TWI461692B - 具有應力隔絕結構之慣性感測器 - Google Patents

具有應力隔絕結構之慣性感測器 Download PDF

Info

Publication number
TWI461692B
TWI461692B TW100144101A TW100144101A TWI461692B TW I461692 B TWI461692 B TW I461692B TW 100144101 A TW100144101 A TW 100144101A TW 100144101 A TW100144101 A TW 100144101A TW I461692 B TWI461692 B TW I461692B
Authority
TW
Taiwan
Prior art keywords
cantilever
guard ring
inertial
inertial sensor
ring
Prior art date
Application number
TW100144101A
Other languages
English (en)
Other versions
TW201323880A (zh
Inventor
Wei Leun Fang
Hsieh Shen Hsieh
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW100144101A priority Critical patent/TWI461692B/zh
Priority to US13/480,884 priority patent/US20130139593A1/en
Publication of TW201323880A publication Critical patent/TW201323880A/zh
Application granted granted Critical
Publication of TWI461692B publication Critical patent/TWI461692B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • G01P2015/0842Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass the mass being of clover leaf shape

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Description

具有應力隔絕結構之慣性感測器
本發明為有關一種慣性感測器,尤指一種具有應力隔絕結構的慣性感測器。
加速度感測器以往大部分應用在汽車上,用以掌握汽車發生衝撞時的加速度而驅動安全氣囊作動,應用於汽車的加速度感測器通常只需具備X軸或是Y軸之方向的加速度感測即足夠,且由於所測定的加速度非常大,加速度感測器的構造上也非常堅固。不過隨著科技的日新月異,消費性電子產品逐漸邁向輕薄短小化,並且依使用上的需求而內建加速感測器,故加速感測器的體積也隨微機電製程的發展而縮小,靈敏度也隨之提升。
習知以微機電製程所製作的加速度感測器,如美國發明專利公開第20100116057號之「MENS SENSOR AND METHOD OF MANUFACTURING THE SAME」,揭露一種慣性感測器,包含有一框架、一配重體以及四支橫樑,該配重體設置於該框架內,受該框架環繞,並包含一中心塊以及分別與該中心塊連接的四個周沿塊,四支該橫樑各別連接於該框架內面四個方位,並各別與該中心塊連接,該橫樑設置有壓阻感測器,如此,於該慣性感測器受一外力作用時,藉由該配重體的擺動,使該橫樑產生形變,造成該壓阻感測器的阻抗變化,達到加速度的感測。
然而,此種習知的慣性感測器,容易受到非受測力之環境外力干擾,而使得精準度下降,因此,為了減少環境外力對慣性感測器的干擾,習知的慣性感測器在製作上通常會透過選擇特別的封裝方式,如使用成本較高的陶瓷封裝(Ceramic package)或是塑膠殼封裝(Plastic cavity package),而有生產成本無法降低的問題。
本發明的主要目的,在於解決習知慣性感測器容易受環境外力干擾的問題,本發明的另一目的在於降低元件後續封裝製程對其性能所造成的影響。
