WO2012140846A1 - Mems圧力センサ - Google Patents
Mems圧力センサ Download PDFInfo
- Publication number
- WO2012140846A1 WO2012140846A1 PCT/JP2012/002297 JP2012002297W WO2012140846A1 WO 2012140846 A1 WO2012140846 A1 WO 2012140846A1 JP 2012002297 W JP2012002297 W JP 2012002297W WO 2012140846 A1 WO2012140846 A1 WO 2012140846A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibrator
- electrode
- diaphragm
- pressure
- pressure sensor
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 63
- 238000001514 detection method Methods 0.000 claims abstract description 31
- 230000005540 biological transmission Effects 0.000 claims abstract description 20
- 230000007246 mechanism Effects 0.000 claims abstract description 17
- 230000008859 change Effects 0.000 claims description 57
- 238000005192 partition Methods 0.000 claims description 53
- 230000010355 oscillation Effects 0.000 claims description 13
- 238000012546 transfer Methods 0.000 claims description 12
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 abstract description 2
- 230000010358 mechanical oscillation Effects 0.000 abstract 1
- 238000005530 etching Methods 0.000 description 14
- 239000004020 conductor Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000012212 insulator Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0001—Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
- G01L9/0008—Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
- G01L9/0019—Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a semiconductive element
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02244—Details of microelectro-mechanical resonators
- H03H2009/02488—Vibration modes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/24—Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
- H03H9/2405—Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
- H03H9/2447—Beam resonators
- H03H9/2463—Clamped-clamped beam resonators
Definitions
- the present invention relates to a resonator, particularly a MEMS (Micro-Electro Mechanical Systems) element, and more particularly to a pressure sensor using a resonator in which a micro mechanical element vibrates.
- MEMS Micro-Electro Mechanical Systems
- FIG. 7A is a cross-sectional view of the pressure sensor described in Patent Document 1.
- FIG. A vibrator 3, a sacrificial layer 10, and a shell 4 are formed on a silicon substrate by a thin film process, and after the sacrificial layer is removed by etching, an etching solution introduction hole provided in the shell is blocked and a vacuum chamber is formed around the vibrator. Form. Later, the back surface of the substrate is thinned by etching to form a diaphragm.
- the diaphragm bends and stress is applied to the vibrator.
- the vibrator is a doubly-supported beam with both ends fixed, the axial stress in the length direction of the beam changes, so the resonance frequency of the vibrator changes according to the axial stress. Since the vibrator and the shell form a capacitance, excitation of the vibrator and detection of a frequency change are performed electrically. Therefore, the change of the axial stress can be measured from the change of the resonance frequency of the vibrator, and the force applied to the diaphragm from the change of the axial stress, that is, the pressure can be measured.
- FIG. 1 A cross-sectional view of the pressure sensor described in Patent Document 2 is shown in FIG.
- a vacuum chamber is formed around the vibrator 14 by a thin film.
- the difference from the pressure sensor described in Patent Document 1 is that the structure 13 whose outermost surface is formed of the polysilicon layer 11 functions as a diaphragm.
- the pressure applied to the surface of the diaphragm 13 is converted into stress on the vibrator 14, the change in the resonance frequency of the vibrator 14 is electrically detected, and the detected electrical signal is converted into pressure. Is measuring.
- the sensitivity to pressure is determined by the rigidity of the diaphragm, that is, the thickness of the polysilicon layer.
- the thickness of the diaphragm can be easily controlled as compared with the configuration of Patent Document 1.
- An object of the present invention is to provide a pressure sensor using a MEMS resonator capable of detecting a pressure change with high resolution.
- the MEMS pressure sensor of one embodiment of the present invention is: A substrate, A vibrator having a vibration part for performing mechanical vibration and a fixed part; At least one electrode located in the vicinity of the vibrator and having a region overlapping each other with a gap in a direction perpendicular to the vibrator and the substrate surface; A MEMS resonator having a pressure transmission mechanism that displaces the at least one electrode in accordance with an externally applied pressure to change the gap; A detection circuit for detecting a transfer characteristic of an alternating current signal from the input electrode to the output electrode when one of the vibrator and the at least one electrode is an input electrode and the other is an output electrode Including The MEMS pressure sensor detects the pressure based on a transmission characteristic of an AC signal detected by the detection circuit.
- the element that is, the electrode
- the resonance of the vibrator is caused by a change in electric field strength caused by the displacement.
- a change in frequency is detected electrically, and pressure is detected based on the change. Therefore, according to the embodiment, since the resonance characteristic having a high Q value can be used, a MEMS pressure sensor that detects pressure with high resolution can be realized.
- FIG. 1 A) Cross-sectional view of MEMS pressure sensor structure according to Embodiment 1 of the present invention
- (b) Top view excluding shell structure Schematic diagram showing a method for detecting a change in resonance frequency, (a) a detection method by oscillation, and (b) a detection method for monitoring the resonator output at a fixed frequency.
- FIG. 6 is a schematic diagram for explaining a conventional MEMS pressure sensor, in which (a) an electrostatic capacity is formed between a shell contained in a shell and the shell, and the resonance of the vibrator due to the pressure applied to the lower diaphragm.
- Cross-sectional view of MEMS pressure sensor structured to detect frequency change (b) Cross-sectional view of pressure sensor structured so that shell also serves as diaphragm It is a schematic diagram explaining the function of the Q value in the pressure detection of the MEMS pressure sensor, (a) a schematic diagram when the Q value of the resonance is high, (b) a schematic diagram when the Q value of the resonance is low It is a schematic diagram explaining the influence which the structure of a MEMS pressure sensor exerts on the Q value of resonance, and (a) a cross-sectional view of a pressure sensor in which an anchor portion of a vibrator is fixed to a rigid substrate, (b) a vibrator Cross-sectional view of a pressure sensor with the anchor part fixed to a low-rigidity di
- 8A is the lower limit that can be resolved by an electric circuit, even if an attempt is made to resolve the same pressure change by oscillation using a resonator having a low Q value as shown in FIG. S / N deteriorates and cannot be disassembled. The above is the reason why a resonator having a high Q value is desired.
- the structural strength of the diaphragm 1330 is increased. Due to the weakness of the vibration, the diaphragm 1330 also slightly vibrates together with the vibration of the vibrator oscillating portion 1322, thereby deteriorating the Q value of the vibrator 1322. Therefore, as shown in FIG. 9A, when the vibrator support portion 1314 is fixedly supported on the highly rigid substrate 1360 side, the diaphragm 1330 is less likely to vibrate even if the vibrator vibration portion 1322 vibrates.
