CN101871951B - 微加速度传感器 - Google Patents

微加速度传感器 Download PDF

Info

Publication number
CN101871951B
CN101871951B CN2010101937583A CN201010193758A CN101871951B CN 101871951 B CN101871951 B CN 101871951B CN 2010101937583 A CN2010101937583 A CN 2010101937583A CN 201010193758 A CN201010193758 A CN 201010193758A CN 101871951 B CN101871951 B CN 101871951B
Authority
CN
China
Prior art keywords
mass
fixed
micro
fixed part
elastic support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101937583A
Other languages
English (en)
Other versions
CN101871951A (zh
Inventor
葛舟
杨斌
孟珍奎
颜毅林
张睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AAC Microtech Changzhou Co Ltd
AAC Technologies Pte Ltd
Original Assignee
AAC Acoustic Technologies Shenzhen Co Ltd
AAC Microtech Changzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AAC Acoustic Technologies Shenzhen Co Ltd, AAC Microtech Changzhou Co Ltd filed Critical AAC Acoustic Technologies Shenzhen Co Ltd
Priority to CN2010101937583A priority Critical patent/CN101871951B/zh
Publication of CN101871951A publication Critical patent/CN101871951A/zh
Priority to US13/015,987 priority patent/US8413511B2/en
Application granted granted Critical
Publication of CN101871951B publication Critical patent/CN101871951B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/082Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for two degrees of freedom of movement of a single mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0848Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration using a plurality of mechanically coupled spring-mass systems, the sensitive direction of each system being different
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0854Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration using a particular shape of the mass, e.g. annular

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

本发明提供了一种微加速度传感器,其自内向外依次包括第一质量块、与第一质量块外周相连的第一弹性支撑部件、用于固定第一弹性支撑部件的第一固定部、自该第一固定部向外延伸的若干第一定电极、位于第一固定部外部且与其相距一定距离的第二质量块、自该第二质量块内周向第一固定部方向延伸的第一动电极、与第二质量块外周相连的第二弹性支撑部件和用于固定该第二弹性支撑部件的第二固定部。本发明提供的微加速度传感器灵敏度高。

Description

微加速度传感器
技术领域
本发明涉及一种传感器,尤其涉及一种将三轴方向加速度检测集于一体的微加速度传感器。
背景技术
加速度计已经广泛的应用于汽车制造领域,如防锁刹车系统。近年来,加速度计的应用领域快速增长。三轴加速度计以其低成本得到广泛的应用。三轴加速度计也逐渐被应用到消费电子产品上,如移动电话、电脑和游戏机等。
相关结构的加速度传感器主要采用x、y轴与z轴分开模块实现其传感器的功能。相关结构或者方法的失陷是使得加速度计的尺寸增加,难以实现微型化。另外z轴灵敏度低。
发明内容
本发明需解决的技术问题是提供一种灵敏度高的微加速度传感器。
根据上述需解决的技术问题,设计了一种微加速度传感器,其自内向外依次包括第一质量块、与第一质量块外周相连的第一弹性支撑部件、用于固定第一弹性支撑部件的第一固定部、自该第一固定部向外延伸的若干第一定电极、位于第一固定部外部且与其相距一定距离的第二质量块、自该第二质量块内周向第一固定部方向延伸的第一动电极、与第二质量块外周相连的第二弹性支撑部件和用于固定该第二弹性支撑部件的第二固定部,其中,第一定电极和第一动电极相互交叉且空间上分离,该微加速度传感器还包括基底、设置在基底上的第二定电极,上述元件设置在所述基底上,且第一质量块与第二定电极相对的面上设有金属层且第一质量块与第二定电极相对的面平行于第二定电极,第一质量块在垂至于第二定电极的方向运动,第二质量块在平行于第二定电极的方向运动。
优选的,在所述第一质量块或第二质量块上设有阻尼孔。
优选的,所述第一质量块通过掺杂或沉积的方式设置金属层。
优选的,第一质量块、第二质量块和第一固定部为矩形,自第一固定部的外四周向外延伸的若干第一定电极和自第二质量块的内四周向第一固定部方向延伸的第一动电极构成了四组差分电容。
本发明的有益效果在于:由于本发明提供的微加速度传感器集成在一块基底上,所以集成度高,工艺易于实现,传感器尺寸小,成本低,灵敏度高。
附图说明
图1是本发明提供的一个实施例的立体示意图;
图2是图1的平面示意图。
具体实施方式
下面结合附图和实施方式对本发明作进一步说明。
参见图1-2,本发明提供的微加速度传感器1,其自内向外依次包括第一质量块11、与第一质量块11外周相连的第一弹性支撑部件12、用于固定第一弹性支撑部件12的第一固定部13、自该第一固定部13向外延伸的若干第一定电极14、位于第一固定部13外部且与其相距一定距离的第二质量块15、自该第二质量块15内周向第一固定部方向延伸的第一动电极16、与第二质量块15外周相连的第二弹性支撑部件17和用于固定该第二弹性支撑部件17的第二固定部18。
其中,第一定电极14和第一动电极16相互交叉且空间上分离。即,相邻的第一定电极14之间设有第一动电极16,相邻的第一动电极16之间设有第一定电极14。
该微加速度传感器还包括基底(未图示)、设置在基底上的第二定电极(未图示),上述元件设置在所述基底上,且第一质量块11与第二定电极相对的面上设有金属层且第一质量块11与第二定电极相对的面平行于第二定电极。
第一质量块11在垂至于第二定电极的方向运动,第二质量块15在平行于第二定电极的方向运动。
在所述第一质量块11或第二质量块15上设有阻尼孔19。
第一质量块11的材料是单晶硅,通过掺杂或沉积的方式设置金属层。
第一质量块11、第二质量块15和第一固定部13为矩形,自第一固定部13的外四周向外延伸的若干第一定电极14和自第二质量块15的内四周向第一固定部13方向延伸的第一动电极16构成了四组差分电容。
参见图1、图中x轴、y轴构成平面,z轴垂直于x轴、y轴构成的平面。参图1,图2,本发明的工作原理为:第一质量块11作为z轴的动电极,与设在其上的金属层平行的且设置在基底的第二定电极构成平板电容,用于z轴的加速度传感。
在x轴和y轴构成的平面的传感通过第一定电极14、第一动电极16和第二质量块15实现。在本发明的一个实施例中,由第一定电极14和第一动电极16构成了四组电容,用于实现在x轴和y轴构成的平面的传感。
在第一质量块11或第二质量块15上设有阻尼孔19,当然,也可以在第一质量块11和第二质量块15上全部设有阻尼孔,起泄露阻尼的作用。
由于本发明提供的微加速度传感器集成在一块基底上,所以集成度高,工艺易于实现,传感器尺寸小,成本低,灵敏度高。
本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。

