WO2022222557A1 - 加速度传感装置 - Google Patents

加速度传感装置 Download PDF

Info

Publication number
WO2022222557A1
WO2022222557A1 PCT/CN2022/071932 CN2022071932W WO2022222557A1 WO 2022222557 A1 WO2022222557 A1 WO 2022222557A1 CN 2022071932 W CN2022071932 W CN 2022071932W WO 2022222557 A1 WO2022222557 A1 WO 2022222557A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
fixed
sensing device
movable
Prior art date
Application number
PCT/CN2022/071932
Other languages
English (en)
French (fr)
Inventor
周文兵
邓文俊
袁永帅
黄雨佳
齐心
廖风云
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to CN202280002184.8A priority Critical patent/CN115605765A/zh
Priority to TW111115382A priority patent/TW202242418A/zh
Priority to US17/812,176 priority patent/US20220341964A1/en
Publication of WO2022222557A1 publication Critical patent/WO2022222557A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/222Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only  for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2406Electrostatic or capacitive probes, e.g. electret or cMUT-probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/022Liquids
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • H04R1/083Special constructions of mouthpieces

Definitions

  • the present application relates to sensing devices, and in particular, to an acceleration sensing device.
  • acceleration sensors such as capacitive, piezoelectric, or piezoresistive accelerometers
  • an external force or external acceleration when subjected to an external force or external acceleration with a frequency close to its natural resonant frequency, a large amplitude will be generated, thereby outputting a large electrical signal . Therefore, its response to external force or external acceleration will show that the frequency response curve produces a resonance peak near the resonance frequency, and its sensitivity is higher near the resonance frequency, while the sensitivity at other frequencies is lower, resulting in a higher quality factor Q value , the output gain is unstable.
  • the acceleration sensor is often subjected to large external shocks. When the external shock load is high, it may cause damage to the internal components of the accelerometer. Therefore, it is desirable to provide an acceleration sensing device that can adjust the quality factor Q value of the device, improve the sensitivity of the device, have stable output gain, and improve the reliability of shock resistance.
  • Embodiments of the present application provide a sensing device.
  • the sensing device includes: an acceleration sensor having a first resonant frequency, the acceleration sensor including a housing and a sensing element, the sensing element being located in a cavity formed by the housing; at least one resonant system coupled to In the sensing element, wherein the at least one resonant system provides the sensing device with at least one second resonant frequency, the at least one second resonant frequency being the same as or different from the first resonant frequency.
  • the sensing element includes: a substrate; a mass element, which moves relative to the substrate in response to an external acceleration, the mass unit is provided with at least one movable electrode; and is fixed to the substrate At least one fixed electrode on the bottom, the at least one movable electrode and the at least one fixed electrode form at least one detection capacitor for determining the magnitude of the external acceleration.
  • the at least one movable electrode includes: at least one group of first movable electrodes arranged along the first direction and perpendicular to the first direction, and each group of first movable electrodes includes one or more first movable electrodes and at least one group of second moving electrodes arranged along the second direction and perpendicular to the second direction, each group of second moving electrodes includes one or more second moving electrodes;
  • the at least one fixed electrode includes: parallel and opposite a first fixed electrode arranged on each first moving electrode, the at least one group of first moving electrodes and the corresponding first fixed electrode form a first direction detection capacitance; and are arranged parallel to and relative to each second moving electrode
  • the second fixed electrode, the at least one group of the second moving electrode and the corresponding second fixed electrode constitute the second direction detection capacitance, the at least one group of the first moving electrode and the at least one group of the second moving electrode and the The corresponding first fixed electrode and the second fixed electrode constitute a third direction detection capacitance.
  • the second direction is perpendicular to the first direction.
  • the at least one group of first moving electrodes includes an even group of first moving electrodes, and the even group of first moving electrodes is located on both sides of the mass element along the first direction; the at least one group of first moving electrodes
  • the group of second moving electrodes includes an even group of second moving electrodes, and the even groups of second moving electrodes are located on both sides of the mass element along the second direction.
  • each group of first movable electrodes is provided with a first movable electrode axis along the first direction and a first fixed movable electrode perpendicular to the first direction.
  • the fixed movable electrode is connected to the substrate through a first elastic element;
  • each group of second movable electrodes is provided with a second movable electrode axis along the second direction and a second fixed movable electrode perpendicular to the second direction, so
  • the second movable electrode shaft and the second fixed movable electrode are connected to the substrate through a second elastic element, and the sensing device further comprises: a pair of first fixed electrode shafts and a pair of first movable electrodes corresponding to each group of first movable electrodes.
  • the pair of first fixed electrode axes are symmetrically arranged relative to the first direction, the pair of first fixed electrodes are perpendicular to the first direction, and the first movable electrode axes of each group of first movable electrodes are sandwiched between them.
  • a first stationary movable electrode is sandwiched between the pair of first stationary stationary electrodes; and a pair of second stationary electrode shafts and a pair of first stationary electrode shafts corresponding to each group of second movable electrodes
  • Two fixed fixed electrodes the pair of second fixed electrode shafts are symmetrically arranged relative to the second direction, the pair of second fixed fixed electrodes is perpendicular to the second direction, and the second moving electrode shafts of each group of second moving electrodes are sandwiched in the second direction.
  • the second fixed movable electrodes are sandwiched between the pair of second stationary electrodes.
  • a pair of first stationary electrode shafts corresponding to each group of first movable electrodes forms a triangular area with the first fixed stationary electrodes and the first stationary movable electrodes; a pair of first stationary electrodes corresponding to each group of second movable electrodes forms a triangular area;
  • the two stationary electrode shafts, the second stationary stationary electrode and the second stationary moving electrode form a triangular area.
  • the adjacent first stationary electrode axes and the second stationary electrode axes are arranged in parallel with a certain distance.
  • each first movable electrode has a first movable electrode top surface and a first movable electrode bottom surface parallel to the upper surface of the mass element
  • the corresponding first fixed electrode has a first movable electrode parallel to the upper surface of the mass element
  • the top surface of the first fixed electrode and the bottom surface of the first fixed electrode, the top surface of the first movable electrode is farther away from the upper surface of the mass element than the top surface of the first fixed electrode;
  • the top surface of the second movable electrode and the bottom surface of the second movable electrode on the upper surface of the element, the corresponding second fixed electrode has the top surface of the second fixed electrode and the bottom surface of the second fixed electrode parallel to the upper surface of the quality element, and the second fixed electrode is parallel to the upper surface of the quality element.
  • the top surface of the movable electrode is closer to the upper surface of the mass element than the top surface of the second stationary electrode.
  • the top surface of the first fixed electrode and the top surface of the second movable electrode have the same level.
  • the sensing element further comprises: a first support member fixed on the substrate, the mass element is connected on the first support member through an elastic connection unit, the first support The component is located in the center of the mass element, the elastic connecting unit extends along the first direction, the center line of the elastic connecting unit coincides with the center line of the mass element in the first direction, and in the second direction, the mass element The mass of the parts located on both sides of the elastic connection unit is unequal, wherein the at least one fixed electrode comprises: at least two fixed electrodes in the first direction; at least two fixed electrodes in the second direction extending along the first direction, the first fixed electrodes Two-directional fixed electrodes are located on the midline of the mass element along the second direction, and are symmetrical with respect to the first support member; and at least two third-directional fixed electrodes are disposed on both sides of the elastic connection unit, the At least one movable electrode includes: a first-direction movable electrode, a second-direction movable electrode and The moving electrodes in the third direction respectively form
  • the at least two fixed electrodes in the first direction extend along the second direction, and the at least two fixed electrodes in the first direction are distributed at two positions corresponding to the position of the substrate along the centerline of the mass element along the second direction. side, and is axially symmetric with respect to the centerline of the second direction or centrally symmetric with respect to the first support member.
  • the at least two first direction stationary electrodes are not on a centerline of the mass element along the first direction.
  • each first-direction fixed electrode includes two first-direction fixed-electrode units arranged in parallel, and the first-direction moving electrode corresponding to the first-direction fixed electrode includes two first-direction moving electrodes
  • the two first-direction moving electrode units and the two first fixed-electrode units form a first-direction differential capacitance structure
  • each second-direction fixed electrode includes two second-direction fixed-electrode units arranged in parallel
  • the second direction moving electrode corresponding to the second direction fixed electrode includes two second direction moving electrode units, and the two second direction moving electrode units and the two second direction fixed electrode units constitute a second direction moving electrode unit.
  • the at least two first orientation electrodes are located on a centerline of the mass element along the first orientation.
  • each first-direction fixed electrode includes two first-direction fixed-electrode units arranged in parallel, and the first-direction moving electrode corresponding to the first-direction fixed electrode includes two first-direction moving electrodes
  • the two first-direction moving electrode units and the two first fixed-electrode units form a first-direction differential capacitance structure
  • each second-direction fixed electrode includes two second-direction fixed-electrode units arranged in parallel
  • the second direction moving electrode corresponding to the second direction fixed electrode includes two second direction moving electrode units, and the two second direction moving electrode units and the two second direction fixed electrode units constitute a second direction moving electrode unit.
  • first direction fixed electrode unit on one side of at least one first direction fixed electrode in the at least two first direction fixed electrodes is electrically connected to the at least one first direction fixed electrode about
  • the quality element is axially symmetric along the centerline of the second direction, and the first direction fixed electrode unit is on the opposite side of the other first direction fixed electrode.
  • the at least two third-direction moving electrodes are respectively lower electrodes of the at least two third-direction detection capacitors, and the at least two third-direction moving electrodes are respectively the at least two third-direction moving electrodes.
  • one side of the mass element is provided with a weight-reducing hole or a weight block, so that the masses on both sides of the mass element are not equal.
  • the sensing element further comprises: a second support member fixed to the substrate, the mass element is connected to the substrate through the second support member, the at least one fixed electrode It includes: a coupling part, the coupling part surrounds the mass element, and a gap is arranged between the coupling part and the mass element, so as to form the at least one detection capacitor.
  • the material of the substrate includes silicon
  • the material of the second support member, the mass element and the coupling member includes doped silicon
  • the sensing device further includes: an integrated chip, the integrated chip is electrically connected to the second support member and the coupling member, respectively.
  • the integrated chip is located on the outer surface of the casing, the casing is provided with a through hole, and the conductive element passes through the through hole to connect the integrated chip with the second support member and all the described coupling.
  • the mass element includes: a first mass element; and a second mass element
  • the sensing device further includes a first fixing element connected to the substrate and surrounding the first mass element a mass element, the first fixed element is connected to the first mass element by at least one first flexible member, the second mass element surrounds the first fixed element; and a second fixed element is connected to the a substrate and surrounds the second mass element, the second fixed element is connected to the second mass element through at least one second flexible part, and the at least one movable electrode comprises: disposed inside the second mass element and a plurality of first moving electrodes extending inward, the plurality of first moving electrodes are distributed along at least the first direction and the second direction; and a second moving electrode arranged at the bottom of the first mass element; the at least A fixed electrode includes: a plurality of first fixed electrodes arranged on the periphery of the first fixed element and extending outward, the plurality of first fixed electrodes correspond to the plurality of first moving electrodes and are arranged at intervals to form
  • the first mass element and/or the second mass unit are provided with a plurality of holes.
  • At least one of the first mass element, the second mass element, the first fixation element, or the second fixation element has a square profile.
  • the at least one resonant system includes a first resonant system that is a spring-mass-damper system.
  • the first resonant system is composed of a first medium, the first medium fills the cavity, and the acceleration sensing element is immersed in the first medium.
  • the first medium is a liquid
  • the liquid includes at least one of silicone oil, glycerin, engine oil, lubricating oil, and hydraulic oil.
  • the first resonance system is at least one first elastic structure connected to the acceleration sensing element, and the first elastic structure includes an elastic member and a mass unit.
  • the at least one resonant system includes a second resonant system that is a combination of a spring-mass-damper system and a spring-damper system.
  • the second resonant system is composed of a first medium and a second medium, the first medium and the second medium are filled in the cavity, and the acceleration sensing element is at least partially submerged in the cavity in the first medium and/or the second medium.
  • the first medium is a liquid
  • the second medium is a gas
  • the gas is distributed in the liquid in the form of bubbles.
  • the size of the bubbles accounts for 30%-50% of the volume of the cavity.
  • the bubbles may be formed by at least one of air, air pockets, or hydrophobic materials that are not expelled from the cavity.
  • the first medium and the second medium are immiscible liquids with different properties.
  • the second resonant system includes at least one second elastic structure coupled to the acceleration sensing element, the second elastic structure including a first elastic structure and at least one lightweight elastic member.
  • FIG. 1 is a schematic diagram of an exemplary acceleration sensor 100 provided in accordance with some embodiments of the present application.
  • FIG. 2A is a mechanically equivalent schematic diagram of an exemplary sensing device 200 provided in accordance with some embodiments of the present application.
  • FIG. 2B is a schematic diagram of a liquid-filled sensing device 200 provided in accordance with some embodiments of the present application.
  • FIG. 2C is a mechanically equivalent schematic diagram of an exemplary sensing device 250 provided in accordance with some embodiments of the present application.
  • FIG. 2D is a schematic diagram of a sensing device 250 filled with liquid and air bubbles provided in accordance with some embodiments of the present application.
  • FIG. 3A is an exemplary frequency response curve of a sensing device 200 or 250 provided in accordance with some embodiments of the present application.
  • 3B is an exemplary frequency response curve of a sensing device 200 or 250 provided in accordance with some embodiments of the present application.
  • 3C is an exemplary frequency response curve of a sensing device 200 or 250 provided in accordance with some embodiments of the present application.
  • FIGS. 4A and 4B are schematic diagrams of exemplary structures of sensing elements 400 provided according to some embodiments of the present application.
  • 5A-5D are schematic diagrams of exemplary structures of a sensing element 500 provided according to some embodiments of the present application.
  • 6A-6E are schematic diagrams of exemplary structures of sensing elements 600 provided according to some embodiments of the present application.
  • FIG. 7A is an exemplary flowchart of a method for manufacturing an acceleration sensor including a sensing element 600 provided according to some embodiments of the present application.
  • FIG. 7B is an exemplary flowchart of a method for manufacturing an acceleration sensor including a sensing element 600 provided according to other embodiments of the present application.
  • FIG. 7C is an exemplary flowchart of a method for manufacturing an acceleration sensor including the sensing element 600 provided according to further embodiments of the present application.
  • FIGS. 8A and 8B are schematic diagrams of exemplary structures of a sensing element 800 provided according to some embodiments of the present application.
  • FIG. 9 is a schematic diagram of an exemplary structure of a sensing device 900 provided according to some embodiments of the present application.
  • FIG. 10 is a schematic diagram of an exemplary structure of a sensing device 1000 provided according to some embodiments of the present application.
  • system means for distinguishing different components, elements, parts, parts or assemblies at different levels.
  • device means for converting signals into signals.
  • unit means for converting signals into signals.
  • module means for converting signals into signals.
  • the sensing device includes an acceleration sensor and at least one resonant system coupled to the acceleration sensor.
  • the sensor may be a capacitive acceleration sensor, that is, a variable capacitance acceleration sensor.
  • the acceleration sensor may have a first resonant frequency that is related to properties of the acceleration sensor itself (eg, shape, size, structure, material, etc.).
  • the at least one resonant system may be formed of a solid structure, liquid, gas, or any combination thereof coupled to the acceleration sensor (eg, the moving electrode).
  • the cavity of the acceleration sensor may be filled with liquid.
  • the liquid and the gas (if any) in the cavity will affect the response of the acceleration sensor to the external acceleration signal, forming the at least one resonance system.
  • the acceleration sensor for example, the moving electrode
  • the vibration component is composed of an elastic part and a mass unit (for example, a mass block), and the vibration component will affect the pair of the acceleration sensor.
  • the at least one resonant system is formed in response to the external acceleration signal.
  • the at least one resonance system can additionally provide the sensing device with at least one second resonance frequency. The at least one second resonant frequency is different from the first resonant frequency.
  • the first resonance can be changed by adjusting the parameters of the acceleration sensor (eg the housing and/or the sensing element) and/or the substance/structure forming the at least one resonant system (eg liquid viscosity, bubble size, etc.).
  • the relationship between the frequency and the at least one second resonant frequency so as to achieve, for example, adjust the Q value of the sensing device, improve the sensitivity, reliability of the sensing device or make the output gain of the sensing device in the desired frequency band (for example, mid-low frequency) for a more stable purpose.
  • FIG. 1 is a schematic diagram of an exemplary acceleration sensor 100 provided in accordance with some embodiments of the present application.
  • the acceleration sensor 100 may be a capacitive acceleration sensor, a piezoelectric acceleration sensor, a piezoresistive acceleration sensor, or the like. Only as an example, the present application uses a capacitive acceleration sensor as an example to describe the acceleration sensor 100 , and does not limit the acceleration sensor 100 .
  • the acceleration sensor includes a housing and an acceleration sensing element. The acceleration sensing element is located in the cavity formed by the housing. The acceleration sensing element includes at least one electrode pair. Each electrode pair includes a fixed electrode and a movable electrode, thus forming a capacitor.
  • the movable electrode In response to an external acceleration signal, the movable electrode is displaced relative to the stationary electrode, so that the distance and/or the facing area between the stationary electrode and the movable electrode is changed, thereby changing the capacitance of the capacitor.
  • the change in capacitance causes a change in the amount of charge stored in the capacitor, resulting in a measurable current signal.
  • the acceleration sensor 100 includes a housing 110 and a sensing element 120 .
  • the housing 110 can be a regular or irregular three-dimensional structure with a cavity (ie a hollow part) inside, for example, can be a hollow frame structure, including but not limited to a cube, a sphere, a cylinder, a regular polyhedron and other regular shapes, or any irregular shape.
  • the housing 110 is used to accommodate the sensing element 120 .
  • the housing 110 can be made of metal (eg, stainless steel, copper, etc.), plastic (eg, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), and acrylonitrile-butadiene ethylene-styrene copolymer (ABS), etc.), inorganic non-metallic materials (for example, monocrystalline silicon, doped silicon, etc.), composite materials (such as metal matrix composite materials or non-metal matrix composite materials), etc.
  • the material used for the housing 110 is silicon.
  • the sensing element 120 may be located in the cavity of the housing 110 or at least partially suspended in the cavity of the housing 110 .
  • the sensing element 120 includes a mass element 121 (eg, a mass).
  • the mass element 121 can be in the shape of a square, a rectangular parallelepiped, a cylinder, a ring, or the like. There is no specific limitation in the specification of this application.
  • the mass element 121 is disposed on the elastic film 124 .
  • the elastic film 124 can be a polymer elastic film such as a polytetrafluoroethylene (PTFE) film, a polydimethylsiloxane (PDMS) film, a composite film (for example, a plastic film (such as polyethylene (PE), polypropylene (PP) ), polystyrene (PS), polyvinyl chloride (PVC) and polyester (PET), etc.), cellophane, paper and/or metal foil AL and other composite films) and so on.
  • PTFE polytetrafluoroethylene
  • PDMS polydimethylsiloxane
  • a composite film for example, a plastic film (such as polyethylene (PE), polypropylene (PP) ), polystyrene (PS), polyvinyl chloride (PVC) and polyester (PET), etc.), cellophane, paper and/or metal foil AL and other composite films) and so on.
  • the mass element 121 includes upper and lower surfaces. Electrodes 122 and 123 are respectively provided on the upper and lower surfaces. For example, the upper and lower surfaces of the mass element 121 are coated with conductive layers to form electrodes 122 and 123, respectively. For another example, the upper and lower surfaces of the mass element 121 are respectively connected with conductive layers to form electrodes 122 and 123 .
  • Exemplary conductive layers may include metals, alloy materials, metal oxide materials, graphene, silicon, etc., or any combination thereof. In some embodiments, the metal and alloy materials may include nickel, iron, lead, platinum, titanium, copper, molybdenum, zinc, or any combination thereof.
  • the alloy material may include copper-zinc alloy, copper-tin alloy, copper-nickel-silicon alloy, copper-chromium alloy, copper-silver alloy, etc., or any combination thereof.
  • the metal oxide material may include RuO2, MnO2, PbO2, NiO, etc., or any combination thereof.
  • electrodes 125 and 126 are respectively provided on the upper and lower inner walls of the casing 110 . Electrodes 125 and 126 may be disposed opposite electrodes 122 and 123, respectively. In some embodiments, electrodes 125 and 126 may be the same or similar in shape and/or size as electrodes 122 and 123 . Electrodes 125 and 126 may be arranged in the same manner as electrodes 122 and 124 or may be different. For example, conductive layers are formed on the upper and lower inner walls of the casing 110 by means of physical growth to form the electrodes 125 and 126 . The materials of electrodes 125 and 126 may be the same or different from electrodes 122 and 124 .
  • electrodes 122, 123, 125 and 126 may all be made of a certain metal material.
  • the electrode 125 and the electrode 122 constitute the two poles of the first capacitor, and the electrode 126 and the electrode 123 constitute the two poles of the second capacitor.
  • the mass element 121 disposed on the elastic film 124 vibrates along the direction of the acceleration signal.
  • the mass element 121 moves upward, the distance between the electrode 125 and the electrode 122 constituting the first capacitor decreases, and the capacitance becomes larger; the distance between the electrode 126 and the electrode 123 constituting the second capacitor decreases, and the capacitance becomes larger. small, thus forming a differential capacitance output signal.
  • the greater the amplitude of the acceleration signal (that is, the greater the acceleration), the greater the movement displacement of the mass element 121, the smaller the distance between the electrode 125 and the electrode 122 of the first capacitor, and the greater the capacitance; the electrode of the second capacitor
  • the differential capacitance output signal is proportional to the magnitude of the acceleration signal. Therefore, the magnitude of the external acceleration signal can be characterized by the differential capacitance output signal generated by the acceleration sensor 100 .
  • acceleration sensor 100 is only for the convenience of description, and does not limit the present application to the scope of the illustrated embodiments. It can be understood that for those skilled in the art, after understanding the principle of the system, it is possible to arbitrarily combine various devices/modules without departing from this principle, or form a subsystem to connect with other devices/modules .
  • the mass element 121 and the elastic membrane 124 in the sensing element 120 may be replaced by a vibrating rod (eg, a cantilever beam).
  • the vibrating rod can be a strip-shaped or plate-shaped structure, one end of which is connected to the upper and lower inner walls or side walls of the housing 110 , and the other end is not connected or contacted with the housing 110 , so that the other end is suspended on the side of the housing 110 . cavity.
  • the vibrating rod is a multi-layer structure.
  • the multilayer structure includes at least one elastic layer and at least one damping layer.
  • the damping layer may refer to a structure with damping properties.
  • Electrodes 122 and 123 are respectively provided on the upper and lower surfaces of the vibrating rod. When there is an external acceleration, the housing 110 drives the vibrating rod to move.
  • the vibration rod and the housing 110 cannot maintain a completely consistent motion, thereby generating relative motion and causing vibration.
  • the distance between the rod and the upper and lower inner walls of the casing 110 changes, so that the capacitances of the first capacitor and the second capacitor change, and a differential capacitance output signal is generated.
  • FIG. 2A is a mechanically equivalent schematic diagram of an exemplary sensing device 200 provided in accordance with some embodiments of the present application.
  • the sensing device 200 includes the acceleration sensor 100 and the first resonance system 210 .
  • the sensing device 200 can be regarded as adding the first resonance system 210 on the basis of the acceleration sensor 100 .
  • the first resonance system 210 may be a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • the first resonance system 210 may be coupled between the housing 110 and the sensing element 120 . Due to the action of the first resonance system 210 , when the casing 110 receives an external vibration signal, the external vibration signal will be transmitted through the casing area connected with the sensing element 120 and the casing area connected with the first resonance system 210 respectively. to the sensing element 120 . Therefore, the mechanical response of the sensing device 200 is changed compared to the acceleration sensor 100 . Accordingly, the electrical, acoustic and/or thermal response of the sensing device 200 is changed compared to the acceleration sensor 100 .
  • the first resonance system 210 may be composed of elastic structures (eg, elastic rods, elastic sheets, elastic blocks, elastic mesh supports, elastic connecting structures (eg, light A composite structure of a mass spring) and a mass element (eg, a mass, etc.) is formed.
  • the first resonance system 210 may include at least one elastic rod. Both ends of the at least one elastic rod are fixedly connected to the housing 110 and the sensing element 120 respectively.
  • the first resonance system 210 may be a combination of at least one set of elastic connecting structures (eg, lightweight springs, lightweight elastic rods, etc.) and mass elements. Two ends of each elastic connecting structure in the at least one group of elastic structures are respectively connected to the housing 110 and the mass element.
  • the mass element is fixedly connected or placed on the sensing element 120 .
  • the first resonance system 210 may also be integrally formed with the sensing element 120 .
  • the first resonance system 210 in the form of an elastic rod can be integrally formed with the sensing element 120 by injection molding or physical growth.
  • the first resonance system 210 may be formed by filling the cavity of the acceleration sensor 100 with liquid.
  • the liquid fills the cavity within the housing 110, and the sensing element 120 is encased in the liquid.
  • 2B is a schematic diagram of a liquid-filled sensing device 200 provided in accordance with some embodiments of the present application.
  • the liquid can be selected from a liquid with safety performance (such as non-flammable and non-explosive) and stable performance (such as non-volatile, no high temperature deterioration, etc.).
  • the liquid may include oil (eg, silicone oil, glycerin, castor oil, motor oil, lubricating oil, hydraulic oil (eg, aviation hydraulic oil), etc.), water (including pure water, aqueous solutions of other inorganic or organic substances, etc. (eg, brine) )), oil-water emulsion, or other liquids that meet their performance requirements, or a combination of one or more of them.
  • oil eg, silicone oil, glycerin, castor oil, motor oil, lubricating oil, hydraulic oil (eg, aviation hydraulic oil), etc.
  • water including pure water, aqueous solutions of other inorganic or organic substances, etc. (eg, brine)
  • oil-water emulsion or other liquids that meet their performance requirements, or a combination of one or more of them.
  • the density and kinematic viscosity of the liquid are within a certain density range and kinematic viscosity range, respectively.
  • the density range and kinematic viscosity range may be set by a user or based on sensing device 200 properties (eg, sensitivity, noise floor level, formant peak, formant frequency range, peak-to-valley, and/or or quality factor Q, etc.) to determine.
  • the liquid can be selected from silicone oil. Silicone oil has the characteristics of high temperature resistance, non-volatile, wide viscosity range, density of about 0.94kg/m 3 , and a wide range of optional kinematic viscosity (for example, 0.1-1000 stokes (cst)).
  • the frequency response curve of the sensing device 200 includes at least two formants.
  • the at least two formants include a first formant and a second formant.
  • the first resonance peak is the resonance peak corresponding to the acceleration sensor 100
  • the corresponding resonance frequency is mainly related to the properties (eg, shape, material, structure, etc.) of the sensing element 120 .
  • the second resonance peak is the resonance peak generated by the action of the additional system of the acceleration sensor 100 (for the sensing device 200, the additional system is the first resonance system 210), and its corresponding resonance frequency is mainly related to one or more mechanical parameters ( For example, the equivalent spring (Km4), mass (Mm4), damping (Rm4), etc.) of the resonant system are related.
  • the resonance frequency corresponding to the first formant also called the first resonance frequency
  • the resonance frequency corresponding to the second formant also called the second resonance frequency
  • the second resonant frequency may be less than, equal to, or greater than the first resonant frequency
  • the frequency response curve of the sensing device 200 will be improved in a specific frequency band (eg, a mid-low frequency band, a mid-high frequency band, etc.) , so that its sensitivity will be improved compared to the acceleration sensor 100 .
  • the first resonance system 210 acts on the sensing element 120 , the vibration characteristics of the acceleration sensor 100 will be changed compared with those without the first resonance system 210 .
  • the first resonance system 210 acts on the sensing element 120, which can affect the mass, stiffness and/or damping of the acceleration sensor 100, and the effect is equivalent to making the Q value of the first resonance peak of the sensing device 200 relative to the other
  • the Q value of the acceleration sensor 100 connected to the first resonance system 210 is changed (eg, the Q value is decreased).
  • the first resonance system 210 can reduce the external impact received by the sensing element to protect the sensing element.
  • the first resonance system 210 is a liquid that fills the cavity of the acceleration sensor 100, because the liquid has a viscous effect, and the liquid's own stiffness is much smaller than that of the device material, when the sensing device 200 receives an external impact load, the first resonance The system 210 can improve the shock resistance reliability of the sensing device 200 . Specifically, due to the viscous effect of the liquid, part of the impact energy can be absorbed and consumed, so that the impact load on the sensing element 120 is greatly reduced, so the sensing element 120 can be protected and its working life can be prolonged.
  • the acceleration sensor 100 is often deformed, such as bending (along the length, width), torsion, etc., due to the presence of stress in the process of processing, especially the cantilever-type device.
  • cantilever beam structures are commonly used structures for acceleration sensors. Since the casing is filled with liquid, the sensing device 200 can utilize the gravity, surface tension, viscous force, etc. of the liquid to correct the deformation of the device, so that the deformation of the device is smaller, the output is more stable, and it is closer to the actual design effect.
  • FIG. 2C is a mechanically equivalent schematic diagram of an exemplary sensing device 250 provided in accordance with some embodiments of the present application.
  • the sensing device 250 includes the acceleration sensor 100 and the second resonance system 260 .
  • the sensing device 250 can be regarded as adjusting the first resonant system 210 to form the second resonant system 260 on the basis of the sensing device 200 .
  • the second resonance system 260 compared with the first resonance system 210, the second resonance system 260 newly adds a spring (Km3) and a damping (Rm3).
  • the second resonance system 260 may be disposed between the housing 110 and the sensing element 120 . For example, as shown in FIG.
  • the spring (Km3)-damping (Rm3) of the second resonance system 260 may be connected in series with the spring (Km4)-mass (Mm4)-damping (Rm4) of the first resonance system 210, and act indirectly on the sensing element 120 .
  • the spring (Km3)-damping (Rm3) of the second resonance system 260 may be connected in series with the spring (Km4)-mass (Mm4)-damping (Rm4) of the first resonance system 210 and directly act on the sensing element 120 .
  • the second resonance system 260 Due to the action of the second resonance system 260, when the casing 110 receives an external vibration signal, the external vibration signal will pass through the casing area connected to the sensing element 120 and the casing area connected to the second resonance system through the first The two-resonant system 260 is transmitted to the sensing element 120 . Therefore, the mechanical response of the sensing device 250 is changed compared to both the sensing device 200 and the acceleration sensor 100. Accordingly, the electrical, acoustic and/or thermal response of the sensing device 250 is changed compared to the sensing device 200 and the acceleration sensor 100 .
  • the vibration characteristics (eg, stiffness-damping, etc.) of the sensing device 250 are changed compared to the sensing device 200 and the acceleration sensor 100.
  • the second resonant system 260 may be an elastic structure attached to the sensing element 120 .
  • the elastic structure may include multi-stage connected elastic rods, elastic ropes, elastic sheets, springs, elastic mesh supports, elastic blocks and the like.
  • the second resonance system 260 may include at least one elastic rod and/or spring of lower mass, and one elastic rod and/or spring of larger mass.
  • the elastic rod and/or spring with larger mass can be equivalent to the above-mentioned spring (Km4)-mass (Mm4)-damping (Rm4)
  • the elastic rod and/or spring with smaller mass can be equivalent to the above-mentioned spring ( Km3) and damping (Rm3).
  • both ends of the elastic rod and/or the spring are fixedly connected to the housing 110 and the sensing element 120, respectively.
  • the elastic rods with lower mass eg, the elastic rods made of low-density materials
  • the elastic rods with larger masses eg, elastic rods made of high-density materials
  • the multi-level elastic structure of the second resonance system 260 can also be integrally formed with the sensing element 120 .
  • the second resonance system 260 may be formed by filling the cavity of the acceleration sensor 100 with a different medium.
  • part of the liquid may be filled into the cavity of the acceleration sensor 100 to form the second resonance system 260 in which the liquid and air bubbles coexist in the cavity.
  • the air bubbles may be air bubbles formed by air not expelled from the cavity, air bubbles formed by air pockets (eg, films wrapped in gas such as polyester film, nylon film, plastic film, composite film, etc.), and/or by air in the sensing element. air bubbles formed by applying a hydrophobic coating.
  • the gas in the bubbles can be air, oxygen, nitrogen, inert gas and the like.
  • the liquid in the cavity can be equivalent to the above-mentioned spring (Km4)-mass (Mm4)-damping (Rm4), and the air bubble can be equivalent to the above-mentioned spring (Km3) and damping (Rm3).
  • the cavity of the acceleration sensor 100 may be filled with liquids with different densities that are immiscible with each other to form the second resonance system 260 .
  • the medium filled into the cavity of the accelerometer 100 may be set by the user or based on the performance of the sensing device 250 (eg, sensitivity, noise floor level, peak-to-peak value, frequency range where the formant is located, peak-to-valley value and/or quality factor Q, etc.) to determine.
  • FIG. 2D is a schematic diagram of a sensing device 250 filled with liquid and air bubbles provided in accordance with some embodiments of the present application.
  • the cavity of the housing 110 is filled with liquid and air bubbles.
  • the liquid in the sensing device 250 may be the same as or different from the liquid in the sensing device 200 .
  • both the sensing device 250 and the sensing device 200 are filled with silicone oil with the same kinematic viscosity.
  • the sensing device 250 and the sensing device 200 are filled with different kinds of liquids or the same kind of liquids with different kinematic viscosities (for example, silicone oil with a kinematic viscosity of 0.65 cst and 200 cst, respectively).
  • the liquid and air bubbles may be injected into or formed in the cavity of the housing 110 in a specific manner.
  • the frequency response curve of sensing device 250 includes at least two formants.
  • the at least two formants include a third formant and a fourth formant.
  • the third resonance peak is the resonance peak corresponding to the acceleration sensor 100
  • the fourth resonance peak is the resonance peak generated by the action of an additional system of the acceleration sensor 100 (for the sensing device 250 , the additional system is the second resonance system 260 ).
  • the third resonance frequency (the resonance frequency corresponding to the third formant) and the fourth resonance frequency (the resonance frequency corresponding to the fourth formant) of the sensing device 250 .
  • the sensing device 250 may be located in the low frequency or middle and low frequency bands.
  • the resonant frequency of medium and high frequency.
  • the fourth resonance frequency is a low frequency, a medium low frequency, or a medium high frequency
  • the third resonance frequency may be greater than the fourth resonance frequency, for example, the third resonance frequency is a higher frequency band.
  • the fourth resonance frequencies are all medium and low frequencies, wherein the low frequency, the medium low frequency, and the medium high frequency refer to frequencies whose frequency values are within a certain range.
  • the frequency range corresponding to the higher frequency band is above 2000Hz, above 5000Hz, above 8000Hz, etc.
  • the third resonance frequency is a higher frequency than the fourth resonance frequency.
  • the difference between the two resonance frequencies is 100-6000 Hz.
  • the sensing device 250 When the sensing device 250 has a resonant frequency in a low frequency or a mid-low frequency range, its sensitivity at low frequencies will be higher than that of the acceleration sensor 100; when the sensing device 250 further has a resonant frequency in a high frequency or a mid-high frequency, its sensitivity at low frequencies will be higher than that of the acceleration sensor 100.
  • the frequency response curve is also flatter in the mid-low frequency range, which is more conducive to the acquisition of effective signals in this frequency band.
  • the second resonance system 260 acts on the sensing element 120 , the vibration characteristics of the acceleration sensor 100 will be changed compared with those without the second resonance system 260 .
  • the second resonance system 260 acts on the sensing element 120, which can affect the stiffness and/or damping of the acceleration sensor 100, and its effect is equivalent to making the Q value of the third resonance peak of the sensing device 250 relative to the unconnected first resonance system 250.
  • the acceleration sensor 100 of the two-resonant system 260 is changed (eg, the Q value is decreased).
  • the second resonance system 260 can reduce the external shock received by the sensing element to protect the sensing element. For example, if liquid and air bubbles are introduced into the cavity of the housing 110, the impact resistance reliability of the sensing device 250 when receiving an external impact load is improved. Specifically, due to the viscous effect of the liquid and the large compressibility of the gas, part of the impact energy can be absorbed and consumed, so that the impact load on the sensing element 120 is greatly reduced, so the sensing element 120 can be protected and its operation can be prolonged. life.
  • the acceleration sensor 100 is often deformed due to the presence of stress during the processing.
  • the gravity, surface tension, viscous force, etc. of the liquid can be used to correct the deformation of the device, so that the sensor device 250 has smaller deformation, more stable output, and is closer to the actual design effect.
  • the above descriptions of the sensing devices 200 and 250 are only exemplary descriptions, and do not limit the description to the scope of the illustrated embodiments. It can be understood that those skilled in the art, after understanding the principle of the system, may arbitrarily combine its structures and modules, or form a subsystem to connect with other modules without departing from the principle.
  • the sensing element therein may be the mass element 121 shown in FIG. 1 supported by the elastic film 124, and its mechanical equivalence, frequency response curve, etc. are the same or similar.
  • FIG. 3A is an exemplary frequency response curve of a sensing device 200 or 250 provided in accordance with some embodiments of the present application.
  • the frequency response curve 310 represented by the dotted line is the frequency response curve of the acceleration sensor 100
  • the frequency response curve 320 represented by the solid line is the frequency response curve of the sensing device 200 or 250 .
  • the abscissa represents the frequency, in Hertz Hz
  • the ordinate represents the sensitivity, in volts decibels dBV.
  • 1dBV 20lg(S)
  • the unit of sensitivity S is V/g.
  • the frequency response curve 310 includes a formant 311 , and the formant 311 corresponds to the resonant frequency of the acceleration sensor 100 .
  • the frequency response curve 320 includes a first (or third) formant 321 and a second (or fourth) formant 322 .
  • the frequency corresponding to the first resonance peak 321 is the first resonance frequency
  • the second resonance peak 322 is formed by the action of the first resonance system 210
  • the corresponding frequency is the second resonance frequency
  • the frequency corresponding to the third formant 321 is the third resonance frequency
  • the fourth formant 322 is formed by the action of the second resonance system 260
  • the frequency corresponding to the fourth formant 322 is the fourth resonance frequency.
  • the second (or fourth) formant 322 shown in the figure is on the left side of the first (or third) formant 321 , that is, the frequency corresponding to the second (or fourth) formant 322 is smaller than the first (or fourth) formant 322 (or third) the frequency corresponding to the formant.
  • the frequency corresponding to the second (or fourth) formant 322 may be greater than the first (or third) formant
  • the frequency corresponding to 321 that is, the second (or fourth) formant 322 is on the right side of the first (or third) formant 321 .
  • the second (or fourth) resonant peak 322 may be to the left or right of the first (or third) resonant peak 321, and its position may be similar to that of the liquid-filled Properties (eg, density, kinematic viscosity, volume, etc.) are relevant. For example, if the density of the liquid becomes smaller or the kinematic viscosity becomes larger, its resonance peaks are shifted towards higher frequencies.
  • the liquid-filled Properties eg, density, kinematic viscosity, volume, etc.
  • the frequency corresponding to the formant 311 is in the range of 10 Hz-12000 Hz. In some embodiments, the frequency corresponding to the formant 311 is in the range of 10 Hz-10000 Hz. In some embodiments, the frequency corresponding to the formant 311 is in the range of 50Hz-10000Hz. In some embodiments, the frequency corresponding to the formant 311 is in the range of 100 Hz-7000 Hz. In some embodiments, the frequency corresponding to the formant 311 is in the range of 1500 Hz-5000 Hz. In some embodiments, the frequency corresponding to the formant 311 is in the range of 200 Hz-5000 Hz. In some embodiments, the frequency corresponding to the formant 311 is in the range of 200Hz-4000Hz. In some embodiments, the frequency corresponding to the formant 311 is in the range of 300 Hz-4000 Hz.
  • the frequency corresponding to the first (or third) formant 321 is in the range of 10 Hz-12000 Hz. In some embodiments, the frequency corresponding to the first (or third) formant 321 is in the range of 50Hz-10000Hz. In some embodiments, the frequency corresponding to the first (or third) formant 321 is in the range of 100 Hz-10000 Hz. In some embodiments, the frequency corresponding to the first (or third) formant 321 is in the range of 150Hz-7000Hz. In some embodiments, the frequency corresponding to the first (or third) formant 321 is in the range of 150Hz-5000Hz. In some embodiments, the frequency corresponding to the first (or third) formant 321 is in the range of 200Hz-5000Hz. In some embodiments, the frequency corresponding to the first (or third) formant 321 is in the range of 200Hz-4000Hz. In some embodiments, the frequency corresponding to the first (or third) formant 321 is in the range of 300Hz-4000Hz.
  • the resonance frequency (the first resonance frequency or the third resonance frequency) corresponding to the first (or third) formant 321 is different from the resonance frequency corresponding to the formant 311 .
  • the liquid is used as the first resonance system 210. Since the liquid is incompressible, the stiffness of the system itself increases, and the first frequency corresponding to the first resonance peak 321 The resonance frequency corresponding to the formant peak 311 becomes larger, that is, the first formant peak 321 is shifted to the right relative to the formant peak 311 .
  • the frequency corresponding to the second (or fourth) formant 322 is in the range of 1 Hz-12000 Hz. In some embodiments, the frequency corresponding to the second (or fourth) formant 322 is in the range of 1 Hz-10000 Hz. In some embodiments, the frequency corresponding to the second (or fourth) formant 322 is in the range of 1 Hz-6000 Hz. In some embodiments, the frequency corresponding to the second (or fourth) formant 322 is in the range of 10 Hz-5000 Hz. In some embodiments, the frequency corresponding to the second (or fourth) formant 322 is in the range of 10 Hz-5000 Hz.
  • the frequency corresponding to the second (or fourth) formant 322 is in the range of 50Hz-5000Hz. In some embodiments, the frequency corresponding to the second (or fourth) formant 322 is in the range of 50Hz-3000Hz. In some embodiments, the frequency corresponding to the second (or fourth) formant 322 is in the range of 50 Hz-2000 Hz. In some embodiments, the frequency corresponding to the second (or fourth) formant 322 is in the range of 100Hz-2000Hz.
  • the fourth resonant frequency is lower than the second resonant frequency.
  • the liquid is used as the first resonance system 210.
  • the sensing device 250 containing liquid and air bubbles in the cavity of the housing 110 the liquid and air bubbles are respectively used as the first resonance system 210.
  • the two-resonant system 260 whose combined overall stiffness is lower than the liquid, therefore has a fourth resonant frequency lower than the second resonant frequency.
  • the frequency response can be achieved by adjusting the structure of the sensing element, the material, and one or more mechanical parameters in the first (or second) resonant system (eg, type of filling liquid, bubble size, etc.).
  • the two resonance peaks 321 and 322 on the curve 320 are relatively flat, thereby improving the output quality of the sensing device 200 or 250 .
  • the difference in sensitivity between the valley between formants 321 and 322 and the peak of the higher peak of formants 321 and 322 is not more than 30 dBV, and the ratio of the difference in sensitivity to the peak of the higher peak is not more than 30 dBV. more than 0.2.
  • the difference in sensitivity between the valley between formants 321 and 322 and the peak of the higher peak of formants 321 and 322 is not more than 20 dBV, and the ratio of the difference in sensitivity to the peak of the higher peak is not more than 20 dBV. more than 0.15.
  • the trough between the formants 321 and 322 has a sensitivity difference of no more than 15 dBV from the peak of the higher peak of the formants 321 and 322, and the ratio of the sensitivity difference to the peak of the higher peak is not more than 15 dBV. more than 0.12.
  • the trough between the formants 321 and 322 has a sensitivity difference of no more than 10 dBV from the peak of the higher peak of the formants 321 and 322, and the ratio of the sensitivity difference to the peak of the higher peak is not more than 10 dBV. more than 0.1. In some embodiments, the trough between formants 321 and 322 has a sensitivity difference of not more than 8 dBV from the peak of the higher peak of formants 321 and 322, and the ratio of the sensitivity difference to the peak of the higher peak is not more than 8 dBV. more than 0.08.
  • the difference in sensitivity between the valley between formants 321 and 322 and the peak of the higher peak of formants 321 and 322 is not more than 5 dBV, and the ratio of the difference in sensitivity to the peak of the higher peak is not more than 5 dBV. more than 0.05.
  • the difference between the resonance frequencies corresponding to the formants 321 and 322 (the frequency of the formant 321 is represented by f 0 (close to the formant 311)
  • the frequency of the formant 322 is represented by f 1
  • the frequency difference ⁇ f 1 is represented.
  • the difference between the resonance frequencies corresponding to the formants 321 and 322 is within a certain range, which can make the frequency response curve between the formants 321 and 322 relatively flat.
  • the frequency difference ⁇ f 1 is in the range of 20-3000 Hz
  • the ratio of the frequency difference ⁇ f 1 to f 0 is in the range of 0.02-0.7.
  • the frequency difference ⁇ f 1 is in the range of 20-2000 Hz, and the ratio of the frequency difference ⁇ f 1 to f 0 is in the range of 0.02-0.65. In some embodiments, the frequency difference ⁇ f 1 is in the range of 50-2000 Hz, and the ratio of the frequency difference ⁇ f 1 to f 0 is in the range of 0.05-0.65. In some embodiments, the frequency difference ⁇ f 1 is in the range of 50-1500 Hz, and the ratio of the frequency difference ⁇ f 1 to f 0 is in the range of 0.05-0.6.
  • the frequency difference ⁇ f 1 is in the range of 80-1500 Hz, and the ratio of the frequency difference ⁇ f 1 to f 0 is in the range of 0.1-0.6. In some embodiments, the frequency difference ⁇ f 1 is in the range of 100-1500 Hz, and the ratio of the frequency difference ⁇ f 1 to f 0 is in the range of 0.15-0.6.
  • the frequency response curve 320 shows an increase in sensitivity (ie, the difference in the frequency response curve 320 ) within the frequency range within the resonant frequency f 1 corresponding to the second (or fourth) formant 322 , represented by ⁇ V1) is higher and more stable.
  • the boost ⁇ V1 is in the range of 10dBV-60dBV.
  • the boost ⁇ V1 is in the range of 10dBV-50dBV.
  • the boost ⁇ V1 is in the range of 15dBV-50dBV.
  • the boost ⁇ V1 is in the range of 15dBV-40dBV.
  • the boost ⁇ V1 is in the range of 20dBV-40dBV. In some embodiments, the boost ⁇ V1 is in the range of 25dBV-40dBV. In some embodiments, the boost ⁇ V1 is in the range of 30dBV-40dBV.
  • the existence of the first resonance system 210 or the second resonance system 260 will inhibit the resonance peak corresponding to the acceleration sensor 100 in the sensing device 200 or 250 , so that the first (or third) resonance peak 321 of the frequency response curve 320 is located
  • the Q value is relatively low, the frequency response curve is more flat in the desired frequency band (eg, mid-low frequency), and the difference between the peak of the highest peak and the valley of the lowest valley of the overall frequency response curve 320 (also known as the peak-to-valley value) , represented by ⁇ V2) within a certain range.
  • the peak-to-valley value does not exceed 30 dBV, and the ratio of the peak-to-valley value to the peak value of the highest peak does not exceed 0.2.
  • the peak-to-valley value does not exceed 20 dBV, and the ratio of the peak-to-valley value to the peak value of the highest peak does not exceed 0.15. In some embodiments, the peak-to-valley value does not exceed 10 dBV, and the ratio of the peak-to-valley value to the peak value of the highest peak does not exceed 0.1. In some embodiments, the peak-to-valley value does not exceed 8 dBV, and the ratio of the peak-to-valley value to the peak value of the highest peak does not exceed 0.08. In some embodiments, the peak-to-valley value does not exceed 5 dBV, and the ratio of the peak-to-valley value to the peak value of the highest peak does not exceed 0.05.
  • the frequency corresponding to the fourth formant 322 is a middle-low frequency
  • the frequency corresponding to the third formant 321 is a middle-high frequency
  • the difference between the minimum value of the sensitivity of the frequency response curve 320 in the frequency range within the resonant frequency f 1 and the peak value of the fourth formant is not greater than 30 dBV, and the ratio thereof is not greater than 0.2.
  • the difference between the minimum sensitivity value of the frequency response curve 320 in the frequency range within the resonant frequency f 1 and the peak value of the fourth formant is not more than 20 dBV, and the ratio thereof is not less than 0.15. In some embodiments, the difference between the minimum sensitivity value of the frequency response curve 320 in the frequency range within the resonant frequency f 1 and the peak value of the fourth formant is not greater than 10 dBV, and the ratio thereof is not greater than 0.1.
  • the frequency response of the sensing device 200 or 250 may be determined by the relevant parameters of the curve 320 , such as the peak value of the first (or third) formant 321 , the frequency, the second (or fourth) formant 322 Peak value, frequency, Q value, ⁇ f 1 , ⁇ V1, ⁇ V2, the ratio of ⁇ f 1 to f 0 , the ratio of the peak-to-valley value to the peak value of the highest peak, the first-order coefficient of the equation determined by fitting the frequency response curve Description of one or more of , second-order coefficients, third-order coefficients, etc.
  • the frequency response of the sensing device 200 or 250 may be related to properties of the filled liquid and/or parameters of the acceleration sensor 100 .
  • Properties of the liquid may include, for example, liquid density, liquid kinematic viscosity, liquid volume, presence of bubbles, bubble volume, bubble location, number of bubbles, and the like.
  • the parameters of the acceleration sensor 100 may include, for example, the internal structure, size, stiffness of the housing 110, the mass of the acceleration sensor 100, and/or the size, stiffness, etc. of the sensing element 120 (eg, cantilever beam).
  • each parameter also known as frequency response influencing factors, including the properties of the filled liquid and/or the parameters of the acceleration sensor 100 .
  • the influence of each factor on the frequency response of the sensing device 200 or 250 can be determined one by one by controlling variables based on simulation. For example, under the premise that the same liquid is filled, the performance of sensing devices with different cavity structure characteristics is tested. For another example, under the premise that the same liquid is filled, the performance of devices with different shell stiffness characteristics is tested.
  • the performance of the sensing device with the characteristics of bubbles of different sizes is tested.
  • the performance of the sensing device with the characteristics of bubbles of different sizes is tested.
  • some factors are related to the influence of other factors on the frequency response of the sensing device 200 or 250, so the parameter pair or parameter group can be determined in the form of a corresponding parameter pair or parameter group to the sensing device 200 or 250. 250 frequency response.
  • the parameter pair or parameter group can be determined in the form of a corresponding parameter pair or parameter group to the sensing device 200 or 250. 250 frequency response.
  • the housing height of the accelerometer 100 is increased, the volume of the cavity becomes larger, the mass of the housing becomes larger, and the volume of the liquid filled therein also becomes larger accordingly, so the height of the housing, the mass of the housing, and/ Or the liquid volume (or the ratio of any two parameters, or the product of at least two parameters, etc.) is used as a parameter group to test the performance of the sensing device with different parameter pair-to-parameter group characteristics.
  • liquid viscosity and density can be used as a parameter pair, and the effect of the parameter pair (or its ratio, product, etc.) on the frequency response of the sensing device 200 or 250
  • the influence of parameter pairs or parameter groups corresponding to each factor or multiple factors on the frequency response of the sensing device 200 or 250 can be determined by means of a phantom test.
  • the kinematic viscosity of the liquid may be 0.1-5000 cst. In some embodiments, the liquid may have a kinematic viscosity of 0.1-1000 cst. In some embodiments, the kinematic viscosity of the liquid may be 0.3-1000 cst. In some embodiments, the kinematic viscosity of the liquid may be 0.5-500 cst. In some embodiments, the kinematic viscosity of the liquid may be 0.5-200 cst. In some embodiments, the kinematic viscosity of the liquid may be 50-200 cst.
  • the sensing device 200 filled with liquid by increasing the size of the cavity, the sensitivity of the sensor at the intermediate frequency can be improved, and the effect of the liquid on the frequency response suppression of the sensing device at the intermediate frequency can be reduced, so that the frequency response curve is flatter.
  • the length, width, and height of the sensing device cavity are 1-30 mm, 1-30 mm, and 0.5-30 mm, respectively. In some embodiments, the length, width, and height of the sensing device cavity are 2-30 mm, 2-30 mm, and 1-30 mm, respectively. In some embodiments, the length, width, and height of the sensing device cavity are 5-10 mm, 5-10 mm, and 1-10 mm, respectively. In some embodiments, the length, width, and height of the sensing device cavity are 8-10 mm, 5-10 mm, and 1-5 mm, respectively. Optionally, the sensing device cavity has a larger size.
  • the length, width, and height of the sensing device cavity are 10-200 mm, 10-100 mm, and 10-100 mm, respectively. In some embodiments, the length, width, and height of the sensing device cavity are 10-100 mm, 10-50 mm, and 10-50 mm, respectively. In some embodiments, the length, width, and height of the sensing device cavity are 10-50 mm, 10-30 mm, and 10-30 mm, respectively.
  • the gas is compressible and has low rigidity, while the liquid is incompressible, over-stiffness and over-damping may occur.
  • the overall output gain is higher.
  • the second formant of the sensing device 200 may "disappear" due to over-damping, thereby affecting the increased sensitivity of the sensing device 200 at low and medium frequencies.
  • liquid and bubble filled sensing device 250 when the bubble does not cover the sensing element (eg, piezoelectric transducer), the sensitivity of the sensing device increases as the volume of the bubble increases.
  • the sensing element eg, piezoelectric transducer
  • the ratio of the volume of the bubbles to the volume of the liquid may be 5%-90%. In some embodiments, the ratio of the volume of the air bubbles to the volume of the liquid may be 10%-80%. In some embodiments, the ratio of the volume of the bubbles to the volume of the liquid may be 20%-60%. In some embodiments, the ratio of the volume of the bubbles to the volume of the liquid may be 30%-50%.
  • 3B is an exemplary frequency response curve of a sensing device 200 or 250 provided in accordance with some embodiments of the present application.
  • the frequency response curve 360 represented by the dotted line is the frequency response curve of the acceleration sensor 100
  • the frequency response curve 370 represented by the solid line is the frequency response curve of the sensing device 200 or 250 .
  • the frequency response curve 360 includes a formant 361
  • the formant 361 corresponds to the resonant frequency of the acceleration sensor 100 .
  • the acceleration sensor 100 corresponds to a higher resonant frequency that is not in the desired frequency range (eg, 10-5000 Hz, 50-7000 Hz, etc.).
  • the resonance frequency corresponding to the acceleration sensor 100 may be in a higher frequency range.
  • the corresponding resonant frequency of the acceleration sensor 100 is higher than 7000 Hz. In some embodiments, the resonant frequency corresponding to the acceleration sensor 100 is higher than 10000 Hz. In some embodiments, the resonant frequency corresponding to the acceleration sensor 100 is higher than 12000 Hz.
  • the sensing device 200 or 250 may have higher rigidity at this time, and at the same time, the sensing device 200 or 250 also brings higher impact strength and reliability.
  • the frequency response curve 370 includes a first (or third) formant (not shown) and a second (or fourth) formant 372 .
  • the frequency corresponding to the first (or third) resonance peak is close to or the same as the resonance frequency corresponding to the acceleration sensor 100 in the frequency response curve 360 .
