WO2022219456A1 - 二次電池、電子機器および車両 - Google Patents

二次電池、電子機器および車両 Download PDF

Info

Publication number
WO2022219456A1
WO2022219456A1 PCT/IB2022/053134 IB2022053134W WO2022219456A1 WO 2022219456 A1 WO2022219456 A1 WO 2022219456A1 IB 2022053134 W IB2022053134 W IB 2022053134W WO 2022219456 A1 WO2022219456 A1 WO 2022219456A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
secondary battery
voltage
Prior art date
Application number
PCT/IB2022/053134
Other languages
English (en)
French (fr)
Inventor
島田知弥
門馬洋平
福島邦宏
川月惇史
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN202280028298.XA priority Critical patent/CN117178382A/zh
Priority to KR1020237038234A priority patent/KR20230171953A/ko
Priority to JP2023514175A priority patent/JPWO2022219456A1/ja
Publication of WO2022219456A1 publication Critical patent/WO2022219456A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One aspect of the present invention relates to an article, method, or manufacturing method.
  • One aspect of the invention also relates to a process, machine, manufacture, or composition of matter.
  • Another embodiment of the present invention relates to a semiconductor device, a display device, a light-emitting device, a power storage device, a lighting device, an electronic device, or a manufacturing method thereof.
  • electronic equipment refers to all devices having a secondary battery, and electro-optical devices having a secondary battery, information terminal devices having a secondary battery, and the like are all electronic equipment.
  • a secondary battery may be referred to as a storage battery.
  • lithium ion secondary batteries and the like used in mobile electronic devices are desired to have a large discharge capacity per unit weight and excellent cycle characteristics.
  • efforts are being made to improve the positive electrode active material of the positive electrode of the secondary battery (see Patent Documents 1 to 3, for example).
  • Positive electrode active materials used in secondary batteries have room for improvement in various aspects such as discharge capacity, cycle characteristics, reliability, safety, and cost.
  • an object of one embodiment of the present invention is to provide a positive electrode active material with improved discharge capacity retention rate in cycle characteristics. Another object of one embodiment of the present invention is to provide a positive electrode active material whose crystal structure does not easily collapse even after repeated charging and discharging. Another object of one embodiment of the present invention is to provide a positive electrode active material with high discharge capacity. Another object of one embodiment of the present invention is to provide a highly safe or reliable secondary battery, electronic device, or vehicle that includes the positive electrode active material.
  • Another object of one embodiment of the present invention is to provide a method for manufacturing a positive electrode active material, a secondary battery, an electronic device, or a vehicle.
  • the secondary battery satisfies the range of 35% or more and less than 100% of the maximum value of the discharge capacity during all 50 cycles.
  • One aspect of the present invention includes a positive electrode and a negative electrode pressed at a linear pressure ranging from 100 kN/m to 3000 kN/m, and the positive electrode is used as a positive electrode of a test battery in which the negative electrode is made of lithium,
  • the discharge capacity of the test battery is measured every 50 cycles, the value of the discharge capacity measured at the 50th cycle satisfies the range of 35% or more and less than 100% of the maximum value of the discharge capacity during all 50 cycles.
  • Next battery is measured.
  • the positive electrode preferably has an electrode density in the range of 2.5 g/cc or more and 4.5 g/cc or less.
  • One aspect of the present invention includes a positive electrode having an electrode density in the range of 2.5 g/cc to 4.5 g/cc and a negative electrode, and the positive electrode is used as a positive electrode of a test battery in which the negative electrode is made of lithium.
  • Constant voltage charge until the charge rate reaches 0.05C at a voltage of 2.5V, then constant current discharge at a discharge rate of 0.5C until a voltage of 2.5V is repeated 50 times.
  • the value of the discharge capacity measured at the 50th cycle satisfies the range of 35% or more and less than 100% of the maximum value of the discharge capacity in all 50 cycles. , is a secondary battery.
  • the positive electrode preferably has a porosity ranging from 8% to 35%.
  • One embodiment of the present invention includes a positive electrode having a porosity in the range of 8% to 35% and a negative electrode.
  • a positive electrode having a porosity in the range of 8% to 35% and a negative electrode.
  • the charging rate is 4.7V.
  • a cycle test was performed in which a constant voltage charge was performed until the voltage reached 0.05 C, and then a constant current discharge was performed at a discharge rate of 0.5 C until the voltage reached 2.5 V. The charge and discharge cycle was repeated 50 times.
  • a secondary battery in which, when the discharge capacity of the battery is measured, the value of the discharge capacity measured at the 50th cycle satisfies the range of 35% or more and less than 100% of the maximum value of the discharge capacity in all 50 cycles. .
  • One aspect of the present invention includes a positive electrode and a negative electrode, the positive electrode is used as a positive electrode of a test battery in which the negative electrode is lithium, and the test battery is heated to 4.7 V in an environment of 25 ° C. or higher and 45 ° C. or lower.
  • a cycle test in which a cycle of constant current discharge at a discharge rate of 0.5 C is repeated 50 times until a voltage of 0.5 V is reached, a cross-sectional STEM The percentage of the area of closed cracks observed in the secondary battery is 0.9% or less.
  • One aspect of the present invention includes a positive electrode pressed at a linear pressure of 100 kN/m or more and 3000 kN/m or less, and a negative electrode.
  • a constant current discharge is performed at a discharge rate of 0.5 C until the voltage reaches 2.5 V.
  • the charge and discharge cycle is repeated 50 times.
  • the ratio of the area of closed cracks observed by cross-sectional STEM is 0.9% or less per one cross section of the positive electrode active material of the positive electrode of the test battery.
  • the test battery preferably has an electrolyte.
  • the test battery is preferably a coin-shaped half-cell.
  • the positive electrode preferably has a layered rock salt-type positive electrode active material.
  • the positive electrode active material preferably contains lithium cobaltate.
  • One embodiment of the present invention is an electronic device or a vehicle including the secondary battery.
  • a positive electrode active material with improved discharge capacity retention in cycle characteristics can be provided. Further, according to one embodiment of the present invention, a positive electrode active material whose crystal structure does not easily collapse even after repeated charging and discharging can be provided. Further, according to one embodiment of the present invention, a positive electrode active material with high discharge capacity can be provided. Further, according to one embodiment of the present invention, a safe or highly reliable secondary battery, an electronic device, or a vehicle that includes a positive electrode active material can be provided.
  • a method for manufacturing a positive electrode active material, a secondary battery, an electronic device, or a vehicle can be provided.
  • FIG. 1 is a diagram illustrating a cathode active material having defects.
  • 2A and 2B are diagrams for explaining the correlation.
  • FIG. 3 is a diagram for explaining a method of manufacturing a secondary battery.
  • FIG. 4 is a diagram for explaining a secondary battery manufacturing apparatus.
  • 5A to 5C are diagrams illustrating a method of manufacturing a secondary battery.
  • 6A to 6D are diagrams illustrating a method of manufacturing a secondary battery.
  • 7A to 7C are diagrams illustrating a method for manufacturing a positive electrode active material.
  • FIG. 8 is a diagram illustrating a method for manufacturing a positive electrode active material.
  • 9A to 9C are diagrams for explaining a method for manufacturing a positive electrode active material.
  • 10A to 10C2 are diagrams illustrating positive electrode active materials.
  • 11A to 11C2 are diagrams illustrating positive electrode active materials.
  • 12A to 12C are diagrams for explaining the positive electrode mixture layer.
  • 13A and 13B are diagrams illustrating an all-solid-state battery.
  • 14A and 14B are diagrams illustrating a coin-shaped half-cell (test battery).
  • FIG. 15 is a diagram explaining a method of assembling a test battery for a cycle test.
  • 16A to 16C are diagrams illustrating examples of secondary batteries.
  • 17A to 17D are diagrams illustrating examples of secondary batteries.
  • 18A to 18C are diagrams illustrating an example of a vehicle.
  • 19A to 19D are diagrams illustrating examples of electronic devices.
  • 20A and 20B are graphs showing charge/discharge capacity of cycle characteristics (measured temperature and charge voltage are plotted).
  • 21A and 21B are graphs showing charge/discharge capacity of cycle characteristics (measured temperature and charge voltage are plotted).
  • 22A and 22B are graphs showing charge/discharge capacity of cycle characteristics (measured temperature and charge voltage are plotted).
  • 23A and 23B are graphs showing charge/discharge curves of cycle characteristics (measured temperature and charge voltage are plotted).
  • 24A and 24B are graphs showing charge/discharge curves of cycle characteristics (measured temperature and charge voltage are plotted).
  • FIG. 25 is a graph showing charge/discharge curves of cycle characteristics (measured temperature and charge voltage are plotted).
  • 26A and 26B are graphs showing charge/discharge curves of cycle characteristics (measured temperature and charge voltage are plotted).
  • FIG. 27A and 27B are graphs showing charge/discharge curves of cycle characteristics (measured temperature and charge voltage are plotted).
  • FIG. 28 is a graph showing charge/discharge curves of cycle characteristics (measured temperature and charge voltage are plotted).
  • 29A and 29B are graphs showing charge/discharge curves of cycle characteristics (measured temperature and charge voltage are plotted).
  • 30A and 30B are graphs showing charge/discharge curves of cycle characteristics (measured temperature and charge voltage are plotted).
  • FIG. 31 is a graph showing charge/discharge curves of cycle characteristics (measured temperature and charge voltage are plotted).
  • FIG. 32 is a graph showing the discharge capacity retention rate with respect to the measurement temperature.
  • FIG. 33 is a graph showing charge depth versus measured temperature.
  • 34A to 34C are STEM images explaining the positive electrode active material after the cycle test.
  • 35A to 35C are STEM images explaining the positive electrode active material after the cycle test.
  • FIG. 36 is a photograph explaining the positive electrode active material after the cycle test.
  • FIG. 37 is a photograph explaining the positive electrode active material after the cycle test.
  • FIG. 38 is a graph showing electrode density.
  • Miller indices are sometimes used to indicate crystal planes and crystal orientations. Individual planes indicating crystal planes may be indicated using ( ). Crystal planes, crystal orientations, and space groups are indicated by a superscript bar on the number from the standpoint of crystallography. - (minus sign) may be attached and expressed.
  • the theoretical capacity of a positive electrode active material refers to the amount of electricity when all the lithium that can be inserted and detached included in the positive electrode active material is desorbed.
  • LiCoO 2 also called lithium cobalt oxide
  • LiNiO 2 has a theoretical capacity of 274 mAh/g
  • LiMn 2 O 4 has a theoretical capacity of 148 mAh/g.
  • the depth of charge is a value that indicates how much capacity is charged based on the theoretical capacity of the positive electrode active material, in other words, how much lithium is desorbed from the positive electrode.
  • a minimum value is indicated when all the lithium that can be intercalated and desorbed is inserted, and a maximum value is indicated when all the lithium that can be intercalated and desorbed is desorbed.
  • the positive electrode active material may have defects immediately after production. In addition, even if there are no defects immediately after production, repeated charging and discharging may cause defects in the positive electrode active material. Repetition of charge and discharge includes repetition of charge and discharge in a cycle test using a half cell or a full cell, and repetition of charge and discharge is sometimes referred to as charge and discharge.
  • the reason why defects occur due to charging and discharging is considered to be that chemical or electrochemical reactions occur between the positive electrode active material and the electrolytic solution present around the positive electrode active material. The reaction may erode the positive electrode active material. Deterioration of the positive electrode active material due to charging and discharging may also cause defects. Defects after charging and discharging do not occur uniformly in the positive electrode active material, but may occur locally. Further, the defect may progress. The present inventors considered that understanding or controlling such defects is important for improving the battery characteristics obtained from the cycle test, that is, the cycle characteristics.
  • the occurrence or progression of defects is correlated with charge/discharge conditions, such as cycle test conditions.
  • charge/discharge conditions such as cycle test conditions.
  • a high charging depth condition such as charging at a high voltage of 4.5 V or more and a low charging depth condition.
  • defect generation or defect progress between a high temperature condition of 45° C. or higher and a non-high temperature condition of 45° C. or higher. That is, defects are correlated with cycle test conditions.
  • Defects include those that progress due to charging and discharging, and are sometimes referred to as pits in this specification and the like. It is believed that pits progress faster during charging and discharging under conditions such as high voltage or high temperature. As a result, it is considered that many pits are generated in the positive electrode active material that has undergone charging and discharging under the above conditions.
  • cracks due to expansion and contraction of the positive electrode active material due to charging and discharging which are sometimes referred to as cracks in this specification and the like. It is believed that cracks progress faster during charging and discharging under conditions such as high voltage or high temperature. As a result, many cracks are thought to occur in the positive electrode active material that has undergone charging and discharging under the above conditions.
  • crack closure In addition to expansion and contraction of the positive electrode active material, stress may concentrate on a part of the positive electrode active material during charging and discharging. Defects such as cracks are likely to occur at such stress concentration locations. The cracks may not be confirmed from the surface of the positive electrode active material. That is, the crack is inside the positive electrode active material. In this specification and the like, the crack is sometimes referred to as a closed crack (crack closure), and may be considered separately from the crack generated from the surface of the positive electrode active material. It is thought that closed cracks are likely to occur and progress more rapidly under charging/discharging conditions such as high voltage or high temperature. As a result, many closed cracks are thought to occur in the positive electrode active material that has undergone charging and discharging under the above conditions.
  • the present inventors considered that the occurrence of such defects in the positive electrode active material leads to deterioration in cycle characteristics, for example, deterioration in discharge capacity retention rate.
  • FIG. 1 shows a schematic cross-sectional view of a positive electrode active material 100 with defects.
  • the positive electrode active material 100 is assumed to have a layered rock salt crystal structure, and in FIG. 1, the crystal plane 55 parallel to the arrangement of cations of the positive electrode active material 100 is also indicated by broken lines.
  • Positive electrode active material 100 has pits 54 and pits 58 as defects. Although the pits 54 and 58 are illustrated as holes extending in a direction substantially parallel to the crystal plane 55, they are three-dimensionally deep and have groove-like shapes.
  • the source of pits may be point defects. A phenomenon in which a point defect progresses and becomes a large hole is sometimes called pitting corrosion, and the hole generated by this phenomenon is also included in the pit.
  • the crystal structure of the positive electrode active material 100 may collapse and have a crystal structure different from the layered rock salt type, such as a spinel structure. If the crystal structure collapses, diffusion and release of lithium ions, which are carrier ions, may be inhibited, and the pits 54 and 58 are considered to be factors of deterioration of cycle characteristics.
  • the positive electrode active material 100 has cracks 57 as defects.
  • a crack 57 is shown crossing the crystal plane 55 .
  • Cracks 57 and the like are considered to be factors of deterioration of cycle characteristics.
  • Cracks 57 can be considered a different type of defect than pits 54 and 58 .
  • crack 57 progresses across crystal plane 55
  • pits 54 and pits 58 differ in that they progress substantially parallel to crystal plane 55 .
  • the cracks 57 may exist immediately after manufacturing the positive electrode active material, but the pits 54 and 58 may not exist immediately after manufacturing the positive electrode active material.
  • the pits 54 and 58 that do not exist immediately after manufacturing the positive electrode active material can be considered as holes from which several layers of cobalt and oxygen of the positive electrode active material have escaped through the cycle test.
  • the hole can be said to be a region where cobalt is eluted.
  • the crack 57 can be considered to correspond to a new surface generated by applying physical pressure or a crack caused by a crystal grain boundary, and may be caused by pressing or the like. be.
  • the positive electrode active material 100 has a closed crack 59 as a defect. Since closed cracks often occur inside the positive electrode active material, it is difficult to confirm them from the surface of the positive electrode active material, and they can be confirmed by cross-sectional observation of the positive electrode active material as shown in FIG. Closed cracks 59 and the like are considered to be factors of deterioration of cycle characteristics.
  • the inventors of the present invention have made intensive studies on the defects described above, and found that there is a correlation between defects in the active material and the manufacturing conditions of the active material, as shown in FIG. 2A. I found
  • the pressing conditions of the active material among the manufacturing conditions of the active material.
  • the press condition to a line pressure of 100 kN/m or more and 3000 kN/m or less, preferably 150 kN/m or more and 1500 kN/m or less, more preferably 210 kN/m or more and 1467 kN/m or less.
  • closed cracks are not generated. Suppressed. That is, in order to suppress the occurrence of closed cracks, it is preferable to press the active material with the above linear pressure.
  • An active material in which the occurrence of closed cracks is suppressed has a high discharge capacity retention rate. That is, an active material with a high discharge capacity retention rate suppresses the occurrence of closed cracks. It is preferable that the number of closed cracks in the active material is 10 or less because the discharge capacity retention rate is high. Focusing on the defects of the active material immediately after production and after the cycle test and finding the correlation is very useful in improving the cycle characteristics.
  • This embodiment can be used in combination with other embodiments.
  • step S100 shown in FIG. 3 a positive electrode active material is prepared.
  • a method for manufacturing the positive electrode active material and the like will be described in detail in Embodiment 3 and the like. Materials that can be applied to the positive electrode active material will be described here.
  • Positive electrode active material examples include lithium-containing oxides or lithium-containing composite oxides having an olivine-type crystal structure, a layered rock salt-type crystal structure, or a spinel-type crystal structure.
  • a positive electrode active material having a layered rock salt crystal structure is preferably used as the positive electrode active material of one embodiment of the present invention.
  • the element M is a metal element, preferably one or more selected from cobalt, manganese, nickel and iron. Further, element M is preferably a combination of, for example, one or more selected from cobalt, manganese, nickel, and iron, and one or more selected from aluminum, titanium, zirconium, lanthanum, copper, and zinc.
  • LiCoO 2 (also referred to as lithium cobaltate), LiNiO 2 , LiMnO 2 and the like can be given as the lithium-containing composite oxide represented by LiM x O y .
  • a composite oxide having lithium represented by LiNixCo1 - xO2 ( 0 ⁇ x ⁇ 1) there is a NiCo system or the like
  • a composite oxide having lithium represented by LiMxOy there are NiMn systems represented by LiNixMn1 - xO2 ( 0 ⁇ x ⁇ 1), and the like.
  • a composite oxide having lithium represented by LiMO 2 a NiCoMn system (also called NCM series, nickel-cobalt-lithium manganate), and the like.
  • lithium-containing composite oxides having a layered rocksalt crystal structure examples include Li2MnO3 or Li2MnO3 - LiMeO2 ( Me is Co, Ni, Mn).
  • a positive electrode active material having a layered rock salt crystal structure as typified by the above lithium-containing composite oxide, has a high lithium content per volume and a secondary battery with a high capacity per volume. can.
  • LiMn 2 O 4 or the like having a spinel-type crystal structure containing manganese is available as a positive electrode active material.
  • a lithium- manganese composite oxide represented by LiaMnbMcOd can be used as the positive electrode active material .
  • the element M is preferably one or two or more metal elements other than lithium and manganese, or silicon or phosphorus, and more preferably nickel is included in the above metal elements.
  • the lithium-manganese composite oxide refers to an oxide containing at least lithium and manganese, including LiMn 2 O 4 described above.
  • Lithium-manganese composite oxide in addition to the elements represented by the chemical formula, selected from chromium, cobalt, aluminum, nickel, iron, magnesium, molybdenum, zinc, indium, gallium, copper, titanium, niobium, silicon, phosphorus, etc. It may contain one or more elements.
  • V 2 O 5 or Cr 3 O 8 that does not contain lithium ions may be used as the positive electrode active material.
  • the ratio of metal elements, silicon, phosphorus, or the like in the entire lithium-containing composite oxide can be measured using, for example, ICP-MS (inductively coupled plasma mass spectrometer). Also, the oxygen ratio in the entire lithium-containing composite oxide can be measured using, for example, EDX (energy dispersive X-ray spectroscopy). Further, the oxygen ratio can be obtained by using valence evaluation of molten gas analysis and XAFS (X-ray absorption fine structure) analysis in combination with ICPMS analysis.
  • Two or more of the above positive electrode active materials may be used in combination.
  • step S101 shown in FIG. 3 a slurry containing a positive electrode active material is prepared.
  • a slurry is a mixture of at least an active material in a solvent.
  • a mixture of the positive electrode active material is sometimes referred to as positive electrode slurry, and a mixture of the negative electrode active material is sometimes referred to as negative electrode slurry.
  • the slurry may be mixed with a conductive aid and a binder (also referred to as a binder).
  • the ratio of the positive electrode active material or the negative electrode active material in the slurry is preferably in the range of 85 wt % or more and 98 wt % or less, preferably 90 wt % or more and 98 wt % or less.
  • particles such as an active material may aggregate, and in order to improve the dispersibility of the particles, it is preferable to improve the affinity between the particles such as the active material and the solvent. Therefore, the slurry may be mixed with a dispersant in addition to the active material and the like.
  • solvent one or more selected from ketones such as acetone, alcohols such as ethanol and isopropanol, ethers, dioxane, acetonitrile, N-methyl-2-pyrrolidone (NMP) and the like can be used. It is preferable to use an aprotic solvent that is less likely to react with lithium.
  • the solvent may be used in combination of two or more of the above.
  • the conductive aid is also called a conductive agent or a conductive material, and carbon materials are often used.
  • a conductive aid may be positioned between multiple active materials or between an active material and a current collector.
  • Carbon black includes furnace black, acetylene black, or graphite.
  • graphene or a graphene compound may be used as the carbon material of the conductive aid.
  • Graphene (sometimes referred to as G) has a two-dimensional structure containing carbon and a 6-membered ring of the carbon. Since the two-dimensional structure formed by the carbon six-membered ring forms a sheet shape, it may be called a carbon sheet.
  • the graphene compound includes graphene oxide (sometimes referred to as GO) or reduced graphene oxide (sometimes referred to as RGO).
  • Graphene oxide is graphene to which a functional group is bonded, and the functional group has oxygen.
  • Reduced graphene oxide is reduced graphene oxide obtained by reducing graphene oxide, and may not have oxygen depending on the degree of reduction.
  • Such a graphene compound also has a two-dimensional structure formed by six-membered carbon rings.
  • a graphene compound has a sheet shape or a net shape.
  • a net-like graphene compound is sometimes referred to as a graphene net.
  • the graphene net can cover part or all of the active material, and when covered, can have a region along the active material to form an efficient conductive path.
  • the graphene net can also function as a binder that binds active materials together. Therefore, the amount of binder can be reduced or not used, and the ratio of the active material to the electrode volume and electrode weight
  • multilayer graphene may be used as the carbon material of the conductive aid.
  • the multilayer graphene may have a curved shape including graphene laminated in the range of 2 to 300 layers, preferably 80 to 200 layers.
  • the graphene or graphene compound preferably has holes to allow carrier ions to pass through. Holes include defects in graphene or graphene compounds.
  • a network graphene or a network graphene compound can be formed by bonding a plurality of graphenes or a plurality of graphene compounds to each other. The network graphene or network graphene compound can have holes.
  • the carbon material of the conductive aid a material that can previously cover the surface of the active material using a spray drying apparatus may be used. Active materials whose surfaces are previously covered with a carbon material can form an efficient conductive path.
  • the carbon material of the conductive aid needle-like materials such as carbon nanotubes (sometimes referred to as CNT) or VGCF (registered trademark) may be used.
  • CNT carbon nanotubes
  • VGCF registered trademark
  • binder it is preferable to use rubber materials such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene-propylene-diene copolymer.
  • SBR styrene-butadiene rubber
  • a fluororubber can also be used as a binder.
  • the binder it is preferable to use, for example, a water-soluble polymer.
  • Polysaccharides for example, can be used as the water-soluble polymer.
  • the polysaccharide one or more selected from cellulose derivatives such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, regenerated cellulose, starch, and the like can be used. Further, it is more preferable to use these water-soluble polymers in combination with the aforementioned rubber material.
  • Binders include polystyrene, polymethyl acrylate, polymethyl methacrylate (polymethyl methacrylate, PMMA), sodium polyacrylate, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polypropylene oxide, polyimide, and polyvinyl chloride. , polytetrafluoroethylene, polyethylene, polypropylene, polyisobutylene, polyethylene terephthalate, nylon, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), ethylene propylene diene polymer, polyvinyl acetate, nitrocellulose, etc. It is preferable to use one or more.
  • step S102 shown in FIG. 3 the positive electrode slurry is applied to a current collector for positive electrode (sometimes referred to as a positive electrode current collector). Coating on one side of the positive electrode current collector may be referred to as single-sided coating, and coating on both sides of the positive electrode current collector may be referred to as double-sided coating.
  • the positive electrode current collector a highly conductive material such as a metal such as stainless steel, gold, platinum, aluminum, or titanium, or an alloy thereof can be used. Further, for the positive electrode current collector, it is preferable to use a material that does not elute at the potential of the positive electrode in the secondary battery. Alternatively, an aluminum alloy to which an element that improves heat resistance, such as silicon, titanium, neodymium, scandium, or molybdenum, is added can be used for the positive electrode current collector. Further, the positive electrode current collector may contain a metal element that reacts with silicon to form silicide. Metal elements that react with silicon to form silicide include zirconium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, nickel, and the like.
  • the shape of the positive electrode current collector can be appropriately used such as a foil shape, a plate shape, a sheet shape, a net shape, a punching metal shape, or an expanded metal shape.
  • the positive electrode current collector preferably has a thickness of 5 ⁇ m or more and 30 ⁇ m or less, preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • FIG. 4 is used to exemplify a manufacturing apparatus and the like for applying the positive electrode slurry to the positive electrode current collector.
  • FIG. 4 shows the case where the roll-to-roll method is used in step S102.
  • a delivery mechanism 312 (sometimes referred to as an unwinder) is shown in FIG.
  • the delivery mechanism 312 is provided with a first bobbin 311 around which a sheet-like positive electrode current collector 321 is wound.
  • the positive electrode current collector 321 can be moved in the direction of the arrow using the rotation of the roller 313 or the like.
  • the positive electrode slurry can be applied to one surface (corresponding to the surface, for example) of the positive electrode current collector 321 using the first slurry applying means 314a.
  • a slot die coater, a lip coater, a blade coater, a reverse coater, a gravure coater, or the like can be used as the slurry application means, for example.
  • the number of rollers may be increased for inverting the positive electrode current collector 321 .
  • a technique such as a dipping method or a spraying method can also be used as the slurry application means.
  • FIG. 4 illustrates a case where intermittent coating is used for coating the positive electrode slurry. Intermittent coating is to apply the positive electrode slurry to selective regions, and the positive electrode current collector 321 is exposed between a plurality of positive electrode slurry-coated regions.
  • Drying means 315 is used to dry the positive electrode slurry after coating.
  • a loading port 316 is provided in the drying means 315 . Note that the carry-in port 316 is paired, and the other is sometimes referred to as the carry-out port.
  • a heat source 318 is provided within the drying means 315 .
  • the positive electrode current collector 321 carried in from the carry-in port 316 is exposed to the heat source 318, and the positive electrode slurry can be dried. At least the solvent is removed from the dried positive electrode slurry.
  • the temperature for drying that is, the temperature of the heat source 318 is preferably in the range of 80° C. or higher and 180° C. or lower, preferably 100° C. or higher and 130° C. or lower.
  • the heat source 318 one or a combination of two or more methods selected from hot air heating, lamp heating, induction heating, air blowing, and the like can be used.
  • the heat source 318 may be provided at a plurality of locations so that the positive electrode current collector 321 can be sandwiched therebetween.
  • a distance between the heat source 318 and the positive electrode current collector 321 is preferably 5 cm or more and 30 cm or less, preferably 10 cm or more and 20 cm or less.
  • the drying means 315 is provided with a control section 317, which can control the drying conditions described above.
  • the drying means 315 may be provided with an exhaust port.
  • the exhaust port is preferably provided above the drying means 315, for example, on the ceiling.
  • the positive electrode slurry on one surface of the positive electrode current collector 321 is dried to complete the coating.
  • the positive electrode slurry that has been dried and from which at least the solvent has been removed is sometimes referred to as a positive electrode mixture.
  • slurry is applied to the other surface (corresponding to the back surface, for example) of the positive electrode current collector 321 by the second slurry applying means 314b after being discharged from the drying means 315 .
  • a roller 319 is used to cause the other surface of the positive electrode current collector 321 to face the second slurry adhering means 314b. Rotation of the roller 319 can move the positive electrode current collector 321 in the direction of the arrow.
  • One surface of the positive electrode current collector 321 is provided with the previously applied positive electrode mixture, but the positive electrode mixture may come into contact with the roller 319 because the drying process has been performed.
  • Drying means 315 is used to dry the positive electrode slurry applied to the other surface of the positive electrode current collector 321 .
  • a loading port 320 is provided in the drying means 315 . Note that the carry-in port 320 is paired, and the other is sometimes referred to as the carry-out port.
  • the positive electrode current collector 321 carried in from the carry-in port 320 is exposed to the heat source 318, and the positive electrode slurry can be dried.
  • the carry-in port 320 can also serve as the previous carry-in port 316, in which case the carry-in port 320 can be omitted. Coating onto the current collector is completed through such steps.
  • step S103 shown in FIG. 3 the positive electrode mixture and the positive electrode current collector 321 are pressed (also referred to as pressurization).
  • a roll press method, a plate press method, or the like can be used for pressing.
  • the positive electrode mixture and the positive electrode current collector 321 are pressed using a roll press method.
  • the pressurizing means 325 that can be used in the roll press method will be described.
  • the pressurizing means may be referred to as a roll press device.
  • a loading port 326 is provided in the pressurizing means 325 .
  • the carry-in port 326 is paired, and the other is sometimes referred to as the carry-out port.
  • a set of rollers 328 are provided within the pressure means 325 . Pressing is accomplished by passing between a set of rollers 328 .
  • a set of rollers having a load of 100 kg or more and 200 tons or less, a roll width of 100 mm or more and 3000 mm or less, and a roll diameter ( ⁇ ) of 30 mm or more and 5000 mm or less can be used for the pressing means 325 .
  • the pressurizing means 325 can use an air cylinder or hydraulic pressure as a pressurizing method, and it is also possible to pressurize manually.
  • the pair of rollers 328 each have a heat source 329, because it is possible to press while heating.
  • the positive electrode current collector 321 carried in from the carry-in port 326 is pressed while being exposed to the heat source 329 .
  • the heat source 329 need not be provided inside the set of rollers 328 .
  • the heat source 329 can generate heat by steam heat or electric heat, and specifically, one or a combination of two or more selected from hot air heating, lamp heating, induction heating, air blowing, and the like can be used.
  • a cooling source may be provided in addition to the heat source, and cooling water, for example, may be used as the cooling source.
  • the pressing means 325 can also press at room temperature.
  • the pressurizing means 325 may be provided with an exhaust port.
  • the exhaust port is preferably provided above the pressurizing means 325, for example, on the ceiling.
  • the pressure during pressing (sometimes referred to as press pressure) is a linear pressure of 100 kN/m or more and 3000 kN/m or less, preferably 150 kN/m or more and 1500 kN/m or less, more preferably 210 kN/m or more and 1467 kN/m or less. A range is preferred.
  • a line pressure of 210 kN/m is a surface pressure of 1 MPa
  • a line pressure of 461 kN/m is a surface pressure of 2 MPa
  • a line pressure of 964 kN/m is a surface pressure of 4 MPa
  • a line pressure of 1467 kN/m is a surface pressure of 4 MPa. 6 MPa.