- the Q value is increased.
- the deformation of the diaphragm 1330 due to pressure is not easily transmitted to the axial stress of the vibrator, and the resonance frequency of the vibrator 1310 is not changed.
- the present inventor has conducted various experiments. As a result, the deformation of the diaphragm due to the pressure does not change the resonance frequency via the stress change of the vibrator, but the gap between the vibrator and the electrode. We focused on the principle of causing a change in the strength of the electric field acting between them, thereby changing the resonance frequency of the vibrator. As a result, it has been found that a MEMS pressure sensor capable of detecting pressure with high accuracy can be realized by this configuration, that is, a configuration in which the gap between the vibrator and the electrode is changed by displacing the electrode.
- the MEMS pressure sensor of the first embodiment of the present invention is A substrate, A vibrator having a vibration part for performing mechanical vibration and a fixed part; At least one electrode located in the vicinity of the vibrator and having a region overlapping each other with a gap in a direction perpendicular to the vibrator and the substrate surface; A MEMS resonator having a pressure transmission mechanism that displaces the at least one electrode in accordance with an externally applied pressure to change the gap; A detection circuit for detecting a transfer characteristic of an alternating current signal from the input electrode to the output electrode when one of the vibrator and the at least one electrode is an input electrode and the other is an output electrode Including The MEMS pressure sensor detects the pressure based on a transmission characteristic of an AC signal detected by the detection circuit.
- the vibrator-electrode When at least one electrode that forms a capacitance with the vibrator is displaced according to an external pressure, thereby causing a gap change, the vibrator-electrode The pressure is detected by utilizing the change in the transfer characteristic of the AC signal flowing between them.
- a pressure detection mechanism is not present in conventional MEMS pressure sensors.
- a resonance of a high Q value can be used, and a MEMS pressure sensor that detects pressure with high resolution is provided. realizable.
- the MEMS pressure sensor is, for example, The MEMS resonator has a diaphragm that is displaced by a pressure applied from the outside, The diaphragm constitutes the pressure transmission mechanism, The at least one electrode forms at least a portion of the diaphragm; Configured as follows. According to this configuration, a MEMS pressure sensor that has a simple configuration and that can simplify the manufacturing process can be realized.
- the MEMS pressure sensor is, for example, The MEMS resonator has a diaphragm that is displaced by a pressure applied from the outside, The diaphragm and at least one coupling member connecting the diaphragm to the at least one electrode constitute the pressure transmission mechanism; Configured as follows.
- a vibration mode that vibrates in a direction perpendicular to the surface of the substrate but also a vibration mode that has a high Q value, such as a vibration mode that vibrates parallel to the surface of the substrate, or a torsional vibration mode. It is possible to realize a MEMS pressure sensor corresponding to a vibrator that oscillates.
- the MEMS pressure sensor is, for example,
- the MEMS resonator has a diaphragm that is displaced by a pressure applied from the outside,
- the vibrator and the at least one electrode are disposed between the diaphragm and the substrate,
- a first cavity and a second cavity separated by the at least one electrode are formed between the substrate and the diaphragm;
- the first cavity is located on the vibrator side in a direction perpendicular to the substrate surface when viewed from the electrode in a region where the vibrator and the at least one electrode overlap.
- the second cavity is located on a side opposite to the vibrator in a direction perpendicular to the substrate surface when viewed from the electrode in a region where the vibrator and the at least one electrode overlap.
- a direction in which the inner surface of the partition wall layer A that forms the first cavity and is in contact with the electrode is parallel to the substrate surface rather than the inner surface of the partition wall layer B that forms the second cavity and is in contact with the electrode Located outside at The diaphragm, the partition wall layer A, and the partition wall layer B constitute the pressure transmission mechanism. It implement
- the portion to which the vibrator is fixed is fixed to the substrate.
- the portion to which the vibrator is fixed may be a partition layer that surrounds a space that enables mechanical vibration of the vibrator, and may be fixed by a partition layer that is fixed to the substrate. Since the substrate is hardly displaced by an external pressure, according to this configuration, the vibration of the vibrator is less likely to be caused by factors other than the change of the gap, and the MEMS pressure sensor that detects the pressure with a high Q value and high resolution can be obtained. realizable.
- the vibrator is a beam structure in which a portion where the vibrator vibrates is a beam extending in parallel with the substrate surface between the portions where the vibrator is fixed.
- the beam is Having a cross-section that is a triangle or trapezoid whose base is parallel to the substrate surface;
- the mechanical vibration may be performed in a torsional resonance mode around the longitudinal axis of the beam. According to this configuration, it is possible to realize a MEMS pressure sensor that detects pressure with a high Q value and high resolution.
- the detection circuit constituting the MEMS pressure sensor includes, for example, a feedback circuit through an amplifier, A part of the feedback circuit is sent to a frequency-voltage conversion circuit, The detection circuit oscillates the vibrator in a predetermined vibration mode while applying a direct current potential difference between the input electrode and the output electrode, and detects an oscillation frequency of the vibrator as an AC signal transfer characteristic, When the gap changes according to the pressure applied from the outside, the change in the oscillation frequency caused by the change in the resonance frequency of the vibrator is converted into the voltage change by the frequency-voltage conversion circuit, and the pressure is changed. Information may be output as an electrical signal. According to this detection circuit, a change in resonance frequency due to pressure can be output as an electrical signal.
- the detection circuit constituting the MEMS pressure sensor is, for example, A circuit for inputting an AC signal having a constant frequency to the input electrode and monitoring a voltage change of the AC signal output from the output electrode,
- the detection circuit uses the resonance frequency of the vibrator as an AC signal transfer characteristic when an AC signal of a constant signal is input to the input electrode while applying a DC potential difference between the input electrode and the output electrode.
- a change in the resonance frequency of the vibrator that occurs when the gap changes according to the pressure applied from the outside is converted into a voltage change of an AC signal by a frequency-voltage conversion circuit, and the pressure information is It may be output as a signal.
- the change in the resonance frequency due to pressure can be output as an electrical signal.
- FIG. 1 is a cross-sectional view for explaining the configuration of the MEMS pressure sensor according to the first embodiment of the present invention.
- a DC potential difference is applied between a vibrator of the MEMS resonator and an electrode disposed in the vicinity of the vibrator. It shows the state.
