the range of 0.05-0.95. In some embodiments, the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the sensing cavity 250 in the first direction is in the range of 0.1-0.9. In some embodiments, the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the sensing cavity 250 in the first direction is in the range of 0.2-0.9. In some embodiments, the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the sensing cavity 250 in the first direction is in the range of 0.3-0.8.
  • the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the sensing cavity 250 in the first direction is in the range of 0.4-0.7. In some embodiments, the ratio of the projected area of the mass unit 260 in the first direction to the projected area of the sensing cavity 250 in the first direction is in the range of 0.5-0.6.
  • Fig. 9 is a schematic diagram of a sensing device according to some embodiments of the present application.
  • the sensing device 910 shown in FIG. 9 is similar to the sensing device 210 shown in FIG. 2, except that the elastic component 920 of the sensing device 910 includes a first elastic component 920-1 and a second elastic component 920-2.
  • the first elastic component 920-1 and the second elastic component 920-2 are respectively disposed on two sides of the mass unit 260 in the first direction.
  • the first elastic component 920 - 1 is located on the side of the mass unit 260 close to the transducing component 230
  • the second elastic component 920 - 2 is located on the side of the mass unit 260 away from the transducing component 230 .
  • the first elastic member 920-1 includes a first elastic film 221-1 and a surface (also called an inner surface) disposed on the side of the first elastic film 221-1 facing the sensing chamber 250. ) of the first raised structure 223-1.
  • the edge of the first protruding structure 223-1 is sealed and connected to the transducing component 230 through the first sealing unit 270-1, so that the first elastic film 221-1, the first protruding structure 223-1, the first sealing unit 270- 1 and the transducing component 230 together form a sensing chamber 250.
  • the second elastic component 920 - 2 includes a second elastic film 221 - 2 and a second protruding structure 223 - 2 disposed on a side of the second elastic film 221 - 2 away from the sensing cavity 250 .
  • the edge of the second protruding structure 223-2 is sealingly connected with the top wall of the housing 240 (ie the side of the housing 240 away from the transducing component 230) through the second sealing unit 270-2.
  • the first elastic member 920-1 and the second elastic member 920-2 may include an elastic microstructure layer (not shown in the figures).
  • the first elastic component 920-1 may include a first elastic film 221-1 and a first elastic microstructure layer, and the first elastic microstructure layer is disposed on the first elastic film 221-1.
  • One side facing the transducing component 230 The side of the first elastic microstructure layer facing the transducing component 230 includes a first protruding structure 223-1.
  • the first protrusion structure 223-1 may be a part of the first elastic microstructure layer.
  • the elastic microstructure layer may be the same as or similar to the elastic microstructure layer (for example, the elastic microstructure layer 725 shown in FIG. 7 ) in one or more of the foregoing embodiments, which will not be repeated here.
  • the first elastic component 920 - 1 and the second elastic component 920 - 2 are distributed on opposite sides of the mass unit 260 along the first direction.
  • the first elastic component 920 - 1 and the second elastic component 920 - 2 can be approximated as one elastic component 920 .
  • the elastic component 920 integrally formed by the first elastic component 920-1 and the second elastic component 920-2 may be referred to as a third elastic component.
  • the centroid of the third elastic component coincides with or approximately coincides with the center of gravity of the mass unit 260, and the second elastic component 920-2 is in sealing connection with the top wall of the housing 240 (that is, the side of the housing 240 away from the transducing component 230), Within the target frequency range (for example, below 3000 Hz), the response sensitivity of the third elastic component to the vibration of the casing 240 in the first direction is higher than the response sensitivity of the third elastic component to the vibration of the casing 240 in the second direction.
  • the third elastic member (ie, the elastic member 920 ) vibrates in the first direction in response to the vibration of the housing 240 .
  • Vibration in the first direction may be regarded as a target signal picked up by the sensing device 910 (eg, a vibration sensing device), and vibration in the second direction may be regarded as a noise signal.
  • the response sensitivity of the third elastic member to the vibration of the housing 240 in the second direction can be reduced by reducing the vibration generated by the third elastic member in the second direction, thereby improving the sensitivity of the sensing device 910.
  • Directional selectivity reducing the interference of noise signals to sound signals.
  • the third elastic component when the third elastic component vibrates in response to the vibration of the housing 240, if the centroid of the third elastic component coincides or nearly coincides with the center of gravity of the mass unit 260, and the second elastic component 920-2 and The top wall of the casing 240 (that is, the side of the casing 240 facing away from the transducing component 230) is hermetically connected, so the response sensitivity of the third elastic component to the vibration of the casing 240 in the first direction is basically unchanged, reducing the The vibration of the mass unit 260 in the second direction reduces the response sensitivity of the third elastic component to the vibration of the casing 240 in the second direction, thereby improving the direction selectivity of the sensing device 910 .
  • the centroid of the third elastic component approximately coincides with the center of gravity of the mass unit 260 can be understood as the third elastic component is a regular geometric structure with uniform density, so the centroid of the third elastic component approximately coincides with the center of gravity of the mass unit 260 .
  • the center of gravity of the third elastic component can be regarded as the center of gravity of the mass unit 260 .
  • the centroid of the third elastic component may be considered to be approximately coincident with the center of gravity of the mass unit 260 .
  • the third elastic component has an irregular structure or uneven density, it can be considered that the actual center of gravity of the third elastic component approximately coincides with the center of gravity of the mass unit 260 .
  • Approximate coincidence may mean that the actual center of gravity of the third elastic component or the distance between the centroid of the third elastic component and the center of gravity of the mass unit 260 is within a certain range, for example, less than 100 ⁇ m, less than 500 ⁇ m, less than 1 mm, less than 2 mm, less than 3 mm, Less than 5mm, less than 10mm, etc.
  • the resonant frequency of the third elastic component vibrating in the second direction can be shifted to a high frequency without changing the third elastic component in the second direction.
  • the resonant frequency of the third elastic member vibrating in the first direction can remain substantially unchanged, for example, the resonant frequency of the third elastic member vibrating in the first direction can be a relatively strong frequency range (for example, 20Hz-2000Hz) perceived by the human ear , 2000Hz-3000Hz, etc.) within the frequency.
  • the resonant frequency of the third elastic component vibrating in the second direction may be shifted to a high frequency and be located in a relatively weak frequency range (for example, 5000Hz-9000Hz, 1kHz-14kHz, etc.) that the human ear perceives.
  • FIG. 10 is a schematic diagram of a sensing element according to some embodiments of the present application.
  • Sensing element 1010 may be a stand-alone component.
  • the sensing element 1010 is assembled (for example, pasted or bonded by glue, or combined in other detachable ways) with a specific type of transducing component (not shown in the figure) to form a high-sensitivity sensing device (for example, , sensing device 10, sensing device 210).
  • the specific type of transducing component can generate a desired signal (eg, an electrical signal) in response to the volume change of the first sensing cavity 1050 .
  • the particular type of transducing component may include, for example, an acoustic transducing component such as an air conduction microphone.
  • the sensing element 1010 may include a housing 240 , a mass unit 260 , a first sensing chamber 1050 and an elastic component 820 .
  • the elastic component 820 , the mass unit 260 and the housing 240 shown in FIG. 10 may be the same as or similar to the corresponding components or units of the sensing device 810 shown in FIG. 8 , and will not be repeated here.
  • the elastic component 820 can be used as the first side wall of the first sensing cavity 1050 , and forms the first sensing cavity 1050 together with the housing 240 .
  • the first sensing cavity 1050 is a semi-closed structure.
  • a dust-proof structure may be provided at the opening of the unsealed sensing element 1010 , that is, at the side of the opening of the first sensing cavity 1050 .
  • Exemplary dustproof structures may include dustproof membranes, dustproof covers, and the like.
  • the sensing element 1010 is connected to the specific type of transducing component to form a sensing device (eg, the sensing device 10 , the sensing device 210 ).
  • the sensing element 1010 is attached to a transducing component (for example, including an acoustic transducer), and the transducing component is placed opposite to the elastic component 820 to form a closed sensing cavity.
  • the transducing component converts the volume change of the closed sensing cavity into an electrical signal.
  • the transducing component is connected to the connection board 1031 .
  • the transducing component is connected to the side of the connection board 1031 away from the sensing element 1010 .
  • the connecting board 1031 can be a printed circuit board (PCB), for example, a phenolic PCB paper substrate, a composite PCB substrate, a glass fiber PCB substrate, a metal PCB substrate, a build-up multilayer PCB substrate, and the like.
  • the connecting board 1031 may be an FR-4 grade glass fiber PCB substrate made of epoxy glass fiber cloth.
  • the connection board 1031 may also be a flexible printed circuit board (FPC). Circuits and other components, such as processors and memories, can be disposed (for example, by laser etching, chemical etching, embedding, etc.) on the connecting board 1031 .
  • the transducing component can be fixedly connected to the connection board 1031 by fixing glue or metal pins.
  • the fixing glue can be conductive glue (for example, conductive silver glue, copper powder conductive glue, nickel carbon conductive glue, silver copper conductive glue, etc.).
  • the conductive adhesive can be conductive glue, conductive adhesive film, conductive rubber ring, conductive tape and the like.
  • the connecting plate 1031 includes at least one opening 1033 .
  • the element for acquiring sensing signals in the transducing component (for example, the diaphragm of the air conduction microphone) can communicate with the first sensing cavity 1050 through the opening 1033 .
  • the sensing element 1010, the connecting plate 1031 and the transducing components connected thereto can form a sensing device.
  • the connection manner between the housing 240 and the connecting plate 1031 may include bonding, clamping, welding, riveting, nailing and the like.
  • the elastic component 820 , the housing 240 , the connection plate 1031 and the elements of the transducing component that acquire the sensing signal may jointly form a closed sensing cavity (such as the sensing cavity 250 ).
  • the first sensing cavity 1050 is a part (eg, a sub-chamber) of the closed sensing cavity.
  • the connecting plate 1031 and the elements of the transducing component for acquiring sensing signals may constitute the second side wall of the closed sensing cavity.
  • a protruding structure 823 is disposed on the first side wall formed by the elastic component 820 .
  • the raised structure 823 can reduce the volume of the sensing cavity or part of the sensing cavity 1050, so as to increase the sensitivity of the sensing device.
  • the protruding structure may be configured to abut against the second side wall of the sensing cavity.
  • the elastic member 820 will drive the protruding structure 223 to vibrate and press against the second side wall of the sensing cavity, thereby generating elastic deformation.
  • the volume change of the sensing cavity can be increased, thereby improving the sensitivity of the sensing device 1010 .
  • the existence of the protruding structure can effectively reduce the contact area between the elastic member 820 and the second side wall of the sensing cavity, so it can prevent adhesion with the second side wall constituting the sensing cavity, and improve the reliability of the sensing device 1010. stability and reliability.
  • the connecting board 1031 may also be a part of the sensing element 1010 , and a specific type of transducing component is connected to the connecting board 1031 to form a sensing device together with the sensing element 1010 .
  • the elastic component, the housing 240 and the connecting plate 1031 constitute part of the sensing chamber 1050 .
  • sensing element 1010 may not include mass cell 260 .
  • the protruding structure 223 may not be in contact with the second side wall formed by the connecting plate 1031 .
  • aspects of the present application may be illustrated and described in several patentable categories or circumstances, including any new and useful process, machine, product or combination of substances or combinations thereof Any new and useful improvements.
  • various aspects of the present application may be entirely executed by hardware, may be entirely executed by software (including firmware, resident software, microcode, etc.), or may be executed by a combination of hardware and software.
  • the above hardware or software may be referred to as “block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of the present application may be embodied as a computer product comprising computer readable program code on one or more computer readable media.
  • numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use modifiers such as “about”, “approximately” or “substantially” in some examples. to modify. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the stated figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical data used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical data should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and data used in some embodiments of this application to confirm the breadth of the range are approximations, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measuring Fluid Pressure (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