  • the frequency response curve 370 is substantially the same as the frequency response curve 320 in FIG. 3A, except that the first (or third) formant is shifted to the right.
  • the frequency corresponding to the second (or fourth) formant 372 is the same or similar to the frequency range corresponding to the second (or fourth) formant 322 in FIG. 3A .
  • the difference between the maximum and minimum sensitivity values in the frequency response curve 370 should be kept within a certain range to ensure Sensing device 200 or 250 frequency response stabilization.
  • the difference between the maximum and minimum sensitivity values is not higher than 40 dBV, and the ratio of the sensitivity difference value to the sensitivity maximum value is not more than 0.3.
  • the difference between the maximum and minimum sensitivity values is not more than 30 dBV, and the ratio of the sensitivity difference value to the maximum value is not more than 0.25.
  • the difference between the maximum and minimum sensitivity values is not higher than 20 dBV, and the ratio of the sensitivity difference value to the maximum value is not more than 0.15. In some embodiments, in the desired frequency range, the difference between the maximum and minimum sensitivity values is not more than 10 dBV, and the ratio of the sensitivity difference value to the maximum value is not more than 0.1.
  • the difference between the resonance frequencies corresponding to the first (or third) formant and the second (or fourth) formant 372 (the frequency of the first (or third) formant is represented by f 0 ( Close to the formant 361), the frequency of the second (or fourth) formant 372 is represented by f1, and the frequency difference ⁇ f2 is represented by the difference between the resonance frequencies corresponding to the two formants) within a certain range.
  • the frequency difference ⁇ f 2 is in the range of 100-8000 Hz
  • the ratio of the frequency difference ⁇ f 2 to f 0 is in the range of 0.02-0.8.
  • the frequency difference ⁇ f 2 is in the range of 100-6000 Hz, and the ratio of the frequency difference ⁇ f 2 to f 0 is in the range of 0.02-0.65. In some embodiments, the frequency difference ⁇ f 2 is in the range of 200-6000 Hz, and the ratio of the frequency difference ⁇ f 2 to f 0 is in the range of 0.05-0.65. In some embodiments, the frequency difference ⁇ f 2 is in the range of 300-5000 Hz, and the ratio of the frequency difference ⁇ f 2 to f 0 is in the range of 0.1-0.5. In some embodiments, the frequency difference ⁇ f 2 is in the range of 300-4000 Hz, and the ratio of the frequency difference ⁇ f 2 to f 0 is in the range of 0.1-0.4.
  • the frequency response curve 370 shows an improvement in the sensitivity of the frequency response curve 370 within the frequency range within the resonant frequency f1 corresponding to the second (or fourth) formant 372 (ie, the difference, represented by ⁇ V3). ) is higher and more stable.
  • the boost ⁇ V3 is in the range of 10dBV-60dBV.
  • the boost ⁇ V3 is in the range of 10dBV-50dBV.
  • the boost ⁇ V3 is in the range of 15dBV-50dBV.
  • the boost ⁇ V3 is in the range of 15dBV-40dBV.
  • the boost ⁇ V3 is in the range of 20dBV-40dBV. In some embodiments, the boost ⁇ V3 is in the range of 25dBV-40dBV. In some embodiments, the boost ⁇ V3 is in the range of 30dBV-40dBV.
  • the frequency corresponding to the fourth formant 372 (ie, the fourth resonance frequency) is a middle-low frequency
  • the frequency corresponding to the third formant (ie, the third resonance frequency) is a middle-high frequency
  • the difference between the minimum sensitivity value of the frequency response curve 370 in the frequency range within the resonant frequency f1 and the peak value of the fourth formant is not greater than 30 dBV, and the ratio thereof is not greater than 0.2.
  • the difference between the minimum sensitivity value of the frequency response curve 320 in the frequency range within the resonant frequency f 1 and the peak value of the fourth formant is not more than 20 dBV, and the ratio thereof is not less than 0.15. In some embodiments, the difference between the minimum sensitivity value of the frequency response curve 320 in the frequency range within the resonant frequency f 1 and the peak value of the fourth formant is not greater than 10 dBV, and the ratio thereof is not greater than 0.1.
  • the frequency response of the sensing device 200 or 250 may be determined by the relevant parameters of the curve 370, such as the peak value of the primary formant, frequency, the peak value of the secondary formant 372, frequency, Q value, ⁇ f 2 , ⁇ V3, the ratio of ⁇ f 2 to f 0 , the ratio of the maximum sensitivity to the minimum sensitivity in the desired frequency range, one of the first-order coefficient, second-order coefficient, third-order coefficient, etc. of the equation determined by fitting the frequency response curve, or Multiple descriptions.
  • the frequency response of the sensing device 200 or 250 may be related to properties of the filled liquid and/or parameters of the acceleration sensor 100 .
  • the above-listed parameters also known as frequency response influencing factors, including the properties of the filled liquid and/or the parameters of the acceleration sensor 100
  • the range is the same as or similar to the method described in FIG. 3A , and will not be repeated here.
  • 3C is an exemplary frequency response curve of a sensing device 200 or 250 provided in accordance with some embodiments of the present application.
  • the frequency response curve 380 represented by the dotted line is the frequency response curve of the acceleration sensor 100
  • the frequency response curve 390 represented by the solid line is the frequency response curve of the sensing device 200 or 250 .
  • the frequency response curve 380 includes a formant 381
  • the formant 381 corresponds to the resonant frequency of the acceleration sensor 100
  • the frequency response curve 390 includes a first (or third) formant and a second (or fourth) formant.
  • the frequency of formant 391 is represented by f 0 (close to formant 381 ), the frequency of formant 392 is represented by f 1 , and the frequency difference ⁇ f 3 is represented by the difference between the resonance frequencies corresponding to formants 391 and 392 .
  • f 1 may be close to or equal to f 0 to further boost the output of sensing device 200 or 250 at resonant frequency f 0 .
  • Figure 3C shows the case where f 1 is close to or equal to f 0 .
  • the structural parameters of the first resonant system 210 or the second resonant system 260 may be set such that f The absolute value of the difference ⁇ f 3 between 1 and f 0 may not be greater than the set threshold.
  • the absolute value of ⁇ f 3 may be no greater than 1000 Hz.
  • the absolute value of ⁇ f 3 may be less than 1000 Hz.
  • the absolute value of ⁇ f 3 may be less than 800 Hz.
  • the absolute value of ⁇ f 3 may range between 100 Hz-200 Hz.
  • the absolute value of ⁇ f 3 may range between 0 Hz-100 Hz. In some embodiments, the absolute value of ⁇ f 3 may be 0, that is, f 1 and f 0 are equal. In some embodiments, the absolute value of ⁇ f 3 may be relatively small by setting the structural parameters of the first resonance system 210 or the second resonance system 260 and/or the acceleration sensor 100 . In this case, since the sensing device 200 or 250 resonates with the external acceleration signal at f 0 and f 1 , respectively, frequency components in a certain frequency band including f 0 or f 1 are amplified.
  • the frequency components near f 0 and f 1 can be further "amplified", so that the sensing device 200 or 250 is at f 0 and f 1 has higher sensitivity.
  • the resonance peaks 391 and 392 in FIG. 3C correspond to substantially the same frequency point, and the joint action of the resonance peaks 391 and 392 greatly improves the sensitivity near this frequency point.
  • the sensitivity of the sensing device 200 or 250 at f 1 may be greater than the sensitivity of the acceleration sensor 100 at f 1 , as shown in FIG. 3C , the difference between the two may be represented by ⁇ V1 .
  • the sensitivity of the sensing device 200 or 250 in different resonant frequency ranges is improved by 5dBV-60dBV compared to the acceleration sensor 100 . In some embodiments, the sensitivity of the sensing device 200 or 250 is increased by 10dBV-40dBV in different resonant frequency ranges.
  • FIGS. 4A and 4B are schematic diagrams of exemplary structures of sensing elements 400 provided according to some embodiments of the present application.
  • the sensing element 400 includes a substrate (not shown in the figure), a mass element 420, and one or more detection capacitors for determining the magnitude of the external acceleration.
  • the substrate may be a flat plate structure.
  • the material of the substrate may be polysilicon, polysilicon germanium, or the like.
  • the mass element 420 may be centrally positioned on the upper portion of the substrate.
  • the mass element 420 may include an upper surface 421 and a lower surface (not numbered) parallel to each other and a side surface (not shown in the figure) connecting the upper and lower surfaces. Mass element 420 can move relative to the substrate in response to external acceleration.
  • sensing element 400 may include at least one detection capacitance.
  • the sensing element 400 may include at least one movable electrode and at least one corresponding fixed electrode, so as to form the detection capacitance of the direction and to determine the magnitude of the acceleration in the direction.
  • the at least one movable electrode may be disposed on the mass element 420 .
  • the sensing element 400 may include at least one set of first movable electrodes arranged along the first direction and perpendicular to the first direction and at least one set of first movable electrodes arranged along the second direction and perpendicular to the second direction Two moving electrodes.
  • Each group of first movable electrodes includes one or more first movable electrodes.
  • Each group of second movable electrodes includes one or more second movable electrodes.
  • the sensing element 400 may further include a first fixed electrode disposed parallel to and opposite to each of the first movable electrodes, and a second fixed electrode disposed parallel to and opposite to each of the second moving electrodes.
  • the at least one group of the first movable electrodes and the corresponding first fixed electrodes form a first direction detection capacitance.
  • the at least one group of second movable electrodes and the corresponding second fixed electrodes form a second direction detection capacitance.
  • the at least one group of the first moving electrodes and the at least one group of the second moving electrodes and the corresponding first fixed electrodes and the second fixed electrodes together form a third direction detection capacitance.
  • the at least one group of first moving electrodes includes an even group of first moving electrodes (eg, two groups).
  • the even-group first movable electrodes are located on both sides of the mass element 420 along the first direction.
  • the even group of the first moving electrodes and the corresponding first fixed electrodes can form a differential capacitance structure, so as to more accurately determine the magnitude of the acceleration in the first direction.
  • the at least one second movable electrode includes an even group (eg, two groups) of second movable electrodes.
  • the even group of second movable electrodes are located on both sides of the mass element 420 along the second direction.
  • the even group of second movable electrodes and the corresponding second fixed electrodes can form a differential capacitance structure, so as to more accurately determine the magnitude of the acceleration in the second direction.
  • each first movable electrode has a first movable electrode top surface and a first movable electrode bottom surface parallel to the upper surface of the mass element
  • the corresponding first fixed electrode has a first movable electrode parallel to the upper surface of the mass element.
  • the top surface of the first fixed electrode and the bottom surface of the first fixed electrode The top surface of the first movable electrode is farther from the top surface of the mass element than the top surface of the first fixed electrode.
  • Each second movable electrode has a second movable electrode top surface parallel to the upper surface of the mass element and a second movable electrode bottom surface
  • the corresponding second stationary electrode has a second stationary electrode top parallel to the upper surface of the mass element. surface and the bottom surface of the second stationary electrode. The top surface of the second movable electrode is closer to the upper surface of the mass element than the top surface of the second stationary electrode.
  • each group of first movable electrodes is provided with a first movable electrode axis along the first direction and a first fixed movable electrode perpendicular to the first direction.
  • the group of first movable electrodes is distributed along the axis of the first movable electrode. The distances between the first movable electrodes are the same or different.
  • the first movable electrode shaft and the first fixed movable electrode are connected to the substrate through first elastic elements (eg, springs, elastic rods, elastic nets, etc.).
  • Each group of second movable electrodes is provided with a second movable electrode axis along the second direction and a second fixed movable electrode perpendicular to the second direction.
  • the group of second movable electrodes is distributed along the axis of the second movable electrode.
  • the distances between the second movable electrodes are the same or different.
  • the second movable electrode shaft and the second fixed movable electrode are connected to the substrate through second elastic elements (eg, springs, elastic rods, elastic nets, etc.).
  • the sensing element 400 may include a pair of first stationary electrode shafts and a pair of first stationary stationary electrodes corresponding to each group of first movable electrodes.
  • the pair of first fixed electrode axes are symmetrically arranged relative to the first direction.
  • the pair of first fixed electrode axes are arranged at a certain angle (eg, 90 degrees).
  • the first movable electrode shafts of each group of first movable electrodes are sandwiched between the pair of first fixed electrode shafts.
  • the pair of first fixed electrodes is perpendicular to the first direction.
  • the first fixed movable electrode is sandwiched between the pair of first fixed fixed electrodes.
  • the first fixed movable electrode is in a straight line with the pair of first fixed fixed electrodes.
  • the sensing element 400 may further include a pair of second stationary electrode shafts and a pair of second stationary stationary electrodes corresponding to each group of second movable electrodes.
  • the pair of second stator electrode shafts are symmetrically arranged with respect to the second direction.
  • the shafts of the pair of second stationary electrodes are arranged at a certain angle (eg, 90 degrees).
  • the second movable electrode shafts of each group of second movable electrodes are sandwiched between the pair of second stationary electrode shafts.
  • the pair of second fixed electrodes is perpendicular to the second direction.
  • the second fixed movable electrode is sandwiched between the pair of second fixed fixed electrodes.
  • the second fixed movable electrode is in a straight line with the pair of second fixed fixed electrodes.
  • a pair of first stationary electrode shafts corresponding to each group of first movable electrodes, the first stationary stationary electrode and the first stationary stationary electrode may form a triangular area.
  • a pair of second stationary electrode shafts corresponding to each group of second movable electrodes, the second stationary stationary electrodes and the second stationary movable electrodes may form a triangular area.
  • the first direction is the X-axis direction shown in FIG. 4A
  • the second direction is the Y-axis direction
  • the X-axis direction and the Y-axis direction are perpendicular to each other
  • the third direction is The Z-axis direction (not shown in the figure) is perpendicular to the X-Y plane.
  • the sensing area of the sensing element 400 may be divided into four triangular areas 410A, 410B, 410C and 410D.
  • the structures of the sensing regions 410A and 410B are arranged symmetrically with respect to the Y-axis, and the structures of the sensing regions 410C and 410D are arranged symmetrically with respect to the X-axis; the sensing regions 410A and 410B are arranged along the X-axis direction, and the sensing regions 410C and 410D are arranged along the Y-axis direction cloth.
  • the mass element 420 may extend in the X-axis (positive, negative) direction to form the first moving electrode axes 411A, 411B.
  • the first movable electrode shafts 411A, 411B are connected to the substrate through first elastic elements (eg, first spring structures 412A, 412B).
  • a set of first movable electrodes is formed along the first movable electrode axes 411A and 411B.
  • the set of first movable electrodes includes a plurality of first movable electrodes (eg, first movable electrodes 418A, 418B).
  • the plurality of first movable electrodes are perpendicular to the first movable electrode axes 411A and 411B (ie, the X-axis direction) and are sequentially arranged along the first movable electrode axes 411A and 411B.
  • the distances between the first movable electrodes are the same or different.
  • the plurality of first movable electrodes are connected to the substrate through first elastic elements.
  • the first movable electrodes 418A, 418B are connected to the substrate through the first spring structures 412A, 412B, respectively.
  • a plurality of first stationary electrodes are parallel to the first movable electrodes (eg, first movable electrodes 418A, 418B) and fixedly connected to the substrate.
  • the first movable electrodes (eg, 418A, 418B) and the first fixed electrodes (eg, 419A, 419B) have overlapping areas respectively.
  • the mass element 420 may extend in the Y-axis direction, forming the second movable electrode axes 411C, 411D.
  • the second movable electrode shafts 411C, 411D are connected to the substrate through second elastic elements (eg, second spring structures 412C, 412D).
  • a group of second movable electrodes is formed along the second movable electrode axes 411C and 411D.
  • the set of second movable electrodes includes a plurality of second movable electrodes (eg, second movable electrodes 418C, 418D).
  • the plurality of second movable electrodes are perpendicular to the second movable electrode axes 411C and 411D (ie, the Y-axis direction) and are sequentially arranged along the second movable electrode axes 411C and 411D.
  • the distances between the second movable electrodes are the same or different.
  • the plurality of second movable electrodes are connected to the substrate through second elastic elements.
  • the second movable electrodes 418C, 418D are connected to the substrate through the second spring structures 412C, 412D, respectively.
  • a plurality of second stationary electrodes are parallel to the second movable electrodes (eg, second movable electrodes 418C, 418D) and fixedly connected to the substrate.
  • the second movable electrodes (eg, 418C, 418D) and the second stationary electrodes (eg, 419C, 419D) respectively have overlapping areas.
  • the first and second movable electrodes (eg, 418A, 418B, 418C, 418D) and the first and second stationary electrodes (eg, 419A, 419B, 419C, 419D) respectively intersect each other to form a comb-tooth capacitor system.
  • Mass element 420 further includes a first stationary moving electrode (eg, 413A, 413B).
  • the first fixed movable electrode is connected to the substrate through the first elastic element (eg, the first spring structures 412A, 412B) or directly.
  • Mass element 420 also includes a plurality of pairs of first stationary electrode shafts (eg, 415A and 417A, 415B and 417B) connected to the substrate.
  • Each of the first stationary electrode shafts respectively connects the corresponding first stationary stationary electrodes (eg, 414A, 416A, 414B, 416B) to the substrate.
  • the first stationary electrode shafts 415A, 417A, 415B, 417B connect the first stationary stationary electrodes 414A, 416A, 414B, 416B to the substrate, respectively.
  • a first movable electrode, a first movable electrode shaft and a first fixed movable electrode are sandwiched between a pair of first stationary electrode shafts.
  • the first movable electrode 418A, the first movable electrode shaft 411A, and the first stationary movable electrode 413A are sandwiched between a pair of first stationary electrode shafts 415A and 417A.
  • a pair of first fixed electrode axes of the sensing area, the first fixed fixed electrode and the first fixed movable electrode form a triangular area.
  • the first stationary electrode axes 415A and 417A, the first stationary stationary electrodes 414A, 416A and the first stationary movable electrode 413A form a triangular region.
  • mass element 420 further includes a second stationary moving electrode (eg, 413C, 413D).
  • the second fixed movable electrode is connected to the substrate through the second elastic element (eg, the second spring structures 412C, 412D) or directly.
  • Mass element 420 also includes a plurality of pairs of second stationary electrode shafts (eg, 415C and 417C, 415D and 417D) connected to the substrate.
  • Each of the first stationary electrode shafts respectively connects the corresponding second stationary stationary electrodes (eg, 414C, 416C, 414D, 416D) to the substrate.
  • the second stationary electrode shafts 415C, 417C, 415D, 417D connect the first stationary stationary electrodes 414C, 416C, 414D, 416D to the substrate, respectively.
  • a second movable electrode, a second movable electrode shaft, and a second fixed movable electrode are sandwiched between a pair of second stationary electrode shafts.
  • the second movable electrode 418C, the second movable electrode shaft 411C, and the second stationary movable electrode 413C are sandwiched between a pair of second stationary electrode shafts 415C and 417C.
  • a pair of second stationary electrode shafts in the sensing area, the second stationary stationary electrode and the second stationary moving electrode form a triangular area.
  • the second stationary electrode axes 415C and 417C form a triangular region with the second stationary stationary electrodes 414A, 416A and the first stationary movable electrode 413A.
  • the sensing area of the sensing element 400 is divided into four areas 410A, 410B, 410C, and 410D.
  • the first/second stationary electrode axes of adjacent sensing regions are arranged in parallel.
  • the first fixed electrode shafts 415A, 417A, 415B, and 417B are respectively arranged in parallel with the second fixed electrode shafts 417C, 415D, 417D, and 415C, and have a certain distance.
  • the heights of the plurality of first/second movable electrodes in the third direction are different from the heights of the plurality of first/second stationary electrodes.
  • the first movable electrodes 418A and 418B have a first movable electrode top surface 4181A and a first movable electrode bottom surface 4182A parallel to the upper surface 421 of the mass element 420
  • the corresponding first fixed electrodes 419A and 419B have a first movable electrode top surface 4181A parallel to the upper surface 421 of the mass element 420 .
  • the top surface of the first fixed electrode and the bottom surface of the first fixed electrode of the surface 421 (not shown in the figure).
  • the heights of the first movable electrodes 418A and 418B are smaller than the heights of the first fixed electrodes 419A and 419B. If the bottom surface of the first movable electrode and the bottom surface of the first stationary electrode are on the same plane, the first movable electrodes 418A, 418B and the first stationary electrodes 419A, 419B have a height difference H2, as shown in FIG. 4B , the bottom surface of the first movable electrode and the The bottom surfaces of the fixed electrodes are on the same plane, and the height difference between the top surface 4181A of the first movable electrode 418A and the top surface 4191A of the first fixed electrode 419A is H2.
  • the second movable electrodes 418C and 418D have a second movable electrode top surface 4181C and a second movable electrode bottom surface 4182C parallel to the upper surface 421 of the mass element 420 .
  • the heights of the second movable electrodes 418C and 418D are larger than the heights of the second stationary electrodes 419C and 419D. If the bottom surface of the second movable electrode and the bottom surface of the second stationary electrode are on the same plane, the second movable electrodes 418C, 418D and the second stationary electrodes 419C, 419D have a height difference H1, as shown in FIG.
  • the bottom surface of the second movable electrode and The bottom surface of the second fixed electrode is on the same plane, and the height difference between the top surface 4181C of the second movable electrode 418C and the top surface 4191C of the second fixed electrode 419C is H1.
  • the top surface of the first fixed electrode and the top surface of the second movable electrode have the same level, as shown in FIG. 4B .
  • the top surface of the first fixed electrode 419A of the sensing area 410A and the top surface of the second movable electrode 4181D of the sensing area 410D have the same level, so that the surface of the entire sensing element 420 is more flat.
  • the plurality of first moving electrodes and the corresponding first fixed electrodes form a plurality of first and third direction detection capacitors, which are used to determine the magnitude of acceleration in the first and third directions.
  • the plurality of second moving electrodes and the corresponding second stationary electrodes form a plurality of second and third direction detection capacitors, which are used to determine the magnitude of acceleration in the second and third directions.
  • the sensing area 410A When the mass element 420 moves in the positive direction of the X-axis, the sensing area 410A The distance between the first movable electrode and the first fixed electrode becomes smaller, and the capacitance becomes larger, while the distance between the first movable electrode and the first stationary electrode in the sensing area 410B becomes larger, and the capacitance becomes smaller, thereby generating a A differential capacitance output signal proportional to the magnitude of the acceleration is used to detect the acceleration in the first direction. When there is an external acceleration in the second direction, the distances between the plurality of second movable electrodes and the corresponding second fixed electrodes change.
  • the sensing area 410C When the mass element 420 moves in the positive direction of the Y axis, the sensing area 410C The distance between the second movable electrode and the second fixed electrode becomes smaller, and the capacitance becomes larger, while the distance between the second movable electrode and the second stationary electrode of the sensing area 410D becomes larger, and the capacitance becomes smaller, resulting in a A differential capacitance output signal proportional to the magnitude of the acceleration is used to detect the acceleration in the second direction.
  • the facing area between the plurality of first or second movable electrodes and the corresponding first or second stationary electrodes changes, for example, when the mass element 420 moves along Z
  • the facing area between the first movable electrode and the first fixed electrode of the sensing regions 410A and 410B remains unchanged, and the capacitance does not change, while the second movable electrode and the first fixed electrode of the sensing regions 410C and 410D remain unchanged.
  • the facing area between the two fixed electrodes becomes smaller, and the capacitance becomes smaller, so as to detect the acceleration in the third direction.
  • the sensing element 400 is accommodated in the cavity formed by the housing 110 to form an acceleration sensor to detect acceleration in three dimensions, and meanwhile, the structure is simple and reliable, and the overall size is small.
  • a sensing device By coupling at least one resonant system to the acceleration sensor (eg, between housing 110 and sensing element 400 ), a sensing device (eg, sensing device 200 or 250 ) may be constructed.
  • the at least one resonance system may include the first resonance system 210 shown in Figures 2A and 2B or the second resonance system 260 shown in Figures 2C and 2D.
  • the first resonant system 210 and the second resonant system 260 may comprise liquid.
  • the first resonance system 210 may be a liquid having a specific density and viscosity.
  • the liquid may be silicone oil with a density of 0.94kg/m 3 , and its kinematic viscosity may be 0.5cst, 1cst, 5cst, 10cst, 100cst, 200cst, 1000cst, and the like.
  • the liquid can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • the second resonance system 210 may be a liquid containing air bubbles, for example, silicone oil containing air bubbles, wherein the proportion of air bubbles to the volume of the cavity may be any value between 5% and 95%.
  • the number of bubbles can be 1, 2, 3, 4 or more.
  • the liquid can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system, and the bubble can be equivalent to a spring (Km3) and damping (Rm3) system.
  • the sensing element 400 By partially filling the cavity of the accelerometer with the liquid, partially filling with air bubbles (eg, air bubbles that are not expelled from the cavity when the liquid is filled, air bubbles formed by air pockets, and/or by air bubbles on the sensing element 400 )
  • air bubbles eg, air bubbles that are not expelled from the cavity when the liquid is filled, air bubbles formed by air pockets, and/or by air bubbles on the sensing element 400
  • the air bubbles formed by coating the hydrophobic coating the sensing element 400 is at least partially immersed in the liquid, thereby realizing the coupling of the second resonant system 260 with the sensing element 400 .
  • the first resonant system 210 and the second resonant system 260 may comprise elastic structures.
  • the first resonance system 210 may be an elastic structure with a certain mass (eg, elastic rods, elastic sheets, elastic blocks, elastic nets, etc.), or a light-weight elastic structure (eg, light-weight springs, light-weight elastic rods, etc.) etc.) in combination with mass units.
  • the elastic structure with a certain mass or the combination of the lightweight elastic structure and the mass unit can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • Both ends of the elastic structure are respectively connected to the housing 110 and the sensing element 400 (eg, the upper surface 421 , the lower surface and/or the side surface 423 of the mass element 420 or a plurality of first surfaces extending along the X/Y axis). / the second moving electrode), the coupling between the first resonance system 210 and the sensing element 400 can be realized.
  • the second resonant system 260 may be a combination of lightweight elastic rods and/or springs and a heavier mass elastic rod.
  • the elastic rod with larger mass can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • Lightweight elastic rods and/or springs can be equivalent to a spring (Km3) and damping (Rm3) system.
  • Both ends of the elastic rod and/or spring are fixedly connected to the housing 110 and the sensing element 400 (for example, the upper surface 421 , the lower surface and/or the side surface 423 of the mass element 420 or its extension along the X/Y axis).
  • the second resonance system 260 can be coupled with the sensing element 400.
  • the frequency response curve of the sensing device including the sensing element 400 in a specific frequency band (eg, low frequency, medium low frequency, medium frequency, medium high frequency, etc. and/or high frequency), the sensitivity will be improved compared to the acceleration sensor that does not include the first resonance system 210 or the second resonance system 260 .
  • the vibration characteristic of the acceleration sensor will be changed compared with that without the first resonant system 210 .
  • the first resonance system 210 or the second resonance system 260 acts on the sensing element 400 , which can affect the mass, stiffness and/or damping of the acceleration sensor, and the effect is equivalent to making the sensing device including the sensing element 400 .
  • the Q value of the first formant is changed (eg, the Q value is reduced) relative to the Q value of the acceleration sensor not connected to the first resonance system 210 or the second resonance system 260 .
  • the existence of the first resonance system 210 or the second resonance system 260 will inhibit the resonance peak corresponding to the acceleration sensor in the sensing device, so that the Q value at the resonance peak in the frequency response curve is relatively relatively Low, the frequency response curve is flatter in the desired frequency band (eg, mid-low frequency, mid frequency, etc.).
  • the first resonance system 210 or the second resonance system 260 can reduce the external impact on the sensing element 400 to protect the sensing element 400 .
  • the first resonance system 210 or the second resonance system 260 can improve the shock resistance reliability of the sensing device including the sensing element 400 .
  • part of the impact energy can be absorbed and consumed, so that the impact load on the sensing element 400 is greatly reduced, so the sensing element 400 can be protected and its work can be prolonged. life.
  • the sensing element 400 is often deformed due to the presence of stress during the processing.
  • the gravity, surface tension, viscous force, etc. of the liquid can be used to correct the deformation of the device, so that the deformation of the sensing device is smaller, the output is more stable, and the design effect is closer.
  • the parameters of the acceleration sensor eg, the internal structure, size, stiffness of the housing 110 and/or the mass, size, stiffness of the sensing element 400
  • Substance/structure parameters such as the size, mass, stiffness, elasticity of the elastic rod, the type, density, viscosity, volume of the liquid, whether to fill bubbles and the proportion, size, location, number of bubbles, etc.
  • the relevant parameters of the frequency response curve for example, the relationship between the first resonant frequency and the at least one second resonant frequency, its corresponding peak height, Q value, the first resonant frequency and the second resonant frequency The difference, ratio, peak-to-valley ratio to the peak value of the highest peak, etc.), so as to achieve, for example, adjust the Q value of the sensing device, improve the sensitivity and reliability of the sensing device, or make the output gain of the sensing device in the required range.
  • the trough between the first resonant frequency and the at least one second resonant frequency is the peak of the higher peak of the resonant peaks corresponding to the first resonant frequency and the at least one second resonant frequency
  • the sensitivity difference is within a certain range (eg, 10dBV, 20dBV, 30dBV, etc.), and the ratio of the sensitivity difference to the peak value of the higher peak does not exceed a certain threshold (eg, 0.05, 0.1, 0.2, etc.).
  • the frequency difference between the first resonant frequency and the at least one second resonant frequency is within a certain range (eg, 20-3000Hz, 20-2000Hz, 50-2000Hz, 50-1500Hz, 80-1500Hz, 100-1500Hz etc.) and/or the ratio of the difference to the first resonance frequency or the second resonance frequency is within a certain range (for example, 0.02-0.7, 0.15-0.6), which can make the frequency response curve between the corresponding resonance peaks relatively flat.
  • the sensitivity improvement within the second resonance frequency of the sensing device including the sensing element 400 is relatively high and stable.
  • the increase of the sensitivity can be 10dBV-60dBV, 20dBV-50dBV, 30dBV-40dBV and so on.
  • the at least one resonant system may be a liquid containing bubbles.
  • the proportion of the air bubbles to the volume of the cavity can be any value such as 5%, 10%, 20%, 30%, 50%, 70%, 95%, etc.
  • the bubbles can be small bubbles (eg, 2%-10% of the cavity volume), medium and small bubbles (eg, 10%-20% of the cavity volume), medium-sized bubbles (eg, bubbles that account for 20%-50% of the cavity volume), large bubbles (eg, bubbles that account for 50%-90% of the cavity volume), and the like.
  • the number of bubbles can be 1, 2, 3, 4 or more.
  • the bubbles may be located at various locations within the cavity (eg, inside the sensing element 400).
  • the bubble is located between the first movable electrode and the corresponding first stationary electrode (eg, 418A and 419A or 418B and 419B) or between the second movable electrode and the corresponding second stationary electrode (eg, 418C and 418C and 419B). 419C or 418D and 419D).
  • the bubbles are attached to the mass element 420 (eg, the upper surface, the lower surface and/or the side surface) or the first/second movable electrode provided on the mass element 420 (eg, the first movable electrode 418A) on the upper surface, the lower surface or the side opposite to the first fixed electrode 419A).
  • the bubbles are attached to at least one stationary electrode (eg, the upper surface, the lower surface of the first stationary electrode 419A, or the side opposite to the first movable electrode 418A).
  • the frequency response curves of the sensing device including the sensing element 400 are different (eg, the magnitude of the at least one second resonant frequency and the corresponding different peak sensitivity).
  • the sensor can be improved to a certain extent in the frequency band before low frequency or low frequency or high frequency (for example, in the frequency band less than 7000Hz, 5000Hz, 3000Hz, 1000Hz, 500Hz, 100Hz, 50Hz).
  • Device sensitivity eg, 10-60dBV, 10-40dBV, 15-40dBV, etc.
  • the size of the lift is also related to the size and/or location of the bubbles.
  • the sensitivity of the sensing device increases with the volume of the bubble. of increase.
  • the sensing device containing small and medium air bubbles has a higher frequency than the sensing device containing small air bubbles in low frequency or low frequency or high frequency frequency bands (eg, frequency bands less than 7000Hz, 5000Hz, 3000Hz, 1000Hz, 500Hz, 100Hz, 50Hz).
  • the sensitivity increase is about 5-30dBV.
  • the sensing device with medium-sized bubbles has higher sensitivity in the frequency band before low frequency or medium low frequency or high frequency (for example, in the frequency band less than 7000Hz, 5000Hz, 3000Hz, 1000Hz, 500Hz, 100Hz, 50Hz). About 5-30dBV.
  • 5A-5D are schematic diagrams of exemplary structures of a sensing element 500 provided according to some embodiments of the present application.
  • the sensing element 500 includes a substrate 514, a mass element 501 disposed above the substrate 514, and one or more detection capacitors for determining the magnitude of the external acceleration.
  • the substrate 514 may be the same as or similar to the substrate in FIGS. 4A and 4B and will not be repeated here.
  • the substrate 514 is provided with support members (e.g., support rods, support springs, support brackets, etc., also referred to as first support members).
  • the support members are used to support the mass element 501 above the substrate 514 .
  • the support member may be the anchor portion 502 .
  • Anchors 502 may support mass element 501 above substrate 514 .
  • the mass element 501 may be connected to the support member by elastic connecting units (eg, elastic beams, springs, etc.).
  • the elastic connection unit extends along the first direction.
  • the centerline (in the first direction) of the elastic connecting unit coincides with the centerline of the mass element 501 in the first direction.
  • the masses of the parts of the mass element 501 located on both sides of the elastic connecting unit are not equal.
  • the elastic connecting unit may be an elastic torsion beam 503 .
  • the mass element 501 is connected to the side wall of the anchoring portion 502 through elastic torsion beams 503 symmetrically arranged on both sides thereof, that is, two elastic torsion beams 503 are symmetrically distributed on both sides of the anchoring portion 502 .
  • the anchor portion 502 may be located at the center (eg, structure center) position of the mass element 501 .
  • the center line of the elastic torsion beam 503 in the length direction may coincide with the center line of the mass element 501 .
  • the first direction (X-axis direction) is set to be the direction in which the elastic torsion beam 503 shown in FIG. 5A extends
  • the second direction (Y-axis direction) is set to be perpendicular to the first direction
  • the third direction (Z-axis direction) is the length direction of the anchor portion 502 (perpendicular to the X-Y plane).
  • the mass distribution of the mass element 501 is uneven.
  • the masses of the mass element 501 located on both sides of the elastic torsion beam 503 are not equal, that is, the masses of the mass element 501 located on both sides of the elastic torsion beam 503 in the Y-axis direction not equal.
  • the mass of the upper half and the lower half of the mass element 501 are not equal.
  • one side of the mass element 501 is provided with a weight reduction hole 506 .
  • the mass element 501 may be provided with a plurality of weight relief holes 506 .
  • the plurality of weight-reducing holes are distributed in a matrix.
  • the weight-reducing hole 506 may be a through hole, which may be formed by an etching method during fabrication.
  • the weight-reducing hole 506 can also be a blind hole, which can be etched by setting a mask.
  • the mass on both sides of the mass element 501 may be unequal by adding a counterweight.
  • the anchor portion 502 is located at the structural center of the mass element 501, and the center line of the elastic torsion beam 503 in the longitudinal direction coincides with the center line of the mass element 501, and the masses on both sides of the mass element 501 are not equal, at this time the mass element The moments on both sides of the 501 are unbalanced.
  • the mass element 501 can use the anchor portion 502 as a fulcrum to generate a seesaw-like motion.
  • the anchor portion 502 When there is an external acceleration input in the first direction (X-axis direction), since the anchor portion 502 is located at the structural center of the mass element 501, the center line of the elastic torsion beam 503 in the longitudinal direction coincides with the center line of the X-axis direction of the mass element 501 , and the masses of the mass element 501 on both sides of the center line of the X-axis are not equal, and the mass element 501 can rotate with the anchoring portion 502 as a fulcrum.
  • the mass element 501 can move in translation in the Y-axis direction.
  • sensing element 500 may include at least one detection capacitance.
  • the sensing element 500 may include at least one movable electrode and at least one corresponding fixed electrode, so as to form a detection capacitance in the direction, so as to determine the magnitude of the acceleration in this direction.
  • the sensing element 500 may include at least two first-direction fixed electrodes, at least two second-direction fixed electrodes, and at least two third-direction fixed electrodes disposed on the substrate.
  • the at least two fixed electrodes in the first direction extend along the second direction, and are distributed on both sides of the centerline of the mass element 501 along the second direction corresponding to the position of the substrate, and are axially symmetrical or opposite to the centerline of the second direction. It is symmetrical to the center of the anchor portion 502 .
  • the at least two fixed electrodes in the second direction may extend along the first direction, which may be located on the midline of the mass element 501 along the second direction, and are symmetrical with respect to the anchoring portion 502 .
  • the third directional electrodes may be disposed on both sides of the elastic torsion beam 503 .
  • the mass element 501 is provided with first-direction moving electrodes and second-direction moving electrodes corresponding to the at least two first-direction fixed electrodes, at least two second-direction fixed electrodes, and at least two third-direction fixed electrodes, respectively.
  • the electrode and the third-direction moving electrode respectively form a first-direction detection capacitor, a second-direction detection capacitor, and a third-direction detection capacitor.
  • each first-direction stationary electrode includes two first-direction stationary electrode units arranged in parallel.
  • the first direction moving electrode corresponding to the first direction fixed electrode includes two first direction moving electrode units.
  • the two first-direction moving electrode units and the two first fixed-electrode units form a first-direction differential capacitance structure.
  • Each second-direction stationary electrode includes two second-direction stationary electrode units arranged in parallel.
  • the second direction movable electrode corresponding to the second direction fixed electrode includes two second direction movable electrode units.
  • the two second-direction moving electrode units and the two second-direction fixed electrode units constitute a second-direction differential capacitance structure.
  • each first-direction stationary electrode includes two first-direction stationary electrode units arranged in parallel.
  • the first direction moving electrode corresponding to the first direction fixed electrode includes two first direction moving electrode units.
  • the two first-direction moving electrode units and the two first fixed-electrode units form a first-direction differential capacitance structure.
  • Each second-direction stationary electrode includes two second-direction stationary electrode units arranged in parallel.
  • the second direction movable electrode corresponding to the second direction fixed electrode includes two second direction movable electrode units.
  • the two second-direction moving electrode units and the two second-direction fixed electrode units constitute a second-direction differential capacitance structure.
  • the first direction fixed electrode unit on one side of at least one first direction fixed electrode of the at least two first direction fixed electrodes is electrically connected to the at least one first direction fixed electrode with respect to the quality element along the second direction.
  • the substrate 514 is provided with third directional electrodes 513 and 512 distributed on both sides of the elastic torsion beam 503 .
  • the mass element 501 is provided with third directional moving electrodes 504 and 505 .
  • the third direction moving electrodes 504 and 505 and the third direction fixed electrodes 513 and 512 respectively form different third direction detection capacitances.
  • the third directional electrodes 513 and 512 may be capacitor plate structures well known to those skilled in the art, which may be fixed on the substrate 514 .
  • the third directional moving electrodes 504 and 505 can also be capacitor plate structures well known to those skilled in the art.
  • the third directional moving electrodes 504 and 505 are part of the mass element 501 .
  • the third directional moving electrodes 504 and 505 are the side walls on opposite sides of the mass element 501 .
  • the third direction fixed electrodes 513 and 512 are respectively the lower electrodes of the third direction detection capacitor, and the third direction moving electrodes 504 and 505 are located on the lower end surface of the edge position of the mass element 501 as the third direction The upper electrode of the detection capacitor.
  • the third-direction fixed electrodes 513 and 512 are symmetrical with respect to the elastic torsion beam 503 in the Y-axis direction, so that the two third-direction detection capacitors form a differential capacitance structure.
  • the capacitance of the third direction detection capacitance formed by the third direction moving electrode 504 and the third direction fixed electrode 513 becomes larger, and the capacitance of the third direction detection capacitance formed by the third direction moving electrode 505 and the third direction fixed electrode 512 is increased.
  • the capacitance becomes smaller, so the two third-direction detection capacitances form a third-direction differential capacitance structure.
  • the third-directional moving electrode 504 on the side with the weight-reducing hole 506 is aligned with the third-directional moving electrode 504 .
  • the distance between the electrodes 513 becomes larger, so that the distance between the third directional moving electrode 505 on the heavier side and the third directional directional electrode 512 becomes smaller, so that the third directional movable electrode 504 and the third directional directional electrode 512 become smaller.
  • the capacitance of the third direction detection capacitor formed by 513 becomes smaller, and the capacitance of the third direction detection capacitor formed by the third direction moving electrode 505 and the third direction fixed electrode 512 becomes larger, so the two third direction detection capacitors constitute the third direction.
  • Differential capacitor structure
  • the weight-reducing hole 506 is arranged on the mass element 501 at the position of the third directional moving electrode 504 , so that the quality difference on both sides of the mass element 501 is relatively small. Therefore, the deflection amplitude of the mass element 501 is increased, thereby improving the sensitivity of the third-direction detection capacitance. Since the weight-reducing hole 506 is disposed at the position of the third-direction moving electrode 504 , the facing area between the third-direction moving electrode 504 and the third-direction fixed electrode 513 is reduced.
  • a process hole corresponding to the weight-reducing hole 506 on the third-direction moving electrode 504 can be set on the third-direction fixed electrode 512, so that the third-direction moving electrode 504 and The facing area of the third-direction fixed electrode 513 is the same as the facing area of the third-direction movable electrode 505 and the third-direction fixed electrode 512 , which ensures the consistency of the above-mentioned two third-direction detection capacitances.
  • second-direction fixed electrodes 508 and 507 are respectively provided on the substrate 514 .
  • the second-direction fixed electrodes 508 and 507 are located on the midline of the Y-axis of the mass element 501, and are symmetrically distributed on both sides of the anchor portion 502; correspondingly, the mass element 501 is provided with two second-direction movable electrodes .
  • the two second-direction moving electrodes and the second-direction fixed electrodes 508 and 507 constitute two second-direction detection capacitors.
  • the second-direction fixed electrodes 508 and 507 can use a capacitor plate mechanism well-known to those skilled in the art, which is fixed on the substrate 514; the above-mentioned two second-direction movable electrodes can also use capacitor electrodes well-known to those skilled in the art board mechanism.
  • the two second-direction moving electrodes may be part of the mass element 501 , for example, the two second-direction moving electrodes may be sidewalls of the mass element 501 .
  • corresponding positions on the mass element 501 are provided with a plurality of hollow matching holes 511 , and the second direction fixed electrodes 508 and 507 extend into the matching holes 511 .
  • the sidewall of the matching hole 511 can be used as a moving electrode, and form two second-direction detection capacitors with the second-direction fixed electrodes 508 and 507 respectively, thereby improving the temperature characteristics of the chip and the ability to resist external interference.
  • the second direction fixed electrodes 508 and 507 extend along the first direction (ie, the X-axis direction), and are parallel to the elastic torsion beam 503 .
  • the mass element 501 is translated in the Y-axis direction, so that the second direction fixed electrode 508 and the corresponding first.
  • the distance between the two-direction moving electrodes increases or decreases, while the distance between the second-direction fixed electrodes 507 and the corresponding second-direction moving electrodes decreases or increases, so that the two second-direction detection capacitors form the first Two-way differential capacitor structure.
  • the mass element 501 rotates clockwise or counterclockwise with the anchor portion 502 as the fulcrum, thereby making the second
  • the distance between the direction fixed electrode 508 and the corresponding second direction moving electrode and the distance between the second direction fixed electrode 507 and the corresponding second direction moving electrode increase or decrease at the same time, and the amount of change is the same.
  • the differential capacitance structure can differentiate the changed signal.
  • the second-direction differential capacitance structure composed of two second-direction detection capacitors will not output the changed capacitance signal, so as to prevent the second-direction detection capacitor from outputting the first-direction signal. acceleration signal.
  • the second-direction stationary electrode 508 includes second stationary electrode units 508a and 508b arranged in parallel.
  • the second fixed electrode units 508 a and 508 b are fixed on the substrate 514 and extend into the fitting holes 511 formed on the mass element 501 .
  • the two opposite side walls of the matching hole 511 serve as the moving electrode units of the second direction moving electrode, and form a pair of differential capacitance structures with the second fixed electrode units 508a and 508b, further improving the detection accuracy of the Y-axis acceleration signal.
  • the second-direction stationary electrode 507 includes second stationary electrode units 507a and 507b arranged in parallel.
  • the second fixed electrode units 507 a and 507 b are fixed on the substrate 514 and extend into the fitting holes 511 formed on the mass element 501 .
  • the two opposite side walls of the matching hole 511 serve as the moving electrode unit of the second direction moving electrode, and form a pair of differential capacitance structures with the second fixed electrode units 507a and 507b, further improving the detection accuracy of the Y-axis acceleration signal.
  • the substrate 514 is also provided with first direction fixed electrodes 509 and 510 .
  • the mass element 501 is provided with two first directional moving electrodes.
  • the two first-direction moving electrodes and the first-direction fixed electrodes 509 and 510 constitute two first-direction detection capacitors.
  • the first direction fixed electrodes 509 and 510 can be capacitor plate structures well known to those skilled in the art, which can be fixed on the substrate 514 through anchor points.
  • the first-direction fixed electrode 509 and the corresponding first-direction moving electrode can form a side-capacitive first-direction detection capacitor, and the first-direction fixed electrode 510 and the corresponding first-direction moving electrode can also form a side-capacitive first-direction detection capacitor.
  • Capacitance is detected in one direction.
  • the above-mentioned two first direction detection capacitors may also be upper and lower plate-type capacitor structures.
  • the two first directional moving electrodes may be the side walls of the mass element 501 .
  • Corresponding positions on the mass element 501 are provided with hollow matching holes 511 .
  • the first direction fixed electrodes 509 and 510 are fixed on the substrate 514 and extend into the corresponding matching holes 511 .
  • the hole wall of the mating hole 511 can be used as the first direction moving electrode, and the first direction fixed electrodes 509 and 510 form two first direction detection capacitors, thereby improving the temperature characteristics of the chip and the ability to resist external interference.
  • the first direction fixed electrodes 509 and 510 may extend along the Y-axis direction, that is, the length direction of the first direction fixed electrodes 509 and 510 is located in the Y-axis direction.
  • the mass element 501 When there is an external acceleration input in the second direction (ie, the Y-axis direction), the mass element 501 translates in the Y-axis direction, and the distance and relative area between the fixed electrode 509 in the first direction and the corresponding moving electrode in the first direction do not occur.
  • the distance and relative area between the fixed electrode 510 in the first direction and the corresponding moving electrode in the first direction will not change, that is, the two first direction detection capacitors will not output capacitance change signals to prevent the first direction
  • the detection capacitor outputs the Y-axis acceleration signal.
  • the first-direction fixed electrodes 509 and 510 are axisymmetric with respect to the centerline of the mass element 501 in the Y-axis direction or center-symmetric with respect to the anchor portion 502 .
  • the mass element 501 rotates clockwise or counterclockwise with the anchoring portion 502 as the fulcrum, so that the fixed electrode 509 in the first direction and the corresponding moving electrode in the first direction are connected to each other.
  • the distance between the first-direction fixed electrodes 510 and the corresponding first-direction moving electrodes decreases or increases, so that the two first-direction detection capacitors can jointly form the difference in the first-direction Capacitive structure.
  • the first direction fixed electrodes 509 and 510 cannot be arranged on the center line of the mass element 501 in the X-axis direction. Because when the two first-direction fixed electrodes 509 and 510 are located on the center line of the X-axis direction of the mass element 501, the two first-direction detection capacitances formed correspondingly increase or decrease at the same time, and the two cannot form an output capable of outputting the X-axis. Differential capacitive structure for directional acceleration change signals.
  • the first-direction stationary electrode 509 includes first stationary electrode units 509 a and 509 b arranged in parallel.
  • the first fixed electrode units 509 a and 509 b are fixed on the substrate and extend into the fitting holes 511 formed on the mass element 501 .
  • the opposite side walls of the matching hole 511 serve as the moving electrode units of the moving electrode in the first direction, and form a pair of differential capacitance structures with the first fixed electrode units 509a and 509b, which further improves the detection accuracy of the X-axis acceleration signal.
  • the first direction fixed electrode 510 includes first fixed electrode units 510a and 510b arranged in parallel.
  • the first fixed electrode units 510 a and 510 b are fixed on the substrate 514 and extend into another fitting hole 511 formed on the mass element 501 .
  • the opposite side walls of the matching hole 511 serve as the moving electrode unit of the moving electrode in the first direction, and form a pair of differential capacitance structures with the first fixed electrode units 510a and 510b, which further improves the detection accuracy of the X-axis acceleration signal.
  • the first direction fixed electrodes 509 and 510 may extend along the X-axis direction.
  • the first direction fixed electrodes 509 and 510 can be symmetrically distributed on both sides of the Y-axis centerline of the mass element 501, or distributed on both sides of the Y-axis centerline of the mass element 501 and symmetrical relative to the anchor portion 502.
  • the mass element 501 rotates clockwise or counterclockwise with the anchor portion 502 as a fulcrum, the capacitance changes of the two first-direction detection capacitances are completely opposite, which together constitute a first-direction differential capacitance structure.
  • the fixed electrodes 509 and 510 in the first direction are located on the center line of the X-axis of the mass unit 501, and are symmetrical with respect to the center of the anchor portion 502, so that when subjected to acceleration in the X-axis direction, the two first-direction detection capacitances The capacitance changes by the same amount.
  • the first direction fixed electrode 509 can adopt the structure of the above-mentioned first fixed electrode units 509a and 509b
  • the first direction fixed electrode 510 can also adopt the above-mentioned structure of the first fixed electrode units 510a and 510b.
  • the first fixed electrode unit 509a or 509b on one side of the first direction fixed electrode 509 is connected with the first fixed electrode unit 510a or 510b on the opposite side of the first direction fixed electrode 510 .
  • the first fixed electrode units 509a, 509b extend along the X-axis direction, wherein the first fixed electrode unit 509a is located on the lower side, and the first fixed electrode unit 509b is located on the upper side; the first fixed electrode units 510a, 510b extends along the X-axis direction, wherein the first fixed electrode unit 510a is located on the lower side, and the first fixed electrode unit 510b is located on the upper side.
  • first fixed electrode unit 509b and the first fixed electrode unit 510a it is necessary to connect the first fixed electrode unit 509b and the first fixed electrode unit 510a together, and connect the first fixed electrode unit 509a and the first fixed electrode unit 510b together, so that the first fixed electrode unit 509b and the The moving electrode unit corresponding to the first fixed electrode unit 509b, the first fixed electrode unit 510a, and the moving electrode unit corresponding to the first fixed electrode unit 510a together form a first directional differential capacitance structure.
  • the moving electrode unit corresponding to the first fixed electrode unit 509a, the first fixed electrode unit 510b, and the moving electrode unit corresponding to the first fixed electrode unit 510b together form another first-direction differential capacitance structure.
  • the mass element 501 When there is an external acceleration input in the second direction (ie, the Y-axis direction), the mass element 501 is translated in the Y-axis direction, and the first fixed electrode unit 509b and the moving electrode unit corresponding to the first fixed electrode unit 509b The distance between them increases or decreases, the distance between the first fixed electrode unit 510a and the moving electrode unit corresponding to the first fixed electrode unit 510a increases or decreases, and the amount of change is the same. At this time, the changed capacitance signal is differentiated.
  • the first fixed electrode unit 509a, the moving electrode unit corresponding to the first fixed electrode unit 509a, the first fixed electrode unit 510b, and the moving electrode unit corresponding to the first fixed electrode unit 510b jointly form a differential
  • the capacitor can also differentiate the capacitance signal that changes at this time, so as to prevent the first direction detection capacitor from outputting the Y-axis acceleration signal.
  • the sensing element 500 integrates three-dimensional acceleration detection structures on a single structure, the center of the structure is the anchor point of the movable mass element 501, and the mass element 501 is connected to the anchor point through an elastic torsion beam 503, so that the mass element 501 is connected to the anchor point.
  • displacement occurs in various dimensions, so as to realize the detection of acceleration signals in various directions.
  • the mass element 501 When there is acceleration input in the first direction, the mass element 501 will rotate around the anchor point to realize the detection of acceleration in the X-axis direction; when there is acceleration input in the second direction, the mass element 501 will move in translation in the Y-axis direction to realize the Y-axis direction.
  • a sensing device By coupling at least one resonant system to the acceleration sensor (eg, between housing 110 and sensing element 500 ), a sensing device (eg, sensing device 200 or 250 ) may be constructed.
  • the at least one resonance system may include the first resonance system 210 shown in Figures 2A and 2B or the second resonance system 260 shown in Figures 2C and 2D.
  • the first resonant system 210 and the second resonant system 260 may comprise liquid.
  • the first resonance system 210 may be a liquid having a specific density and viscosity.
  • the liquid may be silicone oil with a density of 0.94kg/m 3 , and its kinematic viscosity may be 0.5cst, 1cst, 5cst, 10cst, 100cst, 200cst, 1000cst, and the like.
  • the liquid can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • the second resonance system 210 may be a liquid containing air bubbles, for example, silicone oil containing air bubbles, wherein the proportion of air bubbles to the volume of the cavity may be any value between 5% and 95%.
  • the number of bubbles can be 1, 2, 3, 4 or more.
  • the liquid can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system, and the bubble can be equivalent to a spring (Km3) and damping (Rm3) system.
  • the sensing element 500 By partially filling the cavity of the accelerometer with the liquid, partially filling with air bubbles (eg, air bubbles that are not expelled from the cavity when the liquid is filled, air bubbles formed by air pockets, and/or by air bubbles on the sensing element 500 ) coating of the hydrophobic coating), the sensing element 500 is at least partially immersed in the liquid, thereby realizing the coupling of the second resonant system 260 with the sensing element 500 .
  • air bubbles eg, air bubbles that are not expelled from the cavity when the liquid is filled, air bubbles formed by air pockets, and/or by air bubbles on the sensing element 500
  • the first resonant system 210 and the second resonant system 260 may comprise elastic structures.
  • the first resonance system 210 may be an elastic structure with a certain mass (eg, elastic rods, elastic sheets, elastic blocks, elastic nets, etc.), or a light-weight elastic structure (eg, light-weight springs, light-weight elastic rods, etc.) etc.) in combination with mass units.
  • the elastic structure with a certain mass or the combination of the lightweight elastic structure and the mass unit can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • the second resonant system 260 may be a combination of lightweight elastic rods and/or springs and a heavier mass elastic rod.
  • the elastic rod with larger mass can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • Lightweight elastic rods and/or springs can be equivalent to a spring (Km3) and damping (Rm3) system.
  • Both ends of the elastic rod and/or spring are respectively fixedly connected between the housing 110 and the sensing element 500 (for example, one or more positions on the mass element 501 ), so that the second resonance system 260 can be connected to the sensing element 500 .
  • Element 500 is coupled.
  • the frequency response curve of the sensing device including the sensing element 500 is in a specific frequency band (eg, low frequency, medium low frequency, medium frequency, medium high frequency). and/or high frequency), the sensitivity will be improved compared to the acceleration sensor that does not include the first resonance system 210 or the second resonance system 260 .