  • the pressing pressure is preferably 1 MPa or more and 6 MPa or less in terms of surface pressure. Defects that can occur in the positive electrode active material can be considered as a cause of deterioration of the cycle characteristics, but the defects can be suppressed by pressing with the above linear pressure.
  • the number of times of pressing can be one or two or more.
  • the initial press pressure should be lower than the final press pressure.
  • the heating temperature for pressing that is, the temperature of the heat source 329 should be in the range of 90° C. or higher and 180° C. or lower, preferably 120° C. or lower.
  • the binder for example, PVDF
  • the electrode density in the positive electrode can be increased.
  • the electrode density of the positive electrode becomes 2.5 g/cc or more and 4.5 g/cc or less, preferably 3.3 g/cc or more and 4.1 g/cc or less, and defects of the positive electrode are eliminated. It is preferable because it can be suppressed and the electrode density of the positive electrode can be increased.
  • the porosity of the positive electrode becomes 8% or more and 35% or less, preferably 12% or more and 29% or less, suppressing defects of the positive electrode and increasing the electrode density of the positive electrode. It is possible and preferable.
  • the porosity of the positive electrode is the ratio of the region not filled with the positive electrode active material, conductive aid and binder.
  • the electrolyte may be located in the unfilled region, but the porosity of the positive electrode is a value that is not affected by the electrolyte.
  • the porosity of the positive electrode can be obtained from the filling rate of the positive electrode.
  • the porosity can be confirmed by observing the cross section of the electrode.
  • the cross section of the sample is processed by a focused ion beam (FIB), and the porosity can be observed using an observation device such as an SEM (Scanning Electron Microscope) or a TEM (Transmission Electron Microscope). Since the FIB can continuously process the sample and enable continuous observation, it is also possible to observe the porosity three-dimensionally. Continuous processing and observation may be referred to as Slice & View.
  • the pressurizing means 325 is provided with a control section 327, which can control the press conditions. Pressing conditions include roller rotation speed in addition to pressure and temperature.
  • step S104 shown in FIG. 3 the positive electrode obtained as described above is prepared.
  • a rolled positive electrode 339 wound around a second bobbin 338 installed in a winding mechanism 337 (may be referred to as a winder) can be obtained. .
  • the rolled positive electrode 339 can be used as a positive electrode of a wound secondary battery.
  • the long side of the positive electrode is preferably 30 cm or more and 100 cm or less, and the rolled positive electrode 339 is preferably cut so as to fill the long side.
  • the long side is the length of the sheet-like positive electrode current collector 321 along the traveling direction.
  • the roll-shaped positive electrode 339 can be used as a positive electrode of a stacked secondary battery.
  • the long side of the positive electrode is preferably in the range of 5 cm or more and 20 cm or less, and the roll-shaped positive electrode 339 is preferably cut so as to fill the long side. You may cut
  • the long side is the length of the sheet-like positive electrode current collector 321 in the direction intersecting with the traveling direction.
  • a separator is prepared.
  • separator for example, paper, non-woven fabric, glass fiber, ceramics, nylon (polyamide), vinylon (polyvinyl alcohol fiber), polyester, acrylic, polyolefin, synthetic fiber using polyurethane, etc. can be used. can be done. It is preferable that the separator is processed into an envelope shape and arranged so as to enclose either the positive electrode or the negative electrode.
  • the separator may have a multilayer structure.
  • an organic material film such as polypropylene or polyethylene can be coated with a ceramic material, a fluorine material, a polyamide material, or a mixture thereof.
  • the ceramic material for example, aluminum oxide, silicon oxide, or the like can be used.
  • PVDF, polytetrafluoroethylene, or the like can be used as the fluorine-based material.
  • polyamide materials that can be used include nylon and aramid (meta-aramid and para-aramid).
  • Coating with a ceramic-based material improves oxidation resistance, so deterioration of the separator during high-voltage charging and discharging can be suppressed, and the reliability of the secondary battery can be improved.
  • the separator and the electrode are more likely to adhere to each other, and the output characteristics can be improved.
  • Coating with a polyamide-based material, particularly aramid improves the heat resistance, so that the safety of the secondary battery can be improved.
  • both sides of a polypropylene film may be coated with a mixed material of aluminum oxide and aramid.
  • a polypropylene film may be coated with a mixed material of aluminum oxide and aramid on the surface thereof in contact with the positive electrode, and coated with a fluorine-based material on the surface thereof in contact with the negative electrode.
  • the safety of the secondary battery can be maintained even if the thickness of the entire separator is thin, so that the discharge capacity per unit volume of the secondary battery can be increased.
  • a negative electrode is prepared.
  • the negative electrode can be formed into a roll shape in the same manner as the positive electrode using the manufacturing apparatus shown in FIG. 4 and the like.
  • the negative electrode has a negative electrode active material layer and a negative electrode current collector.
  • the negative electrode active material layer may be referred to as a negative electrode mixture, and may contain a conductive aid and a binder. Materials and the like that can be applied to the negative electrode active material will be described.
  • the negative electrode active material an element capable of performing charge-discharge reaction by alloying/dealloying reaction with lithium can be used.
  • an element capable of performing charge-discharge reaction by alloying/dealloying reaction with lithium.
  • Such an element has a larger capacity than carbon, and silicon in particular has a high theoretical capacity of 4200 mAh/g. Therefore, it is preferable to use silicon for the negative electrode active material.
  • Compounds containing these elements may also be used.
  • elements capable of undergoing charge/discharge reactions by alloying/dealloying reactions with lithium, compounds containing such elements, and the like are sometimes referred to as alloy-based materials.
  • SiO refers to silicon monoxide, for example.
  • SiO can be represented as SiO x .
  • x preferably has a value of 1 or close to 1.
  • x is preferably 0.2 or more and 1.5 or less, and preferably 0.3 or more and 1.2 or less.
  • Carbon materials used for the negative electrode include graphite, graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), carbon nanotube, graphene, carbon black, and the like.
  • Examples of graphite include artificial graphite and natural graphite.
  • Examples of artificial graphite include mesocarbon microbeads (MCMB), coke-based artificial graphite, and pitch-based artificial graphite.
  • MCMB mesocarbon microbeads
  • Spherical graphite having a spherical shape can be used as the artificial graphite.
  • MCMB may have a spherical shape and are preferred.
  • MCMB is also relatively easy to reduce its surface area and may be preferred.
  • Examples of natural graphite include flake graphite and spherical natural graphite.
  • Graphite exhibits a potential as low as that of lithium metal when lithium ions are inserted into graphite (at the time of formation of a lithium-graphite intercalation compound) (0.05 V or more and 0.3 V or less vs. Li/Li + ). As a result, a secondary battery using graphite can exhibit a high operating voltage. Furthermore, graphite is preferable because it has advantages such as relatively high capacity per unit volume, relatively small volume expansion, low cost, and high safety compared to lithium metal.
  • titanium dioxide TiO 2
  • lithium titanium oxide Li 4 Ti 5 O 12
  • lithium graphite intercalation compound Li x C 6
  • niobium pentoxide Nb 2 O 5
  • tungsten oxide WO 2
  • MoO 2 molybdenum oxide
  • Li 2.6 Co 0.4 N 3 exhibits a large capacity (900 mAh/g, 1890 mAh/cm 3 ) and is preferred.
  • lithium ions are contained in the negative electrode active material, so that it can be combined with materials such as V 2 O 5 and Cr 3 O 8 that do not contain lithium ions as the positive electrode active material, which is preferable. .
  • a material that causes a conversion reaction can also be used as the negative electrode active material.
  • transition metal oxides that do not alloy with lithium such as cobalt oxide (CoO), nickel oxide (NiO), or iron oxide (FeO) may be used as the negative electrode active material.
  • oxides such as Fe2O3 , CuO , Cu2O , RuO2 and Cr2O3 , sulfides such as CoS0.89 , NiS and CuS, and Zn3N2 , Cu3N , or Ge3N4 ; phosphides , such as NiP2 , FeP2 , or CoP3 ; and fluorides, such as FeF3 or BiF3.
  • Lithium can also be used as the negative electrode active material.
  • foil-shaped lithium can be provided on the negative electrode current collector.
  • lithium may be provided on the negative electrode current collector by a vapor phase method such as a vapor deposition method or a sputtering method.
  • lithium may be deposited on the negative electrode current collector by an electrochemical method in a solution containing lithium ions.
  • the same materials as the conductive agent and binder that the positive electrode active material layer can have can be used.
  • the current collector copper or the like can be used in addition to the same material as the positive electrode current collector.
  • the negative electrode current collector it is preferable to use a material that does not alloy with carrier ions such as lithium.
  • a negative electrode without a negative electrode active material can be used.
  • lithium can be deposited on the negative electrode current collector during charging, and lithium can be eluted from the negative electrode current collector during discharging. Therefore, in a state other than a fully discharged state, the negative electrode collector has lithium on it.
  • a film for uniform deposition of lithium may be provided on the negative electrode current collector.
  • a film for uniform deposition of lithium for example, a solid electrolyte having lithium ion conductivity can be used.
  • the solid electrolyte one or more selected from sulfide-based solid electrolytes, oxide-based solid electrolytes, polymer-based solid electrolytes, and the like can be used.
  • the polymer solid electrolyte is suitable as a film for uniform deposition of lithium because it is relatively easy to form a uniform film on the negative electrode current collector.
  • a negative electrode current collector having unevenness can be used.
  • the concave portions of the negative electrode current collector become cavities in which lithium contained in the negative electrode current collector easily deposits, so that the formation of dendrites and the deposition of lithium can be suppressed.
  • step S130 of FIG. 3 the positive electrode, the negative electrode and the separator are enclosed in the package.
  • Exterior body For example, one or more selected from metal materials such as aluminum and resin materials can be used as the exterior body.
  • metal materials such as aluminum and resin materials
  • an exterior body one or more selected from aluminum, stainless steel, copper, nickel, etc., on an organic film having one or more selected from polyethylene, polypropylene, polycarbonate, ionomer, polyamide, etc.
  • an insulating synthetic resin film such as a polyamide-based resin or a polyester-based resin is provided on the outside of the metal film as the outer surface of the exterior body.
  • step S132 shown in FIG. 3 an electrolytic solution is injected into the exterior body.
  • the electrolytic solution has a solvent and an electrolyte.
  • aprotic organic solvents are preferred, such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, chloroethylene carbonate, vinylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, 1,3-dioxane, 1,4 - One or more selected from dioxane, dimethoxyethane (DME), dimethylsulfoxide, diethyl ether, methyldiglyme, acetonitrile, benzonitrile, tetrahydrofuran, sulf
  • Ionic liquids have cations and anions.
  • Cations used in the electrolytic solution include organic cations, including aliphatic onium cations such as quaternary ammonium cations, tertiary sulfonium cations and quaternary phosphonium cations, and aromatic cations such as imidazolium cations and pyridinium cations.
  • Anions used in the electrolytic solution include monovalent amide anions, monovalent methide anions, fluorosulfonate anions, perfluoroalkylsulfonate anions, tetrafluoroborate anions, perfluoroalkylborate anions, and hexafluorophosphate anions. , or perfluoroalkyl phosphate anions.
  • electrolytes dissolved in the above solvents include LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiAlCl 4 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl12 , LiCF3SO3 , LiC4F9SO3, LiC ( CF3SO2 ) 3 , LiC ( C2F5SO2 ) 3 , LiN ( FSO2 ) 2 , LiN ( CF3SO2 ) 2 , LiN(C 4 F 9 SO 2 )(CF 3 SO 2 ), LiN(C 2 F 5 SO 2 ) 2 , and the like can be used in combination of one or more. When two or more types are combined, they can be used at any ratio.
  • the electrolytic solution used in the secondary battery is preferably highly purified and has a low content of particulate matter or elements other than constituent elements of the electrolytic solution (hereinafter also simply referred to as “impurities”).
  • the weight ratio of impurities to the electrolytic solution is preferably 1% or less, preferably 0.1% or less, and more preferably 0.01% or less.
  • the electrolytic solution may contain dinitrile compounds such as vinylene carbonate, propane sultone (PS), tert-butylbenzene (TBB), fluoroethylene carbonate (FEC), lithium bis(oxalate)borate (LiBOB), succinonitrile, and adiponitrile.
  • dinitrile compounds such as vinylene carbonate, propane sultone (PS), tert-butylbenzene (TBB), fluoroethylene carbonate (FEC), lithium bis(oxalate)borate (LiBOB), succinonitrile, and adiponitrile.
  • Additives may be added.
  • the additive concentration may be, for example, 0.1 wt % or more and 5 wt % or less with respect to the entire solvent.
  • VC or LiBOB are particularly preferred because they tend to form good coatings.
  • a polymer gel electrolyte obtained by swelling a polymer with an electrolytic solution may also be used.
  • the safety against leakage and the like is enhanced. Also, the thickness and weight of the secondary battery can be reduced.
  • silicone gel acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, fluorine polymer gel, and the like can be used.
  • polymers examples include polymers having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile, and copolymers containing them.
  • PEO polyethylene oxide
  • PVDF-HFP which is a copolymer of PVDF and hexafluoropropylene (HFP)
  • the polymer formed may also have a porous geometry.
  • a solid electrolyte containing an inorganic material such as a sulfide or oxide, or a solid electrolyte containing a polymeric material such as PEO (polyethylene oxide) can be used. If a solid electrolyte is used, no separator is required. In addition, since the entire secondary battery can be solidified, there is no risk of liquid leakage, and safety is dramatically improved.
  • a secondary battery can be obtained according to the above-described steps and the like.
  • FIG. 5 exemplifies the manufacturing process of a wound type secondary battery having steps S104, S121, S122, S130, S132, S133, and the like.
  • the roll-shaped positive electrode 339 described in FIG. 4 can be used as the positive electrode prepared in step S104.
  • the roll-shaped positive electrode is preferably prepared in a state wound around a second bobbin 338 installed on a winding mechanism 337 . Since the winding mechanism 337 has a function of sending out the positive electrode to the roller 366, it may also be referred to as a sending mechanism.
  • a rolled separator wound around a bobbin 348 installed in a winding mechanism 347 can be used. Since the winding mechanism 347 has a function of sending out the separator to the roller 366, it may also be referred to as a sending mechanism.
  • a roll-shaped negative electrode wound around a bobbin 358 installed in a winding mechanism 357 can be used as the negative electrode prepared in step S122. Since the winding mechanism 357 has a function of sending out the negative electrode to the roller 366, it is sometimes referred to as a sending mechanism.
  • a sheet-like positive electrode 362, a sheet-like separator 363, and a sheet-like negative electrode 364 are sent out from each winding mechanism using the rotation of the roller 366 or the like, and these are superimposed on the roller 366 or its vicinity.
  • the rotation direction of the winding mechanism 337 and the winding mechanism 347 and the rotation direction of the winding mechanism 357 may be reversed.
  • the rollers 366 can be superimposed well.
  • a tab 365a is preferably attached to the sheet-like positive electrode 362 carried out from the winding mechanism 337 by using an attaching means 354a. It is preferable that the tab 365a is first overlapped by the roller 366 so as to be positioned at the center of the wound secondary battery.
  • a tab 365b is attached to the sheet-like negative electrode 364 carried out from the winding mechanism 357 using an attaching means 354b.
  • the tab 365b is preferably located on the winding center side of the winding type secondary battery, and is preferably overlapped by the roller 366 first.
  • a wound secondary battery in which a sheet-like separator 363 is positioned between a sheet-like positive electrode 362 and a sheet-like negative electrode 364 can be assembled.
  • tabs 365a and 365b are positioned at the center of the wound secondary battery.
  • FIG. 5C shows a state in which the positive electrode 362, the separator 363 and the negative electrode 364 assembled in FIG.
  • the exterior body 370 preferably has slits 371a and 371b corresponding to the respective tabs, and an opening 375 for injecting the electrolytic solution.
  • An electrolytic solution can be injected from the opening 375 by the electrolytic solution injection means 376 .
  • a wound type secondary battery can be obtained according to the above steps.
  • FIG. 6 illustrates a manufacturing process of a laminated secondary battery having steps S104, S121, S122, S130, S132, S133, and the like.
  • a plurality of positive electrodes 340 are obtained by cutting the roll-shaped positive electrode 339 or the like shown in FIG. 4 into predetermined sizes.
  • Each of the plurality of positive electrodes 340 can be cut to have a region of tabs 342a.
  • a plurality of negative electrodes 341 are prepared in the same manner as the positive electrodes.
  • the negative electrode 341 can also be obtained by cutting a roll-shaped negative electrode into a predetermined size.
  • Anode 341 can be cut to have tab 342b.
  • a separator 397 positioned between the positive electrode and the negative electrode is prepared and laminated.
  • the positive electrodes 340 are stacked so that the positions of the tabs 342a are aligned.
  • the negative electrodes 341 are stacked so that the tabs 342b are aligned.
  • An electrode 343a may be attached to the stacked tab 342a, and an electrode 343b may be attached to the stacked tab 342b.
  • the laminated positive electrode 340, separator 397, and negative electrode 341 are enclosed in an exterior body 399, and the periphery of the exterior body 399 is sealed. At least one side of the exterior body 399 is preferably sealed after the electrolyte is injected.
  • a wound laminated secondary battery can be obtained.
  • step S135 shown in FIG. 3 the secondary battery is aged.
  • the aging condition it is stored in a constant temperature bath at 40° C. or higher and 60° C. or lower for at least one day. This is sometimes referred to as a first aging process.
  • the voltage in the range where the SOC (State Of Charge) of the secondary battery is 50% or more and 100% or less (for example, 4.3 V) is set as the upper limit voltage
  • the voltage in the range where the SOC is 0% or more and 20% or less (for example, 2 .5V) as the lower limit voltage
  • the cycle test is performed 1 to 5 times, preferably 3 or 4 times. This is sometimes referred to as a second aging process.
  • the aging process only the first aging process, only the second aging process, or the second aging process is performed following the first aging process.
  • An appropriate coating can be formed on the negative electrode by the first aging treatment or the second aging treatment. Further, it is preferable to provide an opening in a part of the exterior body in order to remove unnecessary gas or the like generated by the first aging treatment or the second aging treatment.
  • a secondary battery that is one embodiment of the present invention can be manufactured according to the steps described above.
  • a secondary battery that is one embodiment of the present invention can suppress defects and improve cycle characteristics.
  • This embodiment can be used in combination with other embodiments.
  • Step S11 a lithium source (denoted as Li source in the figure) and a transition metal source (denoted as M source in the figure) are prepared.
  • a lithium source (Li source) and a transition metal source (M source) are sometimes referred to as starting materials.
  • the lithium source it is preferable to use a compound containing lithium.
  • a compound containing lithium for example, lithium carbonate, lithium hydroxide, lithium nitrate, lithium fluoride, or the like can be used. It is preferable that the lithium source has a high purity, and for example, a material with a purity of 99.99% or higher is preferably used.
  • the transition metal can be selected from elements listed in Groups 3 to 11 of the periodic table, and for example, at least one or more of manganese, cobalt, and nickel is used.
  • the transition metal only cobalt is used, only nickel is used, two kinds of cobalt and manganese are used, two kinds of cobalt and nickel are used, or three kinds of cobalt, manganese and nickel are used. be.
  • the resulting positive electrode active material has lithium cobalt oxide (LCO), and when cobalt, manganese, and nickel are used, the resulting positive electrode active material is nickel-cobalt-lithium manganate (NCM ).
  • the two or more transition metal sources when two or more transition metal sources are used, it is preferable to prepare the two or more transition metal sources at a ratio (mixing ratio) such that the two or more transition metal sources can have a layered rock salt type crystal structure.
  • the transition metal source it is preferable to use a compound containing the transition metal.
  • oxides or hydroxides of the metals exemplified as the transition metals can be used.
  • Cobalt oxide, cobalt hydroxide, or the like can be used as the cobalt source.
  • Manganese oxide, manganese hydroxide, or the like can be used as a manganese source.
  • nickel source nickel oxide, nickel hydroxide, or the like can be used.
  • Aluminum oxide, aluminum hydroxide, or the like can be used as long as it is not a transition metal but is an aluminum source.
  • the transition metal source preferably has a high purity, for example, a purity of 3N (99.9%) or higher, preferably 4N (99.99%) or higher, more preferably 4N5 (99.995%) or higher, further preferably 5N ( 99.999%) or higher is preferably used.
  • Impurities in the positive electrode active material can be controlled by using a high-purity material. As a result, the capacity of the secondary battery is increased and the reliability of the secondary battery is improved.
  • the transition metal source be highly crystalline, eg, have single crystal grains.
  • TEM transmission electron microscope
  • STEM scanning transmission electron microscope
  • HAADF-STEM high angle scattering annular dark field scanning transmission electron microscope
  • ABF-STEM annular dark field scanning transmission electron microscope
  • XRD X-ray diffraction
  • the method for evaluating the crystallinity described above can be applied not only to the transition metal source but also to the evaluation of other crystallinity.
  • Step S12 the lithium source and the transition metal source are pulverized and mixed to produce a mixed material (sometimes referred to as a mixture). Grinding and mixing can be dry or wet. The wet method is preferred because it can be pulverized into smaller pieces. Prepare a solvent if the method is wet. Examples of solvents that can be used include ketones such as acetone, alcohols such as ethanol and isopropanol, ethers, dioxane, acetonitrile, N-methyl-2-pyrrolidone (NMP), and the like. It is more preferable to use an aprotic solvent that is less likely to react with lithium.
  • solvents that can be used include ketones such as acetone, alcohols such as ethanol and isopropanol, ethers, dioxane, acetonitrile, N-methyl-2-pyrrolidone (NMP), and the like. It is more preferable to use an aprotic solvent that is less likely to react with lithium.
  • dehydrated acetone with a purity of 99.5% or more is used as a solvent. It is preferable to mix the lithium source and the transition metal source with dehydrated acetone with a purity of 99.5% or more and with a water content of 10 ppm or less, followed by pulverization and mixing. By using dehydrated acetone with the above purity, possible impurities can be reduced.
  • a ball mill, a bead mill, or the like can be used as means for mixing.
  • a ball mill it is preferable to use alumina balls or zirconia balls as grinding media. Zirconia balls are preferable because they emit less impurities.
  • the peripheral speed should be 100 mm/s or more and 2000 mm/s or less in order to suppress contamination from the media. In the present embodiment, mixing is performed at a peripheral speed of 838 mm/s (400 rpm of rotation, 40 mm of ball mill diameter).
  • Step S13 the mixed material is heated.
  • the heating temperature is preferably 800°C or higher and 1100°C or lower, more preferably 900°C or higher and 1000°C or lower, and still more preferably about 950°C. If the temperature is too low, decomposition and melting of the lithium source and transition metal source may be insufficient. On the other hand, if the temperature is too high, lithium may evaporate or sublimate from the lithium source and/or the metal used as the transition metal source may be excessively reduced, resulting in defects in the mixed material. For example, when cobalt is used as a transition metal, excessive reduction may cause cobalt to change from trivalent to divalent, thereby inducing oxygen defects and the like in the mixed material.
  • the heating time is preferably 1 hour or more and 100 hours or less, preferably 2 hours or more and 20 hours or less.
  • the heating rate is preferably 80° C./h or more and 250° C./h or less, although it depends on the reaching temperature of the heating temperature. For example, when heating at 1000° C. for 10 hours, the temperature should be raised at 200° C./h.
  • the heating atmosphere is preferably an atmosphere with little water such as dry air, for example, an atmosphere with a dew point of -50°C or less, more preferably -80°C or less. In this embodiment mode, heating is performed in an atmosphere with a dew point of -93°C. Also, in order to suppress impurities that may be mixed into the mixed material, the concentrations of impurities such as CH 4 , CO, CO 2 and H 2 in the heating atmosphere should each be 5 ppb (parts per billion) or less.
  • An atmosphere containing oxygen is preferable as the heating atmosphere.
  • the heating atmosphere there is a method of continuously introducing dry air into the reaction chamber.
  • the flow rate of dry air is preferably 10 L/min.
  • O2 flow The process in which oxygen continues to be introduced into the reaction chamber and is flowing through the reaction chamber.
  • the heating atmosphere is an atmosphere containing oxygen
  • a method that does not flow may be used.
  • the reaction chamber may be decompressed and then filled with oxygen to prevent the oxygen from entering and exiting the reaction chamber. This is sometimes referred to as O 2 purge.
  • the pressure in the reaction chamber reduced to -970 hPa may be filled with oxygen until the pressure reaches 50 hPa.
  • Cooling after heating may be natural cooling, but it is preferable that the cooling time from the specified temperature to room temperature is within 10 hours or more and 50 hours or less. However, cooling to room temperature is not necessarily required, and cooling to a temperature that the next step allows is sufficient.
  • Heating in this step may be heating by a rotary kiln or a roller hearth kiln. Heating by a rotary kiln can be performed while stirring in either a continuous system or a batch system.
  • the crucible used for heating is preferably an aluminum oxide (referred to as alumina) crucible.
  • Alumina crucible is a material that does not easily release impurities. In this embodiment, an alumina crucible with a purity of 99.9% is used. It is preferable to place a lid on the crucible and heat it. Volatilization or sublimation of the material can be prevented.
  • step S13 After the heating is finished, it may be pulverized or pulverized and sieved as necessary. When recovering the material after heating, it may be recovered after being moved from the crucible to a mortar. In addition, it is preferable to use an alumina mortar as the mortar.
  • Alumina mortar is a material that does not easily release impurities. Specifically, an alumina mortar with a purity of 90% or higher, preferably 99% or higher is used. Note that the same heating conditions as in step S13 can be applied to the later-described heating process other than step S13.
  • a complex oxide (LiMO 2 ) having a transition metal can be obtained in step S14 shown in FIG. 7A.
  • cobalt is used as the transition metal, it is called a cobalt-containing composite oxide and represented by LiCoO 2 .
  • steps S11 to S14 an example of producing the composite oxide by the solid-phase method is shown, but the composite oxide may be produced by the coprecipitation method. Alternatively, the composite oxide may be produced by a hydrothermal method.
  • step S15 the composite oxide is heated. Since the composite oxide is first heated, the heating in step S15 may be called initial heating. After initial heating, the surface of the composite oxide becomes smooth.
  • smooth surface means that the surface of the composite oxide has few irregularities, the composite oxide is rounded as a whole, and the corners are rounded. Furthermore, a state in which there are few foreign substances adhering to the surface of the composite oxide is called smooth. Foreign matter is considered to cause unevenness, and it is preferable not to adhere to the surface of the composite oxide.
  • initial heating can reduce or suppress deterioration after charging and discharging.
  • Initial heating to smooth the surface does not require a lithium source.
  • the initial heating for smoothing the surface does not require the provision of an additive element source.
  • the initial heating to smooth the surface does not require a fluxing agent.
  • Initial heating is performed before step S20 described below, and is sometimes called preheating or pretreatment.
  • Impurities may be mixed in the lithium source and/or transition metal source prepared in step S11 or the like, but the impurities can be reduced from the composite oxide completed in step 14 by initial heating.
  • the heating conditions in this step may be any conditions as long as the surface of the composite oxide becomes smooth.
  • the heating conditions described in step S13 can be selected and implemented.
  • the heating temperature in this step should be lower than the temperature in step S13 in order to maintain the crystal structure of the composite oxide.
  • the heating time in this step is preferably shorter than the time in step S13 in order to maintain the crystal structure of the composite oxide.
  • the heating conditions in step S15 may be a temperature of 700° C. or higher and 1000° C. or lower, and heating for 2 hours or longer.
  • Heating in step S13 may cause a temperature difference between the surface and the inside of the composite oxide. Differences in temperature can induce differential shrinkage. It is also considered that the difference in shrinkage occurs due to the difference in fluidity between the surface and the inside due to the temperature difference.
  • the energy associated with the differential shrinkage gives differential internal stress to the composite oxide.
  • the difference in internal stress is also called strain, and the energy is sometimes called strain energy. It is considered that the internal stress is removed or relaxed by the initial heating in step S15, and in other words, the strain energy is homogenized by the initial heating in step S15. When the strain energy is homogenized, the strain in the composite oxide is removed or relaxed. Therefore, the surface of the composite oxide may become smooth after step S15.
  • the smoothness of the surface is also referred to as the improved surface. In other words, after step S15, the shrinkage difference generated in the composite oxide is removed or alleviated, and the surface of the composite oxide becomes smooth.
  • the differential shrinkage may cause micro-shifts, such as crystal shifts, in the composite oxide.
  • Heating in step S15 may be performed in order to reduce the deviation. Through this step, it is possible to uniform the misalignment of the composite oxide. If the deviation is made uniform, the surface of the composite oxide may become smooth. It is also called that the crystal grains are aligned. In other words, it is thought that after step S15, the deviation of crystals and the like generated in the composite oxide is removed or relaxed, and the surface of the composite oxide becomes smooth.
  • a complex oxide having a smooth surface can be said to have a surface roughness of at least 10 nm or less when surface irregularity information is quantified from measurement data in one section of the complex oxide.
  • One cross section is a cross section obtained, for example, when observing with a STEM (Scanning Transmission Electron Microscope).
  • step S14 a composite oxide containing lithium synthesized in advance and a transition metal may be used. In this case, steps S11 to S13 can be omitted.
  • step S15 By performing step S15 on a complex oxide synthesized in advance, a complex oxide with a smooth surface can be obtained.
  • initial heating may reduce the amount of lithium in the composite oxide.
  • Lithium with reduced additive elements which will be described in the next step S20 and the like, may easily enter the composite oxide.
  • the initial heating may be omitted.
  • the initial heating can be omitted if the composite oxide is sufficiently smooth.
  • the additive element X may be added to the composite oxide having a smooth surface within the range where a layered rock salt type crystal structure can be obtained.
  • the additive element X can be added evenly. Therefore, it is preferable to add the additional elements after the initial heating.
  • the step of adding the additive element X will be described with reference to FIGS. 7B and 7C.
  • step S21 shown in FIG. 7B an additive element source (X source) to be added to the composite oxide is prepared.
  • X source an additive element source
  • an Mg source and an F source are prepared as X sources.
  • a lithium source may be prepared together with the additive element source.
  • the additive element X includes nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, sulfur, phosphorus, boron, and arsenic can be used.
  • As the additional element X one or more elements selected from bromine and beryllium can be used. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the additive elements described above.
  • the additive element source can be called a magnesium source.
  • Magnesium fluoride, magnesium oxide, magnesium hydroxide, magnesium carbonate, or the like can be used as the magnesium source.
  • the additive element source can be called a fluorine source.
  • the fluorine source include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), aluminum fluoride (AlF 3 ), titanium fluoride (TiF 4 ), cobalt fluoride (CoF 2 , CoF 3 ) and fluorine.
  • lithium fluoride is preferable because it has a relatively low melting point of 848° C. and is easily melted in a heating step to be described later.
  • Magnesium fluoride can be used as both a fluorine source and a magnesium source. Lithium fluoride can also be used as a lithium source. Another lithium source that can be used in step S21 is lithium carbonate.
  • the fluorine source may also be gaseous, such as fluorine ( F2), carbon fluoride, sulfur fluoride, or oxygen fluoride ( OF2 , O2F2 , O3F2 , O4F2 , O5F2 , O 6 F 2 , O 2 F) or the like may be used and mixed in the atmosphere in the heating step described later. Also, a plurality of fluorine sources as described above may be used.