- 1A is a cross-sectional view (a cross-sectional view cut along a direction perpendicular to the direction in which the beam of the vibrator extends), and FIG. 1B is formed on the substrate 112 without the shell structure.
- 3 is a top view showing a vibrator 102.
- the vibrator 102 is a doubly-supported beam made of a conductive material, and a vibrating portion (hereinafter, also referred to as “vibrator vibrating section”) 102 a that performs mechanical vibration, It is comprised from the part (henceforth "vibrator anchor part”) 102b to which the vibrator located at both ends is fixed.
- the vibrator anchor portions 102 b at both ends are fixed to the substrate 112 via an insulating support mediating layer 104.
- a partition layer 107 is formed on the surface of the substrate 112 on which the vibrator 102 is attached so as to surround the vibrator 102, and a film serving as a diaphragm 108 is formed on the partition layer 107.
- a shell structure 106 is formed by the diaphragm 108 and the partition wall layer 107.
- the shell structure 106 includes a diaphragm 108 and a partition wall layer 107, and forms a closed space 110, which is a space that enables mechanical vibration of the vibrator vibrating portion 102 a around the vibrator 102 together with the substrate 112.
- the substrate 112 is a substrate made of, for example, silicon.
- the pressure Pi in the closed space 110 may be equal to the pressure Po outside the shell structure 106.
- the inside of the closed space 110 may be decompressed as Pi ⁇ Po.
- Capacitance is formed in the gap 109 between the diaphragm and the vibrator by forming the diaphragm 108 with a conductive material or forming at least one layer of a multi-layered diaphragm with a conductive material. Can do.
- the vibrator uses a vibration mode that vibrates in the direction of contracting or expanding the gap, that is, in the direction perpendicular to the substrate surface.
- the direction in which the vibrator 102 vibrates is indicated by a double arrow.
- the fluctuation ⁇ f0 / f0 of the resonance frequency f0 of the vibrator is proportional to the third power of g, where g is the size of the gap. This is a phenomenon that is generally called “spring softening” in an electrostatic transducer.
- the diaphragm 108 functions as an electrode that forms a capacitance between the diaphragm 108 and the vibrator 102 and is displaced according to the pressure applied from the outside to change the gap 109. That is, the diaphragm 108 serving as an electrode functions as a pressure transmission mechanism that is displaced by itself and changes the gap 109.
- Fig. 2 (a) shows the pressure detection method.
- a bias DC voltage is applied between the diaphragm 108 and the vibrator 102 by a DC power source 114 connected to the diaphragm with the diaphragm as an input electrode.
- the vibrator 102 is used as an output electrode, and an AC signal output from the output electrode forms a loop that passes through the capacitance between the diaphragm and the vibrator, the amplifier 204, and the phase adjuster 206. Forming a closed circuit.
- the amplifier 204 oscillates at the resonance frequency of the vibrator. The oscillation frequency changes according to the external pressure applied to the diaphragm.
- an output signal can be obtained as a pressure detection signal. Therefore, in the detection circuit shown in FIG. 2A, between the input electrode (diaphragm 108 (conductive material layer in the case of a multilayer structure)) and the output electrode (vibrator 102 in the figure). While the DC potential difference is applied to the oscillator, the resonance frequency of the vibrator is detected as the transfer characteristic of the AC signal from the input electrode to the output electrode, and the pressure is detected based on the change.
- the input electrode diaphragm 108 (conductive material layer in the case of a multilayer structure)
- the output electrode vibrator 102 in the figure
- a monitor signal source 210 having a single frequency f mon is connected to an input electrode (diaphragm 108 in the figure) without forming a loop, and the input AC
- the signal passes through the capacitance formed between the diaphragm 108 and the vibrator 102 and is output from the output electrode (the vibrator 102 in the figure), and further via the amplifier 204 and the FV converter 208.
- the pressure can also be detected by obtaining an electrical signal.
- the FV converter may be a synchronous detection circuit using a monitor signal source as a reference signal.
- the resonance frequency of the vibrator is detected as the transfer characteristic of the AC signal from the input electrode to the output electrode, and the pressure is detected based on the change.
- the MEMS pressure sensor of the present embodiment when used, even when the vibrator anchor portion is fixed and supported on a rigid substrate, the pressure received by the diaphragm can be detected without depending on the stress change of the vibrator. Can do. Further, in this embodiment, since the vibrator anchor portion is fixed and supported on a highly rigid substrate, deterioration of the Q value of the vibrator is suppressed, and pressure can be detected with high resolution.
- an insulator layer for example, a silicon oxide layer
- a thickness corresponding to the support mediating layer 104 is formed on a substrate 112, and a vibrator is formed thereon.
- an insulator layer for example, a silicon oxide layer
- an insulator layer having a predetermined thickness is formed so that a desired gap is obtained between the diaphragm 108 and the vibrator 102.
- the diaphragm 108 is manufactured by a method of forming a closed space 110 including a space below the vibrator vibrating portion 102a by etching.
- the support mediating layer 104 and the partition layer 107 are formed of the same material, as shown in FIG. 3A, the support mediating layer 104 is also partially etched by etching.
- the size of the support mediating layer 104 (the size when viewed from above) is smaller than that of the transducer anchor portion 102b, and the periphery of the transducer anchor portion 102b does not have a structure below it. It becomes the shape (under-etch shape) protruding in the horizontal direction without.
- the vibrator anchor portion 102b When the vibrator anchor portion 102b has such a shape, a part of the resonance vibration of the vibrator vibration portion 102a is converted into the vibration of the under-etched portion on the periphery of the vibrator anchor portion 102b, via the support mediating layer 104. Dissipated to the substrate 112. Such dissipation degrades the Q value of the vibrator 102. In order to avoid the deterioration of the Q value, as shown in FIG. 3B, the upper and side surfaces of the vibrator anchor portion 102b are also filled with the partition wall layer 107 so that the underetched shape does not occur. desirable.
- FIG. 3B shows a MEMS pressure sensor including a MEMS resonator in which an underetched shape does not occur as a modification of the present embodiment.
- the vibrator anchor portion 102 b of the vibrator 102 is fixed by the partition wall layer 107 fixed to the substrate 112. Even when the vibrator 102 is fixed in this manner, it can be said that the vibrator 102 is fixed to the substrate 112 via the partition wall layer 107. Therefore, this modified example also allows the pressure applied to the diaphragm 108 to be detected with high resolution by measuring the change in the resonance frequency of the vibrator 102 caused by the change in the gap 109 due to the displacement of the diaphragm 108. Also in the modification shown in FIG.