  • the vibration characteristic of the acceleration sensor will be changed compared with that without the first resonant system 210 .
  • the first resonance system 210 or the second resonance system 260 acts on the sensing element 500 and can affect the mass, stiffness and/or damping of the acceleration sensor, and the effect is equivalent to making the sensing device containing the sensing element 500
  • the Q value of the first formant is changed (eg, the Q value is reduced) relative to the Q value of the acceleration sensor not connected to the first resonance system 210 or the second resonance system 260 .
  • the existence of the first resonance system 210 or the second resonance system 260 will inhibit the resonance peak corresponding to the acceleration sensor in the sensing device, so that the Q value at the resonance peak in the frequency response curve is relatively relatively Low, the frequency response curve is flatter in the desired frequency band (eg, mid-low frequency, mid frequency, etc.).
  • the first resonance system 210 or the second resonance system 260 can reduce the external impact on the sensing element 500 to protect the sensing element 500 .
  • the first resonance system 210 or the second resonance system 260 can improve the shock resistance reliability of the sensing device including the sensing element 500 .
  • part of the impact energy can be absorbed and consumed, so that the impact load on the sensing element 500 is greatly reduced, so the sensing element 500 can be protected and its operation can be prolonged. life.
  • the sensor element 500 is often deformed due to the presence of stress during the processing.
  • the gravity, surface tension, viscous force, etc. of the liquid can be used to correct the deformation of the device, so that the deformation of the sensing device is smaller, the output is more stable, and the design effect is closer.
  • the parameters of the acceleration sensor eg, the internal structure, size, stiffness of the housing 110 and/or the mass, size, stiffness of the sensing element 500
  • Substance/structure parameters such as the size, mass, stiffness, elasticity of the elastic rod, the type, density, viscosity, volume of the liquid, whether to fill bubbles and the proportion, size, location, number of bubbles, etc.
  • the relevant parameters of the frequency response curve for example, the relationship between the first resonant frequency and the at least one second resonant frequency, its corresponding peak height, Q value, the first resonant frequency and the second resonant frequency The difference, ratio, peak-to-valley ratio to the peak value of the highest peak, etc.), so as to achieve, for example, adjust the Q value of the sensing device, improve the sensitivity and reliability of the sensing device, or make the output gain of the sensing device in the required range.
  • the trough between the first resonant frequency and the at least one second resonant frequency is the peak of the higher peak of the resonant peaks corresponding to the first resonant frequency and the at least one second resonant frequency
  • the sensitivity difference is within a certain range (eg, 10dBV, 20dBV, 30dBV, etc.), and the ratio of the sensitivity difference to the peak value of the higher peak does not exceed a certain threshold (eg, 0.05, 0.1, 0.2, etc.).
  • the frequency difference between the first resonant frequency and the at least one second resonant frequency is within a certain range (eg, 20-3000Hz, 20-2000Hz, 50-2000Hz, 50-1500Hz, 80-1500Hz, 100-1500Hz etc.) and/or the ratio of the difference to the first resonance frequency or the second resonance frequency is within a certain range (for example, 0.02-0.7, 0.15-0.6), which can make the frequency response curve between the corresponding resonance peaks relatively flat.
  • the sensitivity improvement within the second resonance frequency of the sensing device including the sensing element 500 is relatively high and stable.
  • the increase of the sensitivity can be 10dBV-60dBV, 20dBV-50dBV, 30dBV-40dBV and so on.
  • the at least one resonant system may be a liquid containing bubbles.
  • the proportion of the air bubbles to the volume of the cavity can be any value such as 5%, 10%, 20%, 30%, 50%, 70%, 95%, etc.
  • the bubbles can be small bubbles (eg, 2%-10% of the cavity volume), medium and small bubbles (eg, 10%-20% of the cavity volume), medium-sized bubbles (eg, bubbles that account for 20%-50% of the cavity volume), large bubbles (eg, bubbles that account for 50%-90% of the cavity volume), and the like.
  • the number of bubbles can be 1, 2, 3, 4 or more.
  • the bubbles may be located at various locations within the cavity (eg, inside the sensing element 500).
  • the bubbles are located between the moving electrodes in the first direction (eg, on the sidewall of the matching hole 511 on the centerline of the mass element 501 along the second direction) and the corresponding fixed electrodes in the first direction (eg, 509 or 510), the second-direction moving electrodes (for example, located on both sides of the centerline of the mass element 501 along the second direction, and symmetrical about the centerline along the second direction or symmetrical with respect to the center of the anchor portion 502).
  • the air bubbles are attached to the mass element 420 (eg, the upper surface, the lower surface and/or the side) or the first/second/third directional moving electrode (eg, the first/second/third direction moving electrode) provided on the mass element 420
  • the first/second/third directional moving electrode eg, the first/second/third direction moving electrode
  • the third direction on the opposite side of the moving electrode eg, 504 or 505 from the third directional directional electrode (eg, 513 or 512).
  • the bubbles are attached to at least one stationary electrode (eg, a first-direction stationary electrode (eg, 509 or 510 ) on the opposite side of the first-direction moving electrode, and a second-direction stationary electrode (eg, 509 or 510 ) , 507 or 508) on the side opposite to the second direction moving electrode, and on the side opposite the third direction moving electrode (eg, 504 or 505) of the third direction fixed electrode (eg, 513 or 512).
  • a first-direction stationary electrode eg, 509 or 510
  • a second-direction stationary electrode eg, 509 or 510
  • 507 or 508 on the side opposite to the second direction moving electrode
  • the third direction moving electrode eg, 504 or 505
  • the frequency response curves of the sensing device including the sensing element 500 are different (eg, the magnitude of the at least one second resonant frequency and the corresponding different peak sensitivity).
  • the frequency bands before the low frequency or the low frequency or the high frequency can be used. , 1000Hz, 500Hz, 100Hz, 50Hz) to improve the sensitivity of the sensing device to a certain extent (for example, 10-60dBV, 10-40dBV, 15-40dBV, etc.).
  • the size of the lift is also related to the size and/or location of the bubbles.
  • the sensing device containing small and medium air bubbles has a higher frequency than the sensing device containing small air bubbles in low frequency or low frequency or high frequency frequency bands (eg, frequency bands less than 7000Hz, 5000Hz, 3000Hz, 1000Hz, 500Hz, 100Hz, 50Hz). ) The sensitivity increase is about 5-30dBV.
  • the sensing device with medium-sized bubbles has higher sensitivity in the frequency band before low frequency or medium low frequency or high frequency (for example, in the frequency band less than 7000Hz, 5000Hz, 3000Hz, 1000Hz, 500Hz, 100Hz, 50Hz). About 5-30dBV.
  • 6A-6E are schematic diagrams of exemplary structures of sensing elements 600 provided according to some embodiments of the present application.
  • the sensing element 600 may include a substrate 611 and a detection component 620 (eg, a mass element, at least one moving electrode disposed on the mass element, and at least one stationary electrode fixed on the substrate) disposed on the substrate. ).
  • the substrate 611 may be the same as or similar to the substrate in FIGS. 4A-5D , and details are not described herein again.
  • the detection assembly 620 may include a mass element 621 , a support member (eg, a support rod, a support spring, a support bracket, etc., also referred to as a second support member), and a coupling member 623 .
  • the support member is a support rod 622 .
  • the mass element 621 is connected to the substrate 611 through the support rod 622 .
  • the mass element 621 may be circular, polygonal, or the like. In some embodiments, when the mass element 621 is a polygon, the number of sides thereof is greater than or equal to 4, for example, the mass element 621 may be a pentagon, a hexagon, an octagon, or the like.
  • the support rod 622 may be deformed.
  • the support rods 622 may be elongated cylindrical or prismatic shapes. Under the action of external acceleration or external force, the support rod 622 can be elastically deformed.
  • the central position of the mass element 621 is connected to one end of the support rod 622 .
  • the coupling member 623 is connected to the substrate and surrounds the mass element 621 .
  • a gap is provided between the coupling member 623 and the mass element 621 .
  • the widths of the gaps are equal everywhere. In some embodiments, the widths of the gaps may not be equal in at least one direction.
  • the coupling member 623 and the mass element 621 may form at least one detection capacitor.
  • the sensing element 600 is placed on a horizontal plane
  • the support rod 622 is subjected to an external force corresponding to the moving direction, and the support rod 622 is deformed under the action of the external force, so that the mass element 621 is relative to the substrate 611
  • the movement of the coupling member 623 and the mass element 621 causes the distance between the mass element 621 and the coupling member 623 to change, thereby causing the capacitance in the moving direction to change. From the changing capacitance, the acceleration in the direction of movement can be determined.
  • the material of each component in the detection assembly 620 may be a siliceous material doped with other elements.
  • the material of each component in the detection component 620 may be a boron-doped silicon material.
  • the entire mass element 621 can be used as a moving electrode, and the coupling member 623 can be used as a fixed electrode.
  • the mass element 621 may also include a conductive layer (eg, conductive layers disposed on the upper and lower surfaces of the mass element 121 ) to form the movable electrode.
  • the coupling member 623 may also include a conductive layer to form the fixed electrode.
  • the width of the gap between the coupling member 623 and the mass element 621 is equal at all points, and at this time, the shape of the coupling member 623 is the same as that of the mass element 621 , and the shape of the inner wall of the coupling member is the same as that of the mass element 621 .
  • the outer wall has the same shape.
  • the mass element 621 is a circle, and the coupling member 623 is a ring concentric with the circle.
  • the mass element 621 may be hexagonal, and the inner wall of the coupling member 623 is hexagonal, and the side of the inner wall of the coupling member 623 is parallel to the side of the outer wall of the mass element 621 .
  • the substrate 611 is further provided with a plurality of through holes.
  • Conductive elements 614 are provided in the through holes for connecting various components of the detection assembly 620 with external circuits (eg, integrated chips, etc.).
  • the conductive elements 614 may be metal, wires, etc. filled in the vias. Since the material of the detection component 620 is borosilicate material, the conductive element 614 can be electrically connected to the coupling member 623 and the support rod 622 .
  • the support rod 622 is further electrically connected to the mass element 621 .
  • the coupling member 623 and the support rod 622 are energized by a power source, so that the coupling member 623 and the mass element 621 form a detection capacitance.
  • the acceleration when there is an external acceleration input of the Y axis, the acceleration is ay.
  • the coupling 623 is fixedly connected to the substrate 611 .
  • the mass of the mass element 621 is relatively large, and under the influence of inertia, the support rod 622 will elastically deform and bend to a certain extent, causing the distance d between the mass element 621 and the coupling member 623 to decrease in the direction of acceleration.
  • the mass element 621 is used as a moving electrode, and the coupling element 623 is used as a fixed electrode. As the distance decreases, the capacitance C1 of the detection capacitor increases.
  • the size of the capacitance C1 is inversely proportional to the distance d between the mass element 621 and the coupling member 623 .
  • the magnitude of the acceleration can be determined. Based on the above method, the acceleration ax in the X-axis direction, the acceleration a45° in the direction of an included angle of 45° with the X-axis, etc. can be measured. Since the mass element 621 is a circular structure, the acceleration in any direction can be measured, and a 360° omnidirectional measurement can be achieved.
  • the sensing element 600 can detect accelerations in more than four directions. For example, if the mass is a pentagon, the sensing element 600 can detect five accelerations. Azimuth acceleration.
  • the sensing element 600 is accommodated in a cavity formed by the housing.
  • the case 610 may include an upper case 612 and a substrate 611 .
  • both the upper case 612 and the substrate 611 are silicon substrates.
  • the upper casing 612 and the substrate 611 enclose a first cavity 613 .
  • an external circuit such as an integrated chip, is also provided on the housing 610 .
  • the integrated chip is electrically connected to the support rod 622 and the coupling member 623 respectively.
  • the integrated chip can calculate the capacitance between the mass element 621 and the coupling 623 .
  • the integrated chip can be disposed on the outer surface of the upper casing 612 . Referring to FIG.
  • the integrated chip 630 is disposed on the outer surface of the upper casing 612 .
  • the integrated chip 630 is electrically connected to the support rod 622 and the coupling member 623 respectively through the conductive element 614 .
  • the support rod 622 is further electrically connected to the mass element 621 .
  • the integrated chip 630 is attached to the upper casing 612 so that the size of the acceleration sensor is consistent with the size of the chip, thereby reducing the size of the acceleration sensor.
  • a cover 640 is further provided outside the acceleration sensor.
  • the cover body 640 is covered on the outer surface of the casing 610 , that is, the cover body 640 is covered on the outer surface of the upper casing 612 , thereby forming the second cavity 641 for accommodating the integrated chip 630 .
  • the cover 640 is used to protect the integrated chip 630 from being damaged by external factors.
  • the material of the cover body 640 is silicon.
  • the material of the cover body 640 may also be metal, plastic, or the like.
  • the outer surface of the substrate 611 is further provided with a plurality of pins 615 , and each pin 615 is respectively connected with the conductive element 614 , so that the acceleration sensor can communicate with an external device or an external device through the pins 615 .
  • Electronic components eg, printed circuit boards, PCBs are electrically connected.
  • the acceleration sensor and its internal components may be fabricated by dicing through a wafer-level process.
  • the housing 110 may be square, that is, the front view of the acceleration sensor is square.
  • the acceleration sensor fabricated by the wafer-level process has a smaller size.
  • FIG. 7A provides an exemplary flow 705 of a method for manufacturing an acceleration sensor including a sensing element 600 according to some embodiments of the present application.
  • step 710 etching is performed on the doped silicon (eg, boron-doped silicon) layer of the manufactured silicon substrate, so as to etch a detection component on the single crystal silicon layer of the manufactured silicon substrate, the detection component includes a support rod , a mass element connected with the support rod, and a coupling member which surrounds the mass element and is provided with a gap between the mass element.
  • the doped silicon eg, boron-doped silicon
  • the width of the gap between the mass element and the coupling is equal everywhere.
  • the mass element is circular or polygonal. When the mass element is a polygon, the number of vertices or sides thereof is greater than or equal to four.
  • the fabrication substrate includes a single crystal silicon layer of a first thickness and a doped silicon (eg, boron-doped silicon) layer of a second thickness.
  • the single crystal silicon layer of the first thickness can be used as a substrate; the detection component can be etched on the doped silicon layer of the second thickness.
  • the detection element can be etched in the doped silicon layer by deep reactive ion etching technology. Specifically, a manufacturing substrate needs to be prepared first.
  • the process of manufacturing the substrate includes: taking a single crystal silicon wafer of a certain thickness, and then using ion implantation technology to implant boron ions into the single crystal silicon wafer, so that the boron ions are doped between the silicon atoms, thereby forming a second thickness of doping
  • the silicon layer, the silicon atomic layer that has not been implanted with boron ions, is the single crystal silicon layer.
  • a first mask is arranged on the manufacturing substrate, and then the doped silicon layer is etched by deep reactive ion etching technology, and the thickness of the etching needs to be controlled to prevent the doped silicon layer from being etched through.
  • the region where the first mask is arranged is not etched, so that the coupling member prototype and the support rod are etched out of the doped silicon layer.
  • a second mask is arranged on the unetched doped silicon layer, the center of the second mask is a support rod, and the second mask can be a circle or a polygon (the number of sides is greater than or equal to four).
  • the doped silicon layer on which the second mask is arranged is etched again, and the doped silicon layer is etched through, so as to etch out the mass element and the coupling member connected to the support rod, and since the second mask is a circle or a polygon , the etched mass element is also a circle or a polygon. It should be noted that the solution used for etching the doped silicon layer will not etch the single crystal silicon layer, so that the detection component is etched on the single crystal silicon layer.
  • the etched coupling surrounds the mass element. There is a gap between the mass element and the coupling, and the width of the gap is equal everywhere. Therefore, the shape of the inner wall of the coupling is the same as the shape of the outer wall of the mass element.
  • the shape of the mass element is a circle
  • the shape of the coupling member is annular
  • the shape of the inner wall of the coupling member is also a polygon
  • the side of the inner wall of the coupling member is parallel to the side of the outer wall of the mass element.
  • Step 720 Adhere the support rod and the free end of the coupling member to the surface of the first silicon substrate, and remove the single crystal silicon layer.
  • the surface of the first silicon substrate ie, the substrate
  • the free end of the coupling member that is, the surface of the doped silicon layer is bonded to the surface of the substrate.
  • the bonding method may be bonding, that is, using a silicon-silicon bonding process to bond the surface of the substrate to the support rod and the free end of the coupling member. Due to the high strength of the silicon-silicon bond, the detection component can be firmly connected to the surface of the substrate.
  • through-silicon via technology may be used to provide through-holes on the substrate.
  • the substrate is etched using an etching technique to form through holes.
  • the position of the through hole can bond the support rod and the coupling piece.
  • Conductive elements can be arranged in the through holes, so that the support rod and the coupling member are respectively connected with the conductive elements. When a voltage is applied to the conductive element, the mass element and the coupling element are made to form a detection capacitance.
  • the conductive elements may be wires, metal filled in vias, or the like.
  • the single crystal silicon layer is removed, thereby releasing the detection assembly.
  • the single crystal silicon layer can be etched with a sodium hydroxide solution, thereby removing the single crystal silicon layer without damaging the detection components made of doped silicon.
  • Step 730 Etch the second silicon substrate to form an accommodating groove, and bond the side of the second silicon substrate etched with the accommodating groove to the first silicon substrate, so as to make the first silicon substrate It is enclosed with the accommodating groove to form a cavity for accommodating the detection component.
  • the surface of the second silicon substrate ie, the upper casing
  • the accommodating groove is etched on the surface of the upper casing.
  • the surface of the upper casing with the accommodating grooves etched is bonded to the first silicon substrate (ie, the substrate), so that the substrate and the accommodating grooves enclose a cavity for accommodating the detection components.
  • wiring may be performed on the through hole openings on the outer surface of the substrate, thereby forming a wiring area.
  • balls are mounted on the wiring area to form pins, so that the support rod and the coupling member can be connected to the power supply through the pins.
  • multiple detection components can be etched on one manufacturing substrate, that is, multiple acceleration sensors can be fabricated on the substrate, and each detection component is located on the same silicon substrate, so a wafer-level process is adopted A plurality of square acceleration sensors are obtained by cutting the housing containing the detection components. Since the wafer-level process is adopted, the mass production of the acceleration sensor is facilitated, the production efficiency thereof is improved, and the production cost is reduced.
  • the acceleration sensor with a circular mass element prepared in this embodiment is different from the traditional single-axis or dual-axis acceleration sensor.
  • the acceleration sensor described in this embodiment can realize 360° omnidirectional acceleration measurement, and the orientation of the acceleration sensor is different. Restricted.
  • FIG. 7B provides an exemplary flow 735 of a method for manufacturing an acceleration sensor including the sensing element 600 according to other embodiments of the present application.
  • the process 735 further includes steps 740 - 760 after the step 730 .
  • a through hole is formed by etching on the second silicon substrate, and a conductive element is arranged in the through hole.
  • Step 750 bonding an integrated chip on the outer surface of the second silicon substrate where the through hole is provided.
  • Step 760 connecting the integrated chip, the support rod and the coupling member through a conductive element.
  • an integrated chip such as an ASIC (Application Specific Integrated Circuit) chip, may be provided for the acceleration sensor including the sensing element 600 .
  • the integrated chip is bonded on the outer surface of the upper case.
  • the upper casing can be provided with a through hole in advance, a conductive element is arranged in the through hole, and the integrated chip is bonded to the position of the through hole, so that the integrated chip is electrically connected to the support rod and the coupling member through the conductive element arranged in the through hole.
  • wiring can be performed at the through hole, the integrated chip is electrically connected to the support rod and the coupling member through the wiring, and then the integrated chip is bonded to the outer surface of the upper casing.
  • the through-holes on the upper casing are aligned with the through-holes of the substrate, so that the conductive elements in the through-holes of the upper casing are connected with the conductive elements in the through-holes on the substrate, so that the integrated chips are respectively connected to the support The rod and the coupling are electrically connected.
  • the integrated chip can measure the capacitance between the coupling element and the mass element, and obtain the acceleration through signal amplification, AD conversion and/or algorithm processing.
  • the information on the magnitude of the acceleration is sent from the integrated chip, through the wiring and vias on the upper case, and the wiring and vias on the substrate, transferring the information from the pins to the external circuit (for example, the device containing the acceleration sensor). central processing unit).
  • FIG. 7C provides an exemplary flow 765 of a method for manufacturing an acceleration sensor including the sensing element 600 according to further embodiments of the present application.
  • the process 765 further includes steps 770 and 780 after the step 760 .
  • Step 770 etching to form a receiving groove on the surface of the third silicon substrate.
  • step 780 the side of the third silicon substrate etched with the accommodating groove is bonded to the outer surface of the second silicon substrate, so that the second silicon substrate and the accommodating groove are enclosed to accommodate the accommodating groove.
  • the cavity of the integrated chip is bonded to the outer surface of the second silicon substrate, so that the second silicon substrate and the accommodating groove are enclosed to accommodate the accommodating groove.
  • the integrated chip needs to be protected.
  • the third silicon substrate ie, the cover body
  • the receiving groove is etched on the cover body.
  • the side of the cover with the accommodating groove etched is bonded to the outer surface of the upper casing, so that the upper casing and the accommodating groove form a cavity for accommodating the integrated chip.
  • the integrated chip is protected by the cover.
  • a sensing device By coupling at least one resonant system to the acceleration sensor (eg, between housing 110 and sensing element 600 ), a sensing device (eg, sensing device 200 or 250 ) may be constructed.
  • the at least one resonance system may include the first resonance system 210 shown in Figures 2A and 2B or the second resonance system 260 shown in Figures 2C and 2D.
  • the first resonant system 210 and the second resonant system 260 may comprise liquid.
  • the first resonance system 210 may be a liquid having a specific density and viscosity.
  • the liquid may be silicone oil with a density of 0.94kg/m 3 , and its kinematic viscosity may be 0.5cst, 1cst, 5cst, 10cst, 100cst, 200cst, 1000cst, and the like.
  • the liquid can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • the second resonance system 210 may be a liquid containing air bubbles, for example, silicone oil containing air bubbles, wherein the proportion of air bubbles to the volume of the cavity may be any value between 5% and 95%.
  • the number of bubbles can be 1, 2, 3, 4 or more.
  • the liquid can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system, and the bubble can be equivalent to a spring (Km3) and damping (Rm3) system.
  • the sensing element 600 By partially filling the cavity of the accelerometer with the liquid, partially filling with air bubbles (eg, air bubbles that are not expelled from the cavity when the liquid is filled, air bubbles formed by air pockets, and/or by air bubbles on the sensing element 600 ) coating the air bubbles formed by the hydrophobic coating), the sensing element 600 is at least partially immersed in the liquid, thereby realizing the coupling of the second resonant system 260 with the sensing element 600 .
  • air bubbles eg, air bubbles that are not expelled from the cavity when the liquid is filled, air bubbles formed by air pockets, and/or by air bubbles on the sensing element 600
  • the first resonant system 210 and the second resonant system 260 may comprise elastic structures.
  • the first resonance system 210 may be an elastic structure with a certain mass (eg, elastic rods, elastic sheets, elastic blocks, elastic nets, etc.), or a light-weight elastic structure (eg, light-weight springs, light-weight elastic rods, etc.) etc.) in combination with mass units.
  • the elastic structure with a certain mass or the combination of the lightweight elastic structure and the mass unit can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • the second resonant system 260 may be a combination of lightweight elastic rods and/or springs and a heavier mass elastic rod.
  • the elastic rod with larger mass can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • Lightweight elastic rods and/or springs can be equivalent to a spring (Km3) and damping (Rm3) system.
  • Both ends of the elastic rod and/or spring are respectively fixedly connected between the housing 110 and the sensing element 600 (for example, one or more positions on the mass element 621 ), so that the second resonance system 260 can be connected to the sensing element 600 .
  • Element 600 is coupled.
  • the frequency response curve of the sensing device including the sensing element 600 is in a specific frequency band (eg, low frequency, medium low frequency, medium frequency, medium high frequency). and/or high frequency), the sensitivity will be improved compared to the acceleration sensor that does not include the first resonance system 210 or the second resonance system 260 .
  • the vibration characteristic of the acceleration sensor will be changed compared with that without the first resonant system 210 .
  • the first resonance system 210 or the second resonance system 260 acts on the sensing element 600 and can affect the mass, stiffness and/or damping of the acceleration sensor, and the effect is equivalent to making the sensing device including the sensing element 600 .
  • the Q value of the first formant is changed (eg, the Q value is reduced) relative to the Q value of the acceleration sensor not connected to the first resonance system 210 or the second resonance system 260 .
  • the existence of the first resonance system 210 or the second resonance system 260 will inhibit the resonance peak corresponding to the acceleration sensor in the sensing device, so that the Q value at the resonance peak in the frequency response curve is relatively relatively Low, the frequency response curve is flatter in the desired frequency band (eg, mid-low frequency, mid frequency, etc.).
  • the first resonance system 210 or the second resonance system 260 can reduce the external impact on the sensing element 600 to protect the sensing element 600 .
  • the first resonance system 210 or the second resonance system 260 can improve the shock resistance and reliability of the sensing device including the sensing element 600. sex. Specifically, due to the viscous effect of the liquid and the large compressibility of the gas, part of the impact energy can be absorbed and consumed, so that the impact load on the sensing element 600 is greatly reduced, so the sensing element 600 can be protected and its work can be prolonged. life.
  • the sensor element 600 is often deformed due to the presence of stress during the processing.
  • the gravity, surface tension, viscous force, etc. of the liquid can be used to correct the deformation of the device, so that the deformation of the sensing device is smaller, the output is more stable, and the design effect is closer.
  • the parameters of the acceleration sensor eg, the internal structure, size, stiffness of the housing 110 and/or the mass, size, stiffness of the sensing element 600
  • Substance/structure parameters such as the size, mass, stiffness, elasticity of the elastic rod, the type, density, viscosity, volume of the liquid, whether to fill bubbles and the proportion, size, location, number of bubbles, etc.
  • the relevant parameters of the frequency response curve for example, the relationship between the first resonant frequency and the at least one second resonant frequency, its corresponding peak height, Q value, the first resonant frequency and the second resonant frequency The difference, ratio, peak-to-valley ratio to the peak value of the highest peak, etc.), so as to achieve, for example, adjust the Q value of the sensing device, improve the sensitivity and reliability of the sensing device, or make the output gain of the sensing device in the required range.
  • the trough between the first resonant frequency and the at least one second resonant frequency is the peak of the higher peak of the resonant peaks corresponding to the first resonant frequency and the at least one second resonant frequency
  • the sensitivity difference is within a certain range (eg, 10dBV, 20dBV, 30dBV, etc.), and the ratio of the sensitivity difference to the peak value of the higher peak does not exceed a certain threshold (eg, 0.05, 0.1, 0.2, etc.).
  • the frequency difference between the first resonant frequency and the at least one second resonant frequency is within a certain range (eg, 20-3000Hz, 20-2000Hz, 50-2000Hz, 50-1500Hz, 80-1500Hz, 100-1500Hz etc.) and/or the ratio of the difference to the first resonance frequency or the second resonance frequency is within a certain range (for example, 0.02-0.7, 0.15-0.6), which can make the frequency response curve between the corresponding resonance peaks relatively flat.
  • the sensitivity improvement within the second resonance frequency of the sensing device including the sensing element 600 is relatively high and stable.
  • the increase of the sensitivity can be 10dBV-60dBV, 20dBV-50dBV, 30dBV-40dBV and so on.
  • the at least one resonant system may be a liquid containing bubbles.
  • the proportion of the air bubbles to the volume of the cavity can be any value such as 5%, 10%, 20%, 30%, 50%, 70%, 95%, etc.
  • the bubbles can be small bubbles (eg, 2%-10% of the cavity volume), medium and small bubbles (eg, 10%-20% of the cavity volume), medium-sized bubbles (eg, bubbles that account for 20%-50% of the cavity volume), large bubbles (eg, bubbles that account for 50%-90% of the cavity volume), and the like.
  • the number of bubbles can be 1, 2, 3, 4 or more.
  • the bubbles may be located at various locations within the cavity (eg, inside the sensing element 600).
  • the air bubble is located between mass element 621 and coupling 623 .
  • the bubbles are attached to the mass element 621 (eg, the upper surface, the lower surface, and/or the side opposite the coupling 623).
  • the bubbles are attached to the coupling member 623 (eg, the upper surface, the lower surface, and/or the side opposite the mass element 621).
  • the frequency response curves of the sensing device including the sensing element 600 are different (eg, the magnitude of the at least one second resonant frequency and the corresponding different peak sensitivity).
  • the sensitivity of the sensing device can be improved to a certain extent in the frequency band before low frequency or low frequency or high frequency (for example, in the frequency band less than 7000Hz, 5000Hz, 3000Hz, 1000Hz, 500Hz, 100Hz, 50Hz) to a certain extent (for example, 10 -60dBV, 10-40dBV, 15-40dBV, etc.).
  • the size of the lift is also related to the size and/or location of the bubbles.
  • the sensing device containing small and medium air bubbles has a higher frequency than the sensing device containing small air bubbles in low frequency or low frequency or high frequency frequency bands (eg, frequency bands less than 7000Hz, 5000Hz, 3000Hz, 1000Hz, 500Hz, 100Hz, 50Hz). )
  • the sensitivity increase is about 5-30dBV.
  • the sensing device with medium-sized bubbles has higher sensitivity in the frequency band before low frequency or medium low frequency or high frequency (for example, in the frequency band less than 7000Hz, 5000Hz, 3000Hz, 1000Hz, 500Hz, 100Hz, 50Hz). About 5-30dBV.
  • FIGS. 8A and 8B are schematic diagrams of exemplary structures of a sensing element 800 provided according to some embodiments of the present application.
  • the sensing element 800 may include a substrate 820 and a detection component disposed on the substrate (eg, a mass element, at least one movable electrode disposed on the mass element, and at least one stationary electrode fixed on the substrate) .
  • the substrate 820 may be the same as or similar to the substrate in FIGS. 4A-6E and will not be described in detail here. As shown in FIG.
  • the detection assembly in order from the inside to the outside of the center of the substrate 820 , the detection assembly includes a first mass element 811 , at least one first flexible part 812 , a first fixing element 813 , a plurality of first fixed elements Electrodes 814 , a plurality of first movable electrodes 815 , a second mass element 816 , at least one second flexible member 817 , and a second fixing element 818 .
  • the first mass element 811 is disposed at the center of the substrate 820 .
  • the first mass element 811 has a regular or irregular shape such as a circle, a square, and a polygon.
  • the first mass element 811 may be made of, for example, single crystal silicon or the like.
  • the first fixing element 813 may support the first mass element 811 and fix the first stationary electrode 814 .
  • the first fixing element 813 is connected to the substrate 820 and surrounds the first mass element 811 .
  • At least one first flexible part 812 is disposed on the inner wall of the first fixing element 813 .
  • the first fixing element 813 is connected to the first mass element 811 (eg, the outer wall of the first mass element), so that the first mass element 811 is suspended above the on the substrate 820.
  • the plurality of first fixed electrodes 814 are disposed on the periphery of the first fixing element 813 and extend outward.
  • the plurality of first fixed electrodes 814 are flat plates, are perpendicular to the outer wall of the first fixing element 813 , and are arranged along the outer wall of the first fixing element 813 .
  • the plurality of first stationary electrodes 814 are distributed along at least a first direction (eg, X-axis direction) and a second direction (eg, Y-axis direction).
  • the second mass element 816 is located at the periphery of the first fixing element 813 and surrounds the first fixing element 814 .
  • the second mass element 816 may be made of, for example, single crystal silicon or the like.
  • the second fixed element 818 may support the second mass element 816 .
  • the second fixing element 818 is connected to the substrate 820 .
  • At least one second flexible member 817 is disposed on the inner wall of the second fixing element 818 . Through the at least one second flexible member 817, the second fixing element 818 is connected to the second mass element 816 (eg, the outer wall of the second mass element), so that the second mass element 816 is suspended from the lining Bottom 820.
  • the plurality of first movable electrodes 815 are disposed inside the second mass element 816 and extend inward.
  • the plurality of first movable electrodes 815 are flat plates, are perpendicular to the inner wall of the second mass element 816 , and are arranged along the inner wall of the second mass element 816 .
  • the plurality of first moving electrodes 815 and the plurality of first stationary electrodes 814 are arranged in parallel and spaced apart to form first and second direction detection capacitors.
  • the sensing element 800 may further include a second fixed electrode 821 and a second movable electrode disposed on the lower surface of the first mass element.
  • the second fixed electrode 821 is connected to the substrate 820 and disposed opposite to the lower surface of the first mass element 811 .
  • the second movable electrode may be a conductive layer disposed on the lower surface of the first mass element 811 .
  • Exemplary conductive layers may include metals, alloy materials, metal oxide materials, graphene, doped silicon, etc., or any combination thereof.
  • the conductive layer may be fixedly connected by welding, riveting, clipping, bolting, adhesive bonding, etc., or disposed under the first mass element 811 by means of deposition, doping, physical growth, etc. surface.
  • the second fixed electrode 821 and the second movable electrode may constitute a third direction detection capacitance.
  • the first fixing element 813, the second mass element 816, and the second fixing element 818 have a center hole
  • the first mass element 811 is located in the center hole of the first fixing element 813
  • the first fixing element 813 is located in the center hole of the first fixing element 813
  • the central hole of the second mass element 816 is located in the central hole of the second fixing element 818 .
  • the outer contours of the first mass element 811, the first fixing element 813, the second mass element 816, and the second fixing element 818 may be circular, square, rectangular, polygonal, or the like.
  • the outer contours of the first mass element 811 , the first fixing element 813 , the second mass element 816 , and the second fixing element 818 may be square.
  • the at least one first flexible member 812 includes four first flexible members 812 .
  • the four first flexible parts 812 are respectively connected to each of the four outer walls of the first mass element 811 and the corresponding inner wall of the first fixing element 813, so as to support the first mass element 811 and make the first mass
  • the element 811 can move in a third direction (eg, the Z-axis direction).
  • the at least one second flexible member 817 includes eight second elastic connecting members 817 .
  • Every two second elastic connecting parts 817 of the eight second elastic connecting parts 817 respectively connect each of the four outer walls of the second mass element 816 with the corresponding inner wall of the second fixing element 818 to support the
  • the second mass element 816 is allowed to move in a first direction (eg, X-axis direction) and/or a second direction (eg, Y-axis direction) parallel to the substrate 820 .
  • the at least one first flexible member 812 and/or the at least one second flexible member 817 may be the crank arm structure shown in the figures.
  • a plurality of holes 819 may be provided on the first mass element 811 and/or the second mass element 822 .
  • the holes may provide damping for the movement of the first mass element 811 and/or the second mass element 822, so that the movement of the first mass element 811 and/or the second mass element 822 is smoother.
  • the plurality of first moving electrodes 815 and the plurality of first fixed electrodes 814 intersect with each other and are arranged in parallel to form a comb-tooth capacitor system, wherein each first moving electrode 815 is associated with a corresponding first fixed electrode Electrode 814 constitutes a sense capacitor.
  • the second mass element 816 moves in the X-Y plane, so that the multiple
  • the first and second direction detection capacitances formed by the first and second direction detection capacitances change, thereby forming the first and second direction detection capacitances.
  • the differential capacitance structure is used to characterize the acceleration in the first and second directions.
  • the first mass element 811 moves along the Z-axis direction, so that the second fixed electrode 821 and the corresponding The distance between the second moving electrodes changes, and the third-direction detection capacitance formed by the second moving electrodes changes, so as to represent the magnitude of the acceleration in the third direction.
  • a sensing device By coupling at least one resonant system to the acceleration sensor (eg, between housing 110 and sensing element 800 ), a sensing device (eg, sensing device 200 or 250 ) may be constructed.
  • the at least one resonance system may include the first resonance system 210 shown in Figures 2A and 2B or the second resonance system 260 shown in Figures 2C and 2D.
  • the first resonant system 210 and the second resonant system 260 may comprise liquid.
  • the first resonance system 210 may be a liquid having a specific density and viscosity.
  • the liquid may be silicone oil with a density of 0.94kg/m 3 , and its kinematic viscosity may be 0.5cst, 1cst, 5cst, 10cst, 100cst, 200cst, 1000cst, and the like.
  • the liquid can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • the second resonance system 210 may be a liquid containing air bubbles, for example, silicone oil containing air bubbles, wherein the proportion of air bubbles to the volume of the cavity may be any value between 5% and 95%.
  • the number of bubbles can be 1, 2, 3, 4 or more.
  • the liquid can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system, and the bubble can be equivalent to a spring (Km3) and damping (Rm3) system.
  • the sensing element 800 By partially filling the cavity of the accelerometer with the liquid, partially filling with air bubbles (eg, air bubbles that are not expelled from the cavity when the liquid is filled, air bubbles formed by air pockets, and/or by air bubbles on the sensing element 800 )
  • air bubbles eg, air bubbles that are not expelled from the cavity when the liquid is filled, air bubbles formed by air pockets, and/or by air bubbles on the sensing element 800
  • the air bubbles formed by coating the hydrophobic coating the sensing element 800 is at least partially immersed in the liquid, thereby realizing the coupling of the second resonant system 260 with the sensing element 800 .
  • the first resonant system 210 and the second resonant system 260 may comprise elastic structures.
  • the first resonance system 210 may be an elastic structure with a certain mass (eg, elastic rods, elastic sheets, elastic blocks, elastic nets, etc.), or a light-weight elastic structure (eg, light-weight springs, light-weight elastic rods, etc.) etc.) in combination with mass units.
  • the elastic structure with a certain mass or the combination of the lightweight elastic structure and the mass unit can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • the second resonant system 260 may be a combination of lightweight elastic rods and/or springs and a heavier mass elastic rod.
  • the elastic rod with larger mass can be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • Lightweight elastic rods and/or springs can be equivalent to a spring (Km3) and damping (Rm3) system.
  • Both ends of the elastic rod and/or spring are respectively fixedly connected to the housing 110 and the sensing element 800 (for example, one or more positions on the first mass element 811 or the second mass element 816, the first movable electrode 815 , the second moving electrode, etc.), the second resonance system 260 can be coupled with the sensing element 800 .
  • the frequency response curve of the sensing device including the sensing element 800 is in a specific frequency band (for example, low frequency, medium low frequency, medium frequency, medium high frequency). and/or high frequency), the sensitivity will be improved compared to the acceleration sensor that does not include the first resonance system 210 or the second resonance system 260 .
  • the vibration characteristic of the acceleration sensor will be changed compared with that without the first resonant system 210 .
  • the first resonance system 210 or the second resonance system 260 acts on the sensing element 800 , which can affect the mass, stiffness and/or damping of the acceleration sensor, and the effect is equivalent to making the sensing device including the sensing element 800 .
  • the Q value of the first formant is changed (eg, the Q value is reduced) relative to the Q value of the acceleration sensor not connected to the first resonance system 210 or the second resonance system 260 .
  • the existence of the first resonance system 210 or the second resonance system 260 will inhibit the resonance peak corresponding to the acceleration sensor in the sensing device, so that the Q value at the resonance peak in the frequency response curve is relatively relatively Low, the frequency response curve is flatter in the desired frequency band (eg, mid-low frequency, mid frequency, etc.).
  • the first resonance system 210 or the second resonance system 260 can reduce the external impact on the sensing element 800 to protect the sensing element 800 .
  • the first resonance system 210 or the second resonance system 260 can improve the shock resistance reliability of the sensing device including the sensing element 800 .
  • part of the impact energy can be absorbed and consumed, so that the impact load on the sensing element 800 is greatly reduced, so the sensing element 800 can be protected and its operation can be prolonged. life.
  • the sensor element 800 is often deformed due to the presence of stress during the processing.
  • the gravity, surface tension, viscous force, etc. of the liquid can be used to correct the deformation of the device, so that the deformation of the sensing device is smaller, the output is more stable, and the design effect is closer.
  • the parameters of the acceleration sensor eg, the internal structure, size, stiffness of the housing 110 and/or the mass, size, stiffness of the sensing element 800
  • Substance/structure parameters such as the size, mass, stiffness, elasticity of the elastic rod, the type, density, viscosity, volume of the liquid, whether to fill bubbles and the proportion, size, location, number of bubbles, etc.
  • the relevant parameters of the frequency response curve for example, the relationship between the first resonant frequency and the at least one second resonant frequency, its corresponding peak height, Q value, the first resonant frequency and the second resonant frequency The difference, ratio, peak-to-valley ratio to the peak value of the highest peak, etc.), so as to achieve, for example, adjust the Q value of the sensing device, improve the sensitivity and reliability of the sensing device, or make the output gain of the sensing device in the required range.
  • the trough between the first resonant frequency and the at least one second resonant frequency is the peak of the higher peak of the resonant peaks corresponding to the first resonant frequency and the at least one second resonant frequency
  • the sensitivity difference is within a certain range (eg, 10dBV, 20dBV, 30dBV, etc.), and the ratio of the sensitivity difference to the peak value of the higher peak does not exceed a certain threshold (eg, 0.05, 0.1, 0.2, etc.).
  • the frequency difference between the first resonant frequency and the at least one second resonant frequency is within a certain range (eg, 20-3000Hz, 20-2000Hz, 50-2000Hz, 50-1500Hz, 80-1500Hz, 100-1500Hz etc.) and/or the ratio of the difference to the first resonance frequency or the second resonance frequency is within a certain range (for example, 0.02-0.7, 0.15-0.6), which can make the frequency response curve between the corresponding resonance peaks relatively flat.
  • the sensitivity improvement within the second resonance frequency of the sensing device including the sensing element 800 is relatively high and stable.
  • the increase of the sensitivity can be 10dBV-60dBV, 20dBV-50dBV, 30dBV-40dBV and so on.
  • the at least one resonant system may be a liquid containing bubbles.
  • the proportion of the air bubbles to the volume of the cavity can be any value such as 5%, 10%, 20%, 30%, 50%, 70%, 95%, etc.
  • the air bubbles can be small air bubbles (eg, 2%-10% of the cavity volume), small and medium-sized air bubbles (eg, 10%-20% of the cavity volume), medium-sized air bubbles (eg, bubbles that account for 20%-50% of the cavity volume), large bubbles (eg, bubbles that account for 50%-90% of the cavity volume), and the like.
  • the number of bubbles can be 1, 2, 3, 4 or more.
  • the bubbles may be located at various locations within the cavity (eg, inside the sensing element 800).
  • the bubbles are located between the first movable electrode 815 and the first stationary electrode 814 and/or between the second movable electrode (eg, the lower surface of the first mass element) and the second stationary electrode 821 .
  • the bubbles are attached to the first mass element 811 (eg, the upper surface, lower surface, or inner and outer sidewalls of the first mass element 811 ), the second mass element 816 (eg, the upper surface, lower surface, inner and outer side walls), the first movable electrode 815 (eg, the upper and lower surfaces of the first movable electrode 815 or the side surface relative to the first fixed electrode 814) and/or the second movable electrode (eg, the second movable electrode 815 the side of the movable electrode or the surface relative to the second fixed electrode 821).
  • the bubbles are attached to the first stationary electrode (eg, the side opposite to the first movable electrode 815 ) and/or the second stationary electrode 821 (eg, the surface opposite to
  • the frequency response curves of the sensing device including the sensing element 800 are different (eg, the magnitude of the at least one second resonant frequency and the corresponding different peak sensitivity).
  • the bubble is attached to the sensing element 800 (eg, attached to the first mass element 811, the second mass element 816, the first moving electrode 815, and/or the second moving electrode) or not
  • the sensing element 800 can be in the frequency band before low frequency or medium low frequency or medium high frequency (for example, less than 7000Hz, 5000Hz, 3000Hz, 1000Hz, 500Hz) , 100Hz, 50Hz) to improve the sensitivity of the sensing device to a certain extent (for example, 10-60dBV, 10-40dBV, 15-40dBV, etc.).
  • the size of the lift is also related to the size and/or location of the bubbles.
  • the sensitivity of the sensing device increases as the volume of the bubble increases .
  • the sensing device containing small and medium air bubbles has a higher frequency than the sensing device containing small air bubbles in low frequency or low frequency or high frequency frequency bands (eg, frequency bands less than 7000Hz, 5000Hz, 3000Hz, 1000Hz, 500Hz, 100Hz, 50Hz).
  • the sensitivity increase is about 5-30dBV.
  • the sensing device with medium-sized bubbles has higher sensitivity in the frequency band before low frequency or medium low frequency or high frequency (for example, in the frequency band less than 7000Hz, 5000Hz, 3000Hz, 1000Hz, 500Hz, 100Hz, 50Hz). About 5-30dBV.
  • FIG. 9 is a schematic diagram of an exemplary structure of a sensing device 900 provided according to some embodiments of the present application.
  • Sensing device 900 includes sensing element 910 and liquid 920 .
  • the sensing element 910 may be the same as or similar to the sensing element 500 in FIGS. 5A-6D , and details are not described herein again.
  • Liquid 920 may be a specific liquid with a specific density and viscosity.
  • the liquid 920 may be a silicone oil with a density of 0.94kg/m 3 , and its kinematic viscosity may be 0.5cst, 1cst, 5cst, 10cst, 100cst, 200cst, 1000cst, and the like.
  • Liquid 920 may be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • liquid 920 may also contain air bubbles.
  • the proportion of the air bubbles to the volume of the cavity can be any value from 5% to 95%.
  • the number of bubbles can be 1, 2, 3, 4 or more.
  • the bubble can be equivalent to a spring (Km3) and damping (Rm3) system.
  • the frequency response curve of the sensing device 900 will be improved in a specific frequency band (eg, low frequency, medium low frequency, medium frequency, medium high frequency and/or high frequency).
  • a specific frequency band eg, low frequency, medium low frequency, medium frequency, medium high frequency and/or high frequency.
  • the vibration characteristics of the sensing element 910 will be changed compared to when the liquid 920 is absent.
  • the liquid 920 acts on the sensing element 910, and the effect is equivalent to changing the Q value of the first resonance peak of the sensing device 900 relative to the Q value of the acceleration sensor that does not contain the liquid 920 (eg, the Q value decreases ).
  • the presence of the liquid 920 will inhibit the resonance peak corresponding to the sensing element 910 in the sensing device 900, so that the Q value at the resonance peak in the frequency response curve is relatively low, and in the desired frequency band Internal (eg, mid-low frequency, mid-frequency, etc.) frequency response curve is more flattened.
  • the liquid 920 can reduce the external impact on the sensing element 910 to protect the sensing element 910 .
  • the liquid 920 may improve the shock resistance reliability of the sensing device 900 including the sensing element 910 when receiving external shock loads.
  • part of the impact energy can be absorbed and consumed, so that the impact load on the sensing element 910 is greatly reduced, so the sensing element 910 can be protected and its work can be prolonged. life.
  • the sensing element 910 is often deformed due to the presence of stress during the processing.
  • the gravity, surface tension, viscous force, etc. of the liquid can be used to correct the deformation of the device, so that the deformation of the sensing device 900 is smaller, the output is more stable, and the design effect is closer.
  • the parameters of the sensing element 910 eg, the internal structure, size, stiffness of the housing and/or the mass, size, stiffness of the internal detection components
  • the parameters of the liquid 920 eg, type, density, viscosity, volume, whether to fill bubbles and the proportion, size, location, number of bubbles, etc.
  • the relevant parameters of the frequency response curve of the sensing device 900 for example, the first resonant frequency and at least one second resonant frequency
  • the Q value of the sensing device 900 is improved, the sensitivity and reliability of the sensing device 900 are improved, or the output gain of the sensing device 900 is more stable in a required frequency band (eg, middle
  • the trough between the first resonant frequency and the at least one second resonant frequency is the peak of the higher peak of the resonant peaks corresponding to the first resonant frequency and the at least one second resonant frequency
  • the sensitivity difference is within a certain range (eg, 10dBV, 20dBV, 30dBV, etc.), and the ratio of the sensitivity difference to the peak value of the higher peak does not exceed a certain threshold (eg, 0.05, 0.1, 0.2, etc.).
  • the frequency difference between the first resonant frequency and the at least one second resonant frequency is within a certain range (eg, 20-3000Hz, 20-2000Hz, 50-2000Hz, 50-1500Hz, 80-1500Hz, 100-1500Hz etc.) and/or the ratio of the difference to the first resonance frequency or the second resonance frequency is within a certain range (for example, 0.02-0.7, 0.15-0.6), which can make the frequency response curve between the corresponding resonance peaks relatively flat.
  • the sensitivity improvement of the sensing device 900 within the second resonance frequency is relatively high and stable.
  • the increase of the sensitivity can be 10dBV-60dBV, 20dBV-50dBV, 30dBV-40dBV and so on.
  • the proportion of the air bubbles to the volume of the cavity may be any value such as 5%, 10%, 20%, 30%, 50%, 70%, 95%, and the like.
  • the bubbles can be small bubbles (eg, 2%-10% of the cavity volume), medium and small bubbles (eg, 10%-20% of the cavity volume), medium-sized bubbles (eg, bubbles that account for 20%-50% of the cavity volume), large bubbles (eg, bubbles that account for 50%-90% of the cavity volume), and the like.
  • the number of bubbles can be 1, 2, 3, 4 or more.
  • the bubbles may be located at various locations within the cavity (eg, inside the sensing element 910).
  • the frequency response curves of the sensing device 900 including the sensing element 910 are different (eg, the magnitude of the at least one second resonance frequency and the corresponding different peak sensitivities).
  • the sensitivity of the sensing device 900 is improved to a certain extent (for example, 10-60dBV, 10-40dBV, 15-40dBV, etc.).
  • the size of the lift is also related to the size and/or location of the bubbles.
  • the sensitivity of the sensing device 900 increases as the volume of the bubble increases.
  • the sensing device 900 containing small and medium air bubbles has a lower frequency or lower frequency or lower frequency frequency band (eg, less than 7000 Hz, 5000 Hz, 3000 Hz, 1000 Hz, 500 Hz, 100 Hz, 50 Hz) compared to the sensing device e containing small air bubbles. In the frequency band) the sensitivity increase is about 5-30dBV.
  • the sensing device 900 containing medium-sized air bubbles has low frequency or low frequency or mid-high frequency frequency band (for example, in the frequency band less than 7000Hz, 5000Hz, 3000Hz, 1000Hz, 500Hz, 100Hz, 50Hz)
  • the sensitivity increase is about 5-30dBV.
  • FIG. 10 is a schematic diagram of an exemplary structure of a sensing device 1000 provided according to some embodiments of the present application.
  • Sensing device 1000 includes sensing element 1010 and liquid 1020 .
  • the sensing element 1010 may be the same as or similar to the sensing element 600 in FIGS. 6A-6E , and details are not described herein again.
  • Liquid 1020 may be a specific liquid with a specific density and viscosity.
  • the liquid 1020 may be a silicone oil with a density of 0.94kg/m 3 , and its kinematic viscosity may be 0.5cst, 1cst, 5cst, 10cst, 100cst, 200cst, 1000cst, and the like.
  • Liquid 1020 may be equivalent to a spring (Km4)-mass (Mm4)-damping (Rm4) system.
  • the liquid 1020 may also contain air bubbles.
  • the proportion of the air bubbles to the volume of the cavity can be any value from 5% to 95%.
  • the number of bubbles can be 1, 2, 3, 4 or more.
  • the bubble can be equivalent to a spring (Km3) and damping (Rm3) system.
  • the frequency response curve of the sensing device 1000 will be improved in a specific frequency band (eg, low frequency, medium low frequency, medium frequency, medium high frequency and/or high frequency).
  • the liquid 1020 acts on the sensing element 1010 , the vibration characteristics of the sensing element 1010 will be changed compared with that without the liquid 1020 .
  • the liquid 1020 acts on the sensing element 1010, and the effect is equivalent to changing the Q value of the first resonance peak of the sensing device 1000 relative to the Q value of the acceleration sensor that does not contain the liquid 1020 (eg, the Q value decreases ).
  • the presence of the liquid 1020 will inhibit the resonance peak corresponding to the sensing element 1010 in the sensing device 1000, so that the Q value at the resonance peak in the frequency response curve is relatively low, and in the desired frequency band Internal (eg, mid-low frequency, mid-frequency, etc.) frequency response curve is more flattened.
  • the liquid 1020 can reduce the external impact on the sensing element 1010 to protect the sensing element 1010 .
  • the liquid 1020 may improve the shock resistance reliability of the sensing device 1000 including the sensing element 1010 when receiving an external shock load.
  • the sensor element 1010 is often deformed due to the presence of stress during the processing.
  • the gravity, surface tension, viscous force, etc. of the liquid can be used to correct the deformation of the device, so that the deformation of the sensing device 1000 is smaller, the output is more stable, and the design effect is closer.
  • the parameters of the sensing element 1010 eg, the internal structure, size, stiffness of the housing and/or the mass, size, stiffness of the internal detection components
  • the parameters of the liquid 1020 eg, type, density, viscosity, volume, whether to fill bubbles and the proportion, size, location, number of bubbles, etc.
  • the relevant parameters of the frequency response curve of the sensing device 1000 for example, the first resonant frequency and at least one second resonant frequency
  • the Q value of the sensing device 1000 is improved, the sensitivity and reliability of the sensing device 1000 are improved, or the output gain of the sensing device 1000 is more stable in a required frequency band (eg, middle and low frequencies).
  • the trough between the first resonant frequency and the at least one second resonant frequency is the peak of the higher peak of the resonant peaks corresponding to the first resonant frequency and the at least one second resonant frequency
  • the sensitivity difference is within a certain range (eg, 10dBV, 20dBV, 30dBV, etc.), and the ratio of the sensitivity difference to the peak value of the higher peak does not exceed a certain threshold (eg, 0.05, 0.1, 0.2, etc.).
  • the frequency difference between the first resonant frequency and the at least one second resonant frequency is within a certain range (eg, 20-3000Hz, 20-2000Hz, 50-2000Hz, 50-1500Hz, 80-1500Hz, 100-1500Hz etc.) and/or the ratio of the difference to the first resonance frequency or the second resonance frequency is within a certain range (for example, 0.02-0.7, 0.15-0.6), which can make the frequency response curve between the corresponding resonance peaks relatively flat.
  • the sensitivity improvement of the sensing device 1000 within the second resonance frequency is relatively high and stable.
  • the increase of the sensitivity can be 10dBV-60dBV, 20dBV-50dBV, 30dBV-40dBV and so on.
  • the proportion of the air bubbles to the volume of the cavity may be any value such as 5%, 10%, 20%, 30%, 50%, 70%, 95%, and the like.
  • the bubbles can be small bubbles (eg, 2%-10% of the cavity volume), medium and small bubbles (eg, 10%-20% of the cavity volume), medium-sized bubbles (eg, bubbles that account for 20%-50% of the cavity volume), large bubbles (eg, bubbles that account for 50%-90% of the cavity volume), and the like.
  • the number of bubbles can be 1, 2, 3, 4 or more.
  • the bubbles may be located at various locations within the cavity (eg, inside the sensing element 1010).
  • the frequency response curves of the sensing device 1000 including the sensing element 1010 are different (eg, the magnitude of the at least one second resonant frequency and the corresponding different peak sensitivities).
  • the sensing element 1010 regardless of whether the air bubble is attached to the sensing element 1010 (eg, attached to the detection component) or not attached to the sensing element 1010, it is possible to operate at low or mid-low frequency or mid-high frequency before the frequency band (eg, In frequency bands less than 7000Hz, 5000Hz, 3000Hz, 1000Hz, 500Hz, 100Hz, 50Hz), the sensitivity of the sensing device 1000 is improved to a certain extent (for example, 10-60dBV, 10-40dBV, 15-40dBV, etc.).
  • the size of the lift is also related to the size and/or location of the bubbles.
  • the sensitivity of the sensing device 1000 increases as the volume of the bubble increases.
  • the sensing device 1000 containing small and medium air bubbles has a low frequency or low frequency or a frequency band before the high frequency (eg, less than 7000 Hz, 5000 Hz, 3000 Hz, 1000 Hz, 500 Hz, 100 Hz, 50 Hz) compared to the sensing device e containing small air bubbles.
  • the sensitivity increase is about 5-30dBV.
  • the sensing device 1000 containing medium-sized bubbles has low frequency or low frequency or mid-high frequency frequency band (for example, in the frequency band less than 7000Hz, 5000Hz, 3000Hz, 1000Hz, 500Hz, 100Hz, 50Hz)
  • the sensitivity increase is about 5-30dBV.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Otolaryngology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Pressure Sensors (AREA)

