WO2022151791A1 - 扬声器 - Google Patents

扬声器 Download PDF

Info

Publication number
WO2022151791A1
WO2022151791A1 PCT/CN2021/125855 CN2021125855W WO2022151791A1 WO 2022151791 A1 WO2022151791 A1 WO 2022151791A1 CN 2021125855 W CN2021125855 W CN 2021125855W WO 2022151791 A1 WO2022151791 A1 WO 2022151791A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
housing
elastic element
loudspeaker
mass
Prior art date
Application number
PCT/CN2021/125855
Other languages
English (en)
French (fr)
Inventor
付峻江
张磊
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to KR1020237008685A priority Critical patent/KR20230051250A/ko
Priority to EP21918982.6A priority patent/EP4181533A4/en
Priority to JP2023518840A priority patent/JP2023542395A/ja
Priority to CN202180069746.6A priority patent/CN116349246A/zh
Priority to BR112023003055A priority patent/BR112023003055A2/pt
Publication of WO2022151791A1 publication Critical patent/WO2022151791A1/zh
Priority to US18/164,681 priority patent/US20230179925A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/12Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving reciprocating masses
    • B06B1/14Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving reciprocating masses the masses being elastically coupled
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
    • G10K11/04Acoustic filters ; Acoustic resonators
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1066Constructional aspects of the interconnection between earpiece and earpiece support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2803Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/283Enclosures comprising vibrating or resonating arrangements using a passive diaphragm
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/283Enclosures comprising vibrating or resonating arrangements using a passive diaphragm
    • H04R1/2834Enclosures comprising vibrating or resonating arrangements using a passive diaphragm for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/03Transducers capable of generating both sound as well as tactile vibration, e.g. as used in cellular phones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/046Construction