- the partition wall layer 107 is formed in a two-step process. Specifically, first, an insulator layer serving as a lower partition layer that provides a surface on which the vibrator 102 is formed is formed, a conductive layer serving as the vibrator 102 is formed, and then the vibrator 102 having a desired shape is etched. Form. Then, an insulator layer and a diaphragm 108 which are upper partition walls are formed on the vibrator 102, and etching is performed so that a portion to be a closed space 110 and a vibrator vibration portion 102a are formed. A partition layer 107 for fixing 102 is formed.
- FIG. 3B schematically shows a state in which a DC power source 114 is connected between the vibrator 102 and the diaphragm 108 and a bias DC voltage is applied between them. If necessary, a via may be provided in the partition wall layer for electrical connection between the DC power source or other device and the vibrator 102.
- FIG. 4 is a diagram for explaining the configuration of the MEMS pressure sensor according to the second embodiment of the present invention.
- a direct-current potential difference is applied between the vibrator of the MEMS resonator and the electrode disposed in the vicinity of the vibrator. It shows the state that has been.
- 4A is a cross-sectional view (cross-sectional view cut in a direction perpendicular to the length direction of the beam of the vibrator), and
- FIG. 4B is a cross-sectional view cut along the length direction of the beam-type vibrator.
- FIG. 4C is a top view showing the vibrator and the partition layer formed on the substrate excluding the diaphragm. 4, the parts or members indicated by the same reference numerals as those used in FIGS. 1 to 3 are the same as the parts or members given the reference numerals described in FIGS. May be omitted.
- the vibrator 142 is a beam-type vibrator formed by crystal anisotropic etching of single crystal silicon, and the cross-sectional shape of the vibrator vibrating portion 142a is a triangle or a trapezoid.
- the vibrator 142a performs torsional vibration about the center of gravity of the cross section.
- a higher Q value can be obtained than in the flexural vibration mode.
- the flexural vibration mode is 2 MHz and the torsional vibration mode is a value around 20 MHz
- the Q value is tens of thousands in the flexural vibration mode and 200,000 or more in the torsional vibration mode. It becomes.
- the Q value of the torsional vibration mode is high mainly because the vibration of the vibrator vibration part 142a is less likely to leak to the vibrator anchor part 142b in the torsional vibration mode compared to the flexural vibration mode, and torsional vibration The mode is different from the flexural vibration mode because the thermoelastic loss does not occur in principle.
- the diaphragm In the excitation and detection of torsional vibration, the diaphragm cannot be used as an electrode as in the first embodiment.
- the electrode 148 In the resonator using the torsional vibration, as shown in FIG. 4A, the electrode 148 is close to a part of the inclined surface having a cross-sectional shape of the vibrator vibrating portion 142a and is opposed via the gap 149. Form. Therefore, in order to convert the displacement of the diaphragm 145 into the change of the gap 149, another element that transmits the displacement of the diaphragm 145 to the electrode 148 is required. A coupling member that joins the electrode 148.
- a pillar 152 formed of the same material as that of the conductive diaphragm 145 is forested as a coupling member, and the diaphragm 145 and the electrode 148 are connected by the pillar 152. That is, the diaphragm 145 and the pillar (coupling member) 152 function as a pressure transmission mechanism. The displacement of the diaphragm 145 is transmitted to the electrode 148 by the coupling member 152 to displace the electrode 148, thereby changing the gap 149.
- the change in the gap 149 causes a change in the electric field strength between the vibrator oscillating portion 142a and the electrode 148, the resonance frequency of the vibrator 142 changes, and the pressure is detected as a change in the resonance frequency. It becomes possible to do.
- the closed space 150 is circular as shown in FIG. 4C when viewed from the upper surface of the substrate 112. That is, the diaphragm 145 receives pressure as a disk-shaped diaphragm. Diaphragm 145, pillar 152, and electrode 148 can be thought of as an approximately integral elastic composite material.
- a dummy electrode 148 ′ is provided so as to be symmetrical across the vibrator 142 so that the elastic composite material has a uniform property in the plane direction. In the illustrated embodiment, the dummy electrode 148 ′ does not form a capacitance with the vibrator 142, and thus does not function as an electrode.
- the transducer anchor portion 142b is fixed by the partition wall layer 147 located on the upper and lower surfaces thereof. More specifically, the entire lower surface of the transducer anchor portion 142b is fixed to the substrate 112 by a lower partition wall layer 147a that can also be referred to as a support mediating layer, and the entire upper surface and most of the side surfaces of the transducer anchor portion 142b. Is covered with an upper partition layer 147b.
- the partition wall layer 147 forms a shell structure 146 together with the diaphragm 145 to form a closed space 150.
- a part of the upper partition wall layer 147b located on the upper surface of the vibrator anchor portion 142b is etched to form a through hole.
- the through hole is filled with a conductive material, and a via 154 is formed.
- the via 154 is formed to establish conduction with the vibrator 142.
- a bias DC voltage can be applied between the diaphragm 145 and the vibrator 142 using the via 154. The application is performed by connecting A in FIG. 4A and A ′ in FIG.
- a gap 156 that bisects the diaphragm 145 is provided. This is because when diaphragm 145 is made of a conductive material, A (electrical conduction from electrode 148) in FIG. 4A and A ′ (electrical conduction from vibrator 142) in FIG. This is for electrically separating them from each other.
- the diaphragm and the pillar may be made of an insulating material.
- the dummy electrode can be configured to form a capacitance with the vibrator and function as an electrode.
- a three-terminal circuit can be configured by taking electrical continuity from each of the two electrodes and the vibrator. An example of such a MEMS pressure sensor is shown in FIG.
- FIG. 10 shows a state in which a direct-current potential difference is applied between the vibrator of the MEMS resonator and the electrode disposed in the vicinity of the vibrator.
- 10A is a cross-sectional view (a cross-sectional view cut in a direction perpendicular to the length direction of the beam of the vibrator), and
- FIG. 10B is a cross-sectional view cut along the length direction of the beam-type vibrator.
- FIG. 10C is a top view showing the vibrator and the partition layer formed on the substrate without the diaphragm.
- parts or members denoted by the same reference numerals as those used in FIGS. 1 to 4 are the same as the parts or members denoted by those reference numerals described in FIGS. May be omitted.