  • lithium fluoride (LiF) is prepared as a fluorine source
  • magnesium fluoride (MgF 2 ) is prepared as a fluorine source and a magnesium source.
  • LiF:MgF 2 65:35 (molar ratio)
  • the effect of lowering the melting point is maximized.
  • the amount of lithium fluoride increases, there is a concern that the amount of lithium becomes excessive and the cycle characteristics deteriorate.
  • the term “near” means a value larger than 0.9 times and smaller than 1.1 times the value.
  • step S22 shown in FIG. 7B the magnesium source and the fluorine source are pulverized and mixed. This step can be performed by selecting from the pulverization and mixing conditions described in step S12.
  • a heating step may be performed after step S22, if necessary.
  • the heating process after step S22 can be performed by selecting from the heating conditions described in step S13.
  • the heating time after step S22 is preferably 2 hours or longer, and the heating temperature is preferably 800° C. or higher and 1100° C. or lower.
  • step S23 shown in FIG. 7B the pulverized and mixed material can be collected to obtain an additive element source (X source).
  • X source additive element source
  • the additive element source shown in step S23 is manufactured from a plurality of starting materials and can be called a mixed material or a mixture.
  • the median diameter (D50) is preferably 600 nm or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less. Even when one type of material is used as the additive element source (X source), the median diameter (D50) is preferably 600 nm or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the mixture when mixed with the composite oxide in step S14 in a later step, the mixture uniformly adheres to the surface of the composite oxide. easy to let It is preferable that the mixture is uniformly adhered to the surface of the composite oxide, because fluorine and magnesium are easily distributed or diffused uniformly in the surface layer of the composite oxide after heating. A region in which fluorine and magnesium are distributed can also be called a surface layer portion. It is not preferable if there is a region containing no fluorine or magnesium in the surface layer. Although fluorine is used in the explanation, fluorine may be chlorine, and it can be read as halogen as containing these.
  • Step S21 A process different from that in FIG. 7B will be described with reference to FIG. 7C.
  • step S21 shown in FIG. 7C four types of additive element sources to be added to the composite oxide are prepared. That is, FIG. 7C differs from FIG. 7B in the type of additive element source.
  • a lithium source may be prepared in combination with the additive element source.
  • a magnesium source Mg source
  • a fluorine source F source
  • a nickel source Ni source
  • an aluminum source Al source
  • the magnesium source and the fluorine source can be selected from the compounds and the like described with reference to FIG. 7B.
  • Nickel oxide, nickel hydroxide, or the like can be used as the nickel source.
  • Aluminum oxide, aluminum hydroxide, or the like can be used as the aluminum source.
  • Steps S22 and S23 shown in FIG. 7C are the same as the steps described in FIG. 7B.
  • step S31 shown in FIG. 7A the composite oxide and the additive element source (X source) are mixed.
  • the mixing in step S31 is preferably performed under milder conditions than the mixing in step S12 so as not to destroy the composite oxide.
  • the number of revolutions is smaller or the time is shorter than the mixing in step S12.
  • the conditions for the dry method are milder than those for the wet method.
  • a ball mill, bead mill, or the like can be used for mixing.
  • zirconia balls it is preferable to use, for example, zirconia balls as media.
  • dry mixing is performed at 150 rpm for 1 hour using a ball mill using zirconia balls with a diameter of 1 mm.
  • the mixing is performed in a dry room with a dew point of -100°C or higher and -10°C or lower.
  • step S32 of FIG. 7A the mixed materials are recovered to obtain a mixture 903.
  • FIG. When recovering, it may be pulverized as necessary, and sieving may be performed after pulverization.
  • a method of adding lithium fluoride as a fluorine source and magnesium fluoride as a magnesium source to the composite oxide after the initial heating is described.
  • the invention is not limited to the above method.
  • a magnesium source, a fluorine source, and the like can be added to the lithium source and the transition metal source at the stage of step S11, that is, at the stage of the starting material of the composite oxide.
  • heating is performed in step S13 to obtain LiMO 2 doped with magnesium and fluorine.
  • Lithium cobaltate to which magnesium and fluorine are added in advance may also be used. If lithium cobaltate to which magnesium and fluorine are added is used, steps S11 to S32 and step S20 can be omitted. It can be said that it is a simple and highly productive method.
  • a magnesium source and a fluorine source or a magnesium source, a fluorine source, a nickel source, and an aluminum source may be further added according to step S20 to lithium cobalt oxide to which magnesium and fluorine have been added in advance.
  • step S33 shown in FIG. 7A the mixture 903 is heated.
  • the heating conditions described in step S13 can be selected and implemented.
  • the heating time in step S33 is preferably two hours or longer.
  • the heating temperature is supplemented here.
  • the lower limit of the heating temperature in step S33 needs to be higher than or equal to the temperature at which the reaction between the composite oxide (LiMO 2 ) and the additive element source proceeds.
  • the temperature at which the reaction proceeds may be any temperature at which interdiffusion of elements possessed by LiMO 2 and the additive element source occurs, and may be lower than the melting temperature of these materials. Taking oxides as an example, it is known that solid-phase diffusion occurs from 0.757 times the melting temperature Tm (this is referred to as the Tammann temperature Td ). Therefore, the heating temperature in step S33 may be 500° C. or higher.
  • the reaction proceeds more easily.
  • the eutectic point of LiF and MgF2 is around 742°C, so the lower limit of the heating temperature in step S33 is preferably 742°C or higher.
  • a mixture 903 obtained by mixing LiCoO 2 :LiF:MgF 2 100:0.33:1 (molar ratio) has an endothermic peak near 830° C. in differential scanning calorimetry (DSC measurement). is observed. Therefore, the lower limit of the heating temperature is more preferably 830° C. or higher.
  • the upper limit of the heating temperature is less than the decomposition temperature of LiMO 2 (the decomposition temperature of LiCoO 2 is 1130° C.). At temperatures near the decomposition temperature, there is concern that LiMO 2 will decompose, albeit in a very small amount. Therefore, it is more preferably 1000° C. or lower, more preferably 950° C. or lower, and even more preferably 900° C. or lower.
  • the heating temperature in step S33 is preferably 500° C. or higher and 1130° C. or lower, more preferably 500° C. or higher and 1000° C. or lower, even more preferably 500° C. or higher and 950° C. or lower, and further preferably 500° C. or higher and 900° C. or lower. preferable.
  • the temperature is preferably 742°C or higher and 1130°C or lower, more preferably 742°C or higher and 1000°C or lower, even more preferably 742°C or higher and 950°C or lower, and even more preferably 742°C or higher and 900°C or lower.
  • the temperature is preferably 800°C or higher and 1100°C or lower, more preferably 830°C or higher and 1130°C or lower, even more preferably 830°C or higher and 1000°C or lower, even more preferably 830°C or higher and 950°C or lower, even more preferably 830°C or higher and 900°C or lower.
  • the heating temperature in step S33 is preferably lower than that in step S13.
  • some materials such as LiF, which is a fluorine source, may function as a flux.
  • the heating temperature can be lowered to below the decomposition temperature of the composite oxide (LiMO 2 ), for example, 742 ° C. or higher and 950 ° C. or lower, and the additive element X including magnesium is distributed in the surface layer, and good characteristics are obtained.
  • a positive electrode active material can be produced.
  • LiF has a lower specific gravity than oxygen in a gaseous state
  • LiF may volatilize or sublimate by heating, and the volatilization or sublimation reduces LiF in the mixture 903 .
  • the function as a flux is weakened. Therefore, it is necessary to heat while suppressing volatilization or sublimation of LiF.
  • LiF is not used as a fluorine source or the like, there is a possibility that Li on the surface of LiMO 2 reacts with F of the fluorine source to generate LiF, which volatilizes or sublimates. Therefore, even if a fluoride having a higher melting point than LiF is used, it is necessary to similarly suppress volatilization or sublimation.
  • the mixture 903 in an atmosphere containing LiF, that is, to heat the mixture 903 in a state where the partial pressure of LiF in the heating furnace is high.
  • Such heating can suppress volatilization or sublimation of LiF in the mixture 903 .
  • the heating in this step is preferably performed so that the mixtures 903 do not adhere to each other. If the mixture 903 adheres to each other during heating, the contact area with oxygen in the atmosphere is reduced, and the diffusion path of the additive element (eg, fluorine) is blocked. distribution may deteriorate.
  • the additive element eg, fluorine
  • the additive element for example, fluorine
  • a positive electrode active material that is smooth and has less unevenness can be obtained. Therefore, in order for the surface of the mixture that has undergone heating in step S15 to maintain a smooth state in this step or become even smoother, it is better not to stick.
  • heating by a rotary kiln it is preferable to heat by controlling the flow rate of the oxygen-containing atmosphere in the kiln. For example, it is preferable to reduce the flow rate of the oxygen-containing atmosphere, or not to flow the oxygen after introducing the oxygen atmosphere into the kiln, that is, to purge the kiln with O2 . That is, flowing oxygen can evaporate or sublimate the fluorine source, and an O2 purge is preferred to maintain surface smoothness.
  • the mixture 903 can be heated in an atmosphere containing LiF, for example, by placing a lid on the container containing the mixture 903 .
  • the heating time in step S33 will be supplemented.
  • the heating time varies depending on conditions such as the heating temperature, the size of LiMO 2 in step S14, and the composition. For smaller particle sizes, lower temperatures or shorter times may be preferred than for larger particle sizes.
  • the heating temperature in step S33 is preferably 600° C. or higher and 950° C. or lower, for example.
  • the heating time in step S33 is, for example, preferably 3 hours or longer, more preferably 10 hours or longer, and even more preferably 60 hours or longer.
  • the cooling time after the heating in step S33 is, for example, 10 hours or more and 50 hours or less.
  • the heating temperature in step S33 is preferably 600° C. or higher and 950° C. or lower.
  • the heating time in step S33 is preferably, for example, 1 hour or more and 10 hours or less, more preferably about 2 hours.
  • the cooling time after the heating in step S33 is, for example, 10 hours or more and 50 hours or less.
  • step S34 shown in FIG. 7A the heated material is collected and, if necessary, pulverized to obtain positive electrode active material 100.
  • FIG. At this time, it is preferable to further screen the collected particles.
  • the positive electrode active material 100 of one embodiment of the present invention can be manufactured.
  • the positive electrode active material of one embodiment of the present invention has a smooth surface.
  • steps S11 to S15 are performed in the same manner as in FIG. 7A to prepare a composite oxide (LiMO 2 ) with a smooth surface.
  • Step S20a> the additive element X may be added to the composite oxide to the extent that the layered rock salt type crystal structure can be obtained. The steps are described with reference also to FIG. 9A.
  • a first additive element source (X1 source) is prepared.
  • the X1 source can be selected from the additional elements X described in step S21 shown in FIG. 7B and used.
  • the additive element X1 one or more selected from magnesium, fluorine, and calcium can be preferably used.
  • FIG. 9A illustrates a case where a magnesium source (Mg source) and a fluorine source (F source) are used as X1 sources.
  • Steps S21 to S23 shown in FIG. 9A can be manufactured under the same conditions as steps S21 to S23 shown in FIG. 7B.
  • an additive element source X1 source
  • steps S31 to S33 shown in FIG. 8 can be manufactured by the same processes as steps S31 to S33 shown in FIG. 7A.
  • Step S34a> the material heated in step S33 is recovered to produce a composite oxide containing the additive element X1. It is also called a second composite oxide to distinguish it from the composite oxide in step S14.
  • Step S40 In step S40 shown in FIG. 8, a second additive element source (X2 source) is added. Description will also be made with reference to FIGS. 9B and 9C.
  • a second additive element source (X2 source) is prepared.
  • X2 source it is possible to select and use from the additional elements X described in step S21 shown in FIG. 7B.
  • the additive element X2 one or more selected from nickel, titanium, boron, zirconium, and aluminum can be suitably used.
  • FIG. 9B illustrates a case where nickel and aluminum are used as the additive element X2.
  • Steps S41 to S43 shown in FIG. 9B can be manufactured under the same conditions as steps S21 to S23 shown in FIG. 7B.
  • the additive element source (X2) can be obtained in step S43.
  • FIG. 9C shows a modification using FIG. 9B.
  • a nickel source (Ni source) and an aluminum source (Al source) are prepared in step S41 shown in FIG. 9C, and pulverized independently in step S42a.
  • the step of FIG. 9C differs from FIG. 9B in that the additive elements are independently pulverized in step S42a.
  • step S43 a plurality of second additive element sources are prepared.
  • steps S51 to S53 shown in FIG. 8 can be manufactured under the same conditions as steps S31 to S34 shown in FIG. 7A.
  • the mixture obtained at step S52 be the mixture 904.
  • FIG. The conditions of step S53 regarding the heating process may be lower temperature and shorter time than those of step S33.
  • the positive electrode active material 100 of one embodiment of the present invention can be manufactured.
  • the positive electrode active material of one embodiment of the present invention has a smooth surface.
  • the additive element to the composite oxide is introduced separately into a first additive element X1 and a second additive element X2.
  • the profile of each additive element in the depth direction can be changed. For example, it is possible to profile the first additive element so that the concentration is higher in the surface layer than in the inside, and to profile the second additive element so that the concentration is higher inside than in the surface layer. .
  • a positive electrode active material with a smooth surface can be obtained through the initial heating described in this embodiment.
  • the initial heating shown in this embodiment mode is performed on the composite oxide. Therefore, it is preferable that the initial heating is performed at a temperature lower than the heating temperature for obtaining the composite oxide and for a heating time shorter than the heating time for obtaining the composite oxide.
  • the addition step can be divided into two or more times. It is preferable to follow such a process order because the smoothness of the surface obtained by the initial heating is maintained.
  • the composite oxide contains cobalt as a transition metal, it can be read as a composite oxide containing cobalt.
  • This embodiment can be used in combination with other embodiments.
  • FIG. 10A is a cross-sectional view of a positive electrode active material 100 that is one embodiment of the present invention. A state immediately after manufacturing according to the above embodiment and at least before pressing. Therefore, cracks, pits and closed cracks are omitted.
  • FIGS. 10B1 and 10B2 show enlarged views of the vicinity of AB in FIG. 10A.
  • FIGS. 10C1 and 10C2 show enlarged views of the vicinity of CD in FIG. 10A.
  • the positive electrode active material 100 has a surface layer portion 100a and an inner portion 100b.
  • the dashed line indicates the boundary between the surface layer portion 100a and the inner portion 100b.
  • the surface layer portion 100a refers to a region of up to 10 nm from the surface of the positive electrode active material toward the inside.
  • the surface may also include surfaces newly generated by cracks.
  • the surface layer portion 100a may be referred to as a near-surface region, a near-surface region, or a shell.
  • a region deeper than the surface layer portion 100a of the positive electrode active material is called an inner portion 100b.
  • Interior 100b may be referred to as an interior region or core.
  • part of the grain boundary 101 is indicated by a dashed line.
  • the concentration of the additive element in the surface layer portion 100a is higher than that in the inner portion 100b. Further, it is preferable that the additive element has a concentration gradient. Further, when there are a plurality of additive elements, it is preferable that the depth of the concentration peak from the surface differs depending on the additive element.
  • additive element A preferably has a concentration gradient that increases from the interior 100b toward the surface, as shown by the gradation in FIG. 10B1.
  • additive element A that preferably has such a concentration gradient include magnesium, fluorine, titanium, silicon, phosphorus, boron and calcium.
  • Another additive element B preferably has a concentration gradient and a concentration peak in a region deeper than that in FIG. 10B1, as shown by the gradation in FIG. 10B2.
  • the concentration peak may exist in the surface layer portion 100a or may be deeper than the surface layer portion 100a. It is preferable to have a concentration peak in a region other than the outermost layer. For example, it preferably has a peak in a region of 5 nm or more and 30 nm or less from the surface toward the inside.
  • Examples of additive element B that preferably has such a concentration gradient include aluminum and manganese.
  • the crystal structure changes continuously from the inside 100b toward the surface due to the concentration gradient of the additive element as described above.
  • the transition metal M of the positive electrode active material 100 When 75 atomic % or more, preferably 90 atomic % or more, and more preferably 95 atomic % or more of cobalt is used as the transition metal M of the positive electrode active material 100, synthesis is relatively easy, handling is easy, and excellent cycle characteristics are obtained. Many advantages. Further, if nickel is contained in addition to cobalt within the above range as the transition metal M, the deviation of the layered structure composed of octahedrons of cobalt and oxygen may be suppressed. Therefore, the crystal structure may become more stable particularly in a charged state at a high temperature, which is preferable.
  • transition metal M does not necessarily have to contain manganese.
  • the weight of manganese contained in positive electrode active material 100 is preferably, for example, 600 ppm or less, more preferably 100 ppm or less.
  • the raw material becomes cheaper than when cobalt is abundant. It is preferable because it may increase the discharge capacity per weight.
  • transition metal M does not necessarily contain nickel.
  • the additive element included in the positive electrode active material 100 can be selected from those shown in the above embodiment.
  • the positive electrode active material 100 of one embodiment of the present invention even if lithium is released from the positive electrode active material 100 by charging, the layered structure composed of the transition metal M and the octahedron of oxygen is not broken, so that the surface layer portion has a high concentration of the additive element. 100a, that is, the outer periphery of the grain is reinforced.
  • the concentration gradient of the additive element is the same throughout the surface layer portion 100 a of the positive electrode active material 100 . It can be said that it is preferable that the reinforcement derived from the high impurity concentration exists uniformly in the surface layer portion 100a. Even if a part of the surface layer portion 100a is reinforced, if there is an unreinforced portion, stress may concentrate on the unreinforced portion. Concentration of stress on a portion of the particles may cause defects, leading to deterioration in cycle characteristics.
  • the additive element does not necessarily have to have the same concentration gradient in the entire surface layer portion 100 a of the positive electrode active material 100 .
  • the concentration gradients may be different as shown in FIGS. 10C1 and 10C2.
  • the (001) oriented surface may have a different distribution of additive elements than other surfaces.
  • the distribution of at least one of the additive element A and the additive element B may remain shallower than in other orientations.
  • the (001) oriented surface and its surface layer portion 100a may have a lower concentration of at least one of the additive element A and the additive element B compared to other orientations.
  • at least one of the additive element A and the additive element B on the (001) oriented surface and its surface layer portion 100a may be below the detection limit.
  • the (001) plane on which the MO 2 layer exists is relatively stable, since the MO 2 layer consisting of transition metal M and oxygen octahedrons is relatively stable. No lithium ion diffusion path is exposed on the (001) plane.
  • the surface other than the (001) orientation and the surface layer portion 100a are important regions for maintaining the diffusion path of lithium ions, and at the same time, they are the regions where lithium ions are first desorbed, so they tend to be unstable. Therefore, it is preferable to reinforce the surface other than the (001) orientation and the surface layer portion 100a in order to maintain the crystal structure of the positive electrode active material 100 as a whole.
  • the manufacturing method in which the additive element is mixed later and heated is mainly because the additive element spreads through the diffusion path of lithium ions.
  • (001) planes and the distribution of the additive element on the surface layer portion 100a thereof can easily be made within a preferable range.
  • the surface of the positive electrode active material 100 is smooth and has few irregularities.
  • slip is likely to occur in a plane parallel to the (001) crystal plane, such as a plane in which lithium is arranged.
  • slip may occur when the positive electrode mixture is pressed.
  • the (001) plane is horizontal as shown in FIG. 11A, it may be deformed by slipping horizontally as indicated by arrows in FIG. 11B through a process such as pressing. Multiple presses may be performed.
  • FIGS. 11C1 and 11C2 show enlarged views of the vicinity of E-F. 11C1 and 11C2, unlike FIGS. 10B1 to 10C2, there is no gradation of additive element A and additive element B.
  • FIG. 11C1 and 11C2 show enlarged views of the vicinity of E-F. 11C1 and 11C2, unlike FIGS. 10B1 to 10C2, there is no gradation of additive element A and additive element B.
  • the newly generated surface and its surface layer portion 100a have (001) orientation.
  • the (001) plane does not expose the diffusion path of lithium ions and is relatively stable.
  • cations are arranged parallel to the (001) plane.
  • the luminance of the transition metal M having the highest atomic number among LiMO 2 is the highest. Therefore, in the HAADF-STEM image, the arrangement of atoms with high brightness can be considered as the arrangement of the transition metal M.
  • the repetition of this high-brightness array may also be referred to as crystal fringes or lattice fringes.
  • the crystal fringes or lattice fringes may be considered parallel to the (001) plane when the crystal structure is of the R-3m layered rock salt type.
  • the positive electrode active material 100 may have defects, and repeated charging and discharging may cause elution of the transition metal M, collapse of the crystal structure, cracking of the main body, desorption of oxygen, and the like. However, if the embedding portion 102 shown in FIG. 10A exists so as to embed them, the elution of the transition metal M can be suppressed. Therefore, the positive electrode active material 100 can have excellent reliability and cycle characteristics.
  • the positive electrode active material 100 may have a convex portion 103 as a region where the additive element is unevenly distributed.
  • the additive element included in the positive electrode active material 100 is excessive, it may adversely affect the insertion and extraction of lithium. Moreover, when used as a secondary battery, there is a risk of causing an increase in internal resistance, a decrease in discharge capacity, and the like. On the other hand, if it is insufficient, it may not be distributed over the entire surface layer portion 100a, and the effect of suppressing the deterioration of the crystal structure may be insufficient. As described above, the additive element needs to have an appropriate concentration in the positive electrode active material 100, but the adjustment is not easy.
  • the positive electrode active material 100 has a region where the additive element is unevenly distributed, part of the excess additive element is removed from the inside 100b of the positive electrode active material 100, and the additive element concentration is adjusted appropriately in the inside 100b. can be done.
  • This makes it possible to suppress an increase in internal resistance, a decrease in discharge capacity, and the like when used as a secondary battery.
  • the ability to suppress an increase in the internal resistance of a secondary battery is an extremely favorable characteristic particularly in high-rate charging/discharging, for example, charging/discharging at 2C or higher.
  • Magnesium which is one of the additive elements A, is divalent and is more stable at the lithium site than at the transition metal site in the layered rock salt type crystal structure, so it easily enters the lithium site.
  • the layered rock salt crystal structure can be easily maintained.
  • the presence of magnesium can suppress desorption of oxygen around magnesium when the charging depth is high.
  • it can be expected that the presence of magnesium increases the density of the positive electrode active material.
  • Magnesium is preferable because it does not adversely affect the insertion and extraction of lithium during charging and discharging if the concentration is appropriate. However, excess magnesium can adversely affect lithium insertion and extraction. Therefore, as will be described later, the surface layer portion 100a preferably has a higher concentration of the transition metal M than, for example, magnesium.
  • Aluminum which is one of the additive elements B, is trivalent and can exist at transition metal sites in the layered rock salt crystal structure. Aluminum can suppress the elution of surrounding cobalt. In addition, since aluminum has a strong bonding force with oxygen, desorption of oxygen around aluminum can be suppressed. Therefore, when aluminum is included as an additive element, the positive electrode active material 100 whose crystal structure does not easily collapse even after repeated charging and discharging can be obtained.
  • Fluorine is a monovalent anion, and if part of the oxygen in the surface layer portion 100a is substituted with fluorine, the lithium desorption energy is reduced. This is because the change in the valence of cobalt ions due to desorption of lithium changes from trivalent to tetravalent when fluorine is not present, and from divalent to trivalent when fluorine is present, resulting in different oxidation-reduction potentials. Therefore, it can be said that when a part of oxygen is substituted with fluorine in the surface layer portion 100a of the positive electrode active material 100, desorption and insertion of lithium ions in the vicinity of fluorine easily occur. Therefore, when used in a secondary battery, charge/discharge characteristics, rate characteristics, etc. are improved, which is preferable.
  • Titanium oxide is known to have superhydrophilic properties. Therefore, by using the positive electrode active material 100 including titanium oxide in the surface layer portion 100a, wettability to a highly polar solvent may be improved. When used as a secondary battery, the interface between the positive electrode active material 100 and the highly polar electrolyte solution is in good contact, and an increase in internal resistance may be suppressed.
  • a positive electrode active material of one embodiment of the present invention has a stable crystal structure even at high voltage. Since the crystal structure of the positive electrode active material is stable in a charged state, it is possible to suppress a decrease in discharge capacity due to repeated charging and discharging.
  • the short circuit of the secondary battery not only causes troubles in charging operation and/or discharging operation of the secondary battery, but also may cause heat generation and ignition.
  • the positive electrode active material 100 of one embodiment of the present invention suppresses short-circuit current even at high charging voltage. Therefore, a secondary battery having both high discharge capacity and safety can be obtained.
  • the concentration gradient of the additive element can be evaluated using, for example, energy dispersive X-ray spectroscopy (EDX), EPMA (electron probe microanalysis), or the like.
  • EDX energy dispersive X-ray spectroscopy
  • EPMA electron probe microanalysis
  • linear analysis measuring while linearly scanning and evaluating the distribution of the atomic concentration in the positive electrode active material particles.
  • linear analysis measuring while linearly scanning and evaluating the distribution of the atomic concentration in the positive electrode active material particles.
  • linear analysis the extraction of linear region data from EDX surface analysis is sometimes called line analysis.
  • measuring a certain area without scanning is called point analysis.
  • the concentration of additive elements in the surface layer portion 100a, the inner portion 100b, the vicinity of the crystal grain boundary 101, and the like of the positive electrode active material 100 can be quantitatively analyzed. Further, the concentration distribution and maximum value of additive elements can be analyzed by EDX-ray analysis.
  • the magnesium concentration peak of the surface layer portion 100a preferably exists within a depth of 3 nm from the surface of the positive electrode active material 100 toward the center. It is more preferably present up to a depth of 1 nm, and even more preferably up to a depth of 0.5 nm.
  • the distribution of fluorine preferably overlaps with the distribution of magnesium. Therefore, when EDX-ray analysis is performed, the fluorine concentration peak of the surface layer portion 100a preferably exists at a depth of 3 nm from the surface toward the center of the positive electrode active material 100, and more preferably at a depth of 1 nm. Preferably, it is more preferably present up to a depth of 0.5 nm.
  • the positive electrode active material 100 contains aluminum as an additive element, it is preferable that the distribution is slightly different from that of magnesium and fluorine as described above.
  • the magnesium concentration peak is closer to the surface than the aluminum concentration peak of the surface layer portion 100a.
  • the aluminum concentration peak preferably exists at a depth of 0.5 nm or more and 50 nm or less, more preferably 5 nm or more and 30 nm or less, from the surface toward the center of the positive electrode active material 100 .
  • it is preferably present at 0.5 nm or more and 30 nm or less.
  • the atomic ratio (I/M) of the additive element I and the transition metal M in the surface layer portion 100a is preferably 0.05 or more and 1.00 or less.
  • the additive element is titanium
  • the atomic ratio (Ti/M) between titanium and the transition metal M is preferably 0.05 or more and 0.4 or less, more preferably 0.1 or more and 0.3 or less.
  • the additive element is magnesium
  • the atomic ratio (Mg/M) between magnesium and the transition metal M is preferably 0.4 or more and 1.5 or less, more preferably 0.45 or more and 1.00 or less.
  • the impurity element is fluorine
  • the atomic ratio (F/M) between fluorine and the transition metal M is preferably 0.05 or more and 1.5 or less, more preferably 0.3 or more and 1.00 or less.
  • the surface of the positive electrode active material 100 in the EDX-ray analysis result can be estimated as follows, for example.
  • the surface is defined as the point at which the amount of an element uniformly present in the interior 100b of the positive electrode active material 100, such as oxygen or a transition metal M such as cobalt, is 1/2 of the amount detected in the interior 100b.
  • the positive electrode active material 100 is a composite oxide, it is preferable to estimate the surface using the detected amount of oxygen. Specifically, first, the average value O ave of the oxygen concentration is obtained from the region where the detected amount of oxygen in the interior 100b is stable. At this time, if oxygen O background , which is considered to be due to chemisorption or background, is detected in a region that can be clearly determined to be outside the surface, O background can be subtracted from the measured value to obtain the average oxygen concentration O ave . can. It can be estimated that the measurement point showing the value of 1/2 of this average value O ave , that is, the measurement value closest to 1/2 O ave , is the surface of the positive electrode active material.
  • the surface can also be estimated using the transition metal M included in the positive electrode active material 100 .
  • the detected amount of cobalt can be used to estimate the surface in the same manner as described above.
  • it can be similarly estimated using the sum of the detected amounts of a plurality of transition metals M.
  • the detected amount of the transition metal M is suitable for estimating the surface because it is less susceptible to chemical adsorption.
  • the atomic number ratio (I/M) between the additional element I and the transition metal M in the vicinity of the grain boundary 101 is preferably 0.020 or more and 0.50 or less. Furthermore, 0.025 or more and 0.30 or less are preferable. Furthermore, 0.030 or more and 0.20 or less are preferable. Alternatively, it is preferably 0.020 or more and 0.30 or less. Alternatively, it is preferably 0.020 or more and 0.20 or less. Alternatively, it is preferably 0.025 or more and 0.50 or less. Alternatively, it is preferably 0.025 or more and 0.20 or less. Alternatively, it is preferably 0.030 or more and 0.50 or less. Alternatively, it is preferably 0.030 or more and 0.30 or less.
  • the atomic ratio (Mg/Co) of magnesium and cobalt is preferably 0.020 or more and 0.50 or less.
  • 0.025 or more and 0.30 or less are preferable.
  • 0.030 or more and 0.20 or less are preferable.
  • it is preferably 0.020 or more and 0.30 or less.
  • it is preferably 0.020 or more and 0.20 or less.
  • it is preferably 0.025 or more and 0.50 or less.
  • it is preferably 0.025 or more and 0.20 or less.
  • it is preferably 0.030 or more and 0.50 or less.
  • the positive electrode active material 100 may have a film on at least part of the surface. It is preferable that the film is formed by depositing decomposition products of the electrolytic solution due to charging and discharging, for example. In particular, in the case of repeating charging with a high charging depth, it is expected that the positive electrode active material 100 has a film derived from the electrolytic solution on its surface, thereby improving the cycle test characteristics. This is for the reason of suppressing an increase in impedance on the surface of the positive electrode active material, suppressing elution of the transition metal M, or the like.
  • the coating preferably comprises carbon, oxygen and fluorine, for example.
  • a good quality film can be easily obtained. Therefore, a film containing at least one of boron, nitrogen, sulfur, and fluorine is preferable because it may be a good film. Moreover, the film does not have to cover all of the positive electrode active material 100 .
  • the number of magnesium atoms in the positive electrode active material of one embodiment of the present invention is preferably 0.001 to 0.1 times the number of atoms of the transition metal M, and more preferably more than 0.01 times and less than 0.04 times. Preferably, about 0.02 times is more preferable. Alternatively, it is preferably 0.001 times or more and less than 0.04. Alternatively, it is preferably 0.01 times or more and 0.1 times or less.
  • the concentration of magnesium shown here may be, for example, a value obtained by elemental analysis of the entire particle of the positive electrode active material using ICP-MS or the like, or may be a value of the raw material blending value in the manufacturing process of the positive electrode active material. may be based.
  • transition metals M including nickel and aluminum are preferably present on the cobalt sites, but a part of them may be present on the lithium sites. Also, magnesium is preferably present at the lithium site. Oxygen may be partially substituted with fluorine.