Definitions

  • the embodiments of this specification relate to the technical field of audio output, and in particular, to a speaker.
  • the speaker with the function of conducting sound through the bone can convert the sound signal into a mechanical vibration signal, and transmit the mechanical vibration signal to the auditory nerve of the human body through human tissue and bones, so that the wearer can hear the sound.
  • This specification provides a loudspeaker, which can reduce the vibration amplitude at a specific frequency, reduce the low-frequency vibration of the loudspeaker, weaken the sound leakage when the loudspeaker is working, and improve the sound quality of the loudspeaker.
  • the purpose of the present invention is to provide a loudspeaker, the purpose is to reduce the vibration amplitude of the vibration shell in contact with the user's face during the use of the loudspeaker, reduce the low-frequency vibration, reduce the sound leakage of the loudspeaker, and improve the sound quality.
  • a loudspeaker comprising: a vibrating assembly comprising a vibrating element and a vibrating casing, the vibrating element converting an electrical signal into a mechanical vibration, the vibrating casing being in contact with a user's facial skin; a first elastic element , the first elastic element is elastically connected with the vibration housing.
  • the loudspeaker further includes a mass element, the mass element is connected with the vibration housing through the first elastic element, and the mass element is connected with the first elastic element to form a resonance assembly.
  • the vibration housing includes a vibration panel, the vibration panel is in contact with the user's facial skin, and the first elastic element is elastically connected to the vibration panel.
  • the mass element is a groove member
  • the vibration element is at least partially accommodated in the groove member
  • the first elastic element connects the vibration panel and the inner wall of the groove member.
  • the first elastic element is a vibration transmission sheet.
  • the ratio of the mass of the mass element to the mass of the vibration panel is in the range of 0.04-1.25.
  • the ratio of the mass of the mass element to the mass of the vibration panel is in the range of 0.1 ⁇ 0.6.
  • the vibration component generates a first resonance peak at a first frequency
  • the resonance component generates a second resonance peak at a second frequency
  • the ratio of the second frequency to the first frequency is between 0.5 and 0.5. within the range of 2.
  • the vibration component generates a first resonance peak at a first frequency
  • the resonance component generates a second resonance peak at a second frequency
  • the ratio of the second frequency to the first frequency is between 0.9 and 0.9 1.1 in the range.
  • both the first frequency and the second frequency are less than 500 Hz.
  • the vibration amplitude of the resonant assembly is greater than the vibration amplitude of the vibration housing.
  • the vibration housing includes a vibration panel and a housing back panel disposed opposite to the vibration panel, the vibration panel is in contact with the user's facial skin, and the mass element passes through the first elasticity
  • the element is connected to the back plate of the casing; the first elastic element is disposed on the surface of the back plate of the casing, and the abutment area of the first elastic element and the back plate of the casing is at least greater than 10 mm 2 .
  • the first elastic element includes at least one of silicone, plastic, glue, foam, and spring.
  • the first elastic element is the glue.
  • the Shore hardness of the glue is in the range of 30-50.
  • the tensile strength of the glue is not less than 1 MPa.
  • the elongation at break of the glue is in the range of 100% to 500%.
  • the adhesive strength between the glue and the shell backplane is in the range of 8MPa-14Mpa.
  • the thickness of the glue layer formed by coating the glue on the surface of the back plate of the casing is in the range of 50 ⁇ m ⁇ 150 ⁇ m.
  • the bonding area of the glue and the back panel of the case accounts for 1% to 98% of the area of the inner wall of the back panel of the case.
  • the bonding area of the glue and the shell backplane is in the range of 100 mm 2 to 200 mm 2 .
  • the adhesive area with the back panel of the casing is 150 mm 2 .
  • At least one of the interior and surface of the first elastic element has pores.
  • the pores are filled with damping filler.
  • the first elastic element is the foam.
  • the thickness of the foam is in the range of 0.6 mm to 1.8 mm.
  • the ratio of the mass of the mass element to the sum of the mass of the vibration panel and the back plate of the housing is in the range of 0.04-1.25.
  • the ratio of the mass of the mass element to the sum of the mass of the vibration panel and the back plate of the housing is in the range of 0.1 ⁇ 0.6.
  • the material for making the mass element includes at least one of plastic, metal, and composite materials.
  • the resonant assemblies include at least two groups, the first elastic elements in each group of the resonant assemblies are connected to the back plate of the housing, and the adjacent two groups of the resonant assemblies are spaced at a predetermined interval distance.
  • the resonance components include at least two groups, at least two groups of the resonance components are stacked along the thickness direction of the first elastic element, and the first elastic components of the adjacent two groups of the resonance components are stacked.
  • An element is connected to the mass element.
  • the first elastic element is disposed on the inner wall of the housing backplane.
  • the first elastic element includes a diaphragm
  • the mass element includes a composite structure attached to the surface of the diaphragm
  • the composite structure includes at least one of a paper cone, aluminum sheet, or copper sheet.
  • a sound outlet hole is formed on the vibration shell, and the sound generated by the vibration of the resonant component is exported to the outside world through the sound outlet hole.
  • the sound outlet hole is opened on the back plate of the casing.
  • the first elastic element is disposed on the outer wall of the housing backplane.
  • the mass element is a groove member
  • the vibration housing is at least partially accommodated in the groove member
  • the first elastic element connects the outer wall of the vibration housing and the groove
  • a sound channel is formed between the inner wall of the member, the inner wall of the groove member and the outer wall of the vibration shell.
  • the loudspeaker further includes a functional element to which the mass element is connected.
  • the functional elements include batteries, printed circuit boards.
  • the vibration assembly further includes a second elastic element, and the vibration element transmits the mechanical vibration to the vibration housing through the second elastic element.
  • the second elastic element is a vibration transmission sheet, and the vibration transmission sheet is fixedly connected to the vibration housing.
  • FIG. 1 is a schematic longitudinal section of a loudspeaker according to some embodiments of the present specification
  • FIG. 2 is a schematic longitudinal cross-sectional view of a loudspeaker without adding vibration damping components according to some embodiments of the present specification
  • FIG. 3 is a partial frequency response curve diagram of a speaker without adding vibration damping components according to some embodiments of the present specification
  • FIG. 4 is a schematic longitudinal cross-sectional view of a loudspeaker to which a vibration damping assembly is added according to some embodiments of the present specification
  • FIG. 5 is a partial frequency response curve of a loudspeaker to which a vibration damping component is added according to some embodiments of the present specification
  • FIG. 6 is a schematic diagram of a simplified mechanical model of a loudspeaker without adding vibration damping components according to some embodiments of the present specification
  • FIG. 7 is a schematic diagram of a simplified mechanical model of a loudspeaker with vibration damping components added according to some embodiments of the present specification
  • FIG. 8 is a schematic longitudinal cross-sectional view of a speaker in which the first elastic element is a diaphragm according to some embodiments of the present specification
  • FIG. 9 is a schematic longitudinal cross-sectional view of a loudspeaker whose mass element is a groove member according to some embodiments of the present specification.
  • FIG. 10 is a schematic longitudinal cross-sectional view of yet another loudspeaker to which a damping assembly is added according to some embodiments of the present specification
  • FIG. 11 is a schematic longitudinal cross-sectional view of the speaker shown in FIG. 10 from another angle;
  • FIG. 12 is a schematic cross-sectional view of a loudspeaker with a vibration damping assembly disposed inside a vibration housing according to some embodiments of the present specification
  • FIG. 13 is a graph showing the sound leakage intensity of a loudspeaker according to some embodiments of the present specification.
  • Figure 14 is a sound pressure level graph of another loudspeaker according to some embodiments of the present specification.
  • FIG. 15 is a schematic cross-sectional view of a loudspeaker with holes in the first elastic element according to some embodiments of the present specification
  • 16 is a schematic longitudinal cross-sectional view of a loudspeaker including two sets of resonant components according to some embodiments of the present specification
  • 17 is a schematic longitudinal cross-sectional view of another loudspeaker including two sets of resonant components according to some embodiments of the present specification.
  • bone conduction speaker or “bone conduction earphone” will be used when describing the bone conduction related technology in the present invention.
  • This description is only a form of bone conduction application, and for those of ordinary skill in the art, “speaker” or “earphone” can also be replaced by other similar words, such as “player”, “hearing aid” and so on.
  • Some embodiments of the present specification provide a speaker with bone conduction sound function.
  • the loudspeaker is provided with a vibration damping assembly, which can reduce the intensity of mechanical vibration generated by the loudspeaker during operation.
  • the mechanical vibration mentioned here may refer to the vibration generated by the vibrating casing of the loudspeaker (eg, the vibrating panel in contact with the user's facial skin, and the casing side plate, casing back plate, etc.) connected to it.
  • the use of vibration damping components to attenuate the mechanical vibration of the vibration housing in the low frequency region can reduce the vibration sense of the vibration housing in the low frequency range, making the user more comfortable when wearing the speaker.
  • the speaker in this specification may refer to a speaker that transmits sound by bone conduction (ie, bone conduction) as one of the main ways.
  • bone conduction ie, bone conduction
  • the vibrating casing of the loudspeaker will vibrate mechanically, and the vibrating casing may transmit the mechanical vibration to the user's auditory nerve through the user's facial skin in a bone conduction manner, so that the user can hear the sound.
  • a speaker will be used as an example for description.
  • the speaker may also deliver sound in other ways.
  • the speaker may also include an air conduction (ie, air conduction) speaker assembly, that is, the speaker may include both the speaker assembly and the air conduction speaker assembly, combining both bone conduction and air conduction to deliver sound to the user.
  • the air conduction speaker assembly can conduct vibration waves to the user's auditory nerve through the air, so that the user can hear the sound.
  • FIG. 1 is a structural block diagram of a speaker according to some embodiments of the present specification.
  • the speaker 100 may include a vibration assembly 110 , a vibration damping assembly 120 and a fixing assembly 130 .
  • Vibration assembly 110 may generate mechanical vibrations.
  • the generation of mechanical vibration is accompanied by the conversion of energy, and the speaker 100 can use the vibration component 110 to realize the conversion of a signal containing sound information into mechanical vibration.
  • the conversion process may involve the coexistence and conversion of many different types of energy.
  • electrical signals can be directly converted into mechanical vibrations by the transducers in the vibration assembly 110 .
  • sound information can be contained in the optical signal, and a specific transducer device can realize the process of converting the optical signal into a vibration signal.
  • Other types of energy that can coexist and transform during the operation of the transducer device include thermal energy, magnetic field energy, and the like.
  • the energy conversion method of the transducer device may include a moving coil type, an electrostatic type, a piezoelectric type, a moving iron type, a pneumatic type, an electromagnetic type, and the like.
  • the vibration component can transmit the generated mechanical vibration to the user's eardrum through the user's facial skin in a manner of bone conduction, so that the user can hear the sound.
  • vibration assembly 110 may include a vibration element (eg, vibration element 211 ) and a vibration housing (eg, vibration housing 213 ) coupled to the vibration element.
  • the vibrating element can generate mechanical vibrations, which can be transmitted to the vibrating housing.
  • the vibrating housing may be in contact with the user's facial skin and transmit mechanical vibrations to the user's auditory nerve.
  • the vibrating element may comprise a magnetic circuit assembly.
  • the magnetic circuit assembly can provide the magnetic field. Magnetic fields can be used to convert signals containing acoustic information into mechanical vibration signals.
  • the sound information may include video, audio files with a specific data format, or data or files that can be converted into sound through a specific approach.
  • the signal containing sound information may come from the storage component of the speaker 100 itself, or may come from an information generation, storage or transmission system other than the speaker 100 .
  • Signals containing sound information may include one or a combination of electrical signals, optical signals, magnetic signals, mechanical signals, and the like. Signals containing audio information can come from one source or from multiple sources. Multiple signal sources may or may not be correlated.
  • the loudspeaker 100 can acquire the signal containing the sound information in many different ways, and the acquisition of the signal can be wired or wireless, and can be real-time or delayed.
  • the speaker 100 can receive electrical signals containing sound information in a wired or wireless manner, or can directly acquire data from a storage medium to generate sound signals.
  • the speaker 100 may include a component with a sound acquisition function, by picking up sound in the environment, converting the mechanical vibration of the sound into an electrical signal, and processing it through an amplifier to obtain an electrical signal that meets specific requirements.
  • wired connections may include metallic cables, optical cables, or hybrid metallic and optical cables, eg, coaxial cables, communication cables, flexible cables, spiral cables, non-metallic sheathed cables, metallic sheathed cables, One or more combinations of multi-core cable, twisted pair cable, ribbon cable, shielded cable, telecommunication cable, twin-stranded cable, parallel twin-core wire, twisted pair, etc.
  • metallic cables e.g, coaxial cables, communication cables, flexible cables, spiral cables, non-metallic sheathed cables, metallic sheathed cables, One or more combinations of multi-core cable, twisted pair cable, ribbon cable, shielded cable, telecommunication cable, twin-stranded cable, parallel twin-core wire, twisted pair, etc.
  • the examples described above are only used for convenience of illustration, and the medium of the wired connection may also be other types, for example, other transmission carriers of electrical signals or optical signals.
  • Wireless connections may include radio communications, free space optical communications, acoustic communications, and electromagnetic induction, among others.
  • the radio communication can include IEEE802.11 series standards, IEEE802.15 series standards (such as Bluetooth technology and cellular technology, etc.), first-generation mobile communication technology, second-generation mobile communication technology (such as FDMA, TDMA, SDMA, CDMA, and SSMA, etc.), general packet radio service technology, third-generation mobile communication technologies (such as CDMA2000, WCDMA, TD-SCDMA, and WiMAX, etc.), fourth-generation mobile communication technologies (such as TD-LTE and FDD-LTE, etc.), satellite Communication (such as GPS technology, etc.), near field communication (NFC) and other technologies operating in the ISM frequency band (such as 2.4GHz, etc.); free space optical communication may include visible light, infrared signals, etc.; acoustic communication may include sound waves, ultrasonic signals, etc.
  • Electromagnetic induction can include near field communication technology and so on.
  • the examples described above are only for convenience of illustration, and the medium of wireless connection may also be other types, for example, Z-wave technology, other chargeable civil radio frequency bands and military radio frequency bands, and the like.
  • the speaker 100 may acquire signals containing sound information from other devices through the Bluetooth technology.
  • the vibration housing may constitute a sealed or non-sealed accommodation space, and the vibration element may be arranged inside the vibration housing.
  • the vibration housing may include a vibration panel and a housing side panel and a housing back panel connected to the vibration panel.
  • the vibration panel 2131 , the casing side plate 2132 and the casing back plate 2133 may constitute an accommodation space, and the vibration element 211 may be arranged in the accommodation space.
  • the housing side panel 2132 and the housing back panel 2133 may be separate components from each other.
  • the casing side plate 2132 and the casing back plate 2133 may be connected and fixed by physical means or other connection structures.
  • the casing side plate 2132 and the casing back plate 2133 may be separately formed plate-like members, and then connected together by means of bonding.
  • the casing side plate 2132 and the casing back plate 2133 may be different parts of the same structure, that is, the connecting surfaces of the two without a partition.
  • the vibration housing 213 may include a hemispherical housing or a semi-ellipsoidal housing and a vibration panel 2131 connected thereto.
  • the hemispherical casing or the hemispherical casing may include a casing side plate 2132 and a casing back plate 2133, and the casing side plate 2132 and the casing back plate 2133 have no obvious boundaries.
  • a portion connected to the vibration panel 2131 is referred to as a casing side plate 2132
  • the remaining portion may be referred to as a casing back plate 2133 .
  • the vibration panel 2131 may refer to a structure in contact with the user's facial skin.
  • the vibration panel 2131 may be connected with the vibration element 211 , and the mechanical vibration generated by the vibration element 211 may be transmitted to the user via the vibration panel 2131 .
  • the speaker in this specification transmits sound mainly through bone conduction, and bone conduction transmits mechanical vibrations to the user through components (eg, the vibration panel 2131 ) that are in contact with the user's body (eg, the user's facial skin), through the user's
  • the skin and bones transmit to the user's auditory nerve so that the user can hear sound.
  • the contact area of the vibration panel 2131 with the user's facial skin is at least larger than the preset contact area.
  • the predetermined contact area may be in the range of 50 mm 2 to 1000 mm 2 . In some embodiments, the predetermined contact area may be in the range of 75 mm 2 to 850 mm 2 . In some embodiments, the predetermined contact area may be in the range of 100 mm 2 to 700 mm 2 .
  • the vibration housing may not constitute an accommodation space.
  • the vibrating housing may include only a vibrating panel in contact with the user's face without housing side panels or housing back panels.
  • the vibration housing 1013 is a plate-like structure, and the vibration housing 1013 of the plate-like structure is directly connected to the vibration element 1011 and is in contact with the user's facial skin, so in this In an embodiment, the vibration housing 1013 itself is equivalent to a vibration panel.
  • the vibrating panel (eg, vibrating panel 2131 shown in FIG. 2 ) may be in direct contact with the user's facial skin.
  • the outer side of the vibration panel of the speaker 100 may wrap a vibration transmission layer, the vibration transmission layer may be in contact with the user's facial skin, and the vibration system composed of the vibration panel and the vibration transmission layer may generate sound vibrations through the vibration transmission layer.
  • the outer side of the vibration panel is wrapped with a vibration transmission layer.
  • the outer side of the vibration panel can be wrapped with multiple layers of vibration transmission layers.
  • the vibration transmission layer may be made of one or more materials, and the material composition of different vibration transmission layers may be the same or different.
  • the multiple layers of vibration transmission layers may be superimposed on each other in the thickness direction of the vibration panel, or may be arranged in a horizontal direction of the vibration panel, or a combination of the above two arrangements.
  • the area of the vibration transmission layer can be set to various sizes. In some embodiments, the area of the vibration transmission layer may be no less than 1 cm 2 . In some embodiments, the area of the vibration transmission layer may be no less than 2 cm 2 . In some embodiments, the area of the vibration transmission layer may be no less than 6 cm 2 .
  • the vibration transmission layer may be composed of materials with certain adsorption, flexibility, and chemical properties.
  • plastics including but not limited to high molecular polyethylene, blow-molded nylon, engineering plastics, etc.
  • rubber and other single or composite materials that can achieve the same properties.
  • type of rubber including but not limited to general-purpose rubber and special-purpose rubber.
  • General purpose rubbers may include, but are not limited to, natural rubber, isoprene rubber, styrene-butadiene rubber, butadiene rubber, neoprene, and the like.
  • Special type rubbers may include, but are not limited to, nitrile rubber, silicone rubber, fluorine rubber, polysulfide rubber, urethane rubber, chlorohydrin rubber, acrylate rubber, propylene oxide rubber, and the like.
  • the styrene-butadiene rubber may include, but is not limited to, emulsion-polymerized styrene-butadiene rubber and solution-polymerized styrene-butadiene rubber.
  • reinforcing materials such as glass fibers, carbon fibers, boron fibers, graphite fibers, fibers, graphene fibers, silicon carbide fibers, or aramid fibers may be included but not limited to.
  • It can also be a composite of other organic and/or inorganic materials, such as glass fiber reinforced unsaturated polyester, epoxy resin or phenolic resin matrix composed of various types of glass fiber reinforced plastic.
  • Other materials that can be used to make the vibration transmission layer also include a combination of one or more of silicone, polyurethane (Poly Urethane), and polycarbonate (Poly Carbonate).
  • the vibrating element can be attached anywhere on the vibrating housing.
  • the vibration element 1211 may be directly connected to the vibration panel 12131 .
  • the vibration element 411 may be connected to the side plate 4132 of the casing. The mechanical vibration generated by the vibration element 411 will be transmitted to the casing side plate 4132 first, then to the vibration panel 4131 , and finally to the user by the vibration panel 4131 .
  • the vibration damping assembly 120 may be connected with a vibration housing (eg, the vibration housing 413 shown in FIG. 4 ) to reduce the mechanical vibration intensity of the vibration housing.
  • the vibration damping assembly 120 may be directly connected to the vibration panel of the vibration housing.
  • the damping assembly 1020 (the first elastic element 1021 of the damping assembly 1020 ) is connected to the vibration panel 12131 .
  • the vibration damping assembly 120 may be connected to other components of the vibration housing.
  • the vibration damping assembly 420 is connected to the housing back plate 4133 of the vibration housing 413 .
  • the damping assembly 120 may include a first elastic element (eg, the first elastic element 421 shown in FIG. 4 ).
  • the first elastic element may have some damping. In some cases, when the vibrating housing vibrates, the first elastic element connected to it can absorb the mechanical energy of the vibrating housing and reduce the vibration amplitude of the vibrating housing.
  • the damping of the first elastic element may be in the range of 0.005N.s/m ⁇ 0.5N.s/m. In some embodiments, the damping of the first elastic element may be in the range of 0.0075 N.s/m to 0.4 N.s/m. In some embodiments, the damping of the first elastic element may be in the range of 0.01 N.s/m ⁇ 0.3 N.s/m.
  • the damping assembly 120 may include a first elastic element (eg, the first elastic element 421 shown in FIG. 4 ) and a mass element (eg, the mass element shown in FIG. 4 ) connected to the first elastic element 423).
  • the mass element may form a resonance assembly with the first elastic element.
  • the mechanical energy of the vibration shell can be transmitted to the mass element through the first elastic element, causing the mass element to vibrate, so as to absorb the mechanical energy of the vibration shell and reduce the vibration intensity of the vibration shell.
  • the damping assembly 120 may include one or more sets of resonant assemblies.
  • the number of resonant components may be one set.
  • the vibration damping assembly 420 includes only one set of resonance assemblies, and the first elastic element 421 of which is connected to the outer wall of the casing back plate 4133 of the vibration casing 413 .
  • the number of resonance components may be at least two groups.
  • the vibration damping assembly 1620 may include two sets of resonant assemblies, both of which are disposed on the inner wall of the housing backplane 16133 .
  • factors such as the location of the resonant components, the connection method of each set of resonant components, and the resonant frequency of the resonant components may affect the vibration reduction of the vibration damping component 120 . effect has an impact.
  • At least two sets of resonant assemblies may be disposed inside the vibration housing and/or outside the vibration housing.
  • at least two groups of resonant components may be disposed inside the vibration housing.
  • both sets of resonance components are connected to the inner wall of the back plate 16133 of the housing.
  • at least two sets of resonant assemblies may both be disposed outside the vibration housing.
  • at least two sets of resonant components are disposed inside and outside the vibration shell, respectively.
  • some resonance components are arranged outside the vibration shell, and the first elastic element of which is connected to the outer wall of the back plate of the shell, while other resonance components are arranged inside the vibration shell, and the first elastic element of which is connected to the outer wall of the back plate of the shell.
  • Inner wall connection for example, some resonance components are arranged outside the vibration shell, and the first elastic element of which is connected to the outer wall of the back plate of the shell, while other resonance components are arranged inside the vibration shell, and the first elastic element of which is connected to the outer wall of the back plate of the shell.
  • At least two sets of resonant assemblies may each be directly connected to the inner or outer walls of the vibrating housing.
  • at least two groups of resonance components may be directly connected to the inner wall of the vibration housing by means of bonding, welding, integral molding, riveting, screw connection, or the like.
  • the first elastic elements eg, the first elastic element 1621-1 and the first elastic element 1621-2
  • the two sets of resonance components are both directly connected to the inner wall of the housing back plate 16133 connect.
  • at least one of the at least two sets of resonant assemblies may be connected to other resonant assemblies without being directly connected to the inner wall of the vibration housing.
  • first resonance component 1720-1 and a second resonance component 1720-2 there are two groups of resonance components (including a first resonance component 1720-1 and a second resonance component 1720-2), the first resonance component 1720-1 and the housing backplane 17133
  • the inner wall of the shell is directly connected (its first elastic element 1721-1 is connected with the inner wall of the shell back plate 17133).
  • the first elastic element 1721-2 of the second resonance element 1720-2 is stacked on the first resonance element 1720-1 along the thickness direction of the first elastic element 1721-1 of the first resonance element 1720-1.
  • Element 1721-2 is connected to mass element 1723-1 of first resonant assembly 1720-1.
  • the vibration damping component 1620 when at least two sets of resonant assemblies are disposed on the inner wall or the outer wall of the vibration housing, adjacent two sets of resonant assemblies may be spaced apart by a preset distance.
  • the vibration damping component 1620 includes two sets of resonance components (eg, the first resonance component 1620-1 and the second resonance component 1620-2), and the first elastic element of the two sets of resonance components (For example, the first elastic element 1621-1 and the first elastic element 1621-2) are both directly connected with the inner wall of the housing back plate 16133, and the edges of the two first elastic elements are separated by a preset distance.
  • the preset distance may be in the range of 0.1 mm ⁇ 70 mm.
  • the preset distance may be in the range of 0.2mm ⁇ 60mm. In some embodiments, the preset distance may be in the range of 0.3mm ⁇ 50mm.
  • the resonance assembly may include a positioning member, and the positioning member may be fixedly disposed on the vibration housing to position the first elastic element, so as to accurately install the first elastic element on the vibration housing.
  • the positioning member may be an injection-molded perimeter provided on the vibration housing, and the plastic perimeter may locate the edge of the first elastic element.
  • At least two sets of resonant assemblies may be the same or similar.
  • the same or similar resonance components mentioned herein may refer to the same or similar resonance frequencies including the mass unit, the first elastic element and the resonance components.
  • the at least two sets of resonant components may also be different. Exemplarily, in the embodiment shown in FIG. 16 , the sizes of the first elastic element and the mass element of the two groups of resonance components are obviously different.
  • the resonant frequencies of the at least two sets of resonant components may be different.
  • each group of resonant components can produce a vibration reduction effect in a frequency band near the respective resonant frequency.
  • the vibration damping component 420 further includes another set of resonance components (also including a mass element and a first elastic element), and the resonance frequency thereof is about 300 Hz.
  • the mechanical energy of the vibration housing 413 is effectively absorbed within the range of 350 Hz.
  • the original resonance component ie the resonance component composed of the mass element 423 and the first elastic element 421 has a resonance frequency of the second frequency f0, which can effectively absorb the mechanical energy of the vibration shell 413 in the low frequency region (eg, 100Hz to 200Hz) . Therefore, the two groups of resonance components of the vibration damping component 420 can absorb the mechanical energy of the vibration housing 413 in two frequency ranges, thereby effectively broadening the frequency range of the vibration damping component 420 to absorb vibration.
  • the resonant frequencies of each group of resonant components may be the same or similar.
  • the vibration damping component 420 further includes another set of resonance components (including a mass element and a first elastic element), and the resonance frequency of the set of resonance components is the same as that of the original resonance components (ie The resonant components composed of the mass element 423 and the first elastic element 421) are the same or similar.
  • the resonant frequencies of the two sets of resonant components are both the second frequency f0, it is equivalent to enhancing the frequency band of the vibration damping component 420 near the second frequency f0 damping effect.
  • the vibration assembly 110 may further include a second elastic element (for example, the second elastic element 215 shown in FIG. 2 ), the second elastic element may connect the vibration element with the vibration housing, and the mechanical vibration generated by the vibration element The vibration may be transmitted to the vibration housing via the second elastic element, thereby causing vibration of the vibration panel.
  • a second elastic element for example, the second elastic element 215 shown in FIG. 2
  • the second elastic element may connect the vibration element with the vibration housing, and the mechanical vibration generated by the vibration element The vibration may be transmitted to the vibration housing via the second elastic element, thereby causing vibration of the vibration panel.
  • the fixing component 130 can play a fixed supporting role for the vibration component 110 and the vibration damping component 120, so as to keep the speaker 100 in stable contact with the user's facial skin.
  • the fixation assembly 130 may include one or more fixation connectors.
  • One or more fixed connectors may be connected and fixed with the vibration assembly 110 and/or the vibration damping assembly 120 .
  • a binaural fit may be achieved by securing assembly 130 .
  • both ends of the fixing component 130 may be fixedly connected to the two groups of vibration components 110 (or vibration damping components 120 ) respectively.
  • the fixing assembly 130 can respectively fix the two groups of vibration assemblies 110 (or vibration reduction assemblies 120) near the user's left and right ears.
  • the securing assembly 130 may also be worn on a single ear.
  • the fixed assembly 130 may only be fixedly connected with one set of the vibration assembly 110 (or the vibration damping assembly 120).
  • the fixing assembly 130 may fix the vibration assembly 110 (or the vibration damping assembly 120) near the user's ear.
  • the securing components 130 may be glasses.
  • sunglasses any combination of one or more of sunglasses, augmented reality glasses (Virtual Reality, VR), virtual reality glasses (Augmented Reality, AR), helmet, and hair band, which is not limited herein.
  • speaker 100 may include one or more processors that may execute one or more sound signal processing algorithms. Sound signal processing algorithms can modify or enhance the sound signal.
  • the speaker 100 may include one or more sensors, such as a temperature sensor, a humidity sensor, a velocity sensor, a displacement sensor, and the like. The sensor can collect user information or environmental information.
  • FIG. 2 is a schematic longitudinal cross-sectional view of a loudspeaker without adding vibration damping components according to some embodiments of the present specification.
  • the speaker 200 may include a vibration component 210 and a fixing component 230 .
  • the vibration assembly 210 may include a vibration element 211 , a vibration housing 213 , and a second elastic element 215 elastically connecting the vibration element 211 and the vibration housing 213 .
  • the vibration element 211 can convert the sound signal into a mechanical vibration signal and thereby generate mechanical vibration.
  • the mechanical vibration generated by the vibration element 211 can be transmitted to the vibration housing 213 connected thereto through the second elastic element 215 , so that the vibration housing 213 vibrates.
  • the vibration frequency of the vibration housing 213 is the same as the vibration frequency of the vibration element 211 .
  • the vibration element 211 described in this specification may refer to an element that converts a sound signal into a mechanical vibration signal, for example, a transducer.
  • the vibrating element 211 may include a magnetic circuit assembly and a coil, the magnetic circuit assembly may be used to form a magnetic field in which the coil may mechanically vibrate.
  • the coil can be fed with a signal current, and the coil is in the magnetic field formed by the magnetic circuit assembly, and is driven by the ampere force to generate mechanical vibration.
  • the magnetic circuit assembly is subjected to a reaction force opposite to that of the coil. Under the action of ampere force, the vibration element 211 can generate mechanical vibration. And the mechanical rotation of the vibration element 211 can be transferred to the vibration housing 213, so that the vibration housing 213 also vibrates accordingly.
  • the vibration housing 213 may include a vibration panel 2131 , a housing side panel 2132 and a housing back panel 2133 .
  • the vibration panel 2131 may also be referred to as a casing panel, and both may refer to the components of the vibration casing 213 in contact with the user's facial skin.
  • the casing back plate 2133 is located on the side opposite to the vibration panel 2131 , that is, the side facing away from the user's facial skin.
  • the vibration panel 2131 and the housing back panel 2133 are respectively disposed on both ends of the housing side panel 2132 .
  • the vibration panel 2131 , the casing side plate 2132 and the casing back plate 2133 may form a shell-like structure with a certain accommodating space.
  • the vibration element 211 may be provided inside the shell-like structure.
  • the vibration panel 2131 and the housing side plate 2132 may be directly connected.
  • the vibration panel 2131 and the casing side plate 2132 can be connected by means of bonding, riveting, welding, screw connection, integral molding, or the like.
  • the vibration panel 2131 and the housing side panel 2132 may be connected by a connector.
  • the vibration panel 2131 and the housing side plate 2132 may be rigidly connected.
  • the vibration panel 2131 and the casing side plate 2132 are connected by welding, riveting, etc., and the vibration panel 2131 and the casing side plate 2132 are rigidly connected after the connection.
  • the vibration panel 2131 and the casing side plate 2132 may be elastically connected.
  • the vibration panel 2131 and the housing side plate 2132 are connected by elastic members (eg, spring, foam, glue, etc.), and the connected vibration panel 2131 and the housing side plate 2132 are elastically connected.
  • the connecting piece may have a certain elasticity, so as to reduce the intensity of mechanical vibration transmitted to the side plate of the casing and the back plate of the casing through the connecting piece, and reduce the sound leakage caused by the vibration of the vibrating casing.
  • the elasticity of the connector is determined by the material, thickness and structure of the connector.
  • the rigid connection or the elastic connection between the vibration panel 2131 and the casing side plate 2132 can be determined according to the actual situation. Exemplarily, it may be determined according to the connection between the vibration element 211 and the vibration housing 213 . For example, in the embodiment shown in FIG.
  • the vibration panel 4131 and the casing side plate 4132 may be rigidly connected.
  • the vibration element 1211 is connected to the vibration panel 12131 , and the vibration panel 12131 and the housing side plate 2132 may be elastically connected.
  • the material of the connector including but not limited to steel (for example, stainless steel, carbon steel, etc.), light alloy (for example, aluminum alloy, beryllium copper, magnesium alloy, titanium alloy, etc.), plastic (for example, high molecular polyethylene, etc.) , blow-molded nylon, engineering plastics, etc.), or other single or composite materials that can achieve the same performance.
  • steel for example, stainless steel, carbon steel, etc.
  • light alloy for example, aluminum alloy, beryllium copper, magnesium alloy, titanium alloy, etc.
  • plastic for example, high molecular polyethylene, etc.
  • blow-molded nylon engineering plastics, etc.
  • the material constituting the connector can also be a composite of other organic and/or inorganic materials, for example, various glass fiber reinforced plastics composed of glass fiber reinforced unsaturated polyester, epoxy resin or phenolic resin matrix.
  • the thickness of the connector may be no less than 0.005mm. In some embodiments, the thickness of the connector may be between 0.005mm and 3mm. In some embodiments, the thickness of the connector may be between 0.01 mm and 2 mm. In some embodiments, the thickness of the connector may be between 0.01 mm and 1 mm. In some embodiments, the thickness of the connector may be between 0.02 mm and 0.5 mm.
  • the structure of the connecting member can be set to be annular, and the annular connecting member can be formed in different shapes.
  • the connector may include at least one annular ring.
  • the connector may include at least two rings, which may be concentric rings or non-concentric rings, the rings are connected by at least two struts, and the struts radiate from the outer ring to the center of the inner ring .