- both the diaphragm 145 and the pillar 152 are formed of an insulating material.
- two electrodes 148a and 148b are formed so as to be close to a part of two inclined surfaces having a cross-sectional shape of the vibrator vibration part 142a and to face each other with a gap 149 therebetween. Both the two electrodes 148a and 148b form a capacitance with the vibrator vibrating portion 142a.
- a conductive material 158 is disposed around the diaphragm 145. The conductive material 158 is provided with gaps 156 and 159 in order to electrically isolate the electrical continuity from the electrode 148a, the electrical continuity from 148b, and the electrical continuity from the vibrator 142 from each other. .
- a part of the upper partition layer 147b located on the upper surface of the electrodes 148a and 148b is etched to form a through hole, and the through hole is filled with a conductive material to form vias 155 and 157. ing.
- Conductivity between the two electrodes can be obtained by a conductive material and a via disposed around the diaphragm. Further, in the portion where the conduction is extracted from the vias 155 and 157, the conductive material 158 is separated from the other conductive material 158 through the gap 159, and the electrical conduction from the two electrodes 148a and 148b is mutually connected. In addition, the electrical conduction from the vibrator 142 is separated.
- a direct-current potential difference is applied between the vibrator 142 and the electrodes 148a and 148b, and the transfer characteristics of the AC signal input from the electrode 148b and output from the 148a are detected by the detection circuits. .
- the vibrator 142 may be an input electrode and the electrodes 148a and 148b may be output electrodes.
- the transfer characteristic of the AC signal is detected by a differential output that outputs the difference between the signals output from the two electrodes.
- it is necessary to apply a direct current potential difference so that the electrode 148a is ⁇ Vp, the electrode 148b is + Vp, and the vibrator 142 is 0.
- the flexural rigidity of the elastic composite material comprising the diaphragm 145, the pillar 152, and the electrode 148 is 2 ⁇ 10 ⁇ 8 kg ⁇ m, and the diameter of the disc diaphragm 145 is 100 ⁇ m.
- the pressure in the closed space is 10 Pa and the external pressure P 0 changes ⁇ 50 hPa from 1 atm (103125 Pa) (changes between about 960 hPa and about 1060 hPa), as shown in FIG.
- FIG. 5B shows a frequency change of torsional resonance at 20 MHz corresponding to the gap change of 40 nm, and a frequency change of about 2.4 kHz is obtained. This frequency change can be detected by the same method as that described with reference to FIG. 2 in the first embodiment. As described above, according to the present embodiment, it is possible to detect the pressure with high resolution using the torsional vibration mode resonator having a high Q value.
- the MEMS resonator 160 constituting the pressure sensor of FIG. 6 includes a vibrator 142 that vibrates in a torsional vibration mode, an electrode 168, a diaphragm 145, and a substrate 112.
- a first cavity 162 and a second cavity 164 separated by the electrode 168 and the dummy electrode 168 ′ are formed between the substrate 112 and the diaphragm 145.
- the first cavity 162 is perpendicular to the surface of the substrate 112 when viewed from the electrode 168 in the region where the vibrator 142 and the electrode 168 overlap (in FIG. 6, the electrode positioned parallel to the inclined surface of the triangular vibrator vibrating portion 142a).
- the second cavity 164 is located on the side opposite to the vibrator 142.
- the side wall in contact with the electrode 168 of the first cavity 162, that is, the inner surface of the lower partition layer 167a is in contact with the side wall in contact with the electrode 168 of the second cavity, that is, the upper partition layer 167b. It is located outside the inner surface in a direction parallel to the surface of the substrate 112. Therefore, the electrode 168 has a portion in contact with the upper partition wall layer 167b but not in contact with the lower partition wall layer 167a.