一种传感装置(10、210),包括:弹性部件(20、220、720、820);传感腔(50、250),弹性部件(20、220、720、820)构成传感腔(50、250)的第一侧壁;和换能部件(30、230),用于获取传感信号并转换为电信号,换能部件(30、230)与传感腔(50、250)连通,传感信号与传感腔(50、250)的体积变化相关,其中,弹性部件(20、220、720、820)朝向传感腔(50、250)的一侧设置有凸起结构(23、223、823),弹性部件(20、220、720、820)响应于外部信号而使得凸起结构(23、223、823)运动,凸起结构(23、223、823)的运动改变传感腔(50、250)的体积。

Description

传感装置 技术领域
本申请涉及传感器领域,特别涉及一种薄膜上设置有凸起结构的传感装置。
背景技术
传感装置是常用的检测装置之一,通过其内部的换能部件将采集到的传感信号转换为电信号或者所需要的其他所需形式的信息输出。灵敏度可以表示传感装置的输出信号强度与输入信号强度的比值,若灵敏度过小,则会影响用户的使用体验。而在传感装置工作时,传感装置的灵敏度与传感装置中的传感腔的体积以及体积变化量有关。
本申请提供一种传感装置,不仅能够提高可靠性,还可以有效提高传感装置的灵敏度。
发明内容
一种传感装置,包括:弹性部件;传感腔,所述弹性部件构成所述传感腔的第一侧壁;和换能部件,用于获取传感信号并转换为电信号,所述换能部件与所述传感腔连通,所述传感信号与所述传感腔的体积变化相关,其中,所述弹性部件朝向所述传感腔的一侧设置有凸起结构,所述弹性部件响应于外部信号而使得所述凸起结构运动,所述凸起结构的运动改变所述传感腔的体积。
在一些实施例中,所述凸起结构抵接于所述传感腔的第二侧壁,所述第二侧壁与所述第一侧壁相对。
在一些实施例中,所述凸起结构具有弹性,当所述凸起结构运动时,所述凸起结构产生弹性形变,所述弹性形变减小改变所述传感腔的体积。
在一些实施例中,其中所述凸起结构呈阵列状设置于至少部分所述弹性部件的表面。
在一些实施例中,所述凸起结构的形状为金字塔形状、半球状或条纹状中的至少一种。
在一些实施例中,相邻凸起结构之间的间隔为1μm-2000μm。
在一些实施例中,相邻凸起结构之间的间隔为10μm-500μm。
在一些实施例中,所述凸起结构的高度为1μm-1000μm。
在一些实施例中,所述凸起结构的高度为10μm-300μm。
在一些实施例中,所述弹性部件包括弹性薄膜和弹性微结构层,所述凸起结构 设置于所述弹性微结构层上。
在一些实施例中,所述弹性微结构层与所述弹性薄膜采用相同材料制成。
在一些实施例中,所述弹性微结构层与所述弹性薄膜采用不同材料制成。
在一些实施例中,所述弹性薄膜厚度为0.1μm-500μm。
在一些实施例中,所述弹性薄膜厚度为1μm-200μm。
在一些实施例中,所述凸起结构的高度与所述传感腔的高度的差值在10%以内。
在一些实施例中,所述传感装置进一步包括:质量单元,设置于所述弹性部件的另一侧表面,所述质量单元与所述弹性部件共同响应于外部信号而产生振动;和壳体,所述弹性部件、所述质量单元、所述传感腔和所述换能部件容置于所述壳体内。
在一些实施例中,所述换能部件为声学换能器。
在一些实施例中,所述弹性部件设置于所述声学换能器上方,并在所述弹性部件和所述声学换能器之间形成所述传感腔。
在一些实施例中,所述弹性部件的外沿通过密封部件与所述声学换能器固定连接,所述弹性部件、所述密封部件和所述声学换能器共同形成所述传感腔。
在一些实施例中,所述弹性部件的外沿与所述壳体固定连接,所述弹性部件、所述壳体和所述声学换能器共同形成所述传感腔。
在一些实施例中,所述质量单元的厚度为1μm-1000μm。
在一些实施例中,所述质量单元的厚度为50μm-500μm。
在一些实施例中,所述质量单元与所述弹性部件所形成的谐振系统的谐振频率为1500Hz-6000Hz。
在一些实施例中,所述质量单元与所述弹性部件所形成的谐振系统的谐振频率为1500Hz-3000Hz。
在一些实施例中,所述传感装置进一步包括:另一弹性部件,与所述弹性部件对称设置于所述质量单元的两侧,所述另一弹性部件与所述壳体固定连接。
一种传感元件,包括:弹性部件;和第一传感腔,所述弹性部件构成所述第一传感腔的第一侧壁,其中,所述弹性部件朝向所述第一传感腔的一侧设置有凸起结构,所述弹性部件响应于外部信号而使得所述凸起结构运动,所述凸起结构的运动改变所述第一传感腔的体积。
在一些实施例中,所述传感元件被配置为与换能器贴合,所述换能器与所述弹性部件相对放置后形成封闭传感腔,所述换能器将所述封闭传感腔的体积变化转化为电 信号。
一种振动传感装置,弹性振动部件,包括振膜;声学换能器,所述声学换能器与所述弹性振膜之间形成声学腔,所述声学换能器用于获取传感信号并转换为电信号,所述传感信号与所述声学腔的体积变化相关,其中,所述振膜在朝向所述声学腔的一侧设置有凸起结构,所述弹性振动部件响应于外部信号而使得所述凸起结构运动,所述凸起结构的运动改变所述声学腔的体积。
一种传感元件,包括:弹性部件;和传感腔,所述弹性部件构成所述传感腔的第一侧壁,其中,所述弹性部件在朝向所述传感腔的一侧表面设置有弹性凸起结构,所述弹性凸起结构的杨氏模量为100kPa-1MPa,所述弹性部件响应于外部信号而使得所述凸起结构运动和形变中的至少一种,所述凸起结构的运动和形变中的至少一种改变所述传感腔的体积。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示类似的结构,其中:
图1是根据本申请一些实施例所示的传感装置的结构模块图;
图2是根据本申请一些实施例所示的传感装置的示意图;
图3A和图3B是根据本申请一些实施例所示的凸起结构与传感腔的第二侧壁抵接的截面示意图;
图4是根据本申请一些实施例所示的凸起结构的结构示意图;
图5是根据本申请另一些实施例所示的凸起结构的结构示意图;
图6是根据本申请又一些实施例所示的凸起结构的结构示意图;
图7是根据本申请另一些实施例所示的传感装置的示意图;
图8是根据本申请一些实施例所示的传感装置的示意图;
图9是根据本申请一些实施例所示的传感装置的示意图;
图10是根据本申请一些实施例所示的传感元件与壳体连接的示意图;
图11是根据本申请一些实施例所示弹性部件与质量单元组成的系统的简化力学模型示意图。
具体实施方式
为了更清楚地说明本申请的实施例的技术方案,下面将对实施例描述中所需要 使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其他类似情景。应当理解,给出这些示例性实施例仅仅是为了使相关领域的技术人员能够更好地理解进而实现本发明,而并非以任何方式限制本发明的范围。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”。其他术语的相关定义将在下文描述中给出。
本申请的一些实施例涉及一种传感装置。所述传感装置可以包括弹性部件、传感腔和换能部件。所述弹性部件构成所述传感腔的第一侧壁。所述换能部件与所述传感腔连通,用于获取传感信号并转换为电信号,所述传感信号与所述传感腔的体积变化相关。所述传感装置的灵敏度随着传感腔的体积减小而增大,随着体积变化量增大而增大。弹性部件朝向传感腔的一侧设置有凸起结构。凸起结构可以减小传感腔的体积,以增大传感装置的灵敏度。在一些实施例中,凸起结构可以被配置为与传感腔的第二侧壁抵接,当传感装置处于工作状态时,弹性部件会带动凸起结构振动并与传感腔的第二侧壁发生挤压,从而产生弹性形变。凸起结构发生弹性形变时能够提高传感腔的体积变化量,从而提高传感装置的灵敏度。另外,凸起结构的存在可以有效减小弹性部件与传感腔的第二侧壁的接触面积,因此能够防止与构成传感腔的第二侧壁发生粘附,有效提高传感装置的稳定性和可靠性。
图1是根据本申请一些实施例所示的传感装置的示意图。传感装置10可以采集外部信号,并基于外部信号生成所需信号(例如,电信号)。所述外部信号可以包括机械振动信号、声学信号、光学信号、电信号等。传感装置10的类型可以包括但不限于压力传感装置、振动传感装置、触觉传感装置等。在一些实施例中,传感装置10可以应用于移动设备、可穿戴设备、虚拟现实设备、增强现实设备等,或其任意组合。在一些实施例中,移动设备可以包括智能手机、平板电脑、个人数字助理(PDA)、游戏设备、导航设备等,或其任何组合。在一些实施例中,可穿戴设备可以包括智能手环、耳机、助听器、智能头盔、智能手表、智能服装、智能背包、智能配件等,或其任意组合。 在一些实施例中,虚拟现实设备和/或增强现实设备可以包括虚拟现实头盔、虚拟现实眼镜、虚拟现实补丁、增强现实头盔、增强现实眼镜、增强现实补丁等或其任何组合。例如,虚拟现实设备和/或增强现实设备可以包括Google Glass、Oculus Rift、Hololens、Gear VR等。
如图1所示,传感装置10可以包括弹性部件20、换能部件30、壳体40和传感腔50。壳体40的内部可以具有容置空间,用于容纳传感装置10的至少一个部件。例如,壳体40可以容纳弹性部件20以及其他部件(例如,图2所示的质量单元260、密封单元270)。在一些实施例中,壳体40可以与传感装置10的其他部件(例如,弹性部件20、换能部件30等)进行连接形成所述容置空间。例如,在图2所示的实施例中,壳体240可以与换能部件230连接形成所述容置空间241。
在一些实施例中,壳体40可以设置成不同形状。例如,壳体40可以设置成正方体、长方体、近似长方体(例如,将长方体八个角替换成弧形的结构)、椭圆体、球体或者其他任意形状。
在一些实施例中,壳体40可以采用具有一定硬度或强度的材料制成,从而使得壳体40对传感装置10及其内部元件(例如,弹性部件20)进行保护。在一些实施例中,制作壳体40的材料包括但不限于PCB板材(如FR-1酚醛纸基板、FR-2酚醛纸基板、FR-3环氧纸基板、FR-4环氧玻璃布板、CEM-1环氧玻璃布-纸复合板、CEM-3环氧玻璃布-玻璃站板等)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile butadiene styrene,ABS)、聚苯乙烯(Polystyrene,PS)、高冲击聚苯乙烯(High impact polystyrene,HIPS)、聚丙烯(Polypropylene,PP)、聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)、聚酯(Polyester,PES)、聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)、聚氯乙烯(Polyvinyl chloride,PVC)、聚氨酯(Polyurethanes,PU)、聚二氯乙烯(Polyvinylidene chloride)、聚乙烯(Polyethylene,PE)、聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)、聚醚醚酮(Poly-ether-ether-ketone,PEEK)、酚醛树脂(Phenolics,PF)、尿素甲醛树脂(Urea-formaldehyde,UF)、三聚氰胺-甲醛树脂(Melamine formaldehyde,MF)以及一些金属、合金(如铝合金、铬钼钢、钪合金、镁合金、钛合金、镁锂合金、镍合金等)、玻璃纤维或碳纤维中的任意材料或上述任意材料的组合。在一些实施例中,制作壳体40的材料为玻璃纤维、碳纤维与聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)等材料的任意组合。在一些实施例中,制作壳体40的材料可以是碳纤维和聚碳酸酯(Polycarbonate,PC)按照一定比例混合制成。在一些实 施例中,制作壳体40的材料可以是碳纤维、玻璃纤维和聚碳酸酯(Polycarbonate,PC)按照一定比例混合制成。在一些实施例中,制作壳体40的材料可以是玻璃纤维和聚碳酸酯(Polycarbonate,PC)按照一定比例混合制成,也可以使玻璃纤维和聚酰胺(Polyamides,PA)按照一定比例混合制成。
传感腔50设置于传感装置10内部。传感腔50可以与换能部件30获取的传感信号相关。传感腔50可以是由传感装置10的一个或多个部件形成的封闭或半封闭腔室。在一些实施例中,传感腔50可以是由弹性部件20与其他部件形成的封闭或半封闭的腔室。例如,传感腔50可以是由弹性部件20、换能部件30和壳体40形成的封闭腔体。传感腔50具有一定体积,其内部可以填充有气体。所述气体可以选用性质稳定的气体(例如,不易液化、燃烧、爆炸的气体)。例如,所述气体可以包括空气、氮气、惰性气体等。
在传感装置10工作时,传感腔50的体积会发生变化。传感腔50至少包括两个相对设置的侧壁。所述两个相对设置的侧壁包括第一侧壁和第二侧壁。在传感装置10工作时,传感腔50的第一侧壁(或设置于其上的部分结构)和/或第二侧壁(或设置于其上的部分结构)会发生相对位移,从而导致传感腔50的体积发生变化。在一些实施例中,所述第一侧壁和/或第二侧壁可以由传感装置10的一个或多个部件构成。示例性地,第一侧壁可以由弹性部件20或其中一个或多个元件/单元构成。所述第二侧壁可以是由换能部件30或其一个或多个元件/单元构成。例如,在传感装置10工作的过程中,构成传感腔50第一侧壁的弹性部件20(或设置于弹性部件20朝向传感腔50的表面(也称内表面)上的微结构,例如,凸起结构)和/或构成传感腔50第二侧壁的换能部件30会在外部振动信号的带动下发生相对运动(例如,由于第一侧壁和第二侧壁对振动响应不一致而产生相对运动),所述第一侧壁和第二侧壁的内表面的距离发生改变,进而使得传感腔50的体积发生改变。
换能部件30是指能够获取传感信号并将其转换为所需信号的元件。所述传感信号可以包括声学信号。在一些实施例中,换能部件30可以将传感信号转换为电信号。例如,换能部件30可以将声学信号(例如声压)转换为电信号。又例如,换能部件30可以将机械振动信号转换为电信号。换能部件30可以与传感腔50连通,并获取传感信号。例如,换能部件30或其元件/单元(例如,换能部件30中用于获取传感信号的元件)的一个表面可以作为传感腔50的第二侧壁。此时换能部件30连通传感腔50的内部,并获取传感信号。所述传感信号可以与传感腔50的一个或多个参数相关。所述一 个或多个参数可以包括腔体高度、体积大小、体积变化、气压等。在一些实施例中,所述传感信号可以与传感腔50的体积变化相关。示例性地,当传感腔50的体积发生变化时,填充于传感腔50中的气体(例如,空气)的气压会发生变化。换能部件30中用于获取传感信号的元件可以获取所述气压变化,并生成相应的电信号。在一些实施例中,换能部件30可以为声学换能器。例如,换能部件30可以是空气传导麦克风(又称气导麦克风)。所述气导麦克风可以获取传感腔50的声压变化,并转换为电信号。
弹性部件20可以响应于外部信号(例如,振动),发生振动或弹性形变(弹性部件20具有一定弹性)。如前所述,弹性部件20可以构成传感腔50的第一侧壁。当弹性部件20发生振动或弹性形变时,所述第一侧壁的内表面的位置发生变化。在一些实施例中,传感腔50的第二侧壁的位置保持固定或基本固定。此时第一侧壁的内表面相对于第二侧壁的内表面之间的距离发生相对变化,传感腔50的体积发生变化(假定第一侧壁和第二侧壁之间的侧壁保持相对固定)。在一些实施例中,传感腔50的第二侧壁的位置也发生变化。例如,传感腔50的第二侧壁与第一侧壁都发生振动。所述第二侧壁的振动相位与所述第一侧壁的振动相位不同,则第一侧壁的内表面相对于第二侧壁的内表面之间的距离发生相对变化,传感腔50的体积发生变化(假定第一侧壁和第二侧壁之间的侧壁保持相对固定)。又例如,传感腔50的第二侧壁与第一侧壁都发生弹性形变。所述第二侧壁的弹性形变量与所述第一侧壁的弹性形变量不同,则第一侧壁的内表面相对于第二侧壁的内表面之间的距离发生相对变化,传感腔50的体积发生变化(假定第一侧壁和第二侧壁之间的侧壁保持相对固定)。