  • the connector may include at least one elliptical ring.
  • the connecting piece may include at least two elliptical rings, different elliptical rings have different radii of curvature, and the rings are connected by struts.
  • the connector may include at least one square ring.
  • the connector structure can also be set in a sheet shape.
  • a hollow pattern may be provided on the sheet-like connector.
  • the area of the hollow pattern is not smaller than the area of the non-hollow portion of the connector.
  • the materials, thicknesses and structures of the connecting elements in the above description can be combined into different connecting elements in any manner.
  • the annular connectors may have different thickness distributions.
  • the strut thickness may be equal to the ring thickness.
  • the thickness of the strut may be greater than the thickness of the ring.
  • the connecting member may include at least two rings, the rings are connected by at least two struts, and the struts radiate from the outer ring to the center of the inner ring, and the thickness of the inner ring is greater than that of the outer ring.
  • the source of the mechanical vibration of the vibration panel 2131 is the mechanical energy transmitted from the casing side plate 2132.
  • a rigid connection can be set between the vibration panel 2131 and the casing side plate 2132 .
  • the vibration panel 2131 , the housing side panel 2132 and the housing back panel 2133 may be made of the same or different materials.
  • the vibration panel 2131 and the casing side plate 2132 can be made of the same material, and the material of the casing back plate 2133 can be different from the former two.
  • the vibration panel 2131 , the casing side plate 2132 and the casing back plate 2133 may be made of different materials respectively.
  • materials for making the vibration panel 2131 include, but are not limited to, acrylonitrile-butadiene styrene (ABS), polystyrene (PS), high-impact polystyrene ( High impact polystyrene, HIPS), polypropylene (Polypropylene, PP), polyethylene terephthalate (Polyethylene terephthalate, PET), polyester (Polyester, PES), polycarbonate (Polycarbonate, PC), polyamide ( Polyamides, PA), polyvinyl chloride (PVC), polyurethane (Polyurethanes, PU), polyvinylidene chloride (Polyvinylidene chloride), polyethylene (Polyethylene, PE), polymethyl methacrylate (Polymethyl methacrylate, PMMA) ), Poly-ether-ether-ketone (PEEK), Phenolics (PF), Urea-formaldehyde (UF), Melamine-formaldehyde (MF) and some metal
  • the material for making the vibration panel 2131 is any combination of glass fiber, carbon fiber, polycarbonate (Polycarbonate, PC), polyamide (Polyamides, PA) and other materials.
  • the material for making the vibration panel 2131 may be a mixture of carbon fiber and polycarbonate (Polycarbonate, PC) in a certain proportion.
  • the material for making the vibration panel 2131 can be made by mixing carbon fiber, glass fiber and polycarbonate (PC) in a certain proportion.
  • the material for making the vibration panel 2131 can be made by mixing glass fiber and polycarbonate (PC) according to a certain ratio, or it can be made by mixing glass fiber and polyamide (PA) according to a certain ratio. to make.
  • the vibration panel 2131 needs to have a certain thickness to ensure its rigidity. In some embodiments, the thickness of the vibration panel 2131 may not be less than 0.3 mm. In some embodiments, the thickness of the vibration panel 2131 may not be less than 0.5 mm. In some embodiments, the thickness of the vibration panel 2131 may not be less than 0.8 mm. In some embodiments, the thickness of the vibration panel 2131 may not be less than 1 mm. As the thickness increases, the weight of the vibration housing 213 also increases, thereby increasing the self-weight of the speaker 200 , which affects the sensitivity of the speaker 200 . Therefore, the thickness of the vibration panel 2131 should not be too large. In some embodiments, the thickness of the vibration panel 2131 may not exceed 2.0 mm. In some embodiments, the thickness of the vibration panel 2131 may not exceed 1.5 mm.
  • the relevant parameters of the vibration panel 2131 may further include the relative density, tensile strength, elastic modulus, Rockwell hardness, etc. of the material for making the vibration panel 2131 .
  • the relative density of the vibration panel material may be between 1.02 and 1.50. In some embodiments, the relative density of the vibration panel material may be between 1.14 and 1.45. In some embodiments, the relative density of the vibration panel material may be between 1.15 and 1.20.
  • the tensile strength of the vibration panel material may be no less than 30 MPa. In some embodiments, the tensile strength of the vibration panel material may be between 33 MPa and 52 MPa.
  • the tensile strength of the vibration panel material may be no less than 60 MPa.
  • the elastic modulus of the vibration panel material may be between 1.0 GPa and 5.0 GPa.
  • the elastic modulus of the vibration panel material may be between 1.4 GPa and 3.0 GPa.
  • the elastic modulus of the vibration panel material may be between 1.8 GPa and 2.5 GPa.
  • the hardness (Rockwell hardness) of the vibration panel material may be between 60-150.
  • the hardness of the vibration panel material may be between 80-120.
  • the hardness of the vibration panel material may be between 90-100.
  • the relative density may be between 1.02 and 1.1, and the tensile strength may be between 33 MPa and 52 MPa. In some embodiments, the relative density may be between 1.20 and 1.45, and the tensile strength may be between 56 MPa and 66 MPa.
  • the vibration panel 2131 may be provided in different shapes.
  • the vibration panel 2131 can be arranged in a square, a rectangle, an approximate rectangle (for example, a structure in which the four corners of the rectangle are replaced by arcs), an ellipse, a circle, or any other shape.
  • the vibration panel 2131 may be composed of the same material. In some embodiments, the vibration panel 2131 may be formed by stacking two or more materials. In some embodiments, the vibration panel 2131 may be composed of a layer of material with a larger Young's modulus and a layer of material with a smaller Young's modulus. The advantage of this is that while ensuring the rigidity requirement of the vibration panel 2131, it can also increase the comfort in contact with the human face, and improve the degree of coordination between the vibration panel 2131 and the human face.
  • the material with a larger Young's modulus may be acrylonitrile-butadiene-styrene (ABS), polystyrene (PS), high-impact polystyrene ( High impact polystyrene, HIPS), polypropylene (Polypropylene, PP), polyethylene terephthalate (Polyethylene terephthalate, PET), polyester (Polyester, PES), polycarbonate (Polycarbonate, PC), polyamide ( Polyamides, PA), polyvinyl chloride (PVC), polyurethane (Polyurethanes, PU), polyvinylidene chloride (Polyvinylidene chloride), polyethylene (Polyethylene, PE), polymethyl methacrylate (Polymethyl methacrylate, PMMA) ), Poly-ether-ether-ketone (PEEK), Phenolics (PF), Urea-formaldehyde (UF), Melamine-formaldehyde (MF) and some metals ,
  • ABS
  • the vibration panel 2131 may be in direct contact with the user's facial skin.
  • the contact portion of the vibration panel 2131 with the user's facial skin may be the entire area or part of the area of the vibration panel 2131 .
  • the vibration panel 2131 is an arc-shaped structure, and only part of the area of the arc-shaped structure is in contact with the user's facial skin.
  • the vibration panel 2131 may be in face-to-face contact with the user's facial skin.
  • the surface of the vibration panel 2131 in contact with the user's facial skin may be a flat surface.
  • the outer surface of the vibration panel 2131 may have some protrusions or dimples.
  • the outer surface of the vibration panel 2131 may be a curved surface of any contour.
  • the vibration panel 2131 may be in indirect contact with the user's facial skin.
  • the vibration panel 2131 may be provided with the vibration transmission layer in the previous embodiment, and the vibration transmission layer may be interposed between the vibration panel 2131 and the user's face. Between the skins, the vibration panel 2131 is in contact with the user's facial skin.
  • the vibration element 211 since the vibration element 211 includes a magnetic circuit assembly, the vibration element 211 is accommodated in the vibration housing 213 . Therefore, when the volume of the vibration housing 213 (ie, the volume of the accommodating space) is larger, the interior of the vibration housing 213 can accommodate larger magnetic circuit components, so that the speaker 200 has higher sensitivity.
  • the sensitivity of the speaker 200 can be reflected by the volume of the speaker 200 when a certain sound signal is input. When the same sound signal is input, the louder the volume generated by the speaker 200 is, the higher the sensitivity of the speaker 200 is.
  • the volume of the speaker 200 increases as the volume of the accommodating space of the vibration housing 213 increases. Therefore, this specification also has certain requirements for the volume of the vibration housing 213 .
  • the volume of the vibration housing 213 may be between 2000 mm 3 and 6000 mm 3 . In some embodiments, the volume of the vibration housing 213 may be between 2000 mm 3 and 5000 mm 3 . In some embodiments, the volume of the vibration housing 213 may be between 2800 mm 3 and 5000 mm 3 . In some embodiments, the volume of the vibration housing 213 may be between 3500 mm 3 and 5000 mm 3 . In some embodiments, the volume of the vibration housing 213 may be between 1500 mm 3 and 3500 mm 3 . In some embodiments, the volume of the vibration housing 213 may be between 1500 mm 3 and 2500 mm 3 .
  • the fixing component 230 is fixedly connected to the vibration housing 213 of the vibration component 210.
  • the fixing component 230 is used to keep the speaker 200 in stable contact with the user's facial skin, avoid shaking of the speaker 200, and ensure that the vibration panel 2131 can Stable sound transmission.
  • the fixing component 230 may be an arc-shaped elastic member, which can form a force that rebounds toward the middle of the arc, so as to be able to stably contact the human skull. Taking the ear hook as the fixing component 230 as an example, on the basis of FIG. 2 , the top p point of the ear hook fits well with the head of the human body, and the top p point can be considered as the fixed point.
  • the ear hook is fixedly connected to the shell side plate 2132, and the fixed connection method includes using glue to fix it, or fixing the ear hook to the shell side plate 2132 or the shell back plate 2133 by clamping, welding or screw connection, etc. .
  • the part of the ear hook connected to the vibration shell 213 may be made of the same, different or partially the same material as the shell side plate 2132 or the shell back plate 2133 .
  • the earhook in order to make the earhook have lower stiffness (ie, lower stiffness coefficient), the earhook may further include plastic, silicone and/or metal materials. For example, an arc-shaped titanium wire may be included in the earhook.
  • the earhook may be integrally formed with the case side panel 2132 or the case back panel 2133 .
  • the vibration assembly 210 and the vibration housing 213 reference may be made to PCT applications with application numbers PCT/CN2019/070545 and PCT/CN2019/070548 filed on January 5, 2019, the entire contents of which are incorporated by reference in this application.
  • the vibration assembly 210 further includes a second elastic element 215 .
  • the second elastic element 215 can be used to elastically connect the vibration element 211 with the vibration housing 213 (eg, the housing side plate 2132 of the vibration housing 213 ), so that the mechanical vibration of the vibration element 211 can be transmitted to the vibration housing 213 through the second elastic element 215
  • Vibration on the casing side plate 2132 of the casing 213 finally causes the vibration panel 2131 to vibrate.
  • the vibration panel 2131 generates mechanical vibration, it is in contact with the wearer's (or user's) facial skin, and the mechanical vibration is transmitted to the auditory nerve via bone conduction in a manner of bone conduction, so that the user can hear the sound.
  • the vibration element 211 and the second elastic element 215 may be accommodated inside the vibration housing 213 , and the second elastic element 215 may connect the vibration element 211 with the inner wall of the vibration housing 213 .
  • the second elastic element 215 may include a first portion and a second portion. The first portion of the second elastic element 215 may be connected with the vibration element 211 (eg, the magnetic circuit assembly of the vibration element 211 ), and the second portion of the second elastic element 215 may be connected with the inner wall of the vibration housing 213 .
  • the second elastic element 215 may be a vibration transmission sheet.
  • the first part of the vibration transmission sheet can be connected with the vibration element 211
  • the second part of the vibration transmission sheet can be connected with the vibration housing 213 .
  • the first part of the vibration transmission piece can be connected with the magnetic circuit assembly of the vibration element 211
  • the second part of the vibration transmission piece can be connected with the inner wall of the vibration housing 213 .
  • the vibration transmission sheet has an annular structure, and the first portion of the vibration transmission sheet is closer to the central area of the vibration transmission sheet than the second portion.
  • the first portion of the vibration transmission sheet may be located in the central region of the vibration transmission sheet, and the second portion is located at the peripheral side of the vibration transmission sheet.
  • the vibration-transmitting sheet may be an elastic member.
  • the elasticity of the vibration transmission sheet can be determined by the material, thickness, structure and other aspects of the vibration transmission sheet.
  • the materials for making the vibration transmission sheet include, but are not limited to, plastics (eg, but not limited to high molecular polyethylene, blow-molded nylon, engineering plastics, etc.), steel (eg, but not limited to stainless steel, carbon steel, etc.) etc.), light alloys (such as, but not limited to, aluminum alloys, beryllium copper, magnesium alloys, titanium alloys, etc.), or other single or composite materials that can achieve the same properties.
  • plastics eg, but not limited to high molecular polyethylene, blow-molded nylon, engineering plastics, etc.
  • steel eg, but not limited to stainless steel, carbon steel, etc.
  • light alloys such as, but not limited to, aluminum alloys, beryllium copper, magnesium alloys, titanium alloys, etc.
  • the composite material may include, but is not limited to, glass fiber, carbon fiber, boron fiber, graphite fiber, graphene fiber, silicon carbide fiber or aramid fiber and other reinforcing materials, or other organic and/or inorganic material composites, for example, glass Fiber reinforced unsaturated polyester, epoxy resin or phenolic resin matrix composed of various types of glass fiber reinforced plastics.
  • the vibration transfer sheet may have a certain thickness. In some embodiments, the thickness of the vibration transmission sheet may not be less than 0.005mm. In some embodiments, the thickness of the vibration transmission sheet may be between 0.005 mm and 3 mm. In some embodiments, the thickness of the vibration transmission sheet may be between 0.01 mm and 2 mm. In some embodiments, the thickness of the vibration transmission sheet may be between 0.01 mm and 1 mm. In some embodiments, the thickness of the vibration transmission sheet may be between 0.02 mm and 0.5 mm.
  • the elasticity of the vibration transmission sheet may be provided by the structure of the vibration transmission sheet.
  • the vibration-transmitting sheet can be an elastic structure, and even if the material for making the vibration-transmitting sheet has high stiffness, its structure can provide elasticity.
  • the structure of the vibration transmission sheet may include, but is not limited to, a spring-like structure, a ring or a ring-like structure, and the like.
  • the structure of the vibration transmission sheet can also be set in a sheet shape.
  • the structure of the vibration transmission sheet can also be arranged in a strip shape. The specific structure of the vibration transmission sheet can be combined based on the materials, thicknesses and structures described above to form different vibration transmission sheets.
  • the plate-shaped vibration-transmitting sheet may have different thickness distributions, and the thickness of the first portion of the vibration-transmitting sheet is greater than the thickness of the second portion of the vibration-transmitting sheet.
  • the number of vibration-transmitting sheets may be one or multiple.
  • the number of the vibration transmission sheets can be two, the second parts of the two vibration transmission sheets are respectively connected to the inner walls of the two housing side plates 2132 in opposite positions, and the first parts of the two vibration transmission sheets are connected to the vibration Element 211 is connected.
  • the vibration transmission sheet can be directly connected with the vibration housing 213 and the vibration element 211 .
  • the vibration transmission sheet may be connected to the vibration element 211 and the vibration housing 213 by adhesive.
  • the vibration transmission sheet can also be welded, clamped, riveted, screwed (for example, connected by screws, screws, screws, bolts, etc.), clamped, pinned, wedge-keyed, integrated
  • the molding method is fixed with the vibration element 211 and the vibration housing 213 .
  • vibration transmission sheets please refer to the PCT applications with application numbers PCT/CN2019/070545 and PCT/CN2019/070548 filed on January 5, 2019, the entire contents of which are incorporated into this application by reference.
  • the vibration assembly 210 may further include a first vibration transmission connector.
  • the vibration transmission sheet may be connected to the vibration element 211 through the first vibration transmission connection member.
  • the first vibration-transmitting connector may be fixedly connected to the vibration element 211 , as shown in FIG. 2 .
  • the first vibration-transmitting connector may be fixed on the surface of the vibration element 211 .
  • the first portion of the vibration element 211 may be fixedly connected with the first vibration transmission connector.
  • the vibration transmission sheet can also be connected by welding, clamping, riveting, screw connection (for example, connected by screws, screws, screws, bolts, etc.), clamp connection, pin connection, wedge key connection, integrated It is fixed on the first vibration-transmitting connecting piece in a forming manner.
  • the vibration assembly 210 may further include a second vibration transmission connector, and the second vibration transmission connector may be fixed on the inner wall of the vibration housing 213 , for example, the second vibration transmission connector may be connected with the housing side plate 2132 The inner wall is fixed.
  • the vibration transmission sheet may be connected to the vibration housing 213 through the second vibration transmission connecting member.
  • the second portion of the vibration element 211 may be fixedly connected with the second vibration transmission connecting member.
  • the connection manner of the second vibration transmission connecting member and the vibration transmission sheet may be the same as or similar to the connection manner of the first vibration transmission connecting member and the vibration transmission sheet in the foregoing embodiments, and details are not described herein again.
  • FIG. 3 is a partial frequency response curve diagram of a loudspeaker without adding vibration damping components according to some embodiments of the present specification.
  • the horizontal axis is the frequency
  • the vertical axis is the vibration intensity (or vibration amplitude) of the speaker 200 .
  • the vibration intensity mentioned here can also be understood as the vibration acceleration of the speaker 200 .
  • the larger the numerical value on the vertical axis the larger the vibration amplitude of the speaker 200 is, and the stronger the vibration sense of the speaker 200 is.
  • a sound frequency range below 500 Hz may be referred to as a low frequency region
  • a sound frequency range from 500 Hz to 4000 Hz may be referred to as an intermediate frequency region
  • a sound frequency range greater than 4000 Hz may be referred to as a high frequency region.
  • the sound in the low-frequency region will bring the user a relatively obvious sense of vibration. If a sharp peak appears in the low-frequency region (that is, the vibration acceleration of certain frequencies is much higher than the vibration acceleration of other nearby frequencies), a On the one hand, the sound heard by the user will be harsh and sharp, and on the other hand, the strong vibration will also bring an uncomfortable feeling. Therefore, in the low frequency range, sharp peaks and valleys are not expected, and the flatter the frequency response curve is, the better the sound effect of the speaker 200 is.
  • the speaker 200 generates a low frequency resonance peak in the low frequency region (around 100 Hz).
  • the low-frequency resonance peak can be understood as being generated by the co-action of the vibration component 210 and the fixed component 230 .
  • the vibration acceleration of the low-frequency resonant peak is relatively large, resulting in a strong vibration sense of the vibration panel 2131 , so that the user may feel pain on the face when wearing the speaker 200 , which affects the user's comfort and experience.
  • FIG. 4 is a schematic longitudinal cross-sectional view of a loudspeaker to which a vibration damping assembly is added according to some embodiments of the present specification.
  • the speaker 400 includes a vibration assembly 410 and a vibration damping assembly 420 .
  • the vibration assembly 410 may include a vibration element 411 , a vibration housing 413 and a second elastic element 415 .
  • the vibration housing 413 may include a vibration panel 4131 , a housing side panel 4132 and a housing back panel 4133 .
  • the housing side plate 4132 of the vibration housing 413 is elastically connected to the vibration element 411 through the second elastic element 415 .
  • the vibration element 411 mechanically vibrates, the mechanical vibration can be transmitted to the casing side plate 4132 via the second elastic element 415, and then transmitted to the vibration panel 4131 and the casing back plate 4133 through the casing side plate 4132 to cause the vibration panel 4131 and the casing The body back plate 4133 vibrates.
  • the vibration element 411 , the vibration housing 413 , and the second elastic element 415 are respectively the same as or similar to the vibration element 211 , the vibration housing 213 , and the second elastic element 215 in the speaker 200 , and the details of their structures are not described here. Repeat.
  • the vibration damping assembly 420 may include a mass element 423 and a first elastic element 421, and the first elastic element 421 and the mass element 423 are fixedly connected to form a resonance assembly.
  • the mass element 423 may be connected to the vibration housing 413 through the first elastic element 421 .
  • the vibration housing 413 can transmit mechanical vibration to the mass element 423 through the first elastic element 421, and the mass element 423 is driven to perform mechanical vibration.
  • the vibration acceleration of the vibration housing 413 that is, the vibration intensity
  • can be weakened thereby reducing the vibration sense of the vibration housing 413 and improving the user experience.
  • the first elastic element 421 may be connected to any other position of the vibration housing 413 except the vibration panel 4131 .
  • the first elastic element 421 may be connected with the casing side plate 4132 or the casing back plate 4133 .
  • the first elastic element 421 may be connected to the outer wall of the housing back plate 4133 .
  • FIG. 5 is a partial frequency response curve diagram of a loudspeaker with a vibration damping component added according to some embodiments of the present specification.
  • FIG. 5 also shows the frequency response curve of the resonant component (composed of the first elastic element and the mass element). According to FIG. 5 , under the influence of the resonant component, the frequency response curve of the speaker 400 in the low frequency region becomes flatter, which avoids the strong vibration caused by the sharp low frequency resonance peak, and improves the user experience.
  • FIG. 6 is a schematic diagram of a simplified mechanical model of a loudspeaker without adding resonance components according to some embodiments of the present specification.
  • the mechanical model of the loudspeaker can be equivalent to the model shown in FIG. 6 .
  • the vibration shell and the vibration element can be simplified as the mass block m 1 and the mass block m 2
  • the fixed component for example, the ear hook
  • the second elastic element can be simplified as the elastic
  • the damping of the connecting piece k 2 , the elastic connecting piece k 1 and the elastic connecting piece k 2 are R 1 and R 2 , respectively.
  • the vibrating housing and the vibrating element vibrate under the action of the Ampere force F and the reaction force -F of the Ampere force, respectively.
  • a composite vibration system composed of a vibration shell, a vibration element, a second elastic element, and a fixed component is fixed at point p at the top of the ear hook.
  • FIG. 7 is a schematic diagram of a simplified mechanical model of a loudspeaker with resonant components added according to some embodiments of the present specification. Similar to FIG. 6 , for the convenience of understanding, when the loudspeaker includes a resonance component (composed of a mass element and a first elastic element), the mechanical model of the loudspeaker can be equivalent to the model shown in FIG. 7 .
  • m 1 and m 2 can represent the mass of the vibrating shell and the vibrating element, respectively
  • m 3 represents the mass of the mass element in the resonant assembly
  • k 1 and R 1 represent the mass of the fixed assembly (eg, the ear hook), respectively Resilience and damping
  • k 2 and R 2 represent the elasticity and damping of the second elastic element, respectively
  • k 3 and R 3 represent the elasticity and damping of the first elastic element.
  • the entire composite vibration system is fixed at point p at the top of the earhook, and the vibration shell and the vibration element are subjected to forces F and –F, respectively, to generate vibration.
  • the resonance component is added, it is equivalent to increase the stiffness and damping of the vibration shell.
  • the ampere force F does not change
  • the reaction force -F of the ampere force does not change, so the addition of the resonance component can reduce the vibration amplitude of the vibration shell. .
  • the vibration component 410 and the resonant component can each generate a low-frequency resonance peak at a specific frequency in the low-frequency region.
  • Using the resonance component to absorb the mechanical vibration of the vibration shell 413 can reduce the vibration shell 413 at its low-frequency resonance peak. the purpose of the mechanical vibration amplitude.
  • the curve “without resonant component” represents the frequency response of the speaker 400 when no resonant component is added. It can be seen that the vibration component 410 (in combination with the fixed component 430 ) can generate a first resonant peak 450 at the first frequency f.
  • the curve "with resonant component - resonant component" represents the frequency response of the resonant component itself.
  • the resonant assembly can produce a second resonance peak 460 at the second frequency f0.
  • the curve "with resonant component-speaker” represents the frequency response of loudspeaker 400 resulting from the interaction of vibratory component 410 and the resonant component.
  • the frequency response of the speaker 400 with the resonant component added in the low frequency region (for example, 100Hz-200Hz) is higher than the frequency response of the speaker without the resonant component (for example, the speaker 200 shown in FIG. 2 ) in the low frequency region.
  • its amplitude near the first frequency f ie, the frequency corresponding to the first resonance peak 450
  • the mechanical vibration generated by the vibration element 411 can be transmitted to the vibration housing 413 through the second elastic element 415, so that the vibration housing 413 is forced to vibrate. Therefore, the vibration frequency of the vibration housing 413 is the same as that of the vibration element. 411 vibrates at the same frequency.
  • the vibration housing 413 transmits the mechanical vibration to the mass element 423 of the resonance assembly through the first elastic element 421, causing the mass element 423 to be forced to move. Therefore, the vibration frequency of the mass element 423 is the same as the vibration frequency of the vibration housing 413 . It can be known from the variation law of the frequency response curve of the resonant component itself in FIG.
  • the vibration acceleration of the resonant component increases as the frequency increases. increase.
  • the frequency is the second frequency f0
  • the second resonance peak 460 appears.
  • the vibration acceleration of the resonance component decreases with the increase of the frequency.
  • the frequency response curve of the resonant component can reflect the response of the resonant component to external vibrations of different frequencies (ie, the vibration of the vibration housing 413 ). For example, at and near the second frequency f0, the resonant component absorbs more vibration energy from the vibration housing 413 .
  • the resonant component mainly reduces the vibration of the vibration shell 413 near the low frequency band (for example, the frequency corresponding to the first resonance peak 450 ), while the vibration of the vibration shell 413 near the non-low frequency resonance peak and its vicinity is almost There is no influence or little influence, and finally the frequency response curve of the speaker 400 is flatter and the sound quality is better.
  • the first frequency f is the natural frequency of the vibration component 410 (combined with the fixed component 430 ), and the second frequency f0 is the natural frequency of the resonance component.
  • the natural frequency is related to the material, mass, elastic modulus, shape, etc. of the structure itself.
  • the second frequency f0 corresponding to the second resonance peak 460 of the resonance component may be set at the frequency f0 of the vibration shell 413 . near the first frequency f corresponding to the first resonance peak 450 .
  • the ratio of the second frequency f0 to the first frequency f is in the range of 0.5 ⁇ 2.
  • the ratio of the second frequency f0 to the first frequency f is in the range of 0.65 ⁇ 1.5.
  • the ratio of the second frequency f0 to the first frequency f is in the range of 0.75 ⁇ 1.25.
  • the ratio of the second frequency f0 to the first frequency f is in the range of 0.85 ⁇ 1.15.
  • the ratio of the second frequency f0 to the first frequency f is in the range of 0.9 ⁇ 1.1.
  • both the first resonance peak 450 and the second resonance peak 460 may be controlled in a low frequency region.
  • both the first frequency f and the second frequency f0 may be less than 800 Hz.
  • both the first frequency f and the second frequency f0 may be less than 700 Hz.
  • both the first frequency f and the second frequency f0 may be less than 600 Hz.
  • both the first frequency f and the second frequency f0 may be less than 500 Hz.
  • the resonant assembly produces vibrations of greater magnitude than the vibrating housing 413 .
  • the amplitude of the vibration of the resonant assembly may be greater than the amplitude of the vibration of the vibration housing 413 .
  • the fixing assembly 430 can be connected to the vibration housing 413. Since the resonance assembly is not in direct contact with the user, the large-scale vibration of the resonance assembly will not make the user feel uncomfortable vibration.
  • the mass element 423 in the resonance assembly can be designed as a structure with a larger area.
  • the vibration of the mass element 423 with a large area can drive the air to vibrate , producing low-frequency air-conducted sound, thereby enhancing the low-frequency response of the speaker 400 .
  • the mass element 423 can be set as a plate-shaped member (such as a circular plate, a square plate, etc.), and the plate-shaped member can drive the air to vibrate when vibrating, thereby generating air conduction sound.
  • the speaker 400 may generate a wave trough 472 in the low frequency region (about 150 Hz to 200 Hz), and the vibration acceleration of the wave trough 472 is less than the first resonance peak 450 vibration acceleration. And because the wave trough 472 is formed, the peak value of the vibration acceleration of the speaker 400 is also reduced. It can be seen from FIG. The above content shows that the speaker 400 with the addition of the resonant component not only produces a lower trough of the vibration acceleration, but also has a peak of the vibration acceleration, compared with the speaker without the addition of the resonant component (for example, the speaker 200 shown in FIG. 2 ). If it is smaller, it means that the vibration sense of the vibration housing 413 in the low frequency region is weaker, which makes the user experience better when wearing the speaker 400 .
  • loudspeaker 400 may produce a trough in the frequency range less than 450 Hz. In some embodiments, speaker 400 may produce a trough in the frequency range less than 400 Hz. In some embodiments, speaker 400 may produce a trough in the frequency range less than 350 Hz. In some embodiments, loudspeaker 400 may produce a trough in the frequency range less than 300 Hz. In some embodiments, loudspeaker 400 may produce a trough in the frequency range less than 200 Hz.
  • the mass of the resonance assembly is mainly provided by the mass element 423, when the mass m 3 of the mass element 423 is so small that the ratio of the mass m 3 of the mass element 423 to the mass m 1 of the vibration shell 413 If it is too small, the resonance component has little influence on the amplitude of the mechanical vibration of the vibration housing 413 , so that the mechanical vibration near the first resonance peak 450 of the vibration housing 413 cannot be effectively attenuated.
  • the vibration acceleration of the speaker 450 is still relatively large, which cannot effectively reduce the vibration sense of the speaker 400 .
  • the mass m 3 of the mass element 423 when the mass m 3 of the mass element 423 is so large that the ratio of the mass m 3 of the mass element 423 to the mass m 1 of the vibration shell 413 is too large, the mechanical effect of the resonance assembly on the speaker 400 The effect of the amplitude of the vibrations is too great and can significantly alter the frequency response of the speaker 400 . Therefore, the mass m 3 of the mass element 423 of the resonance assembly needs to be controlled within a certain range.
  • the ratio of the mass m 3 of the mass element 423 of the resonance assembly to the mass m 1 of the vibration housing 413 may be in the range of 0.04-1.25. In some embodiments, the ratio of the mass m 3 of the mass element 423 of the resonance assembly to the mass m 1 of the vibration housing 413 may be in the range of 0.05-1.2. In some embodiments, the ratio of the mass m 3 of the mass element 423 of the resonance assembly to the mass m 1 of the vibration housing 413 may be in the range of 0.06-1.1. In some embodiments, the ratio of the mass m 3 of the mass element 423 of the resonance assembly to the mass m 1 of the vibration housing 413 may be in the range of 0.07-1.05.
  • the ratio of the mass m 3 of the mass element 423 of the resonance assembly to the mass m 1 of the vibration housing 413 may be in the range of 0.08-0.9. In some embodiments, the ratio of the mass m 3 of the mass element 423 of the resonance assembly to the mass m 1 of the vibration housing 413 may be in the range of 0.09-0.75. In some embodiments, the ratio of the mass m 3 of the mass element 423 of the resonance assembly to the mass m 1 of the vibration housing 413 may be in the range of 0.1-0.6.
  • the material for making the mass element 423 may include, but is not limited to, plastic, metal, composite materials, and the like.
  • mass element 423 may be a separate structure.
  • mass element 423 may be combined with other components of speaker 400 as a composite structure.
  • the first elastic element 821 is a vibrating membrane, and the mass element 823 can be disposed on the surface of the vibrating membrane as a composite structure to form a composite vibrating membrane structure with the vibrating membrane.
  • the mass element 823 may include at least one of paper cones, aluminum sheets, copper sheets, and the like.
  • the speaker 400 may also include functional elements, and the mass element 423 may be combined as a composite structure in connection with the functional elements.
  • the mass element 423 may itself be a functional element.
  • the functional elements mentioned here may refer to components for implementing one or more specific functions of the speaker 400 .
  • Exemplary functional elements may include at least one of batteries, printed circuit boards, communication components, and the like.
  • the mass element 423 may be one or a combination of a plate-like structure, a block-like structure, a spherical structure, a column-like structure, a cone-like structure, a strip-like structure, or any other possible structure.
  • the mass element 923 may be a circular plate-like structure.
  • the mass element 923 may be a groove member, and the groove member may be a square groove (the cross-sectional shape of the groove is a square) or a circular groove (the cross-sectional shape of the groove is a circle).
  • FIG. 8 is a schematic longitudinal cross-sectional view of a speaker in which the first elastic element is a diaphragm according to some embodiments of the present specification.
  • the speaker 800 may include a vibration assembly 810 and a vibration damping assembly 820 .
  • the vibration component 810 can generate mechanical vibration, and the vibration component 810 can be in contact with the user's facial skin, and transmit the mechanical vibration to the user's auditory nerve through the user's facial skin in a manner of bone conduction.
  • the vibration damping component 820 can reduce the vibration feeling brought to the user when the vibration component vibrates.
  • the vibration assembly 810 may include a vibration element 811 , a vibration housing 813 and a second elastic element 815 .
  • the vibrating element can generate mechanical vibrations based on electrical signals.
  • the vibration element 811 can be elastically connected to the vibration housing 813 through the second elastic element 815 .
  • the vibration element 811 vibrates mechanically, the mechanical vibration can be transmitted to the vibration housing 813 via the second elastic element 815 to drive the vibration housing 813 to mechanically vibrate, and then transmit the vibration to the user's facial skin, through the user's The skin of the face enables the user to hear sounds through bone conduction.
  • the vibration housing 813 may include a vibration panel 8131 , a housing side panel 8132 , and a housing back panel 8133 .
  • the vibration element 811 , the vibration panel 8131 , and the second elastic element 815 are respectively the same as or similar to the vibration element 211 , the vibration panel 2131 , and the second elastic element 215 in the speaker 200 , and the details of their structures will not be repeated here. .
  • the damping assembly 820 may include a resonance assembly composed of a first elastic element 821 and a mass element 823 .
  • the mass element 823 can be elastically connected to the vibration housing 813 (the housing side plate 8132 of the vibration housing 813 ) through the first elastic element 821 .
  • the vibration housing 813 transmits the vibration to the mass element 823 through the first elastic element 821 , so that the mechanical vibration of the vibration housing 813 is partially absorbed by the mass element 823 , thereby reducing the vibration amplitude of the vibration housing 813 .
  • the vibration damping assembly 820 may be accommodated in the vibration housing 813 , and the vibration damping assembly 820 may be connected to the inner wall of the housing side plate 8132 through the first elastic element 821 .
  • the first elastic element 821 may include a diaphragm.
  • the peripheral side of the diaphragm may be connected through a support structure or directly connected inside the housing side plate 8132 of the vibration housing 813 .
  • the casing side plate 8132 is a side wall provided around the vibration panel 8131 . When the vibration housing 813 vibrates, the housing side plate 8132 may cause the vibration of the diaphragm.
  • the vibrating membrane Since the vibrating membrane is connected to the vibrating housing 813 and vibrates by the driving of the vibrating housing 813, it can be called a passive vibrating membrane.
  • the types of diaphragms may include, but are not limited to, plastic diaphragms, metal diaphragms, paper diaphragms, biological diaphragms, and the like.
  • the mass element 823 may be attached to the surface of the diaphragm to form a composite structure together with the diaphragm.
  • the mass element 823 is attached to the surface of the diaphragm to form a composite structure, which mainly plays the following functions: (1)
  • the composite structure can be used as a counterweight element to adjust the quality of the diaphragm system and ensure that the entire diaphragm system is within a certain quality range, so that the The diaphragm itself has the effect of a larger vibration amplitude, which can effectively reduce the vibration amplitude of the speaker 800 in the low frequency range; (2) the composite diaphragm structure formed by the combination of the mass element 823 and the diaphragm can make the composite diaphragm structure.