- the portion in contact with both the upper partition wall layer 167b and the lower partition wall layer 167a is a fixed electrode anchor portion 168b, and is in contact with only the upper partition wall layer 167b or in contact with any partition wall layer.
- the part which does not have is the electrode flexible part 168a which can be bent.
- the diaphragm 145 and the upper and lower partition layers 167b and 167a can function as a pressure transmission mechanism without providing a pillar.
- Such a partition layer 167 is obtained by selecting a material having an etching rate smaller than that of the material of the upper partition layer 167b as the material of the lower partition layer 167a and etching the etching sacrificial layer.
- the first cavity 162 may be larger than the second cavity 164 by providing an etching stop in the upper partition layer 167a.
- the partition wall layer 167 forms a shell structure 166 that forms the closed space 150 together with the diaphragm 145.
- the MEMS pressure sensor according to the present invention can detect the pressure with high resolution by changing the resonance frequency of the MEMS resonator having a high Q value. Therefore, the MEMS pressure sensor in various fields such as an atmospheric pressure sensor, a fluid pressure sensor, a pressure sensor, and a microphone can be used. Can be used.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
- Micromachines (AREA)
Abstract
Description
図7(a)は、特許文献1に記載の圧力センサの断面図である。シリコン基板上に薄膜プロセスにより振動子3、犠牲層10、シェル4、を構成し、犠牲層をエッチングにより除去した後にシェルに設けられていたエッチング液導入穴をふさいで振動子のまわりに真空室を形成する。後に、基板裏面をエッチングにより薄肉化しダイアフラムを形成する。
基板と、
機械的振動を行う振動部分と、固定される部分とを有する振動子と、
前記振動子に近接して位置し、前記振動子と前記基板表面に垂直な方向においてギャップを隔てて互いに重なる領域を有する少なくとも1つの電極と、
前記少なくとも1つの電極を、外部から加えられる圧力に応じて変位させて、前記ギャップを変化させる、圧力伝達機構と
を有するMEMS共振器と、
前記振動子および前記少なくとも1つの電極のうち、一つを入力電極とし、別の一つを出力電極としたときに、前記入力電極から前記出力電極に至る交流信号の伝達特性を検出する検出回路と
を含み、
前記検出回路が検出する交流信号の伝達特性に基づいて、前記圧力を検出する
MEMS圧力センサである。
共振器の性能指標としてQ値がある。これは共振の尖鋭度を示しており、Q値が高いほど、共振における振動エネルギの損失が小さいことを示している。Q値が高い共振器を用いて発振させると、図8(a)のように発振スペクトラムも急峻なものになる。急峻ということは、発振の中心周波数に対して、近傍の周波数のノイズ成分が少ないということを意味する。したがって、Q値が高い共振器を圧力センサとして用いた場合、圧力が変化して発振周波数が変化したときの周波数変化の分解能が高くなる。図8(a)の隣り合うスペクトルの周波数変化が電気回路で分解できる下限とした場合、図(b)のようなQ値の低い共振器を用いた発振で同じ圧力変化を分解しようとしても、S/Nが悪くなり分解不能となる。以上が、Q値が高い共振器が望まれる理由である。
基板と、
機械的振動を行う振動部分と、固定される部分とを有する振動子と、
前記振動子に近接して位置し、前記振動子と前記基板表面に垂直な方向においてギャップを隔てて互いに重なる領域を有する少なくとも1つの電極と、
前記少なくとも1つの電極を、外部から加えられる圧力に応じて変位させて、前記ギャップを変化させる、圧力伝達機構と
を有するMEMS共振器と、
前記振動子および前記少なくとも1つの電極のうち、一つを入力電極とし、別の一つを出力電極としたときに、前記入力電極から前記出力電極に至る交流信号の伝達特性を検出する検出回路と
を含み、
前記検出回路が検出する交流信号の伝達特性に基づいて、前記圧力を検出する
MEMS圧力センサである。
前記MEMS共振器が、外部から加えられる圧力により変位するダイアフラムを有し、
前記ダイアフラムが、前記圧力伝達機構を構成し、
前記少なくとも1つの電極が、前記ダイアフラムの少なくとも一部を形成している、
ように構成される。この構成によれば、構成が簡素であり、製造工程も簡素化可能なMEMS圧力センサを実現できる。
あるいは、前記MEMS圧力センサは、例えば、
前記MEMS共振器が、外部から加えられる圧力により変位するダイアフラムを有し、
前記ダイアフラムおよび前記ダイアフラムを前記少なくとも1つの電極に接続する少なくとも1つの結合部材が、前記圧力伝達機構を構成している、
ように構成される。この構成によれば、基板の表面に対して垂直な方向に振動する振動モードだけでなく、基板の表面に対して平行に振動する振動モード、またはねじり振動モードなどの高いQ値を有する振動モードで振動する振動子に対応したMEMS圧力センサを実現できる。
前記MEMS共振器が、外部から加えられる圧力により変位するダイアフラムを有し、
前記ダイアフラムと前記基板との間に、前記振動子および前記少なくとも1つの電極が配置され、
前記基板と前記ダイアフラムとの間に、前記少なくとも1つの電極によって隔てられる第1のキャビティおよび第2のキャビティが形成されており、
前記第1のキャビティは、前記振動子と前記少なくとも1つの電極が重なる領域にある前記電極から見て、前記基板表面に垂直な方向において前記振動子側に位置し、
前記第2のキャビティは、前記振動子と前記少なくとも1つの電極が重なる領域にある前記電極から見て、前記基板表面に垂直な方向において前記振動子とは反対側に位置し、
前記第1のキャビティを形成し、前記電極と接する隔壁層Aの内側表面が、前記第2のキャビティを形成し、前記電極と接する隔壁層Bの内側表面よりも、前記基板表面と平行な方向において外側に位置し、
前記ダイアフラム、前記隔壁層Aおよび前記隔壁層Bが、前記圧力伝達機構を構成している、
ように構成することによって実現される。この構成によれば、構成が簡素であり、かつ製造工程も簡素化可能なMEMS圧力センサを実現できる。
前記振動子が、前記振動子の振動する部分が、前記振動子の固定される部分の間で、基板表面と平行に延びる梁である、梁構造体であり、
前記梁は、
底辺が基板表面と平行である三角形または台形である断面を有し、
前記梁の長手軸を中心としたねじり共振モードで機械的振動を行う
ものであってよい。この構成によれば、高いQ値で圧力を高分解能で検出するMEMS圧力センサを実現できる。
前記フィードバック回路の一部の信号が、周波数-電圧変換回路に送られるようになっており、
前記検出回路は、前記入力電極と前記出力電極との間に直流電位差を加えながら、前記振動子を所定の振動モードで発振させて、振動子の発振周波数を交流信号の伝達特性として検出し、前記外部から加えられる圧力に応じてギャップが変化したときに、前記振動子の共振周波数が変化することに起因する発振周波数の変化を、前記周波数-電圧変換回路により電圧変化に変換して、圧力情報を電気信号として出力するものであってよい。この検出回路によれば、圧力による共振周波数の変化を電気信号として出力できる。
前記入力電極に一定周波数の交流信号を入力し、前記出力電極から出力される交流信号の電圧変化を監視する回路であって、
前記検出回路は、前記入力電極と前記出力電極との間に直流電位差を加えながら、前記入力電極に一定信号の交流信号を入力したときの、前記振動子の共振周波数を交流信号の伝達特性として検出し、前記外部から加えられる圧力に応じて、ギャップが変化したときに生じる前記振動子の共振周波数の変化を、周波数-電圧変換回路により交流信号の電圧変化に変換して、圧力情報を電気信号として出力するものであってよい。この構成によれば、圧力による共振周波数の変化を電気信号として出力できる。