為達上述目的,本發明提供一種具有應力隔絕結構之慣性感測器,包含有一基材、一懸橋、一保護環以及一機電轉換結構。該基材具有一容槽及一圍繞該容槽的環壁;該懸橋設於該容槽內,並與該環壁連接;該保護環與該懸橋連接而懸吊於該容槽內,且該懸橋介於該基材與該保護環之間;而該機電轉換結構與該保護環連接,且受該保護環的圍繞; 其中,該保護環具有一單一的連接側,該連接側與該懸橋連接。
如此一來,本發明藉由該保護環的設置,降低環境外力對該機電轉換結構的干擾,不僅提高該機電轉換結構的感測精準度,更降低元件後續封裝製程對其性能所造成的影響,進一步降低生產上的成本。
有關本發明的詳細說明及技術內容,現就配合圖式說明如下:請搭配參閱『圖1A』及『圖1B』所示,分別為本發明第一實施例的正視結構示意圖及背視結構示意圖,本發明為一種具有應力隔絕結構之慣性感測器,包含有一基材10、一懸橋20、一保護環30以及一機電轉換結構40。該基材10具有一容槽11及一圍繞該容槽11的環壁12,該懸橋20設於該容槽11內與該環壁12連接,而該保護環30具有一單一的連接側32,該保護環30由該連接側32與該懸橋20連接而懸吊於該容槽11內,且該懸橋20介於該基材10與該保護環30之間,使該保護環30與該環壁12之間相隔一緩衝間距S3,而該機電轉換結構40與該保護環30連接,且受該保護環30的圍繞,該機電轉換結構40可為一機械電容轉換結構、一壓電轉換結 構、或是一壓阻轉換結構。
在第一實施例中,該機電轉換結構40可為該壓阻轉換結構、或是該壓電轉換結構,詳細說明如下,該機電轉換結構40包含至少一懸臂41以及一慣性體42,該懸臂41與該保護環30連接,該慣性體42與該懸臂41連接,使該懸臂41介於該保護環30與該慣性體42之間,並具有彈性,且該慣性體42與該保護環30之間還形成一供該慣性體42活動的活動間距S1,在此實施例中,該慣性體42包含一中心塊421以及四個配重塊422,該配重塊422各別與該中心塊421連接,而該懸臂41則有四支,各別連接於該中心塊421及該保護環30之間,且同時位於相鄰的兩該配重塊422之間。該懸臂41上可選擇設置一壓阻元件411或是一壓電元件,當該懸臂41受一外力作用而產生形變時,由該壓阻元件411偵測該懸臂41的應力變化而產生對應的阻值變化,或是由該壓電元件偵測該懸臂41的應力變化而產生對應的電荷變化,再藉由適當的讀取電路得到對應於該慣性量(如加速度或是角速度等)作用下的元件電性訊號輸出。故該機電轉換結構40成為感測懸臂41應力變化而產生對應阻值變化的該壓阻轉換結構,或是產生對應電荷變化的該壓電轉換結構,在此實施例中,則以設置該壓阻元件411為舉例。
請搭配參閱『圖2A』及『圖2B』所示,『圖2A』為本發明第一實施例於水平方向感測示意圖,『圖2B』為本發明第一實施例於垂直方向感測示意圖,本發明之慣性感測器具有三維空間中的三軸方向感測作用,如『圖2A』所示,當本發明之慣性感測器受一水平方向的慣性力作用時,例如為X軸向或是Y軸向的水平力,由於該水平力使該慣性感測器產生一橫向移動,該橫向移動破壞該慣性體42的水平平衡,由該配重塊422牽動該中心塊421產生水平的晃動,進而拉扯連接於該中心塊421與該保護環30之間的該懸臂41,使該懸臂41於水平方向上產生形變,而造成該懸臂41的應力變化,再由設 置於該懸臂41上的該壓阻元件411偵測該懸臂41的應力變化產生對應的阻值變化,而達到偵測X軸及Y軸慣性力的目的。如『圖2B』所示,而當本發明之慣性感測器受一垂直方向的慣性力作用時,例如為Z軸向的垂直力,由於該垂直力使該慣性感測器產生一縱向移動,該縱向移動破壞該慣性體42的縱向平衡,由該配重塊422牽動該中心塊421產生縱向的晃動,進而拉扯連接於該中心塊421與該保護環30之間的該懸臂41,使該懸臂41於垂直方向上產生形變,而造成該懸臂41的應力變化,再由設置於該懸臂41上的該壓阻元件411偵測該懸臂41的應力變化而產生對應的阻值變化,而達到偵測Z軸慣性力的目的。