示例性地,弹性部件20和换能部件30或其元件/单元(例如,换能部件30中用于获取传感信号的元件)可以分别构成传感腔50的第一侧壁和第二侧壁。所述外部信号为机械振动。所述机械振动通过壳体40传递至换能部件30和弹性部件20。响应于所述机械振动,换能部件30和弹性部件20均发生振动。由于换能部件30和弹性部件20的振动相位不同,第一侧壁和第二侧壁的内表面之间的距离发生改变,传感腔50的体积发生改变。
在一些实施例中,弹性部件20的内表面上(即朝向传感腔50一侧的表面)可以设置有凸起结构23(例如,图2所示的凸起结构223)。凸起结构23可以设置于弹性部件20的内表面上的至少部分区域。在一些实施例中,凸起结构23可以设置于弹性部件20内表面的所有区域。在一些实施例中,凸起结构23可以仅设置于弹性部件20的部分内表面。在一些实施例中,凸起结构23占据的内表面的面积与弹性部件20内表 面的面积之比可以小于四分之三。在一些实施例中,凸起结构23占据的内表面的面积与弹性部件20内表面的面积之比可以小于三分之二。在一些实施例中,凸起结构23占据的内表面的面积与弹性部件20内表面的面积之比可以小于二分之一。在一些实施例中,凸起结构23占据的面积与弹性部件20内表面的面积之比可以小于三分之一。在一些实施例中,凸起结构23占据的面积与弹性部件20内表面的面积之比可以小于四分之一。在一些实施例中,凸起结构23占据的面积与弹性部件20内表面的面积之比小于可以五分之一。在一些实施例中,凸起结构23占据的面积与弹性部件20内表面的面积之比小于可以六分之一。示例性地,可以将弹性部件20的内表面划分为中心部分和外围部分。凸起结构23可以设置于外围部分,而中心部分不设置凸起结构23。其中,所述外围部分占据的内表面面积与弹性部件20内表面面积之比可以小于四分之三、三分之二、二分之一、三分之一、四分之一、五分之一、六分之一等。
所述凸起结构23可以均匀地或非均匀地设置于弹性部件20的内表面上。在一些实施例中,凸起结构23可以呈阵列状设置在弹性部件20的内表面上。例如,相邻凸起结构23等间距地设置于弹性部件20的内表面上。在一些实施例中,凸起结构23在弹性部件20内表面上的分布可以是不均匀的。例如,相邻凸起结构23之间的间距随着凸起结构23所在的位置而变化。
凸起结构23可以具有特定的形状。在一些实施例中,所述特定形状包括金字塔形状、半球状、条纹状、梯台状、圆柱状等规则形状。在一些实施例中,所述特定形状可以是任意的不规则形状。
对于不包括凸起结构23的常规弹性部件,其作为传感腔50的第一侧壁,在振动的过程中,可能会由于振动幅度较大而与传感腔50第二侧壁(例如,换能部件30)发生粘附,导致传感装置10无法正常工作。凸起结构23的存在可以有效减小弹性部件20与传感腔50的第二侧壁的接触面积,因此能够防止与构成传感腔50的第二侧壁发生粘附,有效提高传感装置10的稳定性和可靠性。
凸起结构23可以对传感装置10的灵敏度产生影响。灵敏度是反映传感装置10性能的一个重要指标。灵敏度可以理解为传感装置10在工作时对特定外部信号的响应的大小。对于传感装置10,换能部件30与传感腔50连通。换能部件30获取的传感信号与传感腔50的体积变化相关。传感装置10的灵敏度与传感腔50的体积大小和/或体积变化有关。对于相同的外部信号,传感腔50的体积变化越大,传感装置10的响应越大,相应地,传感装置10的灵敏度越高;传感腔50的体积越小,传感装置10的响应 越大,相应地,传感装置10的灵敏度越高。因此通过改变传感腔50的体积和/或在传感装置10工作过程中传感腔50的体积的变化量,可以改变传感装置10的灵敏度。凸起结构23由于向传感腔50的内部凸出,占据部分传感腔50的体积,使传感腔50的体积相对于未设置凸起结构23的弹性部件20时而言更小,因此使传感装置10具有更高的灵敏度。
在一些实施例中,凸起结构23可以具有一定弹性。由于凸起结构23具有弹性,在受到外力挤压时将发生弹性形变。在一些实施例中,凸起结构23可以与传感腔50的第二侧壁(例如,换能部件30或其一个或多个部件的表面)抵接。当凸起结构23与传感腔50的第二侧壁抵接后,弹性部件20的振动会带动凸起结构23发生运动。此时,凸起结构23与传感腔50的第二侧壁发生挤压,使得凸起结构23发生弹性形变。所述弹性形变可以使凸起结构23进一步向传感腔50内部凸出,减小所述传感腔50的体积。因此可以进一步提高传感腔50的体积变化量,从而提高传感装置10的灵敏度。关于凸起结构以及凸起结构提高传感装置的灵敏度的更多细节可以参见图2至图6的具体实施例,此处不再赘述。
在一些实施例中,弹性部件20可以包括弹性薄膜21。凸起结构23可以设置于弹性薄膜21的面向传感腔50一侧的表面(即内表面)上。在一些实施例中,制作弹性薄膜21的材料可以包括聚酰亚胺(Polyimide,PI)、聚二甲基硅氧烷,(Polydimethylsiloxane,PDMS)、聚四氟乙烯(Poly tetra fluoroethylene,PTFE)等高分子材料。关于弹性薄膜的更多细节可以参见图2和图7的实施例,此处不再赘述。
以上对传感装置10的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解传感装置10的基本原理后,可能在不背离这一原理的情况下,对实施传感装置10的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。在一些实施例中,传感装置10可以包括一个或多个其他部件,例如,质量单元(如图2所示的质量单元260)、密封单元(如图2所示的密封单元270)等或其任意组合。在一些实施例中,传感装置10的多个部件可以合并为单个部件。例如,质量单元可以集成在弹性部件20上,与弹性部件20共同构成一个谐振系统。所述谐振系统响应于外部信号而振动。在一些实施例中,传感装置10的一个部件可以拆分为一个或多个子部件。例如,弹性部件20可以拆分为弹性薄膜(如图7所示的弹性薄膜721)和弹性微结构层(如图7所示的弹性微结构层725)。凸起结构23设置于所述弹性微结构层上。
图2是根据本申请一些实施例所示的传感装置的示意图。在本实施例中,传感装置210可以为振动传感装置。所述振动传感装置可以采集振动信号,并转换为电信号。例如,传感装置210可以是麦克风的一部分,如骨骼传导麦克风(也称为骨导麦克风)。所述骨导麦克风可以将振动信号转换为语音信号,例如,采集用户说话时面部肌肉产生振动信号,并将振动信号转化为包含语音信息的电信号。
如图2所示,传感装置210可以包括弹性部件220、换能部件230、壳体240、质量单元260以及密封单元270。壳体240可以具有一容置空间241,用于容纳传感装置210的一个或多个部件(例如,弹性部件220、质量单元260以及密封单元270)。在一些实施例中,壳体240为半封闭壳体,通过与换能部件230进行连接,形成所述容置空间241。例如,壳体240罩设于换能部件230上方,形成容置空间241。
在一些实施例中,图2所示的传感装置210可以作为振动传感装置应用于麦克风领域,例如,骨导麦克风。例如,当应用于骨导麦克风时,传感腔250又可以称为声学腔,换能部件230可以为声学换能器。声学换能器获取声学腔的声压变化并转换为电信号。在一些实施例中,弹性部件220设置于声学换能器(即换能部件230)上方,并在弹性部件220和声学换能器之间形成传感腔250。
弹性部件220可以包括弹性薄膜221。所述弹性薄膜221靠近换能部件230一侧表面(又称内表面)上设置有凸起结构223。凸起结构223和弹性薄膜221(形成传感腔250的第一侧壁)能够与换能部件230(形成传感腔250的第二侧壁)共同形成传感腔250。对于振动传感装置,传感腔250也可称为声学腔。弹性薄膜221也可以称为振膜。
如图2所示,弹性薄膜221的外沿可以与换能部件230物理连接。所述物理连接可以包括粘接、钉接、卡接以及通过额外的连接部件(例如,密封单元270)进行连接。例如,弹性薄膜221的外沿可以与换能部件230通过胶黏剂粘接,以形成所述传感腔250。但胶黏剂粘接的密封性较差,一定程度上降低了传感装置210的灵敏度。在一些实施例中,凸起结构223的顶端抵接于所述换能部件230的表面。所述顶端是指凸起结构223远离所述弹性薄膜221的端部。设置于弹性薄膜221外围的凸起结构223的顶端与换能部件230表面的连接处可以通过密封单元270进行密封,以使得凸起结构223、弹性薄膜221、密封单元270和换能部件230共同形成封闭的传感腔250。可以理解的是,密封部件270的设置位置不限于上述描述。在一些实施例中,密封部件270可以不仅限于设置在凸起结构223的顶端与换能部件230表面的连接处,还可以设置在用 于形成传感腔250的凸起结构223的外侧(即凸起结构223的远离传感腔250的一侧)。在一些实施例,为了进一步提高密封性,也可以在传感腔250的内部也设置密封结构。通过密封单元270将弹性部件220与换能部件230连接处进行密封,可以保证整个传感腔250的密封性,进而有效提高传感装置210的可靠性和稳定性。在一些实施例中,密封单元270可以采用硅胶、橡胶等材料制成,进一步提高密封单元270的密封性能。在一些实施例中,密封单元270的种类可以包括密封圈、密封垫片、密封胶条中的一种或多种。
在一些实施例中,弹性薄膜221可以具有一定厚度,弹性薄膜221的厚度是指弹性薄膜221在第一方向上的尺寸。为了方便理解,弹性薄膜221的厚度可以通过图2中的H3表示。在一些实施例中,弹性薄膜221的厚度H3可以在0.1μm-500μm范围内。在一些实施例中,弹性薄膜221的厚度H3可以在0.2μm-400μm范围内。在一些实施例中,弹性薄膜221的厚度H3可以在0.4μm-350μm范围内。在一些实施例中,弹性薄膜221的厚度H3可以在0.6μm-300μm范围内。在一些实施例中,弹性薄膜221的厚度H3可以在0.8μm-250μm范围内。在一些实施例中,弹性薄膜的厚度H3可以在1μm-200μm范围内。
质量单元260可以与弹性部件220连接,位于弹性部件220背离传感腔250的一侧。例如,质量单元260可以设置于弹性薄膜221上,位于背离传感腔250的一侧。响应于壳体240和/或换能部件230的振动,质量单元260可以与弹性部件220共同构成谐振系统,产生振动。质量单元260具有一定质量,因此可以增大弹性部件220相对于壳体240的振动幅度,使得传感腔250的体积变化量可以在不同强度的外部振动的作用下都发生明显变化,进而提高传感装置210的灵敏度。
在一些实施例中,质量单元260可以为圆柱体、正方体、长方体等规则结构体或其他不规则的结构体。如图2所示,质量单元260可以为圆柱体结构。
在一些实施例中,质量单元260可以采用密度较高的材料制作。示例性地,质量单元260可以采用铜、铁、不锈钢、铅、钨、钼等材料。在一些实施例中,可以采用铜制作质量单元260。在一些实施例中,质量单元260可以采用具有一定弹性的材料制成。在一些实施例中,由上述弹性材料制成的质量单元260可以设置在弹性部件220朝向换能部件230的一侧。例如,可以直接在质量单元260朝向换能部件230的一侧的表面设置(例如,通过切削、注塑、粘合等方式加工)凸起结构223。由于质量单元260本身具有弹性,因此由质量单元260上设置的凸起结构223也具备弹性。在本实施例 中,质量单元260可以减小传感腔250的体积,一定程度上提高了传感装置210的灵敏度。在一些实施例中,设置于质量单元260上的凸起结构223的顶端可以抵接于所述换能部件230的表面。
在一些实施例中,对于不同类型和/或尺寸的传感装置210,弹性薄膜221的杨氏模量与质量单元260的杨氏模量可以有不同的取值。在一些实施例中,弹性薄膜221的杨氏模量的数值可以小于500Mpa。在一些实施例中,弹性薄膜221的杨氏模量的数值可以小于300Mpa。在一些实施例中,弹性薄膜221的杨氏模量的数值可以小于200Mpa。在一些实施例中,弹性薄膜221的杨氏模量的数值可以小于100Mpa。在一些实施例中,弹性薄膜221的杨氏模量的数值可以小于80Mpa。在一些实施例中,弹性薄膜221的杨氏模量的数值可以小于60Mpa。在一些实施例中,弹性薄膜221的杨氏模量的数值可以小于40Mpa。在一些实施例中,质量单元260的杨氏模量可以大于10Gpa。在一些实施例中,质量单元260的杨氏模量可以大于50Gpa。在一些实施例中,质量单元260的杨氏模量可以大于80Gpa。在一些实施例中,质量单元260的杨氏模量可以大于100Gpa。在一些实施例中,质量单元260的杨氏模量可以大于200Gpa。在一些实施例中,质量单元260的杨氏模量可以大于500Gpa。在一些实施例中,质量单元260的杨氏模量可以大于1000Gpa。
在一些实施例中,质量单元260具有一定厚度。质量单元的厚度可以是指质量单元260在第一方向上的尺寸。为了方便理解,质量单元260的厚度可以通过图2中的H4表示。在一些实施例中,质量单元260的厚度H4在1μm-1000μm范围内。在一些实施例中,质量单元260的厚度H4在10μm-900μm范围内。在一些实施例中,质量单元260的厚度H4在20μm-800μm范围内。在一些实施例中,质量单元260的厚度H4在30μm-700μm范围内。在一些实施例中,质量单元260的厚度H4在40μm-600μm范围内。在一些实施例中,质量单元260的厚度H4在50μm–500μm范围内。
对于不同类型和/或尺寸的传感装置210,质量单元260的厚度H4与弹性薄膜221的厚度H3之比或之差在一定范围内。在一些实施例中,质量单元260的厚度H4与弹性薄膜221的厚度H3之比在1-100000范围内。在一些实施例中,质量单元260的厚度H4与弹性薄膜221的厚度H3之比在1-50000范围内。在一些实施例中,质量单元260的厚度H4与弹性薄膜221的厚度H3之比在10-10000范围内。在一些实施例中,质量单元260的厚度H4与弹性薄膜221的厚度H3之比在100-5000范围内。在一些实施例中,质量单元260的厚度H4与弹性薄膜221的厚度H3之比在100-1000范围内。 在一些实施例中,质量单元260的厚度H4与弹性薄膜221的厚度H3之比在100-5000范围内。在一些实施例中,质量单元260的厚度H4与弹性薄膜221的厚度H3之比在500-2000范围内。
在一些实施例中,质量单元260可以位于弹性部件220(如,弹性薄膜221)的中部。所述中部是指弹性部件220在第二方向的中间部分。例如,弹性薄膜221呈圆形,质量单元260为圆柱体结构。质量单元260可以设置于弹性薄膜221的中间部分。在一些实施例中,质量单元260的轴线与弹性薄膜221的中心点在第二方向上的距离可以低于阈值距离。所述阈值距离可以是50μm,0.1mm,0.5mm,1mm,2mm等。在一些实施例中,弹性薄膜221的中心点在质量单元260的轴线上。通过将质量单元260设置于弹性薄膜221的中部,可以减小质量单元260第二方向上的位移,提高传感装置210的灵敏度。
如图2所示,质量单元260在第一方向上的投影面积可以小于弹性部件220在第一方向上的投影面积。对于不同类型和/或尺寸的传感装置210,质量单元260在第一方向上的投影面积与弹性部件220在第一方向上的投影面积之比可以在一定范围内。在一些实施例中,质量单元260在第一方向上的投影面积与弹性部件220在第一方向上的投影面积之比可以在0.05-0.95范围内。在一些实施例中,质量单元260在第一方向上的投影面积与弹性部件220在第一方向上的投影面积之比可以在0.1-0.9范围内。在一些实施例中,质量单元260在第一方向上的投影面积与弹性部件220在第一方向上的投影面积之比可以在0.2-0.9范围内。在一些实施例中,质量单元260在第一方向上的投影面积与弹性部件220在第一方向上的投影面积之比可以在0.3-0.8范围内。在一些实施例中,质量单元260在第一方向上的投影面积与弹性部件220在第一方向上的投影面积之比可以在0.4-0.7范围内。在一些实施例中,质量单元260在第一方向上的投影面积与弹性部件220在第一方向上的投影面积之比可以在0.5-0.6范围内。