  • the membrane structure has higher stiffness, and it is not easy to generate high-order modes on the surface of the composite diaphragm, avoiding more peaks and valleys in the frequency response of the passive diaphragm.
  • the type of mass element 823 may include, but is not limited to, one or a combination of paper cones, aluminum sheets, or copper sheets.
  • the mass element 823 can be made of the same material.
  • the composite structure can be a paper cone or an aluminum sheet.
  • the mass element 823 may be fabricated from different materials.
  • the mass element 823 may be a combined structure of a paper cone and a copper sheet.
  • the mass element 823 may be a structure formed by mixing aluminum or copper in a certain proportion.
  • the way of connecting the mass element 823 to the diaphragm may include, but is not limited to, using glue to fix, or welding, snap-fitting, riveting, threaded connection (screws, screws, screws, bolts, etc.), interference Connection, clamp connection, pin connection, wedge key connection, integral molding connection.
  • a sound outlet 840 may be formed on the vibration housing 813 to guide the air vibration inside the vibration housing to the outside of the vibration housing 813, and the guided air vibration may be transmitted to the The user's auditory nerve, which enables the user to hear sounds.
  • the mechanical vibration intensity of the vibration panel 8131 may be weakened, resulting in a decrease in the volume of the speaker 800 in the low frequency region, and the part of the sound extracted by the sound outlet 840 can enhance the speaker 800
  • the response in the low frequency region enables the speaker 800 to maintain a certain volume even when the low frequency vibration is weakened.
  • the sound outlet 840 may be opened at any position of the vibration housing 813 .
  • the sound outlet 840 may be disposed on the side of the vibration housing 813 facing away from the user's face, that is, on the housing back plate 8133 .
  • the sound outlet hole 840 can also be opened on the side plate 8132 of the casing, for example, the position on the side plate 8132 of the casing facing the user's ear canal.
  • the sound outlet holes 840 may also be opened at the corners of the vibration housing 813 , for example, at the connection between the housing side plate 8132 and the housing back plate 8133 .
  • the number of sound exit holes 840 may be multiple.
  • Multiple sound holes 840 can be opened in different positions. For example, a part of the plurality of sound outlet holes 840 may be opened on the back plate 8133 of the casing, and the other part may be opened on the side plate 8132 of the casing. In some embodiments, at least a portion of the sound exported through the sound outlet 840 may be directed to the user's ear, improving the low frequency response of the speaker 800 . In some embodiments, this can be achieved by arranging the sound outlet 840 in a position facing the user's ear.
  • the casing side plate 8132 faces the user's ear, so the sound outlet hole 840 can be arranged on the casing side plate 8132, and the sound is exported through the sound outlet hole 840 and at least a part of it can be guided to the user's ear.
  • additional sound guiding structures may be provided to achieve the above objectives.
  • a sound conduit may be provided at the outlet of the sound outlet hole 840, and the sound can be guided to the direction of the user's ear through the sound conduit.
  • the cross-sectional shape of the sound outlet hole 840 may include, but is not limited to, a circle, a square, a triangle, a polygon, and the like.
  • the speaker 800 may further include a fixing assembly 830, and the fixing assembly 830 may be fixedly connected with the vibration housing 813 (eg, the housing side plate 8132 of the vibration housing 813).
  • the fixing assembly 830 can be used to keep the speaker 800 in stable contact with the face of a user (eg, a wearer), avoid shaking of the speaker 800, and ensure that the speaker 800 stably transmits sound.
  • the stiffness of the fixing assembly 830 when the stiffness of the fixing assembly 830 is smaller (ie, the stiffness coefficient is smaller), the low-frequency response of the speaker 800 at the first resonance peak 450 is more obvious (ie, the vibration acceleration is greater, and the sensitivity of the speaker 800 is higher). ), the sound quality of the speaker 800 is better.
  • the rigidity of the fixing assembly 830 when the rigidity of the fixing assembly 830 is small (ie, the stiffness coefficient is small), it is more favorable to reduce the vibration of the vibration housing 813 .
  • the securing assembly 830 may be an ear loop.
  • the two ends of the fixing component 830 may be respectively connected with a vibration shell 813, and the two vibration shells 813 are respectively fixed on both sides of the user's skull by means of ear hooks.
  • the speakers are binaural speakers.
  • the securing assembly 830 may be a single ear clip.
  • the fixing assembly 830 can be connected to a vibration housing 813 alone, and fix the vibration housing 813 on the side of the user's skull.
  • the structure of the fixing assembly 830 may be the same as or similar to the fixing assembly (for example, the fixing assembly 230 ) in other embodiments in this specification, which will not be repeated here.
  • FIG. 9 is a schematic longitudinal cross-sectional view of a loudspeaker in which the mass element is a groove member according to some embodiments of the present specification.
  • the speaker 900 may include a vibration assembly 910 , a vibration damping assembly 920 and a fixing assembly 930 .
  • the vibration assembly 910 may include a vibration element 911 , a vibration housing 913 and a second elastic element 915 .
  • the second elastic element 915 is used to elastically connect the vibration element 911 and the vibration housing 913 , so as to transmit the mechanical vibration of the vibration element 911 to the vibration housing 913 .
  • the vibration housing 913 is in contact with the user's facial skin, and transmits mechanical vibration to the user's auditory nerve.
  • the vibration damping assembly 920 can reduce the vibration feeling brought to the user when the vibration housing 913 generates mechanical vibration.
  • the fixed component can be fixedly connected with the resonance component 920 .
  • the vibration element 911 , the vibration housing 913 , and the second elastic element 915 are respectively the same as or similar to the vibration element 411 , the vibration housing 413 , and the second elastic element 415 in the speaker 400 , and the details of their structures are not described here. Repeat.
  • the vibration damping assembly 920 may include a mass element 923 and a first elastic element 921 .
  • the mass element 923 can be elastically connected to the vibration housing 913 through the first elastic element 921 .
  • the vibration damping assembly 920 can be connected with the outer wall of the housing back plate 9133 through the first elastic element 921 .
  • the resonance assembly formed by the mass element 923 and the first elastic element 921 can absorb a part of the mechanical energy of the vibration housing 913 , thereby reducing the vibration amplitude of the vibration housing 913 .
  • the mass element 923 of the damping assembly 920 is a groove member.
  • the vibration housing 913 may be at least partially received in the groove member.
  • the groove cross-sectional shape of the groove member may be circular, square, polygonal or the like.
  • the groove cross-sectional shape of the groove member may match the outer contour of the vibration housing 913 so that the vibration housing 913 can be accommodated therein.
  • the outer contour of the vibration housing 913 is a rectangular parallelepiped
  • the cross-sectional shape of the groove of the groove member may be a corresponding square shape.
  • the vibration housing 913 may be fully received in the groove of the groove member.
  • the vibration housing 913 may be partially received in the groove of the groove member.
  • the vibration panel 9131 of the vibration housing 913 and at least a part of the side panel 9132 of the housing may be located outside the groove, so as to facilitate the vibration panel 9131 to contact the user's facial skin to transmit vibration.
  • the first elastic element 921 may include a first portion and a second portion.
  • the first portion of the first elastic element is connected to the vibration housing.
  • the first portion of the first elastic element 921 is connected with the inner wall of the groove member.
  • the first part of the first elastic element 921 is connected with the outer wall of the housing back plate 9133
  • the second part of the first elastic element 921 is connected with the inner side wall of the groove member.
  • the first part of the first elastic element can be connected with the outer wall of the side plate of the casing
  • the second part of the first elastic element can be connected with the inner bottom wall of the groove member.
  • the vibration housing 913 may only include the vibration panel 9131 and the housing side panels 9132 connected thereto, without the housing back panel 9133 .
  • the mass element 923 may be connected with the inner wall and/or the outer wall of the housing side plate 9132 through the first elastic element 921 .
  • the first elastic element 921 may be an annular structure, the first portion of the first elastic element 921 may be located in the central region of the annular structure, and the second portion may be located at the peripheral side of the annular structure.
  • the first elastic element may be a spring. Both ends of the spring serve as a first part and a second part to connect the vibration housing and the groove member, respectively.
  • the first elastic element 921 can be directly connected to the housing back plate 9133 and the groove member, for example, the first elastic element is welded, bonded, integrally formed, etc. Slot member to connect.
  • the first elastic element 921 may be connected to the housing back plate 9133 and the groove member through a connector.
  • a third connecting piece may be fixedly disposed on the housing back plate 9133, and the first portion of the first elastic element 921 may be fixedly connected with the third connecting piece.
  • a fourth connecting piece may be fixedly disposed on the groove member, and the second portion of the first elastic element 921 may be fixedly connected with the fourth connecting piece.
  • the inner size of the groove member may be larger than the outer size of the vibration housing 913, and in this case, a cavity may be formed between the vibration housing 913 and the groove member.
  • a sound channel 940 may be formed between the groove member and the outer wall of the vibration housing 913 .
  • the sound generated by the air vibration between the vibration housing 913 and the groove member can be transmitted to the outside world through the sound output channel 940, and the human ear can partially receive the sound, which can enhance the low frequency and increase the volume to a certain extent.
  • the fixation assembly 930 may be used to hold the speaker 900 in contact with the skull of the user's face.
  • the fixed component 930 may be fixedly connected with the resonant component 920 .
  • the fixation assembly 930 may be fixedly connected or integrally formed with the mass element 921 (eg, a groove member).
  • the fixation assembly 930 may be fixedly connected directly to the groove member.
  • the fixation assembly 930 may also be connected to the groove member by fixation connectors.
  • the securing assembly 930 may be in the form of an ear loop. Two ends of the fixing assembly 930 are respectively connected with a groove member and a vibration housing 913 accommodated in the groove member, and the two groove members are respectively fixed on the two sides of the skull by means of ear hooks. In some embodiments, the securing assembly 930 may be a single ear clip. The fixing assembly 930 can separately connect a groove member and the vibration housing 913 accommodated in the groove member, and fix the groove member on one side of the human skull. The structure of the fixing assembly 930 may be the same as or similar to the fixing assembly (eg, the fixing assembly 830 ) in other embodiments of the present application, and details are not described herein again.
  • the loudspeaker 900 may be deformed to obtain a loudspeaker 900 different from the embodiment of the present specification.
  • the shape of the mass element can be changed.
  • the material for making the first elastic element 921 can be adjusted so that the first elastic element 921 has a stronger vibration absorption effect.
  • the first elastic element 921 may also be foam or glue.
  • the first elastic element 921 can be glue coated on the outer wall of the housing back plate 9133, and the groove member is adhered to the vibration housing 913 through the glue.
  • the glue may have a certain damping, so as to further absorb the vibration energy of the vibration housing 913 and reduce the vibration amplitude.
  • FIG. 10 is a schematic longitudinal sectional view of still another loudspeaker with a vibration damping component added according to some embodiments of the present specification
  • FIG. 11 is a schematic longitudinal sectional view of the loudspeaker shown in FIG. 10 from another angle.
  • the speaker 1000 may include a vibration assembly 1010 , a vibration damping assembly 1020 and a fixing assembly 1030 .
  • the vibration assembly 1010 may include a vibration element 1011 , a vibration housing 1013 and a second elastic element 1015 (as shown in FIG. 11 ).
  • the second elastic element 1015 is used for elastically connecting the vibration element 1011 and the vibration housing 1013 .
  • the vibrating element 1011 , the second elastic element 1015 and the fixing element 1030 are the same as or similar to the vibrating element 411 , the second elastic element 415 and the fixing element 430 in the speaker 400 respectively, and the details of their structures are not repeated here. .
  • the vibration housing 1013 may be a separate plate-like or plate-like structure that directly contacts the skin of the user's face to transmit vibration, thus vibrating
  • the housing 1013 itself is equivalent to the vibration panel in the foregoing embodiment.
  • the vibration housing 1013 does not define an accommodating space, and the vibration element 1011 and the second elastic element 1015 are directly connected to the vibration housing 1013 .
  • the mass element 1023 can be a groove member, the mass element 1023 has a groove and can be used as a accommodating space, and at least a part of the vibration assembly 1010 can be accommodated in the space formed by the mass element 1023 .
  • the first elastic element 1021 can connect the mass element 1023 with the vibration housing 1013 .
  • the vibrating element 1011 may include a magnetic circuit assembly.
  • the vibration housing 1013 is provided with a coil, a magnetic circuit assembly is arranged around the coil, and the second elastic element 1015 connects the magnetic circuit assembly and the vibration housing 1013 .
  • the second elastic element 1015 may be a vibration transmission sheet.
  • the vibration-transmitting sheet may be a ring-shaped structure. As shown in FIG. 11 , the ring-shaped vibration transmission piece is arranged around the outside of the vibration housing 1013 , the peripheral side of the annular vibration transmission piece is connected to the magnetic circuit assembly, and the middle of the annular vibration transmission piece is connected to the vibration housing 1013 .
  • the vibration housing 1013 can transmit the vibration to the mass element 1023 through the first elastic element 1021, thereby causing the mass element 1023 to vibrate, and finally achieving the effect of reducing the vibration amplitude of the vibration component 1010.
  • FIG. 2 For more details about the vibration transmission sheet, please refer to the description of FIG. 2 . It will not be repeated here.
  • the speaker is improved as described in the foregoing embodiments, not only the frequency response range of the speaker, but especially the low frequency response range of the speaker is broadened. Moreover, the amplitude of the low-frequency resonance peak generated by the speaker in the low-frequency region is significantly reduced, which reduces the sense of vibration perceived by the skin when the user wears the speaker, and effectively improves the user experience.
  • the speaker may leak sound during operation.
  • the sound leakage mentioned here means that during the operation of the speaker, the vibration of the speaker will generate sound that is transmitted to the surrounding environment. In addition to the wearer of the speaker, other people in the environment may also hear the sound from the speaker.
  • the sound leakage phenomenon including the vibration of the vibration element (eg, the transducer device) being transmitted to the vibration housing through the second elastic element and causing the vibration of the vibration housing.
  • the vibration of the vibrating panel is transmitted to the vibrating housing through the connecting piece, thereby causing the vibration of the vibrating housing.
  • the vibration of the vibrating element causes the air in the vibrating casing to vibrate, and the sound generated by the air vibration is led out of the casing through the sound outlet holes opened on the casing, thereby causing sound leakage.
  • the sound leakage of the speaker is related to the mechanical vibration of the vibration housing.
  • the sound leakage of the loudspeaker is more serious when the mechanical vibration intensity of the vibrating housing is greater.
  • the vibration intensity of the vibration housing can be reduced by the vibration damping assembly, thereby reducing the sound leakage of the speaker.
  • the damping assembly may be the same as or similar to that described in one or more of the preceding embodiments.
  • the vibration damping assembly may include a first elastic element with a certain damping, so the first elastic element may absorb the mechanical energy of the vibrating casing (eg, the casing side plate and the casing back plate) and reduce the vibration The vibration intensity of the housing reduces the sound leakage of the speaker.
  • the vibration damping assembly may include a first elastic element and a mass element at the same time, and the first elastic element transmits mechanical vibration to the mass element to cause vibration of the mass element, so as to absorb the mechanical energy of the vibration housing.
  • the speaker may include a vibration assembly 1210 and a vibration damping assembly 1220 .
  • the vibration assembly 1210 may include a vibration element 1211 and a vibration housing 1213 connected with the vibration element 1211 .
  • the vibration element 1211 may generate mechanical vibration and transmit the mechanical vibration to the vibration housing 1213 to cause the vibration housing 1213 to vibrate.
  • the vibration housing 1213 is in contact with the user's facial skin to transmit vibration to the user's auditory nerve in a manner of bone conduction.
  • the vibration housing 1213 may include a vibration panel 12131 , a housing side panel 12132 and a housing back panel 12133 .
  • the casing back plate 12133 is disposed opposite to the vibration panel 12131 , and the casing side plate 12132 is connected between the casing back plate 12133 and the vibration panel 12131 .
  • the vibration panel 12131 may be in contact with the user's facial skin.
  • the vibration panel 12131 and the housing side plate 12132 can be directly connected, for example, by bonding, welding, riveting, nailing, integral molding, and the like. In other embodiments, the vibration panel 12131 and the housing side plate 12132 can be connected by connecting pieces. In some embodiments, the vibration panel 12131 and the casing side plate 12132 may be elastically connected to reduce the mechanical vibration intensity transmitted to the casing side plate 12132 and the casing back plate 12133, thereby reducing the casing side The sound leakage caused by the vibration of the plate 12132 and the back plate 12133 of the casing. In other embodiments, the vibration panel 12131 and the housing side plate 12132 may be rigidly connected.
  • the vibration panel 12131 since the vibration element 1211 is directly connected with the vibration panel 12131 , the mechanical vibration generated by the vibration element 1211 can be directly transmitted to the user via the vibration panel 12131 . Therefore, the vibration panel 12131 and the casing side plate 12132 can be elastically connected to reduce the mechanical energy received by the casing side plate 12132 and the casing back plate 12133, thereby reducing the casing side plate 12132 and the casing back plate 12133. Sound leakage caused by vibration.
  • the vibration element 1211 is connected to the vibration panel 12131 to transmit the mechanical vibration to the vibration panel 12131 .
  • the vibration panel 12131 in turn transmits the mechanical vibration to the casing side plate 12132 and the casing back plate 12133, causing them to vibrate. Therefore, during the working process of the speaker 1200, the vibration housing 1213 will continue to vibrate, and the vibration of the vibration housing 1213 may cause air vibrations and thus lead to sound leakage.
  • the vibration damping assembly 1220 includes a first elastic element 1221 and a mass element 1223 .
  • the mass element 1223 is connected with the casing side plate 12132 and the casing back plate 12133 through the first elastic element 1221 . Similar to the previous embodiment, when the vibration housing 1213 vibrates, the mechanical vibration of the vibration housing 1213 can be transmitted to the mass element 1223 via the first elastic element 1221, thereby causing the mass element 1223 to vibrate.
  • the vibration damping assembly 1220 can absorb the mechanical energy of the vibration shell 1213 (mainly the shell back plate 12133 and the shell side plate 12132 ) in a specific frequency band, thereby reducing the vibration amplitude of the vibration shell 1213 and reducing the sound leakage caused by the vibration.
  • the specific range of the specific frequency band is related to factors such as the elastic coefficient and mass of the resonance component formed by the first elastic element 1221 and the mass element 1223 .
  • the frequency range of the vibration absorption of the resonant component can be adjusted.
  • the frequency range in which the resonance component absorbs vibration can be adjusted by adjusting the type, hardness, thickness of the first elastic element 1221 , and the fit area with the vibration housing 1213 .
  • the glue is used as an example of the first elastic element.
  • the Shore hardness of the glue may be in the range of 10-80. In some embodiments, the Shore hardness of the glue may range from 20 to 60. In some embodiments, the Shore hardness of the glue may be in the range of 25-55. In some embodiments, the Shore hardness of the glue may be in the range of 30-50.
  • a glue layer may be formed, and in some embodiments, the thickness of the glue layer may be between 10 ⁇ m and 200 ⁇ m. In some embodiments, the thickness of the glue layer may be between 20 ⁇ m and 190 ⁇ m. In some embodiments, the thickness of the glue layer may be between 30 ⁇ m and 180 ⁇ m. In some embodiments, the thickness of the glue layer may be between 40 ⁇ m and 160 ⁇ m. In some embodiments, the thickness of the glue layer may be between 50 ⁇ m and 150 ⁇ m.
  • the adhering area of the glue layer and the inner wall of the case back panel 12133 may account for 1% to 98% of the surface area of the inner wall of the case back panel 12133 . In some embodiments, the adhering area of the glue layer and the inner wall of the case back panel 12133 may account for 5% to 90% of the surface area of the inner wall of the case back panel 12133 . In some embodiments, the adhering area of the glue layer and the inner wall of the case back panel 12133 may account for 10% to 60% of the surface area of the inner wall of the case back panel 12133 .
  • the bonding area between the glue layer and the inner wall of the case back panel 12133 may account for 20% to 40% of the surface area of the inner wall of the case back panel 12133 .
  • the bonding area between the glue layer and the inner wall of the housing backplane 12133 may be between 10 mm 2 and 200 mm 2 .
  • the bonding area between the glue layer and the inner wall of the housing backplane 12133 may be between 20 mm 2 and 190 mm 2 .
  • the bonding area between the glue layer and the inner wall of the housing backplane 12133 may be between 30 mm 2 and 180 mm 2 .
  • the bonding area between the glue layer and the inner wall of the housing backplane 12133 may be between 40 mm 2 and 170 mm 2 . In some embodiments, the bonding area between the glue layer and the inner wall of the housing backplane 12133 may be between 50 mm 2 and 150 mm 2 . In some specific embodiments, the bonding area between the glue layer and the inner wall of the housing backplane 12133 may be 10 mm 2 .
  • FIG. 13 is a graph showing the sound leakage intensity of a loudspeaker according to some embodiments of the present specification. 13 respectively shows the sound leakage intensity curve of the speaker 200 without vibration damping components (ie, the dotted line in the figure) and the sound leakage intensity curve of the speaker 1200 with the vibration damping component 1220 added (ie, the solid line in the figure).
  • the damping assembly may include only mass elements. Wherein, the mass element may be an inner casing provided inside the vibration casing (ie, the casing in FIG. 13 ). It can be seen from FIG.
  • the first elastic element 1221 of the vibration damping assembly 1220 is glue with a Shore hardness of 30-50.
  • the thickness of the glue layer formed by coating on the inner wall of the shell back plate 12133 is between 50 ⁇ m and 150 ⁇ m.
  • the bonding area between the glue layer and the inner wall of the shell backplane 12133 is 150 mm 2 .
  • the vibration damping assembly 1220 of this specification can also reduce the sound leakage of the conductive speaker 1200 in other frequency bands.
  • foam can be selected as the first elastic element 1221, and the elasticity and damping of the foam can be changed by adjusting the thickness of the foam, so that the frequency band of sound leakage reduction is controlled in the low-frequency region.
  • the thickness of the foam may be between 0.3mm and 2mm. In some embodiments, the thickness of the foam may be between 0.4mm and 1.9mm. In some embodiments, the thickness of the foam may be between 0.5mm and 1.8mm. In some embodiments, the thickness of the foam may be between 0.6mm and 1.8mm.
  • FIG. 14 is a sound pressure level graph of another loudspeaker according to some embodiments of the present specification.
  • FIG. 14 respectively shows the sound pressure level curve of the speaker 1200 with the vibration damping assembly 1220 using foam with a thickness of 0.6 mm as the first elastic element 1221 , and adding the foam with a thickness of 1.2 mm as the first elastic
  • the sound pressure level curve of the loudspeaker 200 of the vibrating assembly 1220 is shown.
  • the ordinate SPL Sound Pressure Level
  • the sound pressure level can be equivalent to the mechanical vibration intensity of the speaker 1200, that is, the larger the value of the ordinate in the graph, the greater the mechanical vibration intensity of the speaker 1200. Since the mechanical vibration of the speaker 1200 mainly comes from the vibration of the vibration housing 1213 , the value of the ordinate can also represent the mechanical vibration intensity of the vibration housing 1213 .
  • the vibration damping component 1220 may The vibration intensity of the loudspeaker 1200 with 1.2mm and 1.8mm foam as the resonance component of the first elastic element 1221 is reduced in a specific frequency band.
  • the vibration intensity of the speaker 1200 is reduced in the frequency range of about 180 Hz to 1010 Hz, and a trough occurs when the frequency is about 1000 Hz (at about 1000 Hz).
  • the vibration intensity of the speaker 1200 is reduced in the frequency range of about 170 Hz to 750 Hz, and a trough occurs when the frequency is about 650 Hz (The minimum vibration intensity in the frequency range of 170Hz ⁇ 750Hz).
  • the vibration intensity of the speaker 1200 decreases in the frequency range of about 160 Hz to 350 Hz, and occurs when the frequency is about 300 Hz The trough (the minimum vibration intensity in the frequency range of 160Hz ⁇ 350Hz). Since the vibration intensity is reduced, the sound leakage generated by the speaker 1200 during operation is also reduced.
  • the foregoing one or more embodiments are only for illustrative purposes, and are not intended to limit the shape or quantity of the speakers 1200 .
  • the speaker 1200 can be deformed to obtain a speaker 1200 different from the embodiment of the present specification.
  • the damping assembly 1220 may be modified with reference to the previous embodiments.
  • the damping assembly 1220 may include only the first elastic element 1221 without the mass element 1223 .
  • the first elastic element 1221 itself may have a certain damping, so as to absorb and dissipate the vibration of the vibration shell 1213 (for example, the shell back plate 12133 and the shell side plate 12132 of the vibration shell 1213 ) connected to it. energy can also achieve the purpose of reducing leakage sound.
  • FIG. 15 is a schematic cross-sectional view of a loudspeaker having an aperture in the first elastic element according to some embodiments of the present specification.
  • the speaker 1500 may include a vibration assembly 1510 and a vibration damping assembly 1520 .
  • the vibration assembly 1510 may include a vibration element 1511 (eg, a transducer) that generates mechanical vibrations and a vibration housing 1513 that contacts the skin of the user's face.
  • the vibration damping assembly 1520 is connected with the vibration housing 1513 to absorb the mechanical energy of the vibration housing 1513 , reduce the vibration amplitude of the vibration housing 1513 , and finally reduce the sound leakage caused by the vibration of the vibration housing 1513 .
  • vibrating housing 1513 in speaker 1500 (including housing side panels 15132 , housing back panel 15133 , and housing panel 15131 ), vibrating element 1511 , mass element 1523 , and vibrating housing 1213 in speaker 1200 (including the casing side plate 12132, the casing back plate 12133 and the casing face plate 12131), the vibration element 1211, and the mass element 1223 are the same or similar, and will not be repeated here.
  • the first elastic element 1521 and the mass element 1523 of the speaker 1500 are not completely connected.
  • the incomplete connection mentioned here may mean that the contact surface between the mass element 1523 and the first elastic element 1521 leaves an empty space.
  • a filler may be provided in the first elastic element 1521 .
  • a side of the first elastic element 1521 facing away from the back plate 15133 of the housing has a hole 15211 . Due to the existence of the void 15211, when the mass element 1523 is connected to the first elastic element 1521, there is an empty space between the contact surface of the mass element 1523 and the first elastic element 1521.
  • the pores 15211 in the first elastic element 1521 can further reduce the elasticity of the first elastic element 1521, so that the first elastic element 1521 can still provide a sufficiently low elasticity even when the thickness is thin, so that the first elastic element 1521 can still provide a sufficiently low elasticity.
  • the resonance frequency of the resonance component formed by the elastic element 1521 and the mass element 1523 can be easily adjusted to a desired frequency band.
  • the apertures 15211 may be provided inside the first elastic element 1521 .
  • pores 15211 are provided on the surface and inside of the first elastic element 1521 .
  • the apertures 15211 may be formed by opening holes in the first elastic member 1521 .
  • the first elastic element 1521 is made of plastic, and the pores 15211 can be formed by opening holes on the surface and/or inside of the plastic.
  • the pores 15211 may be structures of the first elastic element 1521 itself.
  • the first elastic element 1521 can be a foam, and the foam itself has a hole structure, and the hole structure can be directly used as the hole 15211 .
  • a filler may be provided in the pores 15211.
  • Exemplary fillers may be damping fillers such as damping glue, damping grease, and the like. In some cases, providing damping fillers in the pores 15211 can increase the damping of the first elastic element 1521.
  • the first elastic element 1521 can further dissipate the vibration energy of the vibration shell 15133 and reduce the vibration of the vibration shell. The vibration amplitude of the body 15133 reduces sound leakage.
  • the speaker 1600 may include a vibration assembly 1610 and a vibration damping assembly 1620 .
  • the vibration assembly 1610 may include a vibration element 1611 (eg, a transducer) that generates mechanical vibrations and a vibration housing 1613 that contacts the skin of the user's face.
  • the vibration damping assembly 1620 is connected with the vibration housing 1613 to absorb the mechanical energy of the vibration housing, reduce the vibration amplitude of the vibration housing 1613 , and finally reduce the sound leakage caused by the vibration of the vibration housing 1613 .
  • the vibration shell 1613 (including the shell side plate 16132 , the shell back plate 16133 and the shell face plate 16131 ), the vibration element 1611 , the first elastic element 1621 , the mass element 1623 and the speaker 1200 in the speaker 1600
  • the vibration casing 1213 (including the casing side plate 12132 , the casing back plate 12133 and the casing face plate 12131 ), the vibration element 1211 , the first elastic element 1221 , and the mass element 1223 are the same or similar, and will not be repeated here.
  • the vibration-damping component 1620 of the loudspeaker 1600 includes two sets of resonance components.
  • the resonant component disposed on the upper side of the inner wall of the housing backplane 16133 may be referred to as the first resonant component 1620-1
  • the resonant component disposed on the lower side of the inner wall of the housing backplane 16133 may be referred to as the second resonant component 1620 -2.
  • the mass elements in each group of resonance assemblies are connected with the inner wall of the back plate of the housing through the first elastic element.
  • the first elastic element 1621-1 of the first resonance component 1620-1 is connected to the inner wall of the casing back plate 16133 and the upper casing side plate 16132 at the same time.
  • the first elastic element 1621-2 of the second resonance component 1620-2 is connected to the housing back plate 16133 and the inner wall of the lower housing side plate 16132 at the same time.
  • the first elastic elements of the two sets of resonance components are made of the same material, and the thicknesses of the first elastic elements are the same.
  • both sets of resonance components use glue as the first elastic element, and the thickness of the glue layer formed by coating the glue on the inner wall of the back plate of the casing is the same or similar.
  • the first elastic elements of the two groups of resonance components may be made of different materials or have different thicknesses.
  • the first elastic element 1621-1 of the first resonance assembly 1620-1 may be foam, and the first elastic element 1621-2 of the second resonance assembly 1620-2 may be glue.
  • the first resonance component 1620-1 and the second resonance component 1620-2 are separated by a predetermined distance, for example, the edges of the first elastic elements 1621 of the two sets of resonance components are separated by a predetermined distance, the predetermined distance Can be set according to actual needs.
  • the first resonance component 1620-1 and the second resonance component 1620-2 may not be limited to the arrangement manner and arrangement position in FIG. 16 .
  • the first resonant component 1620-1 and the second resonant component 1620-2 may be disposed on any area of the inner wall of the housing backplane 16133.
  • the inner wall of the housing back panel 16133 may include an edge region and a center region.
  • the edge area may refer to the area close to the housing side panel 16132 .
  • the first resonant component 1620-1 and the second resonant component 1620-2 may both be disposed in the edge region.
  • the first elastic elements of the two sets of resonant assemblies are both connected to the housing side plate 16132 .
  • the first resonance component 1620-1 and the second resonance component 1620-2 may both be disposed in the central region.
  • the first elastic elements of the two sets of resonance components are not connected to the casing side plate 16132, and are spaced apart from the casing side plate 16132 by a predetermined distance threshold, which can be set according to actual needs.
  • the first resonant component 1620-1 and the second resonant component 1620-2 may be disposed in the edge region and the center region, respectively.
  • the first resonance component 1620-1 may be disposed in the edge region, and the first elastic element 1621-1 thereof is connected to the upper casing side plate 16132.
  • the second resonance component 1620-2 may be disposed in the central area, and the first elastic unit 1621-2 thereof is only connected to the inner wall of the housing back plate 16133.
  • the first resonant assembly 1620-1 may be disposed at the edge region and form a ring structure around the entire housing back plate 16133 to enclose the second resonant assembly 1620-2 therein.
  • a circle of foam is arranged around the edge area of the housing back plate 16133 as the first elastic element 1621-1, and then an annular mass element 1623-1 corresponding to the shape of the foam is connected to the foam.
  • the first elastic element 1621-2 and the mass element 1623-2 of the second resonance component 1620-2 are arranged in the central area.
  • the resonant frequency of the first resonant component 1620-1 and the resonant frequency of the second resonant component 1620-2 may be the same or different.
  • a vibration reduction effect can be produced in the frequency bands near the respective resonant frequencies, thereby broadening the frequency band for vibration absorption.
  • the vibration reduction effect in the frequency band near the resonant frequency can be further enhanced.
  • the speaker 1700 may include a vibration assembly 1710 and a vibration damping assembly 1720 .
  • the vibration assembly 1710 may include a vibration element 1711 (eg, a transducer) that generates mechanical vibrations and a vibration housing 1713 that contacts the skin of the user's face.
  • the vibration damping assembly 1720 is connected with the vibration housing 1713 to absorb the mechanical energy of the vibration housing 1713, reduce the vibration amplitude of the vibration housing 1713, and finally weaken the sound leakage caused by the vibration of the vibration housing 1713.
  • the vibrating housing 1713 (including the housing panel 17131 , the housing side panel 17132 , and the housing back panel 17133 ), the vibrating element 1711 , the first elastic element (eg, the first elastic element 1721 ) in the speaker 1700 -1, the first elastic element 1721-2), the mass element (eg, the mass element 1723-1, the mass element 1723-2) and the vibration housing 1613 (including the housing panel 16131, the housing side panel 16132) in the speaker 1600 and housing back plate 16133), vibration element 1611, first elastic element (eg, first elastic element 1621-1, first elastic element 1621-2), mass element (eg, mass element 1623-1, mass element 1623) -2) The same or similar, and will not be repeated here.
  • the two sets of resonant components (eg, the first resonant component 1720-1 and the second resonant component 1720-2) of the speaker 1700 are not directly connected to the vibration housing 1713, but are connected in a stacked manner.
  • one side of the first elastic element 1721-1 of the first resonance component 1720-1 is connected with the inner wall of the vibration housing 1713, and the edge of the first elastic element 1721-1 is also connected with the side plate of the housing at the same time. 17132 connections.
  • Its mass element 1723-1 is connected to the other side of the first elastic element 1721-1.
  • the side of the first elastic element 1721-2 of the second resonance component 1720-2 is connected to the side of the mass element 1723-1 of the first resonance component 1720-1 facing away from the back plate 17133 of the housing, and its edge is not connected to the housing
  • the side plate 17132 is connected, and the other side is connected to the mass element 1723-2.
  • glue (as the first elastic element 1721-1 of the first resonance component 1720-1) may be coated on the inner wall of the housing back plate 17133, and the glue covers the housing back plate 17133 On the inner wall, glue the mass element 1723-1 on the surface of the glue.
  • the resonance system can absorb the vibration energy of the vibration housing 1713 to reduce the sound leakage caused by the vibration of the vibration housing 1713 .
  • numbers describing the quantity of components and properties are used, it should be understood that such numbers used to describe the embodiments, in some instances, the modifiers "about”, “approximately” or “substantially” etc. are used to modify. Unless stated otherwise, “about”, “approximately” or “substantially” means that a variation of ⁇ 20% is allowed for the stated number. Accordingly, in some embodiments, the numerical data used in the specification and claims are approximations that may vary depending upon the desired characteristics of individual embodiments. In some embodiments, the numerical data should take into account the specified significant digits and use a general digit retention method. Notwithstanding that the numerical fields and data used in some embodiments of this specification to confirm the breadth of their ranges are approximations, in specific embodiments such numerical values are set as precisely as practicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Headphones And Earphones (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