請搭配參閱『圖3』所示,為本發明第二實施例的局部結構示意圖,在此實施例中,其特徵在於該機電轉換結構40為一機械電容轉換結構,該機電轉換結構40包含至少一懸臂41、一慣性體42以及至少一可動指叉43,該懸臂41連接於該保護環30與該慣性體42之間,該慣性體42藉由該懸臂41懸吊於該容槽11內,該可動指叉43與該慣性體42連接,而該保護環30具有至少一固定指叉31,該固定指叉31與該可動指叉43相距一可變間距S2,並由該可動指叉43、該固定指叉31及該可變間距S2即形成一電容結構。在此,該懸臂41有四支,各別連接於該慣性體42與該保護環30之間,使該慣性體42平衡的懸吊於該容槽11內,該可動指叉43有四支,該固定指叉31有二支,該固定指叉31位於該保護環30內相對的兩側,並介於相鄰的兩該可動指叉43之間。要說明的是,當該慣性感測器受一慣性力作用時,該慣性力使該慣性體42產生一位移,並連動連接於該慣性體42上的該可動指叉43,進而使位於該可動指叉43與該固定指叉31之間的該可變間距S2產生變化,該可變間距S2的變化即造成該電容結構的電容值變化,藉由偵測該電容值的變化而達到位移感測的效果。
請搭配參閱『圖4A』至『圖4D』所示,為本發明第二實 施例的懸橋結構示意圖一至四,在此要說明的是,該懸橋20為連接於該保護環30之單一的該連接側32,並進一步可為以下的四種樣式,但並不以此為限,如『圖4A』所示,該懸橋20為單一主體,其兩端各連接該保護環30及該環壁12。如『圖4B』所示,該懸橋20包含一第一分支21a及一第二分支22a,其兩端各別連接該保護環30及該環壁12,該第一分支21a與該第二分支22a並排。如『圖4C』所示,該懸橋20包含一第一分支21b及一第二分支22b,其兩端各別連接該保護環30及該環壁12,且該第一分支21b與該第二分支22b之間不平行排列。如『圖4D』所示,該懸橋20包含一第一分支21、一第二分支22及一第三分支23,其兩端各別連接該保護環30及該環壁12,且該第一分支21、該第二分支22及該第三分支23並排,要補充說明的是,上述的懸橋20並不限定應用於第二實施例中,還可進一步應用於第一實施例中或是其他與該保護環30連接的機電轉換結構40,更可再包含一第四分支、一第五分支等。
請搭配參閱『圖5A』及『圖5B』所示,『圖5A』為溫度對本發明與習知慣性感測器的干擾比較示意圖,『圖5B』為外力對本發明與習知慣性感測器的干擾比較示意圖,從『圖5A』中可以得知,設置有保護環30的慣性感測器,與習知沒有設置保護環30的慣性感測器相較之下,溫度對X軸、Y軸及Z軸產生的應力干擾,有設置保護環30的慣性感測器比沒有設置保護環30的慣性感測器,干擾降低約一個級數,而在『圖5B』中可以得知,設置有保護環30的慣性感測器,與習知沒有設置保護環30的慣性感測器相較之下,外力對X軸、Y軸及Z軸的干擾,有設置保護環30的慣性感測器比沒有設置保護環30的慣性感測器,干擾降至八分之一至二十六分之一之間。
綜上所述,由於本發明藉由該保護環的設置,降低環境因素對該機電轉換結構的影響,使環境溫度所產生的應力干擾降 低約一個級數,環境外力所產生的干擾降至原先的八分之一至二十六分之一之間,因而提高該機電轉換結構的感測精準度,且降低元件後續封裝製程對其性能所造成的影響,故可簡化整體封裝,測試及校準程序而降低生產成本,因此本發明極具進步性及符合申請發明專利的要件,爰依法提出申請,祈 鈞局早日賜准專利,實感德便。
以上已將本發明做一詳細說明,惟以上所述者,僅為本發明的一較佳實施例而已,當不能限定本發明實施的範圍。即凡依本發明申請範圍所作的均等變化與修飾等,皆應仍屬本發明的專利涵蓋範圍內。
10‧‧‧基材
11‧‧‧容槽
12‧‧‧環壁
20‧‧‧懸橋
21、21a、21b‧‧‧第一分支
22、22a、22b‧‧‧第二分支
23‧‧‧第三分支
30‧‧‧保護環
31‧‧‧固定指叉
32‧‧‧連接側
40‧‧‧機電轉換結構
41‧‧‧懸臂
411‧‧‧壓阻元件
42‧‧‧慣性體
421‧‧‧中心塊
422‧‧‧配重塊
43‧‧‧可動指叉
S1‧‧‧活動間距
S2‧‧‧可變間距
S3‧‧‧緩衝間距
圖1A,為本發明第一實施例的正視結構示意圖。
圖1B,為本發明第一實施例的背視結構示意圖。
圖2A,為本發明第一實施例於水平方向感測示意圖。
圖2B,為本發明第一實施例於垂直方向感測示意圖。
圖3,為本發明第二實施例的局部結構示意圖。
圖4A-圖4D,為本發明第二實施例的懸橋結構示意圖一至四。
圖5A,為溫度對本發明與習知慣性感測器的干擾比較示意圖。
圖5B,為外力對本發明與習知慣性感測器的干擾比較示意圖。
10‧‧‧基材
11‧‧‧容槽
12‧‧‧環壁
20‧‧‧懸橋
30‧‧‧保護環
32‧‧‧連接側
40‧‧‧機電轉換結構
41‧‧‧懸臂
411‧‧‧壓阻元件
42‧‧‧慣性體
421‧‧‧中心塊
422‧‧‧配重塊
S1‧‧‧活動間距
S3‧‧‧緩衝間距