  • the discharge capacity of the positive electrode active material may decrease. As a factor for this, for example, the amount of lithium that contributes to charge/discharge decreases due to the entry of magnesium into the lithium sites. Excess magnesium may also generate magnesium compounds that do not contribute to charging and discharging.
  • the positive electrode active material of one embodiment of the present invention contains nickel as the metal Z in addition to magnesium, the discharge capacity per weight and per volume can be increased in some cases.
  • the positive electrode active material of one embodiment of the present invention includes aluminum as the metal Z, whereby the discharge capacity per weight and per volume can be increased in some cases.
  • the positive electrode active material of one embodiment of the present invention contains nickel and aluminum in addition to magnesium, the discharge capacity per weight and per volume can be increased in some cases.
  • the additive element included in the positive electrode active material 100 of one embodiment of the present invention is more preferably partially segregated at and near the grain boundaries 101 as shown in FIG. 10A.
  • the concentration of magnesium in the grain boundary 101 of the positive electrode active material 100 and its vicinity is higher than in other regions of the interior 100b. Also, it is preferable that the fluorine concentration in the grain boundary 101 and its vicinity is higher than that in other regions of the inner portion 100b.
  • the grain boundary 101 is one of planar defects. Therefore, like the surface of the positive electrode active material 100, it tends to become unstable and the crystal structure tends to start changing. Therefore, if the magnesium concentration at and near grain boundaries 101 is high, the change in crystal structure can be more effectively suppressed.
  • the magnesium concentration and the fluorine concentration at and near the grain boundary 101 are high, even if a crack occurs along the grain boundary 101, the magnesium concentration and the fluorine concentration increase near the surface caused by the crack. Therefore, the corrosion resistance to hydrofluoric acid can be improved even in the positive electrode active material after cracks have occurred.
  • the vicinity of the grain boundary 101 means a region from the grain boundary to about 10 nm.
  • the crystal grain boundary 101 means a plane with a change in the arrangement of atoms, and can be observed with an electron microscope image. Specifically, it refers to a portion where the angle formed by the repetition of bright lines and dark lines exceeds 5 degrees in an electron microscope image, or a portion where the crystal structure cannot be observed.
  • the median diameter (D50) is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less, and even more preferably 5 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 1 ⁇ m or more and 40 ⁇ m or less. Alternatively, it is preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • it is preferably 2 ⁇ m or more and 100 ⁇ m or less. Alternatively, it is preferably 2 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 5 ⁇ m or more and 100 ⁇ m or less. Alternatively, it is preferably 5 ⁇ m or more and 40 ⁇ m or less.
  • ⁇ XPS ⁇ X-ray photoelectron spectroscopy can analyze a region from the surface to a depth of about 2 to 8 nm (usually 5 nm or less). In the surface layer portion 100a, the concentration of each element up to the depth region can be quantitatively analyzed. Also, the bonding state of elements can be analyzed by narrow scan analysis. The quantitative accuracy of XPS is often about ⁇ 1 atomic %, and the detection limit is about 1 atomic % although it depends on the element.
  • the number of atoms of the additive element is preferably 1.6 to 6.0 times the number of atoms of the transition metal M, and 4.8 to 1.8 times the number of atoms of the transition metal M. Less than 0 times is more preferable.
  • the additive is magnesium and the transition metal M is cobalt
  • the number of magnesium atoms is preferably 1.6 to 6.0 times the number of cobalt atoms, more preferably 1.8 to less than 4.0 times.
  • the number of atoms of halogen such as fluorine is preferably 0.2 times or more and 6.0 times or less, more preferably 1.2 times or more and 4.0 times or less, the number of atoms of the transition metal M.
  • the take-out angle may be set to, for example, 45°.
  • it can be measured using the following apparatus and conditions.
  • the peak indicating the binding energy between fluorine and another element is preferably 682 eV or more and less than 685 eV, more preferably about 684.3 eV. .
  • This value is different from both the 685 eV, which is the binding energy of lithium fluoride, and the 686 eV, which is the binding energy of magnesium fluoride. That is, in the case where the positive electrode active material 100 of one embodiment of the present invention contains fluorine, it is preferably a bond other than lithium fluoride and magnesium fluoride.
  • the peak indicating the binding energy between magnesium and another element is preferably 1302 eV or more and less than 1304 eV, more preferably about 1303 eV. This value is different from 1305 eV, which is the binding energy of magnesium fluoride, and is close to the binding energy of magnesium oxide. That is, in the case where the positive electrode active material 100 of one embodiment of the present invention contains magnesium, it is preferably a bond other than magnesium fluoride.
  • Additive elements such as magnesium and aluminum, which are preferably abundantly present in the surface layer portion 100a, have concentrations measured by XPS or the like by ICP-MS (inductively coupled plasma mass spectrometry) or GD-MS (glow discharge mass spectrometry). It is preferably higher than the concentration measured by Etc.
  • magnesium and aluminum have a higher concentration in the surface layer portion 100a than in the inner portion 100b when the cross section is exposed by processing and the cross section is analyzed using TEM-EDX.
  • concentration of magnesium attenuates to 60% or less of the peak at a depth of 1 nm from the peak top.
  • the peak is attenuated to 30% or less at a point 2 nm deep from the peak top.
  • Processing can be performed by FIB (Focused Ion Beam), for example.
  • the number of magnesium atoms is preferably 0.4 to 1.5 times the number of cobalt atoms.
  • the atomic ratio Mg/Co of magnesium by ICP-MS analysis is preferably 0.001 or more and 0.06 or less.
  • nickel contained in the transition metal M is preferably distributed throughout the positive electrode active material 100 without being unevenly distributed in the surface layer portion 100a. However, this is not the case when there is a region where the additive element is unevenly distributed as described above.
  • the positive electrode active material 100 of one embodiment of the present invention preferably has a smooth surface with few unevenness.
  • a smooth surface with little unevenness is one of the factors indicating that the distribution of the additive element in the surface layer portion 100a is good.
  • Whether the surface is smooth and has few irregularities can be determined from, for example, a cross-sectional SEM image or a cross-sectional TEM image of the positive electrode active material 100, the specific surface area of the positive electrode active material 100, or the like.
  • This embodiment can be used in combination with other embodiments.
  • FIG. 12A shows a cross-sectional view of a positive electrode material mixture layer 571 applied on the current collector 550 .
  • the positive electrode mixture layer 571 has a positive electrode active material 561 .
  • the positive electrode mixture layer 571 preferably includes the positive electrode active materials 562 with different particle diameters because the electrode density can be improved.
  • the positive electrode active material 561 with a large particle size preferably has a particle size of 6.5 to 8.5 times that of the positive electrode active material 562 with a small particle size.
  • a positive electrode active material 562 having a median diameter (D50) of 3 ⁇ m and a positive electrode active material 561 having a median diameter (D50) of 21 ⁇ m are prepared.
  • Such a positive electrode active material can be obtained by classifying with a classifier.
  • the ratio of the positive electrode active material 561 having a large median diameter (D50) to the positive electrode active material 562 having a small median diameter (D50) is 10:0, 9:1, 8:2, 7:3, 0:
  • FIG. 38 shows how the electrode density changes when varied by 10.
  • the electrode density is high when the ratio of median diameter (large):median diameter (small) is 8:2. Furthermore, from samples A to E, it can be seen that the electrode density is high when the ratio of median diameter (large):median diameter (small) is 8:2 at any press pressure.
  • the median diameter (large) is 6.5 times or more and 8.5 times or less, for example, 7 times the median diameter (small).
  • a diameter (small) ratio of 8:2 is preferred.
  • the positive electrode active material 561 or the positive electrode active material 562 can be manufactured according to the above embodiment or the like.
  • FIG. 12A an example of the boundary between the inside and the surface layer portion 572 of the positive electrode active material 561 is indicated by a dotted line.
  • the positive electrode active material 561 having the surface layer portion 572 can be considered that the surface layer portion corresponds to the shell and the inside corresponds to the core, and is sometimes referred to as a positive electrode active material having a core-shell structure.
  • a core-shell structure may be applied to the positive electrode active material 562 .
  • a positive electrode active material having a core-shell structure is preferable because it is less likely to deteriorate even when charged at a high voltage.
  • the positive electrode mixture layer 571 has a conductive aid 553 .
  • the conductive aid 553 is particulate, and carbon black or the like can be used.
  • the positive electrode mixture layer 571 may further have a needle-like conductive aid 554, and carbon nanotubes or the like can be used.
  • the positive electrode mixture layer 571 has a binder 555, and PVDF or the like can be used.
  • the positive electrode mixture layer 571 has voids 556 .
  • the ratio of voids can be expressed as the porosity of the positive electrode, and the porosity is preferably in the range of 8% or more and 35% or less, preferably 12% or more and 29% or less.
  • the voids 556 are impregnated with the electrolytic solution, but this does not affect the porosity of the positive electrode.
  • FIG. 12A shows the positive electrode active material 561 as particulate, it is not limited to being particulate.
  • the cross-sectional shape of the positive electrode active material 561 may be elliptical, rectangular, trapezoidal, pyramidal, square with rounded corners, or asymmetrical. Note that the particulate positive electrode active material may be deformed into a shape as shown in FIG. 12B by pressing in the manufacturing process of the positive electrode.
  • FIG. 12C exemplifies a case where the conductive aid 554 of FIG. 12B is omitted and only the conductive aid 553 is used.
  • This embodiment can be used in combination with other embodiments.
  • a positive electrode 410 of one embodiment of the present invention can be used in an all-solid battery having a solid electrolyte layer 420 and a negative electrode 430 .
  • the positive electrode 410 has a positive electrode current collector 413 and a positive electrode active material layer 414 .
  • a positive electrode active material layer 414 includes a positive electrode active material 411 and a solid electrolyte 421 .
  • As the positive electrode active material 411 a positive electrode active material manufactured using the manufacturing method described in the above embodiment is used. Further, the positive electrode active material layer 414 may contain a conductive aid and a binder.
  • Solid electrolyte layer 420 has solid electrolyte 421 .
  • Solid electrolyte layer 420 is a region located between positive electrode 410 and negative electrode 430 and having neither positive electrode active material 411 nor negative electrode active material 431 .
  • the negative electrode 430 has a negative electrode current collector 433 and a negative electrode active material layer 434 .
  • a negative electrode active material layer 434 includes a negative electrode active material 431 and a solid electrolyte 421 . Further, the negative electrode active material layer 434 may contain a conductive aid and a binder. Note that when metal lithium is used for the negative electrode 430, the negative electrode 430 can be formed without the solid electrolyte 421 as shown in FIG. 13B. The use of metallic lithium for the negative electrode 430 is preferable because the energy density of the secondary battery 400 can be improved.
  • solid electrolyte 421 of solid electrolyte layer 420 for example, a sulfide-based solid electrolyte, an oxide-based solid electrolyte, a halide-based solid electrolyte, or the like can be used.
  • Sulfide - based solid electrolytes include thiolysicone - based ( Li10GeP2S12 , Li3.25Ge0.25P0.75S4 , etc.), sulfide glass ( 70Li2S , 30P2S5 , 30Li2 S.26B2S3.44LiI , 63Li2S.36SiS2.1Li3PO4 , 57Li2S.38SiS2.5Li4SiO4 , 50Li2S.50GeS2 , etc. ) , sulfide crystallized glass ( Li7 P 3 S 11 , Li 3.25 P 0.95 S 4 etc.).
  • a sulfide-based solid electrolyte has advantages such as being a material with high conductivity, being able to be synthesized at a low temperature, and being relatively soft so that a conductive path is easily maintained even after charging and discharging.
  • oxide-based solid electrolytes examples include materials having a perovskite-type crystal structure (La2 /3- xLi3xTiO3 , etc.), materials having a NASICON-type crystal structure (Li1- xAlxTi2- x ( PO4 ) 3 , etc.), materials having a garnet - type crystal structure ( Li7La3Zr2O12 , etc.), materials having a LISICON - type crystal structure ( Li14ZnGe4O16 , etc.) , LLZO ( Li7La3Zr2O 12 ), oxide glass ( Li3PO4 - Li4SiO4 , 50Li4SiO4 , 50Li3BO3 , etc.), oxide crystallized glass ( Li1.07Al0.69Ti1.46 ( PO4 ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 etc.). Oxide-based solid electrolytes have the advantage of being stable in the atmosphere.
  • Halide-based solid electrolytes include LiAlCl 4 , Li 3 InBr 6 , LiF, LiCl, LiBr, LiI, and the like. Composite materials in which pores of porous aluminum oxide and/or porous silica are filled with these halide-based solid electrolytes can also be used as solid electrolytes.
  • Li1 + xAlxTi2 -x ( PO4) 3 ( 0[x[1) (hereinafter referred to as LATP) having a NASICON-type crystal structure is aluminum and titanium in the secondary battery 400 of one embodiment of the present invention. Since it contains an element that may be contained in the positive electrode active material used in , a synergistic effect can be expected for improving cycle characteristics, which is preferable. Also, an improvement in productivity can be expected by reducing the number of processes.
  • a NASICON-type crystal structure is a compound represented by M 2 (XO 4 ) 3 (M: transition metal, X: S, P, As, Mo, W, etc.), and MO 6 It has a structure in which octahedrons and XO 4 tetrahedrons share vertices and are three-dimensionally arranged.
  • This embodiment can be used in combination with other embodiments.
  • FIG. 14A is an external view of a coin-shaped half-cell
  • FIG. 14B is a cross-sectional view thereof.
  • a positive electrode can 301 that also serves as a positive electrode terminal and a negative electrode can 302 that also serves as a negative electrode terminal are insulated and sealed with a gasket 303 made of polypropylene or the like.
  • the positive electrode 304 is formed of a positive electrode current collector 305 and a positive electrode active material layer 306 provided so as to be in contact therewith.
  • the negative electrode 307 is formed of a negative electrode current collector 308 and a negative electrode active material layer 309 provided so as to be in contact therewith.
  • the active material layers of the positive electrode 304 and the negative electrode 307 used in the coin-shaped half-cell 300 may be formed only on one side of each current collector.
  • the positive electrode can 301 and the negative electrode can 302 are made of metal such as nickel, aluminum, titanium, etc., or alloys thereof and/or alloys of these and other metals (for example, stainless steel), which are corrosion-resistant to the electrolyte. be able to. In addition, it is preferable to coat with nickel and/or aluminum in order to prevent corrosion due to the electrolytic solution.
  • the positive electrode can 301 and the negative electrode can 302 are electrically connected to the positive electrode 304 and the negative electrode 307, respectively.
  • negative electrode 307, positive electrode 304 and separator 310 are impregnated with an electrolytic solution, and as shown in FIG. A can 301 and a negative electrode can 302 are crimped via a gasket 303 to manufacture a coin-shaped half cell 300 .
  • the coin-shaped half cell 300 with high discharge capacity and excellent cycle characteristics can be obtained.
  • the positive electrode is removed from the secondary battery to obtain the positive electrode active material.
  • the positive electrode is punched into a shape suitable for the coin-shaped half cell.
  • the weight of the positive electrode mixture of the punched positive electrode is measured.
  • the weight of the positive electrode is the sum of the positive electrode mixture and the positive electrode current collector. Therefore, a region of only the positive electrode current collector is also punched out in the same shape from the recovered positive electrode, and the weight thereof is measured. By subtracting the weight of the positive electrode current collector from the positive electrode, the weight of the punched positive electrode mixture can be obtained.
  • a separator and a coin-shaped half cell having a negative electrode are prepared.
  • the negative electrode of the coin-shaped half-cell is sometimes referred to as a counter electrode, and lithium metal can be used as the counter electrode.
  • Such a coin-shaped half-cell is sometimes referred to as a test battery.
  • a material other than lithium metal can be used for the counter electrode, it should be noted that the potential of the secondary battery and the potential of the positive electrode are different.
  • a polypropylene porous film having a thickness of 25 ⁇ m can be used as the separator.
  • step S90 of FIG. 15 the positive electrode main electrical material and the positive electrode mixture are enclosed in the prepared coin-shaped half cell.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC 2 wt % vinylene carbonate
  • the positive and negative electrode cans of the coin-shaped half-cell can be made of stainless steel (SUS).
  • the coin-shaped half-cell manufactured under the above conditions is subjected to constant current charging at an arbitrary voltage (for example, 4.5 V or higher) and 0.5C, and then to constant voltage charging until the current reaches 0.05C.
  • 1C can be 137 mA/g or 200 mA/g.
  • the measurement temperature of the coin-shaped half-cell or the like is in the range of 0° C. or higher and 60° C. or lower, preferably 25° C. or higher and 45° C. or lower.
  • the temperature can be managed as the temperature of the constant temperature bath in which the coin-shaped half-cell is placed.
  • the coin-shaped half-cell After charging, the coin-shaped half-cell is dismantled in an argon atmosphere glove box and the positive electrode is taken out to obtain a positive electrode active material with a high charge depth.
  • the initial charging of the coin-shaped half-cell is sometimes referred to as the initial charging.
  • the initial charging is one type of charging in the state of being enclosed in the outer package, and is considered to be different from the charging before being enclosed in the outer package.
  • XRD X-ray diffraction
  • This embodiment can be used in combination with other embodiments.
  • ⁇ Wound secondary battery 2> A wound secondary battery having portions different from those of the wound secondary battery described in the above embodiment will be described.
  • a secondary battery 913 having a wound body 950a as shown in FIG. 16 may be used.
  • a wound body 950 a illustrated in FIG. 16A includes a negative electrode 931 , a positive electrode 932 , and a separator 933 .
  • the negative electrode 931 has a negative electrode mixture layer 931a.
  • the positive electrode 932 has a positive electrode mixture layer 932a.
  • the secondary battery 913 can have high capacity, high discharge capacity, and excellent cycle characteristics.
  • the separator 933 has a width wider than that of the negative electrode mixture layer 931a and the positive electrode mixture layer 932a, and is wound so as to overlap with the negative electrode mixture layer 931a and the positive electrode mixture layer 932a.
  • the width of the negative electrode mixture layer 931a is wider than that of the positive electrode mixture layer 932a.
  • the wound body 950a having such a shape is preferable because of its good safety and productivity.
  • the negative electrode 931 is electrically connected to the tab 951 as shown in FIGS. 16A and 16B.
  • Tab 951 is electrically connected to terminal 911a.
  • the positive electrode 932 is electrically connected to the tab 952 .
  • Tab 952 is electrically connected to terminal 911b.
  • the wound body 950 a and the electrolytic solution are housed in the exterior body 930 to form the secondary battery 913 .
  • the safety valve is a valve that opens when the inside of the exterior body 930 reaches a predetermined pressure in order to prevent the battery from exploding.
  • a cylindrical secondary battery 616 has a positive electrode cap (battery lid) 601 on its top surface and battery cans (armor cans) 602 on its side and bottom surfaces.
  • the positive electrode cap 601 and the battery can (outer can) 602 are insulated by a gasket (insulating packing) 610 .
  • FIG. 17B is a diagram schematically showing a cross section of a cylindrical secondary battery.
  • the cylindrical secondary battery shown in FIG. 17B has a positive electrode cap (battery lid) 601 on the top surface and battery cans (armor cans) 602 on the side and bottom surfaces.
  • the positive electrode cap and the battery can (outer can) 602 are insulated by a gasket (insulating packing) 610 .
  • a battery element in which a strip-shaped positive electrode 604 and a strip-shaped negative electrode 606 are wound with a separator 605 interposed therebetween is provided inside a hollow columnar battery can 602 .
  • the battery element is wound around the central axis.
  • Battery can 602 is closed at one end and open at the other end.
  • the battery can 602 can be made of metals such as nickel, aluminum, titanium, etc., which are corrosion resistant to the electrolyte, alloys thereof, or alloys of these and other metals (for example, stainless steel, etc.). .
  • the battery element in which the positive electrode, the negative electrode and the separator are wound is sandwiched between a pair of insulating plates 608 and 609 facing each other. Also, an electrolytic solution (not shown) is filled inside the battery can 602 in which the battery element is provided.
  • the positive electrode and the negative electrode used in a cylindrical storage battery are wound, it is preferable to form the active material on both sides of the current collector.
  • a positive electrode terminal (positive collector lead) 603 is connected to the positive electrode 604
  • a negative electrode terminal (negative collector lead) 607 is connected to the negative electrode 606 .
  • a metal material such as aluminum can be used for both the positive terminal 603 and the negative terminal 607 .
  • the positive electrode terminal 603 and the negative electrode terminal 607 are resistance welded to the safety valve mechanism 613 and the bottom of the battery can 602, respectively.
  • the safety valve mechanism 613 is electrically connected to the positive electrode cap 601 via a PTC element (Positive Temperature Coefficient) 611 .
  • the safety valve mechanism 613 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the increase in internal pressure of the battery exceeds a predetermined threshold.
  • the PTC element 611 is a thermal resistance element whose resistance increases when the temperature rises, and the increase in resistance limits the amount of current to prevent abnormal heat generation.
  • Barium titanate (BaTiO 3 ) semiconductor ceramics or the like can be used for the PTC element.
  • FIG. 17C shows an example of a power storage system 615.
  • FIG. A power storage system 615 includes a plurality of secondary batteries 616 .
  • the positive electrode of each secondary battery contacts and is electrically connected to a conductor 624 separated by an insulator 625 .
  • Conductor 624 is electrically connected to control circuit 620 via wiring 623 .
  • a negative electrode of each secondary battery is electrically connected to the control circuit 620 through a wiring 626 .
  • As the control circuit 620 a charge/discharge control circuit that performs charge/discharge or a protection circuit that prevents overcharge and overdischarge can be applied.
  • FIG. 17D shows an example of a power storage system 615.
  • FIG. Power storage system 615 includes a plurality of secondary batteries 616 sandwiched between conductive plates 628 and 614 .
  • a plurality of secondary batteries 616 are electrically connected to conductive plate 628 and conductive plate 614 by wiring 627 .
  • the plurality of secondary batteries 616 may be connected in parallel, may be connected in series, or may be connected in series after being connected in parallel.
  • a plurality of secondary batteries 616 may be connected in series after being connected in parallel.
  • a temperature control device may be provided between the secondary batteries 616 .
  • the secondary battery 616 When the secondary battery 616 is overheated, it can be cooled by the temperature control device, and when the secondary battery 616 is too cold, it can be heated by the temperature control device. Therefore, the performance of power storage system 615 is less likely to be affected by the outside air temperature.
  • the power storage system 615 is electrically connected to the control circuit 620 via wiring 621 and wiring 622 .
  • the wiring 621 is electrically connected to the positive electrodes of the plurality of secondary batteries 616 through the conductive plate 628
  • the wiring 622 is electrically connected to the negative electrodes of the plurality of secondary batteries 616 through the conductive plate 614 .
  • a next-generation clean energy vehicle such as a hybrid vehicle (HV), an electric vehicle (EV), or a plug-in hybrid vehicle (PHV) can be realized.
  • HV hybrid vehicle
  • EV electric vehicle
  • PSV plug-in hybrid vehicle
  • FIG. 18 illustrates a vehicle using a secondary battery that is one embodiment of the present invention.
  • a vehicle 8400 shown in FIG. 18A is an electric vehicle that uses an electric motor as a power source for running. Alternatively, it is a hybrid vehicle in which an electric motor and an engine can be appropriately selected and used as power sources for running. By using one aspect of the present invention, a vehicle with a long cruising range can be realized.
  • automobile 8400 has a secondary battery.
  • the secondary battery may be used by arranging the secondary battery modules shown in FIGS. 17C and 17D on the floor of the vehicle.
  • the secondary battery can not only drive the electric motor 8406, but also power light emitting devices such as headlights 8401 and room lights (not shown).
  • the secondary battery can supply power to display devices such as a speedometer and a tachometer of the automobile 8400 .
  • the secondary battery can supply power to a semiconductor device such as a navigation system included in the automobile 8400 .
  • a vehicle 8500 shown in FIG. 18B can be charged by receiving power from an external charging facility by a plug-in method and/or a contactless power supply method or the like to a secondary battery of the vehicle 8500 .
  • FIG. 18B shows a state in which a secondary battery 8024 mounted on an automobile 8500 is being charged via a cable 8022 from a charging device 8021 installed on the ground.
  • the charging method and the standard of the connector may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or Combo.
  • the charging device 8021 may be a charging station provided in a commercial facility, or may be a household power source.
  • the plug-in technology can charge the secondary battery 8024 mounted on the automobile 8500 by power supply from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • the power receiving device can be mounted on a vehicle, and power can be supplied from a power transmission device on the ground in a non-contact manner for charging.
  • this non-contact power supply system by incorporating a power transmission device into the road and/or the outer wall, charging can be performed not only while the vehicle is stopped but also while it is running.
  • electric power may be transmitted and received between vehicles using this contactless power supply method.
  • a solar battery may be provided on the exterior of the vehicle, and the secondary battery may be charged while the vehicle is stopped and/or while the vehicle is running.
  • An electromagnetic induction method and/or a magnetic resonance method can be used for such contactless power supply.
  • FIG. 18C illustrates an example of a two-wheeled vehicle using the secondary battery of one embodiment of the present invention.
  • a scooter 8600 shown in FIG. A secondary battery 8602 can supply electricity to the turn signal lights 8603 .
  • the scooter 8600 shown in FIG. 18C can store a secondary battery 8602 in the underseat storage 8604 .
  • the secondary battery 8602 can be stored in the underseat storage 8604 even if the underseat storage 8604 is small.
  • the secondary battery 8602 is removable, and when charging, the secondary battery 8602 can be carried indoors, charged, and stored before traveling.
  • the cycle characteristics of the secondary battery can be improved, and the discharge capacity of the secondary battery can be increased. Therefore, the size and weight of the secondary battery itself can be reduced. If the size and weight of the secondary battery itself can be reduced, the cruising distance can be improved because it contributes to the weight reduction of the vehicle.
  • a secondary battery mounted on a vehicle can also be used as a power supply source other than the vehicle. In this case, it is possible to avoid using a commercial power source, for example, during peak power demand. If it is possible to avoid using a commercial power supply during peak power demand, it can contribute to energy conservation and reduction of carbon dioxide emissions.
  • the cycle characteristics are good, the secondary battery can be used for a long period of time, so the amount of rare metals such as cobalt used can be reduced.
  • FIG. 19A shows an example of a cleaning robot.
  • the cleaning robot 6300 has a display unit 6302 arranged on the top surface of a housing 6301, a plurality of cameras 6303 arranged on the side surfaces, a brush 6304, an operation button 6305, a secondary battery 6306, various sensors, and the like.
  • the cleaning robot 6300 is provided with tires, a suction port, and the like.
  • the cleaning robot 6300 can run by itself, detect dust 6310, and suck the dust from a suction port provided on the bottom surface.
  • cleaning robot 6300 can analyze images captured by camera 6303 to determine the presence or absence of obstacles such as walls, furniture, or steps. Further, when an object such as wiring that is likely to get entangled in the brush 6304 is detected by image analysis, the rotation of the brush 6304 can be stopped.
  • the cleaning robot 6300 includes therein a secondary battery 6306 according to one embodiment of the present invention and a semiconductor device or an electronic component. By using the secondary battery 6306 of one embodiment of the present invention in the cleaning robot 6300, the cleaning robot 6300 can be a highly reliable electronic device with a long operating time.
  • FIG. 19B shows an example of a robot.
  • a robot 6400 shown in FIG. 19B includes a secondary battery 6409, an illuminance sensor 6401, a microphone 6402, an upper camera 6403, a speaker 6404, a display unit 6405, a lower camera 6406, an obstacle sensor 6407, a moving mechanism 6408, an arithmetic device, and the like.
  • a microphone 6402 has a function of detecting the user's speech, environmental sounds, and the like. Also, the speaker 6404 has a function of emitting sound. Robot 6400 can communicate with a user using microphone 6402 and speaker 6404 .
  • the display unit 6405 has a function of displaying various information.
  • the robot 6400 can display information desired by the user on the display unit 6405 .
  • the display portion 6405 may include a touch panel. Further, the display unit 6405 may be a detachable information terminal, and by installing it at a fixed position of the robot 6400, charging and data transfer are possible.
  • Upper camera 6403 and lower camera 6406 have the function of capturing images of the surroundings of robot 6400 .
  • the obstacle sensor 6407 can detect the presence or absence of an obstacle in the direction in which the robot 6400 moves forward using the movement mechanism 6408 .
  • Robot 6400 uses upper camera 6403, lower camera 6406, and obstacle sensor 6407 to recognize the surrounding environment and can move safely.
  • a robot 6400 includes a secondary battery 6409 according to one embodiment of the present invention and a semiconductor device or an electronic component.
  • the robot 6400 can be a highly reliable electronic device with a long operating time.
  • FIG. 19C shows an example of an air vehicle.
  • a flying object 6500 shown in FIG. 19C has a propeller 6501, a camera 6502, a secondary battery 6503, and the like, and has a function of autonomous flight.
  • An aircraft 6500 includes a secondary battery 6503 according to one embodiment of the present invention.
  • the flying object 6500 can be a highly reliable electronic device with a long operating time.
  • a satellite 6800 has a body 6801 , a solar panel 6802 , an antenna 6803 and a secondary battery 6805 .
  • Solar panel 6802 is irradiated with sunlight to generate power necessary for satellite 6800 to operate. However, less power is generated, for example, in situations where the solar panel is not illuminated by sunlight, or where the amount of sunlight illuminated by the solar panel is low. Thus, the power required for satellite 6800 to operate may not be generated.
  • a secondary battery 6805 may be provided in the satellite 6800 so that the satellite 6800 can operate even when the generated power is low.
  • Satellite 6800 may generate a signal.
  • the signal is transmitted via antenna 6803 and can be received by, for example, a ground-based receiver or other satellite.
  • the position of the receiver that received the signal can be determined.
  • artificial satellite 6800 can constitute, for example, a satellite positioning system.
  • satellite 6800 may be configured with sensors.
  • artificial satellite 6800 can have a function of detecting sunlight that hits and is reflected by an object provided on the ground.
  • the artificial satellite 6800 can have a function of detecting thermal infrared rays emitted from the earth's surface by adopting a configuration having a thermal infrared sensor.
  • artificial satellite 6800 can function as an earth observation satellite, for example.
  • the positive electrode active material 100 of one embodiment of the present invention was manufactured, and cycle characteristics were obtained.
  • lithium cobaltate (Cellseed C-10N, manufactured by Nippon Kagaku Kogyo Co., Ltd.) having cobalt as the transition metal M and no additive elements was prepared as LiMO 2 in step S14 of FIG.
  • this lithium cobalt oxide was placed in a crucible, covered, and heated at 850° C. for 2 hours in a muffle furnace. This heating corresponds to initial heating. After an oxygen atmosphere was created in the muffle furnace, no flow occurred (corresponding to O 2 purge). Impurities may be removed from the LCO after the initial heating.
  • step S20a LiF was prepared as the F source, and MgF 2 was prepared as the Mg source. LiF:MgF 2 was weighed to be 1:3 (molar ratio). Next, LiF and MgF 2 were mixed in dehydrated acetone and stirred at a rotation speed of 400 rpm for 12 hours to prepare an additive element source.