Abstract

一种传感装置(200,250,900,1000),包括加速度传感器(100),具有第一谐振频率,加速度传感器(100)包括壳体(110,610)和传感元件(120,400,500,600,800,910,1010),传感元件(120,400,500,600,800,910,1010)位于由壳体(110,610)形成的腔体(610)内;和至少一个谐振系统(210,260),耦合于传感元件(120,400,500,600,800,910,1010),其中至少一个谐振系统(210,260)为传感装置(200,250,900,1000)提供至少一个第二谐振频率,至少一个第二谐振频率与第一谐振频率相同或不同。

Description

加速度传感装置
交叉引用
本申请要求2021年4月23日递交的申请号为202110445739.3的中国专利申请的优先权,其全部内容以引用的方式并入此申请。
技术领域
本申请涉及传感装置,尤其涉及一种加速度传感装置。
背景技术
对于加速度传感器(例如,电容式、压电式或压阻式加速度传感器),当受到频率接近其固有谐振频率的外力或外部加速度作用时,会产生较大的振幅,从而输出较大的电信号。因此,其对外力或外部加速度的响应会表现为频响曲线在谐振频率附近产生共振峰,在谐振频率附近,其灵敏度较高,而其他频率下的灵敏度较低,导致品质因子Q值较高,输出增益不稳定。同时,在工作状态下,加速度传感器往往会受到较大的外部冲击。当外部冲击载荷较高时,可能会造成加速度传感器内部器件的损坏。因此,希望提供一种能够调节器件的品质因子Q值,提高器件的灵敏度,具有能够稳定输出增益,并提高抗冲击可靠性的加速度传感装置。
发明内容
本申请实施例提供一种传感装置。所述传感装置包括:加速度传感器,具有第一谐振频率,所述加速度传感器包括壳体和传感元件,所述传感元件位于由所述壳体形成的腔体内;至少一个谐振系统,耦合于所述传感元件,其中所述至少一个谐振系统为所述传感装置提供至少一个第二谐振频率,所述至少一个第二谐振频率与所述第一谐振频率相同或不同。
在一些实施例中,所述传感元件包括:衬底;质量元件,响应于外部加速度,相对于所述衬底运动,所述质量单元上设置有至少一个动电极;和固定于所述衬底上的至少一个定电极,所述至少一个动电极与所述至少一个定电极构成至少一个检测电容用于确定所述外部加速度的大小。
在一些实施例中,所述至少一个动电极包括:沿第一方向排布并垂直于第一方向的至少一组第一动电极,每组第一动电极包括一个或多个第一动电极;和沿第二方向排布并垂直于第二方向的至少一组第二动电极,每组第二动电极包括一个或多个第二动电极;所述至少一个定电极包括:平行并相对于每个第一动电极设置的第一定电极,所述至少一组第一动电极与相对应的第一定电极构成第一方向检测电容;和平行并相对于每个第二动电极设置的第二定电极,所述至少一组第二动电极与相对应的第二定电极构成第二方向检测电容,所述至少一组第一动电极和所述至少一组第二动电极与对应的第一定电极和第二定电极构成第三方向检测电容。
在一些实施例中,所述第二方向垂直于所述第一方向。
在一些实施例中,所述至少一组第一动电极包括偶数组第一动电极,所述偶数组第一动电极沿所述第一方向位于所述质量元件的两侧;所述至少一组第二动电极包括偶数组第二动电极,所述偶数组第二动电极沿所述第二方向位于所述质量元件的两侧。
在一些实施例中,每组第一动电极沿所述第一方向设有第一动电极轴和垂直于所述第一方向的第一固定动电极,所述第一动电极轴和第一固定动电极通过第一弹性元件连接至所述衬底;每组第二动电极沿所述第二方向设有第二动电极轴和垂直于所述第二方向的第二固定动电极,所述第二动电极轴和第二固定动电极通过第二弹性元件连接至所述衬底,所述传感装置进一步包括:对应于每组第一动电极的一对第一定电极轴和一对第一固定定电极,该对第一定电极轴相对所述第一方向对称设置,该对第一固定定电极垂直于第一方向,每组第一动电极的第一动电极轴夹设在该对第一定电极轴之间,第一固定动电极夹设在该对第一固定定电极之间;和对应于每组第二动电极的一对第二定电极轴和一对第二固定定电极,该对第二定电极轴相对所述第二方向对称设置,该对第二固定定电极垂直于第二方向,每组第二动电极的第二动电极轴夹设在该对第二定电极轴之间,第二固定动电极夹设在该对第二固定定电极之间。
在一些实施例中,对应于每组第一动电极的一对第一定电极轴与第一固定定电极及第一固定动电极形成三角区域;对应于每组第二动电极的一对第二定电极轴与第二固定定电极及第二固定动电极形成三角区域。
在一些实施例中,相邻的第一定电极轴与第二定电极轴平行设置,且具有一定间距。
在一些实施例中,每个第一动电极具有平行于所述质量元件上表面的第一动电极顶面和第一动电极底面,相应的第一定电极具有平行于所述质量元件上表面的第一定电极顶面和第一定电极底面,所述第一动电极顶面相较所述第一定电极顶面远离质量元件的上表面;每个第二动电极具有平行于所述质量元件上表面的第二动电极顶面以及第二动电极底面,相应的第二定电极具有平行于所述质量元件上表面的第二定电极顶面以及第二定电极底面,所述第二动电极顶面相较所述第二定电极顶面靠近质量元件的上表面。
在一些实施例中,所述第一定电极顶面与第二动电极顶面具有相同的水平高度。
在一些实施例中,所述传感元件进一步包括:固定在所述衬底上的第一支撑部件,所述质量元件通过弹性连接单元连接在所述第一支撑部件上,所述第一支撑部件位于所述质量元件的中心,所述弹性连接单元沿第一方向延伸,所述弹性连接单元的中线与所述质量元件在第一方向的中线重合,在第二方向上,所述质量元件位于弹性连接单元两侧的部分的质量不相等,其中,所述至少一个定电极包括:至少两个第一方向定电极;沿第一方向延伸的至少两个第二方向定电极,所述第二方向定电极位于所述质量元件沿第二方向的中线上,且相对于所述第一支撑部件对称;和设置于所述弹性连接单元两侧的至少两个第三方向定电极,所述至少一个动电极包括:分别对应于所述至少两个第一方向定电极、至少两个第二方向定电极以及至少两个第三方向定电极的第一方向动电极、第二方向动电极以及第三方向动电极,分别构成第一方向检测电容、第二方向检测电容以及第三方向检测电容。
在一些实施例中,所述至少两个第一方向定电极沿第二方向延伸,所述至少两个第一方向定电极分布于所述质量元件沿第二方向的中线对应衬底位置的两侧,并相对于所述第二方向的中线轴对称或相对于所述第一支撑部件中心对称。
在一些实施例中,所述至少两个第一方向定电极不在所述质量元件沿第一方向的中线上。
在一些实施例中,每个第一方向定电极包括平行设置的两个第一方向定电极单元,与所述第一方向定电极相对应的第一方向动电极包括两个第一方向动电极单元,所述两个第一方向动电极单元与所述两个第一定电极单元构成第一方向差分电容结构;每个第二方向定电极包括平行设置的两个第二方向定电极单元,与所述第二方向定电极相对应的第二方向动电极包括两个第二方向动电极单元,所述两个第二方向动电极单元与所述两个第二方向定电极单元构成第二方向差分电容结构。
在一些实施例中,所述至少两个第一方向定电极位于所述质量元件沿第一方向的中线上。
在一些实施例中,每个第一方向定电极包括平行设置的两个第一方向定电极单元,与所述第一方向定电极相对应的第一方向动电极包括两个第一方向动电极单元,所述两个第一方向动电极单元与所述两个第一定电极单元构成第一方向差分电容结构;每个第二方向定电极包括平行设置的两个第二方向定电极单元,与所述第二方向定电极相对应的第二方向动电极包括两个第二方向动电极单元,所述两个第二方向动电极单元与所述两个第二方向定电极单元构成第二方向差分电容结构,其中,所述至少两个第一方向定电极中的至少一个第一方向定电极的一侧的第一方向定电极单元电连接于与所述至少一个第一方向定电极关于所述质量元件沿第二方向的中线轴对称的另一第一方向定电极的相反一侧的第一方向定电极单元。
在一些实施例中,所述至少两个第三方向定电极分别为所述至少两个第三方向检测电容的下电极,所述至少两个第三方向动电极分别为所述至少两个第三方向检测电容的上电极。
在一些实施例中,所述质量元件其中一侧设置有减重孔或配重块,以使所述质量元件两侧的质量不相等。
在一些实施例中,所述传感元件进一步包括:固定于所述衬底的第二支撑部件,所述质量元件通过所述第二支撑部件连接于所述衬底,所述至少一个定电极包括:耦合件,所述耦合件包绕所述质量元件,并与所述质量元件之间设置有间隙,构成所述至少一个检测电容。
在一些实施例中,所述衬底的材质包含硅,所述第二支撑部件、所述质量元件和所述耦合件的材质包含掺杂硅。
在一些实施例中,所述传感装置进一步包括:集成芯片,所述集成芯片分别与所述第二支撑部件及所述耦合件电连接。
在一些实施例中,所述集成芯片位于所述壳体的外表面,所述壳体上设置有通孔,导电元件穿过所述通孔,连接所述集成芯片与第二支撑部件及所述耦合件。
在一些实施例中,所述质量元件包括:第一质量元件;和第二质量元件,所述传感装置进一步包括,第一固定元件,连接于所述衬底,并包绕所述第一质量元件,所述第一固定元件通过至 少一个第一柔性部件连接至所述第一质量元件,所述第二质量元件包绕所述第一固定元件;和第二固定元件,连接于所述衬底,并包绕所述第二质量元件,所述第二固定元件通过至少一个第二柔性部件连接至所述第二质量元件,所述至少一个动电极包括:设置于第二质量元件内侧并向内延伸的多个第一动电极,所述多个第一动电极至少沿第一方向和第二方向分布;和设置于所述第一质量元件底部的第二动电极;所述至少一个定电极包括:设置于第一固定元件外围并向外延伸的多个第一定电极,所述多个第一定电极与所述多个第一动电极对应并间隔设置,构成第一、第二方向检测电容;和设置于所述衬底上的第二定电极,与所述第二动电极构成第三方向检测电容。
在一些实施例中,所述第一质量元件和/或第二质量单元上设置有多个孔。
在一些实施例中,所述第一质量元件、第二质量元件、第一固定元件、或第二固定元件中至少一个的轮廓为方形。
在一些实施例中,所述至少一个谐振系统包括第一谐振系统,所述第一谐振系统为弹簧-质量-阻尼系统。
在一些实施例中,所述第一谐振系统由第一介质构成,所述第一介质充满所述腔体,所述加速度传感元件浸没于所述第一介质中。
在一些实施例中,所述第一介质为液体,所述液体包括硅油、甘油、机油、润滑油、液压油中的至少一种。
在一些实施例中,所述第一谐振系统为连接于所述加速度传感元件的至少一个第一弹性结构,所述第一弹性结构包括弹性部件和质量单元。
在一些实施例中,所述至少一个谐振系统包括第二谐振系统,所述第二谐振系统为弹簧-质量-阻尼系统与弹簧-阻尼系统的组合。
在一些实施例中,所述第二谐振系统由第一介质和第二介质构成,所述第一介质和第二介质填充于所述腔体内,所述加速度传感元件至少部分浸没于所述第一介质和/或第二介质中。
在一些实施例中,所述第一介质为液体,所述第二介质为气体,所述气体以气泡的形式分布于所述液体。
在一些实施例中,所述气泡的大小占所述腔体体积的比例为30%-50%。
在一些实施例中,所述气泡可以通过未排出腔体的空气、气囊或疏水材料中的至少一种形成。
在一些实施例中,所述第一介质和第二介质为具有不同属性且未互溶的液体。
在一些实施例中,所述第二谐振系统包括连接于所述加速度传感元件的至少一个第二弹性结构,所述第二弹性结构包括第一弹性结构和至少一个轻质弹性部件。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请的一些实施例提供的示例性加速度传感器100的示意图。
图2A是根据本申请的一些实施例提供的示例性传感装置200的力学等效示意图。
图2B是根据本申请的一些实施例提供的内部充满液体的传感装置200的示意图。
图2C是根据本申请的一些实施例提供的示例性传感装置250的力学等效示意图。
图2D是根据本申请的一些实施例提供的内部填充液体和气泡的传感装置250的示意图。
图3A是根据本申请的一些实施例提供的传感装置200或250的示例性频响曲线。
图3B是根据本申请的一些实施例提供的传感装置200或250的示例性频响曲线。
图3C是根据本申请的一些实施例提供的传感装置200或250的示例性频响曲线。
图4A和4B是根据本申请的一些实施例提供的传感元件400的示例性结构示意图。
图5A-5D是根据本申请的一些实施例提供的传感元件500的示例性结构示意图。
图6A-6E是根据本申请的一些实施例提供的传感元件600的示例性结构示意图。
图7A是根据本申请的一些实施例提供的包含传感元件600的加速度传感器的制备方法的示例性流程。
图7B是根据本申请的另一些实施例提供的包含传感元件600的加速度传感器的制备方法的示例性流程。
图7C是根据本申请的又一些实施例提供的包含传感元件600的加速度传感器的制备方法的示例性流程。
图8A和8B是根据本申请的一些实施例提供的传感元件800的示例性结构示意图。
图9是根据本申请的一些实施例提供的传感装置900的示例性结构示意图。
图10是根据本申请的一些实施例提供的传感装置1000的示例性结构示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本说明书实施例中提供一种加速度传感装置(以下简称传感装置)。所述传感装置包括加速度传感器以及至少一个与所述加速度传感器耦合的谐振系统。所述传感器可以是电容式加速度传感器,即变电容式加速度传感器。所述加速度传感器可以具有第一谐振频率,该第一谐振频率与所述加速度传感器本身的属性(例如,形状、尺寸、结构、材料等)有关。所述至少一个谐振系统可以由与所述加速度传感器(例如,所述动电极)耦合的固体结构、液体、气体或其任意的组合形成。例如,所述加速度传感器的腔体内可以填充液体。该液体和腔体内的气体(若有)会影响所述加速度传感器对外部加速度信号的响应,形成所述至少一个谐振系统。又例如,所述加速度传感器(例如,所述动电极)可以与一个振动组件连接,该振动组件由弹性部件与质量单元(例如,质量块)组成,所述振动组件会影响所述加速度传感器对外部加速度信号的响应,形成所述至少一个谐振系统。所述至少一个谐振系统可以为所述传感装置额外提供至少一个第二谐振频率。所述至少一个第二谐振频率与所述第一谐振频率不同。通过调整加速度传感器(例如,所述外壳和/或传感元件)和/或形成所述至少一个谐振系统的物质/结构的参数(例如液体粘度、气泡大小等),可以改变所述第一谐振频率和所述至少一个第二谐振频率之间的关系,从而达到例如,调节传感装置Q值,提高传感装置的灵敏度,可靠性或使传感装置的输出增益在所需频段(例如,中低频)更加稳定的目的。
图1是根据本申请的一些实施例提供的示例性加速度传感器100的示意图。
加速度传感器100可以是电容式加速度传感器、压电式加速度传感器、压阻式加速度传感器等。仅仅作为示例,本申请以电容式加速度传感器为例,对加速度传感器100进行描述,并不作为对加速度传感器100的限定。。加速度传感器包括壳体和加速度传感元件。所述加速度传感元件位于壳体形成的腔体内。所述加速度传感元件包括至少一个电极对。每个电极对包括一个定电极和一个动电极,从而构成一个电容器。响应于外部的加速度信号,所述动电极相对于所述定电极发生位移,使得所述定电极与所述动电极之间的距离和/或正对面积发生改变,从而改变电容器的电容。电容的改变使得所述电容器存储的电量发生变化,从而产生可测量的电流信号。
示例性地,如图1所示,加速度传感器100包括壳体110和传感元件120。壳体110可以为内部具有腔体(即中空部分)的规则或不规则的立体结构,例如,可以是中空的框架结构体,包括但不限于立方体、球体、圆柱体、正多面体等规则形状,或任意不规则形状。壳体110用于容置传感元件120。壳体110可以采用金属(例如,不锈钢、铜等)、塑料(例如,聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)及丙烯腈─丁二烯─苯乙烯共聚合物(ABS)等)、无机非金属材料(例如,单晶硅、掺杂硅等)、复合材料(如金属基复合材料或非金属基复合材料)等。在一些实施例中,壳体110所用的材料为硅。传感元件120可以位于壳体110的腔体或者至少部分悬空设置于壳体110的腔体。传感元件120包括质量元件121(例如,质量块)。质量元件121可以为方块、长方体、圆柱、圆环等其形状。本申请说明书中不作具体限定。质量元件121设置于弹性薄膜124上。弹性薄膜124可以为聚四氟乙烯(PTFE)薄膜、聚二甲基硅氧烷(PDMS)薄膜等高分 子弹性膜,复合薄膜(例如,塑料薄膜(如聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)和聚酯(PET)等)、玻璃纸、纸张和/或金属箔AL等复合形成的薄膜)等。
质量元件121包括上下两个表面。所述上下表面上分别设置有电极122和123。例如,质量元件121的上下表面上分别涂覆有导电层以形成电极122和123。又例如,质量元件121的上下表面上分别连接有导电层以形成电极122和123。示例性的导电层可以包括金属、合金材料、金属氧化物材料、石墨烯、硅等,或其任意组合。在一些实施例中,金属与合金材料可以包括镍、铁、铅、铂、钛、铜、钼、锌,或其任意组合。在一些实施例中,合金材料可以包括铜锌合金、铜锡合金、铜镍硅合金、铜铬合金、铜银合金等,或其任意组合。在一些实施例中,金属氧化物材料可以包括RuO2、MnO2、PbO2、NiO等,或其任意组合。本申请所述的“连接”可以理解为同一结构上不同部位之间的连接,或者在分别制备不同部件或结构后,将各独立部件或结构通过焊接、铆接、卡接、螺栓连接、胶黏剂粘合等方式固定连接,或者在制备过程中,通过物理沉积(例如,物理气相沉积)或者化学沉积(例如,化学气相沉积)的方式将第一部件或结构沉积在第二部件或结构上。
相应地,壳体110的上下内壁上分别设置有电极125和126。电极125和126可以分别与电极122和123相对设置。在一些实施例中,电极125和126的形状和/或尺寸可以与电极122和123相同或相近。电极125和126的设置方式与电极122和124可以相同或不同。例如,通过物理生长的方式在壳体110的上下内壁上生成导电层,以形成电极125和126。电极125和126的材料与电极122和124可以相同或不同。例如,电极122,123,125和126可以均采用某一金属材料。电极125与电极122构成第一电容器的两极,电极126与电极123构成第二电容器的两极。
外部存在加速度信号(例如,沿图中竖直方向上的加速度信号)时,设置于弹性薄膜124上的质量元件121沿着加速度信号的方向,发生振动。例如,当质量元件121向上运动时,构成第一电容器的电极125与电极122之间的距离减小,电容变大;构成第二电容器的电极126与电极123之间的距离减大,电容变小,从而形成一个差分电容输出信号。同时,加速度信号的幅值越大(即加速度越大),质量元件121的运动位移越大,第一电容器的电极125与电极122之间的距离越小,电容越大;第二电容器的电极126与电极123之间的距离越大,电容越小,差分电容输出信号幅值越大。由此可知,所述差分电容输出信号与加速度信号的大小成正比。由此可以通过加速度传感器100产生的差分电容输出信号表征外部加速度信号的大小。
需要注意的是,以上对于加速度传感器100的描述,仅为描述方便,并不能把本申请限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对各个装置/模块进行任意组合,或者构成子系统与其他装置/模块连接。例如,传感元件120中的质量元件121和弹性薄膜124可以替换为振动杆(例如悬臂梁)。该振动杆可以为条状或板状结构体,其一端与壳体110的上、下内壁或侧壁连接,另一端不与壳体110连接或接触,使另一端悬空设置于壳体110的腔体。在一些实施例中,振动杆为多层结构。所述多层结构包括至少一层弹性层和至少一层阻尼层。阻尼层可以是指具有阻尼特性的结构体。振动杆的上下表面分别设置有电极122和123。当存在外部加速度时,壳体110带动振动杆发生运动,由于振动杆与壳体110的属性不同,使得振动杆与壳体110之间无法保持完全一致的运动,从而产生相对运动,进而使振动杆距离壳体110的上下内壁的距离发生变化,使第一电容器和第二电容器的电容发生变化,产生差分电容输出信号。
图2A是根据本申请的一些实施例提供的示例性传感装置200的力学等效示意图。
传感装置200包括加速度传感器100和第一谐振系统210。在一些实施例中,传感装置200可以视为在加速度传感器100的基础上加入第一谐振系统210。示例性地,在本实施例中,第一谐振系统210可以为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。仅仅作为示例,以悬臂梁式加速度传感器为例,第一谐振系统210可以耦合于壳体110和传感元件120之间。由于第一谐振系统210的作用,壳体110接收到外部振动信号时,所述外部振动信号将分别通过与传感元件120连接的壳体区域以及与第一谐振系统210连接的壳体区域传递至传感元件120。因此,传感装置200的力学响应较加速度传感器100发生改变。相应的,传感装置200的电学、声学和/或热学响应较加速度传感器100发生改变。
在一些实施例中,第一谐振系统210可以由连接于传感元件120且具有一定质量的弹性结构(例如,弹性杆、弹性片、弹性块、弹性网状支架、弹性连接结构(例如,轻质弹簧)与质量元件(例如,质量块)的复合结构等)形成。例如,第一谐振系统210可以包括至少一根弹性杆。所述至少一根弹性杆的两端分别固定连接于壳体110和传感元件120。又例如,第一谐振系统210可以是至少一组弹性连接结构(例如,轻质弹簧、轻质弹性杆等)与质量元件的组合。所述至少一组 弹性结构中的每个弹性连接结构的两端分别连接于壳体110和质量元件。所述质量元件固定连接或者放置于所述传感元件120。在一些实施例中,第一谐振系统210也可以是与传感元件120一体化制造成型。例如,弹性杆形式的第一谐振系统210可以与传感元件120通过注塑的方式、或者物理生长的方式一体化制造成型。
在一些实施例中,第一谐振系统210可以由向加速度传感器100的腔体内填充液体形成。例如,所述液体充满壳体110内的空腔,传感元件120被包裹在所述液体中。图2B是根据本申请的一些实施例提供的内部充满液体的传感装置200的示意图。所述液体可以选用具备安全性能(如不易燃不易爆)、稳定性能(如不易挥发、不发生高温变质等)的液体。例如,所述液体可以包括油(例如硅油、甘油、蓖麻油、机油、润滑油、液压油(例如航空液压油)等)、水(包括纯水、其他无机物或有机物的水溶液等(例如盐水))、油水乳化液、或其他满足其性能要求的液体,或其中一种或多种的组合。
所述液体的密度和运动粘度分别在一定密度范围和运动粘度范围内。在一些实施例中,所述密度范围和运动粘度范围可以由用户设定或基于传感装置200的性能(例如灵敏度、底噪水平、共振峰峰值、共振峰所在频率范围、峰谷值和/或品质因子Q等)确定。在一些实施例中,所述液体可以选用硅油。硅油具有耐高温、不易挥发、粘度范围广等特点,密度约为0.94kg/m 3,可选的运动粘度范围较广(例如,0.1-1000里斯托克斯(cst))。
在一些实施例中,传感装置200的频响曲线包括至少两个共振峰。所述至少两个共振峰包括第一共振峰和第二共振峰。第一共振峰为加速度传感器100对应的共振峰,其对应的谐振频率主要与传感元件120的属性(例如,形状、材料、结构等)有关。第二共振峰为加速度传感器100的附加系统(对于传感装置200,附加系统为第一谐振系统210)作用产生的共振峰,其对应的谐振频率主要与附加系统的一个或多个力学参数(例如,谐振系统等效的弹簧(Km4),质量(Mm4),阻尼(Rm4)等)有关。为了使传感装置200能够适用于不同的场景,第一共振峰对应的谐振频率(也叫作第一谐振频率)和第二共振峰对应的谐振频率(也叫作第二谐振频率)之间可以满足不同的关系。例如,第二谐振频率可以小于、等于或大于第一谐振频率。
仅仅出于说明的目的,由于第一谐振系统210对应的第二共振峰的存在,传感装置200的频响曲线,在特定频段(例如,中低频段、中高频段等)会有所提升,使得其灵敏度较加速度传感器100会有所提高。另外,由于第一谐振系统210作用于传感元件120,加速度传感器100的振动特性较没有第一谐振系统210时会有所改变。具体地,第一谐振系统210作用于传感元件120,可以影响加速度传感器100的质量、刚度和/或阻尼等,其效果相当于使得传感装置200的第一共振峰的Q值相对于不连接第一谐振系统210的加速度传感器100的Q值有所改变(例如,Q值减小)。关于传感装置200的频响曲线以及第一共振峰、第二共振峰的更多具体描述,可以参考本申请说明书其他地方,例如图3A和图3B及其描述。
同时,第一谐振系统210可以减小传感元件收到的外部冲击以保护传感元件。例如,若第一谐振系统210为充满加速度传感器100腔体的液体,由于液体具有粘滞作用,同时液体的自身刚度相对器件材料小很多,当传感装置200接收外部冲击载荷时,第一谐振系统210可以提高传感装置200的抗冲击可靠性。具体地,由于液体的粘滞作用,可以吸收并消耗部分冲击能量,使得其中传感元件120受到的冲击载荷大大减小,因此可以保护传感元件120,延长其工作寿命。
另外,加速度传感器100在加工过程中由于存在应力,特别是悬臂梁类器件,常出现器件变形情况,例如弯曲(沿长度、宽度)、扭转等。然而悬臂梁类结构是加速度传感器常用的结构。传感装置200由于壳体内充满液体,可以利用的液体的重力、表面张力、粘滞力等,矫正器件的变形,使得器件变形更小,输出更稳定,更加接近实际设计效果。
图2C是根据本申请的一些实施例提供的示例性传感装置250的力学等效示意图。
传感装置250包括加速度传感器100和第二谐振系统260。在一些实施例中,传感装置250可以视为在传感装置200的基础上调整第一谐振系统210以形成第二谐振系统260。示例性地,在本实施例中,第二谐振系统260相比于第一谐振系统210新增加了弹簧(Km3)和阻尼(Rm3)。第二谐振系统260可以设置于壳体110和传感元件120之间。例如,如图2C所示,第二谐振系统260的弹簧(Km3)-阻尼(Rm3)可以与第一谐振系统210的弹簧(Km4)-质量(Mm4)-阻尼(Rm4)串联,并间接作用于传感元件120。又例如,第二谐振系统260的弹簧(Km3)-阻尼(Rm3)可以与第一谐振系统210的弹簧(Km4)-质量(Mm4)-阻尼(Rm4)串联,并直接作用于传感元件120。由于第二谐振系统260的作用,壳体110接收到外部振动信号时,所述外部振动信号将分别通过与传感元件120连接的壳体区域以及与第二谐振系统连接的壳体区域通过第二谐振系统260传递至传感元件120。因此,传感装 置250的力学响应较传感装置200和加速度传感器100均发生改变。相应的,传感装置250的电学、声学和/或热学响应较传感装置200和加速度传感器100发生改变。同时,由于第二谐振系统260新引入的弹簧(Km3)和阻尼(Rm3),传感装置250的振动特性(例如,刚度-阻尼等)较传感装置200和加速度传感器100发生改变。
在一些实施例中,第二谐振系统260可以是连接于传感元件120的弹性结构。所述弹性结构可以包括多级连接的弹性杆、弹性绳、弹性片、弹簧、弹性网状支架、弹性块等。例如,第二谐振系统260可以包括至少一个质量较小的弹性杆和/或弹簧,以及一个质量较大的弹性杆和/或弹簧。此时,质量较大的弹性杆和/或弹簧可以等效为上述弹簧(Km4)-质量(Mm4)-阻尼(Rm4),质量较小的弹性杆和/或弹簧可以等效为上述弹簧(Km3)和阻尼(Rm3)。所述弹性杆和/或弹簧的两端分别固定连接于壳体110和传感元件120。在一些实施例中,第二谐振系统260中质量较小的弹性杆(例如采用低密度材料制成的弹性杆)和质量较大的弹性杆(例如采用高密度材料制成的弹性杆)可以通过注塑的方式、物理生长的方式一体化制造成型。在一些实施例中,第二谐振系统260的多级弹性结构也可以与传感元件120一体化制造成型。
在一些实施例中,第二谐振系统260可以由向加速度传感器100的腔体内填充不同的介质形成。例如,可以由向加速度传感器100的腔体内填充部分液体,以在腔体内形成液体和气泡共存的第二谐振系统260。所述气泡可以是由未排出腔体的空气形成的气泡,通过气囊(例如,聚酯薄膜、尼龙薄膜、塑料薄膜、复合薄膜等薄膜包裹气体)形成的气泡,和/或通过在传感元件上涂覆疏水涂层形成的气泡。所述气泡中的气体可以是空气、氧气、氮气、惰性气体等。此时,腔体内的液体可以等效为上述弹簧(Km4)-质量(Mm4)-阻尼(Rm4),气泡可以等效为上述弹簧(Km3)和阻尼(Rm3)。又例如,可以向加速度传感器100的腔体内填充密度不同且互不相溶的液体以形成第二谐振系统260。在一些实施例中,向加速度传感器100的腔体内填充的介质可以由用户设定或基于传感装置250的性能(例如灵敏度、底噪水平、共振峰峰值、共振峰所在频率范围、峰谷值和/或品质因子Q等)确定。
图2D是根据本申请的一些实施例提供的内部填充液体和气泡的传感装置250的示意图。传感装置250中,壳体110的腔体内填充液体和气泡。传感装置250中的液体可以选用与传感装置200相同或不同种类的液体。例如,传感装置250和传感装置200中均使用运动粘度相同的硅油进行填充。又例如,传感装置250和传感装置200中分别使用不同种类的液体或运动粘度不同的同种液体(例如,运动粘度分别为0.65cst和200cst的硅油)进行填充。所述液体和气泡可以通过特定方式注入或形成于壳体110的腔体。
在一些实施例中,传感装置250的频响曲线包括至少两个共振峰。所述至少两个共振峰包括第三共振峰和第四共振峰。第三共振峰为加速度传感器100对应的共振峰,第四共振峰为加速度传感器100的附加系统(对于传感装置250,附加系统为第二谐振系统260)作用产生的共振峰。
在一些实施例中,传感装置250的第三谐振频率(第三共振峰对应的谐振频率)和第四谐振频率(第四共振峰对应的谐振频率)之间可以满足不同的关系。示例性地,当第二谐振系统260由液体和气泡共同形成时,由于气泡的可压缩幅度大(相比于纯液体的情况),刚度小,传感装置250可以具有位于低频或者中低频频段、中高频的谐振频率。例如,所述第四谐振频率为低频、中低频、或中高频,所述第三谐振频率可以大于所述第四谐振频率,例如第三谐振频率为更高频段。又例如,所述第四谐振频率均为中低频,其中,低频、中低频、中高频是指频率数值处于一定范围内的频率。例如,低频或中低频或中高频之前频段(小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内),更高频段对应的频率范围为2000Hz以上、5000Hz以上、8000Hz以上等。第三谐振频率相比第四谐振频率为更高的频率,可选地,两者谐振频率差值为100-6000Hz。当传感装置250在低频或者中低频范围内具有谐振频率时,其在低频的灵敏度相较于加速度传感器100会更高;当传感装置250进一步在高频或中高频具有谐振频率时,其频响曲线在中低频范围内也更为平坦,更有利于实现对该频段内有效信号的获取。
另外,由于第二谐振系统260作用于传感元件120,因此,加速度传感器100的振动特性较没有第二谐振系统260时会有所改变。具体地,第二谐振系统260作用于传感元件120,可以影响加速度传感器100的刚度和/或阻尼等,其效果相当于使得传感装置250的第三共振峰的Q值相对于不连接第二谐振系统260的加速度传感器100有所改变(例如,Q值减小)。关于传感装置250的频响曲线以及第三共振峰、第四共振峰的更多具体描述,可以参考本申请说明书其他地方,例如图3A和图3B及其描述。
同时,第二谐振系统260可以减小传感元件收到的外部冲击以保护传感元件。例如,若壳体110的腔体内引入液体和气泡,提高传感装置250接收外部冲击载荷时的抗冲击可靠性。具体地,由于液体的粘滞作用和气体的可压缩幅度大,可以吸收并消耗部分冲击能量,使得其中传感元件120受到的冲击载荷大大减小,因此可以保护传感元件120,延长其工作寿命。
另外,加速度传感器100在加工过程中由于存在应力,常出现器件变形情况。通过在腔室中注入液体和气泡,可以利用的液体的重力、表面张力、粘滞力等,矫正器件的变形,使得传感装置250变形更小,输出更稳定,更加接近实际设计效果。
需要注意的是,以上对于传感装置200和250的描述,仅为示例性描述,并不能把本说明书限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对其结构、模块进行任意组合,或者构成子系统与其他模块连接。例如,其中的传感元件可以为图1中所示的通过弹性薄膜124支撑的质量元件121,其力学等效、频响曲线等相同或相似。
图3A是根据本申请的一些实施例提供的传感装置200或250的示例性频响曲线。
示例性地,如图3A所示,虚线表示的频响曲线310为加速度传感器100的频响曲线,实线表示的频响曲线320为传感装置200或250的频响曲线。横坐标表示频率,单位为赫兹Hz,纵坐标表示灵敏度,单位为伏特分贝dBV。其中,1dBV=20lg(S),灵敏度S的单位为V/g。频响曲线310包括共振峰311,共振峰311对应加速度传感器100的谐振频率。频响曲线320包括第一(或第三)共振峰321和第二(或第四)共振峰322。对于传感装置200,第一共振峰321对应的频率为第一谐振频率,第二共振峰322是由第一谐振系统210作用而形成的,对应的频率为第二谐振频率;对于传感装置250,第三共振峰321对应的频率为第三谐振频率,第四共振峰322是由第二谐振系统260作用而形成的,第四共振峰322对应的频率为第四谐振频率。
需要说明的是,图中所示第二(或第四)共振峰322在第一(或第三)共振峰321左侧,即第二(或第四)共振峰322对应的频率小于第一(或第三)共振峰对应的频率。在一些实施例中,通过改变传感元件或第一(或第二)谐振系统中力学参数,可以使得第二(或第四)共振峰322对应的频率大于第一(或第三)共振峰321对应的频率,即第二(或第四)共振峰322在第一(或第三)共振峰321右侧。例如,对于内部充满液体的传感装置200,其第二(或第四)共振峰322可能在第一(或第三)共振峰321的左侧或右侧,其位置可以与填充的液体的属性(例如,密度、运动粘度、体积等)相关。例如,如果液体的密度变小或运动粘度变大,其谐振峰会往高频偏移。
在一些实施例中,共振峰311所对应的频率在10Hz-12000Hz范围内。在一些实施例中,共振峰311所对应的频率在10Hz-10000Hz范围内。在一些实施例中,共振峰311所对应的频率在50Hz-10000Hz范围内。在一些实施例中,共振峰311所对应的频率在100Hz-7000Hz范围内。在一些实施例中,共振峰311所对应的频率在1500Hz-5000Hz范围内。在一些实施例中,共振峰311所对应的频率在200Hz-5000Hz范围内。在一些实施例中,共振峰311所对应的频率在200Hz-4000Hz范围内。在一些实施例中,共振峰311所对应的频率在300Hz-4000Hz范围内。
在一些实施例中,第一(或第三)共振峰321所对应的频率在10Hz-12000Hz范围内。在一些实施例中,第一(或第三)共振峰321所对应的频率在50Hz-10000Hz范围内。在一些实施例中,第一(或第三)共振峰321所对应的频率在100Hz-10000Hz范围内。在一些实施例中,第一(或第三)共振峰321所对应的频率在150Hz-7000Hz范围内。在一些实施例中,第一(或第三)共振峰321所对应的频率在150Hz-5000Hz范围内。在一些实施例中,第一(或第三)共振峰321所对应的频率在200Hz-5000Hz范围内。在一些实施例中,第一(或第三)共振峰321所对应的频率在200Hz-4000Hz范围内。在一些实施例中,第一(或第三)共振峰321所对应的频率在300Hz-4000Hz范围内。
在一些实施例中,第一(或第三)共振峰321对应的谐振频率(第一谐振频率或第三谐振频率)与共振峰311对应的谐振频率不同。例如,对于壳体110腔体内填充满液体的传感装置200,所述液体作为第一谐振系统210,由于液体不可压缩,导致系统自身刚度变大,则第一共振峰321对应的第一频率较共振峰311对应的谐振频率变大,即第一共振峰321相对于共振峰311右移。
在一些实施例中,第二(或第四)共振峰322所对应的频率在1Hz-12000Hz范围内。在一些实施例中,第二(或第四)共振峰322所对应的频率在1Hz-10000Hz范围内。在一些实施例中,第二(或第四)共振峰322所对应的频率在1Hz-6000Hz范围内。在一些实施例中,第二(或第四)共振峰322所对应的频率在10Hz-5000Hz范围内。在一些实施例中,第二(或第四)共振峰322所对应的频率在10Hz-5000Hz范围内。在一些实施例中,第二(或第四)共振峰322所对 应的频率在50Hz-5000Hz范围内。在一些实施例中,第二(或第四)共振峰322所对应的频率在50Hz-3000Hz范围内。在一些实施例中,第二(或第四)共振峰322所对应的频率在50Hz-2000Hz范围内。在一些实施例中,第二(或第四)共振峰322所对应的频率在100Hz-2000Hz范围内。
在一些实施例中,第四谐振频率低于第二谐振频率。对于壳体110腔体内填充满液体传感装置200,所述液体作为第一谐振系统210,相对而言,壳体110腔体内包含液体和气泡的传感装置250中,液体和气泡分别作为第二谐振系统260,其组合的整体刚度较液体更低,因此第四谐振频率低于第二谐振频率。
在一些实施例中,可以通过调节传感元件的结构、材料以及第一(或第二)谐振系统中的一个或多个力学参数(例如,填充液体的种类、气泡大小等),使得频响曲线320上的两个共振峰321和322之间较为平坦,从而提高传感装置200或250的输出质量。在一些实施例中,共振峰321和322之间的低谷与共振峰321和322中较高峰的峰值的灵敏度差值不高于30dBV,所述灵敏度差值与所述较高峰的峰值的比值不超过0.2。在一些实施例中,共振峰321和322之间的低谷与共振峰321和322中较高峰的峰值的灵敏度差值不高于20dBV,所述灵敏度差值与所述较高峰的峰值的比值不超过0.15。在一些实施例中,共振峰321和322之间的低谷与共振峰321和322中较高峰的峰值的灵敏度差值不高于15dBV,所述灵敏度差值与所述较高峰的峰值的比值不超过0.12。在一些实施例中,共振峰321和322之间的低谷与共振峰321和322中较高峰的峰值的灵敏度差值不高于10dBV,所述灵敏度差值与所述较高峰的峰值的比值不超过0.1。在一些实施例中,共振峰321和322之间的低谷与共振峰321和322中较高峰的峰值的灵敏度差值不高于8dBV,所述灵敏度差值与所述较高峰的峰值的比值不超过0.08。在一些实施例中,共振峰321和322之间的低谷与共振峰321和322中较高峰的峰值的灵敏度差值不高于5dBV,所述灵敏度差值与所述较高峰的峰值的比值不超过0.05。
相应地,共振峰321和322对应的谐振频率的差值(共振峰321的频率以f 0表示(与共振峰311接近),共振峰322的频率以f 1表示,以频率差△f 1表示共振峰321和322对应的谐振频率的差值)在一定范围内,可以使得共振峰321和322之间的频响曲线较为平坦。在一些实施例中,频率差△f 1在20-3000Hz范围内,所述频率差△f 1与f 0的比值在0.02-0.7范围内。在一些实施例中,频率差△f 1在20-2000Hz范围内,所述频率差△f 1与f 0的比值在0.02-0.65范围内。在一些实施例中,频率差△f 1在50-2000Hz范围内,所述频率差△f 1与f 0的比值在0.05-0.65范围内。在一些实施例中,频率差△f 1在50-1500Hz范围内,所述频率差△f 1与f 0的比值在0.05-0.6范围内。在一些实施例中,频率差△f 1在80-1500Hz范围内,所述频率差△f 1与f 0的比值在0.1-0.6范围内。在一些实施例中,频率差△f 1在100-1500Hz范围内,所述频率差△f 1与f 0的比值在0.15-0.6范围内。
如图3A所示,频响曲线320相比频响曲线310,频响曲线320在第二(或第四)共振峰322对应的谐振频率f 1以内的频率范围内灵敏度的提升(即差值,以△V1表示)较高且较稳定。在一些实施例中,所述提升△V1在10dBV-60dBV范围内。在一些实施例中,所述提升△V1在10dBV-50dBV范围内。在一些实施例中,所述提升△V1在15dBV-50dBV范围内。在一些实施例中,所述提升△V1在15dBV-40dBV范围内。在一些实施例中,所述提升△V1在20dBV-40dBV范围内。在一些实施例中,所述提升△V1在25dBV-40dBV范围内。在一些实施例中,所述提升△V1在30dBV-40dBV范围内。
第一谐振系统210或第二谐振系统260的存在会对传感装置200或250中加速度传感器100对应的谐振峰产生抑制作用,使得频响曲线320的第一(或第三)共振峰321处Q值相对较低,在所需频段内(例如,中低频)频响曲线更加平坦化,整体频响曲线320的最高峰的峰值与最低谷的谷值之间差值(又称峰谷值,以△V2表示)在一定范围内。在一些实施例中,所述峰谷值不超过30dBV,所述峰谷值与最高峰的峰值的比值不超过0.2。在一些实施例中,所述峰谷值不超过20dBV,所述峰谷值与最高峰的峰值的比值不超过0.15。在一些实施例中,所述峰谷值不超过10dBV,所述峰谷值与最高峰的峰值的比值不超过0.1。在一些实施例中,所述峰谷值不超过8dBV,所述峰谷值与最高峰的峰值的比值不超过0.08。在一些实施例中,所述峰谷值不超过5dBV,所述峰谷值与最高峰的峰值的比值不超过0.05。
对于传感装置250,在一些实施例中,第四共振峰322对应的频率(即第四谐振频率)为中低频,第三共振峰321对应的频率(即第三谐振频率)为中高频。在一些实施例中,频响曲线320在谐振频率f 1以内的频率范围内的灵敏度最小值与第四共振峰的峰值之间的差值不大于30dBV,其比值不大于0.2。在一些实施例中,频响曲线320在谐振频率f 1以内的频率范围内的灵敏度最小值与第四共振峰的峰值之间的差值不大于20dBV,其比值不小于0.15。在一些实施例中,频响曲线 320在谐振频率f 1以内的频率范围内的灵敏度最小值与第四共振峰的峰值之间的差值不大于10dBV,其比值不大于0.1。
在一些实施例中,传感装置200或250的频响可以通过曲线320的相关参量,例如第一(或第三)共振峰321的峰值、频率、第二(或第四)共振峰322的峰值、频率、Q值、△f 1、△V1、△V2、△f 1与f 0的比值、峰谷值与最高峰的峰值的比值、通过拟合频响曲线确定的方程的一阶系数、二阶系数、三阶系数等中的一个或多个描述。在一些实施例中,传感装置200或250的频响可以与填充的液体的属性和/或加速度传感器100的参数相关。液体的属性可以包括,例如,液体密度、液体运动粘度、液体体积、是否有气泡、气泡体积、气泡位置、气泡数量等。加速度传感器100的参数可以包括,例如,壳体110的内部结构、尺寸、刚度,加速度传感器100的质量,和/或传感元件120(例如悬臂梁)的尺寸、刚度等。
在一些实施例中,为获得传感装置200或250的理想的输出频响(例如,频响曲线320),可以通过计算机模拟、模体实验等方式确定以上列举的影响频响的各参数(又称频响影响因素,包括所述填充的液体的属性和/或加速度传感器100的参数)的范围。在一些实施例中,可以基于仿真模拟,通过控制变量的方式,逐个确定各因素分别对传感装置200或250频响的影响。例如,在相同液体且均充满的前提下,测试具有不同腔体结构特征的传感装置的性能。又例如,在相同液体且均充满的前提下,测试具有不同壳体刚度特征器件性能。又例如,在相同壳体大小的前提下,测试充满液体与填充液体和气泡的不同情况下的传感装置的性能。又例如,在气泡不覆盖传感元件(例如压电换能器)的前提下,测试具有不同大小气泡特征的传感装置的性能。又例如,在气泡覆盖传感元件(例如压电换能器)的前提下,测试具有不同大小气泡特征的传感装置的性能。
在一些实施例中,部分因素与其他因素对传感装置200或250频响的影响存在关联,因此可以以相应的参数对或者参数组的方式,确定参数对或参数组对传感装置200或250频响的影响。例如,当增加加速度传感器100的壳体高度时,腔体体积变大,壳体质量变大、填充于其中的液体的体积也相应变大,因此可以以壳体高度、壳体质量、和/或液体体积(或其中任意两参数比值、或至少两参数的乘积等)作为参数组,测试具有不同参数对对参数组特征的传感装置的性能。又例如,液体粘度和密度可以作为参数对,测试该参数对(或其比值、乘积等)对传感装置200或250频响的影响。
在一些实施例中,可以通过模体测试的方式,确定各因素或多个因素对应的参数对或参数组对传感装置200或250频响的影响。
示例性地,对于填充不同粘度的液体的传感装置200或250,液体粘度越大,系统阻尼越大,传感装置200频响的Q值越小。对于填充液体和气泡的传感装置250,在一定的运动粘度范围内,填充液体的运动粘度越大,传感装置250的灵敏度提升越大。
在一些实施例中,所述液体的运动粘度可以为0.1-5000cst。在一些实施例中,所述液体的运动粘度可以为0.1-1000cst。在一些实施例中,所述液体的运动粘度可以为0.3-1000cst。在一些实施例中,所述液体的运动粘度可以为0.5-500cst。在一些实施例中,所述液体的运动粘度可以为0.5-200cst。在一些实施例中,所述液体的运动粘度可以为50-200cst。
示例性地,对于填充满液体的传感装置200,通过增加腔体的大小,可提升传感器在中频的灵敏度,降低液体对传感装置在中频的频响抑制效果,使得频响曲线更加平坦。
示例性地,对于填充满液体的具有不同腔体高度的传感装置200,在一定范围内,腔体高度越高,传感装置200的中低频输出灵敏度越高。
在一些实施例中,传感装置腔体的长、宽、高分别为1-30mm,1-30mm,以及0.5-30mm。在一些实施例中,传感装置腔体的长、宽、高分别为2-30mm,2-30mm,以及1-30mm。在一些实施例中,传感装置腔体的长、宽、高分别为5-10mm,5-10mm,以及1-10mm。在一些实施例中,传感装置腔体的长、宽、高分别为8-10mm,5-10mm,以及1-5mm。可选地,传感装置腔体具有更大尺寸。在一些实施例中,传感装置腔体的长、宽、高分别为10-200mm,10-100mm,以及10-100mm。在一些实施例中,传感装置腔体的长、宽、高分别为10-100mm,10-50mm,以及10-50mm。在一些实施例中,传感装置腔体的长、宽、高分别为10-50mm,10-30mm,以及10-30mm。
示例性地,填充液体和气泡的传感装置250相比填充满液体的传感装置200,由于气体可压缩,刚性小,而液体不可压缩,可能出现过刚度、过阻尼,传感装置250的整体输出增益更高。例如,在某些情况下中,传感装置200具有的第二共振峰可能由于过阻尼而“消失”,从而影响传感装置200在中低频处灵敏度的提高。
示例性地,填充液体和气泡的传感装置250,当气泡不覆盖传感元件(例如,压电换能器) 时,随着气泡体积增加,传感装置的灵敏度随之增加。
在一些实施例中,气泡的体积与液体体积的比例可以为5%-90%。在一些实施例中,气泡的体积与液体体积的比例可以为10%-80%。在一些实施例中,气泡的体积与液体体积的比例可以为20%-60%。在一些实施例中,气泡的体积与液体体积的比例可以为30%-50%。
需要注意的是,以上对于传感装置200或250的频响曲线的描述,仅为示例性描述,并不能把本说明书限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对其结构、组成进行任意调整。诸如此类的变形,均在本申请的保护范围之内。
图3B是根据本申请的一些实施例提供的传感装置200或250的示例性频响曲线。
示例性地,如图3B所示,虚线表示的频响曲线360为加速度传感器100的频响曲线,实线表示的频响曲线370为传感装置200或250的频响曲线。频响曲线360包括共振峰361,共振峰361对应加速度传感器100的谐振频率。在一些实施例中,加速度传感器100对应较高的谐振频率不在所需的频率段(例如,10-5000Hz,50-7000Hz等)。在一些实施例中,加速度传感器100对应的谐振频率可以在较高的频率段。例如,在一些实施例中,加速度传感器100对应的谐振频率高于7000Hz。在一些实施例中,加速度传感器100对应的谐振频率高于10000Hz。在一些实施例中,加速度传感器100对应的谐振频率高于12000Hz。相应地,传感装置200或250此时可能具有较高的刚度,同时也给传感装置200或250带来较高的抗冲击强度和可靠性。
频响曲线370包括第一(或第三)共振峰(图中未示出)和第二(或第四)共振峰372。在一些实施例中,第一(或第三)共振峰所对应的频率与频响曲线360中加速度传感器100对应的谐振频率接近或相同。在一些实施例中,频响曲线370与图3A中的频响曲线320,除第一(或第三)共振峰右移外,大致相同。第二(或第四)共振峰372所对应的频率与图3A中第二(或第四)共振峰322对应的频率范围相同或相近。
在一些实施例中,在所需频率范围内(例如,200Hz以内,300Hz以内,500Hz以内等),频响曲线370中的灵敏度最大值和最小值的差值应保持在一定范围内,以保证传感装置200或250频响的稳定。在一些实施例中,在所需频率范围内,灵敏度最大值和最小值的差值不高于40dBV,所述灵敏度差值与所述灵敏度最大值的比值不超过0.3。在一些实施例中,在所需频率范围内,灵敏度最大值和最小值的差值不高于30dBV,所述灵敏度差值与所述最大值的比值不超过0.25。在一些实施例中,在所需频率范围内,灵敏度最大值和最小值的差值不高于20dBV,所述灵敏度差值与所述最大值的比值不超过0.15。在一些实施例中,在所需频率范围内,灵敏度最大值和最小值的差值不高于10dBV,所述灵敏度差值与所述最大值的比值不超过0.1。
在一些实施例中,第一(或第三)共振峰和第二(或第四)共振峰372对应的谐振频率的差值(第一(或第三)共振峰的频率以f 0表示(与共振峰361接近),第二(或第四)共振峰372的频率以f 1表示,以频率差△f 2表示两个共振峰对应的谐振频率的差值)在一定范围内。在一些实施例中,频率差△f 2在100-8000Hz范围内,所述频率差△f 2与f 0的比值在0.02-0.8范围内。在一些实施例中,频率差△f 2在100-6000Hz范围内,所述频率差△f 2与f 0的比值在0.02-0.65范围内。在一些实施例中,频率差△f 2在200-6000Hz范围内,所述频率差△f 2与f 0的比值在0.05-0.65范围内。在一些实施例中,频率差△f 2在300-5000Hz范围内,所述频率差△f 2与f 0的比值在0.1-0.5范围内。在一些实施例中,频率差△f 2在300-4000Hz范围内,所述频率差△f 2与f 0的比值在0.1-0.4范围内。