Claims (11)

  1. 一種具有應力隔絕結構之慣性感測器,包含有:一基材,該基材具有一容槽及一圍繞該容槽的環壁;一設於該容槽內的懸橋,該懸橋與該環壁連接;一與該懸橋連接而懸吊於該容槽內的保護環,該懸橋介於該基材與該保護環之間;以及一與該保護環連接的機電轉換結構,該機電轉換結構受該保護環的圍繞;其中,該保護環具有一單一的連接側,該連接側與該懸橋連接。
  2. 如申請專利範圍第1項所述的具有應力隔絕結構之慣性感測器,其中該機電轉換結構選自機械電容轉換結構、壓電轉換結構以及壓阻轉換結構所組成之群組。
  3. 如申請專利範圍第1項所述的具有應力隔絕結構之慣性感測器,其中該機電轉換結構包含至少一與該保護環連接的懸臂以及一與該懸臂連接的慣性體,該懸臂介於該保護環與該慣性體之間,該慣性體懸吊於該容槽內,並受該保護環的圍繞。
  4. 如申請專利範圍第3項所述的具有應力隔絕結構之慣性感測器,其中該慣性體包含一中心塊及四個分別與該中心塊連接的配重塊,該懸臂有四支,各別連接該中心塊及該保護環,並介於相鄰的兩該配重塊之間。
  5. 如申請專利範圍第3項所述的具有應力隔絕結構之慣性感測器,其中該保護環與該慣性體之間相隔一供該慣性體活動的活動間距。
  6. 如申請專利範圍第3項所述的具有應力隔絕結構之慣性感測器,其中該懸臂上設置一壓阻元件。
  7. 如申請專利範圍第3項所述的具有應力隔絕結構之慣性感測器,其中該懸臂上設置一壓電元件。
  8. 如申請專利範圍第1項所述的具有應力隔絕結構之慣性感 測器,其中該機電轉換結構包含至少一與該保護環連接的懸臂、一與該懸臂連接的慣性體以及至少一與該慣性體連接的可動指叉,該懸臂介於該保護環與該慣性體之間,該慣性體懸吊於該容槽內,該保護環具有至少一與該可動指叉相隔一可變間距的固定指叉。
  9. 如申請專利範圍第8項所述的具有應力隔絕結構之慣性感測器,其中該保護環與該慣性體之間相隔一供該慣性體活動的活動間距。
  10. 如申請專利範圍第1項所述的具有應力隔絕結構之慣性感測器,其中該保護環與該環壁之間相隔一緩衝間距。
  11. 如申請專利範圍第1項所述的具有應力隔絕結構之慣性感測器,其中該懸橋包含一第一分支及一第二分支。
TW100144101A 2011-12-01 2011-12-01 具有應力隔絕結構之慣性感測器 TWI461692B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100144101A TWI461692B (zh) 2011-12-01 2011-12-01 具有應力隔絕結構之慣性感測器
US13/480,884 US20130139593A1 (en) 2011-12-01 2012-05-25 Inertial sensor with stress isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100144101A TWI461692B (zh) 2011-12-01 2011-12-01 具有應力隔絕結構之慣性感測器