对于不同类型和/或尺寸的传感装置210,质量单元260在第一方向上的投影面积与传感腔250在第一方向上的投影面积之比可以在一定范围内。在一些实施例中,质量单元260在第一方向上的投影面积与传感腔250在第一方向上的投影面积之比可以在0.05-0.95范围内。在一些实施例中,质量单元260在第一方向上的投影面积与传感腔250在第一方向上的投影面积之比可以在0.1-0.9范围内。在一些实施例中,质量单元260在第一方向上的投影面积与传感腔250在第一方向上的投影面积之比可以在0.2-0.9范围内。在一些实施例中,质量单元260在第一方向上的投影面积与传感腔250在 第一方向上的投影面积之比可以在0.3-0.8范围内。在一些实施例中,质量单元260在第一方向上的投影面积与传感腔250在第一方向上的投影面积之比可以在0.4-0.7范围内。在一些实施例中,质量单元260在第一方向上的投影面积与传感腔250在第一方向上的投影面积之比可以在0.5-0.6范围内。
在本实施例中,弹性部件220(例如,弹性薄膜221)相比于壳体240更容易发生弹性形变,使得弹性部件220可以相对壳体240发生相对运动。当外界的振动的作用于到壳体240时,壳体240、换能部件230、弹性部件220等部件均会产生振动。由于弹性部件220的振动相位与换能部件230的振动相位不相同,从而可以引起了传感腔250(即声学腔)的体积变化,导致声学腔的声压产生变化,并由换能部件230将其转化为电信号,实现了对骨导声的拾取。
为方便理解,可以将弹性部件220(包括弹性薄膜221和凸起结构223)以及质量单元260组成的结构简化等效为如图11所示的质量-弹簧-阻尼系统模型,其中弹性部件220为系统提供弹簧和阻尼作用,质量单元260为系统提供质量作用。该系统工作时,可以认为质量-弹簧-阻尼系统模型在激振力作用下做受迫运动,其振动规律符合质量-弹簧-阻尼系统的规律。具体的,该系统的运动可用式(1)的微分方程进行描述:
Figure PCTCN2021106947-appb-000001
其中,M为系统的质量,R为系统的阻尼,K为系统的弹性系数,F为驱动力幅值,x为系统的位移,ω为驱动力圆频率。基于公式(1)求解稳态位移可得:
x=x acos(ωt-θ)        (2)
其中,
Figure PCTCN2021106947-appb-000002
进一步的,基于公式(1)和公式(2)可以得到位移振幅比值(归一化)方程:
Figure PCTCN2021106947-appb-000003
其中,f可以表示系统的频率,f 0表示系统的谐振频率,
Figure PCTCN2021106947-appb-000004
Q M可以表示力学品质因素,
Figure PCTCN2021106947-appb-000005
可以表示静态位移振幅(或称ω=0时的位移振幅)。
当质量单元260在外界振动信号激发下发生振动时,会导致传感腔250的体积V 0发生压缩或者扩张,传感腔250在发生压缩或扩张时体积变化量为ΔV。传感装置210的灵敏度
Figure PCTCN2021106947-appb-000006
即传感装置210的灵敏度S正比于传感腔250体积变化量ΔV,反比于 传感腔250的体积V 0。基于上述原理,在一些实施例中,可以通过增大传感腔250的体积变化量ΔV来提高传感装置210的灵敏度和/或可以通过减小传感腔250的体积V 0来提高传感装置210的灵敏度。
在一些实施例中,传感腔250是由弹性部件220、换能部件230以及其他部件构成。例如,传感腔250是由弹性部件220、换能部件230以及密封单元270构成。在上述实施例中,弹性部件(例如,弹性薄膜221和凸起结构223)和换能部件(例如,换能部件230)分别作为传感腔250的第一侧壁和第二侧壁。因此弹性部件220和换能部件230的结构将会影响传感装置210的传感腔250的体积V 0以及传感装置210工作时传感腔250的体积变化量ΔV。对于弹性部件220,由于在弹性薄膜221内表面上设置有凸起结构223,并且所述凸起结构223向传感腔250内凸出,减小了传感腔250的体积V 0,因此可以提高传感装置210的灵敏度。
在一些实施例中,传感腔250的体积V 0与构成传感腔250的凸起结构223的密度有关。可以理解的是,当相邻凸起结构223的间隔越小时,表明凸起结构223的密度越大,因此由凸起结构223构成的传感腔250的体积V 0也就越小。相邻凸起结构223之间的间隔可以是指相邻凸起结构223的中心之间的距离。这里的中心可以理解为凸起结构223横截面上的形心。为了方便说明,相邻凸起结构223之间的间隔可以由图2的L1表示,即相邻凸起结构的顶端或中心之间的距离。在一些实施例中,相邻的凸起结构223之间的间隔L1可以在1μm-2000μm范围内。在一些实施例中,相邻的凸起结构223之间的间隔L1可以在4μm-1500μm范围内。在一些实施例中,相邻的凸起结构223之间的间隔L1可以在8μm-1000μm范围内。在一些实施例中,相邻的凸起结构223之间的间隔L1可以在10μm-500μm范围内。
在一些实施例中,传感腔250的体积V 0与凸起结构223的宽度相关。凸起结构223的宽度可以理解为凸起结构223在第二方向上的尺寸。为了方便说明,凸起结构223在第二方向上的尺寸可以通过图2的L2表示。在一些实施例中,单个凸起结构223的宽度L2可以在1μm-1000μm范围内。在一些实施例中,单个凸起结构223的宽度L2可以在2μm-800μm范围内。在一些实施例中,单个凸起结构223的宽度L2可以在3μm-600μm范围内。在一些实施例中,单个凸起结构223的宽度L2可以在6μm-400μm范围内。在一些实施例中,单个凸起结构223的宽度可以在10μm-300μm范围内。
对于不同类型和/或尺寸的传感装置210,凸起结构223的宽度L2与相邻的凸起结构223之间的间隔L1之比在一定范围内。在一些实施例中,凸起结构223的宽度 L2与相邻的凸起结构223之间的间隔L1之比在0.05-20范围内。在一些实施例中,凸起结构223的宽度L2与相邻的凸起结构223之间的间隔L1之比在0.1-20范围内。在一些实施例中,凸起结构223的宽度L2与相邻的凸起结构223之间的间隔L1之比在0.1-10范围内。在一些实施例中,凸起结构223的宽度L2与相邻的凸起结构223之间的间隔L1之比在0.5-8范围内。在一些实施例中,凸起结构223的宽度L2与相邻的凸起结构223之间的间隔L1之比在1-6范围内。在一些实施例中,凸起结构223的宽度L2与相邻的凸起结构223之间的间隔L1之比在2-4范围内。
在一些实施例中,传感腔250的体积V 0与凸起结构223的高度H1相关。凸起结构223的高度可以理解为凸起结构223处于自然状态时(例如,凸起结构223未受挤压而产生弹性形变的情况下)在第一方向上的尺寸。为了方便说明,凸起结构223在第一方向上的尺寸可以通过图2的H1表示。在一些实施例中,凸起结构223的高度H1可以在1μm-1000μm范围内。在一些实施例中,凸起结构223的高度H1可以在2μm-800μm范围内。在一些实施例中,凸起结构223的高度H1可以在4μm-600μm范围内。在一些实施例中,凸起结构223的高度H1可以在6μm-500μm范围内。在一些实施例中,凸起结构223的高度H1可以在8μm-400μm范围内。在一些实施例中,凸起结构223的高度H1可以在10μm-300μm范围内。
在一些实施例中,传感腔250的高度与凸起结构223的高度的差值在一定范围内。例如,至少部分凸起结构223可以不与换能部件230接触。此时凸起结构223与换能部件230的表面存在一定间隙。凸起结构223与换能部件230的表面之间的间隙是指凸起结构223的顶端与换能部件230表面之间的距离。该间隙可以通过在加工凸起结构223或安装弹性部件220的过程中时形成。传感腔250的高度可以理解为传感腔250在自然状态下(例如,其第一侧壁和第二侧壁未发生振动或弹性形变的情况下)第一方向上的尺寸。为了方便说明,传感腔250在第一方向上的尺寸可以通过图2的H2表示。在一些实施例中,凸起结构223的高度H1与传感腔250的高度H2的差值可以在20%以内。在一些实施例中,凸起结构223的高度H1与传感腔250的高度H2的差值可以在15%以内。在一些实施例中,凸起结构223的高度H1与传感腔250的高度H2的差值可以在10%以内。在一些实施例中,凸起结构223的高度H1与传感腔250的高度H2的差值可以在5%以内。在一些实施例中,凸起结构223与换能部件230的表面之间的间隙可以在10μm以内。在一些实施例中,凸起结构223与换能部件230的表面之间的间隙可以在5μm以内。在一些实施例中,凸起结构223与换能部件230的表面之间的 间隙可以在1μm以内。
在传感装置210工作的过程中,弹性部件220接收到外部信号(例如,振动信号)之后会产生振动或弹性形变并带动凸起结构223沿图2所示的第一方向上进行运动,使得传感腔250发生收缩或扩张,引起的传感腔250的体积变化量可以表示为ΔV1。由于弹性部件220以及凸起结构223在第一方向上的运动幅度较小,例如,凸起结构223在第一方向上的运动幅度通常在小于1μm,在此过程中,凸起结构223可能不会与换能部件230的表面接触,因此ΔV1与凸起结构223无关,且ΔV1的值较小。
对于不同类型和/或尺寸的传感装置210,凸起结构223的高度H1与弹性薄膜221的厚度H3之比或之差在一定范围内。在一些实施例中,凸起结构223的高度H1与弹性薄膜221的厚度H3之比在0.5-500范围内。在一些实施例中,凸起结构223的高度H1与弹性薄膜221的厚度H3之比在1-500范围内。在一些实施例中,凸起结构223的高度H1与弹性薄膜221的厚度H3之比在1-200范围内。在一些实施例中,凸起结构223的高度H1与弹性薄膜221的厚度H3之比在1-100范围内。在一些实施例中,凸起结构223的高度H1与弹性薄膜221的厚度H3之比在10-90范围内。在一些实施例中,凸起结构223的高度H1与弹性薄膜221的厚度H3之比在20-80范围内。在一些实施例中,凸起结构223的高度H1与弹性薄膜221的厚度H3之比在40-60范围内。
在一些实施例中,凸起结构223可以与换能部件230表面直接接触。此时凸起结构223的高度H1与传感腔250的高度H2相同或相近。图3A和3B是根据本申请一些实施例所示的凸起结构与传感腔的第二侧壁抵接的示意图。如图3A所示,凸起结构223可以与传感腔250的第二侧壁抵接。凸起结构223可以具有一定弹性。在本实施例中,当弹性部件220受到外力的激励而发生运动时,会带动凸起结构223朝换能部件230的方向运动。弹性部件220以及凸起结构223运动时会使得传感腔250的体积减小,传感腔250的体积由此产生的变化量可以表示为ΔV1。另外,由于凸起结构223本身与换能部件230相抵接,因此在外力的作用下凸起结构223会与换能部件230发生挤压。由于凸起结构223本身具有一定弹性,因此挤压所产生的力会使得凸起结构223发生弹性形变。凸起结构223发生弹性形变时会进一步缩小传感腔250的体积。图3B所示为凸起结构223在第一方向上运动的幅度以及产生的弹性形变。实线P1示出了凸起结构223在挤压后的形状轮廓和位置。虚线P2示出了凸起结构223在挤压之前的形状轮廓和位置。由图可知,由于凸起结构223的弹性形变,传感腔250的体积进一步减小。为了方便描述,由凸起结构223与传感腔250的第二侧壁挤压所导致的传感腔250 的体积变化的值可以表示为ΔV2。基于上述内容,如果凸起结构223与传感腔250的第二侧壁抵接,那么在传感装置210工作的过程中,传感腔250的体积变化量ΔV为ΔV1和ΔV2之和。因此,传感腔250的体积变化量ΔV较ΔV1更大,能够进一步提高传感装置210的灵敏度。此外,由于凸起结构223发生形变,相较于自然状态下而言,凸起结构223在第一方向上的尺寸变小,因而传感腔250的高度H2小于凸起结构223处于自然状态下在第一方向上的尺寸(即H1)。
在一些是实施例中,传感腔250的体积变化量ΔV2可以与凸起结构223的材料有关。凸起结构223可以选用一定特性的材料。例如,凸起结构223可以具有特定的杨氏模量。在一些是实施例中,凸起结构223的杨氏模量为10kPa-10MPa。在一些是实施例中,凸起结构223的杨氏模量为20kPa-8MPa。在一些是实施例中,凸起结构223的杨氏模量为50kPa-5MPa。在一些是实施例中,凸起结构223的杨氏模量为80kPa-2MPa。在一些是实施例中,凸起结构223的杨氏模量为100kPa-1MPa。对于不同类型和/或尺寸的传感装置210,凸起结构223的杨氏模量与弹性薄膜221的杨氏模量之比或之差可以在一定范围内。在一些实施例中,凸起结构的杨氏模量223与弹性薄膜221的杨氏模量之比可以在0.005-1范围内。在一些实施例中,凸起结构223的杨氏模量与弹性薄膜221的杨氏模量之比可以在0.01-1范围内。在一些实施例中,凸起结构223的杨氏模量与弹性薄膜221的杨氏模量之比可以在0.05-0.8范围内。在一些实施例中,凸起结构的杨氏模量223与弹性薄膜221的杨氏模量之比可以在0.1-0.6范围内。在一些实施例中,凸起结构的杨氏模量223与弹性薄膜221的杨氏模量之比可以在0.2-0.4范围内。
在一些实施例中,制作凸起结构223的材料可以包括硅胶、硅凝胶、硅橡胶、聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)、苯乙烯-丁二烯-苯乙烯嵌段共聚物(Styrenic Block Copolymers,SBS)中一种或多种,以确保凸起结构223具有较高的弹性,受到相同大小的外力时弹性形变量更大,进而使得传感腔250的体积变化量ΔV2更大。
在一些是实施例中,传感腔250的体积变化量ΔV2还可以与凸起结构223的形状有关。在一些实施例中,凸起结构223的形状可以为各种形状。图4-图6分别示出了三种不同形状的凸起结构。其中,图4中的凸起结构423的形状为金字塔状,呈点阵列分布在弹性部件420的内表面上。图5中的凸起结构523的形状为半球状,呈点阵列分布在弹性部件520的内表面上。图6中的凸起结构623的形状为条纹状,呈线阵列分布 在弹性部件620的内表面上。可以理解的是,这仅出于说明的目的,并不旨在限制凸起结构223的形状。凸起结构223还可以为其他可能的形状。例如,梯台状、圆柱状、椭球状等。
参照图4,凸起结构223的形状为金字塔状,相较于其他形状(例如,半球状)而言,当凸起结构223受到外力作用时,金字塔状的凸起结构223会导致应力集中于顶端。对于不同形状的凸起结构223,若其杨氏模量相同时,金字塔状的凸起结构223的等效刚度会更低,弹性系数会更低,发生弹性形变的形变量更大,进而使得传感腔250的体积变化量ΔV2更大,对于传感装置210的灵敏度增幅更大。
在一些实施例中,传感装置210的灵敏度与质量单元260和弹性部件220组成的系统的谐振频率ω 0(即公式(3)中的f 0)有关。具体的,
Figure PCTCN2021106947-appb-000007
当减小
Figure PCTCN2021106947-appb-000008
时,传感装置210的传感腔250的声压的变化量Δp会变大,同时系统的谐振频率ω 0会降低。谐振频率ω 0会影响系统在谐振频率前后一定频率范围内的传感装置210的灵敏度。因此,在通过调整传感装置210的谐振频率来调整传感装置210的灵敏度的过程中,需要考虑频率范围对于传感装置210灵敏度的影响。在一些实施例中,传感装置210的谐振频率在1500Hz-6000Hz范围内。在一些实施例中,传感装置210的谐振频率在1500Hz-5000Hz范围内。在一些实施例中,传感装置210的谐振频率在1500Hz-4000Hz范围内。在一些实施例中,传感装置210的谐振频率在1500Hz-3000Hz范围内。
图7是根据本申请另一些实施例所示的传感装置的示意图。类似于传感装置210,传感装置710可以包括换能部件230、壳体240、传感腔250、质量单元260、密封单元270以及弹性部件720。壳体240罩设于换能部件230上方,形成容置空间241。弹性部件720、质量单元260以及密封单元270可以容纳在容置空间241中。弹性部件720的外沿通过密封单元270与换能部件230固定连接。弹性部件720、换能部件230和密封单元270共同构成传感腔250。质量单元260设置于在弹性部件720背离传感腔250的一侧,用于增大弹性部件720的振动幅度。