频响曲线370相比频响曲线360,频响曲线370在第二(或第四)共振峰372对应的谐振频率f 1以内的频率范围内的灵敏度的提升(即差值,以△V3表示)较高且较稳定。在一些实施例中,所述提升△V3在10dBV-60dBV范围内。在一些实施例中,所述提升△V3在10dBV-50dBV范围内。在一些实施例中,所述提升△V3在15dBV-50dBV范围内。在一些实施例中,所述提升△V3在15dBV-40dBV范围内。在一些实施例中,所述提升△V3在20dBV-40dBV范围内。在一些实施例中,所述提升△V3在25dBV-40dBV范围内。在一些实施例中,所述提升△V3在30dBV-40dBV范围内。
对于传感装置250,在一些实施例中,第四共振峰372对应的频率(即第四谐振频率)为中低频,第三共振峰对应的频率(即第三谐振频率)为中高频。在一些实施例中,频响曲线370在谐振频率f 1以内的频率范围内的灵敏度最小值与第四共振峰的峰值之间的差值不大于30dBV,其比值不大于0.2。在一些实施例中,频响曲线320在谐振频率f 1以内的频率范围内的灵敏度最小值与第四共振峰的峰值之间的差值不大于20dBV,其比值不小于0.15。在一些实施例中,频响曲线320在谐振频率f 1以内的频率范围内的灵敏度最小值与第四共振峰的峰值之间的差值不大于10dBV, 其比值不大于0.1。
在一些实施例中,传感装置200或250的频响可以通过曲线370的相关参量,例如初级共振峰的峰值、频率、次级共振峰372的峰值、频率、Q值、△f 2、△V3、△f 2与f 0的比值、所需频率范围内最大灵敏度与最小灵敏度的比值、通过拟合频响曲线确定的方程的一阶系数、二阶系数、三阶系数等中的一个或多个描述。在一些实施例中,传感装置200或250的频响可以与填充的液体的属性和/或加速度传感器100的参数相关。在一些实施例中,为获得传感装置200或250的理想的输出频响(例如,频响曲线370),可以通过计算机模拟、模体实验等方式确定以上列举的影响频响的各参数(又称频响影响因素,包括所述填充的液体的属性和/或加速度传感器100的参数)的范围,与图3A中所述的方法相同或相近,此处不再赘述。
图3C是根据本申请的一些实施例提供的传感装置200或250的示例性频响曲线。
示例性地,如图3C所示,虚线表示的频响曲线380为加速度传感器100的频响曲线,实线表示的频响曲线390为传感装置200或250的频响曲线。频响曲线380包括共振峰381,共振峰381对应加速度传感器100的谐振频率。频响曲线390包括第一(或第三)共振峰和第二(或第四)共振峰。共振峰391的频率以f 0表示(与共振峰381接近),共振峰392的频率以f 1表示,以频率差△f 3表示共振峰391和392对应的谐振频率的差值。在一些实施例中,f 1可以与f 0比较接近或相等,以进一步提升传感装置200或250在谐振频率f 0处的输出。图3C所示即为f 1与f 0相近或相等的情况。
在一些实施例中,为了提高传感装置200或250在f 1和/或f 0处对加速度信号的响应的灵敏度,可以设置第一谐振系统210或第二谐振系统260的结构参数,使得f 1与f 0的差值△f 3的绝对值可以不大于设定的阈值。在一些实施例中,△f 3的绝对值可以不大于1000Hz。在一些实施例中,△f 3的绝对值可以小于1000Hz。在一些实施例中,△f 3的绝对值可以小于800Hz。在一些实施例中,△f 3的绝对值的范围可以在100Hz-200Hz之间。在一些实施例中,△f 3的绝对值的范围可以在0Hz-100Hz之间。在一些实施例中,△f 3的绝对值可以为0,即f 1与f 0相等。在一些实施例中,通过设置第一谐振系统210或第二谐振系统260和/或加速度传感器100的结构参数可以使得△f 3的绝对值相对较小。在这种情况下,由于传感装置200或250在f 0和f 1处分别与外部加速度信号产生共振,在包含f 0或f 1的一定频段内的频率成分被放大。当△f 3的绝对值接近于0(即f 1与f 0基本相等)时,f 0和f 1附近的频率成分可以被进一步“放大”,使得传感装置200或250在f 0和f 1处具有更高的灵敏度,例如,图3C中的共振峰391和392对应基本相同的频率点,谐振峰391和392共同作用使得该频率点附近的灵敏度得到极大的提升。在一些实施例中,传感装置200或250在f 1处的灵敏度可以大于加速度传感器100在f 1处的灵敏度,如图3C中所示,两者的差值可以用△V1表示。
在一些实施例中,相比于加速度传感器100,传感装置200或250在不同谐振频率范围内的灵敏度提高5dBV-60dBV。在一些实施例中,传感装置200或250在不同谐振频段范围内的灵敏度提高10dBV-40dBV。
图4A和4B是根据本申请的一些实施例提供的传感元件400的示例性结构示意图。
如图4A和4B所示,传感元件400包括衬底(图中未示出),质量元件420,以及一个或多个检测电容,用于确定外部加速度的大小。所述衬底可以是平板结构。所述衬底的材料可以为多晶硅、多晶硅锗等。在一些实施例中,质量元件420可以设置于衬底上部的中心位置。质量元件420可以包括相互平行的上表面421和下表面(未标号)以及连接上下表面的侧面(图中未示出)。质量元件420可以响应于外部加速度,相对于所述衬底运动。
在每个方向上(例如,第一方向、第二方向、第三方向),传感元件400可以包括至少一个检测电容。在每个方向上,传感元件400可以包括至少一个动电极和至少一个对应的定电极,以构成所述方向的检测电容,用于确定该方向的加速度大小。所述至少一个动电极可以设置于所述质量元件420上。在一些实施例中,传感元件400可以包括沿第一方向排布并垂直于第一方向的至少一组第一动电极和沿第二方向排布并垂直于第二方向的至少一组第二动电极。每组第一动电极包括一个或多个第一动电极。每组第二动电极包括一个或多个第二动电极。相应地,传感元件400还可以包括平行并相对于每个第一动电极设置的第一定电极和平行并相对于每个第二动电极设置的第二定电极。所述至少一组第一动电极与相对应的第一定电极构成第一方向检测电容。所述至少一组第二动电极与相对应的第二定电极构成第二方向检测电容。所述至少一组第一动电极和所述至少一组第二动电极与对应的第一定电极和第二定电极共同构成第三方向检测电容。
在一些实施例中,所述至少一组第一动电极包括偶数组第一动电极(例如,两组)。所述偶数组第一动电极沿所述第一方向位于所述质量元件420的两侧。偶数组第一动电极与相应的第一 定电极可以形成差分式电容结构,以此更准确的确定第一方向的加速度大小。同样地,所述至少一个第二动电极包括偶数组(例如,两组)第二动电极。所述偶数组第二动电极沿所述第二方向位于所述质量元件420的两侧。偶数组第二动电极与相应的第二定电极可以形成差分式电容结构,以此更准确的确定第二方向的加速度大小。
在一些实施例中,每个第一动电极具有平行于所述质量元件上表面的第一动电极顶面和第一动电极底面,相应的第一定电极具有平行于所述质量元件上表面的第一定电极顶面和第一定电极底面。所述第一动电极顶面相较所述第一定电极顶面远离质量元件的上表面。每个第二动电极具有平行于所述质量元件上表面的第二动电极顶面以及第二动电极底面,相应的第二定电极具有平行于所述质量元件上表面的第二定电极顶面以及第二定电极底面。所述第二动电极顶面相较所述第二定电极顶面靠近质量元件的上表面。由此可以形成差分式电容结构,更准确的确定第三方向的加速度大小。
具体地,每组第一动电极沿所述第一方向设有第一动电极轴和垂直于所述第一方向的第一固定动电极。该组第一动电极沿着所述第一动电极轴分布。各第一动电极之间的距离相同或不同。所述第一动电极轴和第一固定动电极通过第一弹性元件(例如,弹簧、弹性杆、弹性网等)连接至所述衬底。每组第二动电极沿所述第二方向设有第二动电极轴和垂直于所述第二方向的第二固定动电极。该组第二动电极沿着所述第二动电极轴分布。各第二动电极之间的距离相同或不同。所述第二动电极轴和第二固定动电极通过第二弹性元件(例如,弹簧、弹性杆、弹性网等)连接至所述衬底。
相应地,传感元件400可以包括对应于每组第一动电极的一对第一定电极轴和一对第一固定定电极。该对第一定电极轴相对所述第一方向对称设置。例如,该对第一定电极轴呈一定角度(如90度)设置。每组第一动电极的第一动电极轴夹设在该对第一定电极轴之间。该对第一固定定电极垂直于第一方向。第一固定动电极夹设在该对第一固定定电极之间。在一些实施例中,所述第一固定动电极与该对第一固定定电极在一条直线上。传感元件400还可以包括对应于每组第二动电极的一对第二定电极轴和一对第二固定定电极。该对第二定电极轴相对所述第二方向对称设置。例如,该对第二定电极轴呈一定角度(如90度)设置。每组第二动电极的第二动电极轴夹设在该对第二定电极轴之间。该对第二固定定电极垂直于第二方向。第二固定动电极夹设在该对第二固定定电极之间。在一些实施例中,所述第二固定动电极与该对第二固定定电极在一条直线上。在一些实施例中,对应于每组第一动电极的一对第一定电极轴与第一固定定电极及第一固定动电极可以形成三角区域。对应于每组第二动电极的一对第二定电极轴与第二固定定电极及第二固定动电极可以形成三角区域。
为了更清楚地说明传感元件400的结构,设定第一方向为图4A中所示的X轴方向,第二方向为Y轴方向,X轴方向与Y轴方向相互垂直,第三方向为Z轴方向(图中未示出),Z轴方向垂直于X-Y平面。示例性地,传感元件400的传感区域可以划分为410A、410B、410C和410D四个三角形区域。传感区域410A与410B结构相对Y轴对称设置,传感区域410C与410D结构相对X轴对称设置;传感区域410A与410B沿X轴方向排布,传感区域410C与410D沿Y轴方向排布。
如图4A所示,对于传感区域410A和410B,质量元件420可以在X轴(正、负)方向上延伸,形成第一动电极轴411A、411B。第一动电极轴411A、411B通过第一弹性元件(例如,第一弹簧结构412A、412B)连接至衬底。沿着第一动电极轴411A、411B形成一组第一动电极。该组第一动电极包括多个第一动电极(例如,第一动电极418A,418B)。所述多个第一动电极垂直于第一动电极轴411A、411B(也即X轴方向)并沿第一动电极轴411A、411B依次排布。各第一动电极之间的距离相同或不同。所述多个第一动电极通过第一弹性元件连接至衬底。例如,第一动电极418A、418B分别通过第一弹簧结构412A、412B连接至衬底。多个第一定电极(例如,第一定电极419A、419B)平行于所述第一动电极(例如,第一动电极418A、418B)且固定连接至衬底。所述第一动电极(例如,418A、418B)分别与第一定电极(例如,419A、419B)之间具有重叠面积。
对于传感区域410C和410D,质量元件420可以在Y轴方向上延伸,形成第二动电极轴411C、411D。第二动电极轴411C、411D通过第二弹性元件(例如,第二弹簧结构412C、412D)连接至衬底。沿着第二动电极轴411C、411D形成一组第二动电极。该组第二动电极包括多个第二动电极(例如,第二动电极418C,418D)。所述多个第二动电极垂直于第二动电极轴411C、411D(也即Y轴方向)并沿第二动电极轴411C、411D依次排布。各第二动电极之间的距离相同或不同。所述多个第二动电极通过第二弹性元件连接至衬底。例如,第二动电极418C、418D分别通过第二 弹簧结构412C、412D连接至衬底。多个第二定电极(例如,第二定电极419C、419D)平行于所述第二动电极(例如,第二动电极418C、418D)且固定连接至衬底。所述第二动电极(例如,418C、418D)分别与第二定电极(例如,419C、419D)之间具有重叠面积。上述第一、第二动电极(例如,418A、418B、418C、418D)分别与第一、第二定电极(例如,419A、419B、419C、419D)相互交叉构成梳齿电容系统。
质量元件420进一步包括第一固定动电极(例如,413A、413B)。所述第一固定动电极通过所述第一弹性元件(例如,第一弹簧结构412A、412B)或直接连接至衬底。质量元件420还包括多对连接于衬底的第一定电极轴(例如,415A和417A、415B和417B)。各第一定电极轴分别连接相应的第一固定定电极(例如,414A、416A、414B、416B)至衬底。例如,第一定电极轴415A、417A、415B、417B分别连接第一固定定电极414A、416A、414B、416B至衬底。对于每个传感区域,第一动电极、第一动电极轴和第一固定动电极夹设在一对第一定电极轴之间。例如,对于传感区域410A,第一动电极418A、第一动电极轴411A和第一固定动电极413A夹设在一对第一定电极轴415A和417A之间。该传感区域的一对第一定电极轴与第一固定定电极、第一固定动电极形成三角区域。例如,对于传感区域410A,第一定电极轴415A和417A与第一固定定电极414A、416A及第一固定动电极413A形成三角区域。
类似地,质量元件420进一步包括第二固定动电极(例如,413C、413D)。所述第二固定动电极通过所述第二弹性元件(例如,第二弹簧结构412C、412D)或直接连接至衬底。质量元件420还包括多对连接于衬底的第二定电极轴(例如,415C和417C、415D和417D)。各第一定电极轴分别连接相应的第二固定定电极(例如,414C、416C、414D、416D)至衬底。例如,第二定电极轴415C、417C、415D、417D分别连接第一固定定电极414C、416C、414D、416D至衬底。对于每个传感区域,第二动电极、第二动电极轴和第二固定动电极夹设在一对第二定电极轴之间。例如,对于传感区域410C,第二动电极418C、第二动电极轴411C和第二固定动电极413C夹设在一对第二定电极轴415C和417C之间。该传感区域的一对第二定电极轴与第二固定定电极、第二固定动电极形成三角区域。例如,对于传感区域410C,第二定电极轴415C和417C与第二固定定电极414A、416A及第一固定动电极413A形成三角区域。如此,传感元件400的传感区域被划分为410A、410B、410C、410D四个区域。在一些实施例中,相邻近的传感区域的第一/第二定电极轴平行设置。例如,第一定电极轴415A、417A、415B、417B分别与第二定电极轴417C、415D、417D、415C平行设置,且具有一定间距。
在一些实施例中,所述多个第一/第二动电极的在第三方向(即Z轴方向)的高度与所述多个第一/第二定电极的高度不同。例如,第一动电极418A、418B具有平行于质量元件420上表面421的第一动电极顶面4181A以及第一动电极底面4182A,相应的第一定电极419A、419B具有平行于质量元件420上表面421的第一定电极顶面以及第一定电极底面(图中未示出)。第一动电极418A、418B的高度比第一定电极419A、419B的高度小。若第一动电极底面和第一定电极底面在同一平面上,第一动电极418A、418B和第一定电极419A、419B具有高度差H2,如图4B所示,第一动电极底面和第一定电极底面在同一平面上,第一动电极418A的顶面4181A和第一定电极419A的顶面4191A之间的高度差为H2。第二动电极418C、418D具有平行于质量元件420上表面421的第二动电极顶面4181C以及第二动电极底面4182C,第二定电极419C、419D具有平行于质量元件420上表面421的第二定电极顶面4191D以及第二定电极底面4192D。第二动电极418C、418D的高度比第二定电极419C、419D的高度大。若第二动电极底面和第二定电极底面在同一平面上,第二动电极418C、418D和第二定电极419C、419D有距离高度差H1,如图4B所示,第二动电极底面和第二定电极底面在同一平面上,第二动电极418C的顶面4181C和第二定电极419C的顶面4191C之间的高度差为H1。在一些实施例中,为提高测量的精确度并保证制造工艺的可靠性,所述第一定电极顶面与第二动电极顶面具有相同的水平高度,如图4B所示。例如,传感区域410A的第一定电极419A顶面与传感区域410D的第二动电极顶面4181D具有相同的水平高度,使整个传感元件420的表面更加平整。
所述多个第一动电极与相应的第一定电极构成多个第一、第三方向检测电容,用于确定第一、第三方向的加速度大小。所述多个第二动电极与相应的第二定电极构成多个第二、第三方向检测电容,用于确定第二、第三方向的加速度大小。当存在第一方向的外部加速度时,所述多个第一动电极与相应的第一定电极之间的距离发生变化,例如,当质量元件420向X轴正方向移动时,传感区域410A的第一动电极和第一定电极之间的距离变小,电容变大,而传感区域410B的第一动电极和第一定电极之间的距离变大,电容变小,从而产生与加速度大小成正比的差分电容输出信号, 以此检测第一方向的加速度。当存在第二方向的外部加速度时,所述多个第二动电极与相应的第二定电极之间的距离发生变化,例如,当质量元件420向Y轴正方向移动时,传感区域410C的第二动电极和第二定电极之间的距离变小,电容变大,而传感区域410D的第二动电极和第二定电极之间的距离变大,电容变小,从而产生与加速度大小成正比的差分电容输出信号,以此检测第二方向的加速度。当存在第三方向的外部加速度时,多个第一动电极或第二动电极与相应的第一定电极或第二定电极之间的正对面积发生变化,例如,当质量元件420沿Z轴向正方向移动时,传感区域410A和410B的第一动电极和第一定电极之间的正对面积不变,电容不变,而传感区域410C和410D的第而动电极和第二定电极之间的正对面积变小,电容变小,,以此检测第三方向的加速度。传感元件400容置于壳体110形成的腔体内,形成加速度传感器,以检测三个维度的加速度,同时,其结构简单可靠,整体尺寸小。
通过将至少一个谐振系统耦合至所述加速度传感器(例如,壳体110和传感元件400之间),可以构成传感装置(例如,传感装置200或250)。所述至少一个谐振系统可以包括图2A和2B所示的第一谐振系统210或图2C和2D所示的第二谐振系统260。
在一些实施例中,第一谐振系统210和第二谐振系统260可以包括液体。示例性地,第一谐振系统210可以是具有特定密度和粘度的液体。例如,所述液体可以是密度为0.94kg/m 3的硅油,其运动粘度可以为0.5cst,1cst,5cst,10cst,100cst,200cst,1000cst等。所述液体可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。通过将所述液体填满所述加速度传感器的腔体,使传感元件400完全浸没于所述液体中,可以实现第一谐振系统210与传感元件400耦合。第二谐振系统210可以是含有气泡的液体,例如,含有气泡的硅油,其中气泡占腔体体积的比例可以为5%~95%中任意数值。气泡的数量可以为1个、2个、3个、4个或更多。所述液体可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统,所述气泡可以等效为弹簧(Km3)和阻尼(Rm3)系统。通过在所述加速度传感器的腔体内部分填充所述液体,部分填充气泡(例如,填充液体时未排出腔体的空气形成的气泡、通过气囊形成的气泡,和/或通过在传感元件400上涂覆疏水涂层形成的气泡),传感元件400至少部分浸没于所述液体中,以此实现第二谐振系统260与传感元件400的耦合。
在一些实施例中,第一谐振系统210和第二谐振系统260可以包括弹性结构。示例性地,第一谐振系统210可以是具有一定质量的弹性结构(例如,弹性杆、弹性片、弹性块、弹性网等),或轻质弹性结构(例如,轻质弹簧、轻质弹性杆等)与质量单元的组合。所述具有一定质量的弹性结构或轻质弹性结构与质量单元的组合可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。所述弹性结构的两端分别连接于壳体110和传感元件400(例如,质量元件420的上表面421、下表面和/或侧面423或其沿着X/Y轴延伸的多个第一/第二动电极)之间,可以实现第一谐振系统210与传感元件400耦合。第二谐振系统260可以是轻质弹性杆和/或弹簧和一个质量较大的弹性杆的组合。质量较大的弹性杆可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。轻质弹性杆和/或弹簧可以等效为弹簧(Km3)和阻尼(Rm3)系统。所述弹性杆和/或弹簧的两端分别固定连接于壳体110和传感元件400(例如,质量元件420的上表面421、下表面和/或侧面423或其沿着X/Y轴延伸的多个第一/第二动电极)之间,可以实现第二谐振系统260与传感元件400耦合。
由于第一谐振系统210或第二谐振系统260对应的第二谐振频率的存在,包含传感元件400的传感装置的频响曲线,在特定频段(例如,低频、中低频、中频、中高频和/或高频),会有所提升,使得其灵敏度较不包含第一谐振系统210或第二谐振系统260的加速度传感器会有所提高。另外,由于第一谐振系统210或第二谐振系统260作用于传感元件400,加速度传感器的振动特性较没有第一谐振系统210时会有所改变。具体地,第一谐振系统210或第二谐振系统260作用于传感元件400,可以影响加速度传感器的质量、刚度和/或阻尼等,其效果相当于使得包含传感元件400的传感装置的第一共振峰的Q值相对于不连接第一谐振系统210或第二谐振系统260的加速度传感器的Q值有所改变(例如,Q值减小)。在一些实施例中,第一谐振系统210或第二谐振系统260的存在会对传感装置中加速度传感器对应的谐振峰产生抑制作用,使得其频响曲线中所述谐振峰处Q值相对较低,在所需频段内(例如,中低频、中频等)频响曲线更加平坦化。
同时,第一谐振系统210或第二谐振系统260可以减小传感元件400受到的外界冲击以保护传感元件400。例如,若壳体110的腔体内引入液体或液体和气泡,当接收外部冲击载荷时,第一谐振系统210或第二谐振系统260可以提高包含传感元件400的传感装置的抗冲击可靠性。具体地,由于液体的粘滞作用和气体的可压缩幅度大,可以吸收并消耗部分冲击能量,使得其中传感元件400受到的冲击载荷大大减小,因此可以保护传感元件400,延长其工作寿命。另外,传感元件400在加工过程中由于存在应力,常出现器件变形情况。通过在腔室中注入液体和气泡,可以利用的液 体的重力、表面张力、粘滞力等,矫正器件的变形,使得传感装置变形更小,输出更稳定,更加接近设计效果。
在一些实施例中,通过调整加速度传感器的参数(例如,所述外壳110的内部结构、尺寸、刚度和/或传感元件400质量、尺寸、刚度)和/或形成所述至少一个谐振系统的物质/结构的参数(例如弹性杆的尺寸、质量、刚度、弹性,液体的种类、密度、粘度、体积、是否填充气泡以及气泡的占比、大小、位置、数量等),可以改变传感装置的频响曲线的相关参量(例如,所述第一谐振频率和所述至少一个第二谐振频率之间的关系,其对应的峰值高低,Q值,所述第一谐振频率与第二谐振频率的差值、比值,峰谷值与最高峰的峰值的比值等),从而达到例如,调节传感装置Q值,提高传感装置的灵敏度,可靠性或使传感装置的输出增益在所需频段(例如,中低频)更加稳定的目的。
在一些实施例中,所述第一谐振频率和所述至少一个第二谐振频率之间的低谷与所述第一谐振频率和所述至少一个第二谐振频率对应的共振峰中较高峰的峰值的灵敏度差值在一定范围内(例如,10dBV,20dBV,30dBV等),所述灵敏度差值与所述较高峰的峰值的比值不超过一定阈值(例如,0.05,0.1,0.2等)。所述第一谐振频率和所述至少一个第二谐振频率之间的频率差值在一定范围(例如,20-3000Hz,20-2000Hz,50-2000Hz,50-1500Hz,80-1500Hz,100-1500Hz等)内和/或所述差值与第一谐振频率或第二谐振频率的比值在一定范围(例如,0.02-0.7,0.15-0.6)内,可以使得其对应的共振峰之间的频响曲线较为平坦。包含传感元件400的传感装置的在第二谐振频率以内的灵敏度提升较高且较为稳定。例如,所述灵敏度的提升可以在10dBV-60dBV,20dBV-50dBV,30dBV-40dBV等。
在一些实施例中,所述至少一个谐振系统可以为含有气泡的液体。所述气泡占腔体体积的比例可以为5%,10%,20%,30%,50%,70%,95%等任意数值。所述气泡可以是小气泡(例如,占腔体体积的比例为2%-10%的气泡)、中小型气泡(例如,占腔体体积的比例为10%-20%的气泡)、中型气泡(例如,占腔体体积的比例为20%-50%的气泡)、大型气泡(例如,占腔体体积的比例为50%-90%的气泡)等。气泡的数量可以为1个、2个、3个、4个或更多。所述气泡可以位于腔体内(例如传感元件400内部)的不同位置。在一些实施例中,所述气泡位于第一动电极与相应的第一定电极(例如,418A与419A或418B与419B)之间或第二动电极与相应的第二定电极(例如,418C与419C或418D与419D)之间。在一些实施例中,所述气泡附着于质量元件420(例如,上表面、下表面和/或侧面)或质量元件420上设置的第一/第二动电极上(例如,第一动电极418A的上表面、下表面或与第一定电极419A相对的侧面上)。在一些实施例中,所述气泡附着于至少一个定电极上(例如,第一定电极419A的上表面、下表面或与第一动电极418A相对的侧面上)。
当所述气泡位于腔体内(例如传感元件400内部)的不同位置时,包含传感元件400的传感装置的频响曲线不同(例如,所述至少一个第二谐振频率的大小和对应的峰值灵敏度不同)。在一些实施例中,无论气泡附着在传感元件400上(例如,附着在至少一个动电极和/或定电极上)或不附着在传感元件400上(例如,位于第一动电极418A与相应的第一定电极419A之间)时,均能在低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)一定程度提升传感装置灵敏度(例如,10-60dBV,10-40dBV,15-40dBV等)。提升的大小也与气泡的大小和/或位置有关。
在一些实施例中,当气泡不附着在传感元件400上(例如,位于第一动电极418A与相应的第一定电极419A之间)时,随着气泡体积增加,传感装置的灵敏度随之增加。示例性地,含中小型气泡的传感装置相比含小气泡的传感装置,低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)灵敏度提升约为5-30dBV。含中型气泡的传感装置相比含中小型气泡的传感装置,低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)灵敏度提升约为5-30dBV。
图5A-5D是根据本申请的一些实施例提供的传感元件500的示例性结构示意图。
如图5A-5D所示,传感元件500包括衬底514,设置于衬底514上方的质量元件501,以及一个或多个检测电容,用于确定外部加速度大小。衬底514可以与图4A和4B中的衬底相同或相似,此处不再赘述。衬底514上设置有支撑部件(例如,支撑杆、支撑弹簧、支撑支架等,又称为 第一支撑部件)。所述支撑部件用于将质量元件501支撑在衬底514的上方。在本实施例中,所述支撑部件可以是锚定部502。锚定部502可以将质量元件501支撑在衬底514的上方。质量元件501可以通过弹性连接单元(例如,弹性梁、弹簧等)连接于所述支撑部件。所述弹性连接单元沿第一方向延伸。在一些实施例中,所述弹性连接单元的(沿第一方向的)中线与质量元件501在第一方向上的中线重合。在第二方向上,质量元件501位于弹性连接单元两侧的部分的质量不相等。
在本实施例中,所述弹性连接单元可以是弹性扭梁503。质量元件501通过其两侧对称设置的弹性扭梁503连接在锚定部502的侧壁上,即两条弹性扭梁503对称地分布在锚定部502的两侧。锚定部502可以位于质量元件501的中心(例如,结构中心)位置。弹性扭梁503长度方向上的中线可以与质量元件501的中线重合。
为了更清楚地说明传感元件500的结构,设定第一方向(X轴方向)为图5A中所示弹性扭梁503延伸的方向,第二方向(Y轴方向)为与第一方向垂直且位于质量元件501所在平面内的方向,第三方向(Z轴方向)为锚定部502的长度方向(垂直于X-Y平面)。
质量元件501的质量分布不均衡。在一些实施例中,以弹性扭梁503为界,质量元件501位于弹性扭梁503两侧的质量不相等,即所述质量元件501在Y轴方向上位于弹性扭梁503两侧部分的质量不相等。例如,以图5A的视图方向,以弹性扭梁503为界,质量元件501的上半部分与下半部分的质量不相等。
在一个具体的实施例中,为了使质量块两侧的质量不相等,所述质量元件501其中一侧设置有减重孔506。在一些实施例中,质量元件501可以设有多个减重孔506。所述多个减重孔呈矩阵分布。减重孔506可以为通孔,在制作的时候,可通过的刻蚀的方法形成。减重孔506也可以为盲孔,可通过设置掩膜的方式来进行刻蚀。在另一实施例中,也可以通过增加配重块,以使质量元件501两侧的质量不相等。
对于传感元件500,锚定部502位于质量元件501的结构中心位置,且弹性扭梁503长度方向的中线与质量元件501的中线重合,质量元件501两侧的质量不相等,此时质量元件501两侧的力矩不平衡。当存在第三方向(Z轴方向)的外部加速度输入时,质量元件501可以以锚定部502为支点产生类似跷跷板的运动。当存在第一方向(X轴方向)的外部加速度输入时,由于锚定部502位于质量元件501的结构中心,弹性扭梁503长度方向的中线与质量元件501的X轴方向的中线重合在一起,且质量元件501位于其X轴中线两侧的质量不相等,质量元件501可以以锚定部502为支点发生转动。当存在第二方向(Y轴方向)的外部加速度输入时,由于锚定部502位于质量元件501的结构中心,弹性扭梁503长度方向的中线与质量元件501的X轴方向的中线重合在一起,质量元件501可以在Y轴方向上发生平移运动。
在每个方向上(例如,第一方向、第二方向、第三方向),传感元件500可以包括至少一个检测电容。在该方向上,传感元件500可以包括至少一个动电极和至少一个对应的定电极,以构成所述方向的检测电容,用以确定该方向的加速度大小。在一些实施例中,传感元件500可以包括设置于所述衬底上的至少两个第一方向定电极、至少两个第二方向定电极以及至少两个第三方向定电极。所述至少两个第一方向定电极沿第二方向延伸,其分布于质量元件501沿第二方向的中线对应衬底位置的两侧,并相对于所述第二方向的中线轴对称或相对于所述锚定部502中心对称。所述至少两个第二方向定电极可以是沿第一方向延伸,其可以位于质量元件501沿第二方向的中线上,且相对于锚定部502对称。所述第三方向定电极可以设置于弹性扭梁503两侧。所述质量元件501上设置有分别对应于所述至少两个第一方向定电极、至少两个第二方向定电极以及至少两个第三方向定电极的第一方向动电极、第二方向动电极以及第三方向动电极,分别构成第一方向检测电容、第二方向检测电容以及第三方向检测电容。
在一些实施例中,所述至少两个第一方向定电极不在质量元件501沿第一方向的中线上。当两个第一方向定电极位于质量元件501的第一方向的中线上时,相应构成的两个第一方向检测电容同时增大或减小,二者不能构成可以输出第一方向加速度变化信号的差分电容结构。由此,每个第一方向定电极包括平行设置的两个第一方向定电极单元。与所述第一方向定电极相对应的第一方向动电极包括两个第一方向动电极单元。所述两个第一方向动电极单元与所述两个第一定电极单元构成第一方向差分电容结构。每个第二方向定电极包括平行设置的两个第二方向定电极单元。与所述第二方向定电极相对应的第二方向动电极包括两个第二方向动电极单元。所述两个第二方向动电极单元与所述两个第二方向定电极单元构成第二方向差分电容结构。
在另一些实施例中,所述至少两个第一方向定电极位于质量元件501沿第一方向的中线上。 由此,每个第一方向定电极包括平行设置的两个第一方向定电极单元。与所述第一方向定电极相对应的第一方向动电极包括两个第一方向动电极单元。所述两个第一方向动电极单元与所述两个第一定电极单元构成第一方向差分电容结构。每个第二方向定电极包括平行设置的两个第二方向定电极单元。与所述第二方向定电极相对应的第二方向动电极包括两个第二方向动电极单元。所述两个第二方向动电极单元与所述两个第二方向定电极单元构成第二方向差分电容结构。与上述至少两个第一方向定电极不在所述质量元件沿第一方向的中线上不同的是,当所述至少两个第一方向定电极位于所述质量元件沿第一方向的中线上时,所述至少两个第一方向定电极中的至少一个第一方向定电极的一侧的第一方向定电极单元电连接于与所述至少一个第一方向定电极关于所述质量元件沿第二方向的中线轴对称的另一第一方向定电极的相反一侧的第一方向定电极单元。
示例性地,如图5C和5D所示,所述衬底514上设置有分布在弹性扭梁503两侧的第三方向定电极513和512。相应地,所述质量元件501上设有第三方向动电极504和505。第三方向动电极504和505分别与第三方向定电极513和512构成不同的第三方向检测电容。其中,第三方向定电极513和512可以是本领域技术人员所熟知的电容极板结构,其可以固定在衬底514上。第三方向动电极504和505也可以是本领域技术人员所熟知的电容极板结构。在一些实施例中,第三方向动电极504和505为质量元件501的一部分。例如,第三方向动电极504和505为质量元件501相对两侧的侧壁。
在一个具体的实施方式中,第三方向定电极513和512分别为第三方向检测电容的下电极,第三方向动电极504和505位于质量元件501的边缘位置的下端面,作为第三方向检测电容的上电极。第三方向定电极513和512在Y轴方向上相对于弹性扭梁503对称,使得两个第三方向检测电容构成了差分电容结构。
当有第三方向(即Z轴方向)的外部加速度输入时,例如,参考图5C的视图方向,当有向下的加速度输入时,由于质量元件501两侧的质量不相等,使得设有减重孔506一侧的第三方向动电极504与第三方向定电极513之间的距离变小,质量较重一侧的第三方向动电极505与第三方向定电极512之间的距离变大,从而使第三方向动电极504与第三方向定电极513构成的第三方向检测电容的电容变大、第三方向动电极505与第三方向定电极512构成的第三方向检测电容的电容变小,因此两个第三方向检测电容构成第三方向差分电容结构。
相反的,参考图5D的视图方向,当有向上的加速度输入时,由于质量元件501两侧的质量不相等,使得设有减重孔506一侧的第三方向动电极504与第三方向定电极513之间的距离变大,使得质量较重一侧的第三方向动电极505与第三方向定电极512之间的距离变小,从而使第三方向动电极504与第三方向定电极513构成的第三方向检测电容的电容变小、第三方向动电极505与第三方向定电极512构成的第三方向检测电容的电容变大,因此两个第三方向检测电容构成第三方向差分电容结构。
在一个具体的实施方式中,参考图5A、图5C和图5D,所述减重孔506设置在质量元件501上位于第三方向动电极504的位置,使质量元件501两侧的质量差较大,从而提高了质量元件501偏转的幅度,从而提高第三方向检测电容的灵敏度。由于减重孔506设置在第三方向动电极504的位置,因此减少了第三方向动电极504与第三方向定电极513的正对面积。为保证上述两个第三方向检测电容的一致性,可以在第三方向定电极512上设置与第三方向动电极504上减重孔506对应的工艺孔,从而使第三方向动电极504与第三方向定电极513的正对面积与第三方向动电极505与第三方向定电极512的正对面积一致,即保证了上述两个第三方向检测电容的一致性。
如图5A和5B所示,在衬底514上还分别设置有第二方向定电极508和507。所述第二方向定电极508和507位于质量元件501的Y轴中线上,且对称分布在锚定部502的两侧;相应的,所述质量元件501上设有两个第二方向动电极。所述两个第二方向动电极与第二方向定电极508和507构成两个第二方向检测电容。第二方向定电极508和507可以采用本领域技术人员所熟知的电容极板机构,其固定在衬底514上;上述两个第二方向动电极也可以采用本领域技术人员所熟知的电容极板机构。在一些实施例中,上述两个第二方向动电极可以是质量元件501的一部分,例如,上述两个第二方向动电极可以为质量元件501的侧壁。在一个具体实施例中,质量元件501上相应的位置设置有多个镂空的配合孔511,第二方向定电极508和507,并使其延伸至配合孔511中。配合孔511的侧壁可以作为动电极,分别与第二方向定电极508和507构成两个第二方向检测电容,由此可提高芯片的温度特性及抗外部干扰的能力。
第二方向定电极508和507沿第一方向(即X轴方向)延伸,与弹性扭梁503平行。当有第二方向(即Y轴方向)的外部加速度输入时,由于弹性扭梁的作用,质量元件501在Y轴方向上 发生平动,由此,使得第二方向定电极508与相应的第二方向动电极之间的距离增大或减小,而第二方向定电极507与相应的第二方向动电极之间的距离减小或增大,从而使两个第二方向检测电容构成第二方向差分电容结构。
对于第二方向定电极508和507,当有第一方向(即X轴方向)的外部加速度输入时,质量元件501以锚定部502为支点顺时针或逆时针转动,由此,使得第二方向定电极508与相应的第二方向动电极之间的距离与第二方向定电极507与相应的第二方向动电极之间的距离同时增大或减小,而且变化量一致,通过所述差分电容结构,可以将变化的信号差分掉,此时,两个第二方向检测电容构成的第二方向差分电容结构不会输出变化的电容信号,以防止第二方向检测电容输出第一方向的加速度信号。
在一些实施例中,所述第二方向定电极508包括平行布置的第二定电极单元508a和508b。第二定电极单元508a和508b固定在衬底514上,并延伸至质量元件501上形成的配合孔511中。配合孔511相对的两个侧壁作为第二方向动电极的动电极单元,与第二定电极单元508a和508b构成一对差分电容结构,进一步提高Y轴加速度信号的检测精度。基于同样的原理,所述第二方向定电极507包括平行布置的第二定电极单元507a和507b。第二定电极单元507a和507b固定在衬底514上,并延伸至质量元件501上形成的配合孔511中。配合孔511相对的两个侧壁作为第二方向动电极的动电极单元,与第二定电极单元507a和507b构成一对差分电容结构,进一步提高Y轴加速度信号的检测精度。
衬底514上还设置有第一方向定电极509和510。相应的,质量元件501上设置有两个第一方向动电极。所述两个第一方向动电极与第一方向定电极509和510构成两个第一方向检测电容。第一方向定电极509和510可以为本领域技术人员所熟知的电容极板结构,其可通过锚点固定在衬底514上。其中,第一方向定电极509与对应的第一方向动电极可以构成侧面电容式的第一方向检测电容,第一方向定电极510与对应的第一方向动电极也可以构成侧面电容式的第一方向检测电容。当然,上述两个第一方向检测电容也可以是上下极板式的电容结构。在一些实施例中,上述两个第一方向动电极可以为质量元件501的侧壁。质量元件501上相应的位置设置有镂空的配合孔511。第一方向定电极509和510固定在衬底514上,并延伸至相应的配合孔511内。此时,配合孔511的孔壁可作为第一方向动电极,与第一方向定电极509和510构成两个第一方向检测电容,由此可提高芯片的温度特性及抗外部干扰的能力。
在一个具体的实施方式中,参考图5B,第一方向定电极509和510可以沿着Y轴方向延伸,即第一方向定电极509和510的长度方向位于Y轴方向上。当有第二方向(即Y轴方向)的外部加速度输入时,质量元件501在Y轴方向上平动,而第一方向定电极509与相应的第一方向动电极的距离和相对面积不发生变化、第一方向定电极510与相应的第一方向动电极的距离和相对面积也不发生变化,也就是说,两个第一方向检测电容不会输出电容的变化信号,以防止第一方向检测电容输出Y轴加速度信号。
第一方向定电极509和510相对于质量元件501的Y轴方向的中线轴对称或相对于锚定部502中心对称。当有第一方向(即X轴方向)的外部加速度输入时,质量元件501以锚定部502为支点顺时针或逆时针转动,使得第一方向定电极509与相应的第一方向动电极之间的距离增大或减小,第一方向定电极510与相应的第一方向动电极之间的距离减小或增大,从而使两个第一方向检测电容可以共同构成第一方向的差分电容结构。其中,第一方向定电极509和510不能设在质量元件501的X轴方向的中线上。因为当两个第一方向定电极509和510位于质量元件501的X轴方向的中线上时,相应构成的两个第一方向检测电容同时增大或减小,二者不能构成可以输出X轴方向加速度变化信号的差分电容结构。
在一些实施例中,参考图5B,第一方向定电极509包括平行设置的第一定电极单元509a和509b。第一定电极单元509a和509b固定在衬底上,并延伸至质量元件501上形成的配合孔511中。配合孔511相对的两个侧壁作为第一方向动电极的动电极单元,与第一定电极单元509a和509b构成了一对差分电容结构,进一步提高了X轴加速度信号的检测精度。基于同样的原理,第一方向定电极510包括平行设置的第一定电极单元510a和510b。第一定电极单元510a和510b固定在衬底514上,并延伸至质量元件501上形成的另一配合孔511中。配合孔511相对的两个侧壁作为第一方向动电极的动电极单元,与第一定电极单元510a和510b构成了一对差分电容结构,进一步提高了X轴加速度信号的检测精度。
在另一具体的实施方式中,参考图5A,第一方向定电极509和510可以沿着X轴方向延伸。第一方向定电极509和510可以对称分布在质量元件501的Y轴中线的两侧,或分布在质量元 件501的Y轴中线的两侧并相对锚定部502中心对称。当质量元件501以锚定部502为支点顺时针或逆时针转动,两个第一方向检测电容的电容变化完全相反,共同构成了第一方向差分电容结构。
进一步地,第一方向定电极509和510位于质量单元501的X轴的中线上,并相对于锚定部502中心对称,使得在受到X轴方向的加速度时,两个第一方向检测电容的电容变化的量相同。在本实施例中,第一方向定电极509可以采用上述第一定电极单元509a和509b的结构,第一方向定电极510也可以采用上述的第一定电极单元510a和510b的结构。同时,第一方向定电极509中其中一侧的第一定电极单元509a或509b与第一方向定电极510中相反一侧的第一定电极单元510a或510b连接在一起。
参考图5A的视图方向,第一定电极单元509a、509b沿X轴方向延伸,其中,第一定电极单元509a位于下侧,第一定电极单元509b位于上侧;第一定电极单元510a、510b沿X轴方向延伸,其中,第一定电极单元510a位于下侧,第一定电极单元510b位于上侧。此时,需要将第一定电极单元509b与第一定电极单元510a连接在一起,将第一定电极单元509a与第一定电极单元510b连接在一起,从而使第一定电极单元509b、与第一定电极单元509b相对应的动电极单元、第一定电极单元510a、与第一定电极单元510a相对应的动电极单元共同构成第一方向差分电容结构,第一定电极单元509a、与第一定电极单元509a相对应的动电极单元、第一定电极单元510b、与第一定电极单元510b相对应的动电极单元共同构成另一第一方向差分电容结构。当有第二方向(即Y轴方向)的外部加速度输入时,质量元件501在Y轴方向上发生平动,第一定电极单元509b和与第一定电极单元509b相对应的动电极单元之间的距离增大或减小,第一定电极单元510a和与第一定电极单元510a相对应的动电极单元之间的距离增大或减小,且变化量一致,通过差分电容结构可以将此时变化的电容信号差分掉。基于同样的原理,第一定电极单元509a、与第一定电极单元509a相对应的动电极单元、第一定电极单元510b、与第一定电极单元510b相对应的动电极单元共同构成的差分电容也可以将此时变化的电容信号差分掉,以防止第一方向检测电容输出Y轴加速度信号。
传感元件500通过将三个维度的加速度检测结构集成在单个结构上,结构中心为可动质量元件501的锚点,通过弹性扭梁503将质量元件501连接在锚点上,使质量元件501随加速度的输入,在各个维度上发生位移,从而实现各个方向的加速度信号的检测。当第一方向有加速度输入时,质量元件501会绕锚点发生转动,实现X轴方向加速度的检测;当第二方向有加速度输入时,质量元件501在Y轴方向发生平移运动,实现Y轴方向加速度的检测;当第三方向有加速度输入时,质量元件501会绕弹性梁503在X轴方向上发生扭转,实现Z轴方向加速度的检测。
通过将至少一个谐振系统耦合至所述加速度传感器(例如,壳体110和传感元件500之间),可以构成传感装置(例如,传感装置200或250)。所述至少一个谐振系统可以包括图2A和2B所示的第一谐振系统210或图2C和2D所示的第二谐振系统260。
在一些实施例中,第一谐振系统210和第二谐振系统260可以包括液体。示例性地,第一谐振系统210可以是具有特定密度和粘度的液体。例如,所述液体可以是密度为0.94kg/m 3的硅油,其运动粘度可以为0.5cst,1cst,5cst,10cst,100cst,200cst,1000cst等。所述液体可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。通过将所述液体填满所述加速度传感器的腔体,使传感元件500完全浸没于所述液体中,可以实现第一谐振系统210与传感元件500耦合。第二谐振系统210可以是含有气泡的液体,例如,含有气泡的硅油,其中气泡占腔体体积的比例可以为5%~95%中任意数值。气泡的数量可以为1个、2个、3个、4个或更多。所述液体可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统,所述气泡可以等效为弹簧(Km3)和阻尼(Rm3)系统。通过在所述加速度传感器的腔体内部分填充所述液体,部分填充气泡(例如,填充液体时未排出腔体的空气形成的气泡、通过气囊形成的气泡,和/或通过在传感元件500上涂覆疏水涂层形成的气泡),传感元件500至少部分浸没于所述液体中,以此实现第二谐振系统260与传感元件500的耦合。
在一些实施例中,第一谐振系统210和第二谐振系统260可以包括弹性结构。示例性地,第一谐振系统210可以是具有一定质量的弹性结构(例如,弹性杆、弹性片、弹性块、弹性网等),或轻质弹性结构(例如,轻质弹簧、轻质弹性杆等)与质量单元的组合。所述具有一定质量的弹性结构或轻质弹性结构与质量单元的组合可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。所述弹性结构的两端分别连接于壳体110和传感元件500(例如,质量元件501上的一个或多个位置)之间,可以实现第一谐振系统210与传感元件500耦合。第二谐振系统260可以是轻质弹性杆和/或弹簧和一个质量较大的弹性杆的组合。质量较大的弹性杆可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。轻质弹性杆和/或弹簧可以等效为弹簧(Km3)和阻尼(Rm3)系统。所述弹性杆和/或弹簧的两端 分别固定连接于壳体110和传感元件500(例如,质量元件501上的一个或多个位置)之间,可以实现第二谐振系统260与传感元件500耦合。
由于第一谐振系统210或第二谐振系统260对应的第二谐振频率的存在,包含传感元件500的传感装置的频响曲线,在特定频段(例如,低频、中低频、中频、中高频和/或高频),会有所提升,使得其灵敏度较不包含第一谐振系统210或第二谐振系统260的加速度传感器会有所提高。另外,由于第一谐振系统210或第二谐振系统260作用于传感元件500,加速度传感器的振动特性较没有第一谐振系统210时会有所改变。具体地,第一谐振系统210或第二谐振系统260作用于传感元件500,可以影响加速度传感器的质量、刚度和/或阻尼等,其效果相当于使得包含传感元件500的传感装置的第一共振峰的Q值相对于不连接第一谐振系统210或第二谐振系统260的加速度传感器的Q值有所改变(例如,Q值减小)。在一些实施例中,第一谐振系统210或第二谐振系统260的存在会对传感装置中加速度传感器对应的谐振峰产生抑制作用,使得其频响曲线中所述谐振峰处Q值相对较低,在所需频段内(例如,中低频、中频等)频响曲线更加平坦化。
同时,第一谐振系统210或第二谐振系统260可以减小传感元件500受到的外界冲击以保护传感元件500。例如,若壳体110的腔体内引入液体或液体和气泡,当接收外部冲击载荷时,第一谐振系统210或第二谐振系统260可以提高包含传感元件500的传感装置的抗冲击可靠性。具体地,由于液体的粘滞作用和气体的可压缩幅度大,可以吸收并消耗部分冲击能量,使得其中传感元件500受到的冲击载荷大大减小,因此可以保护传感元件500,延长其工作寿命。另外,传感元件500在加工过程中由于存在应力,常出现器件变形情况。通过在腔室中注入液体和气泡,可以利用的液体的重力、表面张力、粘滞力等,矫正器件的变形,使得传感装置变形更小,输出更稳定,更加接近设计效果。
在一些实施例中,通过调整加速度传感器的参数(例如,所述外壳110的内部结构、尺寸、刚度和/或传感元件500质量、尺寸、刚度)和/或形成所述至少一个谐振系统的物质/结构的参数(例如弹性杆的尺寸、质量、刚度、弹性,液体的种类、密度、粘度、体积、是否填充气泡以及气泡的占比、大小、位置、数量等),可以改变传感装置的频响曲线的相关参量(例如,所述第一谐振频率和所述至少一个第二谐振频率之间的关系,其对应的峰值高低,Q值,所述第一谐振频率与第二谐振频率的差值、比值,峰谷值与最高峰的峰值的比值等),从而达到例如,调节传感装置Q值,提高传感装置的灵敏度,可靠性或使传感装置的输出增益在所需频段(例如,中低频)更加稳定的目的。
在一些实施例中,所述第一谐振频率和所述至少一个第二谐振频率之间的低谷与所述第一谐振频率和所述至少一个第二谐振频率对应的共振峰中较高峰的峰值的灵敏度差值在一定范围内(例如,10dBV,20dBV,30dBV等),所述灵敏度差值与所述较高峰的峰值的比值不超过一定阈值(例如,0.05,0.1,0.2等)。所述第一谐振频率和所述至少一个第二谐振频率之间的频率差值在一定范围(例如,20-3000Hz,20-2000Hz,50-2000Hz,50-1500Hz,80-1500Hz,100-1500Hz等)内和/或所述差值与第一谐振频率或第二谐振频率的比值在一定范围(例如,0.02-0.7,0.15-0.6)内,可以使得其对应的共振峰之间的频响曲线较为平坦。包含传感元件500的传感装置的在第二谐振频率以内的灵敏度提升较高且较为稳定。例如,所述灵敏度的提升可以在10dBV-60dBV,20dBV-50dBV,30dBV-40dBV等。