Publications (2)

Publication Number Publication Date
TW201323880A TW201323880A (zh) 2013-06-16
TWI461692B true TWI461692B (zh) 2014-11-21

Family

ID=48523027

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100144101A TWI461692B (zh) 2011-12-01 2011-12-01 具有應力隔絕結構之慣性感測器

Country Status (2)

Country Link
US (1) US20130139593A1 (zh)
TW (1) TWI461692B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150085705A (ko) * 2014-01-16 2015-07-24 삼성전기주식회사 가속도 센서
CN104950137B (zh) * 2015-06-23 2018-01-19 西安电子科技大学 具有应力隔离结构的横向敏感加速度传感器芯片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020104378A1 (en) * 2001-02-07 2002-08-08 Stewart Robert E. Micromachined silicon gyro using tuned accelerometer
CN1746681A (zh) * 2004-09-08 2006-03-15 北京大学 差分式抗高过载微型隧道加速度计及其制备方法
CN1908676A (zh) * 2005-08-05 2007-02-07 日立金属株式会社 耐冲击加速度传感器
TW201118378A (en) * 2009-05-29 2011-06-01 Torex Semiconductor Ltd Acceleration sensor element and acceleration sensor having same

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408112A (en) * 1991-06-03 1995-04-18 Nippondenso Co., Ltd. Semiconductor strain sensor having improved resistance to bonding strain effects
JP2776142B2 (ja) * 1992-05-15 1998-07-16 株式会社日立製作所 加速度センサ
JPH09199549A (ja) * 1996-01-22 1997-07-31 Denso Corp ワイヤボンディング方法
DE19734530B4 (de) * 1996-08-09 2008-04-24 Denso Corp., Kariya Halbleiterbeschleunigungssensor
JP2002082127A (ja) * 2000-09-07 2002-03-22 Mitsubishi Electric Corp 静電容量型加速度センサ、静電容量型角加速度センサおよび静電アクチュエータ
JP5184880B2 (ja) * 2004-02-27 2013-04-17 アトランティック・イナーシャル・システムズ・リミテッド 加速度計
JP2006119042A (ja) * 2004-10-22 2006-05-11 Oki Electric Ind Co Ltd 加速度センサチップパッケージ及びその製造方法
JP5502331B2 (ja) * 2007-05-30 2014-05-28 ローム株式会社 加速度センサおよびその製造方法
JP4838229B2 (ja) * 2007-07-27 2011-12-14 トレックス・セミコンダクター株式会社 加速度センサー
US7784344B2 (en) * 2007-11-29 2010-08-31 Honeywell International Inc. Integrated MEMS 3D multi-sensor
JP2010107242A (ja) * 2008-10-28 2010-05-13 Rohm Co Ltd Memsセンサ
JP2010223952A (ja) * 2009-02-24 2010-10-07 Seiko Epson Corp 加速度センサー、電子機器
JP2011022018A (ja) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp 静電容量型加速度センサー
JP2011075543A (ja) * 2009-09-07 2011-04-14 Seiko Epson Corp 物理量センサー、物理量センサーの製造方法、および電子機器
JP5486271B2 (ja) * 2009-11-17 2014-05-07 ラピスセミコンダクタ株式会社 加速度センサ、及び加速度センサの製造方法
JP2011112455A (ja) * 2009-11-25 2011-06-09 Seiko Epson Corp Memsセンサー及びその製造方法並びに電子機器
US20110179870A1 (en) * 2010-01-25 2011-07-28 Chun-Kai Chan Dual-axis acceleration detection element