Claims (4)

1.一种微加速度传感器,其特征在于:其自内向外依次包括第一质量块、与第一质量块外周相连的第一弹性支撑部件、用于固定第一弹性支撑部件的第一固定部、自该第一固定部向外延伸的若干第一定电极、位于第一固定部外部且与其相距一定距离的第二质量块、自该第二质量块内周向第一固定部方向延伸的第一动电极、与第二质量块外周相连的第二弹性支撑部件和用于固定该第二弹性支撑部件的第二固定部,其中,第一定电极和第一动电极相互交叉且空间上分离,该微加速度传感器还包括基底、设置在基底上的第二定电极,上述所有元件设置在所述基底上,且第一质量块与第二定电极相对的面上设有金属层且第一质量块与第二定电极相对的面平行于第二定电极,第一质量块在垂直于第二定电极的方向运动,第二质量块在平行于第二定电极的方向运动。
2.根据权利要求1所述的微加速度传感器,其特征在于:在所述第一质量块或第二质量块上设有阻尼孔。
3.根据权利要求1所述的微加速度传感器,其特征在于:所述第一质量块通过掺杂或沉积的方式设置金属层。
4.根据权利要求1所述的微加速度传感器,其特征在于:第一质量块、第二质量块和第一固定部为矩形,自第一固定部的外四周向外延伸的若干第一定电极和自第二质量块的内四周向第一固定部方向延伸的第一动电极构成了四组差分电容。
CN2010101937583A 2010-06-07 2010-06-07 微加速度传感器 Expired - Fee Related CN101871951B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010101937583A CN101871951B (zh) 2010-06-07 2010-06-07 微加速度传感器
US13/015,987 US8413511B2 (en) 2010-06-07 2011-01-28 Accelerometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101937583A CN101871951B (zh) 2010-06-07 2010-06-07 微加速度传感器

Publications (2)

Publication Number Publication Date
CN101871951A CN101871951A (zh) 2010-10-27
CN101871951B true CN101871951B (zh) 2011-11-30

Family

ID=42996937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101937583A Expired - Fee Related CN101871951B (zh) 2010-06-07 2010-06-07 微加速度传感器

Country Status (2)