在一些实施例中,图7所示的传感装置710可以作为振动传感装置应用于麦克风领域,例如,骨导麦克风。例如,当应用于骨导麦克风时,传感腔250又可以称为声学腔,换能部件230可以为声学换能器。声学换能器获取声学腔的声压变化并转换为电信号。
与图2所示的传感装置210不同的是,图7所示的传感装置710中,弹性部件 720可以包括弹性薄膜721和弹性微结构层725。弹性微结构层725的一侧与弹性薄膜721连接,另一侧表面设置有凸起结构223。示例性地,凸起结构223可以通过两种方式进行加工。其中,方式(1)是在硅片上刻蚀凹槽,凹槽的形状与所要制作的凸起结构223的形状对应。然后将制作凸起结构223的材料(例如,PDMS)涂覆在硅片上,PDMS会填充硅片在的凹槽中并且在硅片表面形成一层PDMS薄膜。然后在凹槽中的PDMS以及硅片表面的PDMS薄膜还未固化之前,将制作弹性薄膜721的材料,例如,聚酰亚胺(Polyimide,PI)涂覆在PDMS薄膜的表面。最后等待PDMS薄膜、弹性薄膜721与凸起结构223固化之后取出。方式(2)同样是在硅片上刻蚀凹槽。然后将制作凸起结构223的材料(例如,PDMS)涂覆在硅片上,等待在凹槽中的PDMS以及硅片表面的PDMS薄膜固化后,将制作弹性薄膜721的材料(例如,PI)涂覆在PDMS薄膜表面或者在涂覆之前添加胶水。最后等待弹性薄膜721固化之后取出。采用上述两种方式加工的凸起结构223与弹性薄膜721之间均表包含有一层PDMS薄膜,该PDMS薄膜即为弹性微结构层725。
在一些实施例中,弹性微结构层725可以与弹性薄膜721可以采用相同材料制作。例如,弹性微结构层725与弹性薄膜721可以均采用PDMS制成。具体的,在加工凸起结构223时,可以在PDMS薄膜(即弹性微结构层725)的表面在涂覆一层PDMS薄膜作为弹性薄膜721。在一些实施例中,弹性微结构层725可以与弹性薄膜721采用不同材料制作。例如,弹性微结构层725可以采用PDMS制成,而弹性薄膜721可以采用PI制成。又例如,弹性微结构层725可以采用PDMS制成,而弹性薄膜721可以采用聚四氟乙烯(Poly tetra fluoroethylene,PTFE)制成。
在一些实施例中,弹性薄膜721的厚度可以与前述实施例中的弹性薄膜221的厚度相同或不同。弹性微结构层725的厚度是指弹性微结构层725在第一方向上的尺寸,可以通过图7的H5表示。在一些实施例中,弹性微结构层725的厚度H5可以在1μm-1000μm范围内。在一些实施例中,弹性微结构层725的厚度H5可以在10μm-200μm范围内。在一些实施例中,弹性微结构层725的厚度H5可以在20μm-100μm范围内。
在一些实施例中,对比不同类型和/或尺寸的传感装置210,弹性微结构层725的厚度H5与弹性部件720的厚度(即H5与H3之和)之比可以在0.5-1范围内。在一些实施例中,弹性微结构层725的厚度H5与弹性部件720的厚度之比在0.8-1范围内。在一些实施例中,弹性微结构层725的厚度H5与弹性部件720的厚度之比在0.9-1范 围内。
图8是根据本申请一些实施例所示的传感装置的示意图。如图8所示,传感装置810可以换能部件230、壳体240、传感腔250、质量单元260以及弹性部件820。在一些实施例中,除传感腔250的密封方式不同外,图8所示的传感装置810与图7所示的传感装置710类似。传感装置810的弹性部件820的外沿与壳体240直接固定连接,进而通过换能部件230、壳体240和弹性部件820共同形成传感腔250。在一些实施例中,弹性部件820可以包括弹性薄膜821和弹性微结构层825。凸起结构223可以是弹性微结构层825的一部分。弹性微结构层825背离传感腔250的一侧与弹性薄膜821连接。弹性微结构层825靠近传感腔250的一侧设置于凸起结构223。弹性薄膜821和/或弹性微结构层825可以直接与壳体240进行连接,连接的方式包括粘接、卡接、铆接、钉接等。示例性地,如图8所示,弹性薄膜821的边沿可以直接嵌设于壳体240侧壁内,弹性微结构层825可以与壳体240的内壁紧贴,以保证传感腔250的密封性。在本实施例中,弹性部件820直接与壳体240进行连接,一方面能够保证传感腔250具有良好的密封性,另一方面又省去了密封单元,精简了传感装置810的结构,简化了传感装置810的制作工艺。
在一些实施例中,当弹性部件820与壳体240直接连接时,质量单元260在第一方向上的投影面积小于传感腔250在第一方向上的投影面积。具体的,如果弹性部件820(例如,弹性部件820的弹性薄膜821、弹性微结构层825)直接与壳体240固定连接,则传感腔250在第一方向上的投影面积需要大于质量单元260在第一方向上的投影面积,以使得质量单元260的边沿与壳体240具有一定间隙,使质量单元260可以在所述第一方向上振动。在一些实施例中,质量单元260在第一方向上的投影面积与传感腔250在第一方向上的投影面积之比在0.05-0.95范围内。在一些实施例中,质量单元260在第一方向上的投影面积与传感腔250在第一方向上的投影面积之比在0.1-0.9范围内。在一些实施例中,质量单元260在第一方向上的投影面积与传感腔250在第一方向上的投影面积之比在0.2-0.9范围内。在一些实施例中,质量单元260在第一方向上的投影面积与传感腔250在第一方向上的投影面积之比在0.3-0.8范围内。在一些实施例中,质量单元260在第一方向上的投影面积与传感腔250在第一方向上的投影面积之比在0.4-0.7范围内。在一些实施例中,质量单元260在第一方向上的投影面积与传感腔250在第一方向上的投影面积之比在0.5-0.6范围内。
图9是根据本申请一些实施例所示的传感装置的示意图。图9所示的传感装置 910与图2所示的传感装置210类似,不同的是传感装置910的弹性部件920包括第一弹性部件920-1和第二弹性部件920-2。第一弹性部件920-1和第二弹性部件920-2分别设置于质量单元260在第一方向上的两侧。其中,第一弹性部件920-1位于质量单元260靠近换能部件230的一侧,第二弹性部件920-2位于质量单元260远离换能部件230的一侧。类似于图2中所示的弹性部件220,第一弹性部件920-1包括第一弹性薄膜221-1以及设置在第一弹性薄膜221-1朝向传感腔250一侧表面(也称内表面)的第一凸起结构223-1。第一凸起结构223-1的边沿通过第一密封单元270-1与换能部件230密封连接,使得第一弹性薄膜221-1、第一凸起结构223-1、第一密封单元270-1和换能部件230共同形成传感腔250。第二弹性部件920-2包括第二弹性薄膜221-2和设置在第二弹性薄膜221-2远离传感腔250一侧的第二凸起结构223-2。第二凸起结构223-2的边沿通过第二密封单元270-2与壳体240的顶壁(即壳体240背离换能部件230的一侧)密封连接。
在一些实施例中,第一弹性部件920-1和第二弹性部件920-2中的至少一个可以包括弹性微结构层(图中未示出)。以第一弹性部件920-1为例,第一弹性部件920-1可以包括第一弹性薄膜221-1和第一弹性微结构层,第一弹性微结构层设置在第一弹性薄膜221-1朝向换能部件230的一侧。第一弹性微结构层朝向换能部件230的一侧包括第一凸起结构223-1。第一凸起结构223-1可以是第一弹性微结构层的一部分。弹性微结构层可以与前述一个或多个实施例中的弹性微结构层(例如,图7所示的弹性微结构层725)相同或相似,此处不再赘述。
如图9所示,第一弹性部件920-1和第二弹性部件920-2沿第一方向上分布在质量单元260相对的两侧。这里第一弹性部件920-1和第二弹性部件920-2可以近似作为一个弹性部件920。为了方便描述,可以将第一弹性部件920-1和第二弹性部件920-2整体形成的弹性部件920称为第三弹性部件。第三弹性部件的形心与质量单元260的重心重合或者近似重合,且第二弹性部件920-2与壳体240的顶壁(即壳体240背离换能部件230的一侧)密封连接,可以使得目标频率范围(例如,3000Hz以下)内,第三弹性部件对第一方向上壳体240振动的响应灵敏度高于第三弹性部件对第二方向上壳体240振动的响应灵敏度。
在一些实施例中,第三弹性部件(即弹性部件920)响应于壳体240的振动在第一方向产生振动。第一方向上的振动可以视为传感装置910(例如,振动传感装置)所拾取的目标信号,第二方向上的振动可以视为噪声信号。在传感装置910工作过程 中,可以通过降低第三弹性部件在第二方向上产生的振动来降低第三弹性部件对第二方向上壳体240振动的响应灵敏度,进而提高传感装置910的方向选择性,降低噪声信号对声音信号的干扰。
在一些实施例中,第三弹性部件响应于壳体240的振动而产生振动时,若第三弹性部件的形心与质量单元260的重心重合或者近似重合,且第二弹性部件920-2与壳体240的顶壁(即壳体240背离换能部件230的一侧)密封连接,因此可以在第三弹性部件对第一方向上壳体240振动的响应灵敏度基本不变的前提下,降低质量单元260在第二方向上的振动,从而降低第三弹性部件对第二方向上壳体240振动的响应灵敏度,进而提高传感装置910的方向选择性。需要注意的是,这里第三弹性部件的形心与质量单元260的重心近似重合可以理解为第三弹性部件为密度均匀的规则几何结构,因此第三弹性部件的形心与其重心近似重合。而第三弹性部件的重心可以视为质量单元260的重心。此时第三弹性部件的形心可以视为与质量单元260的重心近似重合。在一些实施例中,第三弹性部件为不规则结构体时或密度不均匀时,则可视为第三弹性部件的实际重心与质量单元260的重心近似重合。近似重合可以是指第三弹性部件的实际重心或第三弹性部件的形心与质量单元260的重心的距离在一定范围内,例如,小于100μm,小于500μm,小于1mm,小于2mm,小于3mm,小于5mm,小于10mm等。
当第三弹性部件的形心与质量单元260的重心重合或者近似重合时,可以使得第三弹性部件在第二方向上振动的谐振频率向高频偏移,而不改变第三弹性部件在第一方向上振动的谐振频率。第三弹性部件在第一方向上振动的谐振频率可以保持基本不变,例如,第三弹性部件在第一方向上振动的谐振频率可以为人耳感知相对较强的频率范围(例如,20Hz-2000Hz、2000Hz-3000Hz等)内的频率。而第三弹性部件在第二方向上振动的谐振频率可以向高频偏移而位于人耳感知相对较弱的频率范围(例如,5000Hz-9000Hz、1kHz-14kHz等)内的频率。
图10是根据本申请一些实施例所示的传感元件的示意图。传感元件1010可以是一个独立元器件。传感元件1010通过与特定类型的换能部件(图中未示出)组装(例如,通过胶水贴合或粘结,或者通过其它可拆卸的方式进行结合),构成高灵敏度传感装置(例如,传感装置10,传感装置210)。所述特定类型的换能部件可以响应于第一传感腔1050体积的变化,产生所需的信号(例如,电信号)。所述特定类型的换能部件可以包括,例如,声学换能部件,如气导麦克风。
如图10所示,传感元件1010可以包括壳体240、质量单元260、第一传感腔 1050和弹性部件820。图10所示的弹性部件820、质量单元260和壳体240可以与图8所示的传感装置810的相应部件或单元相同或者类似,此处不再赘述。弹性部件820可以作为第一传感腔1050的第一侧壁,与壳体240共同构成第一传感腔1050。第一传感腔1050为半封闭结构。此外,传感元件1010的第一传感腔1050并未封闭,因此在运输、安装过程中灰尘、杂质可能会进入到第一传感腔1050中,对传感元件1010的性能造成影响。因此,在一些实施例中,可以在未封闭传感元件1010的开口处,即第一传感腔1050的开口一侧设置防尘结构。示例性的防尘结构可以包括防尘膜、防尘罩等。
传感元件1010作为独立元器件,与所述特定类型的换能部件连接,构成传感装置(例如,传感装置10,传感装置210)。例如,所述传感元件1010与换能部件(例如,包括声学换能器)贴合,所述换能部件与弹性部件820相对放置后形成封闭传感腔。所述换能部件将所述封闭传感腔的体积变化转化为电信号。在一些实施例中,所述换能部件连接在连接板1031上。例如,所述换能部件连接在连接板1031背离传感元件1010的一侧。连接板1031可以是印制电路板(PCB板),例如,酚醛PCB纸基板、复合PCB基板、玻纤PCB基板、金属PCB基板、积层法多层板PCB基板等。在一些实施例中,连接板1031可以是环氧玻纤布制成的FR-4等级的玻纤PCB基板。在一些实施例中,连接板1031也可以是柔性印制电路板(FPC)。连接板1031上可以设置(例如,通过激光刻蚀、化学刻蚀、埋设等方式)电路及其他元器件,例如,处理器、存储器等。在一些实施例中,所述换能部件可以通过固定胶或金属引脚固定连接于连接板1031上。在一些实施例中,固定胶可以为导电胶(例如,导电银胶、铜粉导电胶、镍碳导电胶、银铜导电胶等)。所述导电胶可以是导电胶水、导电胶膜、导电胶圈、导电胶带等。所述连接板1031包括至少一个开口1033。所述换能部件中获取传感信号的元件(例如,气导麦克风的振膜)可以通过开口1033与所述第一传感腔1050连通。
通过将传感元件1010的壳体240连接于连接板1031,传感元件1010与连接板1031及连接在其上的换能部件可以构成一个传感装置。壳体240与连接板1031的连接方式可以包括粘接、卡接、焊接、铆接、钉接等。此时,弹性部件820、壳体240、连接板1031和换能部件的获取传感信号的元件可以共同构成封闭的传感腔(如传感腔250)。所述第一传感腔1050为该封闭传感腔的一部分(例如,子腔室)。连接板1031和换能部件的获取传感信号的元件可以构成所述封闭传感腔的第二侧壁。
弹性部件820构成的第一侧壁上设置有凸起结构823。凸起结构823可以减小 传感腔或部分传感腔1050的体积,以增大传感装置的灵敏度。在一些实施例中,当传感元件1010与所述换能部件构成传感装置时,凸起结构可以被配置为与传感腔的第二侧壁抵接。当传感装置1010处于工作状态时,弹性部件820会带动凸起结构223振动并与传感腔的第二侧壁发生挤压,从而产生弹性形变。凸起结构发生弹性形变时能够提高传感腔的体积变化量,从而提高传感装置1010的灵敏度。另外,凸起结构的存在可以有效减小弹性部件820与传感腔的第二侧壁的接触面积,因此能够防止与构成传感腔的第二侧壁发生粘附,提高传感装置1010的稳定性和可靠性。
需要注意的是,连接板1031也可以是传感元件1010的一部分,特定类型的换能部件通过连接于连接板1031,与传感元件1010共同构成一个传感装置。此时,弹性部件、壳体240和连接板1031构成部分传感腔1050。
以上对传感元件1010结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨传导扬声器的基本原理后,可能在不背离这一原理的情况下,对实施传感元件1010的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,传感元件1010可以不包含质量单元260。又例如,当传感元件1010与声学换能器的连接板1031连接时,凸起结构223可以不与连接板1031构成的第二侧壁抵接。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或 “系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”等来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值数据均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值数据应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和数据为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (29)