本说明书实施例公开一种扬声器,该扬声器包括:振动组件,振动组件包括振动元件和振动壳体,振动元件将电信号转换为机械振动,振动壳体与用户的脸部皮肤接触;第一弹性元件,第一弹性元件与振动壳体弹性连接。

Description

扬声器
优先权信息
本发明要求2021年01月14日提交的申请号为PCT/CN2021/071875的PCT申请的优先权,其全部内容通过引用并入本文。
技术领域
本说明书实施例涉及音频输出技术领域,特别涉及一种扬声器。
背景技术
具备通过骨骼传导声音功能的扬声器能将声音信号转换为机械振动信号,并将机械振动信号通过人体组织及骨骼传入人体的听觉神经,使佩戴者听到声音。
本说明书提供了一种扬声器,可以降低在特定频率下的振动幅度,降低扬声器的低频振动感,并且削弱扬声器工作时的漏音,改善扬声器的音质。
发明内容
本发明的目的在于提供一种扬声器,目的是降低扬声器使用过程中与用户的脸部接触的振动壳体的振动幅度,减弱低频振动感,并且减小扬声器的漏音,改善音质。
为了达到上述发明的目的,本发明提供的技术方案如下:
一种扬声器,包括:振动组件,所述振动组件包括振动元件和振动壳体,所述振动元件将电信号转换为机械振动,所述振动壳体与用户的脸部皮肤接触;第一弹性元件,所述第一弹性元件与所述振动壳体弹性连接。
在一些实施例中,所述扬声器还包括质量元件,所述质量元件通过所述第一弹性元件与所述振动壳体连接,所述质量元件与所述第一弹性元件连接构成谐振组件。
在一些实施例中,所述振动壳体包括振动面板,所述振动面板与用户的脸部皮肤接触,所述第一弹性元件与所述振动面板弹性连接。
在一些实施例中,所述质量元件为凹槽构件,所述振动元件至少部分容纳在所述凹槽构件内,所述第一弹性元件连接所述振动面板和所述凹槽构件的内壁。
在一些实施例中,所述第一弹性元件为传振片。
在一些实施例中,所述质量元件的质量与所述振动面板的质量之比在0.04~1.25的范围内。
在一些实施例中,所述质量元件的质量与所述振动面板的质量之比在0.1~0.6的范围内。
在一些实施例中,所述振动组件在第一频率产生第一谐振峰,所述谐振组件在第二频率产生第二谐振峰,所述第二频率与所述第一频率的比值在0.5~2的范围内。
在一些实施例中,所述振动组件在第一频率产生第一谐振峰,所述谐振组件在第二频率产生第二谐振峰,所述第二频率和所述第一频率的比值在0.9~1.1的范围内。
在一些实施例中,所述第一频率和所述第二频率均小于500Hz。
在一些实施例中,在小于所述第一频率的频率范围内,所述谐振组件的振动幅度大于所述振动壳体的振动幅度。
在一些实施例中,所述振动壳体包括振动面板和与所述振动面板相对设置的壳体背板,所述振动面板与用户的脸部皮肤接触,所述质量元件通过所述第一弹性元件与所述壳体背板连接;所述第一弹性元件设置所述壳体背板表面,所述第一弹性元件与所述壳体背板贴合面积至少大于10mm 2
在一些实施例中,所述第一弹性元件包括硅胶、塑料、胶水、泡棉、弹簧中的至少一种。
在一些实施例中,所述第一弹性元件为所述胶水。
在一些实施例中,所述胶水的邵氏硬度在30~50范围内。
在一些实施例中,所述胶水的抗拉强度不小于1MPa。
在一些实施例中,所述胶水的扯断伸长率在100%~500%范围内。
在一些实施例中,所述胶水与所述壳体背板之间的粘接强度在8MPa~14Mpa范围内。
在一些实施例中,所述胶水涂覆在所述壳体背板表面形成的胶水层的厚度在50μm~150μm范围内。
在一些实施例中,所述胶水与所述壳体背板贴合面积占所述壳体背板的内壁的面积的1%~98%。
在一些实施例中,所述胶水与所述壳体背板贴合面积在100mm 2~200mm 2范围内。
在一些实施例中,所述胶水与所述壳体背板贴合面积为150mm 2
在一些实施例中,所述第一弹性元件的内部和表面中的至少一处具有孔隙。
在一些实施例中,所述孔隙中填充有阻尼填充物。
在一些实施例中,所述第一弹性元件为所述泡棉。
在一些实施例中,所述泡棉的厚度在0.6mm~1.8mm范围内。
在一些实施例中,所述质量元件的质量与所述振动面板以及壳体背板的质量之和的比值在0.04~1.25的范围内。
在一些实施例中,所述质量元件的质量与所述振动面板以及壳体背板的质量之和的比值在0.1~0.6的范围内。
在一些实施例中,制造所述质量元件的材料包括塑胶、金属、复合材料中的至少一种。
在一些实施例中,所述谐振组件包括至少两组,每组所述谐振组件中的所述第一弹性元件均与所述壳体背板连接且相邻两组所述谐振组件间隔预设距离。
在一些实施例中,所述谐振组件包括至少两组,至少两组所述谐振组件沿所述第一弹性元件的厚度方向层叠设置,相邻的两组所述谐振组件的所述第一弹性元件与所述质量元件连接。
在一些实施例中,所述第一弹性元件设置在所述壳体背板的内壁。
在一些实施例中,所述第一弹性元件包括振膜,所述质量元件包括贴合在所述振膜表面的复合结构。
在一些实施例中,所述复合结构包括纸盆、铝片或铜片中的至少一种。
在一些实施例中,所述振动壳体上开设有出声孔,所述谐振组件振动产生的声音通过所述出声孔导出到外界。
在一些实施例中,所述出声孔开设在所述壳体背板上。
在一些实施例中,所述第一弹性元件设置在所述壳体背板的外壁。
在一些实施例中,所述质量元件为凹槽构件,所述振动壳体至少部分容纳在所述凹槽构件内,所述第一弹性元件连接所述振动壳体的外壁和所述凹槽构件的内壁,所述凹槽构件的内壁与所述振动壳体的外壁之间形成出声通道。
在一些实施例中,所述扬声器还包括功能元件,所述质量元件与所述功能元件连接。
在一些实施例中,所述功能元件包括电池、印制电路板。
在一些实施例中,所述振动组件还包括第二弹性元件,所述振动元件通过所述第二弹性元件将所述机械振动传递给所述振动壳体。
在一些实施例中,所述第二弹性元件为传振片,所述传振片与所述振动壳体固定连接。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示类似的结构,其中:
图1是根据本说明书一些实施例所示的扬声器的纵截面示意图;
图2是根据本说明书一些实施例所示的未添加减振组件的扬声器的纵截面示意图;
图3是根据本说明书一些实施例所示的未添加减振组件的扬声器的部分频率响应曲线图;
图4是根据本说明书一些实施例所示的添加了减振组件的扬声器的纵截面示意图;
图5是根据本说明书一些实施例所示的添加了减振组件的扬声器的部分频率响应曲线;
图6是根据本说明书一些实施例所示的未添加减振组件的扬声器的简化力学模型示意图;
图7是根据本说明书一些实施例所示的添加了减振组件的扬声器的简化力学模型示意图;
图8是根据本说明书一些实施例所示的第一弹性元件为振膜的扬声器的纵截面示意图;
图9是根据本说明书一些实施例所示的质量元件为凹槽构件的扬声器的纵截面示意图;
图10是根据本说明书一些实施例所示的添加了减振组件的又一扬声器的纵截面示意图;
图11是图10所示的扬声器的另一角度的纵截面示意图;
图12是根据本说明书一些实施例所示的减振组件设置在振动壳体内部的扬声器的截面示意图;
图13是根据本说明书一些实施例所示的扬声器的漏音强度曲线图;
图14是根据本说明书一些实施例所示的另一扬声器的声压级曲线图;
图15是根据本说明书一些实施例所示的第一弹性元件具有孔隙的扬声器的截面示意图;
图16是根据本说明书一些实施例所示的包括两组谐振组件的扬声器的纵截面示意图;
图17是根据本说明书一些实施例所示的包括两组谐振组件的另一扬声器的纵截面示意图。
具体实施方式
为了更清楚地说明本说明书的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其他类似情景。应当理解,给出这些示例性实施例仅仅是为了使相关领域的技术人员能够更好地理解进而实现本发明,而并非以任何方式限制本发明的范围。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”。其他术语的相关定义将在下文描述中给出。以下,不失一般性,在描述本发明中骨传导相关技术时,将采用“骨传导扬声器”或“骨传导耳机”的描述。该描述仅仅为骨传导应用的一种形式,对于该领域的普通技术人员来说,“扬声器”或“耳机”也可用其他同类词语代替,比如“播放器”、“助听器”等。
本说明书一些实施例提供一种具备骨骼传导声音功能的扬声器。该扬声器上设置有减振组件,减振组件可以减小扬声器在工作过程中产生的机械振动强度。这里所说的机械振动可以是指扬声器的振动壳体(例如,与用户的脸部皮肤接触的振动面板,以及与其连接的壳体侧板、壳体背板等)产生的振动。在一些情况下,利用减振组件对振动壳体在低频区域的机械振动进行削弱,可以使得振动壳体在低频段的振动感有所减弱,使用户佩戴扬声器时更加舒适。在另一些情况下,当振动壳体的振动强度减小时,因振动壳体振动带来的漏音也会有所改善,能够有效提高扬声器的音质,提高用户体验。本说明书中的扬声器可以是指以骨传导(即骨骼传导)为主要方式之一传递声音的扬声器。示例性的,当扬声器工作时,扬声器的振动壳体会发生机械振动,振动壳体可以通过用户的脸部皮肤将机械振动以骨传导的方式传递至用户的听觉神经,使用户听到声音。为了方便描述,在本说明书一个或多个实施例中,将以扬声器为例进行说明。需要说明的是,通过骨骼传导声音的方式并不是本说明书的扬声器唯一的向用户传递声音的途径。在一些实施例中,扬声器还可以以其他方式传递声音。例如,扬声器还可以包括气传导(即空气传导)扬声器组件,即扬声器可以同时包括扬声器组件以及气传导扬声器组件,结合骨骼传导和空气传导两者方式向用户传递声音。其中,气传导扬声器组件可以通过空气传导振动波至用户听觉神经,使用户听到声音。
图1是根据本说明书一些实施例所示的扬声器的结构模块图。如图1所示,扬声器100可以包括振动组件110、减振组件120和固定组件130。
振动组件110可以产生机械振动。机械振动的产生伴随着能量的转换,扬声器100可以使用振动组件110实现含有声音信息的信号向机械振动转换。转换的过程中可能包含多种不同类型能量的共存和转换。例如,电信号通过振动组件110中的换能装置可以直接转换成机械振动。再例如,声音信息可以包含在光信号中,一种特定的换能装置可以实现由光信号转换为振动信号的过程。其它可以在换能装置工作过程中共存和转换的能量类型包括热能、磁场能等。换能装置的能量转换方式可以包括动圈式、静电式、压电式、动铁式、气动式、电磁式等。振动组件可以将产生的机械振动通过用户的脸部皮肤以骨传导的方式传递至用户的耳膜,使用户听到声音。
在一些实施例中,振动组件110可以包括振动元件(例如,振动元件211)和与振动元件连接的振动壳体(例如,振动壳体213)。振动元件可以产生机械振动,该机械振动可以传递至振动壳体。振动壳体可以与用户的脸部皮肤接触并将机械振动传递至用户的听觉神经。
在一些实施例中,振动元件(或称为换能装置)可以包括磁路组件。磁路组件可以提供磁场。磁场可以用于将含有声音信息的信号转化为机械振动信号。在一些实施例中,声音信息可以包括具有特定数据格式的视频、音频文件或者可以通过特定途径转化为声音的数据或文件。含有声音信息的信号可以来自于扬声器100本身的存储组件,也可以来自于扬声器100以外的信息产生、存储或者传递系统。含有声音信息的信号可以包括电信号、光信号、磁信号、机械信号等一种或多种的组合。含有声音信息的信号可以来自一个信号源或多个信号源。多个信号源可以相关也可以不相关。在一些实施例中,扬声器100可以通过多种不同的方式获取含有声音信息的信号,信号的获取 可以是有线的或无线的,可以是实时或延时的。例如,扬声器100可以通过有线或者无线的方式接收含有声音信息的电信号,也可以直接从存储介质上获取数据,产生声音信号。又例如,扬声器100中可以包括具有声音采集功能的组件,通过拾取环境中的声音,将声音的机械振动转换成电信号,通过放大器处理后获得满足特定要求的电信号。在一些实施例中,有线连接可以包括金属电缆、光学电缆或者金属和光学的混合电缆,例如,同轴电缆、通信电缆、软性电缆、螺旋电缆、非金属护皮电缆、金属护皮电缆、多芯电缆、双绞线电缆、带状电缆、屏蔽电缆、电信电缆、双股电缆、平行双芯导线、双绞线等一种或多种的组合。以上描述的例子仅作为方便说明之用,有线连接的媒介还可以是其它类型,例如,其它电信号或光信号等的传输载体。
无线连接可以包括无线电通信、自由空间光通信、声通讯、和电磁感应等。其中无线电通讯可以包括IEEE802.11系列标准、IEEE802.15系列标准(例如蓝牙技术和蜂窝技术等)、第一代移动通信技术、第二代移动通信技术(例如FDMA、TDMA、SDMA、CDMA、和SSMA等)、通用分组无线服务技术、第三代移动通信技术(例如CDMA2000、WCDMA、TD-SCDMA、和WiMAX等)、第四代移动通信技术(例如TD-LTE和FDD-LTE等)、卫星通信(例如GPS技术等)、近场通信(NFC)和其它运行在ISM频段(例如2.4GHz等)的技术;自由空间光通信可以包括可见光、红外线讯号等;声通讯可以包括声波、超声波讯号等;电磁感应可以包括近场通讯技术等。以上描述的例子仅作为方便说明之用,无线连接的媒介还可以是其它类型,例如,Z-wave技术、其它收费的民用无线电频段和军用无线电频段等。例如,作为本技术的一些应用场景,扬声器100可以通过蓝牙技术从其他设备获取含有声音信息的信号。
在一些实施例中,振动壳体可以构成一个密闭或者非密闭的容纳空间,振动元件可以设置在振动壳体内部。在一些实施例中,振动壳体可以包括振动面板和与振动面板连接的壳体侧板以及壳体背板。示例性的,如图2所示,振动面板2131、壳体侧板2132以及壳体背板2133可以构成容纳空间,振动元件211可以设置在该容纳空间内。在一些实施例中,壳体侧板2132和壳体背板2133可以是相互独立的部件。壳体侧板2132和壳体背板2133可以通过物理方式连接或者通过其他连接结构连接固定。例如,壳体侧板2132和壳体背板2133可以是单独成型的板状构件,然后通过粘接的方式连接在一起。在一些实施例中,壳体侧板2132和壳体背板2133可以是同一结构的不同部分,即两者没有隔断的连接面。示例性的,振动壳体213可以包括一半球状壳体或者半椭球状壳体以及与之连接的振动面板2131。其中,半球状壳体或者半椭球状壳体可以包括壳体侧板2132和壳体背板2133,且壳体侧板2132和壳体背板2133没有明显的分界。例如,与振动面板2131连接的一部分称为壳体侧板2132,而其余部分可以称为壳体背板2133。
振动面板2131可以是指与用户的脸部皮肤接触的结构。振动面板2131可以与振动元件211进行连接,振动元件211产生的机械振动可以经由振动面板2131传递给用户。由于本说明书的扬声器是通过骨传导为主要方式传递声音,而骨传导是通过与用户身体(例如,用户的脸部皮肤)接触的部件(例如,振动面板2131)向用户传递机械振动,通过用户的皮肤和骨骼传递至用户的听觉神经使用户听到声音。在一些实施例中,振动面板2131与用户的脸部皮肤的接触面积至少大于预设接触面积。在一些实施例中,预设接触面积可以在50mm 2~1000mm 2范围内。在一些实施例中,预设接触面积可以在75mm 2~850mm 2范围内。在一些实施例中,预设接触面积可以在100mm 2~700mm 2范围内。
在一些实施例中,振动壳体可以不构成容纳空间。在一些实施例中,振动壳体可以仅包括与用户脸部接触的振动面板而没有壳体侧板或者壳体背板。例如,在图10和图11所示的实施例中,振动壳体1013为板状结构,板状结构的振动壳体1013直接与振动元件1011连接并且与用户的脸部皮肤接触,因此在该实施例中,振动壳体1013本身就相当于振动面板。
在一些实施例中,振动面板(例如,图2所示的振动面板2131)与用户的脸部皮肤可以是直接接触的。在一些实施例中,扬声器100的振动面板的外侧可以包裹振动传递层,振动传递层可以与用户的脸部皮肤接触,振动面板和振动传递层组成的振动体系将产生的声音振动通过振动传递层传递给用户的脸部皮肤。在一些实施例中,振动面板外侧包裹一层振动传递层。在一些实施例中,振动面板外侧可以包裹多层振动传递层。在一些实施例中,振动传递层可以是由一种或多种材料制成,不同振动传递层的材料构成可以相同,也可以不同。在一些实施例中,多层振动传递层之间可以是在振动面板厚度的方向上相互叠加,也可以是在振动面板水平的方向上铺开排列,或者以上两种排列方式的组合。振动传递层的面积可以设定为不同的大小。在一些实施例中,振动传递层的面积可以不小于1cm 2。在一些实施例中,振动传递层的面积可以不小于2cm 2。在一些实施例中,振动传递层的面积可以不小于6cm 2
在一些实施例中,振动传递层可以是由具有一定吸附性、柔性、化学性的材料构成。例如,塑料(包括但不限于高分子聚乙烯、吹塑尼龙、工程塑料等)、橡胶,也可以是能达到同样性能的其他单一或复合材料。对于橡胶的种类,包括但不限于通用型橡胶和特种型橡胶。通用型橡胶可以包括但不限于天然橡胶、异戊橡胶、丁苯橡胶、顺丁橡胶、氯丁橡胶等。特种型橡胶可以包括但不限于丁腈橡胶、硅橡胶、氟橡胶、聚硫橡胶、聚氨酯橡胶、氯醇橡胶、丙烯酸酯橡胶、环氧丙烷橡胶等。其中,丁苯橡胶可以包括但不限于乳液聚合丁苯橡胶和溶液聚合丁苯橡胶。对于复合材料,可以包括但不限于玻璃纤维、碳纤维、硼纤维、石墨纤维、纤维、石墨烯纤维、碳化硅纤维或芳纶纤维等增强材料。也可以是其它有机和/或无机材料的复合物,例如,玻璃纤维增强不饱和聚酯、环氧树脂或酚醛树脂基体组成的各类玻璃钢。其他可用于制成振动传递层的材料还包括硅胶、聚氨酯(Poly Urethane)、聚碳酸酯(Poly Carbonate)中的一种或多种的组合。
在一些实施例中,振动元件可以与振动壳体的任意位置连接。例如,在图12所示的实施例中,振动元件1211可以直接与振动面板12131相连接。又例如,在图4所示的实施例中,振动元件411可以与壳体侧板4132进行连接。振动元件411产生的机械振动会先传递至壳体侧板4132,然后在传递至振动面板4131,最后由振动面板4131传递给用户。
减振组件120可以与振动壳体(例如,图4所示的振动壳体413)连接以减小振动壳体的机械振动强度。在一些实施例中,减振组件120可以与振动壳体的振动面板直接连接。例如,在图10所示的实施例中,减振组件1020(减振组件1020的第一弹性元件1021)与振动面板12131连接。在一些实施例中,减振组件120可以与振动壳体的其他部件相连接。例如,在图4所示的实施例中,减振组件420与振动壳体413的壳体背板4133连接。
在一些实施例中,减振组件120可以包括第一弹性元件(例如,图4所示的第一弹性元件421)。在一些实施例中,第一弹性元件可以具有一定阻尼。在一些情况下,当振动壳体产生振动时,与之连接的第一弹性元件可以吸收振动壳体的机械能,减小振动壳体的振动幅度。在一些实施例中,第一弹性元件的阻尼可以在0.005N.s/m~0.5N.s/m范围内。在一些实施例中,第一弹性元件的阻尼可以在0.0075N.s/m~0.4N.s/m范围内。在一些实施例中,第一弹性元件的阻尼可以在0.01N.s/m~0.3N.s/m范围内。
在一些实施例中,减振组件120可以包括第一弹性元件(例如,图4所示的第一弹性元件421)以及与第一弹性元件连接的质量元件(例如,图4所示的质量元件423)。质量元件可以与第一弹性元件组成谐振组件。振动壳体的机械能可以通过第一弹性元件传递给质量元件,引起质量元件振动,以吸收振动壳体的机械能,减小振动壳体的振动强度。关于减振组件的更多细节可以参见本说明书其他实施例(例如,图4所示的实施例)的描述,此处不再赘述。
如前述实施例所述,质量元件和第一弹性元件构成的整体称为谐振组件。在一些实施例中,减振组件120可以包括一组或多组谐振组件。在一些实施例中,谐振组件的数量可以为一组。例如,在图4所示的实施例中,减振组件420仅包括一组谐振组件,其第一弹性元件421与振动壳体413的壳体背板4133的外壁相连接。在另一些实施例中,谐振组件的数量可以为至少两组。例如,在图16所示的实施例中,减振组件1620可以包括两组谐振组件,两组谐振组件均设置在壳体背板16133的内壁。
在一些实施例中,当扬声器100上设置有多组谐振组件时,谐振组件的设置位置、各组谐振组件的连接方式以及谐振组件的谐振频率等因素都可能会对减振组件120的减振效果产生影响。
在一些实施例中,至少两组谐振组件可以设置在振动壳体内部和/或振动壳体外部。示例性的,至少两组谐振组件可以均设置在振动壳体内部。例如,在图16所示的实施例中,两组谐振组件均与壳体背板16133的内壁连接。在另一示例中,至少两组谐振组件可以均设置在振动壳体的外部。在又一示例中,至少两组谐振组件分别设置在振动壳的内部和外部。例如,一些谐振组件设置在振动壳体的外部,其第一弹性元件与壳体背板的外壁连接,另一些谐振组件设置在振动壳体的内部,其第一弹性元件与壳体背板的内壁连接。
在一些实施例中,至少两组谐振组件可以均与振动壳体的内壁或外壁直接连接。示例性的,至少两组谐振组件可以均与振动壳体的内壁可以通过粘接、焊接、一体成型、铆接、螺钉连接等方式直接连接。例如,在图16所示的实施例中,两组谐振组件的第一弹性元件(例如,第一弹性元件1621-1和第一弹性元件1621-2)均与壳体背板16133的内壁直接连接。在另一示例中,至少两组谐振组件中的至少一组谐振组件可以与其他谐振组件连接,而不与振动壳体的内壁直接连接。例如,在图17所示的实施例中,谐振组件一共有两组(包括第一谐振组件1720-1和第二谐振组件1720-2),第一谐振组件1720-1与壳体背板17133的内壁直接连接(其第一弹性元件1721-1与壳体背板 17133的内壁连接)。第二谐振组件1720-2的第一弹性元件1721-2沿第一谐振组件1720-1的第一弹性元件1721-1的厚度方向层叠设置在第一谐振组件1720-1上,其第一弹性元件1721-2与第一谐振组件1720-1的质量元件1723-1相连接。
在一些实施例中,当至少两组谐振组件均设置在振动壳体的内壁或者外壁时,相邻两组谐振组件可以间隔预设距离。例如,在图16所示的实施例中,减振组件1620包括两组谐振组件(例如,第一谐振组件1620-1和第二谐振组件1620-2),两组谐振组件的第一弹性元件(例如,第一弹性元件1621-1和第一弹性元件1621-2)均与壳体背板16133的内壁直接连接,且两个第一弹性元件的边缘间隔预设距离。在一些实施例中,预设距离可以在0.1mm~70mm范围内。在一些实施例中,预设距离可以在0.2mm~60mm范围内。在一些实施例中,预设距离可以在0.3mm~50mm范围内。在一些实施例中,谐振组件可以包括定位件,定位件可以固定设置在振动壳体上对第一弹性元件进行定位,以便于将第一弹性元件准确地安装在振动壳体上。示例性的,定位件可以为设置在振动壳体上的注塑围边,塑料围边可以定位第一弹性元件的边缘。
在一些实施例中,至少两组谐振组件可以相同或相似。这里所说的谐振组件相同或相似可以是指包括质量单元、第一弹性元件以及谐振组件的谐振频率等相同或相似。在另一些实施例中,至少两组谐振组件也可以不同。示例性的,在图16所示的实施例中,两组谐振组件的第一弹性元件和质量元件的尺寸均有明显不同。
在一些实施例中,至少两组谐振组件的谐振频率可以不相同。在一些情况下,当各组谐振组件的谐振频率不相同时,各组谐振组件可以在各自的谐振频率附近的频段产生减振效果。例如,在图4所示的实施例基础上,减振组件420还包括另一组谐振组件(同样包括质量元件和第一弹性元件),其谐振频率大约为300Hz,该谐振组件可以在250Hz~350Hz范围内有效吸收振动壳体413的机械能。而原有的谐振组件(即质量元件423和第一弹性元件421组成的谐振组件)谐振频率为第二频率f0,其可以在低频区域(如100Hz~200Hz)有效吸收振动壳体413的机械能)。因此减振组件420的两组谐振组件可以在两个频段范围内对振动壳体413的机械能进行吸收,有效扩宽减振组件420吸收振动的频段。
在另一些实施例中,各组谐振组件的谐振频率可以相同或相似。当谐振组件的谐振频率可以相同或相似,可以增强在相应谐振频率附近频段的减振效果。例如,在图4所示的实施例基础上,减振组件420还包括另一组谐振组件(包括质量元件和第一弹性元件),该组谐振组件的谐振频率与原有的谐振组件(即质量元件423和第一弹性元件421组成的谐振组件)相同或相似,例如,两组谐振组件的谐振频率均为第二频率f0,则相当于增强了减振组件420在第二频率f0附近频段的减振效果。
在一些实施例中,振动组件110还可以包括第二弹性元件(例如,图2所示第二弹性元件215),第二弹性元件可以将振动元件与振动壳体进行连接,振动元件产生的机械振动可以经由第二弹性元件传递至振动壳体,进而引起振动面板的振动。关于第二弹性元件的更多细节可以参见本说明书其他实施例(例如,图2所示的实施例)的描述,此处不再赘述。
固定组件130可以对振动组件110和减振组件120起到固定支撑作用,从而保持扬声器100与用户的脸部皮肤稳定接触。固定组件130可以包括一个或多个固定连接件。一个或多个固定连接件可以与振动组件110和/或减振组件120连接固定。在一些实施例中,可以通过固定组件130实现双耳式佩戴。例如,固定组件130两端可以分别与两组振动组件110(或减振组件120)固定连接。当用户佩戴扬声器100时,固定组件130可以将两组振动组件110(或减振组件120)分别固定在用户的左、右耳朵附近。在一些实施例中,固定组件130也可以实现单耳式佩戴。例如,固定组件130可以仅与一组振动组件110(或减振组件120)固定连接。当用户佩戴扬声器100时,固定组件130可以将振动组件110(或减振组件120)固定在用户一侧的耳朵附近。在一些实施例中,固定组件130可以是眼镜。例如,墨镜、增强现实眼镜(Virtual Reality,VR)、虚拟现实眼镜(Augmented Reality,AR)、头盔、发带中的一个或多个的任意组合,在此不作限定。
以上对扬声器100结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解扬声器的基本原理后,可能在不背离这一原理的情况下,对实施扬声器100的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,扬声器100可以包括一个或多个处理器,处理器可以执行一个或多个声音信号处理算法。声音信号处理算法可以对声音信号进行修正或强化。例如对声音信号进行降噪、声反馈抑制、宽动态范围压缩、自动增益控制、主动环境识别、主动抗噪、定向处理、耳鸣处理、多通道宽动态范围压缩、主动啸叫抑制、音量控制,或其它类似的,或以上任意组合的处理, 这些修正和改变仍在本发明的权利要求保护范围之内。又例如,扬声器100可以包括一个或多个传感器,例如温度传感器、湿度传感器、速度传感器、位移传感器等。该传感器可以采集用户信息或环境信息。
图2是根据本说明书一些实施例所示的未添加减振组件的扬声器的纵截面示意图。如图2所示,扬声器200可以包括振动组件210和固定组件230。
在一些实施例中,振动组件210可以包括振动元件211、振动壳体213以及将振动元件211和振动壳体213弹性连接的第二弹性元件215。其中,振动元件211可以将声音信号转换为机械振动信号并由此产生机械振动。振动元件211产生的机械振动可以通过第二弹性元件215传递至与其连接的振动壳体213上,并使得振动壳体213产生振动。需要说明的是,振动元件211通过第二弹性元件215将机械振动传递给振动壳体213时,振动壳体213的振动频率与振动元件211的振动频率相同。
在本说明书中描述的振动元件211可以是指将声音信号转换为机械振动信号的元件,例如,换能器。在一些实施例中,振动元件211可以包括磁路组件和线圈,磁路组件可以用于形成磁场,线圈可以在该磁场中发生机械振动。具体的,线圈可以通入信号电流,线圈处于磁路组件形成的磁场中,受到安培力的作用,接受驱动产生机械振动。同时磁路组件受到与线圈相反的反作用力。在安培力的作用下,振动元件211可以产生机械振动。并且振动元件211的机械转动可以转递给振动壳体213,使得振动壳体213也随之振动。
在一些实施例中,振动壳体213可以包括振动面板2131、壳体侧板2132和壳体背板2133。其中,振动面板2131也可以称为壳体面板,均可以指代振动壳体213与用户的脸部皮肤接触的部件。壳体背板2133位于与振动面板2131相对的一面,也即背离用户的脸部皮肤的一面。在一些实施例中,振动面板2131和壳体背板2133分别设置在壳体侧板2132的两端面上。振动面板2131、壳体侧板2132和壳体背板2133可以形成具有一定容纳空间的壳状结构。振动元件211可以设置在壳状结构的内部。
在一些实施例中,振动面板2131与壳体侧板2132可以直接连接。例如,可以通过粘接、铆接、焊接、螺钉连接、一体成型等方式将振动面板2131与壳体侧板2132连接。在一些实施例中,振动面板2131与壳体侧板2132可以通过连接件连接。
在一些实施例中,振动面板2131与壳体侧板2132之间可以为刚性连接。例如,通过焊接、铆接等方式将振动面板2131与壳体侧板2132进行连接,连接之后振动面板2131与壳体侧板2132之间为刚性连接。在一些实施例中,振动面板2131与壳体侧板2132之间可以为弹性连接。例如,通过弹性件(例如,弹簧、泡棉、胶水等)将振动面板2131与壳体侧板2132连接,连接之后的振动面板2131与壳体侧板2132之间为弹性连接。在一些实施例中,连接件可以具有一定弹性,以减小通过连接件传递至壳体侧板以及壳体背板上的机械振动强度,降低由于振动壳体振动带来的漏音。连接件的弹性由连接件的材料、厚度、结构等多方面决定。在一些实施例中,振动面板2131与壳体侧板2132之间具体为刚性连接或者弹性连接可以根据实际情况确定。示例性的,可以根据振动元件211与振动壳体213的连接情况确定。例如,在图4所示的实施例中,振动元件411与壳体侧板4132连接时,则振动面板4131与壳体侧板4132之间可以为刚性连接。又例如,在图12所示的实施例中,振动元件1211与振动面板12131连接,则振动面板12131与壳体侧板2132之间可以为弹性连接。
对于连接件的材料,包括但不限于钢材(例如,不锈钢、碳素钢等)、轻质合金(例如,铝合金、铍铜、镁合金、钛合金等)、塑胶(例如,高分子聚乙烯、吹塑尼龙、工程塑料等),也可以是能达到同样性能的其他单一或复合材料。对于复合材料,包括但不限于玻璃纤维、碳纤维、硼纤维、石墨纤维、石墨烯纤维、碳化硅纤维或芳纶纤维等增强材料。构成连接件的材料也可以是其它有机和/或无机材料的复合物,例如,玻璃纤维增强不饱和聚酯、环氧树脂或酚醛树脂基体组成的各类玻璃钢。
在一些实施例中,连接件的厚度可以不低于0.005mm。在一些实施例中,连接件的厚度可以在0.005mm~3mm之间。在一些实施例中,连接件的厚度可以在0.01mm~2mm之间。在一些实施例中,连接件的厚度可以在0.01mm~1mm之间。在一些实施例中,连接件的厚度可以在0.02mm~0.5mm之间。
在一些实施例中,连接件的结构可以设定成环状,环状连接件可以形成不同的形状。示例性的,连接件可以包括至少一个圆环。在另一示例中,连接件可以包括至少两个圆环,可以是同心圆环,也可以是非同心圆环,圆环间通过至少两个支杆相连,支杆从外环向内环中心辐射。在一些 实施例中,连接件可以包括至少一个椭圆圆环。示例性的,连接件可以包括至少两个椭圆圆环,不同的椭圆圆环有不同的曲率半径,圆环之间通过支杆相连。在一些实施例中,连接件可以包括至少一个方形环。在一些实施例中,连接件结构也可以设定成片状。示例性的,可以在片状连接件上设置镂空图案。在一些实施例中,镂空图案的面积不小于连接件非镂空部分的面积。值得注意的是,以上描述中连接件的材料、厚度、结构可以以任意方式组合成不同的连接件。在一些实施例中,环状连接件可以具有不同的厚度分布。例如,支杆厚度可以等于圆环厚度。又例如,支杆厚度可以大于圆环厚度。还例如,连接件可以包括至少两个圆环,圆环间通过至少两个支杆相连,支杆从外环向内环中心辐射内环的厚度大于外环的厚度。在本实施例中,由于振动元件211与壳体侧板2132,因此振动面板2131产生机械振动的来源是壳体侧板2132传递过来的机械能,为了保证振动面板2131具有足够大的机械振动强度以保证用户听觉神经接收到的音量更大,可以将振动面板2131与壳体侧板2132之间设置为刚性连接。
在一些实施例中,振动面板2131、壳体侧板2132和壳体背板2133可以采用相同或不同材料制成。例如,振动面板2131和壳体侧板2132可以采用相同的材料制作而成,而制作壳体背板2133的材料可以与前两者不同。在一些实施例中,振动面板2131、壳体侧板2132和壳体背板2133可以分别采用不同的材料制作而成。
在一些实施例中,制作振动面板2131的材料包括但不限于丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile butadiene styrene,ABS)、聚苯乙烯(Polystyrene,PS)、高冲击聚苯乙烯(High impact polystyrene,HIPS)、聚丙烯(Polypropylene,PP)、聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)、聚酯(Polyester,PES)、聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)、聚氯乙烯(Polyvinyl chloride,PVC)、聚氨酯(Polyurethanes,PU)、聚二氯乙烯(Polyvinylidene chloride)、聚乙烯(Polyethylene,PE)、聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)、聚醚醚酮(Poly-ether-ether-ketone,PEEK)、酚醛树脂(Phenolics,PF)、尿素甲醛树脂(Urea-formaldehyde,UF)、三聚氰胺-甲醛树脂(Melamine formaldehyde,MF)以及一些金属、合金(如铝合金、铬钼钢、钪合金、镁合金、钛合金、镁锂合金、镍合金等)、玻璃纤维或碳纤维中的任意材料或上述任意材料的组合。在一些实施例中,制作振动面板2131的材料为玻璃纤维、碳纤维与聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)等材料的任意组合。在一些实施例中,制作振动面板2131的材料可以是碳纤维和聚碳酸酯(Polycarbonate,PC)按照一定比例混合制成。在一些实施例中,制作振动面板2131的材料可以是碳纤维、玻璃纤维和聚碳酸酯(Polycarbonate,PC)按照一定比例混合制成。在一些实施例中,制作振动面板2131的材料可以是玻璃纤维和聚碳酸酯(Polycarbonate,PC)按照一定比例混合制成,也可以使玻璃纤维和聚酰胺(Polyamides,PA)按照一定比例混合制成。
在一些实施例中,振动面板2131需要具有一定的厚度来保证其刚度。在一些实施例中,振动面板2131的厚度可以不小于0.3mm。在一些实施例中,振动面板2131的厚度可以不小于0.5mm。在一些实施例中,振动面板2131的厚度可以不小于0.8mm。在一些实施例中,振动面板2131的厚度可以不小于1mm。随着厚度的增加,振动壳体213的重量也会增加,从而增加扬声器200的自重,导致扬声器200的灵敏度受到影响。因此,振动面板2131的厚度不宜太大。在一些实施例中,振动面板2131的厚度可以不超过2.0mm。在一些实施例中,振动面板2131的厚度可以不超过1.5mm。
在一些实施例中,振动面板2131的相关参数还可以包括制作振动面板2131材料的相对密度、拉伸强度、弹性模量、洛氏硬度等。在一些实施例中,振动面板材料的相对密度可以在1.02~1.50之间。在一些实施例中,振动面板材料的相对密度可以在1.14~1.45之间。在一些实施例中,振动面板材料的相对密度可以在1.15~1.20之间。在一些实施例中,振动面板材料的拉伸强度可以不小于30MPa。在一些实施例中,振动面板材料的拉伸强度可以在33MPa~52MPa之间。在一些实施例中,振动面板材料的拉伸强度可以不小于60MPa。在一些实施例中,振动面板材料的弹性模量可以在1.0GPa~5.0GPa之间。在一些实施例中,振动面板材料的弹性模量可以在1.4GPa~3.0GPa之间。在一些实施例中,振动面板材料的弹性模量可以在1.8GPa~2.5GPa之间。在一些实施例中,振动面板材料的硬度(洛氏硬度)可以在60~150之间。在一些实施例中,振动面板材料的硬度可以在80~120之间。在一些实施例中,振动面板材料的硬度可以在90~100之间。在一些实施例中,同时考虑振动面板材料的相对密度和拉伸强度,可以是相对密度可以在1.02~1.1之间,拉伸强度可以在33MPa~52MPa之间。在一些实施例中,相对密度可以在1.20~1.45之间,拉伸强度可以在56MPa~66MPa之间。
在一些实施例中,振动面板2131可以设置成不同形状。例如,振动面板2131可以设置成 正方形、长方形、近似长方形(例如,将长方形四个角替换成弧形的结构)、椭圆形、圆形或者其他任意形状。
在一些实施例中,振动面板2131可以由同一种材料组成。在一些实施例中,振动面板2131可以由两种或两种以上的材料叠层设置而成。在一些实施例中,振动面板2131可以由一层杨氏模量较大的材料,外加一层杨氏模量较小的材料组合而成。这样的好处是在保证振动面板2131的刚度要求的同时,还可以增加与人体脸部接触的舒适性,提高振动面板2131和人体脸部接触的配合度。在一些实施例中,杨氏模量较大的材料可以为丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile butadiene styrene,ABS)、聚苯乙烯(Polystyrene,PS)、高冲击聚苯乙烯(High impact polystyrene,HIPS)、聚丙烯(Polypropylene,PP)、聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)、聚酯(Polyester,PES)、聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)、聚氯乙烯(Polyvinyl chloride,PVC)、聚氨酯(Polyurethanes,PU)、聚二氯乙烯(Polyvinylidene chloride)、聚乙烯(Polyethylene,PE)、聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)、聚醚醚酮(Poly-ether-ether-ketone,PEEK)、酚醛树脂(Phenolics,PF)、尿素甲醛树脂(Urea-formaldehyde,UF)、三聚氰胺-甲醛树脂(Melamine formaldehyde,MF)以及一些金属、合金(如铝合金、铬钼钢、钪合金、镁合金、钛合金、镁锂合金、镍合金等)、玻璃纤维或碳纤维中的任意材料或上述任意材料的组合。
在一些实施例中,振动面板2131可以与用户的脸部皮肤直接接触。在一些实施例中,振动面板2131与用户的脸部皮肤的接触部分可以是振动面板2131的全部面积或部分面积。例如,振动面板2131为一个弧形结构,弧形结构上只有部分面积与用户的脸部皮肤接触。在一些实施例中,振动面板2131与用户的脸部皮肤可以是面接触。在一些实施例中,振动面板2131与用户的脸部皮肤接触的表面可以是一个平面。在一些实施例中,振动面板2131的外表面可以具有一些凸起或凹坑。在一些实施例中,振动面板2131的外表面可以是任意轮廓的曲面。
在一些实施例中,振动面板2131可以与用户的脸部皮肤间接接触,例如,振动面板2131可以设置有前述实施例中的振动传递层,振动传递层可以介于振动面板2131与用户的脸部皮肤之间,代替振动面板2131与用户的脸部皮肤接触。
需要说明的是,由于振动元件211包括磁路组件,而振动元件211容纳在振动壳体213内。因此当振动壳体213的容积(即,容纳空间的体积)越大时,振动壳体213内部能容纳更大的磁路组件,从而使得扬声器200具有更高的灵敏度。扬声器200的灵敏度可以通过输入一定声音信号下,扬声器200产生的音量大小来反映。当输入相同声音信号时,扬声器200产生的音量越大,则表示该扬声器200的灵敏度越高。在一些实施例中,扬声器200的音量随着振动壳体213的容纳空间的体积的增大而变大。因此,本说明书对于振动壳体213的容积也有一定要求。在一些实施例中,为了使得扬声器200具有较高的灵敏度(音量),振动壳体213的容积可以在2000mm 3~6000mm 3之间。在一些实施例中,振动壳体213的容积可以在2000mm 3~5000mm 3之间。在一些实施例中,振动壳体213的容积可以在2800mm 3~5000mm 3之间。在一些实施例中,振动壳体213的容积可以在3500mm 3~5000mm 3之间。在一些实施例中,振动壳体213的容积可以在1500mm 3~3500mm 3之间。在一些实施例中,振动壳体213的容积可以在1500mm 3~2500mm 3之间。
在一些实施例中,固定组件230与振动组件210的振动壳体213固定连接,固定组件230用于保持扬声器200与用户的脸部皮肤的稳定接触,避免扬声器200的晃动,保证振动面板2131能够稳定的进行声音传递。在一些实施例中,固定组件230可以是弧形的弹性部件,能够形成向弧形中部回弹的力,以便能够与人体头骨稳定接触。以耳挂作为固定组件230为例,在图2的基础上,耳挂顶端p点与人体头部良好贴合,可认为顶端p点为固定点。耳挂与壳体侧板2132固定连接,固定连接的方式包括使用胶水粘结固定,或是通过卡接、焊接或螺纹连接等方式将耳挂固定在壳体侧板2132或壳体背板2133。耳挂上与振动壳体213相连的部分可以采用与壳体侧板2132或壳体背板2133相同、不同或者部分相同的材料制成。在一些实施例中,为了使耳挂具有较小的刚度(即较小的劲度系数),耳挂中还可以包括塑胶、硅胶和/或金属材料。例如,耳挂中可以包括圆弧状的钛丝。在一些实施例中,耳挂可以与壳体侧板2132或壳体背板2133一体成型。更多关于振动组件210和振动壳体213的示例可以参考2019年1月5日递交的申请号为PCT/CN2019/070545和PCT/CN2019/070548的PCT申请,其全部内容通过引用的方式并入本申请中。
如前所述,振动组件210还包括第二弹性元件215。第二弹性元件215可以用于将振动元件211与振动壳体213(例如,振动壳体213的壳体侧板2132)弹性连接,使得振动元件211的机械振动可以通过第二弹性元件215传递到振动壳体213的壳体侧板2132上,最终使得振动面板2131产生振动。当振动面板2131产生机械振动后,通过与佩戴者(或用户)的脸部皮肤进行接触,将机 械振动以骨传导方式经由骨骼传递到听觉神经,使用户听到声音。
在一些实施例中,振动元件211和第二弹性元件215可以容纳在振动壳体213的内部,第二弹性元件215可以将振动元件211与振动壳体213的内壁进行连接。在一些实施例中,第二弹性元件215可以包括第一部位和第二部位。第二弹性元件215的第一部位可以与振动元件211(例如,振动元件211的磁路组件)连接,第二弹性元件215的第二部位可以与振动壳体213的内壁连接。
在一些实施例中,第二弹性元件215可以为传振片。传振片的第一部位可以与振动元件211连接,传振片的第二部位可以与振动壳体213连接。具体的,传振片的第一部位可以与振动元件211的磁路组件连接,传振片的第二部位可以与振动壳体213的内壁连接。可选地,传振片具有环状结构,传振片的第一部位比第二部位更加靠近传振片的中心区域。例如,传振片的第一部位可以位于传振片的中心区域,而第二部位则位于传振片的周侧。
在一些实施例中,传振片可以为弹性构件。传振片的弹性可以由传振片的材料、厚度、结构等多方面决定。
在一些实施例中,制作传振片的材料包括但不限于,塑胶(例如,但不限于高分子聚乙烯、吹塑尼龙、工程塑料等)、钢材(例如,但不限于不锈钢、碳素钢等)、轻质合金(例如,但不限于铝合金、铍铜、镁合金、钛合金等),也可以是能达到同样性能的其他单一或复合材料。其中,复合材料可以包括但不限于玻璃纤维、碳纤维、硼纤维、石墨纤维、石墨烯纤维、碳化硅纤维或芳纶纤维等增强材料,或者其它有机和/或无机材料的复合物,例如,玻璃纤维增强不饱和聚酯、环氧树脂或酚醛树脂基体组成的各类玻璃钢。
在一些实施例中,传振片可以具有一定厚度。在一些实施例中,传振片的厚度可以不低于0.005mm。在一些实施例中,传振片的厚度可以在0.005mm~3mm之间。在一些实施例中,传振片的厚度可以在0.01mm~2mm之间。在一些实施例中,传振片的厚度可以在0.01mm~1mm之间。在一些实施例中,传振片的厚度可以在0.02mm~0.5mm之间。
在一些实施例中,传振片的弹性可以是通过传振片的结构提供的。例如,传振片可以是弹性结构体,即使制作传振片的材料的刚度较高,也可以通过其结构来提供弹性。在一些实施例中,传振片的结构可以包括但不限于类似弹簧的结构、环状或者类似环状的结构等。在一些实施例中,传振片的结构也可以设定成片状。在一些实施例中,传振片的结构也可以设置成条状。传振片的具体结构可以基于以上描述中的材料、厚度、结构进行组合,形成不同的传振片。例如,片状传振片可以具有不同的厚度分布,传振片的第一部位的厚度大于传振片的第二部位的厚度。在一些实施例中,传振片的数量可以是一个,也可以是多个。例如,传振片的数量可以有两个,两个传振片的第二部位分别连接在位置相对的两个壳体侧板2132的内壁上,两个传振片的第一部位均与振动元件211连接。
在一些实施例中,传振片可以直接与振动壳体213和振动元件211连接。示例性的,传振片可以通过粘胶连接在振动元件211以及振动壳体213上。在另一些示例中,传振片还可以通过焊接、卡接、铆接、螺纹连接(例如,通过螺钉、螺丝、螺杆、螺栓等部件进行连接)、卡箍连接、销连接、楔键连接、一体成型的方式与振动元件211以及振动壳体213固定。更多关于传振片的示例可以参考2019年1月5日递交的申请号为PCT/CN2019/070545和PCT/CN2019/070548的PCT申请,其全部内容通过引用的方式并入本申请中。
在一些实施例中,振动组件210还可以包括第一传振连接件。传振片可以通过第一传振连接件与振动元件211连接。在一些实施例中,第一传振连接件可以固定连接在振动元件211上,如图2所示。例如,第一传振连接件可以固定在振动元件211的表面。在一些实施例中,振动元件211的第一部位可以与第一传振连接件固定连接。在一些实施例中,传振片还可以通过焊接、卡接、铆接、螺纹连接(例如,通过螺钉、螺丝、螺杆、螺栓等部件进行连接)、卡箍连接、销连接、楔键连接、一体成型的方式固定在第一传振连接件上。
在一些实施例中,振动组件210还可以包括第二传振连接件,第二传振连接件可以固定在振动壳体213的内壁,例如,第二传振连接件可以与壳体侧板2132的内壁固定。传振片可以通过第二传振连接件与振动壳体213连接。在一些实施例中,振动元件211的第二部位可以与第二传振连接件固定连接。第二传振连接件与传振片连接方式可以与前述实施例中的第一传振连接件与传振片的连接方式相同或者相似,此处不再赘述。
图3是根据本说明书一些实施例所示的未添加减振组件的扬声器的部分频率响应曲线图。其中,横轴为频率,纵轴为扬声器200的振动强度(或称振动幅度)。这里所说的振动强度也可以理解为扬声器200的振动加速度。纵轴上的数值越大,说明扬声器200的振动幅度就越大,也就表 明扬声器200的振动感越强烈。为方便描述,在一些实施例中,低于500Hz的声音频率范围可以称为低频区域,500Hz~4000Hz的声音频率范围可以称为中频区域,大于4000Hz的声音频率范围可以称为高频区域。在一些实施例中,低频区域的声音会带给用户比较明显的振动感,如果在低频区域出现很尖锐的峰(即,某些频率的振动加速度远高于附近其他频率的振动加速度),一方面用户听到的声音会比较刺耳尖锐,另一方面强烈的振动感也会带来不舒服的感觉。因此,在低频区域范围内,不希望出现很尖锐的峰谷,频响曲线越平坦,则扬声器200的音效越好。