  • LiF and MgF 2 were then weighed such that the sum of Mg and F was 1 mol % of cobalt in the LCO and mixed dry. At this time, the mixture was stirred for 1 hour at a rotational speed of 150 rpm. This is a milder condition than the condition under which LiF and MgF 2 are mixed, and the condition under which the LCO after the initial heating does not collapse is preferable. Mixture A was thus obtained as mixture 903 .
  • Mixture A was then heated.
  • the heating conditions were 900° C. and 20 hours.
  • the crucible containing the mixture A was covered with a lid and heated in a muffle furnace. After an oxygen atmosphere was created in the muffle furnace, no flow occurred (corresponding to O 2 purge).
  • An LCO containing Mg and F (sometimes referred to as composite oxide A) was obtained by heating.
  • step S41 shown in FIG. 9C nickel hydroxide was prepared as a Ni source, and aluminum hydroxide was prepared as an Al source.
  • Nickel hydroxide and aluminum hydroxide were independently stirred at a rotation speed of 400 rpm for 12 hours and pulverized.
  • the Ni source, the Al source, and the composite were weighed so that the nickel in the nickel hydroxide was 0.5 mol% of the cobalt in the LCO and the aluminum in the aluminum hydroxide was 0.5 mol% of the cobalt in the LCO.
  • Oxide A was dry mixed. At this time, the mixture was stirred for 1 hour at a rotational speed of 150 rpm. This is a milder condition than the condition of mixing nickel hydroxide and aluminum hydroxide.
  • the above conditions are preferably conditions under which the obtained composite oxide A does not collapse. Mixture B corresponding to mixture 904 was thus obtained.
  • Mixture B was then heated.
  • the heating conditions were 850° C. and 10 hours.
  • the crucible containing the mixture B was covered with a lid and heated in a muffle furnace.
  • An oxygen atmosphere was maintained in the muffle furnace. Additionally, oxygen was kept out of the muffle furnace (corresponding to an O2 purge). Fluorine can be prevented from evaporating by purging with O 2 .
  • An LCO containing Mg, F, Ni, and Al (sometimes referred to as composite oxide B) was obtained by heating.
  • the LCO containing Mg, F, Ni, and Al thus obtained was used as a positive electrode active material.
  • LCO positive electrode active material
  • AB acetylene black
  • PVDF 95: 3: 2 (wt%).
  • a slurry was prepared by proportioning and mixing at 1500 rpm.
  • a rotation-revolution mixer (Awatori Mixer, manufactured by THINKY) was used for the mixing.
  • NMP was used as a slurry solvent. After the slurry was applied to an aluminum current collector, the solvent was evaporated. After the solvent volatilized, the mixture on the current collector was pressed.
  • Samples 1-1 to 1-5 were prepared with different press pressures.
  • the table below summarizes the manufacturing conditions including the pressure of the press.
  • the loading amount of the positive electrode active material of Samples 1-1 to 1-5 was all about 7 mg/cm 2 .
  • the electrode density (may be referred to as density), electrode filling rate (may be referred to as filling rate), and electrode porosity (may be referred to as porosity) of Samples 1-1 to 1-5 are shown below. shown in the table.
  • the density was calculated from (the weight of the positive electrode mixture layer/the volume of the positive electrode mixture layer) ⁇ 100, excluding the current collector from the positive electrode.
  • the positive electrode mixture layer has a positive electrode active material, a conductive aid, and a binder.
  • the filling rate was calculated from (density/sum of true densities of positive electrode active material, conductive aid, and binder) ⁇ 100.
  • the respective true densities were 5.05 g/cc for LiCoO 2 , 1.95 g/cc for AB used as a conductive aid, and 1.78 g/cc for PVDF used as a binder.
  • the porosity was calculated as (1-filling rate) ⁇ 100.
  • test batteries were assembled using positive electrodes having Samples 1-1 through 1-5, respectively. A coin-shaped half-cell was used as the test battery, and lithium metal was prepared as the counter electrode or negative electrode.
  • a separator was interposed between the positive electrode of each sample and the lithium metal that was the negative electrode, and the sample was housed in a coin-shaped package together with an electrolytic solution.
  • Polypropylene was used for the separator.
  • a coin-shaped half-cell was assembled as a test battery in this way, and a cycle test was performed using a charge/discharge measuring device (TOSCAT-3100) manufactured by Toyo System Co., Ltd. as a charging/discharging device.
  • TOSCAT-3100 charge/discharge measuring device manufactured by Toyo System Co., Ltd.
  • a cycle test using a coin-shaped half-cell that is, an evaluation of cycle characteristics, allows us to grasp the performance of a single positive electrode (Samples 1-1 to 1-5) in each coin-shaped half-cell.
  • the discharge rate in the cycle test is called the discharge rate, which is the relative ratio of the current during discharge to the battery capacity, and is expressed in units of C.
  • the current corresponding to 1C is X (A).
  • the rate at the time of charging is called the charge rate.
  • cycle characteristics Battery characteristics obtained from cycle test results are sometimes referred to as cycle characteristics, and cycle characteristics include charge/discharge curves, discharge capacity retention, and the like.
  • Each sample was placed in a constant temperature bath at 25° C. or higher and 45° C. or lower, and a cycle test was performed at a charge/discharge rate of 0.5 C to obtain a charge/discharge curve, maximum discharge capacity, and discharge capacity retention rate.
  • 0.5C (1C 200mA/g) until three voltages of 4.60V (denoted as 4.6V), 4.65V or 4.70V (denoted as 4.7V) at each temperature. ), then constant voltage charge until the charge rate reaches 0.05C at each voltage, and then constant current charge at a discharge rate of 0.5C until the voltage reaches 2.5V. Discharged.
  • a rest period of 5 minutes or more and 15 minutes or less may be provided between charging and discharging, and a rest period of 10 minutes was provided in this example.
  • the number of cycles was repeated 50 times, with repetition of charging and discharging as one cycle.
  • the battery voltage and the current flowing through the battery are preferably measured by the four-terminal method.
  • the charging current flows from the negative terminal through the charge/discharging instrument to the positive terminal.
  • the discharge current flows from the positive terminal through the charge/discharging measuring instrument to the negative terminal.
  • the charge current and discharge current are measured by an ammeter included in the charge/discharge measuring device, and the integrated amount of current flowing in one cycle of charge and one cycle of discharge is the charge capacity and discharge capacity, respectively.
  • the integrated amount of the discharge current that flowed in the first cycle discharge can be called the first cycle discharge capacity
  • the integrated amount of the discharge current that flowed in the 50th cycle discharge can be referred to as the 50th cycle discharge. can be called capacity.
  • the discharge capacity was determined at 4.6 V, 4.65 V and 4.7 V under the environment of 25° C. and 45° C. respectively.
  • the largest discharge capacity is described as maximum discharge capacity (mAh/g).
  • the maximum discharge capacity of each sample is shown in the table below.
  • the maximum discharge capacity range can be obtained from the table below.
  • the discharge capacity retention rate of each sample was determined from the maximum discharge capacity.
  • the discharge capacity retention rate (%) at the 50th cycle is obtained by repeating the number of cycles 50 times, with repetition of charging and discharging as one cycle, (discharge capacity at the 50th cycle/maximum discharge capacity during 50 cycles) ⁇ It was obtained as a value calculated by 100.
  • the discharge capacity retention rate at the 50th cycle is a cycle test in which the charge and discharge cycle is repeated 50 times, and when the discharge capacity is measured for each cycle, the value of the discharge capacity measured at the 50th cycle is It is the percentage of the maximum discharge capacity (equal to the maximum discharge capacity) inside. In this specification and the like, unless otherwise specified, the discharge capacity retention rate was determined as the discharge capacity retention rate at the 50th cycle.
  • the discharge capacity retention rate is shown in the table below.
  • the range of the discharge capacity retention rate can be obtained from the table below.
  • 20A to 22B are graphs showing the results of the discharge capacity retention rate for each number of cycles.
  • the X-axis of each graph indicates the number of cycles (times), and the Y-axis indicates the discharge capacity retention rate (%).
  • the value on the Y-axis when the X-axis is 50 times corresponds to the value of the discharge capacity retention rate in Table 5 above.
  • the results of 45° C., 4.65 V charging and 45° C., 4.7 V charging results are shown with the Y-axis range of 30% or higher, and the others are shown with the Y-axis range of 80% or higher.
  • sample 1-1 is indicated by a broken line (small)
  • sample 1-2 is indicated by a thin solid line
  • sample 1-3 is indicated by a broken line (middle)
  • sample 1-4 is indicated by a broken line (large)
  • Samples 1-5 are shown with dark solid lines. In the margins of the graphs, legends for Samples 1-1 to 1-5 are added.
  • Each graph shows the capacity (mAh/g) against the number of cycles (times), the X axis shows the number of cycles (times), and the Y axis shows two types of charge capacity and discharge capacity, so it is denoted as capacity. .
  • the charge capacity is the capacity required during charging and is indicated by black circles in each graph, and the discharge capacity is the capacity required during discharge and is indicated by white circles in each graph. It can be seen that the charge capacity and the discharge capacity show almost the same value.
  • FIGS. 23A to 31 show the results of sample 1-2, this temperature dependence is considered to have the same tendency in samples 1-1, 1-3 to 1-5.
  • the maximum discharge capacity was determined from the charge/discharge curves of FIGS. 23A to 31, and the discharge capacity retention rate (%) after 50 cycles at each measurement temperature was determined.
  • the discharge capacity retention rate is shown numerically in the table below.
  • the results at 25° C. and 45° C. in the table below are the same as the discharge capacity retention rate values shown in Table 5.
  • the range of the discharge capacity retention rate can be obtained from the table below.
  • the discharge capacity retention rate after 50 cycles satisfies the range of 35% or more and less than 100% under any conditions, specifically in an environment of 25°C or more and 45°C or less. This is the same range as can be seen from Table 5. Therefore, by performing a cycle test for the upper limit and lower limit of the measurement temperature, it is possible to grasp the cycle characteristics in the range from the lower limit to the upper limit, such as the discharge capacity retention rate.
  • the discharge capacity retention rate satisfies the range of 90% or more and less than 100% at any charging voltage.
  • the discharge capacity retention rate satisfies the range of 75% or more and less than 100% at any charging voltage.
  • the discharge capacity retention rate satisfies the range of 50% or more and less than 100% at any charging voltage.
  • the discharge capacity retention rate satisfies the range of 35% or more and less than 100% at any charging voltage.
  • the depth of charge was obtained from maximum charge capacity/theoretical capacity ⁇ 100, which is the maximum value of charge capacity obtained from a charge curve or the like, and the theoretical capacity of LCO was 274 mAh/g.
  • FIG. 33 there is a dashed line drawn according to the charging depth of 80%, and the charging depth of 80% corresponds to a charging capacity of 220 mAh/g.
  • the depth of charge is 80% or more under the condition that the discharge capacity retention rate is relatively low. That is, if the depth of charge is less than 80%, the discharge capacity retention rate can be increased under any conditions.
  • a charging depth of 80% corresponds to a capacity of 220 mAh/g, which is a sufficient capacity value.
  • FIG. 33 shows the results of sample 1-2, it is considered that sample 1-1, sample 1-3 to sample 1-5 have similar tendencies in terms of charging depth.
  • FIG. 34A shows a cross-sectional STEM image (TE image) of sample 1-2 charged at 45° C. and 4.7 V
  • FIG. 35A shows a cross-sectional STEM image of sample 1-5 charged at 45° C. and 4.7 V.
  • Enlarged images (ZC images) of the regions framed by solid lines in both images are shown in FIGS. 34B and 35B, respectively.
  • enlarged images (TE images) of the regions framed by dashed lines are shown in FIGS. 34C and 35C, respectively.
  • the percentage of closed cracks was analyzed with the 3D visualization analysis software Amira. It is preferable to adjust the contrast of the image so that closed cracks can be easily identified in the cross-sectional STEM image. Closed cracks are emphasized by adjusting the contrast to make closed cracks less contrasty. In this state, the ratio of the area of closed cracks can be calculated using the brightness of the image as a threshold. That is, Amira acquires the area of an arbitrary range and the area of closed cracks existing in the arbitrary range (if there are multiple closed cracks, the sum of the areas of each closed crack), and the closed crack is The ratio of the active material to the cross section (area ratio of closed cracks) can be calculated as 100%.
  • the area of the cross-sectional STEM image may be of any size.
  • the area of the cross-sectional STEM image was set to 1.12 (0.88 ⁇ 1.27) ⁇ m 2 .
  • the plane perpendicular to the electron beam in the cross-sectional STEM image is often acquired. will be obtained.
  • the area ratio of cracks closed by Amira can be determined as the area of cracks closed/area of image.
  • the area percentage of closed cracks was 0.35% for sample 1-2 and 0.79% for sample 1-5. Comparing these, it can be seen that the area ratio of closed cracks increases as the pressing pressure increases.
  • the area ratio of closed cracks has a correlation with the charge depth or discharge capacity retention rate.
  • the area ratio of closed cracks is preferably 0.9% or less.
  • the pit width (distance between the solid lines attached to FIGS. 36 and 37) was 25 nm or more and 35 nm or less for both samples 1-2 and 1-5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

サイクル特性における放電容量維持率が向上された正極活物質を提供すること。 線圧が100kN/m以上3000kN/m以下の範囲でプレスされた正極と、負極とを備え、正極を、負極がリチウムで構成される試験用電池に用い、試験用電池を25℃以上45℃以下の環境下において、4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返すサイクル試験を行い、サイクルごとに電池の放電容量を測定した場合に、50サイクル目に測定された放電容量の値が、全50サイクル中の放電容量の最大値の35%以上100%未満の範囲を満たす、二次電池である。

Description

二次電池、電子機器および車両
本発明の一態様は、物、方法、または、製造方法に関する。また本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。また本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置、電子機器またはそれらの製造方法に関する。
なお、本明細書中において電子機器とは、二次電池を有する装置全般を指し、二次電池を有する電気光学装置、二次電池を有する情報端末装置などは全て電子機器である。二次電池は蓄電池と記すことがある。
近年、二次電池、キャパシタ、空気電池、および全固体電池等の蓄電装置の開発が盛んに行われている。特に高出力、高容量であるリチウムイオン二次電池は半導体産業の発展と併せて急速にその需要が拡大し、充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
なかでもモバイル用電子機器が有するリチウムイオン二次電池等は、重量あたりの放電容量が大きく、サイクル特性に優れたものが望まれている。これらに応えるため、二次電池の正極が有する正極活物質の改良が盛んに行われている(たとえば特許文献1乃至特許文献3参照)。
特開2019−179758号公報 WO2020/026078号パンフレット 特開2020−140954号公報
二次電池に用いられる正極活物質には、放電容量、サイクル特性、信頼性、安全性、またはコストといった様々な面で改善の余地が残されている。
そこで本発明の一態様は、サイクル特性における放電容量の維持率が向上された正極活物質を提供することを課題の一とする。また本発明の一態様は、充放電を繰り返しても結晶構造が崩れにくい正極活物質を提供することを課題の一とする。また本発明の一態様は、放電容量が大きい正極活物質を提供することを課題の一とする。また本発明の一態様は、上記正極活物質を備えた、安全性または信頼性の高い二次電池、電子機器、または車両を提供することを課題の一とする。
また本発明の一態様は、正極活物質、二次電池、電子機器、または車両の製造方法を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、これら課題は互いに独立したものと考えられ、本発明の一態様は、これらの課題の全てを解決する必要はない。さらに明細書、図面、および請求項(本明細書等と記すことがある)の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、正極と、負極とを備え、正極を、負極がリチウムで構成される試験用電池の正極として用い、試験用電池を25℃以上45℃以下の環境下において、4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返すサイクル試験を行い、サイクルごとに試験用電池の放電容量を測定した場合に、50サイクル目に測定された放電容量の値が、全50サイクル中の放電容量の最大値の35%以上100%未満の範囲を満たす、二次電池である。
本発明の一態様は、線圧が100kN/m以上3000kN/m以下の範囲でプレスされた正極と、負極とを備え、正極を、負極がリチウムで構成される試験用電池の正極として用い、試験用電池を25℃以上45℃以下の環境下において、4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返すサイクル試験を行い、サイクルごとに試験用電池の放電容量を測定した場合に、50サイクル目に測定された放電容量の値が、全50サイクル中の放電容量の最大値の35%以上100%未満の範囲を満たす、二次電池である。
本発明の一態様において、正極は、電極密度が2.5g/cc以上4.5g/cc以下の範囲を有すると好ましい。
本発明の一態様は、電極密度が2.5g/cc以上4.5g/cc以下の範囲を有する正極と、負極とを備え、正極を、負極がリチウムで構成される試験用電池の正極として用い、試験用電池を25℃以上45℃以下の環境下において、4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返すサイクル試験を行い、サイクルごとに試験用電池の放電容量を測定した場合に、50サイクル目に測定された放電容量の値が、全50サイクル中の放電容量の最大値の35%以上100%未満の範囲を満たす、二次電池である。
本発明の一態様において、正極は、空隙率が8%以上35%以下の範囲を有すると好ましい。