  1. 一种传感装置,包括:
    弹性部件;
    传感腔,所述弹性部件构成所述传感腔的第一侧壁;和
    换能部件,用于获取传感信号并转换为电信号,所述换能部件与所述传感腔连通,所述传感信号与所述传感腔的体积变化相关,
    其中,所述弹性部件朝向所述传感腔的一侧设置有凸起结构,所述弹性部件响应于外部信号而使得所述凸起结构运动,所述凸起结构的运动改变所述传感腔的体积。
  2. 根据权利要求1所述的传感装置,所述凸起结构抵接于所述传感腔的第二侧壁,所述第二侧壁与所述第一侧壁相对。
  3. 根据权利要求2所述的传感装置,所述凸起结构具有弹性,当所述凸起结构运动时,所述凸起结构产生弹性形变,所述弹性形变减小改变所述传感腔的体积。
  4. 根据权利要求1-3任一项所述的传感装置,其中所述凸起结构呈阵列状设置于至少部分所述弹性部件的表面。
  5. 根据权利要求1-4任一项所述的传感装置,所述凸起结构的形状为金字塔形状、半球状或条纹状中的至少一种。
  6. 根据权利要求1-5任一项所述的传感装置,相邻凸起结构之间的间隔为1μm-2000μm。
  7. 根据权利要求1-6任一项所述的传感装置,相邻凸起结构之间的间隔为10μm-500μm。
  8. 根据权利要求1-7任一项所述的传感装置,所述凸起结构的高度为1μm-1000μm。
  9. 根据权利要求1-8任一项所述的传感装置,所述凸起结构的高度为10μm-300μm。
  10. 根据权利要求1所述的传感装置,所述弹性部件包括弹性薄膜和弹性微结构层,所述凸起结构设置于所述弹性微结构层上。
  11. 根据权利要求10所述的传感装置,所述弹性微结构层与所述弹性薄膜采用相同材料制成。
  12. 根据权利要求10所述的传感装置,所述弹性微结构层与所述弹性薄膜采用不同材料制成。
  13. 根据权利要求10-12中任一项所述的传感装置,所述弹性薄膜厚度为0.1μm-500μm。
  14. 根据权利要求10-12中任一项所述的传感装置,所述弹性薄膜厚度为1μm-200μm。
  15. 根据权利要求10-14任一项所述的传感装置,所述凸起结构的高度与所述传感腔的高度的差值在10%以内。
  16. 根据权利要求1-15任一项所述的传感装置,进一步包括:
    质量单元,设置于所述弹性部件的另一侧表面,所述质量单元与所述弹性部件共同响应于外部信号而产生振动;和
    壳体,所述弹性部件、所述质量单元、所述传感腔和所述换能部件容置于所述壳体内。
  17. 根据权利要求16所述的传感装置,所述换能部件为声学换能器。
  18. 根据权利要求17所述的传感装置,所述弹性部件设置于所述声学换能器上方,并在所述弹性部件和所述声学换能器之间形成所述传感腔。
  19. 根据权利要求18所述的传感装置,所述弹性部件的外沿通过密封部件与所述声学换能器固定连接,所述弹性部件、所述密封部件和所述声学换能器共同形成所述传感腔。
  20. 根据权利要求18所述的传感装置,所述弹性部件的外沿与所述壳体固定连接,所述弹性部件、所述壳体和所述声学换能器共同形成所述传感腔。
  21. 根据权利要求16-20任一项所述的传感装置,所述质量单元的厚度为1μm-1000μm。
  22. 根据权利要求16-20任一项所述的传感装置,所述质量单元的厚度为50μm-500μm。
  23. 根据权利要求16-22任一项所述的传感装置,所述质量单元与所述弹性部件所形成的谐振系统的谐振频率为1500Hz-6000Hz。
  24. 根据权利要求16-22任一项所述的传感装置,所述质量单元与所述弹性部件所形成的谐振系统的谐振频率为1500Hz-3000Hz。
  25. 根据权利要求16-24任一项所述的传感装置,进一步包括:
    另一弹性部件,与所述弹性部件对称设置于所述质量单元的两侧,所述另一弹性部件与所述壳体固定连接。
  26. 一种传感元件,包括:
    弹性部件;和
    第一传感腔,所述弹性部件构成所述第一传感腔的第一侧壁,
    其中,所述弹性部件朝向所述第一传感腔的一侧设置有凸起结构,所述弹性部件响应于外部信号而使得所述凸起结构运动,所述凸起结构的运动改变所述第一传感腔的体积。
  27. 根据权利要求26所述的传感元件,所述传感元件被配置为与换能器贴合,所述换能器与所述弹性部件相对放置后形成封闭传感腔,所述换能器将所述封闭传感腔的体积变化转化为电信号。
  28. 一种振动传感装置,
    弹性振动部件,包括振膜;
    声学换能器,所述声学换能器与所述弹性振膜之间形成声学腔,所述声学换能器用于获取传感信号并转换为电信号,所述传感信号与所述声学腔的体积变化相关,
    其中,所述振膜在朝向所述声学腔的一侧设置有凸起结构,所述弹性振动部件响应于外部信号而使得所述凸起结构运动,所述凸起结构的运动改变所述声学腔的体积。
  29. 一种传感元件,包括:
    弹性部件;和
    传感腔,所述弹性部件构成所述传感腔的第一侧壁,
    其中,所述弹性部件在朝向所述传感腔的一侧表面设置有弹性凸起结构,所述弹性凸起结构的杨氏模量为100kPa-1MPa,所述弹性部件响应于外部信号而使得所述凸起结构运动和形变中的至少一种,所述凸起结构的运动和形变中的至少一种改变所述传感腔的体积。
PCT/CN2021/106947 2021-06-18 2021-07-16 传感装置 WO2023283966A1 (zh)