在一些实施例中,所述至少一个谐振系统可以为含有气泡的液体。所述气泡占腔体体积的比例可以为5%,10%,20%,30%,50%,70%,95%等任意数值。所述气泡可以是小气泡(例如,占腔体体积的比例为2%-10%的气泡)、中小型气泡(例如,占腔体体积的比例为10%-20%的气泡)、中型气泡(例如,占腔体体积的比例为20%-50%的气泡)、大型气泡(例如,占腔体体积的比例为50%-90%的气泡)等。气泡的数量可以为1个、2个、3个、4个或更多。所述气泡可以位于腔体内(例如传感元件500内部)的不同位置。在一些实施例中,所述气泡位于第一方向动电极(例如,位于质量元件501沿第二方向的中线上的配合孔511的侧壁)与相应的第一方向定电极(例如,509或510)之间,第二方向动电极(例如,位于质量元件501沿第二方向的中线两侧,且关于所述沿第二方向的中线对称或者相对于锚定部502中心对称的配合孔511的侧壁)与相应的第二定电极(例如,507与508)之间,或第三方向动电极与相应的第三方向定电极(例如,504与513,505与512)。在一些实施例中,所述气泡附着于质量元件420(例如,上表面、下表面和/或侧面)或质量元件420上设置的第一/第二/第三方向动电极上(例如,第一方向动电极的与第一方向定电极(例如,509或510)相对的侧面上,第二方向动电极的与第二方向定电极(例如,507或508)相对的 侧面上,第三方向动电极(例如,504或505)的与第三方向定电极(例如,513或512)相对的侧面上)。在一些实施例中,所述气泡附着于至少一个定电极上(例如,第一方向定电极(例如,509或510)的与第一方向动电极相对的侧面上,第二方向定电极(例如,507或508)的与第二方向动电极相对的侧面上,第三方向定电极(例如,513或512)的与第三方向动电极(例如,504或505)相对的侧面上)。
当所述气泡位于腔体内(例如传感元件500内部)的不同位置时,包含传感元件500的传感装置的频响曲线不同(例如,所述至少一个第二谐振频率的大小和对应的峰值灵敏度不同)。在一些实施例中,无论气泡附着在传感元件500上(例如,附着在至少一个动电极和/或定电极上)或不附着在传感元件500上(例如,位于第一方向动电极(例如,配合孔511的侧壁)与相应的第一方向定电极(例如,509或510)之间)时,均能在低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)一定程度提升传感装置灵敏度(例如,10-60dBV,10-40dBV,15-40dBV等)。提升的大小也与气泡的大小和/或位置有关。
在一些实施例中,当气泡不附着在传感元件500上(例如,位于第一方向动电极(例如,配合孔511的侧壁)与相应的第一方向定电极(例如,509或510)之间)时,随着气泡体积增加,传感装置的灵敏度随之增加。示例性地,含中小型气泡的传感装置相比含小气泡的传感装置,低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)灵敏度提升约为5-30dBV。含中型气泡的传感装置相比含中小型气泡的传感装置,低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)灵敏度提升约为5-30dBV。
图6A-6E是根据本申请的一些实施例提供的传感元件600的示例性结构示意图。
传感元件600可以包括衬底611以及设置于所述衬底上的检测组件620(例如,质量元件,设置于所述质量元件的至少一个动电极,以及固定于衬底上的至少一个定电极)。衬底611可以与图4A-5D中的衬底相同或相似,此处不再赘述。如图6A所示,检测组件620可以包括质量元件621、支撑部件(例如,支撑杆、支撑弹簧、支撑支架等,又称为第二支撑部件)以及耦合件623。在本实施例中,所述支撑部件为支撑杆622。质量元件621通过支撑杆622连接于衬底611。
质量元件621可为圆形、多边形等。在一些实施例中,质量元件621为多边形时,其边数大于等于4个,例如,质量元件621可为五边形、六边形、八边形等。支撑杆622可发生形变。例如,支撑杆622可以是细长的圆柱或棱柱形。在外部加速度或外力的作用下,支撑杆622可以发生弹性形变。在一些实施例中,质量元件621的中心位置连接支撑杆622的一端。耦合件623连接于所述衬底,并包绕质量元件621。耦合件623与质量元件621之间设置有间隙。在一些实施例中,所述间隙的宽度处处相等。在一些实施例中,所述间隙的宽度在至少一个方向上可以不相等。耦合件623与质量元件621可以构成至少一个检测电容。假定传感元件600放置在水平面上,若传感元件600发生水平移动,支撑杆622受到移动方向对应的外力,且在外力作用下支撑杆622发生形变,从而使得质量元件621相对于衬底611和耦合件623运动,导致质量元件621与耦合件623之间的距离发生变化,进而使得移动方向上的电容发生变化。根据变化的电容,可以确定移动方向上的加速度。在一些实施例中,检测组件620中各部件的材质可以为掺杂有其他元素的硅质材料。例如,检测组件620中各部件的材质可以为掺杂硼的硅质材料。此时,整个质量元件621可以作为动电极,耦合件623可以作为定电极。需要注意的是,在一些实施例中,质量元件621也可以包括导电层(如质量元件121的上下表面设置的导电层),以形成所述动电极。同理,耦合件623也可以包括导电层,以形成所述定电极。
在一些实施例中,耦合件623与质量元件621之间的间隙的宽度处处相等,此时耦合件623包绕的形状与质量元件621的形状相同,及耦合件的内壁形状与质量元件621的外壁形状相同。示例性地,如图6B所示,质量元件621为圆形,耦合件623为与所述圆形同心的环形。在另一些实施例中,质量元件621可以为六边形,此时耦合件623的内壁为六边形,且耦合件623的内壁的边与质量元件621的外壁的边平行。
在一些实施例中,衬底611上还设有多个通孔。通孔内设有导电元件614,用于连接检测组件620的各部件与外部电路(例如,集成芯片等)。导电元件614可为通孔内填充的金属、电线等。由于检测组件620的材质为硼硅材质,导电元件614可以与耦合件623以及支撑杆622电连接。 支撑杆622进一步电连接于质量元件621。通过电源对耦合件623以及支撑杆622进行通电,使得耦合件623与质量元件621构成检测电容。
参阅图6B,当有Y轴的外部加速度输入时,加速度为ay。耦合件623固定连接至衬底611。质量元件621的质量较大,受到惯性的影响,会使支撑杆622发生弹性形变,在一定程度弯曲,造成加速度方向上,质量元件621与耦合件623的距离d减小。质量元件621作为动电极,耦合件623作为定电极,其距离减小,则检测电容的电容C1增大。电容C1的大小与质量元件621与耦合件623之间的距离d呈反比关系。通过测量电容C1的大小,可以确定加速度的大小。基于以上方式,可以测得X轴方向的加速度ax,与X轴呈45°夹角方向的加速度a45°等。由于质量元件621是圆形结构,因此可以测得任意方向的加速度,实现360°全方位的测量。当质量元件621为多边形,且多边形的边数大于等于四,则传感元件600可以检测多于四个方位上的加速度,例如,质量块为五边形,则传感元件600可以检测5个方位上的加速度。
传感元件600容置于壳体形成的腔体内。壳体610可以包括上壳体612和衬底611。在一些实施例中,上壳体612和衬底611均为硅基板。上壳体612和衬底611合围构成第一腔体613。在一些实施例中,壳体610上还设有外部电路,例如,集成芯片。集成芯片分别与支撑杆622以及耦合件623电连接。集成芯片可以计算质量元件621与耦合件623之间的电容。所述集成芯片可设于上壳体612的外表面。参阅图6C,集成芯片630设于上壳体612的外表面。集成芯片630通过导电元件614分别与支撑杆622以及耦合件623电连接。支撑杆622进一步电连接于质量元件621。在本实施例中,将集成芯片630与上壳体612贴合,使得加速度传感器的大小与芯片的大小一致,从而减小了加速度传感器的尺寸。
在一些实施例中,参阅图6D,加速度传感器的外部进一步设置有罩体640。罩体640盖设于壳体610的外表面,也即罩体640盖设于上壳体612的外表面,从而构成容置集成芯片630的第二腔体641。罩体640用于保护集成芯片630不受到外部因素的损害。在一些实施例中,罩体640的材质为硅。在一些实施例中,罩体640的材质也可以为金属、塑料等。
在一些实施例中,参阅图6E,衬底611的外表面上还设有多个引脚615,各个引脚615分别与导电元件614连接,从而使得加速度传感器可以通过引脚615与外部设备或电子元器件(例如,印制电路板PCB)进行电连接。
在一些实施例中,加速度传感器及其内部的部件(例如,检测组件620)可以通过晶圆级工艺进行切割制得。壳体110可以为方形,即加速度传感器的正视图为方形。晶圆级工艺制备得到的加速度传感器具有较小的尺寸。
图7A根据本申请的一些实施例提供的包含传感元件600的加速度传感器的制备方法的示例性流程705。
步骤710,在制造硅基板的掺杂硅(例如,硼掺杂硅)层进行刻蚀,以在所述制造硅基板的单晶硅层上刻蚀出检测组件,所述检测组件包括支撑杆、与所述支撑杆连接的质量元件以及包绕所述质量元件且与所述质量元件之间设置有间隙的耦合件。
在一些实施例中,所述质量元件与所述耦合件之间的间隙的宽度处处相等。所述质量元件为圆形或多边形。在所述质量元件为多边形时,其顶角数量或边数大于等于四个。
在本实施例中,制造基板包括第一厚度的单晶硅层以及第二厚度的掺杂硅(例如,硼掺杂硅)层。所述第一厚度的单晶硅层可以作为衬底;所述第二厚度的掺杂硅层上可以刻蚀出所述检测组件。例如,通过深反应离子刻蚀技术可以在掺杂硅层刻蚀出检测组件。具体地,需要先制备制造基板。制造基板的过程包括:取一定厚度的单晶硅片,再利用离子注入技术,将硼离子注入单晶硅片内,使得硼离子掺杂至硅原子之间,从而形成第二厚度的掺杂硅层,未被注入硼离子的硅原子层即为单晶硅层。在制备制造基板后,在制造基板上布置第一掩膜,再采用深反应离子刻蚀技术腐蚀掺杂硅层,同时需要控制腐蚀的厚度,以避免掺杂硅层被蚀穿。布置第一掩膜的区域未被腐蚀,从而在掺杂硅层刻蚀出耦合件雏形以及支撑杆。然后,对未被刻蚀穿的掺杂硅层布置第二掩膜,第二掩膜的中心为支撑杆,且第二掩膜可为圆形或者多边形(边数大于或等于四个)。对布置第二掩膜的掺杂硅层再次进行腐蚀,并将掺杂硅层蚀穿,从而刻蚀出与支撑杆连接的质量元件以及耦合件,且由于第二掩膜为圆形或者多边形,刻蚀出的质量元件也为圆形或者多边形。需要说明的是,用于对掺杂硅层腐蚀的溶液不会腐蚀单晶硅层,从而在单晶硅层上刻蚀出检测组件。
刻蚀出的耦合件包绕质量元件。质量元件与耦合件之间具有间隙,且间隙的宽度处处相等。因此,耦合件内壁的形状与质量元件的外壁的形状相同。在质量元件的形状为圆时,耦合件的形状为环形;在质量元件的形状为多边形时,耦合件的内壁形状也为多边形,且耦合件的内壁的边与质 量元件的外壁的边平行。
步骤720,将所述支撑杆以及所述耦合件的自由端与第一硅基板的表面粘接,并去除所述单晶硅层。
在刻蚀出检测组件后,将第一硅基板(即衬底)的表面与支撑杆以及耦合件的自由端粘接,也即将掺杂硅层的表面与衬底的表面粘接。示例性地,粘接的方式可为键合,即采用硅-硅键合工艺将衬底的表面与支撑杆以及耦合件的自由端粘接。由于硅-硅键合的强度较高,使得检测组件能够牢固的连接于衬底的表面。需要说明的是,在进行粘接之前,可以采用硅通孔技术在所述衬底上设置通孔。例如,采用刻蚀技术对所述衬底进行刻蚀形成通孔。通孔的位置可以粘接支撑杆及耦合件。通孔内可设置导电元件,以使得支撑杆及耦合件分别与导电元件连接。在对导电元件提供电压时,使得质量元件和耦合件构成检测电容。导电元件可为电线,填充在通孔的金属等。
在粘接衬底后,去除单晶硅层,从而将检测组件释放出来。可采用氢氧化钠溶液对单晶硅层进行腐蚀,从而去除单晶硅层,而不会损害由掺杂硅构成的检测组件。
步骤730,在第二硅基板上刻蚀形成容置槽,将第二硅基板刻蚀有所述容置槽的一侧与所述第一硅基板粘接,以使所述第一硅基板与容置槽合围为容置所述检测组件的腔体。
对第二硅基板(即上壳体)的表面进行刻蚀,从而在上壳体的表面刻蚀出容置槽。再将上壳体刻蚀有容置槽的一面与第一硅基板(即衬底)粘接,从而使得衬底与容置槽合围为容置检测组件的腔体。进一步的,在对衬底以及上壳体进行粘接后,可在衬底的外表面的通孔开口进行布线,从而形成布线区域。再在布线区域上进行植球,从而形成引脚,使得支撑杆以及耦合件通过引脚能够与电源连接。
在本实施例中,可以在一个制造基板上刻蚀出多个检测组件,也即能够在衬底上制备出多个加速度传感器,而各个检测组件位于同一硅基板上,故而采用晶圆级工艺对含有检测组件的壳体进行切割得到多个方形的加速度传感器。由于采用晶圆级工艺,有利于大规模生产加速度传感器,提高其生产效率且降低的生产成本。
本实施例制备的质量元件为圆形的加速度传感器不同于传统的单轴或者双轴加速度传感器,本实施例所述的加速度传感器可以实现360°全方位加速度测量,且加速度传感器的摆放方位不受限制。
图7B根据本申请的另一些实施例提供的包含传感元件600的加速度传感器的制备方法的示例性流程735。结合图7A所示的流程705,在步骤730后流程735还包括步骤740-760。
步骤740,在第二硅基板上刻蚀形成通孔,并在所述通孔内设置导电元件。
步骤750,在所述第二硅基板的外表面设置所述通孔的位置粘接集成芯片。
步骤760,通过导电元件连接所述集成芯片与所述支撑杆及所述耦合件。
在本实施例中,可对包含传感元件600的加速度传感器设置集成芯片,例如,ASIC(Application Specific Integrated Circuit)芯片。在将第一硅基板(即衬底)与第二硅基板(即上壳体)粘接后,在上壳体的外表面粘接集成芯片。上壳体可事先设置通孔,通孔内设置导电元件,集成芯片粘接于通孔的位置,从而使得集成芯片通过通孔中设置的导电元件与支撑杆及耦合件电连接。在一些实施例中,可在通孔处进行布线,通过布线使得集成芯片电连接支撑杆及耦合件,再将集成芯片粘接于上壳体的外表面。上壳体上的通孔与衬底的通孔对准,从而使得上壳体的通孔内的导电元件与衬底上的通孔内的导电元件连接,由此,使得集成芯片分别与支撑杆及耦合件电连接。
在本实施例中,集成芯片可测得耦合件和质量元件之间的电容大小,并通过信号放大,AD转换和/或算法处理得到加速度大小。加速度大小的信息从集成芯片发出,通过所述上壳体上布线和通孔,以及所述衬底上的布线和通孔,将信息从引脚传输至外部电路(例如,包含加速度传感器的设备的中央处理器)。
图7C根据本申请的又一些实施例提供的包含传感元件600的加速度传感器的制备方法的示例性流程765。结合图7A和7B所示的流程705和735,在步骤760后流程765还包括步骤770和780。
步骤770,在第三硅基板表面刻蚀形成容置槽。
步骤780,将第三硅基板刻蚀有所述容置槽的一侧与所述第二硅基板的外表面粘接,以使所述第二硅基板与容置槽合围为容置所述集成芯片的腔体。
在本实施例中,需对集成芯片进行保护。对此,在将集成芯片与支撑杆以及耦合件连接后,对第三硅基板(即罩体)进行腐蚀,从而在罩体上刻蚀出容置槽。在将刻蚀有容置槽的罩体的一面与上壳体的外表面进行粘接,从而使得上壳体与容置槽构成容置集成芯片的腔体。从而通过罩体保 护集成芯片。
通过将至少一个谐振系统耦合至所述加速度传感器(例如,壳体110和传感元件600之间),可以构成传感装置(例如,传感装置200或250)。所述至少一个谐振系统可以包括图2A和2B所示的第一谐振系统210或图2C和2D所示的第二谐振系统260。
在一些实施例中,第一谐振系统210和第二谐振系统260可以包括液体。示例性地,第一谐振系统210可以是具有特定密度和粘度的液体。例如,所述液体可以是密度为0.94kg/m 3的硅油,其运动粘度可以为0.5cst,1cst,5cst,10cst,100cst,200cst,1000cst等。所述液体可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。通过将所述液体填满所述加速度传感器的腔体,使传感元件600完全浸没于所述液体中,可以实现第一谐振系统210与传感元件600耦合。第二谐振系统210可以是含有气泡的液体,例如,含有气泡的硅油,其中气泡占腔体体积的比例可以为5%~95%中任意数值。气泡的数量可以为1个、2个、3个、4个或更多。所述液体可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统,所述气泡可以等效为弹簧(Km3)和阻尼(Rm3)系统。通过在所述加速度传感器的腔体内部分填充所述液体,部分填充气泡(例如,填充液体时未排出腔体的空气形成的气泡、通过气囊形成的气泡,和/或通过在传感元件600上涂覆疏水涂层形成的气泡),传感元件600至少部分浸没于所述液体中,以此实现第二谐振系统260与传感元件600的耦合。
在一些实施例中,第一谐振系统210和第二谐振系统260可以包括弹性结构。示例性地,第一谐振系统210可以是具有一定质量的弹性结构(例如,弹性杆、弹性片、弹性块、弹性网等),或轻质弹性结构(例如,轻质弹簧、轻质弹性杆等)与质量单元的组合。所述具有一定质量的弹性结构或轻质弹性结构与质量单元的组合可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。所述弹性结构的两端分别连接于壳体110和传感元件600(例如,质量元件621上的一个或多个位置)之间,可以实现第一谐振系统210与传感元件600耦合。第二谐振系统260可以是轻质弹性杆和/或弹簧和一个质量较大的弹性杆的组合。质量较大的弹性杆可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。轻质弹性杆和/或弹簧可以等效为弹簧(Km3)和阻尼(Rm3)系统。所述弹性杆和/或弹簧的两端分别固定连接于壳体110和传感元件600(例如,质量元件621上的一个或多个位置)之间,可以实现第二谐振系统260与传感元件600耦合。
由于第一谐振系统210或第二谐振系统260对应的第二谐振频率的存在,包含传感元件600的传感装置的频响曲线,在特定频段(例如,低频、中低频、中频、中高频和/或高频),会有所提升,使得其灵敏度较不包含第一谐振系统210或第二谐振系统260的加速度传感器会有所提高。另外,由于第一谐振系统210或第二谐振系统260作用于传感元件600,加速度传感器的振动特性较没有第一谐振系统210时会有所改变。具体地,第一谐振系统210或第二谐振系统260作用于传感元件600,可以影响加速度传感器的质量、刚度和/或阻尼等,其效果相当于使得包含传感元件600的传感装置的第一共振峰的Q值相对于不连接第一谐振系统210或第二谐振系统260的加速度传感器的Q值有所改变(例如,Q值减小)。在一些实施例中,第一谐振系统210或第二谐振系统260的存在会对传感装置中加速度传感器对应的谐振峰产生抑制作用,使得其频响曲线中所述谐振峰处Q值相对较低,在所需频段内(例如,中低频、中频等)频响曲线更加平坦化。
同时,第一谐振系统210或第二谐振系统260可以减小传感元件600受到的外界冲击以保护传感元件600。例如,若壳体110的腔体内引入液体或液体和气泡,,当接收外部冲击载荷时,第一谐振系统210或第二谐振系统260可以提高包含传感元件600的传感装置的抗冲击可靠性。具体地,由于液体的粘滞作用和气体的可压缩幅度大,可以吸收并消耗部分冲击能量,使得其中传感元件600受到的冲击载荷大大减小,因此可以保护传感元件600,延长其工作寿命。另外,传感元件600在加工过程中由于存在应力,常出现器件变形情况。通过在腔室中注入液体和气泡,可以利用的液体的重力、表面张力、粘滞力等,矫正器件的变形,使得传感装置变形更小,输出更稳定,更加接近设计效果。
在一些实施例中,通过调整加速度传感器的参数(例如,所述外壳110的内部结构、尺寸、刚度和/或传感元件600质量、尺寸、刚度)和/或形成所述至少一个谐振系统的物质/结构的参数(例如弹性杆的尺寸、质量、刚度、弹性,液体的种类、密度、粘度、体积、是否填充气泡以及气泡的占比、大小、位置、数量等),可以改变传感装置的频响曲线的相关参量(例如,所述第一谐振频率和所述至少一个第二谐振频率之间的关系,其对应的峰值高低,Q值,所述第一谐振频率与第二谐振频率的差值、比值,峰谷值与最高峰的峰值的比值等),从而达到例如,调节传感装置Q值,提高传感装置的灵敏度,可靠性或使传感装置的输出增益在所需频段(例如,中低频)更加稳定的目的。
在一些实施例中,所述第一谐振频率和所述至少一个第二谐振频率之间的低谷与所述第一谐振频率和所述至少一个第二谐振频率对应的共振峰中较高峰的峰值的灵敏度差值在一定范围内(例如,10dBV,20dBV,30dBV等),所述灵敏度差值与所述较高峰的峰值的比值不超过一定阈值(例如,0.05,0.1,0.2等)。所述第一谐振频率和所述至少一个第二谐振频率之间的频率差值在一定范围(例如,20-3000Hz,20-2000Hz,50-2000Hz,50-1500Hz,80-1500Hz,100-1500Hz等)内和/或所述差值与第一谐振频率或第二谐振频率的比值在一定范围(例如,0.02-0.7,0.15-0.6)内,可以使得其对应的共振峰之间的频响曲线较为平坦。包含传感元件600的传感装置的在第二谐振频率以内的灵敏度提升较高且较为稳定。例如,所述灵敏度的提升可以在10dBV-60dBV,20dBV-50dBV,30dBV-40dBV等。
在一些实施例中,所述至少一个谐振系统可以为含有气泡的液体。所述气泡占腔体体积的比例可以为5%,10%,20%,30%,50%,70%,95%等任意数值。所述气泡可以是小气泡(例如,占腔体体积的比例为2%-10%的气泡)、中小型气泡(例如,占腔体体积的比例为10%-20%的气泡)、中型气泡(例如,占腔体体积的比例为20%-50%的气泡)、大型气泡(例如,占腔体体积的比例为50%-90%的气泡)等。气泡的数量可以为1个、2个、3个、4个或更多。所述气泡可以位于腔体内(例如传感元件600内部)的不同位置。在一些实施例中,所述气泡位于质量元件621和耦合件623之间。在一些实施例中,所述气泡附着于质量元件621上(例如,上表面、下表面和/或与耦合件623相对的侧面)。在一些实施例中,所述气泡附着于耦合件623上(例如,上表面、下表面和/或与质量元件621相对的侧面)。
当所述气泡位于腔体内(例如传感元件600内部)的不同位置时,包含传感元件600的传感装置的频响曲线不同(例如,所述至少一个第二谐振频率的大小和对应的峰值灵敏度不同)。在一些实施例中,无论气泡附着在传感元件600上(例如,附着在质量元件621和/或耦合件623上)或不附着在传感元件600上(例如,位于质量元件621和耦合件623之间)时,均能在低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)一定程度提升传感装置灵敏度(例如,10-60dBV,10-40dBV,15-40dBV等)。提升的大小也与气泡的大小和/或位置有关。
在一些实施例中,当气泡不附着在传感元件600上(例如,位于质量元件621和耦合件623之间)时,随着气泡体积增加,传感装置的灵敏度随之增加。示例性地,含中小型气泡的传感装置相比含小气泡的传感装置,低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)灵敏度提升约为5-30dBV。含中型气泡的传感装置相比含中小型气泡的传感装置,低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)灵敏度提升约为5-30dBV。
图8A和8B是根据本申请的一些实施例提供的传感元件800的示例性结构示意图。
传感元件800可以包括衬底820以及设置于所述衬底上的检测组件(例如,质量元件,设置于所述质量元件的至少一个动电极,以及固定于衬底上的至少一个定电极)。衬底820可以与图4A-6E中的衬底相同或相似,此处不再赘述。如图8A所示,按照从衬底820的中心由内到外的顺序,所述检测组件包括第一质量元件811,至少一个第一柔性部件812,第一固定元件813,多个第一定电极814,多个第一动电极815,第二质量元件816,至少一个第二柔性部件817,以及第二固定元件818。在一些实施例中,第一质量元件811设置于衬底820的中心位置。第一质量元件811为圆形、方形、多边形等规则或不规则形状。第一质量元件811可以由,例如,单晶硅等材料制成。第一固定元件813可以支撑第一质量元件811并固定第一定电极814。第一固定元件813连接于衬底820,并包绕第一质量元件811。第一固定元件813的内壁上设置有至少一个第一柔性部件812。通过所述至少一个第一柔性部件812,第一固定元件813连接至所述第一质量元件811(例如,所述第一质量元件的外壁),从而使所述第一质量元件811悬空于所述衬底820上。所述多个第一定电极814设置于第一固定元件813外围并向外延伸。示例性地,所述多个第一定电极814呈平板状,垂直于第一固定元件813的外壁,并沿第一固定元件813的外壁排布。在一些实施例中,所述多个第一定电极814至少沿第一方向(例如,X轴方向)和第二方向(例如,Y轴方向)分布。
第二质量元件816处于所述第一固定元件813的外围,并包绕所述第一固定元件814。第二质量元件816可以由,例如,单晶硅等材料制成。第二固定元件818可以支撑第二质量元件816。 第二固定元件818连接于衬底820。第二固定元件818的内壁上设置有至少一个第二柔性部件817。通过所述至少一个第二柔性部件817,第二固定元件818连接至所述第二质量元件816(例如,所述第二质量元件的外壁),从而使第二质量元件816悬空于所述衬底820上。所述多个第一动电极815设置于第二质量元件816内侧并向内延伸。示例性地,所述多个第一动电极815呈平板状,垂直于第二质量元件816的内壁,并沿第二质量元件816的内壁排布。在一些实施例中,所述多个第一动电极815与所述多个第一定电极814平行并间隔设置,构成第一、第二方向检测电容。
参照图8B,传感元件800可以进一步包括第二定电极821以及设置于第一质量元件下表面的第二动电极。第二定电极821连接于衬底820并与第一质量元件811的下表面相对设置。第二动电极可以是设置于第一质量元件811的下表面的导电层。示例性的导电层可以包括金属、合金材料、金属氧化物材料、石墨烯、掺杂硅等,或其任意组合。在一些实施例中,所述导电层可以通过焊接、铆接、卡接、螺栓连接、胶黏剂粘合等方式固定连接或沉积、掺杂、物理生长等方式设置于第一质量元件811的下表面。第二定电极821和所述第二动电极可以构成第三方向检测电容。
在一些实施例中,第一固定元件813,第二质量元件816,以及第二固定元件818具有中心孔,第一质量元件811位于第一固定元件813的中心孔,第一固定元件813位于第二质量元件816的中心孔,第二质量元件816位于第二固定元件818的中心孔。第一质量元件811,第一固定元件813,第二质量元件816,以及第二固定元件818的外轮廓可以为圆形、正方形、长方形、多边形等。
在一些实施例中,第一质量元件811,第一固定元件813,第二质量元件816,以及第二固定元件818的外轮廓可以为正方形。示例性地,所述至少一个第一柔性部件812包括四个第一柔性部件812。所述四个第一柔性部件812分别连接第一质量元件811的四个外壁中的每个外壁与第一固定元件813的相应的内壁,以此支撑第一质量元件811,并使第一质量元件811可以沿第三方向(例如,Z轴方向)运动。示例性地,所述至少一个第二柔性部件817包括八个第二弹性连接部件817。所述八个第二弹性连接部件817中每两个第二弹性连接部件817分别连接第二质量元件816的四个外壁中的每个外壁与第二固定元件818的相应的内壁,以此支撑第二质量元件816,并使第二质量元件816可以沿平行于衬底820的第一方向(例如,X轴方向)和/或第二方向(例如,Y轴方向)运动。在一些实施例中,所述至少一个第一柔性部件812和/或至少一个第二柔性部件817可以为图中所示的曲臂结构。
在一些实施例中,第一质量元件811和/或第二质量元件822上可以设置多个孔819。所述孔可以为所述第一质量元件811和/或第二质量元件822的运动提供阻尼,使第一质量元件811和/或第二质量元件822的运动更平稳。
参照图8A,所述多个第一动电极815与多个第一定电极814相互交叉,并平行设置,形成梳齿电容系统,其中,每个第一动电极815与一个相应的第一定电极814构成一个检测电容。
当有第一或第二方向(即X或Y轴方向)的外部加速度输入时,由于所述至少一个第二柔性部件817的作用,第二质量元件816在X-Y平面内运动,使得所述多个第一定电极814与相应的第一动电极815之间的距离和/或正对面积发生变化,其构成的第一、第二方向检测电容发生变化,从而构成第一、第二方向的差分电容结构,用以表征第一、第二方向的加速度大小。
当有第三方向(即Z轴方向)的外部加速度输入时,由于所述至少一个第一柔性部件812的作用,第一质量元件811沿Z轴方向运动,使得第二定电极821与相应的第二动电极之间的距离发生变化,其构成的第三方向检测电容发生变化,以此表征第三方向的加速度大小。
通过将至少一个谐振系统耦合至所述加速度传感器(例如,壳体110和传感元件800之间),可以构成传感装置(例如,传感装置200或250)。所述至少一个谐振系统可以包括图2A和2B所示的第一谐振系统210或图2C和2D所示的第二谐振系统260。
在一些实施例中,第一谐振系统210和第二谐振系统260可以包括液体。示例性地,第一谐振系统210可以是具有特定密度和粘度的液体。例如,所述液体可以是密度为0.94kg/m 3的硅油,其运动粘度可以为0.5cst,1cst,5cst,10cst,100cst,200cst,1000cst等。所述液体可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。通过将所述液体填满所述加速度传感器的腔体,使传感元件800完全浸没于所述液体中,可以实现第一谐振系统210与传感元件800耦合。第二谐振系统210可以是含有气泡的液体,例如,含有气泡的硅油,其中气泡占腔体体积的比例可以为5%~95%中任意数值。气泡的数量可以为1个、2个、3个、4个或更多。所述液体可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统,所述气泡可以等效为弹簧(Km3)和阻尼(Rm3)系统。通过在所述加速度传感器的腔体内部分填充所述液体,部分填充气泡(例如,填充液体时未排出腔体的空气形成的气泡、通过气囊形成的气泡,和/或通过在传感元件800上涂覆疏水涂层形成的气泡),传感元件800至少 部分浸没于所述液体中,以此实现第二谐振系统260与传感元件800的耦合。
在一些实施例中,第一谐振系统210和第二谐振系统260可以包括弹性结构。示例性地,第一谐振系统210可以是具有一定质量的弹性结构(例如,弹性杆、弹性片、弹性块、弹性网等),或轻质弹性结构(例如,轻质弹簧、轻质弹性杆等)与质量单元的组合。所述具有一定质量的弹性结构或轻质弹性结构与质量单元的组合可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。所述弹性结构的两端分别连接于壳体110和传感元件800(例如,第一质量元件811或第二质量元件816上的一个或多个位置、第一动电极815、第二动电极等)之间,可以实现第一谐振系统210与传感元件600耦合。第二谐振系统260可以是轻质弹性杆和/或弹簧和一个质量较大的弹性杆的组合。质量较大的弹性杆可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。轻质弹性杆和/或弹簧可以等效为弹簧(Km3)和阻尼(Rm3)系统。所述弹性杆和/或弹簧的两端分别固定连接于壳体110和传感元件800(例如,第一质量元件811或第二质量元件816上的一个或多个位置、第一动电极815、第二动电极等)之间,可以实现第二谐振系统260与传感元件800耦合。
由于第一谐振系统210或第二谐振系统260对应的第二谐振频率的存在,包含传感元件800的传感装置的频响曲线,在特定频段(例如,低频、中低频、中频、中高频和/或高频),会有所提升,使得其灵敏度较不包含第一谐振系统210或第二谐振系统260的加速度传感器会有所提高。另外,由于第一谐振系统210或第二谐振系统260作用于传感元件800,加速度传感器的振动特性较没有第一谐振系统210时会有所改变。具体地,第一谐振系统210或第二谐振系统260作用于传感元件800,可以影响加速度传感器的质量、刚度和/或阻尼等,其效果相当于使得包含传感元件800的传感装置的第一共振峰的Q值相对于不连接第一谐振系统210或第二谐振系统260的加速度传感器的Q值有所改变(例如,Q值减小)。在一些实施例中,第一谐振系统210或第二谐振系统260的存在会对传感装置中加速度传感器对应的谐振峰产生抑制作用,使得其频响曲线中所述谐振峰处Q值相对较低,在所需频段内(例如,中低频、中频等)频响曲线更加平坦化。
同时,第一谐振系统210或第二谐振系统260可以减小传感元件800受到的外界冲击以保护传感元件800。例如,若壳体110的腔体内引入液体或液体和气泡,当接收外部冲击载荷时,第一谐振系统210或第二谐振系统260可以提高包含传感元件800的传感装置的抗冲击可靠性。具体地,由于液体的粘滞作用和气体的可压缩幅度大,可以吸收并消耗部分冲击能量,使得其中传感元件800受到的冲击载荷大大减小,因此可以保护传感元件800,延长其工作寿命。另外,传感元件800在加工过程中由于存在应力,常出现器件变形情况。通过在腔室中注入液体和气泡,可以利用的液体的重力、表面张力、粘滞力等,矫正器件的变形,使得传感装置变形更小,输出更稳定,更加接近设计效果。
在一些实施例中,通过调整加速度传感器的参数(例如,所述外壳110的内部结构、尺寸、刚度和/或传感元件800质量、尺寸、刚度)和/或形成所述至少一个谐振系统的物质/结构的参数(例如弹性杆的尺寸、质量、刚度、弹性,液体的种类、密度、粘度、体积、是否填充气泡以及气泡的占比、大小、位置、数量等),可以改变传感装置的频响曲线的相关参量(例如,所述第一谐振频率和所述至少一个第二谐振频率之间的关系,其对应的峰值高低,Q值,所述第一谐振频率与第二谐振频率的差值、比值,峰谷值与最高峰的峰值的比值等),从而达到例如,调节传感装置Q值,提高传感装置的灵敏度,可靠性或使传感装置的输出增益在所需频段(例如,中低频)更加稳定的目的。
在一些实施例中,所述第一谐振频率和所述至少一个第二谐振频率之间的低谷与所述第一谐振频率和所述至少一个第二谐振频率对应的共振峰中较高峰的峰值的灵敏度差值在一定范围内(例如,10dBV,20dBV,30dBV等),所述灵敏度差值与所述较高峰的峰值的比值不超过一定阈值(例如,0.05,0.1,0.2等)。所述第一谐振频率和所述至少一个第二谐振频率之间的频率差值在一定范围(例如,20-3000Hz,20-2000Hz,50-2000Hz,50-1500Hz,80-1500Hz,100-1500Hz等)内和/或所述差值与第一谐振频率或第二谐振频率的比值在一定范围(例如,0.02-0.7,0.15-0.6)内,可以使得其对应的共振峰之间的频响曲线较为平坦。包含传感元件800的传感装置的在第二谐振频率以内的灵敏度提升较高且较为稳定。例如,所述灵敏度的提升可以在10dBV-60dBV,20dBV-50dBV,30dBV-40dBV等。
在一些实施例中,所述至少一个谐振系统可以为含有气泡的液体。所述气泡占腔体体积的比例可以为5%,10%,20%,30%,50%,70%,95%等任意数值。所述气泡可以是小气泡(例如,占腔体体积的比例为2%-10%的气泡)、中小型气泡(例如,占腔体体积的比例为10%-20%的气泡)、 中型气泡(例如,占腔体体积的比例为20%-50%的气泡)、大型气泡(例如,占腔体体积的比例为50%-90%的气泡)等。气泡的数量可以为1个、2个、3个、4个或更多。所述气泡可以位于腔体内(例如传感元件800内部)的不同位置。在一些实施例中,所述气泡位于第一动电极815和第一定电极814之间和/或第二动电极(例如,第一质量元件的下表面)和第二定电极821之间。在一些实施例中,所述气泡附着于第一质量元件811(例如,第一质量元件811的上表面、下表面或内外侧壁),第二质量元件816(例如,第二质量元件816的上表面、下表面、内外侧壁),第一动电极815(例如,第一动电极815的上下表面或相对于第一定电极814的侧面)和/或第二动电极(例如,第二动电极的侧面或相对于第二定电极821的表面)。在一些实施例中,所述气泡附着于第一定电极(例如,与第一动电极815相对的侧面)和/或第二定电极821(例如,与第二动电极相对的表面)。
当所述气泡位于腔体内(例如传感元件800内部)的不同位置时,包含传感元件800的传感装置的频响曲线不同(例如,所述至少一个第二谐振频率的大小和对应的峰值灵敏度不同)。在一些实施例中,无论气泡附着在传感元件800上(例如,附着在第一质量元件811、第二质量元件816、第一动电极815和/或第二动电极上)或不附着在传感元件800上(例如,位于第一动电极815和第一定电极814之间)时,均能在低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)一定程度提升传感装置灵敏度(例如,10-60dBV,10-40dBV,15-40dBV等)。提升的大小也与气泡的大小和/或位置有关。
在一些实施例中,当气泡不附着在传感元件800上(例如,位于第一动电极815和第一定电极814之间)时,随着气泡体积增加,传感装置的灵敏度随之增加。示例性地,含中小型气泡的传感装置相比含小气泡的传感装置,低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)灵敏度提升约为5-30dBV。含中型气泡的传感装置相比含中小型气泡的传感装置,低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)灵敏度提升约为5-30dBV。
图9是根据本申请的一些实施例提供的传感装置900的示例性结构示意图。
传感装置900包括传感元件910和液体920。在本实施例中,传感元件910可以与图5A-6D中的传感元件500相同或相似,此处不再赘述。液体920可以是具有特定密度和粘度的特定液体。例如,液体920可以是密度为0.94kg/m 3的硅油,其运动粘度可以为0.5cst,1cst,5cst,10cst,100cst,200cst,1000cst等。液体920可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。通过将液体920填满传感元件910的腔体,使传感元件910中的检测组件完全浸没于所述液体中,可以实现液体920与传感元件910耦合。在一些实施例中,液体920中也可以含有气泡。气泡占腔体体积的比例可以为5%~95%中任意数值。气泡的数量可以为1个、2个、3个、4个或更多。所述气泡可以等效为弹簧(Km3)和阻尼(Rm3)系统。通过在传感元件910的腔体内填充含有气泡的液体,传感元件910至少部分浸没于液体中,以此实现液体920与传感元件910的耦合。
由于液体920对应的第二谐振频率的存在,传感装置900的频响曲线,在特定频段(例如,低频、中低频、中频、中高频和/或高频),会有所提升。另外,由于液体920作用于传感元件910,传感元件910的振动特性较没有液体920时会有所改变。具体地,液体920作用于传感元件910,效果相当于使得传感装置900的第一共振峰的Q值相对于不包含液体920的加速度传感器的Q值有所改变(例如,Q值减小)。在一些实施例中,液体920的存在会对传感装置900中传感元件910对应的谐振峰产生抑制作用,使得其频响曲线中所述谐振峰处Q值相对较低,在所需频段内(例如,中低频、中频等)频响曲线更加平坦化。
同时,液体920可以减小传感元件910受到的外界冲击以保护传感元件910。例如,当接收外部冲击载荷时,液体920可以提高包含传感元件910的传感装置900的抗冲击可靠性。具体地,由于液体的粘滞作用和气体的可压缩幅度大,可以吸收并消耗部分冲击能量,使得其中传感元件910受到的冲击载荷大大减小,因此可以保护传感元件910,延长其工作寿命。另外,传感元件910在加工过程中由于存在应力,常出现器件变形情况。通过在腔室中注入液体920,可以利用的液体的重力、表面张力、粘滞力等,矫正器件的变形,使得传感装置900变形更小,输出更稳定,更加接近设计效果。
在一些实施例中,通过调整传感元件910的参数(例如,外壳的内部结构、尺寸、刚度和/或内部检测组件的质量、尺寸、刚度)和/或液体920的参数(例如,种类、密度、粘度、体积、是否填充气泡以及气泡的占比、大小、位置、数量等),可以改变传感装置900的频响曲线的相关参 量(例如,第一谐振频率和至少一个第二谐振频率之间的关系,其对应的峰值高低,Q值,所述第一谐振频率与第二谐振频率的差值、比值,峰谷值与最高峰的峰值的比值等),从而达到例如,调节传感装置900的Q值,提高传感装置900的灵敏度,可靠性或使传感装置900的输出增益在所需频段(例如,中低频)更加稳定的目的。
在一些实施例中,所述第一谐振频率和所述至少一个第二谐振频率之间的低谷与所述第一谐振频率和所述至少一个第二谐振频率对应的共振峰中较高峰的峰值的灵敏度差值在一定范围内(例如,10dBV,20dBV,30dBV等),所述灵敏度差值与所述较高峰的峰值的比值不超过一定阈值(例如,0.05,0.1,0.2等)。所述第一谐振频率和所述至少一个第二谐振频率之间的频率差值在一定范围(例如,20-3000Hz,20-2000Hz,50-2000Hz,50-1500Hz,80-1500Hz,100-1500Hz等)内和/或所述差值与第一谐振频率或第二谐振频率的比值在一定范围(例如,0.02-0.7,0.15-0.6)内,可以使得其对应的共振峰之间的频响曲线较为平坦。传感装置900在第二谐振频率以内的灵敏度提升较高且较为稳定。例如,所述灵敏度的提升可以在10dBV-60dBV,20dBV-50dBV,30dBV-40dBV等。
在一些实施例中,所述气泡占腔体体积的比例可以为5%,10%,20%,30%,50%,70%,95%等任意数值。所述气泡可以是小气泡(例如,占腔体体积的比例为2%-10%的气泡)、中小型气泡(例如,占腔体体积的比例为10%-20%的气泡)、中型气泡(例如,占腔体体积的比例为20%-50%的气泡)、大型气泡(例如,占腔体体积的比例为50%-90%的气泡)等。气泡的数量可以为1个、2个、3个、4个或更多。所述气泡可以位于腔体内(例如传感元件910内部)的不同位置。
当所述气泡位于腔体内(例如传感元件910内部)的不同位置时,包含传感元件910的传感装置900的频响曲线不同(例如,所述至少一个第二谐振频率的大小和对应的峰值灵敏度不同)。在一些实施例中,无论气泡附着在传感元件910上(例如,附着在检测组件上)或不附着在传感元件910上时,均能在低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)一定程度提升传感装置900的灵敏度(例如,10-60dBV,10-40dBV,15-40dBV等)。提升的大小也与气泡的大小和/或位置有关。
在一些实施例中,当气泡不附着在传感元件910上(例如,位于检测组件和腔体内壁之间)时,随着气泡体积增加,传感装置900的灵敏度随之增加。示例性地,含中小型气泡的传感装置900相比含小气泡的传感装置e,低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)灵敏度提升约为5-30dBV。含中型气泡的传感装置900相比含中小型气泡的传感装置900,低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)灵敏度提升约为5-30dBV。
图10是根据本申请的一些实施例提供的传感装置1000的示例性结构示意图。
传感装置1000包括传感元件1010和液体1020。在本实施例中,传感元件1010可以与图6A-6E中的传感元件600相同或相似,此处不再赘述。液体1020可以是具有特定密度和粘度的特定液体。例如,液体1020可以是密度为0.94kg/m 3的硅油,其运动粘度可以为0.5cst,1cst,5cst,10cst,100cst,200cst,1000cst等。液体1020可以等效为弹簧(Km4)-质量(Mm4)-阻尼(Rm4)系统。通过将液体1020填满传感元件1010的腔体,使传感元件1010中的检测组件完全浸没于所述液体中,可以实现液体1020与传感元件1010耦合。在一些实施例中,液体1020中也可以含有气泡。气泡占腔体体积的比例可以为5%~95%中任意数值。气泡的数量可以为1个、2个、3个、4个或更多。所述气泡可以等效为弹簧(Km3)和阻尼(Rm3)系统。通过在传感元件1010的腔体内填充含有气泡的液体,传感元件1010至少部分浸没于液体中,以此实现液体1020与传感元件1010的耦合。
由于液体1020对应的第二谐振频率的存在,传感装置1000的频响曲线,在特定频段(例如,低频、中低频、中频、中高频和/或高频),会有所提升。另外,由于液体1020作用于传感元件1010,传感元件1010的振动特性较没有液体1020时会有所改变。具体地,液体1020作用于传感元件1010,效果相当于使得传感装置1000的第一共振峰的Q值相对于不包含液体1020的加速度传感器的Q值有所改变(例如,Q值减小)。在一些实施例中,液体1020的存在会对传感装置1000中传感元件1010对应的谐振峰产生抑制作用,使得其频响曲线中所述谐振峰处Q值相对较低,在所需频段内(例如,中低频、中频等)频响曲线更加平坦化。
同时,液体1020可以减小传感元件1010受到的外界冲击以保护传感元件1010。例如,当接收外部冲击载荷时,液体1020可以提高包含传感元件1010的传感装置1000的抗冲击可靠性。 具体地,由于液体的粘滞作用和气体的可压缩幅度大,可以吸收并消耗部分冲击能量,使得其中传感元件1010受到的冲击载荷大大减小,因此可以保护传感元件1010,延长其工作寿命。另外,传感元件1010在加工过程中由于存在应力,常出现器件变形情况。通过在腔室中注入液体1020,可以利用的液体的重力、表面张力、粘滞力等,矫正器件的变形,使得传感装置1000变形更小,输出更稳定,更加接近设计效果。
在一些实施例中,通过调整传感元件1010的参数(例如,外壳的内部结构、尺寸、刚度和/或内部检测组件的质量、尺寸、刚度)和/或液体1020的参数(例如,种类、密度、粘度、体积、是否填充气泡以及气泡的占比、大小、位置、数量等),可以改变传感装置1000的频响曲线的相关参量(例如,第一谐振频率和至少一个第二谐振频率之间的关系,其对应的峰值高低,Q值,所述第一谐振频率与第二谐振频率的差值、比值,峰谷值与最高峰的峰值的比值等),从而达到例如,调节传感装置1000的Q值,提高传感装置1000的灵敏度,可靠性或使传感装置1000的输出增益在所需频段(例如,中低频)更加稳定的目的。
在一些实施例中,所述第一谐振频率和所述至少一个第二谐振频率之间的低谷与所述第一谐振频率和所述至少一个第二谐振频率对应的共振峰中较高峰的峰值的灵敏度差值在一定范围内(例如,10dBV,20dBV,30dBV等),所述灵敏度差值与所述较高峰的峰值的比值不超过一定阈值(例如,0.05,0.1,0.2等)。所述第一谐振频率和所述至少一个第二谐振频率之间的频率差值在一定范围(例如,20-3000Hz,20-2000Hz,50-2000Hz,50-1500Hz,80-1500Hz,100-1500Hz等)内和/或所述差值与第一谐振频率或第二谐振频率的比值在一定范围(例如,0.02-0.7,0.15-0.6)内,可以使得其对应的共振峰之间的频响曲线较为平坦。传感装置1000在第二谐振频率以内的灵敏度提升较高且较为稳定。例如,所述灵敏度的提升可以在10dBV-60dBV,20dBV-50dBV,30dBV-40dBV等。
在一些实施例中,所述气泡占腔体体积的比例可以为5%,10%,20%,30%,50%,70%,95%等任意数值。所述气泡可以是小气泡(例如,占腔体体积的比例为2%-10%的气泡)、中小型气泡(例如,占腔体体积的比例为10%-20%的气泡)、中型气泡(例如,占腔体体积的比例为20%-50%的气泡)、大型气泡(例如,占腔体体积的比例为50%-90%的气泡)等。气泡的数量可以为1个、2个、3个、4个或更多。所述气泡可以位于腔体内(例如传感元件1010内部)的不同位置。
当所述气泡位于腔体内(例如传感元件1010内部)的不同位置时,包含传感元件1010的传感装置1000的频响曲线不同(例如,所述至少一个第二谐振频率的大小和对应的峰值灵敏度不同)。在一些实施例中,无论气泡附着在传感元件1010上(例如,附着在检测组件上)或不附着在传感元件1010上时,均能在低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)一定程度提升传感装置1000的灵敏度(例如,10-60dBV,10-40dBV,15-40dBV等)。提升的大小也与气泡的大小和/或位置有关。
在一些实施例中,当气泡不附着在传感元件1010上(例如,位于检测组件和腔体内壁之间)时,随着气泡体积增加,传感装置1000的灵敏度随之增加。示例性地,含中小型气泡的传感装置1000相比含小气泡的传感装置e,低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)灵敏度提升约为5-30dBV。含中型气泡的传感装置1000相比含中小型气泡的传感装置1000,低频或中低频或中高频之前频段(例如,小于7000Hz、5000Hz、3000Hz、1000Hz、500Hz、100Hz、50Hz的频段内)灵敏度提升约为5-30dBV。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (36)