図1は本発明の実施の形態1のMEMS圧力センサの構成を説明する断面図であり、MEMS共振器の振動子と振動子に近接して配置された電極との間に直流電位差が加えられている状態を示している。図1(a)は横断面図(振動子の梁が延びる方向と垂直な方向に沿って切断した断面図)、図1(b)は殻構造を除いた状態の基板112上に形成された振動子102を示す上面図である。
図4は本発明の第2の実施の形態のMEMS圧力センサの構成を説明する図であり、MEMS共振器の振動子と振動子に近接して配置された電極との間に直流電位差が加えられている状態を示している。図4(a)は横断面図(振動子の梁の長さ方向に垂直な方向で切断した断面図)、図4(b)は梁型振動子の長さ方向に沿って切断した断面図、図4(c)はダイアフラムを除いた状態の基板上に形成された振動子と隔壁層を示す上面図である。図4において、図1~3で使用した符号と同じ符号で示した部分または部材は、図1~3で説明した、それらの符号を付した部分または部材と同じであり、ここではその説明を省略することがある。
以上、本実施の形態により、高いQ値を有するねじり振動モード共振器を利用して圧力を高分解に検出することができる。
ねじり振動モードを利用するMEMS圧力センサにおいて、より広範囲の圧力を検出することは、実施の形態2のMEMS圧力センサから伝達機構のピラーを除くことによって実現できる。その場合には、下側隔壁層の内側表面を、上側隔壁層の内側表面よりも外側に配置することにより、ダイアフラムに印加された圧力を電極に伝達して、ギャップを変化させる機構、即ち、圧力伝達機構が得られる。
102、142 振動子
104 支持仲介層
106、146、166 殻構造
107、147、167 隔壁層
108、145 ダイアフラム
109、149 ギャップ
110、150 閉空間
112 基板
114 DC電源
148、168 電極
148’、168’ ダミー電極
152 結合部材(ピラー)
154 ビア
204 アンプ
206 位相調整器
208 周波数-電圧変換器
210 モニタ信号源
Claims (9)
- 基板と、
機械的振動を行う振動部分と、固定される部分とを有する振動子と、
前記振動子に近接して位置し、前記振動子と前記基板表面に垂直な方向においてギャップを隔てて互いに重なる領域を有する少なくとも1つの電極と、
前記少なくとも1つの電極を、外部から加えられる圧力に応じて変位させて、前記ギャップを変化させる、圧力伝達機構と
を有するMEMS共振器と、
前記振動子および前記少なくとも1つの電極のうち、1つを入力電極とし、別の1つを出力電極としたときに、前記入力電極から前記出力電極に至る交流信号の伝達特性を検出する検出回路と
を含み、
前記検出回路が検出する交流信号の伝達特性に基づいて、前記圧力を検出する
MEMS圧力センサ。 - 前記MEMS共振器が、外部から加えられる圧力により変位するダイアフラムを有し、
前記ダイアフラムが、前記圧力伝達機構を構成し、
前記少なくとも1つの電極が、前記ダイアフラムの少なくとも一部を形成している、
請求項1に記載のMEMS圧力センサ。 - 前記MEMS共振器が、外部から加えられる圧力により変位するダイアフラムを有し、
前記ダイアフラムおよび前記ダイアフラムを前記少なくとも1つの電極に接続する少なくとも1つの結合部材が、前記圧力伝達機構を構成している、
請求項1に記載のMEMS圧力センサ。 - 前記MEMS共振器が、外部から加えられる圧力により変位するダイアフラムを有し、
前記ダイアフラムと前記基板との間に、前記振動子および前記少なくとも1つの電極が配置され、
前記基板と前記ダイアフラムとの間に、前記少なくとも1つの電極によって隔てられる第1のキャビティおよび第2のキャビティが形成されており、
前記第1のキャビティは、前記振動子と前記少なくとも1つの電極が重なる領域にある前記電極から見て、前記基板表面に垂直な方向において前記振動子側に位置し、
前記第2のキャビティは、前記振動子と前記少なくとも1つの電極が重なる領域にある前記電極から見て、前記基板表面に垂直な方向において前記振動子とは反対側に位置し、
前記第1のキャビティを形成し、前記電極と接する隔壁層Aの内側表面が、前記第2のキャビティを形成し、前記電極と接する隔壁層Bの内側表面よりも、前記基板表面と平行な方向において外側に位置し、
前記ダイアフラム、前記隔壁層Aおよび前記隔壁層Bが、前記圧力伝達機構を構成している、
請求項1に記載のMEMS圧力センサ。 - 前記振動子の固定される部分が、前記基板に固定されている、請求項1~4のいずれか1項に記載のMEMS圧力センサ。
- 前記振動子の固定される部分が、前記振動子の機械的振動を可能にする空間を囲む隔壁層であって、前記基板に固定されている隔壁層によって固定されている、請求項5に記載のMEMS圧力センサ。
- 前記振動子が、前記振動子の振動する部分が、前記振動子の固定される部分の間で、基板表面と平行に延びる梁である、梁構造体であり、
前記梁は、
底辺が基板表面と平行である三角形または台形である断面を有し、
前記梁の長手軸を中心としたねじり共振モードで機械的振動を行う、
請求項1~6のいずれか1項に記載のMEMS圧力センサ。 - 前記検出回路が、増幅器を介したフィードバック回路を含み、
前記フィードバック回路の一部の信号が、周波数-電圧変換回路に送られるようになっており、
前記検出回路は、前記入力電極と前記出力電極との間に直流電位差を加えながら、前記振動子を所定の振動モードで発振させて、振動子の発振周波数を交流信号の伝達特性として検出し、前記外部から加えられる圧力に応じてギャップが変化したときに、前記振動子の共振周波数が変化することに起因する発振周波数の変化を、前記周波数-電圧変換回路により電圧変化に変換して、圧力情報を電気信号として出力する、
請求項1~6のいずれか1項に記載のMEMS圧力センサ。 - 前記検出回路が、前記入力電極に一定周波数の交流信号を入力し、前記出力電極から出力される交流信号の電圧変化を監視する回路であって、
前記検出回路は、前記入力電極と前記出力電極との間に直流電位差を加えながら、前記入力電極に一定信号の交流信号を入力したときの、前記振動子の共振周波数を交流信号の伝達特性として検出し、前記外部から加えられる圧力に応じて、ギャップが変化したときに生じる前記振動子の共振周波数の変化を、周波数-電圧変換回路により交流信号の電圧変化に変換して、圧力情報を電気信号として出力する、
請求項1~6のいずれか1項に記載のMEMS圧力センサ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/583,379 US8516905B2 (en) | 2011-04-12 | 2012-04-02 | MEMS pressure sensor |
JP2012535506A JP5118785B2 (ja) | 2011-04-12 | 2012-04-02 | Mems圧力センサ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-088003 | 2011-04-12 | ||
JP2011088003 | 2011-04-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012140846A1 true WO2012140846A1 (ja) | 2012-10-18 |
Family
ID=47009041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/002297 WO2012140846A1 (ja) | 2011-04-12 | 2012-04-02 | Mems圧力センサ |
Country Status (3)
Country | Link |
---|---|
US (1) | US8516905B2 (ja) |
JP (1) | JP5118785B2 (ja) |
WO (1) | WO2012140846A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014093817A1 (en) * | 2012-12-14 | 2014-06-19 | General Electronic Company | Resonator device |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101859441B1 (ko) * | 2012-11-30 | 2018-05-21 | 어플라이드 머티어리얼스, 인코포레이티드 | 진동-제어되는 기판 핸들링 로봇, 시스템들, 및 방법들 |
US9335203B2 (en) * | 2013-08-28 | 2016-05-10 | Robert Bosch Gmbh | MEMS component |
US20160047227A1 (en) * | 2014-08-14 | 2016-02-18 | Schlumberger Technology Corporation | Device for High-Temperature Applications |
FR3033889A1 (fr) * | 2015-03-20 | 2016-09-23 | Commissariat Energie Atomique | Capteur de pression dynamique mems et/ou nems a performances ameliorees et microphone comportant un tel capteur |
EP3211393A1 (en) * | 2016-02-29 | 2017-08-30 | ETH Zürich | Mems device using a released device layer as membrane |