Priority Applications (21)

Application Number Priority Date Filing Date Title
JP2022559379A JP7512411B2 (ja) 2021-07-16 2021-07-16 センサ装置
CN202180012406.XA CN116210232A (zh) 2021-07-16 2021-07-16 传感装置
KR1020227032951A KR20230013187A (ko) 2021-07-16 2021-07-16 감지장치
PCT/CN2021/106947 WO2023283966A1 (zh) 2021-07-16 2021-07-16 传感装置
EP21920144.9A EP4142308A4 (en) 2021-07-16 2021-07-16 DETECTION DEVICE
CN202180078575.3A CN117157998A (zh) 2021-06-18 2021-11-05 一种振动传感器
PCT/CN2021/129153 WO2022262177A1 (zh) 2021-06-18 2021-11-05 一种振动传感器
CN202111307655.XA CN115623392A (zh) 2021-07-16 2021-11-05 一种振动传感器
CN202180092553.2A CN117426108A (zh) 2021-06-18 2021-11-05 一种振动传感器
CN202111309103.2A CN115623393A (zh) 2021-07-16 2021-11-05 一种振动传感器
PCT/CN2021/129151 WO2022262176A1 (zh) 2021-06-18 2021-11-05 一种振动传感器
CN202180079858.XA CN117441349A (zh) 2021-06-18 2021-12-15 一种振动传感器
PCT/CN2021/138440 WO2022262226A1 (zh) 2021-06-18 2021-12-15 一种振动传感器
TW111114825A TW202301881A (zh) 2021-06-18 2022-04-21 振動感測器
TW111117622A TWI820703B (zh) 2021-06-18 2022-05-11 振動感測器
TW111118332A TW202301883A (zh) 2021-06-18 2022-05-17 振動感測器
US17/812,179 US11698292B2 (en) 2021-07-16 2022-07-13 Sensing devices
US18/321,007 US12055432B2 (en) 2021-07-16 2023-05-22 Sensing devices
US18/351,489 US20230362525A1 (en) 2021-06-18 2023-07-12 Vibration sensor
US18/353,049 US20230358602A1 (en) 2021-06-18 2023-07-14 Vibration sensors
US18/365,976 US20230384147A1 (en) 2021-06-18 2023-08-05 Vibration sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/106947 WO2023283966A1 (zh) 2021-07-16 2021-07-16 传感装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/812,179 Continuation US11698292B2 (en) 2021-07-16 2022-07-13 Sensing devices