  1. 一种传感装置,包括:
    加速度传感器,具有第一谐振频率,所述加速度传感器包括壳体和传感元件,所述传感元件位于由所述壳体形成的腔体内;和
    至少一个谐振系统,耦合于所述传感元件,其中所述至少一个谐振系统为所述传感装置提供至少一个第二谐振频率,所述至少一个第二谐振频率与所述第一谐振频率相同或不同。
  2. 根据权利要求1所述的传感装置,其中,所述传感元件包括:
    衬底;
    质量元件,响应于外部加速度,相对于所述衬底运动,所述质量元件上设置有至少一个动电极;和
    固定于所述衬底上的至少一个定电极,所述至少一个动电极与所述至少一个定电极构成至少一个检测电容用于确定所述外部加速度的大小。
  3. 根据权利要求2所述的传感装置,其中,
    所述至少一个动电极包括:
    沿第一方向排布并垂直于第一方向的至少一组第一动电极,每组第一动电极包括一个或多个第一动电极;和
    沿第二方向排布并垂直于第二方向的至少一组第二动电极,每组第二动电极包括一个或多个第二动电极;
    所述至少一个定电极包括:
    平行并相对于每个第一动电极设置的第一定电极,所述至少一组第一动电极与相对应的第一定电极构成第一方向检测电容;和
    平行并相对于每个第二动电极设置的第二定电极,所述至少一组第二动电极与相对应的第二定电极构成第二方向检测电容,所述至少一组第一动电极和所述至少一组第二动电极与
    对应的第一定电极和第二定电极构成第三方向检测电容。
  4. 根据权利要求3所述的传感装置,所述第二方向垂直于所述第一方向。
  5. 根据权利要求3所述的传感装置,其中,
    所述至少一组第一动电极包括偶数组第一动电极,所述偶数组第一动电极沿所述第一方向位于所述质量元件的两侧;
    所述至少一组第二动电极包括偶数组第二动电极,所述偶数组第二动电极沿所述第二方向位于所述质量元件的两侧。
  6. 根据权利要求3-5中任一项所述的传感装置,其中,
    每组第一动电极沿所述第一方向设有第一动电极轴和垂直于所述第一方向的第一固定动电极,所述第一动电极轴和第一固定动电极通过第一弹性元件连接至所述衬底;
    每组第二动电极沿所述第二方向设有第二动电极轴和垂直于所述第二方向的第二固定动电极,所述第二动电极轴和第二固定动电极通过第二弹性元件连接至所述衬底,
    所述传感装置进一步包括:
    对应于每组第一动电极的一对第一定电极轴和一对第一固定定电极,该对第一定电极轴相对所述第一方向对称设置,该对第一固定定电极垂直于第一方向,每组第一动电极的第一动电极轴夹设在该对第一定电极轴之间,第一固定动电极夹设在该对第一固定定电极之间;和
    对应于每组第二动电极的一对第二定电极轴和一对第二固定定电极,该对第二定电极轴相对所述第二方向对称设置,该对第二固定定电极垂直于第二方向,每组第二动电极的第二动电极轴夹设在该对第二定电极轴之间,第二固定动电极夹设在该对第二固定定电极之间。
  7. 根据权利要求6所述的传感装置,其中,
    对应于每组第一动电极的一对第一定电极轴与第一固定定电极及第一固定动电极形成三角区域;
    对应于每组第二动电极的一对第二定电极轴与第二固定定电极及第二固定动电极形成三角区域。
  8. 根据权利要求7所述的传感装置,相邻的第一定电极轴与第二定电极轴平行设置,且具有一定间距。
  9. 根据权利要求3-8中任一项所述的传感装置,其中,
    每个第一动电极具有平行于所述质量元件上表面的第一动电极顶面和第一动电极底面,相应的第一定电极具有平行于所述质量元件上表面的第一定电极顶面和第一定电极底面,所述第一动电极顶面相较所述第一定电极顶面远离质量元件的上表面;
    每个第二动电极具有平行于所述质量元件上表面的第二动电极顶面以及第二动电极底面,相应的第二定电极具有平行于所述质量元件上表面的第二定电极顶面以及第二定电极底面,所述第二动电极顶面相较所述第二定电极顶面靠近质量元件的上表面。
  10. 根据权利要求9所述的传感装置,所述第一定电极顶面与第二动电极顶面具有相同的水平高度。
  11. 根据权利要求2所述的传感装置,所述传感元件进一步包括:
    固定在所述衬底上的第一支撑部件,所述质量元件通过弹性连接单元连接在所述第一支撑部件上,所述第一支撑部件位于所述质量元件的中心,所述弹性连接单元沿第一方向延伸,所述弹性连接单元的中线与所述质量元件在第一方向的中线重合,在第二方向上,所述质量元件位于弹性连接单元两侧的部分的质量不相等,其中,
    所述至少一个定电极包括:
    至少两个第一方向定电极;
    沿第一方向延伸的至少两个第二方向定电极,所述第二方向定电极位于所述质量元件沿第二方向的中线上,且相对于所述第一支撑部件对称;和
    设置于所述弹性连接单元两侧的至少两个第三方向定电极,
    所述至少一个动电极包括:
    分别对应于所述至少两个第一方向定电极、至少两个第二方向定电极以及至少两个第三方向定电极的第一方向动电极、第二方向动电极以及第三方向动电极,分别构成第一方向检测电容、第二方向检测电容以及第三方向检测电容。
  12. 根据权利要求11所述的传感装置,所述至少两个第一方向定电极沿第二方向延伸,所述至少两个第一方向定电极分布于所述质量元件沿第二方向的中线对应衬底位置的两侧,并相对于所述第二方向的中线轴对称或相对于所述第一支撑部件中心对称。
  13. 根据权利要求12所述的传感装置,所述至少两个第一方向定电极不在所述质量元件沿第一方向的中线上。
  14. 根据权利要求13所述的传感装置,其中,
    每个第一方向定电极包括平行设置的两个第一方向定电极单元,与所述第一方向定电极相对应的第一方向动电极包括两个第一方向动电极单元,所述两个第一方向动电极单元与所述两个第一定电极单元构成第一方向差分电容结构;
    每个第二方向定电极包括平行设置的两个第二方向定电极单元,与所述第二方向定电极相对应的第二方向动电极包括两个第二方向动电极单元,所述两个第二方向动电极单元与所述两个第二方向定电极单元构成第二方向差分电容结构。
  15. 根据权利要求12所述的传感装置,所述至少两个第一方向定电极位于所述质量元件沿第一方向的中线上。
  16. 根据权利要求15所述的传感装置,其中,
    每个第一方向定电极包括平行设置的两个第一方向定电极单元,与所述第一方向定电极相对应的第一方向动电极包括两个第一方向动电极单元,所述两个第一方向动电极单元与所述两个第一定电极单元构成第一方向差分电容结构;
    每个第二方向定电极包括平行设置的两个第二方向定电极单元,与所述第二方向定电极相对应的第二方向动电极包括两个第二方向动电极单元,所述两个第二方向动电极单元与所述两个第二方向定电极单元构成第二方向差分电容结构,
    其中,所述至少两个第一方向定电极中的至少一个第一方向定电极的一侧的第一方向定电极单元电连接于与所述至少一个第一方向定电极关于所述质量元件沿第二方向的中线轴对称的另一第一方向定电极的相反一侧的第一方向定电极单元。
  17. 根据权利要求11所述的传感装置,所述至少两个第三方向定电极分别为所述至少两个第三方向检测电容的下电极,所述至少两个第三方向动电极分别为所述至少两个第三方向检测电容的上电极。
  18. 根据权利要求11所述的传感装置,所述质量元件其中一侧设置有减重孔或配重块,以使所述质量元件两侧的质量不相等。
  19. 根据权利要求2所述的传感装置,所述传感元件进一步包括:
    固定于所述衬底的第二支撑部件,所述质量元件通过所述第二支撑部件连接于所述衬底,
    所述至少一个定电极包括:
    耦合件,所述耦合件包绕所述质量元件,并与所述质量元件之间设置有间隙,构成所述至少一个检测电容。
  20. 根据权利要求19所述的传感装置,其中,所述衬底的材质包含硅,所述第二支撑部件、所述质量元件和所述耦合件的材质包含掺杂硅。
  21. 根据权利要求20所述的传感装置,进一步包括:
    集成芯片,所述集成芯片分别与所述第二支撑部件及所述耦合件电连接。
  22. 根据权利要求21所述的传感装置,所述集成芯片位于所述壳体的外表面,所述壳体上设置有通孔,导电元件穿过所述通孔,连接所述集成芯片与第二支撑部件及所述耦合件。
  23. 根据权利要求2所述的传感装置,其中,
    所述质量元件包括:
    第一质量元件;和
    第二质量元件,
    所述传感装置进一步包括,
    第一固定元件,连接于所述衬底,并包绕所述第一质量元件,所述第一固定元件通过至少一个第一柔性部件连接至所述第一质量元件,所述第二质量元件包绕所述第一固定元件;和
    第二固定元件,连接于所述衬底,并包绕所述第二质量元件,所述第二固定元件通过至少一个第二柔性部件连接至所述第二质量元件,
    所述至少一个动电极包括:
    设置于第二质量元件内侧并向内延伸的多个第一动电极,所述多个第一动电极至少沿第一方向和第二方向分布;和
    设置于所述第一质量元件底部的第二动电极;
    所述至少一个定电极包括:
    设置于第一固定元件外围并向外延伸的多个第一定电极,所述多个第一定电极与所述多个第一动电极对应并间隔设置,构成第一、第二方向检测电容;和
    设置于所述衬底上的第二定电极,与所述第二动电极构成第三方向检测电容。
  24. 根据权利要求23所述的传感装置,所述第一质量元件和/或第二质量单元上设置有多个孔。
  25. 根据权利要求23所述的传感装置,所述第一质量元件、第二质量元件、第一固定元件、或第二固定元件中至少一个的轮廓为方形。
  26. 根据权利要求1-25中任一项所述的传感装置,所述至少一个谐振系统包括第一谐振系统,所述第一谐振系统为弹簧-质量-阻尼系统。
  27. 根据权利要求26所述的传感装置,所述第一谐振系统由第一介质构成,所述第一介质充满所述腔体,所述加速度传感元件浸没于所述第一介质中。
  28. 根据权利要求27所述的传感装置,所述第一介质为液体,所述液体包括硅油、甘油、机油、润滑油、液压油中的至少一种。
  29. 根据权利要求28所述的传感装置,所述第一谐振系统为连接于所述加速度传感元件的至少一个第一弹性结构,所述第一弹性结构包括弹性部件和质量单元。
  30. 根据权利要求1-25中任一项所述的传感装置,所述至少一个谐振系统包括第二谐振系统,所述第二谐振系统为弹簧-质量-阻尼系统与弹簧-阻尼系统的组合。
  31. 根据权利要求30所述的传感装置,所述第二谐振系统由第一介质和第二介质构成,所述第一介质和第二介质填充于所述腔体内,所述加速度传感元件至少部分浸没于所述第一介质和/或第二介质中。
  32. 根据权利要求31所述的传感装置,所述第一介质为液体,所述第二介质为气体,所述气体以气泡的形式分布于所述液体。
  33. 根据权利要求32所述的传感装置,所述气泡的大小占所述腔体体积的比例为30%-50%。
  34. 根据权利要求32或33所述的传感装置,所述气泡可以通过未排出腔体的空气、气囊或疏水材料中的至少一种形成。
  35. 根据权利要求31所述的传感装置,所述第一介质和第二介质为具有不同属性且未互溶的液体。
  36. 根据权利要求30所述的传感装置,所述第二谐振系统包括连接于所述加速度传感元件的至少一个第二弹性结构,所述第二弹性结构包括第一弹性结构和至少一个轻质弹性部件。
PCT/CN2022/071932 2021-04-23 2022-01-14 加速度传感装置 WO2022222557A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280002184.8A CN115605765A (zh) 2021-04-23 2022-01-14 加速度传感装置
TW111115382A TW202242418A (zh) 2021-04-23 2022-04-22 加速度感測裝置
US17/812,176 US20220341964A1 (en) 2021-04-23 2022-07-13 Acceleration sensing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110445739.3 2021-04-23
CN202110445739 2021-04-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/812,176 Continuation US20220341964A1 (en) 2021-04-23 2022-07-13 Acceleration sensing device