本発明の一態様は、空隙率が8%以上35%以下の範囲を有する正極と、負極とを備え、正極を、負極がリチウムで構成される試験用電池の正極として用い、試験用電池を25℃以上45℃以下の環境下において、4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返すサイクル試験を行い、サイクルごとに試験用電池の放電容量を測定した場合に、50サイクル目に測定された放電容量の値が、全50サイクル中の放電容量の最大値の35%以上100%未満の範囲を満たす、二次電池である。
本発明の一態様は、正極と、負極とを備え、正極を負極がリチウムで構成される試験用電池の正極として用い、試験用電池を25℃以上45℃以下の環境下において、4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返すサイクル試験を行った後の、試験用電池の正極が有する正極活物質一断面あたり、断面STEMで観察される閉じたひびの面積の割合は0.9%以下である、二次電池である。
本発明の一態様は、線圧が100kN/m以上3000kN/m以下の範囲でプレスされた正極と、負極とを備え、正極を負極がリチウムで構成される試験用電池の正極として用い、試験用電池を25℃以上45℃以下の環境下において、4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返すサイクル試験を行った後の、試験用電池の正極が有する正極活物質一断面あたり、断面STEMで観察される閉じたひびの面積の割合は0.9%以下である、二次電池である。
本発明の一態様において、試験用電池は電解液を有すると好ましい。
本発明の一態様において、試験用電池は、コイン型のハーフセルであると好ましい。
本発明の一態様において、正極は、層状岩塩型の正極活物質を有すると好ましい。
本発明の一態様において、正極活物質は、コバルト酸リチウムを有すると好ましい。
本発明の一態様は、上記二次電池を搭載した電子機器または車両である。
本発明の一態様により、サイクル特性における放電容量の維持率が向上された正極活物質を提供することができる。また本発明の一態様により、充放電を繰り返しても結晶構造が崩れにくい正極活物質を提供することができる。また本発明の一態様により、放電容量が大きい正極活物質を提供することができる。また本発明の一態様により、正極活物質を備えた、安全性または信頼性の高い二次電池、電子機器、または車両を提供することができる。
また本発明の一態様により、正極活物質、二次電池、電子機器、または車両の製造方法を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、これら効果は互いに独立したものと考えられ、本発明の一態様は、これらの効果の全てを奏する必要はない。さらに本明細書等の記載から、これら以外の効果を抽出することが可能である。
図1は欠陥を有する正極活物質を説明する図である。
図2Aおよび図2Bは相関関係を説明する図である。
図3は二次電池の製造方法を説明する図である。
図4は二次電池の製造装置を説明する図である。
図5A乃至図5Cは二次電池の製造方法を説明する図である。
図6A乃至図6Dは二次電池の製造方法を説明する図である。
図7A乃至図7Cは正極活物質の製造方法を説明する図である。
図8は正極活物質の製造方法を説明する図である。
図9A乃至図9Cは正極活物質の製造方法を説明する図である。
図10A乃至図10C2は正極活物質を説明する図である。
図11A乃至図11C2は正極活物質を説明する図である。
図12A乃至図12Cは正極合剤層を説明する図である。
図13Aおよび図13Bは全固体電池を説明する図である。
図14Aおよび図14Bはコイン型ハーフセル(試験用電池)を説明する図である。
図15はサイクル試験用の試験用電池の組み立て方法を説明する図である。
図16A乃至図16Cは二次電池の例を説明する図である。
図17A乃至図17Dは二次電池の例を説明する図である。
図18A乃至図18Cは車両の一例を説明する図である。
図19A乃至図19Dは電子機器の一例を説明する図である。
図20A、図20Bはサイクル特性の充放電容量を示すグラフ(測定温度および充電電圧をふったもの)である。
図21A、図21Bはサイクル特性の充放電容量を示すグラフ(測定温度および充電電圧をふったもの)である。
図22A、図22Bはサイクル特性の充放電容量を示すグラフ(測定温度および充電電圧をふったもの)である。
図23A、図23Bはサイクル特性の充放電カーブを示すグラフ(測定温度および充電電圧をふったもの)である。
図24A、図24Bはサイクル特性の充放電カーブを示すグラフ(測定温度および充電電圧をふったもの)である。
図25はサイクル特性の充放電カーブを示すグラフ(測定温度および充電電圧をふったもの)である。
図26A、図26Bはサイクル特性の充放電カーブを示すグラフ(測定温度および充電電圧をふったもの)である。
図27A、図27Bはサイクル特性の充放電カーブを示すグラフ(測定温度および充電電圧をふったもの)である。
図28はサイクル特性の充放電カーブを示すグラフ(測定温度および充電電圧をふったもの)である。
図29A、図29Bはサイクル特性の充放電カーブを示すグラフ(測定温度および充電電圧をふったもの)である。
図30A、図30Bはサイクル特性の充放電カーブを示すグラフ(測定温度および充電電圧をふったもの)である。
図31はサイクル特性の充放電カーブを示すグラフ(測定温度および充電電圧をふったもの)である。
図32は測定温度に対する放電容量維持率を示すグラフである。
図33は測定温度に対する充電深度を示すグラフである。
図34A乃至図34Cはサイクル試験後の正極活物質を説明するSTEM像である。
図35A乃至図35Cはサイクル試験後の正極活物質を説明するSTEM像である。
図36はサイクル試験後の正極活物質を説明する写真である。
図37はサイクル試験後の正極活物質を説明する写真である。
図38は電極密度を示すグラフである。
以下では、本発明を実施するための形態例について図面等を用いて説明する。ただし、本発明は以下の形態例に限定して解釈されるものではない。本発明の趣旨を逸脱しない範囲で発明を実施する形態を変更することは可能である。
本明細書等ではミラー指数を用いて結晶面および結晶方向を表記すことがある。結晶面を示す個別面は( )を用いて表記すことがある。結晶面、結晶方向および空間群の表記は、結晶学上、数字に上付きのバーを付すが、本明細書等では書式の制約上、数字の上にバーを付す代わりに、数字の前に−(マイナス符号)を付して表現する場合がある。
本明細書等において、正極活物質の理論容量とは、正極活物質が有する挿入脱離可能なリチウムが全て脱離した場合の電気量をいう。たとえば、LiCoO(コバルト酸リチウムとも呼ぶ)の理論容量は274mAh/g、LiNiOの理論容量は274mAh/g、LiMnの理論容量は148mAh/gである。
本明細書等において、充電深度とは正極活物質の理論容量を基準として、どれほどの容量が充電された状態か、換言すると、どれほどの量のリチウムが正極から脱離した状態かを示す値であって、挿入脱離可能なリチウムが全て挿入されているときを最小値とし、挿入脱離可能なリチウムが全て脱離したときを最大値として示す。
(実施の形態1)
本実施の形態では、欠陥を有する正極活物質について説明する。
正極活物質は製造直後から欠陥を有する場合がある。また、製造直後に欠陥を有していなくとも、充電と放電を繰り返すことにより、正極活物質に欠陥が生ずる場合がある。充電と放電を繰り返すとはハーフセルまたはフルセルを用いたサイクル試験での充電と放電の繰り返しが含まれ、充電と放電の繰り返しを充放電と記すことがある。
充放電により欠陥が生じる理由は、正極活物質材料と、正極活物質の周囲に存在する電解液とに、化学的または電気化学的な反応が生じるためと考えらえる。当該反応により正極活物質が侵食されることがある。また充放電により正極活物質が劣化することで、欠陥が生じることがある。充放電後の欠陥は正極活物質に均一に生じるのではなく、局部的に生じることがある。さらに当該欠陥は進行することがある。本発明者らはこのような欠陥を把握または制御することは、サイクル試験から得られる電池特性、つまりサイクル特性を向上させるために重要であると考えた。
さらに欠陥の発生または欠陥の進行は、充放電の条件、例えばサイクル試験条件に相関がある。たとえば、4.5V以上といった高電圧で充電するような充電深度の高い条件と、充電深度の高くない条件とでは欠陥の発生または欠陥の進行に差が出ることがある。別の条件としてたとえば、45℃以上の高温条件と、45℃以上の高温でない条件とでは、欠陥の発生または欠陥の進行に差が出ることがある。すなわち欠陥はサイクル試験条件と相関がある。
ここで欠陥の種類について説明する。欠陥には充放電による進行性のものがあるが、本明細書等ではこれをピットと記すことがある。ピットは、高電圧または高温といった条件下の充放電では、進行が速くなると考えられる。その結果、上記条件での充放電を経た正極活物質には、ピットが多数生じると考えらえる。
また、充放電による正極活物質の膨張および収縮により割れ目のような欠陥があり、本明細書等ではこれをクラックと記すことがある。クラックは高電圧または高温といった条件下の充放電では、進行が速くなると考えられる。その結果、上記条件での充放電を経た正極活物質には、クラックが多数生じると考えられる。
正極活物質は膨張および収縮する以外に、充放電中に、正極活物質の一部に応力が集中してしまうことがある。当該応力の集中箇所ではひびのような欠陥が生じやすくなる。当該ひびは、正極活物質の表面から確認することができないことがある。すなわち当該ひびは、正極活物質の内部にあるものである。本明細書等では当該ひびを閉じたひび(closed crack、crack closure)と記すことがあり、正極活物質の表面から生じたひびとは、分けて考えることがある。閉じたひびは高電圧または高温といった条件下充放電では、生じやすく、また進行が速くなると考えられる。その結果、上記条件での充放電を経た正極活物質には、閉じたひびが多数生じると考えられる。
本発明者等はこのような欠陥が正極活物質に生じることが、サイクル特性の低下、たとえば放電容量維持率の低下等につながると考えた。
図1に欠陥が生じた正極活物質100の断面模式図を示す。また正極活物質100は層状岩塩型の結晶構造を有しているものとし、図1では正極活物質100の陽イオンの配列と平行な結晶面55も破線で示す。
正極活物質100は、欠陥としてピット54およびピット58を有する。ピット54およびピット58は、結晶面55と概略平行な方向に向かう穴として図示しているが、立体的には奥行きがあり溝のような形状を有する。ピットの発生源は点欠陥の可能性がある。また点欠陥が進行しておおきな穴となる現象を孔食(Pitting Corrosion)と呼ぶことがあるが、この現象で発生した孔もピットに含まれる。
ピット54およびピット58の近傍では、正極活物質100の結晶構造が崩れ、層状岩塩型とは異なった結晶構造、例えばスピネル構造を有することがある。結晶構造が崩れるとキャリアイオンであるリチウムイオンの拡散および放出を阻害する可能性があり、ピット54およびピット58等はサイクル特性の劣化要因と考えられる。
また、正極活物質100は欠陥としてクラック57を有する。クラック57は、結晶面55を横切るように図示する。クラック57等はサイクル特性の劣化要因と考えられる。
クラック57はピット54およびピット58と異なる種類の欠陥として考えることができる。たとえばクラック57は結晶面55を横切るように進行するが、ピット54およびピット58は結晶面55と概略平行に進行する点で異なる。
さらにクラック57は正極活物質の製造直後から存在することがあるが、ピット54およびピット58は正極活物質の製造直後に存在しないことがあり、この点で異なる。正極活物質の製造直後に存在しないピット54およびピット58は、サイクル試験を経て正極活物質のコバルトおよび酸素が何層分か抜けてしまった孔と考えることができる。当該孔はコバルトが溶出した領域ともいえる。一方、クラック57は物理的な圧力が加えられることで生じる新たな面、または結晶粒界が起因となって生じた割れ目に対応したものと考えることができ、プレスなどに起因して生じることがある。
また正極活物質100は欠陥として閉じたひび59を有する。閉じたひびは、正極活物質の内部で生じることが多いため、正極活物質の表面から確認することは難しく、図1のような正極活物質の断面観察で確認が可能となる。閉じたひび59等はサイクル特性の劣化要因と考えられる。
本発明者等は上述した欠陥について鋭意検討し、図2Aに示すように、活物質の欠陥と、活物質の製造条件に相関があることを見出し、これらに加えてサイクル特性とも相関があることを見出した。
上記相関についてさらに検討した結果、図2Bに示すように、少なくとも活物質のサイクル試験後に生じる閉じたひびは、活物質のプレス条件に相関があることを見出し、これらに加えて放電容量維持率とも相関があることを見出した。
閉じたひびの発生を抑制するには、活物質の製造条件のうちたとえば活物質のプレス条件を制御するとよい。プレス条件を線圧で100kN/m以上3000kN/m以下、好ましくは150kN/m以上1500kN/m以下、さらに好ましくは210kN/m以上1467kN/m以下の範囲とすることで、閉じたひびの発生が抑制される。すなわち、閉じたひびの発生を抑制するには上記線圧で活物質をプレスすることが好ましい。
閉じたひびの発生が抑制された活物質は、放電容量維持率が高くなる。すなわち放電容量維持率の高い活物質は、閉じたひびの発生が抑制されている。活物質において閉じたひびが10個以下であると、放電容量維持率が高く好ましい。このように製造直後及びサイクル試験後の活物質の欠陥に着目し、相関を見出したことは、サイクル特性の向上において非常に有用である。
なお線圧が100kN/m以上3000kN/m以下、好ましくは150kN/m以上1500kN/m以下、さらに好ましくは210kN/m以上1467kN/m以下の範囲でプレスした活物質は、電極の電極密度が2.5g/cc以上4.5g/cc以下、好ましくは3.3g/cc以上4.1g/cc以下の範囲となり、当該活物質を有する二次電池は放電容量維持率が向上し好ましい。
また線圧が100kN/m以上3000kN/m以下、好ましくは150kN/m以上1500kN/m以下、さらに好ましくは210kN/m以上1467kN/m以下の範囲でプレスした活物質は、電極の空隙率は、8%以上35%以下、好ましくは12%以上29%以下の範囲となり、当該活物質を有する二次電池は放電容量維持率が向上し好ましい。
本実施の形態は、他の実施の形態と組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、二次電池の製造方法および製造装置等について図3等を用いて説明する。
《正極活物質の用意》
図3に示すステップS100では、正極活物質を用意する。正極活物質の製造方法等は、実施の形態3等で詳述する。ここでは正極活物質に適用できる材料等について説明する。
〔正極活物質〕
正極活物質としてたとえば、オリビン型の結晶構造、層状岩塩型の結晶構造、またはスピネル型の結晶構造を有するリチウム含有酸化物またはリチウムを有する複合酸化物等が挙げられる。本発明の一態様の正極活物質は、層状岩塩型の結晶構造を有する正極活物質を用いることが好ましい。
層状岩塩型の結晶構造を有するリチウムを有する複合酸化物には、たとえばLiM(x>0かつy>0、より具体的にはたとえばy=2かつ0.8<x<1.2)で表されるリチウムを有する複合酸化物を用いることができる。ここで元素Mは金属元素であり、好ましくはコバルト、マンガン、ニッケル、および鉄から選ばれる一または二以上である。さらに元素Mはたとえば、コバルト、マンガン、ニッケル、および鉄から選ばれる一種以上と、アルミニウム、チタン、ジルコニウム、ランタン、銅、および亜鉛から選ばれる一種以上とを組み合わせると好ましい。
LiMで表されるリチウムを有する複合酸化物として、LiCoO(コバルト酸リチウムとも呼ぶ)、LiNiO、LiMnO等が挙げられる。また、LiNiCo1−x(0<x<1)で表されるリチウムを有する複合酸化物としてNiCo系等があり、LiMで表されるリチウムを有する複合酸化物として、LiNiMn1−x(0<x<1)で表されるNiMn系等がある。
また、LiMOで表されるリチウムを有する複合酸化物として、LiNiCoMn(x>0、y>0、0.8<x+y+z<1.2)で表されるNiCoMn系(NCM系、ニッケル−コバルト−マンガン酸リチウムともいう)等がある。上記において具体的には、0.1x<y<8xかつ0.1x<z<8xを満たすことが好ましい。一例として、x、yおよびzは、x:y:z=1:1:1またはその近傍の値を満たすことが好ましい。または一例として、x、yおよびzは、x:y:z=5:2:3またはその近傍の値を満たすことが好ましい。または一例として、x、yおよびzは、x:y:z=8:1:1またはその近傍の値を満たすことが好ましい。または一例として、x、yおよびzは、x:y:z=6:2:2またはその近傍の値を満たすことが好ましい。または一例として、x、yおよびzは、x:y:z=1:4:1またはその近傍の値を満たすことが好ましい。
また、層状岩塩型の結晶構造を有するリチウムを有する複合酸化物としてたとえば、LiMnO、またはLiMnO−LiMeO(MeはCo、Ni、Mn)等がある。
上記のリチウムを有する複合酸化物に代表されるような層状岩塩型の結晶構造を有する正極活物質では、体積あたりのリチウム含有量が多く、体積あたりの容量が高い二次電池を実現することができる。
正極活物質としてマンガンを含むスピネル型の結晶構造を有するLiMn等がある。さらに上記LiMnに、ニッケル酸リチウム(LiNiOまたはLiNi1−x(0<x<1)(M=Co、Al等)で表される)を混合して正極活物質に用いてもよい。異なる複合酸化物を混合させた構成とすることによって、二次電池の特性を向上させることができる。
また、正極活物質として、LiMnで表すことができるリチウムマンガン複合酸化物を用いることができる。ここで、元素Mは、リチウム、マンガン以外から選ばれた一または二以上の金属元素、またはシリコンあるいはリンを用いることが好ましく、上記金属元素にニッケルが含まれるとさらに好ましい。また上記LiMnにおいて、放電時で0<a/(b+c)<2、かつc>0、かつ0.26≦(b+c)/d<0.5を満たすことが好ましい。なお、リチウムマンガン複合酸化物とは、少なくともリチウムとマンガンとを含む酸化物をいい、上記のLiMnも含まれる。リチウムマンガン複合酸化物において、化学式で表された元素以外に、クロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウム、モリブデン、亜鉛、インジウム、ガリウム、銅、チタン、ニオブ、シリコン、およびリンなどから選ばれる一または二以上の元素を含んでいてもよい。
正極活物質として、リチウムイオンを含まないV、またはCr等を用いてもよい。
リチウムを有する複合酸化物全体の金属元素、シリコンまたはリン等の比率は、たとえばICP−MS(誘導結合プラズマ質量分析計)を用いて測定することができる。またリチウムを有する複合酸化物全体の酸素の比率は、たとえばEDX(エネルギー分散型X線分析法)を用いて測定することができる。また酸素の比率は、ICPMS分析と併用して、融解ガス分析、XAFS(X線吸収微細構造)分析の価数評価を用いることで求めることができる。
正極活物質は上記のうち二以上を組み合わせて用いてもよい。
《スラリーの調合》
次に図3に示すステップS101では、正極活物質を有するスラリーを調合する。
〔スラリー〕
スラリーとは、溶媒中に少なくとも活物質を混合したものである。正極活物質を混合したものを正極スラリーと記し、負極活物質を混合したものを負極スラリーと記すことがある。スラリーは活物質に加えて、導電助剤および結着剤(バインダーとも記すことがある)が混合されていてもよい。
スラリーにおける正極活物質または負極活物質の割合は、85wt%以上98wt%以下、好ましくは90wt%以上98wt%以下の範囲を有するとよい。
スラリーにおいて、活物質等の粒子が凝集する場合があり、粒子の分散性を高めるには、活物質等の粒子と、溶媒との親和性を向上させるとよい。そのためスラリーは活物質等に加えて、分散剤が混合されてもよい。
〔溶媒〕
溶媒としてはアセトン等のケトン、エタノールおよびイソプロパノール等のアルコール、エーテル、ジオキサン、アセトニトリル、ならびにN−メチル−2−ピロリドン(NMP)等から選ばれた一または二以上を用いることができる。リチウムと反応が起こりにくい、非プロトン性溶媒を用いることが好ましい。
溶媒は上記のうち複数を組み合わせて用いてもよい。
〔導電助剤〕
導電助剤は、導電付与剤、導電材とも呼ばれ、炭素材料が用いられることが多い。複数の活物質の間または活物質と集電体との間に導電助剤が位置することがある。
導電助剤の炭素材料として、カーボンブラックがある。カーボンブラックにはファーネスブラック、アセチレンブラック、または黒鉛などがある。
また導電助剤の炭素材料としてグラフェンまたはグラフェン化合物を用いてもよい。グラフェン(Gと記すことがある)は、炭素を有し、当該炭素の6員環を有する二次元的構造を有するものをいう。当該炭素の6員環で形成された二次元的構造はシート状をなすため、炭素シートといってもよい。
グラフェン化合物は酸化グラフェン(GOと記すことがある)、又は還元された酸化グラフェン(RGOと記すことがある)を有する。酸化グラフェンは、グラフェンに官能基が結合したものであり、官能基は酸素を有する。還元された酸化グラフェンは酸化グラフェンを還元して得られる還元後の酸化グラフェンであり、還元度によっては酸素を有さないこともある。このようなグラフェン化合物も、炭素の6員環で形成された二次元的構造を有する。グラフェン化合物は、シート状またはネット状を有する。ネット状のグラフェン化合物をグラフェンネットと記すことがある。グラフェンネットは活物質を一部またはすべて覆うことができ、さらに覆う際には活物質に沿う領域を有することができ、効率的な導電パスを形成できる。またグラフェンネットは活物質同士を結合する結着剤としても機能することができる。よって、結着剤の量を少なくすることができる、または使用しないことができるため、電極体積および電極重量に占める活物質の比率を向上させることができる。
また導電助剤の炭素材料として、多層グラフェンを用いてもよい。多層グラフェンはグラフェンが2層以上300層以下、好ましくは80層以上200層以下の範囲で積層されたものを含み、屈曲した形状を有することがある。
グラフェンまたはグラフェン化合物はキャリアイオンを通過させるために穴を有するとよい。穴にはグラフェンまたはグラフェン化合物における欠陥が含まれる。また複数のグラフェン同士または複数のグラフェン化合物同士が結合することにより、網目状のグラフェンまたは網目状のグラフェン化合物を形成することができる。網目状のグラフェンまたは網目状のグラフェン化合物は、穴を有することができる。
また導電助剤の炭素材料として、スプレードライ装置を用いて予め活物質の表面を覆うことのできるものを用いてもよい。予め表面が炭素材料で覆われた活物質同士は、効率的な導電パスを形成できる。
また導電助剤の炭素材料としてカーボンナノチューブ(CNTと記すことがある)、またはVGCF(登録商標)といった、針状のものを用いてもよい。
導電助剤は上記のうち複数を組み合わせて使用してもよい。
[結着剤]
結着剤としては、たとえば、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料を用いることが好ましい。また結着剤として、フッ素ゴムを用いることができる。
結着剤としては、たとえば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、たとえば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体、および澱粉などから選ばれた一種または一種以上を用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用して用いると、さらに好ましい。
結着剤としては、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、およびニトロセルロース等から選ばれた一種または一種以上を用いることが好ましい。
結着剤は上記のうち複数を組み合わせて使用してもよい。
《集電体へ塗工》
次に図3に示すステップS102では、正極スラリーを正極用の集電体(正極集電体と記すことがある)へ塗工する。正極集電体の一方の面に塗工する場合を片面塗工と記し、正極集電体の両方の面に塗工する場合を両面塗工と記すことがある。
[正極集電体]
正極集電体としては、ステンレス、金、白金、アルミニウム、またはチタン等の金属、およびこれらの合金等であって、導電性が高い材料を用いることができる。また正極集電体には、二次電池における正極の電位で溶出しない材料を用いることが好ましい。また、シリコン、チタン、ネオジム、スカンジウム、またはモリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を正極集電体に用いることもできる。また、シリコンと反応してシリサイドを形成する金属元素を正極集電体が有してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、またはニッケル等がある。
正極集電体は、箔状、板状、シート状、網状、パンチングメタル状、またはエキスパンドメタル状等の形状を適宜用いることができる。
正極集電体は、厚みが5μm以上30μm以下、好ましくは10μm以上20μm以下の範囲のものを用いるとよい。
ここで図4を用いて、正極集電体へ正極スラリーを塗工する製造装置等を例示する。図4ではステップS102にロールツーロール法を用いた場合を示す。
図3に示すステップS102に対応して、図4に送り出し機構312(アンワインダーと記すことがある)を示す。送り出し機構312はシート状の正極集電体321が巻かれた第1のボビン311が設置されている。正極集電体321は、ローラ313の回転等を利用して、矢印の方向へ移動することができる。正極集電体321の一方の面(たとえば表面に相当する)に、第1のスラリー付着手段314aを用いて、正極スラリーを塗工することができる。スラリー付着手段には、たとえば、スロットダイコータ、リップコータ、ブレードコータ、リバースコータ、またはグラビアコータなどを用いることができる。なお、コータの種類によって、正極集電体321を反転させるためにローラを増やしてもよい。またスラリー付着手段には、ディップ法またはスプレー法などの手法を用いることもできる。
図4では、正極スラリーの塗工に間欠塗工を用いる場合を例示する。間欠塗工は、選択的な領域に正極スラリーを塗工するものであり、複数の正極スラリー塗工領域の間では正極集電体321が露出する。
塗工後は正極スラリーを乾燥させるために、乾燥手段315を利用する。乾燥手段315は搬入口316が設けられている。なお搬入口316は対になっており、他方を搬出口と記すことがある。
乾燥手段315内には熱源318が設けられている。搬入口316から搬入された正極集電体321は熱源318に曝され、正極スラリーを乾燥させることができる。乾燥された正極スラリーからは、少なくとも溶媒が除去される。乾燥のための温度、つまり熱源318の温度は、80℃以上180℃以下、好ましくは100℃以上130℃以下の範囲が好ましい。熱源318には、温風加熱、ランプ加熱、誘導加熱、および送風などから選ばれた一または二以上組み合わせた方法を用いることができる。また熱源318は正極集電体321を間に挟むことができるように、複数個所に設けてもよい。熱源318と正極集電体321とは、5cm以上30cm以下、好ましくは10cm以上20cm以下の範囲の間隔を有するとよい。
乾燥手段315には制御部317が設けられており、上述した乾燥条件を制御することができる。
また乾燥手段315には排気口が設けられていてもよい。排気口は乾燥手段315の上方、例えば天井に設けられていると好ましい。
片面塗工の場合、正極集電体321の一方の面の正極スラリーが乾燥して完成する。乾燥処理が済み、少なくとも溶媒が除去された正極スラリーを正極合剤と記すことがある。
両面塗工の場合、乾燥手段315から排出された後、第2のスラリー付着手段314bによって、正極集電体321の他方の面(たとえば裏面に相当する)にスラリー塗工する。正極集電体321の他方の面と、第2のスラリー付着手段314bとを対向させるため、ローラ319を用いる。ローラ319の回転により正極集電体321を矢印の方に移動させることができる。正極集電体321の一方の面には、先に塗工した正極合剤が設けられているが、乾燥処理を経ているため正極合剤はローラ319と接しても構わない。
正極集電体321の他方の面に塗工された正極スラリーを乾燥させるために、乾燥手段315を利用する。乾燥手段315は搬入口320が設けられている。なお搬入口320は対になっており、他方を搬出口と記すことがある。搬入口320から搬入された正極集電体321は熱源318に曝され、正極スラリーを乾燥させることができる。搬入口320は、先の搬入口316と兼ねることができ、その場合、搬入口320を省略できる。このような工程で集電体への塗工が完了する。
《プレス》
次に図3に示すステップS103では、正極合剤および正極集電体321をプレス(加圧とも記すことがある)する。プレスにはロールプレス法または平板プレス法等を用いることができる。本実施の形態ではたとえばロールプレス法を用いて正極合剤および正極集電体321をプレスする。
ここで図4を用いて、ロールプレス法に用いることができる加圧手段325を説明する。加圧手段はロールプレス装置と記すことがある。
加圧手段325は搬入口326が設けられている。なお搬入口326は対になっており、他方を搬出口と記すことがある。加圧手段325内には一組のローラ328が設けられている。一組のローラ328の間を通ることでプレスができる。加圧手段325は、荷重が100kg以上200t以下であり、ロール幅が100mm以上3000mm以下であり、ロール径(φ)は30mm以上5000mm以下の一組のローラを用いることができる。加圧手段325は、加圧方法としてエアーシリンダまたは油圧を用いることができ、さらに手動により加圧することも可能である。
一組のローラ328がそれぞれ熱源329を有すると、加熱しながらプレスすることができるため好ましい。たとえば、搬入口326から搬入された正極集電体321は熱源329に曝されながら、プレスされる。熱源329は一組のローラ328内部に設けられなくともよい。熱源329は蒸気熱または電熱により熱を発生させることができ、具体的には温風加熱、ランプ加熱、誘導加熱、および送風などから選ばれた一または二以上組み合わせて用いることができる。さらに熱源以外に冷却源を有してもよく、冷却源としてたとえば冷却水を用いるとよい。勿論、加圧手段325は常温でのプレスも可能である。
また加圧手段325には排気口が設けられていてもよい。排気口は加圧手段325の上方、たとえば天井に設けられていると好ましい。
プレス時の圧力(プレス圧と記すことがある)は、線圧で100kN/m以上3000kN/m以下、好ましくは150kN/m以上1500kN/m以下、さらに好ましくは210kN/m以上1467kN/m以下の範囲が好ましい。幅が4cmの場合、線圧210kN/mは面圧1MPaであり、線圧461kN/mは面圧2MPaであり、線圧964kN/mは面圧4MPaであり、線圧1467kN/mは面圧6MPaである。プレス圧は面圧で1Mpa以上6MPa以下が好ましい。サイクル特性の劣化要因として正極活物質に生じうる欠陥が考えられるが、上記線圧でプレスすることで当該欠陥を抑制することができる。
プレスする回数は1回または2回以上とすることができる。2回以上プレスする場合、初回のプレス圧は、終回のプレス圧より小さくするとよい。2回以上プレスする場合、加圧手段325内に、2組目のロール等を配置して、初回プレスと終回プレスとを連続的に行うとよい。
また、プレスを行う際の加熱温度、つまり熱源329の温度は、90℃以上180℃以下、好ましくは120℃以下の範囲がよい。加熱すると、少なくとも正極合剤が有する結着剤(たとえば、PVDF)を軟化させることができ、正極内の電極密度を高めることができる。
上記線圧でプレスすることにより、正極の電極密度は、2.5g/cc以上4.5g/cc以下、好ましくは3.3g/cc以上4.1g/cc以下の範囲となり、正極の欠陥を抑制し、かつ正極の電極密度を高くすることができ好ましい。
また上記線圧でプレスすることにより、正極の空隙率は、8%以上35%以下、好ましくは12%以上29%以下の範囲となり、正極の欠陥を抑制し、かつ正極の電極密度を高くすることができ好ましい。
なお正極の空隙率とは、正極活物質、導電助剤および結着剤で満たされていない領域の割合である。当該満たされていない領域には、二次電池として完成した時、電解液が位置することがあるが、正極の空隙率は当該電解液に影響を受けない値である。正極の空隙率は正極の充填率から求めることができる。
空隙率は電極の断面観察により確認することができる。例えば集束イオンビーム(FIB:Focused Ion Beam)により試料の断面を加工し、SEM(Scanning Electron Microscope)またはTEM(Transmission Electron Microscope)等の観察装置を用いて、空隙率を観察することができる。FIBは試料の加工を連続的に行うことができ、連続的な観察が可能となるため、空隙率を三次元的に観察することも可能である。加工および観察を連続的に行うことをSlice&Viewと記すことがある。
加圧手段325には制御部327が設けられており、プレス条件を制御することができる。プレス条件は圧力および温度以外に、ローラの回転速度も含まれる。
《正極の用意》
図3に示すステップS104では、上述ようにして得られた正極を用意する。
たとえば図4に示す製造装置ではステップS104に対応して、巻き取り機構337(ワインダーと記すことがある)に設置された第2のボビン338に巻き取ったロール状の正極339を得ることができる。
ロール状の正極339は捲回型の二次電池の正極に用いることができる。捲回型の二次電池の正極に用いる場合、正極の長辺は30cm以上100cm以下とするとよく、当該長辺を満たすようにロール状の正極339を切断するとよい。当該長辺はシート状の正極集電体321の進行方向に沿う方向の長さである。
またロール状の正極339は積層型の二次電池の正極に用いることができる。積層型の二次電池の正極に用いる場合、正極の長辺は5cm以上20cm以下の範囲とするとよく、当該長辺を満たすようにロール状の正極339を切断するとよい。ロール状の正極339とする前に切断してもよい。当該長辺はシート状の正極集電体321の進行方向に交差する方向の長さである。
《セパレータの用意》
図3示すステップS121では、セパレータを用意する。
〔セパレータ〕
セパレータとしては、たとえば、紙、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。セパレータはエンベロープ状に加工し、正極または負極のいずれか一方を包むように配置することが好ましい。
セパレータは多層構造であってもよい。たとえばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミック系材料、フッ素系材料、ポリアミド系材料、またはこれらを混合したもの等をコートすることができる。セラミック系材料としては、たとえば酸化アルミニウム、酸化シリコン等を用いることができる。フッ素系材料としては、たとえばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、たとえばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。
セラミック系材料をコートすると耐酸化性が向上するため、高電圧充放電の際のセパレータの劣化を抑制し、二次電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、二次電池の安全性を向上させることができる。
たとえばポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極と接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極と接する面にフッ素系材料をコートしてもよい。
多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても二次電池の安全性を保つことができるため、二次電池の体積あたりの放電容量を大きくすることができる。
《負極の用意》
図3に示すステップS122では、負極を用意する。負極は、図4等で示した製造装置等を用いて、正極と同様にロール状に形成することができる。
〔負極〕
負極は、負極活物質層および負極集電体を有する。また、負極活物質層は、負極合剤と記すことがあり、導電助剤および結着剤を有していてもよい。負極活物質に適用できる材料等について説明する。
[負極活物質]
負極活物質として、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。たとえば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、およびインジウム等から選ばれた一または二以上を含む元素を用いることができる。このような元素は炭素と比べて容量が大きく、特にシリコンは理論容量が4200mAh/gと高い。このため、負極活物質にシリコンを用いることが好ましい。また、これらの元素を有する化合物を用いてもよい。たとえば、SiO、MgSi、MgGe、SnO、SnO、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等がある。ここで、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素、および該元素を有する化合物等を合金系材料と記すことがある。
本明細書等において、SiOはたとえば一酸化シリコンを指す。あるいはSiOは、SiOと表すこともできる。ここでxは1または1近傍の値を有することが好ましい。たとえばxは、0.2以上1.5以下が好ましく、0.3以上1.2以下が好ましい。
負極に用いられる炭素材料としては、黒鉛、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、カーボンナノチューブ、グラフェン、カーボンブラック等がある。
黒鉛としては、人造黒鉛、および天然黒鉛等が挙げられる。人造黒鉛としてはたとえば、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等が挙げられる。ここで人造黒鉛として、球状の形状を有する球状黒鉛を用いることができる。たとえば、MCMBは球状の形状を有する場合があり、好ましい。また、MCMBはその表面積を小さくすることが比較的容易であり、好ましい場合がある。天然黒鉛としてはたとえば、鱗片状黒鉛、球状化天然黒鉛等が挙げられる。