Publications (1)

Publication Number Publication Date
WO2023283966A1 true WO2023283966A1 (zh) 2023-01-19

Family

ID=84891026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106947 WO2023283966A1 (zh) 2021-06-18 2021-07-16 传感装置

Country Status (6)

Country Link
US (2) US11698292B2 (zh)
EP (1) EP4142308A4 (zh)
JP (1) JP7512411B2 (zh)
KR (1) KR20230013187A (zh)
CN (1) CN116210232A (zh)
WO (1) WO2023283966A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230013187A (ko) * 2021-07-16 2023-01-26 썬전 샥 컴퍼니 리미티드 감지장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150016656A1 (en) * 2013-07-11 2015-01-15 Merry Electronics (Shenzhen) Co., Ltd. Dual-diaphragm acoustic transducer
CN105072551A (zh) * 2015-08-20 2015-11-18 歌尔声学股份有限公司 Mems麦克风和mems声学传感芯片
CN110536220A (zh) * 2019-08-22 2019-12-03 歌尔股份有限公司 振动感测装置感测振动的方法以及振动感测装置
CN210958708U (zh) * 2019-12-30 2020-07-07 瑞声声学科技(深圳)有限公司 一种光学骨传导麦克风
CN111741418A (zh) * 2020-07-21 2020-10-02 山东新港电子科技有限公司 一种微型振动传感器
CN211930871U (zh) * 2020-05-27 2020-11-13 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN112637736A (zh) * 2018-04-26 2021-04-09 深圳市韶音科技有限公司 耳机系统及其麦克风装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2985645B2 (ja) * 1994-03-07 1999-12-06 松下電器産業株式会社 人体検出装置
CN1159950C (zh) 2001-12-07 2004-07-28 清华大学 单片集成电容式硅基微传声器及其制作工艺
CN1494354A (zh) 2003-09-27 2004-05-05 百富非凡机电设备(北京)有限公司 改进的喇叭的振膜基材构件及其制造方法
JP4593553B2 (ja) 2006-12-18 2010-12-08 株式会社富永製作所 二重殻燃料タンクの製造方法
JP5029147B2 (ja) * 2007-06-04 2012-09-19 オムロン株式会社 音響センサ
JP5261853B2 (ja) * 2008-10-11 2013-08-14 雅英 田中 電子体重計
US8599025B2 (en) * 2011-01-04 2013-12-03 General Electric Company System and method to determine an infant weight while minimizing disturbance to the infant
US8475367B1 (en) * 2011-01-09 2013-07-02 Fitbit, Inc. Biometric monitoring device having a body weight sensor, and methods of operating same
TWI539836B (zh) 2012-08-23 2016-06-21 逢甲大學 揚聲器振膜結構及其製造方法
CN104602172A (zh) 2013-10-30 2015-05-06 北京卓锐微技术有限公司 一种电容式麦克风及其制备方法
JP2016004016A (ja) 2014-06-19 2016-01-12 富士電機株式会社 二重ダイアフラム式圧力センサ
US20160069734A1 (en) * 2014-09-08 2016-03-10 General Electric Company Infant weight measurement apparatus and method
JP6402606B2 (ja) * 2014-11-28 2018-10-10 ニプロ株式会社 圧力測定器具
CN106153178A (zh) 2015-03-17 2016-11-23 中国科学院苏州纳米技术与纳米仿生研究所 柔性导电振膜、柔性振动传感器及其制备方法和应用
JP2016181841A (ja) 2015-03-24 2016-10-13 セイコーエプソン株式会社 超音波センサー及びその駆動方法
WO2016191770A2 (en) * 2015-05-28 2016-12-01 Bottomly Matthew Smart diaper changing pad
US9900698B2 (en) 2015-06-30 2018-02-20 Apple Inc. Graphene composite acoustic diaphragm
WO2017054751A1 (en) 2015-09-29 2017-04-06 Sound Solutions International Co., Ltd. Stiffening plate for acoustic membrane and method of manufacturing same
CN106954164B (zh) 2016-01-06 2020-05-08 中芯国际集成电路制造(上海)有限公司 麦克风结构及其制造方法
US10722405B2 (en) * 2016-10-13 2020-07-28 Verily Life Sciences Llc Smart diaper for detecting and differentiating feces and urine
TWI626854B (zh) 2016-11-24 2018-06-11 財團法人金屬工業研究發展中心 具立體形貌之駐極體薄膜的製作方法及其產品
JP6861358B2 (ja) 2017-06-09 2021-04-21 パナソニックIpマネジメント株式会社 触力覚センサ、触力覚センサの製造方法および触力覚センサを用いた検知方法
CN209314103U (zh) * 2019-03-27 2019-08-27 歌尔科技有限公司 振动传感器和音频设备
CN209526834U (zh) 2019-03-27 2019-10-22 歌尔科技有限公司 一种骨声纹传感器及电子设备
CN209526634U (zh) 2019-03-28 2019-10-22 佛山市时盟光精密机械有限公司 一种伺服控制绕线机构
CN110972045B (zh) 2019-11-18 2021-11-16 潍坊歌尔微电子有限公司 一种振动感测装置以及电子设备
CN210641073U (zh) 2019-11-19 2020-05-29 歌尔科技有限公司 一种骨声纹传感器以及电子设备
RU198558U1 (ru) 2020-02-12 2020-07-15 Акционерное общество "Научно-производственная фирма "Геофизика" (АО НПФ "Геофизика") Акустический преобразователь
CN111531978B (zh) 2020-04-20 2022-03-22 深圳市航天新材科技有限公司 一种可拉伸复合振膜
CN211930820U (zh) * 2020-05-28 2020-11-13 青岛歌尔智能传感器有限公司 振动传感器和音频设备
KR20230013187A (ko) * 2021-07-16 2023-01-26 썬전 샥 컴퍼니 리미티드 감지장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150016656A1 (en) * 2013-07-11 2015-01-15 Merry Electronics (Shenzhen) Co., Ltd. Dual-diaphragm acoustic transducer
CN105072551A (zh) * 2015-08-20 2015-11-18 歌尔声学股份有限公司 Mems麦克风和mems声学传感芯片
CN112637736A (zh) * 2018-04-26 2021-04-09 深圳市韶音科技有限公司 耳机系统及其麦克风装置
CN110536220A (zh) * 2019-08-22 2019-12-03 歌尔股份有限公司 振动感测装置感测振动的方法以及振动感测装置
CN210958708U (zh) * 2019-12-30 2020-07-07 瑞声声学科技(深圳)有限公司 一种光学骨传导麦克风
CN211930871U (zh) * 2020-05-27 2020-11-13 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN111741418A (zh) * 2020-07-21 2020-10-02 山东新港电子科技有限公司 一种微型振动传感器

Also Published As

Publication number Publication date
JP2023539966A (ja) 2023-09-21
JP7512411B2 (ja) 2024-07-08
US12055432B2 (en) 2024-08-06
US20230013504A1 (en) 2023-01-19
CN116210232A (zh) 2023-06-02
EP4142308A1 (en) 2023-03-01
KR20230013187A (ko) 2023-01-26
US11698292B2 (en) 2023-07-11
EP4142308A4 (en) 2023-05-10
US20230288251A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
CN218162856U (zh) 一种振动传感器
US10904667B1 (en) Compact audio module for head-mounted wearable device
US20230358600A1 (en) Vibration sensors
WO2023283966A1 (zh) 传感装置
CN215300865U (zh) 一种振动传感器
US12072228B2 (en) Vibration sensors
TWI834214B (zh) 感測裝置
RU2800551C1 (ru) Датчики
US11665494B2 (en) Bone conduction microphone
CN109963659A (zh) 振动促动器安装结构、具有该振动促动器安装结构的电子设备以及该振动促动器安装结构的制造方法
WO2022262176A1 (zh) 一种振动传感器
WO2022262226A1 (zh) 一种振动传感器
WO2023203996A1 (ja) マイクロフォン及びマイクロフォン装置
RU2801712C1 (ru) Датчик вибрации
TW202308402A (zh) 振動感測器
WO2023272906A1 (zh) 一种振动传感器
TW202242354A (zh) 振動感測器
TW202303112A (zh) 振動感測器
CN115623392A (zh) 一种振动传感器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202217044117

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021920144

Country of ref document: EP

Effective date: 20220729

ENP Entry into the national phase

Ref document number: 2022559379

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022016214

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022016214

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220815