Country Link
US (1) US8413511B2 (zh)
CN (1) CN101871951B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461692B (zh) * 2011-12-01 2014-11-21 Nat Univ Tsing Hua 具有應力隔絕結構之慣性感測器
JP5880877B2 (ja) * 2012-05-15 2016-03-09 株式会社デンソー センサ装置
TWI481820B (zh) 2013-03-01 2015-04-21 Ind Tech Res Inst 具指插式彈簧的微機電裝置
WO2015103220A1 (en) * 2013-12-30 2015-07-09 Robert Bosch Gmbh Robust inertial sensors
TWI510786B (zh) 2014-09-18 2015-12-01 Kuei Ann Wen 三軸加速度計
JP6657626B2 (ja) * 2015-07-10 2020-03-04 セイコーエプソン株式会社 物理量センサー、電子機器および移動体
JP6512006B2 (ja) * 2015-07-14 2019-05-15 株式会社デンソー センサ装置
JP6939475B2 (ja) * 2017-11-28 2021-09-22 セイコーエプソン株式会社 物理量センサー、物理量センサーデバイス、複合センサーデバイス、慣性計測装置、移動体測位装置、携帯型電子機器、電子機器および移動体
CN115605765A (zh) * 2021-04-23 2023-01-13 深圳市韶音科技有限公司(Cn) 加速度传感装置
CN218162856U (zh) * 2021-04-23 2022-12-27 深圳市韶音科技有限公司 一种振动传感器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319899A (zh) * 2008-07-24 2008-12-10 北京大学 一种电容式水平轴微机械音叉陀螺
CN100543419C (zh) * 2007-05-21 2009-09-23 哈尔滨工业大学 双自由度双解耦微机械振动陀螺传感器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069099A (zh) * 2003-02-24 2007-11-07 佛罗里达大学 微机械加工的集成单片三轴加速度计
US6910379B2 (en) * 2003-10-29 2005-06-28 Honeywell International, Inc. Out-of-plane compensation suspension for an accelerometer
DE602006010534D1 (de) * 2006-07-14 2009-12-31 St Microelectronics Srl Mikro-Elektromechanischer Inertialsensor, insbesondere für Freifall-Anwendungen
TWI335903B (en) * 2007-10-05 2011-01-11 Pixart Imaging Inc Out-of-plane sensing device
US7784344B2 (en) * 2007-11-29 2010-08-31 Honeywell International Inc. Integrated MEMS 3D multi-sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100543419C (zh) * 2007-05-21 2009-09-23 哈尔滨工业大学 双自由度双解耦微机械振动陀螺传感器
CN101319899A (zh) * 2008-07-24 2008-12-10 北京大学 一种电容式水平轴微机械音叉陀螺

Also Published As

Publication number Publication date
CN101871951A (zh) 2010-10-27
US20110296916A1 (en) 2011-12-08
US8413511B2 (en) 2013-04-09

Similar Documents

Publication Publication Date Title
CN101871951B (zh) 微加速度传感器
CN101666813B (zh) 电容式多轴加速度计
CN105699693B (zh) 具有减少漂移功能的z轴微机电检测结构
CN101898744B (zh) 增强抑制加速度噪声的微机电陀螺仪
US10031156B2 (en) Three-axis microelectromechanical systems devices
US8333113B2 (en) Triaxial acceleration sensor
US9513310B2 (en) High-sensitivity, z-axis micro-electro-mechanical detection structure, in particular for an MEMS accelerometer
US20100058864A1 (en) Multi-axis capacitive accelerometer
CN204944509U (zh) 惯性测量装置
US20140251011A1 (en) Tilt Mode Accelerometer with improved Offset and Noise Performance
JP4996771B2 (ja) 電子デバイス
CN101738496A (zh) 多轴电容式加速度计
CN101568840B (zh) 微机械多轴加速度传感器
CN107064557B (zh) 电容式加速度计
CN103234570B (zh) 加速度传感器的标定装置
CN102854998A (zh) 惯性感测装置
US20160370397A1 (en) Micro-electro-mechanical system (mems) device
CN206450229U (zh) 一种用于运载火箭光纤惯组的八点减振系统
CN101865934B (zh) 加速度传感器
CN105115540A (zh) Mems惯性传感器、湿度传感器集成装置及其制造方法
CN203164204U (zh) 三轴压电式加速度传感器
CN107532903B (zh) 转动速率传感器和方法
CN204758028U (zh) Mems惯性传感器、湿度传感器集成装置
CN104931728A (zh) 一种三轴硅微加速度计
Mohammed et al. A crab leg suspension based dual axis MEMS accelerometer with low cross axis sensitivity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170719

Address after: Singapore Ang Mo Kio 65 Street No. 10 techpoint Building 1 floor, No. 8

Co-patentee after: AAC Microelectronic Technology (Changzhou) Co.,Ltd.

Patentee after: AAC TECHNOLOGIES Pte. Ltd.

Address before: 518057 Nanshan District province high tech Industrial Park, Shenzhen, North West New Road, No. 18

Co-patentee before: AAC Microelectronic Technology (Changzhou) Co.,Ltd.

Patentee before: AAC ACOUSTIC TECHNOLOGIES (SHENZHEN) Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111130

CF01 Termination of patent right due to non-payment of annual fee