如图3所示,扬声器200在低频区域(100Hz附近)产生一个低频谐振峰。为了描述方便,可以视作扬声器200在第一频率产生了一个第一谐振峰。该低频谐振峰可以理解为振动组件210与固定组件230共同作用产生。该低频谐振峰的振动加速度较大,导致振动面板2131的振动感强烈,使得用户佩戴扬声器200时脸部可能感受到痛感,影响用户使用的舒适性与体验性。
图4是根据本说明书一些实施例所示的添加了减振组件的扬声器的纵截面示意图。如图4所示,扬声器400包括振动组件410和减振组件420。
在一些实施例中,振动组件410可以包括振动元件411、振动壳体413以及第二弹性元件415。振动壳体413可以包括振动面板4131、壳体侧板4132以及壳体背板4133。振动壳体413的壳体侧板4132通过第二弹性元件415与振动元件411弹性连接。当振动元件411发生机械振动时,机械振动可以经由第二弹性元件415传递至壳体侧板4132,再经由壳体侧板4132传递至振动面板4131以及壳体背板4133引起振动面板4131以及壳体背板4133振动。在一些实施例中,振动元件411、振动壳体413、第二弹性元件415分别与扬声器200中的振动元件211、振动壳体213、第二弹性元件215相同或类似,其结构的细节这里不再赘述。
在一些实施例中,减振组件420可以包括质量元件423和第一弹性元件421,第一弹性元件421与质量元件423固定连接组成谐振组件。质量元件423可以通过第一弹性元件421与振动壳体413连接。振动壳体413可以通过第一弹性元件421将机械振动传递给质量元件423,驱动质量元件423进行机械振动。当质量元件423产生机械振动时,可以减弱振动壳体413的振动加速度,也即振动强度,从而降低振动壳体413的振动感,提高用户使用体验。
在一些实施例中,第一弹性元件421可以与振动壳体413除振动面板4131以外的其它任意位置相连接。示例性的,第一弹性元件421可以与壳体侧板4132或者壳体背板4133相连接。例如,在图4所示的示例中,第一弹性元件421可以连接在壳体背板4133的外壁。
图5是根据本说明书一些实施例所示的添加了减振组件的扬声器的部分频响曲线图。此外,图5还示出了谐振组件(由第一弹性元件和质量元件组成)的频响曲线。根据图5可知,在谐振组件的影响下,扬声器400在低频区域的频响曲线会变得更加平坦,避免了尖锐的低频谐振峰所导致的强烈振动感,提高了用户使用体验。
图6是根据本说明书一些实施例所示的未添加谐振组件的扬声器的简化力学模型示意图。为方便理解,当扬声器没有包括谐振组件(即质量元件和第一弹性元件构成的整体)时,扬声器的力学模型可以等效为图6所示的模型。为了便于分析说明,可以将振动壳体和振动元件简化为质量块m 1和质量块m 2,固定组件(例如,耳挂)可简化为弹性连接件k 1,第二弹性元件可简化为弹性连接件k 2,弹性连接件k 1和弹性连接件k 2的阻尼分别为R 1和R 2。振动壳体和振动元件分别受到安培力F和安培力的反作用力–F的作用而产生振动。振动壳体、振动元件、第二弹性元件、固定组件组成的复合振动系统固定于耳挂顶端p点。
图7是根据本说明书一些实施例所示的添加了谐振组件的扬声器的简化力学模型示意图。与图6类似地,为方便理解,当扬声器包括谐振组件(由质量元件和第一弹性元件组成)时,扬声器的力学模型可以等效为图7所示的模型。如图7所示,m 1和m 2可以分别代表振动壳体和振动元件的质量,m 3代表谐振组件中质量元件的质量,k 1和R 1分别代表固定组件(例如,耳挂)的弹性和阻尼,k 2和R 2分别代表第二弹性元件的弹性和阻尼,k 3和R 3代表第一弹性元件的弹性和阻尼。整个复合振动系统固定于耳挂顶端p点,振动壳体和振动元件分别受到力F和–F的作用而产生振动。当加入谐振组件之后,相当于增加振动壳体的刚度和阻尼,同时安培力F并没有发生变化,安培力的反作用力-F也没有变化,所以谐振组件的加入可以减弱振动壳体的振动幅度。
在一些实施例中,振动组件410和谐振组件可以在低频区域的特定频率各自产生一个低频谐振峰,利用谐振组件吸收振动壳体413的机械振动可以实现减弱振动壳体413在其低频谐振峰处的机械振动幅度的目的。如图5所示,曲线“无谐振组件”表示未添加谐振组件时,扬声器400的频率响应,可以看出振动组件410(结合固定组件430)可以在第一频率f产生第一谐振峰450。曲线“有谐振组件-谐振组件”表示谐振组件本身的频率响应。可以看出谐振组件可以在第二频率f0产 生第二谐振峰460。曲线“有谐振组件-扬声器”表示振动组件410和谐振组件相互作用产生的扬声器400的频率响应。可以看出添加了谐振组件的扬声器400在低频区域(例如,100Hz~200Hz)的频率响应相较于未添加谐振组件的扬声器(例如,图2所示的扬声器200)在低频区域的频率响应更为平坦,其在第一频率f(即第一谐振峰450处对应的频率)附近的幅值明显低于未添加谐振组件时的幅值。
在一些示例性应用场景中,振动元件411产生的机械振动可以通过第二弹性元件415传递给振动壳体413,使振动壳体413受迫发生振动,因此振动壳体413的振动频率与振动元件411的振动频率相同。类似的,振动壳体413通过第一弹性元件421将机械振动传递给谐振组件的质量元件423,导致质量元件423受迫运动。因此质量元件423的振动频率与振动壳体413的振动频率相同。由图5中谐振组件本身的频率响应曲线变化规律可以得知,从100Hz到第二频率f0(即第二谐振峰460对应的频率)的范围内,谐振组件的振动加速度随着频率增大而增大。当频率为第二频率f0时,出现第二谐振峰460。当频率超过第二频率f0继续增大时,谐振组件的振动加速度随着频率的增大而减小。该谐振组件的频率响应曲线能够反映谐振组件对于外界不同频率的振动(即,振动壳体413的振动)的响应。例如,在第二频率f0处以及附近的频率范围内,谐振组件会从振动壳体413吸收较多的振动能量。这样带来的好处是谐振组件主要降低振动壳体413在低频段(例如,第一谐振峰450对应的频率)附近的振动,而对于非低频谐振峰及其附近的振动壳体413的振动几乎没有影响或者影响很小,最终使得扬声器400的频响曲线更加平坦,音质更好。
在一些实施例中,第一频率f为振动组件410(结合固定组件430)的固有频率,第二频率f0为谐振组件的固有频率。在一些实施例中,固有频率与结构本身的材料、质量、弹性系数、形状等因素有关。
在一些实施例中,为了让谐振组件能够有效减弱振动壳体413的第一谐振峰450的振动强度,可以将谐振组件的第二谐振峰460对应的第二频率f0设置在振动壳体413的第一谐振峰450对应的第一频率f附近。参考图5所示,在一些实施例中,第二频率f0和第一频率f的比值在0.5~2的范围内。在一些实施例中,第二频率f0和第一频率f的比值在0.65~1.5的范围内。在一些实施例中,第二频率f0和第一频率f的比值在0.75~1.25的范围内。在一些实施例中,第二频率f0和第一频率f的比值在0.85~1.15的范围内。在一些实施例中,第二频率f0和第一频率f的比值在0.9~1.1的范围内。
为了拓宽扬声器400的频响范围,可以通过改变振动组件410和谐振组件的结构和材料,将它们的低频谐振峰(例如,第一谐振峰450和第二谐振峰460)控制在频率较低的位置。在一些实施例中,可以将第一谐振峰450和第二谐振峰460可以均控制在低频区域内。在一些实施例中,第一频率f和第二频率f0可以均小于800Hz。在一些实施例中,第一频率f和第二频率f0可以均小于700Hz。在一些实施例中,第一频率f和第二频率f0可以均小于600Hz。在一些实施例中,第一频率f和第二频率f0可以均小于500Hz。
在一些实施例中,通过控制谐振组件的结构和材料(例如,控制质量元件423的质量、第一弹性元件421的弹性系数等),可以使得当振动壳体413将振动传递给谐振组件后,谐振组件产生比振动壳体413更大幅度的振动。例如,在小于(或大于)第一频率f的至少部分频率范围内,谐振组件振动的幅度可以大于振动壳体413振动的幅度。在一些实施例中,可以将固定组件430与振动壳体413进行连接,由于谐振组件不直接与用户接触,所以谐振组件的大幅度振动并不会让用户感受到不适的振动感。在一些实施例中,由于谐振组件的振幅较大,可以将谐振组件中的质量元件423设计为面积较大的结构,在谐振组件振动的同时,大面积的质量元件423的振动可以带动空气振动,产生低频气导声音,以此增强扬声器400的低频响应。例如,可以将质量元件423设置为板状构件(如圆形板、方形板等),板状构件在振动时可以带动空气振动,从而产生气导声。
参见图5,在一些实施例,在振动壳体413和谐振组件的相互作用下,扬声器400在低频区域(大约在150Hz~200Hz)可以产生一个波谷472,波谷472的振动加速度小于第一谐振峰450的振动加速度。并且由于形成波谷472,使得扬声器400的振动加速度的峰值也有所降低,由图5可知,扬声器400存在两处振动加速度峰值,两处振动加速度峰值均小于第一谐振峰450的振动加速度。上述内容表明添加了谐振组件的扬声器400相较于没有添加谐振组件的扬声器(例如,图2所示的扬声器200)而言,不仅产生了振动加速度更低的波谷,还是得其振动加速度的峰值更小,也就表明振动壳体413在低频区域的振动感更弱,这使得用户佩戴扬声器400时体验更佳。
在一些实施例中,扬声器400可以在小于450Hz的频率范围内产生一个波谷。在一些实施例中,扬声器400可以在小于400Hz的频率范围内产生一个波谷。在一些实施例中,扬声器400可 以在小于350Hz的频率范围内产生一个波谷。在一些实施例中,扬声器400可以在小于300Hz的频率范围内产生一个波谷。在一些实施例中,扬声器400可以在小于200Hz的频率范围内产生一个波谷。
在一些示例性应用场景中,由于谐振组件的质量主要依靠质量元件423提供,当质量元件423的质量m 3非常小以至于质量元件423的质量m 3与振动壳体413的质量m 1之比过小时,谐振组件对振动壳体413的机械振动的幅度的影响很小,导致不能有效减弱振动壳体413的第一谐振峰450附近的机械振动。例如,如果质量元件423的质量m 3与振动壳体413的质量m 1之比太小,那么谐振组件对振动壳体413的振动幅度影响可以忽略不计,导致振动壳体413的第一谐振峰450的振动加速度依然较大,无法有效减弱扬声器400的振动感。
在另一些示例性应用场景中,当质量元件423的质量m 3非常大以至于质量元件423的质量m 3与振动壳体413的质量m 1之比过大时,谐振组件对扬声器400的机械振动的幅度的影响太大,会明显改变扬声器400的频率响应。因此,谐振组件的质量元件423的质量m 3需要控制在一定范围内。
在一些实施例中,谐振组件的质量元件423的质量m 3与振动壳体413的质量m 1之比可以在0.04~1.25的范围内。在一些实施例中,谐振组件的质量元件423的质量m 3与振动壳体413的质量m 1之比可以在0.05~1.2的范围内。在一些实施例中,谐振组件的质量元件423的质量m 3与振动壳体413的质量m 1之比可以在0.06~1.1的范围内。在一些实施例中,谐振组件的质量元件423的质量m 3与振动壳体413的质量m 1之比可以在0.07~1.05的范围内。在一些实施例中,谐振组件的质量元件423的质量m 3与振动壳体413的质量m 1之比可以在0.08~0.9的范围内。在一些实施例中,谐振组件的质量元件423的质量m 3与振动壳体413的质量m 1之比可以在0.09~0.75的范围内。在一些实施例中,谐振组件的质量元件423的质量m 3与振动壳体413的质量m 1之比可以在0.1~0.6的范围内。
在一些实施例中,制作质量元件423的材料可以包括但不限于塑胶、金属、复合材料等。在一些实施例中,质量元件423可以为独立结构。在一些实施例中,质量元件423可以作为复合结构与扬声器400的其他部件进行组合。例如,在图8所示的实施例中,第一弹性元件821为振膜,而质量元件823可以作为复合结构设置在振膜表面与振膜形成复合振膜结构。在复合振膜结构中,质量元件823可以包括纸盆、铝片、铜片等中的至少一种。在一些实施例中,扬声器400还可以包括功能元件,质量元件423可以作为复合结构与功能元件连接进行组合。在另一些实施例中,质量元件423其本身可以为功能元件。这里所说的功能元件可以是指用于实现扬声器400的一个或多个特定功能的部件。示例性的功能元件可以包括电池、印制电路板、通信组件等中的至少一种。
在一些实施例中,质量元件423可以为板状结构、块状结构、球状结构、柱状结构、锥形结构、条状结构或其他任意可能的结构中的一种或其组合。示例性的,质量元件923可以为圆形板状结构。在另一示例中,如图9所示,质量元件923可以为凹槽构件,凹槽构件可以为方形凹槽(凹槽截面形状为方形)或者圆形凹槽(凹槽截面形状为圆形)。基于上述内容,可以根据实际需要对本说明书的质量元件的具体形状及结构进行设计。
图8是根据本说明书一些实施例所示的第一弹性元件为振膜的扬声器的纵截面示意图。如图8所示,扬声器800可以包括振动组件810和减振组件820。振动组件810可以产生机械振动,并且振动组件810可以与用户的脸部皮肤接触,通过用户的脸部皮肤以骨传导的方式将机械振动传递至用户的听觉神经。减振组件820可以减小振动组件振动时带给用户的振动感。
在一些实施例中,振动组件810可以包括振动元件811、振动壳体813和第二弹性元件815。振动元件可以根据电信号产生机械振动。振动元件811可以通过第二弹性元件815与振动壳体813弹性连接。当振动元件811发生机械振动时,机械振动可以经由第二弹性元件815传递至振动壳体813上,以驱动振动壳体813进行机械振动,进而将振动传递给用户的脸部皮肤,通过用户的脸部皮肤以骨传导的方式使用户能够听到声音。
在一些实施例中,振动壳体813可以包括振动面板8131、壳体侧板8132以及壳体背板8133。在一些实施例中,振动元件811、振动面板8131、第二弹性元件815分别与扬声器200中的振动元件211、振动面板2131、第二弹性元件215相同或类似,其结构的细节这里不再赘述。
在一些实施例中,减振组件820可以包括由第一弹性元件821和质量元件823构成的谐振组件。质量元件823可以通过第一弹性元件821与振动壳体813(振动壳体813的壳体侧板8132)弹性连接。振动壳体813通过第一弹性元件821将振动传递给质量元件823,使得振动壳体813的机械振动被质量元件823部分吸收,从而减弱振动壳体813的振动幅度。
如图8所示,减振组件820可以容纳在振动壳体813内,减振组件820可以通过第一弹性元件821与壳体侧板8132的内壁连接。在一些实施例中,第一弹性元件821可以包括振膜。振膜的周侧可以通过支撑结构连接或者直接连接在振动壳体813的壳体侧板8132的内部。壳体侧板8132是环绕振动面板8131设置的侧壁。当振动壳体813发生振动时,壳体侧板8132可以引起振膜的振动。由于此处振膜是依靠与振动壳体813连接,通过振动壳体813的驱动进行振动的,因此可以称为被动振膜。在一些实施例中,振膜的类型可以包括但不限于塑料振膜、金属振膜、纸质振膜、生物振膜等。
在一些实施例中,质量元件823可以贴合在振膜的表面与振膜共同构成复合结构。质量元件823贴合在振膜表面形成复合结构主要起到以下作用:(1)复合结构可以作为配重元件,调整振膜系统的质量,保证振膜系统整体在一定的质量范围之内,使得振膜本身具有较大的振动幅度的效果,能够有效起到减弱扬声器800在低频区域范围内振动幅度的作用;(2)质量元件823与振膜结合形成的复合振膜结构可以使得该复合振膜结构具有更高的刚度,复合振膜表面不容易产生高阶模态,避免被动振膜的频响出现较多的峰谷。
在一些实施例中,质量元件823的类型可以包括但不限于纸盆、铝片或铜片中的一种或其组合。在一些实施例中,质量元件823可以采用同一种材料制作而成。例如,复合结构可以是纸盆或铝片。在一些实施例中,质量元件823可以采用不同材料制作而成。例如,质量元件823可以是纸盆和铜片组合而成的结构。又例如,质量元件823可以是按照由铝或铜按照一定比例混合而成的结构。
在一些实施例中,质量元件823与振膜连接的方式可以包括但不限于使用胶水粘结固定,或是焊接、卡接、铆接、螺纹连接(螺钉、螺丝、螺杆、螺栓等)、过盈连接、卡箍连接、销连接、楔键连接、一体成型连接的方式。
在一些示例性应用场景中,当振膜振动时,可能会引起振动壳体813内的空气振动。在一些实施例中,可以在振动壳体813上开设有出声孔840,将振动壳体内部的空气振动引导至振动壳体813外,该引导出的空气振动可以以气传导的方式传递至用户听觉神经,使用户听到声音。在一些情况下,由于减振组件820的存在,可能会减弱振动面板8131的机械振动强度,导致扬声器800在低频区域的音量减小,而由出声孔840引出的这部分声音可以增强扬声器800在低频区域的响应,使得扬声器800在低频振动感变弱的情况下,依旧能够保持一定的音量。
在一些实施例中,出声孔840可以开设在振动壳体813的任意位置。在一些实施例中,出声孔840可以开设置在振动壳体813的背朝用户脸部的一侧,也即壳体背板8133上。在一些实施例中,出声孔840也可以开设在壳体侧板8132上,例如,壳体侧板8132上朝向用户耳道的位置。在另一些实施例中,出声孔840还可以开设在振动壳体813的角部,例如,壳体侧板8132与壳体背板8133的连接处。在一些实施例中,出声孔840的数量可以为多个。多个出声孔840可以开设在不同的位置。例如,多个出声孔840中的一部分可以开设在壳体背板8133上,另一部分可以开设在壳体侧板8132上。在一些实施例中,通过出声孔840导出的声音的至少一部分可以被导引至用户的耳朵,提高扬声器800的低频响应。在一些实施例中,可以通过将出声孔840设置在朝向用户的耳部的位置来实现上述目的。例如,用户佩戴扬声器800时,壳体侧板8132朝向用户的耳部,所以可以将出声孔840设置壳体侧板8132上,声音通过出声孔840导出并且至少有一部分可以被导引至用户的耳部。在一些实施例中,可以提供过额外的导声结构来实现上述目的。例如,可以在出声孔840的出口设置声导管,通过声导管将声音引导至用户的耳部方向。在一些实施例中,出声孔840的截面形状可以包括但不限于圆形、方形、三角形、多边形等。
在一些实施例中,扬声器800还可以包括固定组件830,固定组件830可以与振动壳体813(例如,振动壳体813的壳体侧板8132)固定连接。固定组件830可以用于保持扬声器800与用户(例如,佩戴者)脸部的稳定接触,避免扬声器800的晃动,保证扬声器800稳定地进行声音传递。
在一些实施例中,当固定组件830的刚度越小(即劲度系数越小)时,扬声器800在第一谐振峰450的低频响应越明显(即振动加速度更大,扬声器800的灵敏度更高),扬声器800的音质越好。另一方面,当固定组件830刚度较小(即劲度系数小)时,更有利于减弱振动壳体813的振动。
在一些实施例中,固定组件830可以是耳挂。固定组件830的两端可以分别连接有一个振动壳体813,以耳挂的方式将两个振动壳体813分别固定在用户的头骨的两侧,此时扬声器为双耳式扬声器。在一些实施例中,固定组件830可以是单耳式耳夹。固定组件830可以单独连接一个振动壳体813,并将振动壳体813固定在用户的头骨一侧。固定组件830的结构可以与本说明书中其 它实施例中的固定组件(例如,固定组件230)相同或类似,这里不再赘述。
图9是根据本说明书一些实施例所示的质量元件为凹槽构件的扬声器的纵截面示意图。如图9所示,扬声器900可以包括振动组件910、减振组件920和固定组件930。振动组件910可以包括振动元件911、振动壳体913和第二弹性元件915。第二弹性元件915用于弹性连接振动元件911和振动壳体913,以便于将振动元件911的机械振动传递给振动壳体913。振动壳体913与用户的脸部皮肤接触,将机械振动传递至用户的听觉神经。减振组件920可以减小振动壳体913产生机械振动时带给用户的振动感。固定组件可以与谐振组件920固定连接。
在一些实施例中,振动元件911、振动壳体913、第二弹性元件915分别与扬声器400中的振动元件411、振动壳体413、第二弹性元件415相同或类似,其结构的细节这里不再赘述。
减振组件920可以包括质量元件923和第一弹性元件921。质量元件923可以通过第一弹性元件921与振动壳体913弹性连接。如图9所述,减振组件920可以通过第一弹性元件921与壳体背板9133的外壁连接。当振动壳体913发生机械振动时,质量元件923与第一弹性元件921构成的谐振组件可以吸收振动壳体913的一部分机械能,从而减弱振动壳体913的振动幅度。
与扬声器400不同的是,减振组件920的质量元件923为凹槽构件。振动壳体913可以至少部分容纳在凹槽构件中。在一些实施例中,该凹槽构件的凹槽截面形状可以是圆形、方形、多边形等形状。在一些实施例中,该凹槽构件的凹槽截面形状可以与振动壳体913的外部轮廓相匹配以便于振动壳体913能够容纳在其中。例如,振动壳体913的外部轮廓为一长方体,则该凹槽构件的凹槽截面形状可以为与之对应的方形。在一些实施例中,振动壳体913可以完全容纳在凹槽构件的凹槽中。在一些实施例中,振动壳体913可以部分地容纳在凹槽构件的凹槽中。例如,振动壳体913的振动面板9131以及至少一部分壳体侧板9132可以位于凹槽外,以方便振动面板9131与用户的脸部皮肤接触传递振动。
在一些实施例中,第一弹性元件921可以包括第一部位和第二部位。第一弹性元件的第一部位与振动壳体连接。第一弹性元件921的第一部位与凹槽构件的内壁连接。例如,在图9所示的实施例中,第一弹性元件921的第一部位与壳体背板9133的外壁连接,第一弹性元件921的第二部位与凹槽构件的内侧壁连接。又例如,第一弹性元件的第一部位可以与壳体侧板的外壁连接,而第一弹性元件的第二部位可以与凹槽构件的内底壁连接。在一些替代性实施例中,振动壳体913可能仅包括振动面板9131和与之相连接壳体侧板9132,而没有壳体背板9133。在这种情况下,质量元件923可以通过第一弹性元件921与壳体侧板9132的内壁和/或外壁连接。
在一些具体实施例中,第一弹性元件921可以为环状结构,第一弹性元件921的第一部位可以位于环状结构的中心区域,而第二部位可以位于环状结构的周侧。在一些替代性实施例中,第一弹性元件可以为弹簧。弹簧的两端分别作为第一部位和第二部位连接振动壳体和凹槽构件。
在一些实施例中,第一弹性元件921可以直接与壳体背板9133以及凹槽构件连接,例如,通过焊接、粘接、一体成型等方式将第一弹性元件与壳体背板9133以及凹槽构件进行连接。在一些实施例中,第一弹性元件921可以通过连接件与壳体背板9133以及凹槽构件连接。例如,壳体背板9133上可以固定设置有第三连接件,第一弹性元件921的第一部位可以与第三连接件固定连接。凹槽构件上可以固定设置有第四连接件,第一弹性元件921的第二部位可以与第四连接件固定连接。
在一些实施例中,凹槽构件的内部尺寸可以大于振动壳体913的外部尺寸,此时,振动壳体913与凹槽构件之间可以形成空腔。振动壳体913与凹槽构件在振动时可以带动空腔中的空气发生振动,产生声音。同时,凹槽构件可以与振动壳体913的外壁之间形成出声通道940。例如,在图9所示的实施例中,凹槽构件的侧壁与壳体侧板9132之间存在间隙,该间隙可以作为出声通道940。振动壳体913和凹槽构件之间空气振动产生的声音可以通过该出声通道940传递到外界,人耳可以部分接收该声音,一定程度上起到了增强低频和增大音量的效果。
在一些实施例中,固定组件930可以用于保持扬声器900与用户脸部头骨接触。在一些实施例中,固定组件930可以与谐振组件920固定连接。例如,固定组件930可以与质量元件921(例如,凹槽构件)固定连接或一体成型。在一些实施例中,固定组件930可以直接与凹槽构件固定连接。在一些实施例中,固定组件930也可以通过固定连接件与凹槽构件连接。
在一些实施例中,固定组件930可以是耳挂的形式。固定组件930的两端分别连接有一个凹槽构件以及容纳于凹槽构件中的振动壳体913,以耳挂的方式将两个凹槽构件分别固定在头骨的两侧。在一些实施例中,固定组件930可以是单耳式耳夹。固定组件930可以单独连接一个凹槽构件以及容纳于凹槽构件中的振动壳体913,并将凹槽构件固定在人体头骨一侧。固定组件930的结构可以与本申请中其它实施例中的固定组件(例如,固定组件830)相同或类似,这里不再赘述。
在一些实施例中,关于质量元件923以及质量元件923和第一弹性元件921形成的谐振组件的谐振频率的更多细节可以参见本说明书中其它实施例的描述,在此不做赘述。
需要说明的是,前述一个或多个实施例仅出于说明目的,并不旨在限制扬声器900的形状或者数量。在完全理解扬声器900的原理之后,可以对扬声器900进行变形,以得到与本说明书实施例不同的扬声器900。例如,可以改变质量元件的形状。又例如,可以调整制作第一弹性元件921的材料,使得第一弹性元件921具有更强的振动吸收效果。在一些实施例中,第一弹性元件921还可以为泡棉或者胶水。例如,第一弹性元件921可以为涂覆在壳体背板9133的外壁上的胶水,凹槽构件通过胶水粘连在振动壳体913上。在一些实施例中,胶水可以具有一定阻尼,以能够进一步吸收振动壳体913的振动能量,减小振动幅度。
图10是根据本说明书一些实施例所示的添加了减振组件的又一扬声器的纵截面示意图,图11是图10所示的扬声器的另一角度的纵截面示意图。如图10和图11所示,扬声器1000可以包括振动组件1010、减振组件1020和固定组件1030。振动组件1010可以包括振动元件1011、振动壳体1013和第二弹性元件1015(如图11所示)。第二弹性元件1015用于弹性连接振动元件1011和振动壳体1013。在一些实施例中,振动元件1011、第二弹性元件1015以及固定组件1030分别与扬声器400中的振动元件411、第二弹性元件415以及固定组件430相同或类似,其结构的细节这里不再赘述。
与前述实施例中的扬声器(例如,扬声器400)不同的是,振动壳体1013可以为单独的板状或类似板状的结构,该结构直接与用户的脸部皮肤接触以传递振动,因此振动壳体1013其本身就相当于前述实施例中的振动面板。振动壳体1013并没有限定出容纳空间,振动元件1011以及第二弹性元件1015直接与振动壳体1013连接。质量元件1023可以为凹槽构件,质量元件1023具有一凹槽可以作为容纳空间,振动组件1010的至少一部分可以容纳在质量元件1023形成的空间内。第一弹性元件1021可以将质量元件1023与振动壳体1013连接。
如图11所示,振动元件1011可以包括磁路组件。振动壳体1013上设置有线圈,线圈外环绕设置有磁路组件,第二弹性元件1015将磁路组件与振动壳体1013进行连接。
在一些实施例中,第二弹性元件1015可以为传振片。在一些实施例中,传振片可以为环状结构。如图11所示,环状结构的传振片环绕设置在振动壳体1013外,环状传振片的周侧与磁路组件连接,环状传振片的中部与振动壳体1013连接。当受到安培力的作用发生机械振动时,振动壳体1013可以通过第一弹性元件1021将振动传递给质量元件1023,从而引起质量元件1023进行振动,最终实现减弱振动组件1010振动幅度的效果。关于传振片的更多细节可以参见图2的描述。此处不再赘述。
在一些情况下,通过对扬声器进行如前述实施例所描述的改进之后,不仅拓宽了扬声器的频响范围,特别是拓宽了扬声器的低频响应范围。而且还使得扬声器在低频区域中产生的低频谐振峰的幅度显著降低,减小了用户佩戴扬声器时皮肤感知到的振动感,有效提高了用户的使用体验。
除此之外,扬声器在工作过程可能会产生漏音现象。这里所说的漏音指的是,扬声器工作的过程中,扬声器的振动会产生向周围环境传递的声音,除了扬声器的佩戴者外,环境中的其他人也可能听到扬声器发出的声音。漏音现象出现的原因很多,包括振动元件(例如,换能装置)的振动通过第二弹性元件传递到振动壳体而引起振动壳体的振动。或者振动面板的振动通过连接件传递到振动壳体而引起振动壳体的振动。又或者振动元件的振动引起振动壳体内空气振动,空气振动产生的声音通过壳体上开设的出声孔导出壳体,从而产生漏音。
需要说明的是,由于扬声器的漏音与振动壳体的机械振动有关。在一些情况下,当振动壳体的机械振动强度越大时,扬声器的漏音就越严重。振动壳体的机械振动强度越小,扬声器的漏音就相对更微弱。因此,前述一个或多个实施例通过减振组件减小振动壳体的机械振动强度时,扬声器的漏音也会有所改善。在一些实施例中,可以通过减振组件减小振动壳体的振动强度,从而削弱扬声器的漏音。减振组件可以与前述一个或多个实施例中的描述相同或相似。在一些实施例中,减振组件可以包括第一弹性元件,其具有一定阻尼,因此第一弹性元件可以吸收振动壳体(例如,壳体侧板以及壳体背板)的机械能,减小振动壳体的振动强度,削弱扬声器的漏音。在一些实施例中,减振组件可以同时包括第一弹性元件和质量元件,通过第一弹性元件将机械振动传递给质量元件引起质量元件的振动以达到吸收振动壳体的机械能的目的。
图12是根据说明书一些实施例所示的减振组件设置在振动壳体内部的扬声器的截面示意图。如图12所示,扬声器可以包括振动组件1210和减振组件1220。振动组件1210可以包括振动元件1211和与振动元件1211连接的振动壳体1213。振动元件1211可以产生机械振动并将机械振 动传递至振动壳体1213使振动壳体1213产生振动。振动壳体1213与用户的脸部皮肤接触以骨传导的方式将振动传递至用户的听觉神经。
如图12所示,振动壳体1213可以包括振动面板12131、壳体侧板12132以及壳体背板12133。壳体背板12133与振动面板12131相对设置,壳体侧板12132连接在壳体背板12133与振动面板12131之间。振动面板12131可以与用户的脸部皮肤接触。
在一些实施例中,振动面板12131与壳体侧板12132可以直接连接,例如,通过粘接、焊接、铆接、钉接、一体成型等方式连接。在另一些实施例中,振动面板12131与壳体侧板12132可以通过连接件进行连接。在一些实施例中,振动面板12131与壳体侧板12132之间可以为弹性连接,以减小传递至壳体侧板12132以及壳体背板12133上的机械振动强度,从而减小壳体侧板12132以及壳体背板12133振动带来的漏音。在另一些实施例中,振动面板12131与壳体侧板12132之间可以为刚性连接。在本实施例中,由于振动元件1211直接与振动面板12131进行连接,振动元件1211产生的机械振动可以直接经由振动面板12131传递至用户。因此振动面板12131与壳体侧板12132之间可以为弹性连接,以减小壳体侧板12132以及壳体背板12133接收到的机械能,从而减小壳体侧板12132以及壳体背板12133振动所产生的漏音。
在本实施例中,振动元件1211与振动面板12131连接,将机械振动传递至振动面板12131。振动面板12131又会将机械振动传递至壳体侧板12132以及壳体背板12133引起两者产生振动。因此在扬声器1200工作过程中振动壳体1213会持续振动,振动壳体1213的振动会引起空气振动从而导致漏音。
减振组件1220包括第一弹性元件1221和质量元件1223。质量元件1223通过第一弹性元件1221与壳体侧板12132以及壳体背板12133连接。与前述实施例类似的,当振动壳体1213振动时,振动壳体1213的机械振动可以经由第一弹性元件1221传递至质量元件1223上,从而引起质量元件1223进行振动。减振组件1220可以在特定频段吸收振动壳体1213(主要为壳体背板12133以及壳体侧板12132)的机械能,从而降低振动壳体1213的振动幅度,减小振动带来的漏音。该特定频段的具体范围与第一弹性元件1221以及质量元件1223构成的谐振组件的弹性系数和质量等因素相关。通过改变谐振组件的弹性系数和谐振组件的质量可以调整谐振组件吸收振动的频段范围。
在一些实施例中,可以通过调整第一弹性元件1221的类型、硬度、厚度以及与振动壳体1213的贴合面积等来调整谐振组件吸收振动的频段范围。
示例性的,胶水作为第一弹性元件为例,在一些实施例中,胶水的邵氏硬度可以10~80范围内。在一些实施例中,胶水的邵氏硬度可以20~60范围内。在一些实施例中,胶水的邵氏硬度可以25~55范围内。在一些实施例中,胶水的邵氏硬度可以30~50范围内。
胶水涂覆在壳体背板12133的内壁上之后可以形成胶水层,在一些实施例中,该胶水层的厚度可以在10μm~200μm之间。在一些实施例中,该胶水层的厚度可以在20μm~190μm之间。在一些实施例中,该胶水层的厚度可以在30μm~180μm之间。在一些实施例中,该胶水层的厚度可以在40μm~160μm之间。在一些实施例中,该胶水层的厚度可以在50μm~150μm之间。
在一些实施例中,该胶水层与壳体背板12133的内壁的贴合面积可以占壳体背板12133的内壁的表面积的1%~98%。在一些实施例中,该胶水层与壳体背板12133的内壁的贴合面积可以占壳体背板12133的内壁的表面积的5%~90%。在一些实施例中,该胶水层与壳体背板12133的内壁的贴合面积可以占壳体背板12133的内壁的表面积的10%~60%。在一些实施例中,该胶水层与壳体背板12133的内壁的贴合面积可以占壳体背板12133的内壁的表面积的20%~40%。在一些实施例中,胶水层与壳体背板12133的内壁的贴合面积可以在10mm 2~200mm 2之间。在一些实施例中,胶水层与壳体背板12133的内壁的贴合面积可以在20mm 2~190mm 2之间。在一些实施例中,胶水层与壳体背板12133的内壁的贴合面积可以在30mm 2~180mm 2之间。在一些实施例中,胶水层与壳体背板12133的内壁的贴合面积可以在40mm 2~170mm 2之间。在一些实施例中,胶水层与壳体背板12133的内壁的贴合面积可以在50mm 2~150mm 2之间。在一些具体实施例中,胶水层与壳体背板12133的内壁的贴合面积可以为10mm 2
图13是根据本说明书一些实施例所示的扬声器的漏音强度曲线图。其中,图13分别示出了未添加减振组件的扬声器200的漏音强度曲线(即图中虚线)以及添加了减振组件1220的扬声器1200的漏音强度曲线(即图中实线)。在一些实施例中,减振组件可以仅包括质量元件。其中,质量元件可以为设置振动壳体(即图13中的壳体)内部的内壳体。由图13可以得知,在减振组件1220的影响下,扬声器1200在10000Hz附近(例如,10000Hz~10300Hz范围内)的漏音强度明显下降。在本实施例中,减振组件1220的第一弹性元件1221为邵氏硬度为30~50之间的胶水。 其涂覆在壳体背板12133的内壁上形成的胶水层的厚度在50μm~150μm之间。胶水层与壳体背板12133的内壁的贴合面积为150mm 2
本说明书的减振组件1220除了可以减小扬声器1200在高频区域(例如,10000HZ~10300Hz)的漏音之外,还可以减小传导扬声器1200在其他频段的漏音。在一些实施例中,可以选用泡棉作为第一弹性元件1221,通过调整泡棉的厚度改变其弹性和阻尼,将降漏音的频段控制在中低频率区域。在一些实施例中,泡棉的厚度可以在0.3mm~2mm之间。在一些实施例中,泡棉的厚度可以在0.4mm~1.9mm之间。在一些实施例中,泡棉的厚度可以在0.5mm~1.8mm之间。在一些实施例中,泡棉的厚度可以在0.6mm~1.8mm之间。
图14是根据本说明书一些实施例所示的另一扬声器的声压级曲线图。图14分别示出了添加了采用厚度为0.6mm的泡棉作为第一弹性元件1221的减振组件1220的扬声器1200的声压级曲线、添加了采用厚度为1.2mm的泡棉作为第一弹性元件1221的减振组件1220的扬声器1200的声压级曲线、添加了采用厚度为1.8mm的泡棉作为第一弹性元件1221的减振组件1220的扬声器1200的声压级曲线,以及未添加减振组件1220的扬声器200的声压级曲线。其中,纵坐标SPL(Sound Pressure Level)表示为声压级,声压级可以相当于扬声器1200的机械振动强度,即图表中纵坐标的值越大,表示扬声器1200的机械振动强度越大。又由于扬声器1200的机械振动主要来自振动壳体1213的振动,因此纵坐标的值也可以表示振动壳体1213的机械振动强度。
由图14可以得知,相较于未添加谐振组件(在图12所示的实施例中,减振组件1220可以相当于谐振组件)的扬声器1200而言,添加了采用厚度分别为0.6mm、1.2mm、1.8mm的泡棉作为第一弹性元件1221的谐振组件的扬声器1200在特定频段区域中的振动强度都有所降低。示例性的,当扬声器1200的减振组件1220的泡棉的厚度为0.6mm时,扬声器1200在大约180Hz~1010Hz的频率范围内振动强度有所降低,并且在频率大约为1000Hz时出现波谷(在180Hz~1010Hz频率范围内振动强度最小处)。在另一示例中,当扬声器1200的减振组件1220的泡棉的厚度为1.2mm时,扬声器1200在大约170Hz~750Hz的频率范围内振动强度有所降低,并且在频率大约为650Hz时出现波谷(在170Hz~750Hz频率范围内振动强度最小处)。在另一示例中,当扬声器1200的减振组件1220的泡棉的厚度为1.8mm时,扬声器1200在大约160Hz~350Hz的频率范围内其振动强度有所降低,并且在频率大约为300Hz时出现波谷(在160Hz~350Hz频率范围内振动强度最小处)。由于振动强度减小,因此扬声器1200在工作过程中产生的漏音也随之减弱。
需要说明的是,前述一个或多个实施例仅出于说明目的,并不旨在限制扬声器1200的形状或者数量。在完全理解扬声器1200的降漏音原理之后,可以对扬声器1200进行变形,以得到与本说明书实施例不同的扬声器1200。例如,可以参照前述实施例对减振组件1220进行变换。在一些实施例中,减振组件1220可以仅包括第一弹性元件1221,而不包含质量元件1223。示例性的,第一弹性元件1221其本身可以具有一定阻尼,从而能够吸收和消耗与其连接的振动壳体1213(例如,振动壳体1213的壳体背板12133以及壳体侧板12132)振动的能量,同样可以实现降漏音的目的。
图15是根据本说明书一些实施例所示的第一弹性元件具有孔隙的扬声器的截面示意图。如图15所示,扬声器1500可以包括振动组件1510和减振组件1520。振动组件1510可以包括产生机械振动的振动元件1511(例如,换能装置)和与用户的脸部皮肤接触的振动壳体1513。减振组件1520与振动壳体1513连接以吸收振动壳体1513的机械能,减小振动壳体1513的振动幅度,最终减小因振动壳体1513振动而带来的漏音。在一些实施例中,扬声器1500中的振动壳体1513(包括壳体侧板15132、壳体背板15133以及壳体面板15131)、振动元件1511、质量元件1523与扬声器1200中的振动壳体1213(包括壳体侧板12132、壳体背板12133以及壳体面板12131)、振动元件1211、质量元件1223相同或相似,此处不再赘述。
与扬声器1200不同的是,扬声器1500的第一弹性元件1521与质量元件1523为不完全连接。这里所说的不完全连接可以是指质量元件1523与第一弹性元件1521的接触面留有空余的空间。或者可在第一弹性元件1521中设置有填充物。示例性的进行说明。在一些实施例中,第一弹性元件1521背离壳体背板15133的一面具有孔隙15211。由于孔隙15211的存在,当质量元件1523与该第一弹性元件1521连接时,质量元件1523与该第一弹性元件1521的接触面留有空余的空间。在一些情况下,第一弹性元件1521中的孔隙15211可以进一步减小第一弹性元件1521的弹性,使得第一弹性元件1521在厚度较薄的情况下仍然可以提供足够低的弹性,使第一弹性元件1521与质量元件1523构成的谐振组件的谐振频率易于调控至所需要的频段。在一些替代性实施例中,孔隙15211可以设置在第一弹性元件1521的内部。在另一些实施例中,第一弹性元件1521的表面以及内部均设置有孔隙15211。在一些实施例中,可以通过在第一弹性元件1521上开孔来形成孔隙15211。例 如,第一弹性元件1521为塑胶,在塑胶的表面和/或内部开孔即可形成孔隙15211。在另一些实施例中,孔隙15211可以是第一弹性元件1521本身所具有的结构。例如,第一弹性元件1521可以是泡棉,泡棉本身就具有孔洞结构,该孔洞结构可直接作为孔隙15211。在一些实施例中,孔隙15211中可以设置填充物。示例性的填充物可以为阻尼填充物,例如,阻尼胶、阻尼脂等。在一些情况下,在孔隙15211中设置阻尼填充物可以增大第一弹性元件1521的阻尼,当扬声器1500工作时,第一弹性元件1521可以进一步耗散振动壳体15133的振动能量,降低振动壳体15133的振动幅度,减小漏音。
图16是根据本说明书一些实施例所示的包括两组谐振组件的扬声器的截面示意图。如图16所示,扬声器1600可以包括振动组件1610和减振组件1620。振动组件1610可以包括产生机械振动的振动元件1611(例如,换能装置)和与用户的脸部皮肤接触的振动壳体1613。减振组件1620与振动壳体1613连接以吸收振动壳体的机械能,减小振动壳体1613的振动幅度,最终减小振动壳体1613振动而带来的漏音。在一些实施例中,扬声器1600中的振动壳体1613(包括壳体侧板16132、壳体背板16133以及壳体面板16131)、振动元件1611、第一弹性元件1621、质量元件1623与扬声器1200中的振动壳体1213(包括壳体侧板12132、壳体背板12133以及壳体面板12131)、振动元件1211、第一弹性元件1221、质量元件1223相同或相似,此处不再赘述。
与图12所示的扬声器1200不同的是,扬声器1600的减振组件1620包括两组谐振组件。为了方便描述,可以将设置于壳体背板16133内壁上侧的谐振组件称为第一谐振组件1620-1,将设置于壳体背板16133内壁下侧的谐振组件称为第二谐振组件1620-2。每组谐振组件中的质量元件均通过第一弹性元件与壳体背板的内壁连接。其中,第一谐振组件1620-1的第一弹性元件1621-1同时与壳体背板16133以及上侧的壳体侧板16132的内壁连接。第二谐振组件1620-2的第一弹性元件1621-2同时与壳体背板16133以及下侧的壳体侧板16132的内壁连接。如图16所示,两组谐振组件的第一弹性元件均采用相同的材料制作,且第一弹性元件的厚度均相同。示例性的,两组谐振组件均采用胶水作为第一弹性元件,且胶水涂覆在壳体背板的内壁上形成的胶水层的厚度相同或者相似。在一些替代性实施例中,两组谐振组件的第一弹性元件可以采用不同的材料制作,或者具有不同的厚度。示例性的,第一谐振组件1620-1的第一弹性元件1621-1可以为泡棉,而第二谐振组件1620-2的第一弹性元件1621-2可以为胶水。
继续参见图16,第一谐振组件1620-1和第二谐振组件1620-2之间间隔预设距离,例如,两组谐振组件的第一弹性元件1621的边缘间隔预设距离,该预设距离可以根据实际需要进行设定。
第一谐振组件1620-1和第二谐振组件1620-2可以不仅限于图16中的设置方式以及设置位置。在一些实施例中,第一谐振组件1620-1和第二谐振组件1620-2可以设置在壳体背板16133内壁的任意区域。壳体背板16133的内壁可以包括边缘区域和中心区域。边缘区域可以是指靠近壳体侧板16132的区域。在一些实施例中,第一谐振组件1620-1和第二谐振组件1620-2可以均设置在边缘区域。例如,在图16中,两组谐振组件的第一弹性元件均与壳体侧板16132连接。在另一些实施例中,第一谐振组件1620-1和第二谐振组件1620-2可以均设置在中心区域。例如,两组谐振组件的第一弹性元件均不与壳体侧板16132连接,且与壳体侧板16132间隔预设距离阈值,该预设距离阈值可根据实际需要进行设定。在一些替代性实施例中,第一谐振组件1620-1和第二谐振组件1620-2可以分别设置在边缘区域和中心区域。示例性的,第一谐振组件1620-1可以设置在边缘区域,其第一弹性元件1621-1与上侧的壳体侧板16132连接。第二谐振组件1620-2可以设置在中心区域,其第一弹性单元1621-2仅与壳体背板16133的内壁连接。在另一示例中,第一谐振组件1620-1可以设置在边缘区域并且环绕整个壳体背板16133形成环状结构,以将第二谐振组件1620-2包围在其中。例如,环绕壳体背板16133的边缘区域设置一圈泡棉作为第一弹性元件1621-1,然后在泡棉上连接与泡棉形状对应的环状质量元件1623-1。而第二谐振组件1620-2的第一弹性元件1621-2和质量元件1623-2则设置在中心区域。
如前述实施例所述,第一谐振组件1620-1的谐振频率和第二谐振组件1620-2的谐振频率可以相同或者不同。当第一谐振组件1620-1的谐振频率和第二谐振组件1620-2的谐振频率不同时,可以在各自的谐振频率附近频段产生减振效果,扩宽了振动吸收的频段。当第一谐振组件1620-1的谐振频率和第二谐振组件1620-2的谐振频率相同时,可以进一步增强谐振频率附近频段的减振效果。
图17是根据本说明书一些实施例所示的包括两组谐振组件的另一扬声器的截面示意图。如图17所示,扬声器1700可以包括振动组件1710和减振组件1720。振动组件1710可以包括产生机械振动的振动元件1711(例如,换能装置)和与用户的脸部皮肤接触的振动壳体1713。减振组件 1720与振动壳体1713连接以吸收振动壳体1713的机械能,减小振动壳体1713的振动幅度,最终削弱振动壳体1713振动而带来的漏音。在一些实施例中,扬声器1700中的振动壳体1713(包括壳体面板17131、壳体侧板17132以及壳体背板17133)、振动元件1711、第一弹性元件(例如,第一弹性元件1721-1、第一弹性元件1721-2)、质量元件(例如,质量元件1723-1、质量元件1723-2)与扬声器1600中的振动壳体1613(包括壳体面板16131、壳体侧板16132以及壳体背板16133)、振动元件1611、第一弹性元件(例如,第一弹性元件1621-1、第一弹性元件1621-2)、质量元件(例如,质量元件1623-1、质量元件1623-2)相同或相似,此处不再赘述。
与图16所示的扬声器1600不同的是,扬声器1700的两组谐振组件(例如,第一谐振组件1720-1和第二谐振组件1720-2)并没有都与振动壳体1713直接连接,而是以层叠的方式进行连接。示例性的,其中,第一谐振组件1720-1的第一弹性元件1721-1的一侧与振动壳体1713的内壁连接,并且第一弹性元件1721-1的边缘还同时与壳体侧板17132连接。其质量元件1723-1连接在第一弹性元件1721-1的另一侧。第二谐振组件1720-2的第一弹性元件1721-2的一侧与第一谐振组件1720-1的质量元件1723-1背离壳体背板17133的一侧连接,并且其边缘未与壳体侧板17132连接,另一侧连接质量元件1723-2。在一些实施例中,在实际制造时,可以在壳体背板17133的内壁上涂覆胶水(作为第一谐振组件1720-1的第一弹性元件1721-1),胶水覆盖壳体背板17133内壁,在胶水表面粘接质量元件1723-1。然后在质量元件1723-1背离壳体背板17133的一侧涂覆胶水(作为第二谐振组件1720-2的第一弹性元件1721-2),最后在胶水表面粘接另一个质量元件1723-2。
在一些情况下,当至少两组谐振组件以层叠的方式串联成整体时,可以构成一个更加复杂的谐振系统,该谐振系统具有多个谐振模态,也即具有多个谐振频率。在相应的谐振频率处,该谐振系统可以吸收振动壳体1713的振动能量,以减小因振动壳体1713振动而带来的漏音。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”等来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值数据均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值数据应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和数据为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (42)