CN101871951B (zh) * 2010-06-07 2011-11-30 瑞声声学科技(深圳)有限公司 微加速度传感器
JP5350339B2 (ja) * 2010-08-12 2013-11-27 株式会社日立製作所 微小電気機械システムおよびその製造方法
US20120048019A1 (en) * 2010-08-26 2012-03-01 Hanqin Zhou Highly sensitive capacitive sensor and methods of manufacturing the same
KR101310564B1 (ko) * 2010-12-15 2013-09-23 삼성전기주식회사 관성센서
JP2012137368A (ja) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp 加速度センサ
US9003886B2 (en) * 2012-04-27 2015-04-14 Freescale Semiconductor, Inc. Microelectromechanical systems devices and methods for the fabrication thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020104378A1 (en) * 2001-02-07 2002-08-08 Stewart Robert E. Micromachined silicon gyro using tuned accelerometer
CN1746681A (zh) * 2004-09-08 2006-03-15 北京大学 差分式抗高过载微型隧道加速度计及其制备方法
CN1908676A (zh) * 2005-08-05 2007-02-07 日立金属株式会社 耐冲击加速度传感器
TW201118378A (en) * 2009-05-29 2011-06-01 Torex Semiconductor Ltd Acceleration sensor element and acceleration sensor having same

Also Published As

Publication number Publication date
TW201323880A (zh) 2013-06-16
US20130139593A1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP5965934B2 (ja) 改善されたオフセットおよびノイズ性能を有する傾斜モード加速度計
TWI414478B (zh) 可同時量測加速度及壓力之微機電感測器
US7779689B2 (en) Multiple axis transducer with multiple sensing range capability
US20130205899A1 (en) Combo Transducer and Combo Transducer Package
CN104105945B (zh) 微电子机械系统(mems)多轴加速计电极结构
CN106915721B (zh) 具有中央固定座的微机电装置
JP5553846B2 (ja) 加速度センサおよび加速度センサの作動方法
CN111417594B (zh) 非对称平面外加速度计
KR101531093B1 (ko) 가속도 센서 및 각속도 센서
TW201310005A (zh) 慣性感測裝置
US20160178373A1 (en) Angular velocity sensor
CN111417837B (zh) 具有偏移锚负载抑制的mems传感器
KR101328642B1 (ko) 멤스 공진형 가속도계
TWI461692B (zh) 具有應力隔絕結構之慣性感測器
US20110179870A1 (en) Dual-axis acceleration detection element
IT201900009651A1 (it) Sensore inerziale mems con elevata resistenza al fenomeno di adesione
EP4187258A1 (en) Z-axis microelectromechanical sensor device with improved stress insensitivity
JP2008107257A (ja) 加速度センサ
US20170219619A1 (en) Accelerometer
KR101454112B1 (ko) 압저항체를 이용한 가속도계
CN117192155B (zh) 单质量三轴mems加速度传感器和电子设备
WO2019209659A1 (en) Deformation rejection mechanism for offset minimization of out-of-plane sensing mems device
US11761977B1 (en) MEMS design with shear force rejection for reduced offset
Thu et al. Structural Design and Modeling of MEMS-based Single Axis Capacitive Accelerometer
KR101009903B1 (ko) 3축 가속도 센서