黒鉛はリチウムイオンが黒鉛に挿入されたとき(リチウム黒鉛層間化合物の生成時)にリチウム金属と同程度に低い電位を示す(0.05V以上0.3V以下 vs.Li/Li)。これにより、黒鉛を用いた二次電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積当たりの容量が比較的高く、体積膨張が比較的小さく、さらに安価であるといった、リチウム金属に比べて安全性が高い等の利点を有するため、好ましい。
また、負極活物質として、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
また、負極活物質として、リチウムと遷移金属の複合窒化物である、LiN型構造をもつLi3−xN(M=Co、Ni、Cu)を用いることができる。たとえば、Li2.6Co0.4は大きな容量(900mAh/g、1890mAh/cm)を示し好ましい。
リチウムと遷移金属の複合窒化物を用いると、負極活物質中にリチウムイオンを含むため、正極活物質としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。
また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。たとえば、酸化コバルト(CoO)、酸化ニッケル(NiO)、または酸化鉄(FeO)等の、リチウムとの合金を作らない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、またはGe等の窒化物、NiP、FeP、またはCoP等のリン化物、FeF、またはBiF等のフッ化物がある。
また、負極活物質としてリチウムを用いることもできる。負極活物質としてリチウムを用いる場合、負極集電体上に箔状のリチウムを設けることができる。また、負極集電体上にリチウムを蒸着法およびスパッタリング法などの気相法によって設けてもよい。また、リチウムイオンを含有する溶液の中で、負極集電体上にリチウムを電気化学的手法によって析出させてもよい。
負極活物質層が有することのできる導電剤およびバインダとしては、正極活物質層が有することのできる導電剤およびバインダと同様の材料を用いることができる。
また、集電体として、正極集電体と同様の材料に加え、銅なども用いることができる。なお負極集電体は、リチウム等のキャリアイオンと合金化しない材料を用いることが好ましい。
また負極の別の形態として、負極活物質を有さない負極を用いることができる。負極活物質を有さない負極を用いた二次電池では、充電時において負極集電体上にリチウムが析出し、放電時において該負極集電体上のリチウムが溶出することができる。そのため、完全放電状態以外においては、負極集電体上にリチウムを有する形態となる。
負極活物質を有さない負極を用いる場合、負極集電体上にリチウムの析出を均一化するための膜を有してもよい。リチウムの析出を均一化するための膜として、たとえばリチウムイオン伝導性を有する固体電解質を用いることができる。固体電解質として、硫化物系固体電解質、酸化物系固体電解質、および高分子系固体電解質などから選ばれた一または二以上を用いることができる。なかでも、高分子系固体電解質は負極集電体上に均一に膜形成することが比較的容易であるため、リチウムの析出を均一化するための膜として好適である。
また、負極活物質を有さない負極を用いる場合、凹凸を有する負極集電体を用いることができる。凹凸を有する負極集電体を用いる場合、負極集電体の凹部は負極集電体が有するリチウムが析出し易い空洞となるため、デンドライト状となってリチウムが析出することを抑制できる。
《外装体へ封入》
次に、図3のステップS130では、正極、負極およびセパレータを外装体へ封入する。封入後に外装体を封止する際には、外気を遮断し、密閉した雰囲気下、たとえばグローブボックス内で行うことが好ましい。
〔外装体〕
外装体としては、たとえばアルミニウムなどの金属材料および樹脂材料から選ばれた一または二以上を用いることができる。また、外装体として、ポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、およびポリアミド等から選ばれた一または二以上を有する有機膜上に、アルミニウム、ステンレス、銅、およびニッケル等から選ばれた一種又は二種以上を有する金属膜を設けた構造を用いることができる。さらに該金属膜の外側に、外装体の外面としてポリアミド系樹脂、またはポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造を用いることができる。
《電解液の注入》
次に、図3に示すステップS132では外装体へ電解液を注入する。
〔電解液〕
電解液は、溶媒と電解質を有する。電解液の溶媒としては、非プロトン性有機溶媒が好ましく、たとえば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、およびスルトン等から選ばれた一または二以上を組み合わせて用いることができる。二種以上を組み合わせる場合は任意の比率で用いることができる。
また、電解液の溶媒として、難燃性および難揮発性であるイオン液体(常温溶融塩)を一種または二種以上用いることで、二次電池の破裂または発火などを防ぐことができる。イオン液体は、カチオンとアニオンを有する。電解液に用いられるカチオンは有機カチオンがあり、四級アンモニウムカチオン、三級スルホニウムカチオン、および四級ホスホニウムカチオン等の脂肪族オニウムカチオン、イミダゾリウムカチオンおよびピリジニウムカチオン等の芳香族カチオン等が挙げられる。また、電解液に用いるアニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、またはパーフルオロアルキルホスフェートアニオン等が挙げられる。
また、上記の溶媒に溶解させる電解質としては、たとえばLiPF、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(FSO、LiN(CFSO、LiN(CSO)(CFSO)、およびLiN(CSO等から選ばれたリチウム塩を一または二以上組み合わせて用いることができる。二種以上を組み合わせる場合は任意の比率で用いることができる。
二次電池に用いる電解液は、粒状のごみまたは電解液の構成元素以外の元素(以下、単に「不純物」ともいう。)の含有量が少なく、高純度化されたものを用いることが好ましい。具体的には、電解液に対する不純物の重量比を1%以下、好ましくは0.1%以下、より好ましくは0.01%以下とすることが好ましい。
また、電解液にビニレンカーボネート、プロパンスルトン(PS)、tert−ブチルベンゼン(TBB)、フルオロエチレンカーボネート(FEC)、リチウムビス(オキサレート)ボレート(LiBOB)、スクシノニトリル、アジポニトリル等のジニトリル化合物などの添加剤を添加してもよい。添加剤の濃度は、たとえば溶媒全体に対して0.1wt%以上5wt%以下とすればよい。VCまたはLiBOBは良好な被膜を形成しやすく、特に好ましい。
また、ポリマーを電解液で膨潤させたポリマーゲル電解質を用いてもよい。
ポリマーゲル電解質を用いることで、漏液性等に対する安全性が高まる。また、二次電池の薄型化および軽量化が可能である。
ゲル化されるポリマーとして、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等を用いることができる。
ポリマーとしては、たとえばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマー、PVDF、およびポリアクリロニトリル等、およびそれらを含む共重合体等を用いることができる。たとえばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF−HFPを用いることができる。また、形成されるポリマーは、多孔質形状を有してもよい。
また、電解液の代わりに、硫化物系または酸化物系等の無機物材料を有する固体電解質、PEO(ポリエチレンオキシド)系等の高分子材料を有する固体電解質等を用いることができる。固体電解質を用いる場合には、セパレータが不要となる。また、二次電池全体を固体化できるため、漏液のおそれがなくなり安全性が飛躍的に向上する。
《二次電池》
図3に示すステップS133では、上述の工程等に従って、二次電池を得ることができる。
<捲回型の二次電>
図5では、ステップS104、ステップS121、ステップS122、ステップS130、ステップS132およびステップS133等を有する、捲回型の二次電池の製造工程を例示する。
図5Aに示すように、ステップS104として用意する正極は、図4で説明したロール状の正極339を用いることができる。ロール状の正極は巻き取り機構337に設置された第2のボビン338に巻き付いた状態で用意するとよい。巻き取り機構337は、ローラ366へ正極を送り出す機能を有するため、送り出し機構と記すことがあることもある。
ステップS121として用意するセパレータは、巻き取り機構347に設置されたボビン348に巻き付いたロール状のセパレータを用いることができる。巻き取り機構347はローラ366へセパレータを送り出す機能を有するため、送り出し機構と記すことがあることもある。
ステップS122として用意される負極は、巻き取り機構357に設置されたボビン358に巻き付いたロール状の負極を用いることができる。巻き取り機構357はローラ366へ負極を送り出す機能を有するため、送り出し機構と記すことがあることもある。
ローラ366の回転等を利用して各巻き取り機構から、シート状の正極362、シート状のセパレータ363およびシート状の負極364が送り出され、これらはローラ366およびその近傍で重ね合わされる。
巻き取り機構337、および巻き取り機構347の回転方向と、巻き取り機構357の回転方向とを逆回転にするとよい。ローラ366にて少なくとも最下層に位置する部材が巻き取られた巻き取り機構の回転方向を、その他の巻き取り機構と逆にすることで、ローラ366での重ね合わせが良好になる。
巻き取り機構337から搬出されたシート状の正極362には、付着手段354aを用いてタブ365aが貼り付けるとよい。タブ365aは捲回型の二次電池の中心部に位置するように、ローラ366にて最初に重ね合わせられるとよい。
また巻き取り機構357から搬出されたシート状の負極364には、付着手段354bを用いてタブ365bを貼り付けるとよい。タブ365bは捲回型の二次電池の捲回中心側に位置するとよく、ローラ366にて最初に重ね合わせられるとよい。
図5Bに示すように、シート状のセパレータ363がシート状の正極362とシート状の負極364との間に位置した捲回型の二次電池として組み立てることができる。図5Bにおいて、タブ365aおよびタブ365bは捲回型の二次電池の中心部に位置する。
図5Cには、外装体370に、図5Bの組み立てられた正極362、セパレータ363および負極364を封入した様子を示す。外装体370は各タブに対応してスリット371aおよびスリット371bを有し、電解液を注入するための開口375を有するとよい。
電解液の注入手段376によって、開口375から電解液を注入することができる。
以上のような工程に従って、捲回型の二次電池を得ることができる。
<積層型の二次電池>
二次電池の例として図6では、ステップS104、ステップS121、ステップS122、ステップS130、ステップS132およびステップS133等を有する、積層型の二次電池の製造工程を例示する。
図6Aに示すように、図4に示されたロール状の正極339等を所定の大きさに切断して複数の正極340を得る。複数の正極340はそれぞれ、タブ342aの領域を有するように切断することができる。
図6Bに示すように、正極と同様にして、複数の負極341を用意する。負極341もロール状の負極を所定の大きさに切断して得ることができる。負極341はタブ342bを有するように切断することができる。
図6Cに示すように正極と負極との間に位置するセパレータ397を用意し、これらを積層させる。このとき、タブ342aの位置が揃うように正極340を積層する。同様にタブ342bの位置が揃うように負極341を積層する。積層されたタブ342aに電極343aを貼り付け、積層されたタブ342bに電極343bを貼り付けるとよい。
図6Dに示すように、積層された正極340、セパレータ397および負極341を外装体399に封入し、当該外装体399の周囲を封止する。少なくとも外装体399の一辺は、電解液の注入後に封止するとよい。
以上のような工程に従って、捲積層型の二次電池を得ることができる。
《エージング》
次に、図3に示すステップS135では、二次電池に対してエージングを実施する。エージングの条件として、少なくとも1日以上40℃以上60以下の恒温槽で保管する。これを第1のエージング処理と記すことがある。
また二次電池のSOC(State Of Charge)が50%以上100%以下となる範囲の電圧(たとえば4.3V)を上限電圧とし、SOCが0%以上20%以下となる範囲の電圧(たとえば2.5V)を下限電圧としてサイクル試験を実施してもよい。サイクル試験を1回以上5回以下、好ましくは3回または4回実施する。これを第2のエージング処理と記すことがある。
エージング処理として第1のエージング処理のみ、第2のエージング処理のみ、または第1のエージング処理に続いて第2のエージング処理を実施する。
第1のエージング処理または第2のエージング処理により負極に適切な被膜を形成することができる。また第1のエージング処理または第2のエージング処理により生じた不要なガス等を除去するために、外装体の一部に開口部を設けておくとよい。
以上のような工程に従って、本発明の一形態である二次電池を製造することができる。本発明の一形態である二次電池は欠陥を抑制することができ、サイクル特性を向上させることができる。
本実施の形態は、他の実施の形態と組み合わせ用いることができる。
(実施の形態3)
本実施の形態では、本発明の一形態である正極活物質の製造方法について説明する。
《正極活物質の製造方法1》
<ステップS11>
図7Aに示すステップS11では、リチウム源(図中Li源と記す)および遷移金属源(図中M源と記す)を用意する。リチウム源(Li源)および遷移金属源(M源)を出発材料と記すことがある。
リチウム源としては、リチウムを有する化合物を用いると好ましく、たとえば炭酸リチウム、水酸化リチウム、硝酸リチウム、またはフッ化リチウム等を用いることができる。リチウム源は純度が高いと好ましく、たとえば純度が99.99%以上の材料を用いるとよい。
遷移金属は、周期表に示す3族乃至11族に記載された元素から選ぶことができ、たとえば、マンガン、コバルト、およびニッケルのうち少なくとも一又は二以上を用いる。遷移金属として、コバルトのみを用いる場合、ニッケルのみを用いる場合、コバルトとマンガンの2種を用いる場合、コバルトとニッケルの2種を用いる場合、または、コバルト、マンガン、ニッケルの3種を用いる場合がある。コバルトのみを用いる場合、得られる正極活物質はコバルト酸リチウム(LCO)を有し、コバルト、マンガン、およびニッケルの3種を用いる場合、得られる正極活物質はニッケル−コバルト−マンガン酸リチウム(NCM)を有する。
また、2以上の遷移金属源を用いる場合、当該2以上の遷移金属源が層状岩塩型の結晶構造をとりうるような割合(混合比)で用意すると好ましい。
遷移金属源としては、上記遷移金属を有する化合物を用いると好ましく、たとえば上記遷移金属として例示した金属の酸化物、または例示した金属の水酸化物等を用いることができる。コバルト源であれば、酸化コバルト、または水酸化コバルト等を用いることができる。マンガン源であれば、酸化マンガン、または水酸化マンガン等を用いることができる。ニッケル源であれば、酸化ニッケル、または水酸化ニッケル等を用いることができる。遷移金属ではないがアルミニウム源であれば、酸化アルミニウム、または水酸化アルミニウム等を用いることができる。
遷移金属源は純度が高いと好ましく、たとえば純度が3N(99.9%)以上、好ましくは4N(99.99%)以上、より好ましくは4N5(99.995%)以上、さらに好ましくは5N(99.999%)以上の材料を用いるとよい。高純度の材料を用いることで、正極活物質の不純物を制御することができる。その結果、二次電池の容量が高まり、また二次電池の信頼性が向上する。
加えて、遷移金属源の結晶性が高いと好ましく、たとえば単結晶粒を有するとよい。遷移金属源の結晶性の評価としては、TEM(透過電子顕微鏡)像、STEM(走査透過電子顕微鏡)像、HAADF−STEM(高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(環状明視野走査透過電子顕微鏡)像等による判断、またはX線回折(XRD)、電子線回折、中性子線回折等の判断がある。なお、上記の結晶性の評価に関する手法は、遷移金属源だけではなく、その他の結晶性の評価にも適用することができる。
<ステップS12>
次に、図7Aに示すステップS12として、リチウム源および遷移金属源を粉砕および混合して、混合材料(混合物と記すこともある)を製造する。粉砕および混合は、乾式または湿式で行うことができる。湿式はより小さく解砕することができるため好ましい。湿式で行う場合は、溶媒を準備する。溶媒としてはアセトン等のケトン、エタノールおよびイソプロパノール等のアルコール、エーテル、ジオキサン、アセトニトリル、又はN−メチル−2−ピロリドン(NMP)等を用いることができる。リチウムと反応が起こりにくい、非プロトン性溶媒を用いることがより好ましい。本実施の形態では、純度が99.5%以上の脱水アセトンを溶媒に用いることとする。水分含有量を10ppm以下まで抑えた、純度が99.5%以上の脱水アセトンにリチウム源および遷移金属源を混合して、粉砕および混合を行うと好適である。上記のような純度の脱水アセトンを用いることで、混入しうる不純物を低減することができる。
混合等の手段にはボールミル、またはビーズミル等を用いることができる。ボールミルを用いる場合は、粉砕メディアとしてアルミナボールまたはジルコニアボールを用いるとよい。ジルコニアボールは不純物の排出が少なく好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアからのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とするとよい。本実施の形態では、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として混合を実施する。
<ステップS13>
次に、図7Aに示すステップS13として、上記混合材料を加熱する。加熱温度は、800℃以上1100℃以下で行うことが好ましく、900℃以上1000℃以下で行うことがより好ましく、950℃程度がさらに好ましい。温度が低すぎると、リチウム源および遷移金属源の分解および溶融が不十分となるおそれがある。一方温度が高すぎると、リチウム源からリチウムが蒸散又は昇華する、および/または遷移金属源として用いる金属が過剰に還元される、などが原因となり、混合材料に欠陥が生じるおそれがある。当該欠陥とは、たとえば遷移金属としてコバルトを用いる場合、過剰に還元されるとコバルトが3価から2価へ変化し、混合材料に酸素欠陥などが誘発されることがある。
加熱時間は1時間以上100時間以下とするとよく、2時間以上20時間以下とすることが好ましい。
昇温レートは、加熱温度の到達温度によるが、80℃/h以上250℃/h以下がよい。たとえば1000℃で10時間加熱する場合、昇温は200℃/hとするとよい。
加熱雰囲気は、乾燥空気等の水が少ない雰囲気で行うことが好ましく、たとえば露点が−50℃以下、より好ましくは露点が−80℃以下の雰囲気がよい。本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また混合材料中に混入しうる不純物を抑制するためには、加熱雰囲気におけるCH、CO、CO、およびH等の不純物濃度が、それぞれ5ppb(parts per billion)以下にするとよい。
加熱雰囲気として酸素を有する雰囲気が好ましい。たとえば反応室に乾燥空気を導入し続ける方法がある。この場合、乾燥空気の流量は10L/minとすることが好ましい。酸素を反応室へ導入し続け、酸素が反応室内を流れている方法をOフローと呼ぶ。
加熱雰囲気を、酸素を有する雰囲気とする場合、フローさせないやり方でもよい。たとえば反応室を減圧してから酸素を充填し、当該酸素が反応室から出入りしないようにする方法でもよく、これをOパージと記すことがある。たとえば−970hPaまで減圧された反応室が50hPaとなるまで酸素を充填すればよい。
加熱後の冷却は自然放冷でよいが、規定温度から室温までの降温時間が10時間以上50時間以下に収まると好ましい。ただし、必ずしも室温までの冷却は要せず、次のステップが許容する温度まで冷却されればよい。
本工程の加熱は、ロータリーキルンまたはローラーハースキルンによる加熱でもよい。ロータリーキルンによる加熱は、連続式、バッチ式いずれの場合でも攪拌しながら加熱することができる。
加熱の際に用いる、るつぼは酸化アルミニウム(アルミナと記す)のるつぼが好ましい。アルミナのるつぼは不純物を放出しにくい材質である。本実施の形態においては、純度が99.9%のアルミナのるつぼを用いる。るつぼには蓋を配して加熱すると好ましい。材料の揮発又は昇華を防ぐことができる。
加熱が終わったあと、必要に応じで粉砕又は解砕し、さらにふるいを実施してもよい。加熱後の材料を回収する際に、るつぼから乳鉢へ移動させたのち回収してもよい。また、当該乳鉢はアルミナの乳鉢を用いると好適である。アルミナの乳鉢は不純物を放出しにくい材質である。具体的には、純度が90%以上、好ましくは純度が99%以上のアルミナの乳鉢を用いる。なお、ステップS13以外の後述の加熱の工程においても、ステップS13と同等の加熱条件を適用できる。
<ステップS14>
以上の工程により、図7Aに示すステップS14で遷移金属を有する複合酸化物(LiMO)を得ることができる。複合酸化物は、LiMOで表されるリチウムを有する複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。遷移金属としてコバルトを用いた場合、コバルトを有する複合酸化物と称し、LiCoOで表される。組成については厳密にLi:Co:O=1:1:2に限定されるものではない。
ステップS11乃至ステップS14では固相法で複合酸化物を製造する例を示したが、共沈法で複合酸化物を製造してもよい。また水熱法で複合酸化物を製造してもよい。
<ステップS15>
次に、図7Aに示すステップS15として、上記複合酸化物を加熱する。複合酸化物に対する最初の加熱のため、ステップS15の加熱を初期加熱と呼ぶことがある。初期加熱を経ると、複合酸化物の表面がなめらかになる。表面がなめらかとは、複合酸化物の表面には凹凸が少なく、複合酸化物が全体的に丸みを帯び、さらに角部が丸みを帯びてくる様子をいう。さらに、複合酸化物の表面へ付着した異物が少ない状態をなめらかと呼ぶ。異物は凹凸の要因となると考えられ、複合酸化物の表面へ付着しない方が好ましい。
本発明者らは初期加熱を行うことで充放電後の劣化を低減又は抑制できることを見出した。表面をなめらかにするための初期加熱は、リチウム源を用意しなくてよい。または、表面をなめらかにするための初期加熱は、添加元素源を用意しなくてよい。または、表面をなめらかにするための初期加熱はフラックス剤を用意しなくてよい。
初期加熱は、以下に示すステップS20の前に加熱するものであり、予備加熱または前処理と呼ぶことがある。
ステップS11等で準備したリチウム源および/または遷移金属源には、不純物が混入していることがあるが、初期加熱によってステップ14で完成した複合酸化物から不純物を低減させることが可能である。
本工程の加熱条件は上記複合酸化物の表面がなめらかになるものであればよい。たとえばステップS13で説明した加熱条件から選択して実施することができる。当該加熱条件について補足すると、本工程の加熱温度は、複合酸化物の結晶構造を維持するため、ステップS13の温度より低くするとよい。また本工程の加熱時間は、複合酸化物の結晶構造を維持するため、ステップS13の時間より短くするとよい。たとえばステップS15の加熱条件は700℃以上1000℃以下の温度で、2時間以上の加熱を行うとよい。
上記複合酸化物は、ステップS13の加熱によって、複合酸化物の表面と内部に温度差が生じることがある。温度差が生じると収縮差が誘発されることがある。温度差により、表面と内部の流動性が異なるため収縮差が生じるとも考えられる。収縮差に関連するエネルギーは、複合酸化物に内部応力の差を与えてしまう。内部応力の差は歪みとも称され、当該エネルギーを歪みエネルギーと呼ぶことがある。内部応力はステップS15の初期加熱により除去又は緩和され、別言すると歪みエネルギーはステップS15の初期加熱により均質化されると考えられる。歪みエネルギーが均質化されると複合酸化物の歪みが除去又は緩和される。そのためステップS15を経ると複合酸化物の表面がなめらかになる可能性がある。表面がなめらかになることを表面が改善されたとも称する。別言すると、ステップS15を経ると複合酸化物に生じた収縮差が除去又は緩和され、複合酸化物の表面がなめらかになると考えられる。
また収縮差は上記複合酸化物にミクロなずれ、たとえば結晶のずれを生じさせることがある。当該ずれを低減するためにも、ステップS15の加熱を実施するとよい。本工程を経ると、上記複合酸化物のずれを均一化させることが可能である。ずれが均一化されると、複合酸化物の表面がなめらかになる可能性がある。結晶粒の整列が行われたとも称する。別言すると、ステップS15を経ると複合酸化物に生じた結晶等のずれが除去又は緩和され、複合酸化物の表面がなめらかになると考えられる。
表面がなめらかな複合酸化物を正極活物質として用いると、二次電池として充放電した際の劣化が抑制され、正極活物質の割れを防ぐこともできる。
複合酸化物の表面がなめらかな状態は、複合酸化物の一断面において、表面の凹凸情報を測定データより数値化したとき、少なくとも10nm以下の表面粗さを有するということができる。一断面は、たとえばSTEM(走査透過型電子顕微鏡)で観察する際に取得する断面である。
なお、ステップS14としてあらかじめ合成されたリチウム、および遷移金属を有する複合酸化物を用いてもよい。この場合、ステップS11乃至ステップS13を省略することができる。あらかじめ合成された複合酸化物に対してステップS15を実施することで、表面がなめらかな複合酸化物を得ることができる。
初期加熱により複合酸化物のリチウムが減少する場合が考えらえる。次のステップS20等で説明する添加元素が減少したリチウムのおかげで複合酸化物に入りやすくなる可能性がある。
なお、初期加熱は省略してもよい。たとえば複合酸化物が十分なめらかな場合等は初期加熱を省略できる。
<ステップS20>
層状岩塩型の結晶構造をとりうる範囲で、表面がなめらかな複合酸化物に添加元素Xを加えてもよい。表面がなめらかな複合酸化物に添加元素Xを加えると、添加元素Xをムラなく添加することができる。よって、初期加熱後に添加元素を添加する順が好ましい。添加元素Xを添加するステップについて、図7B、および図7Cを用いて説明する。
<ステップS21>
図7Bに示すステップS21では、複合酸化物に添加する添加元素源(X源)を用意する。本実施の形態ではX源としてMg源およびF源を用意する。ステップS21では添加元素源と合わせて、リチウム源を準備してもよい。
添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、およびヒ素の中から選ばれる一または二以上の元素を用いることができる。また、添加元素Xとしては、臭素、およびベリリウムから選ばれる一または以上の元素を用いることができる。ただし、臭素、およびベリリウムについては、生物に対し毒性を有する元素であるため、先に述べた添加元素を用いる方が好適である。
添加元素Xにマグネシウムを選んだとき、添加元素源はマグネシウム源と呼ぶことができる。当該マグネシウム源としてフッ化マグネシウム、酸化マグネシウム、水酸化マグネシウム、または炭酸マグネシウム等を用いることができる。また上述したマグネシウム源を複数用いてもよい。
添加元素Xにフッ素を選んだとき、添加元素源はフッ素源と呼ぶことができる。当該フッ素源としては、たとえばフッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化アルミニウム(AlF)、フッ化チタン(TiF)、フッ化コバルト(CoF、CoF)、フッ化ニッケル(NiF)、フッ化ジルコニウム(ZrF)、フッ化バナジウム(VF)、フッ化マンガン、フッ化鉄、フッ化クロム、フッ化ニオブ、フッ化亜鉛(ZnF)、フッ化カルシウム(CaF)、フッ化ナトリウム(NaF)、フッ化カリウム(KF)、フッ化バリウム(BaF)、フッ化セリウム(CeF)、フッ化ランタン(LaF)、または六フッ化アルミニウムナトリウム(NaAlF)等を用いることができる。なかでも、フッ化リチウムは融点が848℃と比較的低く、後述する加熱工程で溶融しやすいため好ましい。
フッ化マグネシウムはフッ素源としてもマグネシウム源としても用いることができる。またフッ化リチウムはリチウム源としても用いることができる。ステップS21に用いられるその他のリチウム源は炭酸リチウムがある。
またフッ素源は気体でもよく、フッ素(F)、フッ化炭素、フッ化硫黄、またはフッ化酸素(OF、O、O、O、O、O、OF)等を用い、後述する加熱工程において雰囲気中に混合させてもよい。また上述したフッ素源を複数用いてもよい。
本実施の形態ではフッ素源としてフッ化リチウム(LiF)を準備し、フッ素源およびマグネシウム源としてフッ化マグネシウム(MgF)を準備する。フッ化リチウムとフッ化マグネシウムは、LiF:MgF=65:35(モル比)程度で混合すると融点を下げる効果が最も高くなる。一方、フッ化リチウムが多くなると、リチウムが過剰になりすぎサイクル特性が悪化する懸念がある。そのため、フッ化リチウムとフッ化マグネシウムのモル比は、LiF:MgF=x:1(0≦x≦1.9)であることが好ましく、LiF:MgF=x:1(0.1≦x≦0.5)がより好ましく、LiF:MgF=x:1(x=0.33及びその近傍)がさらに好ましい。なお本明細書等において近傍とは、その値の0.9倍より大きく1.1倍より小さい値とする。
<ステップS22>
次に、図7Bに示すステップS22では、マグネシウム源およびフッ素源を粉砕および混合する。本工程は、ステップS12で説明した粉砕および混合の条件から選択して実施することができる。
必要に応じてステップS22の後に加熱工程を行ってもよい。ステップS22の後の加熱工程はステップS13で説明した加熱条件から選択して実施することができる。ステップS22の後の加熱時間は2時間以上が好ましく、加熱温度は800℃以上1100℃以下が好ましい。
<ステップS23>
次に、図7Bに示すステップS23では、上記で粉砕、混合した材料を回収して、添加元素源(X源)を得ることができる。なお、ステップS23に示す添加元素源は、複数の出発材料から製造されたものであり、混合材料又は混合物と呼ぶことができる。
上記混合物の粒径は、メディアン径(D50)が600nm以上20μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。添加元素源(X源)として、一種の材料を用いた場合においても、メディアン径(D50)が600nm以上20μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。
このような微粉化された混合物(添加元素が1種の場合も含む)であると、後の工程でステップS14の複合酸化物と混合したときに、複合酸化物の表面に混合物を均一に付着させやすい。複合酸化物の表面に混合物が均一に付着していると、加熱後に複合酸化物の表層部に均一にフッ素およびマグネシウムを分布または拡散させやすいため好ましい。フッ素およびマグネシウムが分布した領域を表層部と呼ぶこともできる。表層部にフッ素およびマグネシウムが含まれない領域があると好ましくない。なおフッ素を用いて説明したが、フッ素は塩素でもよく、これらを含むものとしてハロゲンと読み替えることができる。
<ステップS21>
図7Bとは異なる工程について図7Cを用いて説明する。図7Cに示すステップS21では、複合酸化物に添加する添加元素源を4種用意する。すなわち図7Cは図7Bとは添加元素源の種類が異なる。添加元素源と合わせて、リチウム源を準備してもよい。
4種の添加元素源として、マグネシウム源(Mg源)、フッ素源(F源)、ニッケル源(Ni源)、およびアルミニウム源(Al源))を準備する。なお、マグネシウム源およびフッ素源は図7Bで説明した化合物等から選択することができる。ニッケル源としては、酸化ニッケル、又は水酸化ニッケル等を用いることができる。アルミニウム源としては、酸化アルミニウム、又は水酸化アルミニウム等を用いることができる。
<ステップS22>および<ステップS23>
次に、図7Cに示すステップS22およびステップS23は、図7Bで説明したステップと同様である。
<ステップS31>
次に、図7Aに示すステップS31では、複合酸化物と、添加元素源(X源)とを混合する。リチウム、遷移金属および酸素を有する複合酸化物中の遷移金属の原子数Aと、添加元素Xが有するマグネシウムの原子数AMgとの比は、A:AMg=100:y(0.1≦y≦6)であることが好ましく、A:AMg=100:y(0.3≦y≦3)であることがより好ましい。
ステップS31の混合は、複合酸化物を破壊させないためにステップS12の混合よりも穏やかな条件とすることが好ましい。たとえば、ステップS12の混合よりも回転数が少ない、または時間が短い条件とすることが好ましい。また湿式よりも乾式のほうが穏やかな条件であると言える。混合にはたとえばボールミル、ビーズミル等を用いることができる。ボールミルを用いる場合は、たとえばメディアとしてジルコニアボールを用いることが好ましい。
本実施の形態では、直径1mmのジルコニアボールを用いたボールミルで、150rpm、1時間、乾式で混合することとする。また該混合は、露点が−100℃以上−10℃以下のドライルームで行うこととする。
<ステップS32>
次に、図7AのステップS32において、上記で混合した材料を回収し、混合物903を得る。回収の際、必要に応じて解砕し、さらに解砕後にふるいを実施してもよい。
なお、本実施の形態ではフッ素源としてフッ化リチウム、およびマグネシウム源としてフッ化マグネシウムを、初期加熱を経た複合酸化物にあとから添加する方法について説明している。しかしながら、本発明は上記方法に限定されない。ステップS11の段階、つまり複合酸化物の出発材料の段階でマグネシウム源およびフッ素源等をリチウム源および遷移金属源へ添加することができる。その後ステップS13で加熱してマグネシウムおよびフッ素が添加されたLiMOを得ることができる。この場合は、ステップS11乃至ステップS14の工程と、ステップS21乃至ステップS23の工程を分ける必要がない。簡便で生産性が高い方法であるといえる。
また、あらかじめマグネシウムおよびフッ素が添加されたコバルト酸リチウムを用いてもよい。マグネシウムおよびフッ素が添加されたコバルト酸リチウムを用いれば、ステップS11乃至ステップS32、およびステップS20の工程を省略することができる。簡便で生産性が高い方法であるといえる。
または、あらかじめマグネシウムおよびフッ素が添加されたコバルト酸リチウムに対して、ステップS20に従いさらにマグネシウム源およびフッ素源、またはマグネシウム源、フッ素源、ニッケル源、およびアルミニウム源を添加してもよい。
<ステップS33>
次に、図7Aに示すステップS33では、混合物903を加熱する。ステップS13で説明した加熱条件から選択して実施することができる。ステップS33の加熱時間は2時間以上が好ましい。
ここで加熱温度について補足する。ステップS33の加熱温度の下限は、複合酸化物(LiMO)と添加元素源との反応が進む温度以上である必要がある。反応が進む温度とは、LiMOと添加元素源との有する元素の相互拡散が起きる温度であればよく、これらの材料の溶融温度よりも低くてもよい。酸化物を例にして説明するが、溶融温度Tの0.757倍(これをタンマン温度Tと記す)から固相拡散が起こることがわかっている。そのため、ステップS33における加熱温度としては、500℃以上であればよい。
勿論、混合物903の少なくとも一部が溶融する温度以上であると、より反応が進みやすい。たとえば、添加元素源として、LiFおよびMgFを有する場合、LiFとMgFの共融点は742℃付近であるため、ステップS33の加熱温度の下限は742℃以上とすると好ましい。
また、LiCoO:LiF:MgF=100:0.33:1(モル比)となるように混合して得られた混合物903は、示差走査熱量測定(DSC測定)において830℃付近に吸熱ピークが観測される。よって、加熱温度の下限は830℃以上がより好ましい。
加熱温度は高い方が反応が進みやすく、加熱時間が短く済み、生産性が高く好ましい。
加熱温度の上限はLiMOの分解温度(LiCoOの分解温度は1130℃)未満とする。分解温度の近傍の温度では、微量ではあるがLiMOの分解が懸念される。そのため、1000℃以下であるとより好ましく、950℃以下であるとさらに好ましく、900℃以下であるとさらに好ましい。
これらを踏まえると、ステップS33における加熱温度としては、500℃以上1130℃以下が好ましく、500℃以上1000℃以下がより好ましく、500℃以上950℃以下がさらに好ましく、500℃以上900℃以下がさらに好ましい。また、742℃以上1130℃以下が好ましく、742℃以上1000℃以下がより好ましく、742℃以上950℃以下がさらに好ましく、742℃以上900℃以下がさらに好ましい。また、800℃以上1100℃以下が好ましく、830℃以上1130℃以下がより好ましく、830℃以上1000℃以下がさらに好ましく、830℃以上950℃以下がさらに好ましく、830℃以上900℃以下がさらに好ましい。なおステップS33における加熱温度は、ステップ13よりも低いとよい。
さらに混合物903を加熱する際、フッ素源等に起因するフッ素またはフッ化物の分圧を適切な範囲に制御することが好ましい。
本実施の形態で説明する製造方法では、一部の材料、たとえばフッ素源であるLiFが融剤として機能する場合がある。この機能により加熱温度を複合酸化物(LiMO)の分解温度未満、たとえば742℃以上950℃以下にまで低温化でき、表層部にマグネシウムをはじめとする添加元素Xを分布させ、良好な特性の正極活物質を製造できる。
しかし、LiFは酸素よりも気体状態での比重が軽いため、加熱によりLiFが揮発又は昇華する可能性があり、揮発又は昇華すると混合物903中のLiFが減少してしまう。すると融剤としての機能が弱くなってしまう。よって、LiFの揮発又は昇華を抑制しつつ、加熱する必要がある。なお、フッ素源等としてLiFを用いなかったとしても、LiMO表面のLiとフッ素源のFが反応して、LiFが生じ、揮発又は昇華する可能性もある。そのため、LiFより融点が高いフッ化物を用いたとしても、同じように揮発又は昇華の抑制が必要である。
そこで、LiFを含む雰囲気で混合物903を加熱すること、すなわち、加熱炉内のLiFの分圧が高い状態で混合物903を加熱することが好ましい。このような加熱により混合物903中のLiFの揮発又は昇華を抑制することができる。