  1. 一种扬声器,包括:
    振动组件,所述振动组件包括振动元件和振动壳体,所述振动元件将电信号转换为机械振动,所述振动壳体与用户的脸部皮肤接触;
    第一弹性元件,所述第一弹性元件与所述振动壳体弹性连接。
  2. 根据权利要求1所述的扬声器,所述扬声器还包括质量元件,所述质量元件通过所述第一弹性元件与所述振动壳体连接,所述质量元件与所述第一弹性元件连接构成谐振组件。
  3. 根据权利要求2所述的扬声器,所述振动壳体包括振动面板,所述振动面板与用户的脸部皮肤接触,所述第一弹性元件与所述振动面板弹性连接。
  4. 根据权利要求3所述的扬声器,所述质量元件为凹槽构件,所述振动元件至少部分容纳在所述凹槽构件内,所述第一弹性元件连接所述振动面板和所述凹槽构件的内壁。
  5. 根据权利要求2-4任一项所述的扬声器,所述第一弹性元件为传振片。
  6. 根据权利要求3或4所述的扬声器,所述质量元件的质量与所述振动面板的质量之比在0.04~1.25的范围内。
  7. 根据权利要求6所述的扬声器,所述质量元件的质量与所述振动面板的质量之比在0.1~0.6的范围内。
  8. 根据权利要求2所述的扬声器,所述振动组件在第一频率产生第一谐振峰,所述谐振组件在第二频率产生第二谐振峰,所述第二频率与所述第一频率的比值在0.5~2的范围内。
  9. 根据权利要求8所述的扬声器,所述振动组件在第一频率产生第一谐振峰,所述谐振组件在第二频率产生第二谐振峰,所述第二频率和所述第一频率的比值在0.9~1.1的范围内。
  10. 根据权利要求8或9所述的扬声器,所述第一频率和所述第二频率均小于500Hz。
  11. 根据权利要求10所述的扬声器,在小于所述第一频率的频率范围内,所述谐振组件的振动幅度大于所述振动壳体的振动幅度。
  12. 根据权利要求2所述的扬声器,所述振动壳体包括振动面板和与所述振动面板相对设置的壳体背板,所述振动面板与用户的脸部皮肤接触,所述质量元件通过所述第一弹性元件与所述壳体背板连接;
    所述第一弹性元件设置所述壳体背板表面,所述第一弹性元件与所述壳体背板贴合面积至少大于10mm 2
  13. 根据权利要求12所述的扬声器,所述第一弹性元件包括硅胶、塑料、胶水、泡棉、弹簧中的至少一种。
  14. 根据权利要求13所述的扬声器,所述第一弹性元件为所述胶水。
  15. 根据权利要求14所述的扬声器,所述胶水的邵氏硬度在30~50范围内。
  16. 根据权利要求14所述的扬声器,所述胶水的抗拉强度不小于1MPa。
  17. 根据权利要求14所述的扬声器,所述胶水的扯断伸长率在100%~500%范围内。
  18. 根据权利要求14所述的扬声器,所述胶水与所述壳体背板之间的粘接强度在8MPa~14 Mpa范围内。
  19. 根据权利要求14所述的扬声器,所述胶水涂覆在所述壳体背板表面形成的胶水层的厚度在50μm~150μm范围内。
  20. 根据权利要求14所述的扬声器,所述胶水与所述壳体背板贴合面积占所述壳体背板的内壁的面积的1%~98%。
  21. 根据权利要求20所述的扬声器,所述胶水与所述壳体背板贴合面积在100mm 2~200mm 2范围内。
  22. 根据权利要求21所述的扬声器,所述胶水与所述壳体背板贴合面积为150mm 2
  23. 根据权利要求13所述的扬声器,所述第一弹性元件的内部和表面中的至少一处具有孔隙。
  24. 根据权利要求23所述的扬声器,所述孔隙中填充有阻尼填充物。
  25. 根据权利要求13所述的扬声器,所述第一弹性元件为所述泡棉。
  26. 根据权利要求25所述的扬声器,所述泡棉的厚度在0.6mm~1.8mm范围内。
  27. 根据权利要求12所述的扬声器,所述质量元件的质量与所述振动面板以及壳体背板的质量之和的比值在0.04~1.25的范围内。
  28. 根据权利要求27所述的扬声器,所述质量元件的质量与所述振动面板以及壳体背板的质量之和的比值在0.1~0.6的范围内。
  29. 根据权利要求12所述的扬声器,制造所述质量元件的材料包括塑胶、金属、复合材料中的至少一种。
  30. 根据权利要求12所述的扬声器,所述谐振组件包括至少两组,每组所述谐振组件中的所述第一弹性元件均与所述壳体背板连接且相邻两组所述谐振组件间隔预设距离。
  31. 根据权利要求12所述的扬声器,所述谐振组件包括至少两组,至少两组所述谐振组件沿所述第一弹性元件的厚度方向层叠设置,相邻的两组所述谐振组件的所述第一弹性元件与所述质量元件连接。
  32. 根据权利要求27-31任一项所述的扬声器,所述第一弹性元件设置在所述壳体背板的内壁。
  33. 根据权利要求32所述的扬声器,所述第一弹性元件包括振膜,所述质量元件包括贴合在所述振膜表面的复合结构。
  34. 根据权利要求33所述的扬声器,所述复合结构包括纸盆、铝片或铜片中的至少一种。
  35. 根据权利要求33所述的扬声器,所述振动壳体上开设有出声孔,所述谐振组件振动产生的声音通过所述出声孔导出到外界。
  36. 根据权利要求35所述的扬声器,所述出声孔开设在所述壳体背板上。
  37. 根据权利要求27-31任一项所述的扬声器,所述第一弹性元件设置在所述壳体背板的外壁。
  38. 根据权利要求37所述的扬声器,所述质量元件为凹槽构件,所述振动壳体至少部分容纳在所述凹槽构件内,所述第一弹性元件连接所述振动壳体的外壁和所述凹槽构件的内壁,所述凹槽构 件的内壁与所述振动壳体的外壁之间形成出声通道。
  39. 根据权利要求32所述的扬声器,所述扬声器还包括功能元件,所述质量元件与所述功能元件连接。
  40. 根据权利要求39所述的扬声器,所述功能元件包括电池、印制电路板。
  41. 根据权利要求1所述的扬声器,所述振动组件还包括第二弹性元件,所述振动元件通过所述第二弹性元件将所述机械振动传递给所述振动壳体。
  42. 根据权利要求41所述的扬声器,所述第二弹性元件为传振片,所述传振片与所述振动壳体固定连接。
PCT/CN2021/125855 2021-01-14 2021-10-22 扬声器 WO2022151791A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237008685A KR20230051250A (ko) 2021-01-14 2021-10-22 스피커들
EP21918982.6A EP4181533A4 (en) 2021-01-14 2021-10-22 SPEAKER
JP2023518840A JP2023542395A (ja) 2021-01-14 2021-10-22 スピーカー
CN202180069746.6A CN116349246A (zh) 2021-01-14 2021-10-22 扬声器
BR112023003055A BR112023003055A2 (pt) 2021-01-14 2021-10-22 Alto-falantes
US18/164,681 US20230179925A1 (en) 2021-01-14 2023-02-06 Speakers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2021/071875 2021-01-14
PCT/CN2021/071875 WO2022151225A1 (zh) 2021-01-14 2021-01-14 一种骨传导扬声器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/164,681 Continuation US20230179925A1 (en) 2021-01-14 2023-02-06 Speakers