KR101842350B1 (ko) * | 2016-05-17 | 2018-05-14 | 박주성 | 멤브레인의 기계적 공진 특성을 이용한 컨덴서형 멤브레인 센서용 측정 장치 및 방법 |
CN109005490B (zh) * | 2018-06-25 | 2020-01-21 | 歌尔股份有限公司 | Mems电容式麦克风 |
CN111928980A (zh) * | 2019-05-13 | 2020-11-13 | 西人马联合测控(泉州)科技有限公司 | 压敏元件、压敏元件的制备方法和压力传感器 |
CN213818184U (zh) | 2019-12-27 | 2021-07-27 | 楼氏电子(苏州)有限公司 | 声换能器和麦克风组件 |
CN115243149A (zh) * | 2021-04-23 | 2022-10-25 | 深圳市韶音科技有限公司 | 一种振动传感装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6363739U (ja) * | 1986-10-16 | 1988-04-27 | ||
JPH07504980A (ja) * | 1992-03-12 | 1995-06-01 | インダストリアル リサーチ リミテッド | 圧力センサ及び方法 |
JP2001507801A (ja) * | 1996-12-31 | 2001-06-12 | ハネウエル・インコーポレーテッド | 薄膜共振マイクロビーム型絶対圧センサの製造方法 |
JP2005037309A (ja) * | 2003-07-18 | 2005-02-10 | Yokogawa Electric Corp | 振動式トランスデューサ |
JP2006322935A (ja) * | 2005-05-10 | 2006-11-30 | Varian Spa | 圧力センサー |
JP2008164592A (ja) * | 2006-11-14 | 2008-07-17 | Infineon Technologies Sensonor As | バックスキャッタセンサ |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6363739A (ja) | 1986-09-04 | 1988-03-22 | Mitsubishi Rayon Co Ltd | 帯電防止性および透明性の優れた樹脂組成物 |
US6628177B2 (en) * | 2000-08-24 | 2003-09-30 | The Regents Of The University Of Michigan | Micromechanical resonator device and micromechanical device utilizing same |
US7943412B2 (en) * | 2001-12-10 | 2011-05-17 | International Business Machines Corporation | Low temperature Bi-CMOS compatible process for MEMS RF resonators and filters |
US7456042B2 (en) * | 2006-06-04 | 2008-11-25 | Robert Bosch Gmbh | Microelectromechanical systems having stored charge and methods for fabricating and using same |
JP2010162629A (ja) * | 2009-01-14 | 2010-07-29 | Seiko Epson Corp | Memsデバイスの製造方法 |
-
2012
- 2012-04-02 WO PCT/JP2012/002297 patent/WO2012140846A1/ja active Application Filing
- 2012-04-02 US US13/583,379 patent/US8516905B2/en active Active
- 2012-04-02 JP JP2012535506A patent/JP5118785B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6363739U (ja) * | 1986-10-16 | 1988-04-27 | ||
JPH07504980A (ja) * | 1992-03-12 | 1995-06-01 | インダストリアル リサーチ リミテッド | 圧力センサ及び方法 |
JP2001507801A (ja) * | 1996-12-31 | 2001-06-12 | ハネウエル・インコーポレーテッド | 薄膜共振マイクロビーム型絶対圧センサの製造方法 |
JP2005037309A (ja) * | 2003-07-18 | 2005-02-10 | Yokogawa Electric Corp | 振動式トランスデューサ |
JP2006322935A (ja) * | 2005-05-10 | 2006-11-30 | Varian Spa | 圧力センサー |
JP2008164592A (ja) * | 2006-11-14 | 2008-07-17 | Infineon Technologies Sensonor As | バックスキャッタセンサ |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014093817A1 (en) * | 2012-12-14 | 2014-06-19 | General Electronic Company | Resonator device |
US9998089B2 (en) | 2012-12-14 | 2018-06-12 | General Electric Company | Resonator device |
Also Published As
Publication number | Publication date |
---|---|
US8516905B2 (en) | 2013-08-27 |
JP5118785B2 (ja) | 2013-01-16 |
JPWO2012140846A1 (ja) | 2014-07-28 |
US20130047746A1 (en) | 2013-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5118785B2 (ja) | Mems圧力センサ | |
KR101153950B1 (ko) | 각속도 센서 | |
US9331606B2 (en) | Device with suspended beam and piezoresistive means of detecting displacement of the beam and method of manufacturing the device | |
JPWO2005012922A1 (ja) | 加速度センサ | |
KR20050090995A (ko) | 변환기 및 이를 포함하는 전자 장치 | |
JP2009002834A (ja) | 角速度検出装置 | |
US8824243B2 (en) | Ultrasonic transducer unit and ultrasonic probe | |
JPWO2005012921A1 (ja) | 加速度センサ | |
JP2007163244A (ja) | 加速度センサ素子、加速度センサ | |
WO2010137303A1 (ja) | 物理量センサ | |
JP2008252847A (ja) | 静電型トランスデューサ | |
JP2008252854A (ja) | 静電型トランスデューサおよびその製造方法 | |
JP5052589B2 (ja) | マイクロフォン | |
JP2015076688A (ja) | 振動子、発振器、電子機器及び移動体 | |
JP2010025582A (ja) | 圧力センサ | |
JP5064155B2 (ja) | 発振器 | |
Lee et al. | Square wine glass mode resonator with quality factor of 4 million | |
JP2015080013A (ja) | 振動子、発振器、電子機器及び移動体 | |
JP2008259062A (ja) | 静電型トランスデューサ | |
CN107534430B (zh) | 具有高品质因数的mems谐振器 | |
JP5193541B2 (ja) | 角速度検出装置 | |
US20240182293A1 (en) | Micro-Electromechanical System | |
JP2006226799A (ja) | 力学量センサ | |
JP5481545B2 (ja) | 角速度検出装置 | |
JP5321812B2 (ja) | 物理量センサーおよび物理量測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012535506 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13583379 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12770692 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12770692 Country of ref document: EP Kind code of ref document: A1 |