Publications (1)

Publication Number Publication Date
WO2022222557A1 true WO2022222557A1 (zh) 2022-10-27

Family

ID=83665786

Family Applications (6)

Application Number Title Priority Date Filing Date
PCT/CN2021/112065 WO2022222317A1 (zh) 2021-04-23 2021-08-11 一种振动传感装置
PCT/CN2021/112030 WO2022222316A1 (zh) 2021-04-23 2021-08-11 传感装置
PCT/CN2021/112014 WO2022222315A1 (zh) 2021-04-23 2021-08-11 一种传感装置
PCT/CN2022/071932 WO2022222557A1 (zh) 2021-04-23 2022-01-14 加速度传感装置
PCT/CN2022/088558 WO2022223032A1 (zh) 2021-04-23 2022-04-22 一种传感装置
PCT/CN2022/088598 WO2022223041A1 (zh) 2021-04-23 2022-04-22 一种传感装置

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/CN2021/112065 WO2022222317A1 (zh) 2021-04-23 2021-08-11 一种振动传感装置
PCT/CN2021/112030 WO2022222316A1 (zh) 2021-04-23 2021-08-11 传感装置
PCT/CN2021/112014 WO2022222315A1 (zh) 2021-04-23 2021-08-11 一种传感装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/088558 WO2022223032A1 (zh) 2021-04-23 2022-04-22 一种传感装置
PCT/CN2022/088598 WO2022223041A1 (zh) 2021-04-23 2022-04-22 一种传感装置

Country Status (4)

Country Link
US (5) US20230319458A1 (zh)
CN (14) CN218162856U (zh)
TW (3) TW202242846A (zh)
WO (6) WO2022222317A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11711653B2 (en) 2021-05-11 2023-07-25 xMEMS Labs, Inc. Sound producing cell and manufacturing method thereof
JP2023002319A (ja) * 2021-06-22 2023-01-10 株式会社デンソー Memsデバイス
WO2024108334A1 (zh) * 2022-11-21 2024-05-30 深圳市韶音科技有限公司 一种声学输出装置
CN116804561B (zh) * 2023-04-27 2024-02-06 中国人民解放军国防科技大学 一种基于附加损耗的谐振子阻尼修调装置及方法
CN117381763B (zh) * 2023-10-18 2024-05-31 芜湖藦卡机器人科技有限公司 一种机器人工具手自动标定检测机构及检测方法
CN117560611B (zh) * 2024-01-11 2024-04-16 共达电声股份有限公司 麦克风

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230032A (ja) * 1996-02-22 1997-09-05 Hitachi Ltd 音響センサ
WO2007082875A1 (de) * 2006-01-18 2007-07-26 Robert Bosch Gmbh Inertialsensoranordnung
CN101871952A (zh) * 2010-06-11 2010-10-27 瑞声声学科技(深圳)有限公司 Mems加速度传感器
CN101871951A (zh) * 2010-06-07 2010-10-27 瑞声声学科技(深圳)有限公司 微加速度传感器
CN105158511A (zh) * 2015-06-29 2015-12-16 歌尔声学股份有限公司 一种mems三轴加速度计
CN209589100U (zh) * 2019-03-04 2019-11-05 嘉贺恒德科技有限责任公司 填充树脂式振动传感器及传感系统
CN110988395A (zh) * 2019-12-02 2020-04-10 青岛歌尔智能传感器有限公司 加速度传感器及其制备方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211898A (en) * 1977-07-11 1980-07-08 Matsushita Electric Industrial Co., Ltd. Headphone with two resonant peaks for simulating loudspeaker reproduction
JPH02155400A (ja) * 1988-12-08 1990-06-14 Tamura Electric Works Ltd 圧電形受話器
JPH04102029U (ja) * 1991-02-13 1992-09-03 ユピテル工業株式会社 振動センサ
WO2005024367A2 (en) * 2003-09-08 2005-03-17 Microsense Cardiovascular Systems 1996 A method and system for calibrating resonating pressure sensors and calibratable resonating pressure sensors
JP2009069006A (ja) * 2007-09-13 2009-04-02 Fujifilm Corp カンチレバー型センサ、それを用いる物質検知システム及び物質検査方法
US7626316B2 (en) * 2007-09-28 2009-12-01 Robert Bosch Gmbh Passive self-tuning resonator system
WO2012140846A1 (ja) * 2011-04-12 2012-10-18 パナソニック株式会社 Mems圧力センサ
US9872111B2 (en) * 2013-03-06 2018-01-16 Infineon Technologies Austria Ag Acoustic sensor package
NL1040505C2 (en) * 2013-11-19 2015-05-26 Beethoven Marine Systems B V Sensor for detecting pressure waves in a fluid, provided with static pressure compensation.
US9683968B2 (en) * 2014-06-17 2017-06-20 Nxp B.V. Combination sensor
WO2016029378A1 (en) * 2014-08-27 2016-03-03 Goertek. Inc Mems device with valve mechanism
US9439002B2 (en) * 2014-11-13 2016-09-06 Invensense, Inc. Integrated package forming wide sense gap micro electro-mechanical system microphone and methodologies for fabricating the same
CN104393736A (zh) * 2014-11-25 2015-03-04 北京交通大学 采用磁性液体和永磁铁组合结构的平面振动能量采集器
CN204887455U (zh) * 2015-08-13 2015-12-16 深圳市韶音科技有限公司 一种改善骨传导扬声器音质的骨传导扬声器
EP3169082A1 (en) * 2015-10-20 2017-05-17 Sonion Nederland B.V. Microphone assembly with suppressed frequency response
US9661411B1 (en) * 2015-12-01 2017-05-23 Apple Inc. Integrated MEMS microphone and vibration sensor
EP3548856B1 (de) * 2016-11-30 2021-05-19 Kistler Holding AG Messwertaufnehmer zum messen einer kraft
CN206728276U (zh) * 2017-01-09 2017-12-08 声佗医疗科技(上海)有限公司 一种口腔内器具和口腔内麦克风
US10231061B2 (en) * 2017-04-28 2019-03-12 Infineon Technologies Ag Sound transducer with housing and MEMS structure
CN107995570B (zh) * 2017-11-23 2024-06-07 苏州逸巛科技有限公司 一种受话器
CN108337617A (zh) * 2018-03-02 2018-07-27 上海微联传感科技有限公司 压电式麦克风
KR102461608B1 (ko) * 2018-07-30 2022-11-02 삼성전자주식회사 스피커에 포함된 진동판을 이용하여 하우징 내부 공간의 액체를 외부로 배출하는 전자 장치, 및 그 전자 장치의 제어 방법
CN210065158U (zh) * 2018-12-20 2020-02-14 歌尔科技有限公司 多功能传感器
CN209526861U (zh) * 2019-03-27 2019-10-22 歌尔科技有限公司 一种骨声纹传感器及电子设备
CN209659621U (zh) * 2019-03-27 2019-11-19 歌尔科技有限公司 振动传感器和音频设备
DE102020113974A1 (de) * 2019-05-28 2020-12-03 Apple Inc. Entlüftete akustische wandler und verwandte verfahren und systeme
JP7226154B2 (ja) * 2019-07-10 2023-02-21 株式会社デンソー 超音波センサ
CN110631759A (zh) * 2019-09-29 2019-12-31 苏州敏芯微电子技术股份有限公司 差压传感器封装结构及电子设备
CN211702391U (zh) * 2020-03-25 2020-10-16 歌尔微电子有限公司 Mems麦克风和电子产品
CN211630374U (zh) * 2020-03-30 2020-10-02 歌尔微电子有限公司 音频模组和电子设备
CN111556419A (zh) * 2020-05-27 2020-08-18 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN111510834A (zh) * 2020-05-27 2020-08-07 潍坊歌尔微电子有限公司 骨声纹传感器模组和电子设备
CN211930820U (zh) * 2020-05-28 2020-11-13 青岛歌尔智能传感器有限公司 振动传感器和音频设备
CN212748031U (zh) * 2020-08-18 2021-03-19 洛阳大工检测技术有限公司 一种含有谐振腔的振动检测传感器
CN111970615A (zh) * 2020-09-30 2020-11-20 广东汉泓医疗科技有限公司 一种声音传感器振膜及一种听诊器
CN112565995B (zh) * 2020-11-16 2022-09-20 歌尔微电子有限公司 传感器芯片、骨声纹传感器和电子设备
CN112601169B (zh) * 2020-12-15 2021-09-24 武汉大学 一种宽频带高灵敏度谐振式压电mems麦克风

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230032A (ja) * 1996-02-22 1997-09-05 Hitachi Ltd 音響センサ
WO2007082875A1 (de) * 2006-01-18 2007-07-26 Robert Bosch Gmbh Inertialsensoranordnung
CN101871951A (zh) * 2010-06-07 2010-10-27 瑞声声学科技(深圳)有限公司 微加速度传感器
CN101871952A (zh) * 2010-06-11 2010-10-27 瑞声声学科技(深圳)有限公司 Mems加速度传感器
CN105158511A (zh) * 2015-06-29 2015-12-16 歌尔声学股份有限公司 一种mems三轴加速度计
CN209589100U (zh) * 2019-03-04 2019-11-05 嘉贺恒德科技有限责任公司 填充树脂式振动传感器及传感系统
CN110988395A (zh) * 2019-12-02 2020-04-10 青岛歌尔智能传感器有限公司 加速度传感器及其制备方法

Also Published As

Publication number Publication date
WO2022222317A1 (zh) 2022-10-27
WO2022223041A1 (zh) 2022-10-27
US20230349862A1 (en) 2023-11-02
CN115243176A (zh) 2022-10-25
CN116530094A (zh) 2023-08-01
CN117044239A (zh) 2023-11-10
US20230362524A1 (en) 2023-11-09
TW202243297A (zh) 2022-11-01
US20230353932A1 (en) 2023-11-02
WO2022222316A1 (zh) 2022-10-27
WO2022223032A1 (zh) 2022-10-27
TW202242846A (zh) 2022-11-01
CN116547992A (zh) 2023-08-04
CN115243178A (zh) 2022-10-25
CN115243151A (zh) 2022-10-25
CN115243133A (zh) 2022-10-25
CN115243150A (zh) 2022-10-25
CN116635699A (zh) 2023-08-22
CN116491129A (zh) 2023-07-25
CN218920578U (zh) 2023-04-25
CN115243169A (zh) 2022-10-25
US20230319458A1 (en) 2023-10-05
CN115243149A (zh) 2022-10-25
TW202245484A (zh) 2022-11-16
CN218162856U (zh) 2022-12-27
WO2022222315A1 (zh) 2022-10-27
US20230358601A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2022222557A1 (zh) 加速度传感装置
CN101014879B (zh) 用于地震仪或其它装置中的微机械悬浮板
CN107074527B (zh) 包括机械预加载悬架弹簧的mems传感器结构
KR102221976B1 (ko) 가속도 센서용 마이크로기계 구조
JP2012255553A (ja) 振動および音波輻射抑制のための能動型/受動型分布式吸収器
WO2006105528A1 (en) Silicon micromachined ultra-sensitive vibration spectrum sensor array (vssa)
US7600429B2 (en) Vibration spectrum sensor array having differing sensors
JP2008513694A (ja) 平面エレメントの振動に影響を与えるための装置および方法
CN101825426B (zh) 电容式位移变送器
TW202242418A (zh) 加速度感測裝置
WO2014037808A1 (en) Hybrid mems microfluidic gyroscope
WO2005111345A1 (ja) 免震構造
EP4300484A1 (en) Semi-active noise control system for an aircraft
Hou Modeling and characterization of a bimorph impedance transducer
Long et al. Capacitive Type Z-axis Accelerometer Fabricated by Silicon-on-insulator Micromachining
JP2004003559A (ja) 剛性可変型制振装置
JP2007187494A (ja) 振動検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22790667

Country of ref document: EP

Kind code of ref document: A1