Publications (1)

Publication Number Publication Date
WO2022151791A1 true WO2022151791A1 (zh) 2022-07-21

Family

ID=82364676

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/071875 WO2022151225A1 (zh) 2021-01-14 2021-01-14 一种骨传导扬声器
PCT/CN2021/125855 WO2022151791A1 (zh) 2021-01-14 2021-10-22 扬声器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071875 WO2022151225A1 (zh) 2021-01-14 2021-01-14 一种骨传导扬声器

Country Status (8)

Country Link
US (2) US20230179925A1 (zh)
EP (2) EP4203507A4 (zh)
JP (2) JP2023547714A (zh)
KR (2) KR20230084230A (zh)
CN (3) CN116391363A (zh)
BR (1) BR112023003055A2 (zh)
MX (1) MX2023003574A (zh)
WO (2) WO2022151225A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12010479B2 (en) * 2022-10-27 2024-06-11 Luis Stohr System and method for perceiving high audio frequency in stereo through human bones
WO2024108329A1 (zh) * 2022-11-21 2024-05-30 深圳市韶音科技有限公司 一种声学输出装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406449A (zh) * 2000-12-27 2003-03-26 株式会社坦姆科日本 骨传导扬声器
KR20090082999A (ko) * 2008-01-29 2009-08-03 김성호 이중프레임 및 이중마그네트 구조의 골전도 스피커
US20100316235A1 (en) * 2009-06-12 2010-12-16 Eui Bong Park Bone conduction speaker with vibration prevention function
CN102497612A (zh) * 2011-12-23 2012-06-13 深圳市韶音科技有限公司 一种骨传导扬声器及其复合振动装置
CN107005767A (zh) * 2014-07-01 2017-08-01 大星M科技株式会社 骨传导扬声器模块及设置有骨传导扬声器模块的骨传导耳机
CN107889036A (zh) * 2017-12-18 2018-04-06 陈火 一种低漏音骨传导扬声器单元
CN108243377A (zh) * 2018-03-30 2018-07-03 陈火 一种低漏音骨传导扬声器单元
CN108632726A (zh) * 2018-06-22 2018-10-09 修争光 骨传导转换器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716739B (zh) * 2014-01-06 2016-11-02 深圳市韶音科技有限公司 一种抑制骨传导扬声器漏音的方法及骨传导扬声器
EP3920551A1 (en) * 2015-08-13 2021-12-08 Shenzhen Voxtech Co., Ltd Systems for bone conductor speaker
CN105101019B (zh) * 2015-08-13 2016-12-14 深圳市韶音科技有限公司 一种改善骨传导扬声器音质的方法及骨传导扬声器
CN205454090U (zh) * 2016-03-15 2016-08-10 北京睿步科技有限公司 一种复合式骨传导发声器
US20180255401A1 (en) * 2017-03-02 2018-09-06 Google Inc. Bone Conduction Transducer with a magnet anvil
CN114866931A (zh) * 2018-06-15 2022-08-05 深圳市韶音科技有限公司 一种骨传导扬声器
CN110611865A (zh) * 2018-06-15 2019-12-24 深圳市韶音科技有限公司 一种骨传导扬声器及耳机
CN114765715A (zh) * 2021-01-14 2022-07-19 深圳市韶音科技有限公司 一种骨传导扬声器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406449A (zh) * 2000-12-27 2003-03-26 株式会社坦姆科日本 骨传导扬声器
KR20090082999A (ko) * 2008-01-29 2009-08-03 김성호 이중프레임 및 이중마그네트 구조의 골전도 스피커
US20100316235A1 (en) * 2009-06-12 2010-12-16 Eui Bong Park Bone conduction speaker with vibration prevention function
CN102497612A (zh) * 2011-12-23 2012-06-13 深圳市韶音科技有限公司 一种骨传导扬声器及其复合振动装置
CN107005767A (zh) * 2014-07-01 2017-08-01 大星M科技株式会社 骨传导扬声器模块及设置有骨传导扬声器模块的骨传导耳机
CN107889036A (zh) * 2017-12-18 2018-04-06 陈火 一种低漏音骨传导扬声器单元
CN108243377A (zh) * 2018-03-30 2018-07-03 陈火 一种低漏音骨传导扬声器单元
CN108632726A (zh) * 2018-06-22 2018-10-09 修争光 骨传导转换器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4181533A4

Also Published As

Publication number Publication date
EP4203507A1 (en) 2023-06-28
EP4181533A4 (en) 2024-02-21
KR20230084230A (ko) 2023-06-12
EP4203507A4 (en) 2023-11-08
CN116349246A (zh) 2023-06-27
CN114765717A (zh) 2022-07-19
WO2022151225A1 (zh) 2022-07-21
US20230179925A1 (en) 2023-06-08
EP4181533A1 (en) 2023-05-17
JP2023542395A (ja) 2023-10-06
CN116391363A (zh) 2023-07-04
BR112023003055A2 (pt) 2023-10-03
JP2023547714A (ja) 2023-11-13
US20230217155A1 (en) 2023-07-06
KR20230051250A (ko) 2023-04-17
MX2023003574A (es) 2023-04-04

Similar Documents

Publication Publication Date Title
CN210868149U (zh) 一种骨传导扬声器
CN110611873B (zh) 一种骨传导扬声器的测试方法
WO2022151791A1 (zh) 扬声器
CN114765715A (zh) 一种骨传导扬声器
RU2805379C1 (ru) Динамики

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918982

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023003055

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021918982

Country of ref document: EP

Effective date: 20230208

ENP Entry into the national phase

Ref document number: 20237008685

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023518840

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023003055

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230217