本工程の加熱は、混合物903同士が固着しないように加熱すると好ましい。加熱中に混合物903同士が固着すると、雰囲気中の酸素との接触面積が減る、および添加元素(たとえばフッ素)が拡散する経路を阻害することにより、表層部への添加元素(たとえばマグネシウムおよびフッ素)の分布が悪化する可能性がある。
また、添加元素(たとえばフッ素)が表層部に均一に分布するとなめらかで凹凸が少ない正極活物質を得られると考えられている。そのためステップS15の加熱を経た混合物の表面が、本工程でなめらかな状態を維持する、またはより一層なめらかになるためには、固着しない方がよい。
また、ロータリーキルンによって加熱する場合は、キルン内の酸素を含む雰囲気の流量を制御して加熱することが好ましい。たとえば酸素を含む雰囲気の流量を少なくする、またはキルン内に酸素雰囲気を導入した後は酸素をフローしない、つまりOパージする等が好ましい。すなわち、酸素をフローするとフッ素源が蒸散又は昇華する可能性があり、表面のなめらかさを維持するためにはOパージが好ましい。
ローラーハースキルンによって加熱する場合は、たとえば混合物903の入った容器に蓋を配することでLiFを含む雰囲気で混合物903を加熱することができる。
ステップS33の加熱時間について補足する。加熱時間は、加熱温度、ステップS14のLiMOの大きさ、および組成等の条件により変化する。粒径が小さい場合は、粒径が大きい場合よりも低い温度または短い時間がより好ましい場合がある。
図7AのステップS14の複合酸化物(LiMO)のメディアン径(D50)が12μm程度の場合、ステップS33の加熱温度は、たとえば600℃以上950℃以下が好ましい。ステップS33の加熱時間はたとえば3時間以上が好ましく、10時間以上がより好ましく、60時間以上がさらに好ましい。なお、ステップS33の加熱後の降温時間は、たとえば10時間以上50時間以下とすることが好ましい。
一方、ステップS14の複合酸化物(LiMO)のメディアン径(D50)が5μm程度の場合、ステップS33の加熱温度はたとえば600℃以上950℃以下が好ましい。ステップS33の加熱時間はたとえば1時間以上10時間以下が好ましく、2時間程度がより好ましい。なお、ステップS33の加熱後の降温時間は、たとえば10時間以上50時間以下とすることが好ましい。
<ステップS34>
次に、図7Aに示すステップS34では、加熱した材料を回収し、必要に応じて解砕して、正極活物質100を得る。このとき、回収された粒子をさらに、ふるいにかけると好ましい。以上の工程により、本発明の一形態の正極活物質100を製造することができる。本発明の一形態の正極活物質は表面がなめらかである。
《正極活物質の製造方法2》
次に、本発明の一形態であって、正極活物質の製造方法1とは異なる方法について説明する。
図8において、図7Aと同様にステップS11乃至S15までを行い、表面がなめらかな複合酸化物(LiMO)を準備する。
<ステップS20a>
層状岩塩型の結晶構造をとりうる範囲で、複合酸化物に添加元素Xを加えてもよいことは上述した通りであるが、本製造方法2では添加元素Xを2回以上に分けて添加するステップについて、図9Aも参照しながら説明する。
<ステップS21>
図9Aに示すステップS21では、第1の添加元素源(X1源)を準備する。X1源としては、図7Bに示すステップS21で説明した添加元素Xの中から選択して用いることができる。たとえば、添加元素X1としては、マグネシウム、フッ素、およびカルシウムの中から選ばれるいずれか一または複数を好適に用いることができる。図9AではX1源として、マグネシウム源(Mg源)、およびフッ素源(F源)を用いる場合を例示する。
図9Aに示すステップS21乃至ステップS23については、図7Bに示すステップS21乃至ステップS23と同様の条件で製造することができる。その結果、ステップS23で添加元素源(X1源)を得ることができる。
また、図8に示すステップS31乃至S33については、図7Aに示すステップS31乃至S33と同様の工程にて製造することができる。
<ステップS34a>
次に、ステップS33で加熱した材料を回収し、添加元素X1を有する複合酸化物を製造する。ステップS14の複合酸化物と区別するため第2の複合酸化物とも呼ぶ。
<ステップS40>
図8に示すステップS40では、第2の添加元素源(X2源)を添加する。図9Bおよび図9Cも参照しながら説明する。
<ステップS41>
図9Bに示すステップS41では、第2の添加元素源(X2源)を準備する。X2源としては、図7Bに示すステップS21で説明した添加元素Xの中から選択して用いることができる。たとえば、添加元素X2としては、ニッケル、チタン、ホウ素、ジルコニウム、およびアルミニウムの中から選ばれるいずれか一または二以上を好適に用いることができる。図9Bでは添加元素X2として、ニッケル、およびアルミニウムを用いる場合を例示する。
図9Bに示すステップS41乃至ステップS43については、図7Bに示すステップS21乃至ステップS23と同様の条件で製造することができる。その結果、ステップS43で添加元素源(X2)を得ることができる。
また、図9Cには、図9Bを用いて変形例を示す。図9Cに示すステップS41ではニッケル源(Ni源)、およびアルミニウム源(Al源)を用意し、ステップS42aではそれぞれ独立に粉砕する。図9Cのステップは、ステップS42aにて添加元素を独立に粉砕していることが図9Bと異なる。その結果、ステップS43では、第2の添加元素源が複数用意されることとなる。
<ステップS51乃至ステップS54>
次に、図8に示すステップS51乃至ステップS53は、図7Aに示すステップS31乃至ステップS34と同様の条件にて製造することができる。ステップS52で得られた混合物を混合物904とする。加熱工程に関するステップS53の条件はステップS33より低い温度且つ短い時間でよい。以上の工程により、ステップS54では、本発明の一形態の正極活物質100を製造することができる。本発明の一形態の正極活物質は表面がなめらかである。
図8および図9に示すように、製造方法2では、複合酸化物への添加元素を第1の添加元素X1と、第2の添加元素X2とに分けて導入する。分けて導入することにより、各添加元素の深さ方向のプロファイルを変えることができる。たとえば、第1の添加元素を内部に比べて表層部で高い濃度となるようにプロファイルし、第2の添加元素を表層部に比べて内部で高い濃度となるようにプロファイルすることも可能である。
本実施の形態で示した初期加熱を経ると表面がなめらかな正極活物質を得ることができる。
本実施の形態で示した初期加熱は、複合酸化物に対して実施する。よって初期加熱は、複合酸化物を得るための加熱温度よりも低く、かつ複合酸化物を得るための加熱時間よりも短い条件が好ましい。複合酸化物に添加元素を添加する場合は、初期加熱後に添加工程を実施すると好ましい。当該添加工程は2回以上に分けることが可能である。このような工程順に従うと、初期加熱で得られた表面のなめらかさは維持されるため好ましい。複合酸化物は遷移金属としてコバルトを有する場合、コバルトを有する複合酸化物と読み替えることができる。
本実施の形態は、他の実施の形態と組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、本発明の一態様の正極活物質について説明する。
図10Aは本発明の一態様である正極活物質100の断面図である。上記実施の形態に従って作製された直後の状態であって、少なくともプレス前とする。そのため、クラック、ピット及び閉じたひびは省略する。図10A中のA−B付近を拡大した図を図10B1および図10B2に示す。図10A中のC−D付近を拡大した図を図10C1および図10C2に示す。
図10A乃至図10C2に示すように、正極活物質100は、表層部100aと、内部100bを有する。これらの図中に破線で表層部100aと内部100bの境界を示す。表層部100aは正極活物質の表面から内部に向かって10nmまでの領域を指す。クラックにより新たに生じた面も表面に含むことがある。表層部100aは表面近傍、表面近傍領域、またはシェルと記すことがある。また正極活物質の表層部100aより深い領域を、内部100bと呼ぶ。内部100bは、内部領域またはコアと記すことがある。
また図10Aの右図には、一点破線で結晶粒界101の一部を示す。
表層部100aは内部100bよりも添加元素の濃度が高いことが好ましい。また添加元素は濃度勾配を有していることが好ましい。また添加元素が複数ある場合は、添加元素によって、濃度のピークの表面からの深さが異なっていることが好ましい。
たとえば添加元素Aは図10B1にグラデーションで示すように、内部100bから表面に向かって高くなる濃度勾配を有することが好ましい。このような濃度勾配を有することが好ましい添加元素Aとして、たとえばマグネシウム、フッ素、チタン、ケイ素、リン、ホウ素およびカルシウム等が挙げられる。
別の添加元素Bは図10B2にグラデーションで示すように、濃度勾配を有しかつ図10B1よりも深い領域に濃度のピークを有することが好ましい。濃度のピークは表層部100aに存在してもよいし、表層部100aより深くてもよい。最表面層ではない領域に濃度のピークを有することが好ましい。たとえば表面から内部に向かって5nm以上30nm以下の領域にピークを有することが好ましい。このような濃度勾配を有することが好ましい添加元素Bとして、たとえばアルミニウムおよびマンガンが挙げられる。
また添加元素の上述のような濃度勾配に起因して、内部100bから、表面に向かって結晶構造が連続的に変化することが好ましい。
<含有元素>
正極活物質100は、リチウムと、遷移金属Mと、酸素と、添加元素と、を有する。正極活物質100はLiMOで表される複合酸化物に添加元素が添加されたものといってもよい。ただし本発明の一態様の正極活物質はLiMOで表されるリチウムを有する複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。また添加元素が添加された正極活物質も複合酸化物という場合がある。
正極活物質100が有する遷移金属Mとしてコバルトを75原子%以上、好ましくは90原子%以上、さらに好ましくは95原子%以上用いると、合成が比較的容易で取り扱いやすく、優れたサイクル特性を有するなど利点が多い。また遷移金属Mとして上記の範囲のコバルトに加えてニッケルを有すると、コバルトと酸素の八面体からなる層状構造のずれが抑制される場合がある。そのため特に高温での充電状態において結晶構造がより安定になる場合があり好ましい。
なお遷移金属Mとして、必ずしもマンガンを含まなくてもよい。マンガンを実質的に含まない正極活物質100とすることで、合成が比較的容易で取り扱いやすく、優れたサイクル特性を有するといった上記の利点がより大きくなる場合がある。正極活物質100に含まれるマンガンの重量はたとえば600ppm以下、より好ましくは100ppm以下であることが好ましい。
一方、正極活物質100が有する遷移金属Mとしてニッケルを33原子%以上、好ましくは60原子%以上、さらに好ましくは80原子%以上用いると、コバルトが多い場合と比較して原料が安価になる場合があり、また重量あたりの放電容量が増加する場合があり好ましい。
なお遷移金属Mとして、必ずしもニッケルを含まなくてもよい。
正極活物質100が有する添加元素は上記実施の形態で示したものから選択できる。
本発明の一態様の正極活物質100では、充電により正極活物質100からリチウムが抜けても、遷移金属Mと酸素の八面体からなる層状構造が壊れないよう、添加元素の濃度の高い表層部100a、すなわち粒子の外周部が補強している。
また添加元素の濃度勾配は、正極活物質100の表層部100a全体において同じような勾配であることが好ましい。不純物濃度の高さに由来する補強が表層部100aに均質に存在することが好ましいといってもよい。表層部100aの一部に補強があっても、補強のない部分が存在すれば、ない部分に応力が集中する恐れがある。粒子の一部に応力が集中すると、欠陥が生じ、サイクル特性の低下につながる恐れがある。
ただし必ずしも、正極活物質100の表層部100a全てにおいて添加元素が同じような濃度勾配を有していなくてもよい。たとえば図10C1および図10C2のように濃度勾配が異なってもよい。
ここで、C−D付近はR−3mの層状岩塩型の結晶構造を有し、表面は(001)配向であるとする。(001)配向した表面は、その他の表面と添加元素の分布が異なっていてもよい。たとえば、(001)配向した表面とその表層部100aは、添加元素Aおよび添加元素Bの少なくとも一方の分布が、その他の配向と比較して表面から浅い部分にとどまっていてもよい。または、(001)配向した表面とその表層部100aは、その他の配向と比較して添加元素Aおよび添加元素Bの少なくとも一方の濃度が低くてもよい。または、(001)配向した表面とその表層部100aは、添加元素Aおよび添加元素Bの少なくとも一方が検出下限以下であってもよい。
R−3mの層状岩塩型の結晶構造では、(001)面に平行に陽イオンが配列している。これは遷移金属Mと酸素の8面体からなるMO層と、リチウム層と、が(001)面と平行に交互に積層した構造であるということができる。そのためリチウムイオンの拡散経路も(001)面に平行に存在する。
遷移金属Mと酸素の8面体からなるMO層は、比較的安定であるため、MO層が表面に存在する(001)面は比較的安定である。(001)面にはリチウムイオンの拡散経路は露出していない。
一方、(001)配向以外の表面ではリチウムイオンの拡散経路が露出している。そのため(001)配向以外の表面および表層部100aは、リチウムイオンの拡散経路を保つために重要な領域であると同時に、リチウムイオンが最初に脱離する領域であるため不安定になりやすい。そのため(001)配向以外の表面および表層部100aを補強することが、正極活物質100全体の結晶構造を保つために好ましい。
先の実施の形態で示したような、純度の高いLiMOを製造した後に、添加元素を後から混合して加熱する製造方法は、主にリチウムイオンの拡散経路を介して添加元素が広がるため、(001)以外の面およびその表層部100aの添加元素の分布を好ましい範囲にしやすい。
先の実施の形態で示した、純度の高いLiMOを製造した後に、添加元素を混合して加熱する製造方法により、(001)面よりも、その他の面およびその表層部100aの添加元素を好ましい分布にすることができる。また、初期加熱を経る製造方法では、初期加熱により表層部のリチウム原子がLiMOから脱離することが期待できるため、さらにマグネシウム原子をはじめとする添加元素を高濃度に表層部に分布させやすくなると考えられる。
また、正極活物質100の表面はなめらかで凹凸が少ないことが好ましい。R−3mの層状岩塩型の結晶構造を有する複合酸化物は、結晶面である(001)面に平行な面、たとえばリチウムが配列した面においてスリップが生じやすい。例えば正極合剤をプレスしたときにスリップが生じることがある。図11Aのように、(001)面が水平である場合は、プレス等の工程を経ることで図11B中に矢印で示したように水平にスリップが起こり、変形する場合がある。プレスは複数回実施してもよい。
この場合、スリップした結果新たに生じた表面およびその表層部100aには、添加元素が存在しないか、検出下限以下である場合がある。図11B中のE−Fはスリップした結果新たに生じた表面およびその表層部100aの例である。E−F付近を拡大した図を図11C1および図11C2に示す。図11C1および図11C2では、図10B1乃至図10C2と異なり添加元素Aおよび添加元素Bのグラデーションが存在しない。
しかしスリップは(001)面に平行に生じやすいため、新たに生じた表面およびその表層部100aは(001)配向となる。(001)面はリチウムイオンの拡散経路が露出せず、比較的安定であるため、添加元素が存在しないか、検出下限以下であっても問題がほとんどない。
なお上述のように、組成がLiMO、結晶構造がR−3mの層状岩塩型を有する複合酸化物では、(001)面と平行に陽イオンが配列する。またHAADF−STEM像では、LiMOのうち原子番号の最も大きい遷移金属Mの輝度が最も高くなる。そのためHAADF−STEM像において、輝度の高い原子の配列は遷移金属Mの配列と考えてよい。この輝度の高い配列の繰り返しを、結晶縞、格子縞といってもよい。さらに結晶縞または格子縞は、結晶構造がR−3mの層状岩塩型である場合(001)面と平行と考えてよい。
正極活物質100は欠陥を有することがあり、充放電を繰り返すとこれらから遷移金属Mの溶出、結晶構造の崩れ、本体の割れ、酸素の脱離などが生じる恐れがある。しかしこれらを埋め込むように図10Aに示す埋め込み部102が存在すると、遷移金属Mの溶出などを抑制することができる。そのため信頼性およびサイクル特性の優れた正極活物質100とすることができる。
また正極活物質100は添加元素が偏在する領域として凸部103を有していてもよい。
上述したように正極活物質100が有する添加元素は、過剰であるとリチウムの挿入および脱離に悪影響が出る恐れがある。また二次電池としたときに内部抵抗の上昇、放電容量の低下等を招く恐れもある。一方、不足であると表層部100a全体に分布せず、結晶構造の劣化を抑制する効果が不十分になる恐れがある。このように添加元素は正極活物質100において適切な濃度である必要があるが、その調整は容易ではない。
そのため正極活物質100が、添加元素が偏在する領域を有していると、過剰な添加元素の一部が正極活物質100の内部100bから除かれ、内部100bにおいて適切な添加元素濃度とすることができる。これにより二次電池としたときの内部抵抗の上昇、放電容量の低下等を抑制することができる。二次電池の内部抵抗の上昇を抑制できることは、特に高レートでの充放電、たとえば2C以上での充放電において極めて好ましい特性である。
添加元素Aの一つであるマグネシウムは2価であり、層状岩塩型の結晶構造における遷移金属サイトよりもリチウムサイトに存在する方が安定であるため、リチウムサイトに入りやすい。マグネシウムが表層部100aのリチウムサイトに適切な濃度で存在することで、層状岩塩型の結晶構造を保持しやすくできる。またマグネシウムが存在することで、充電深度が高い時のマグネシウムの周囲の酸素の脱離を抑制することができる。またマグネシウムが存在することで正極活物質の密度が高くなることが期待できる。マグネシウムは、適切な濃度であれば充放電に伴うリチウムの挿入および脱離に悪影響を及ぼさず好ましい。しかしながら、マグネシウムが過剰であるとリチウムの挿入および脱離に悪影響が出る恐れがある。そのため後述するように、表層部100aはたとえばマグネシウムよりも遷移金属Mの濃度が高いことが好ましい。
添加元素Bの一つであるアルミニウムは3価であり、層状岩塩型の結晶構造における遷移金属サイトに存在しうる。アルミニウムは周囲のコバルトの溶出を抑制することができる。またアルミニウムは酸素との結合力が強いため、アルミニウムの周囲の酸素の脱離を抑制することができる。そのため添加元素としてアルミニウムを有すると充放電を繰り返しても結晶構造が崩れにくい正極活物質100とすることができる。
フッ素は1価の陰イオンであり、表層部100aにおいて酸素の一部がフッ素に置換されていると、リチウム脱離エネルギーが小さくなる。これは、リチウム脱離に伴うコバルトイオンの価数の変化が、フッ素を有さない場合は3価から4価、フッ素を有する場合は2価から3価となり、酸化還元電位が異なることによる。そのため正極活物質100の表層部100aにおいて酸素の一部がフッ素に置換されていると、フッ素近傍のリチウムイオンの脱離および挿入がスムースに起きやすいと言える。そのため二次電池に用いたときに充放電特性、レート特性等が向上し好ましい。
チタン酸化物は超親水性を有することが知られている。そのため、表層部100aにチタン酸化物を有する正極活物質100とすることで、極性の高い溶媒に対して濡れ性がよくなる可能性がある。二次電池としたときに正極活物質100と、極性の高い電解液との界面の接触が良好となり、内部抵抗の上昇を抑制できる可能性がある。
二次電池の充電電圧の上昇に伴い、正極の電圧は一般的に上昇する。本発明の一態様の正極活物質は、高い電圧においても安定な結晶構造を有する。充電状態において正極活物質の結晶構造が安定であることにより、充放電の繰り返しに伴う放電容量の低下を抑制することができる。
また、二次電池のショートは二次電池の充電動作および/または放電動作における不具合を引き起こすのみでなく、発熱および発火を招く恐れがある。安全な二次電池を実現するためには、高い充電電圧においてもショート電流が抑制されることが好ましい。本発明の一態様の正極活物質100は、高い充電電圧においてもショート電流が抑制される。そのため高い放電容量と安全性と、を両立した二次電池とすることができる。
添加元素の濃度勾配は、たとえば、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray Spectroscopy)、EPMA(電子プローブ微小分析)等を用いて評価できる。EDX測定のうち、領域内を走査しながら測定し、領域内を2次元に評価することをEDX面分析と呼ぶ。また線状に走査しながら測定し、原子濃度について正極活物質粒子内の分布を評価することを線分析と呼ぶ。さらにEDXの面分析から、線状の領域のデータを抽出したものを線分析と呼ぶ場合もある。またある領域について走査せずに測定することを点分析と呼ぶ。
EDX面分析(たとえば元素マッピング)により、正極活物質100の表層部100a、内部100bおよび結晶粒界101近傍等における、添加元素の濃度を定量的に分析することができる。また、EDX線分析により、添加元素の濃度分布および最大値を分析することができる。
添加元素としてマグネシウムを有する正極活物質100についてEDX線分析をしたとき、表層部100aのマグネシウム濃度のピークは、正極活物質100の表面から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。
また添加元素としてマグネシウムおよびフッ素を有する正極活物質100ではフッ素の分布は、マグネシウムの分布と重畳することが好ましい。そのためEDX線分析をしたとき、表層部100aのフッ素濃度のピークは、正極活物質100の表面から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。
なお、全ての添加元素が同様の濃度分布でなくてもよい。たとえば正極活物質100が添加元素としてアルミニウムを有する場合は上述したようにマグネシウムおよびフッ素と若干異なる分布となっていることが好ましい。たとえばEDX線分析をしたとき、表層部100aのアルミニウム濃度のピークよりも、マグネシウム濃度のピークが表面に近いことが好ましい。たとえばアルミニウム濃度のピークは正極活物質100の表面から中心に向かった深さ0.5nm以上50nm以下に存在することが好ましく、深さ5nm以上30nm以下に存在することがより好ましい。または0.5nm以上30nm以下に存在することが好ましい。または5nm以上50nm以下に存在することが好ましい。
また正極活物質100について線分析または面分析をしたとき、表層部100aにおける添加元素Iと遷移金属Mの原子数の比(I/M)は0.05以上1.00以下が好ましい。さらに添加元素がチタンである場合、チタンと遷移金属Mの原子数の比(Ti/M)は0.05以上0.4以下が好ましく、0.1以上0.3以下がより好ましい。また添加元素がマグネシウムである場合、マグネシウムと遷移金属Mの原子数の比(Mg/M)は0.4以上1.5以下が好ましく、0.45以上1.00以下がより好ましい。また不純物元素がフッ素である場合、フッ素と遷移金属Mの原子数の比(F/M)は0.05以上1.5以下が好ましく、0.3以上1.00以下がより好ましい。
なおEDX線分析結果における正極活物質100の表面は、たとえば以下のように推定することができる。正極活物質100の内部100bにおいて均一に存在する元素、たとえば酸素またはコバルト等の遷移金属Mについて、内部100bの検出量の1/2となった点を表面とする。
正極活物質100は複合酸化物であるので、酸素の検出量を用いて表面を推定することが好ましい。具体的には、まず内部100bの酸素の検出量が安定している領域から酸素濃度の平均値Oaveを求める。このとき明らかに表面より外と判断できる領域に化学吸着またはバックグラウンドによると考えられる酸素Obackgroundが検出される場合は、測定値からObackgroundを減じて酸素濃度の平均値Oaveとすることができる。この平均値Oaveの1/2の値、つまり1/2Oaveに最も近い測定値を示した測定点を、正極活物質の表面であると推定することができる。
また正極活物質100が有する遷移金属Mを用いても表面を推定することができる。たとえば遷移金属Mの95%以上がコバルトである場合は、コバルトの検出量を用いて上記と同様に表面を推定することができる。または複数の遷移金属Mの検出量の和を用いて同様に推定することができる。遷移金属Mの検出量は化学吸着の影響を受けにくい点で、表面の推定に好適である。
また正極活物質100について線分析または面分析をしたとき、結晶粒界101近傍における添加元素Iと遷移金属Mの原子数の比(I/M)は0.020以上0.50以下が好ましい。さらには0.025以上0.30以下が好ましい。さらには0.030以上0.20以下が好ましい。または0.020以上0.30以下が好ましい。または0.020以上0.20以下が好ましい。または0.025以上0.50以下が好ましい。または0.025以上0.20以下が好ましい。または0.030以上0.50以下が好ましい。または0.030以上0.30以下が好ましい。
たとえば添加元素がマグネシウム、遷移金属Mがコバルトであるときは、マグネシウムとコバルトの原子数の比(Mg/Co)は、0.020以上0.50以下が好ましい。さらには0.025以上0.30以下が好ましい。さらには0.030以上0.20以下が好ましい。または0.020以上0.30以下が好ましい。または0.020以上0.20以下が好ましい。または0.025以上0.50以下が好ましい。または0.025以上0.20以下が好ましい。または0.030以上0.50以下が好ましい。または0.030以上0.30以下が好ましい。
また正極活物質100は、表面の少なくとも一部に被膜を有していてもよい。被膜はたとえば充放電に伴い電解液の分解物が堆積して形成されたものであることが好ましい。特に高い充電深度となるような充電を繰り返す場合、正極活物質100の表面に電解液由来の被膜を有することで、サイクル試験特性が向上することが期待される。これは正極活物質表面のインピーダンスの上昇を抑制する、または遷移金属Mの溶出を抑制する、等の理由による。被膜はたとえば炭素、酸素およびフッ素を有することが好ましい。さらに電解液の一部にLiBOB、および/またはSUN(スベロニトリル)を用いた場合などは良質な被膜を得られやすい。そのため、ホウ素、窒素、硫黄、フッ素のうち少なくとも一を有する被膜は良質な被膜である場合があり好ましい。また被膜は正極活物質100の全てを覆っていなくてもよい。
マグネシウム濃度を所望の値よりも高くすると、結晶構造の安定化への効果が小さくなってしまう場合がある。マグネシウムが、リチウムサイトに加えて、コバルトサイトにも入るようになるためと考えられる。本発明の一態様の正極活物質が有するマグネシウムの原子数は、遷移金属Mの原子数の0.001倍以上0.1倍以下が好ましく、0.01倍より大きく0.04倍未満がより好ましく、0.02倍程度がさらに好ましい。または0.001倍以上0.04未満が好ましい。または0.01倍以上0.1倍以下が好ましい。ここで示すマグネシウムの濃度はたとえば、ICP−MS等を用いて正極活物質の粒子全体の元素分析を行った値であってもよいし、正極活物質の製造の過程における原料の配合の値に基づいてもよい。
ニッケルをはじめとする遷移金属Mおよびアルミニウムはコバルトサイトに存在することが好ましいが、一部がリチウムサイトに存在していてもよい。またマグネシウムはリチウムサイトに存在することが好ましい。酸素は、一部がフッ素と置換されていてもよい。
本発明の一態様の正極活物質のマグネシウム濃度が高くなるのに伴って正極活物質の放電容量が減少することがある。その要因としてたとえば、リチウムサイトにマグネシウムが入ることにより、充放電に寄与するリチウム量が減少することが挙げられる。また、過剰なマグネシウムが、充放電に寄与しないマグネシウム化合物を生成する場合もある。本発明の一態様の正極活物質がマグネシウムに加えて、金属Zとしてニッケルを有することにより、重量あたりおよび体積あたりの放電容量を高めることができる場合がある。また本発明の一態様の正極活物質がマグネシウムに加えて、金属Zとしてアルミニウムを有することにより、重量あたりおよび体積あたりの放電容量を高めることができる場合がある。また本発明の一態様の正極活物質がマグネシウムに加えてニッケルおよびアルミニウムを有することにより、重量あたりおよび体積あたりの放電容量を高めることができる場合がある。
≪粒界≫
本発明の一態様の正極活物質100が有する添加元素は、上記で説明した分布に加え、一部は図10Aに示すように結晶粒界101およびその近傍に偏析していることがより好ましい。
より具体的には、正極活物質100の結晶粒界101およびその近傍のマグネシウム濃度が、内部100bの他の領域よりも高いことが好ましい。また結晶粒界101およびその近傍のフッ素濃度も内部100bの他の領域より高いことが好ましい。
結晶粒界101は面欠陥の一つである。そのため正極活物質100表面と同様不安定になりやすく結晶構造の変化が始まりやすい。そのため、結晶粒界101およびその近傍のマグネシウム濃度が高ければ、結晶構造の変化をより効果的に抑制することができる。
また、結晶粒界101およびその近傍のマグネシウム濃度およびフッ素濃度が高いと、結晶粒界101に沿ってクラックが生じた場合でも、クラックにより生じた表面の近傍でマグネシウム濃度およびフッ素濃度が高くなる。そのためクラックが生じた後の正極活物質においてもフッ酸に対する耐食性を高めることができる。
なお本明細書等において、結晶粒界101の近傍とは、粒界から10nm程度までの領域をいうこととする。また結晶粒界101とは、原子の配列に変化のある面をいい、電子顕微鏡像で観察することができる。具体的には、電子顕微鏡像で明線と暗線の繰り返しのなす角度が5度を超えた箇所、または結晶構造が観察できなくなった箇所をいうこととする。
≪粒径≫
本発明の一態様の正極活物質100の粒径は、大きすぎるとリチウムの拡散が難しくなる、集電体に塗工したときに合剤の層(合剤層と記すことがある)の表面が粗くなりすぎる、等の問題がある。一方、小さすぎると、集電体への塗工時に合剤層を担持しにくくなる、電解液との反応が過剰に進む等の問題点も生じる。そのため、メディアン径(D50)が、1μm以上100μm以下が好ましく、2μm以上40μm以下であることがより好ましく、5μm以上30μm以下がさらに好ましい。または1μm以上40μm以下が好ましい。または1μm以上30μm以下が好ましい。または2μm以上100μm以下が好ましい。または2μm以上30μm以下が好ましい。または5μm以上100μm以下が好ましい。または5μm以上40μm以下が好ましい。
≪XPS≫
X線光電子分光(XPS)では、表面から2乃至8nm程度(通常5nm以下)の深さまでの領域の分析が可能である。表層部100aにおいて上記深さの領域までの各元素の濃度を定量的に分析することができる。また、ナロースキャン分析をすれば元素の結合状態を分析することができる。なおXPSの定量精度は多くの場合±1原子%程度、検出下限は元素にもよるが約1原子%である。
本発明の一態様の正極活物質100についてXPS分析をしたとき、添加元素の原子数は遷移金属Mの原子数の1.6倍以上6.0倍以下が好ましく、1.8倍以上4.0倍未満がより好ましい。添加物がマグネシウム、遷移金属Mがコバルトである場合は、マグネシウムの原子数はコバルトの原子数の1.6倍以上6.0倍以下が好ましく、1.8倍以上4.0倍未満がより好ましい。またフッ素等のハロゲンの原子数は、遷移金属Mの原子数の0.2倍以上6.0倍以下が好ましく、1.2倍以上4.0倍以下がより好ましい。
XPS分析を行う場合にはたとえば、X線源として単色化アルミニウムを用いることができる。また、取出角はたとえば45°とすればよい。たとえば下記の装置および条件で測定することができる。
 測定装置:PHI 社製QuanteraII
 X線源:単色化Al(1486.6eV)
検出領域:100μmφ
 検出深さ:約4~5nm(取出角45°)
測定スペクトル:ワイドスキャン,各検出元素のナロースキャン
また、本発明の一態様の正極活物質100についてXPS分析したとき、フッ素と他の元素の結合エネルギーを示すピークは682eV以上685eV未満であることが好ましく、684.3eV程度であることがさらに好ましい。これはフッ化リチウムの結合エネルギーである685eV、およびフッ化マグネシウムの結合エネルギーである686eVのいずれとも異なる値である。つまり、本発明の一態様の正極活物質100がフッ素を有する場合、フッ化リチウムおよびフッ化マグネシウム以外の結合であることが好ましい。
さらに、本発明の一態様の正極活物質100についてXPS分析したとき、マグネシウムと他の元素の結合エネルギーを示すピークは、1302eV以上1304eV未満であることが好ましく、1303eV程度であることがさらに好ましい。これはフッ化マグネシウムの結合エネルギーである1305eVと異なる値であり、酸化マグネシウムの結合エネルギーに近い値である。つまり、本発明の一態様の正極活物質100がマグネシウムを有する場合、フッ化マグネシウム以外の結合であることが好ましい。
表層部100aに多く存在することが好ましい添加元素、たとえばマグネシウムおよびアルミニウムは、XPS等で測定される濃度が、ICP−MS(誘導結合プラズマ質量分析)、あるいはGD−MS(グロー放電質量分析法)等で測定される濃度よりも高いことが好ましい。
マグネシウムおよびアルミニウムは、加工によりその断面を露出させ、断面をTEM−EDXを用いて分析する場合に、表層部100aの濃度が、内部100bの濃度に比べて高いことが好ましい。たとえば、TEM−EDX分析において、マグネシウムの濃度はピークトップから深さ1nmの点でピークの60%以下に減衰することが好ましい。またピークトップから深さ2nmの点でピークの30%以下に減衰することが好ましい。加工はたとえばFIB(Focused Ion Beam)により行うことができる。
XPS(X線光電子分光)の分析において、マグネシウムの原子数はコバルトの原子数の0.4倍以上1.5倍以下であることが好ましい。一方ICP−MSの分析によるマグネシウムの原子数の比Mg/Coは0.001以上0.06以下であることが好ましい。
一方、遷移金属Mに含まれるニッケルは表層部100aに偏在せず、正極活物質100全体に分布していることが好ましい。ただし前述した添加元素が偏在する領域が存在する場合はこの限りではない。
≪表面粗さ≫
本発明の一態様の正極活物質100は、表面がなめらかで凹凸が少ないことが好ましい。表面がなめらかで凹凸が少ないことは、表層部100aにおける添加元素の分布が良好であることを示す一つの要素である。
表面がなめらかで凹凸が少ないことは、たとえば正極活物質100の断面SEM像または断面TEM像、正極活物質100の比表面積等から判断することができる。
本実施の形態は、他の実施の形態と組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、本発明の一形態である正極合剤について説明する。
図12Aには集電体550上に塗工された正極合剤層571の断面図を示す。正極合剤層571は、正極活物質561を有する。さらに正極合剤層571は、粒径の異なる正極活物質562を有すると、電極密度が向上することができるため好ましい。粒径の大きな正極活物質561は、粒径の小さな正極活物質562の6.5倍以上8.5倍以下の粒径を有すると好ましい。
粒径と電極密度との関係について、メディアン径を用いて説明する。まずメディアン径(D50)が3μmである正極活物質562と、メディアン径(D50)が21μmである正極活物質561とを用意する。分級装置で分級するとこのような正極活物質を得ることができる。
正極活物質561のメディアン径(D50)が大きいものと、正極活物質562のメディアン径(D50)が小さいものとの比率が10:0、9:1、8:2、7:3、0:10と変化したときに電極密度がどのように変化するかを、図38に示す。
さらに図38ではサンプルの条件としてプレス圧を異ならせた。下表にサンプルのプレス圧条件を示す。
Figure JPOXMLDOC01-appb-T000001
図38より、メディアン径(大):メディアン径(小)の割合が8:2のとき電極密度が高いことがわかる。さらにサンプルA乃至サンプルEより、いずれのプレス圧においても、メディアン径(大):メディアン径(小)の割合が8:2のとき電極密度が高いことがわかる。
メディアン径(大)がメディアン径(小)より6.5倍以上8.5倍以下、たとえば7倍の関係を満たす正極活物質を用いて電極密度を高めるには、メディアン径(大):メディアン径(小)の比率を8:2とすると好ましい。
正極活物質561または正極活物質562は、上記実施の形態等に従って製造することができる。図12Aにおいて、正極活物質561を対象にして内部と表層部572との境界の例を点線で示す。表層部572を有する正極活物質561は、表層部がシェルに対応し、内部がコアに対応すると考えることができ、コアシェル構造を有する正極活物質と記すことがある。コアシェル構造は正極活物質562へ適用してもよい。コアシェル構造を有する正極活物質は高電圧で充電しても劣化しづらいため好ましい。
正極合剤層571は、導電助剤553を有する。導電助剤553は粒子状であり、カーボンブラック等を用いることができる。正極合剤層571は、さらに針状の導電助剤554を有してもよく、カーボンナノチューブ等を用いることができる。
正極合剤層571は、結着剤555を有し、PVDF等を用いることができる。
正極合剤層571は、空隙556を有する。空隙の割合を正極の空隙率と示すことができ、当該空隙率は、8%以上35%以下、好ましくは12%以上29%以下の範囲が好ましい。正極合剤層571において、空隙556には電解液が含浸するが、上記正極の空隙率に影響しない。
図12Aでは正極活物質561を粒子状として示したが、粒子状であることに限定されない。図12Bに示すように正極活物質561の断面形状は楕円形、長方形、台形、錐形、角が丸まった四角形、非対称の形状であってもよい。なお正極の製造工程でのプレスにより、粒子状であった正極活物質も図12Bに示すような形状へ変形することがある。
図12Cでは、図12Bの導電助剤554を省略して導電助剤553のみを用いた場合を例示する。
本実施の形態は、他の実施の形態と組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、全固体電池の構成について説明する。
図13Aに示すように、本発明の一態様の正極410は、固体電解質層420および負極430を有する全固体電池に用いることができる。
正極410は正極集電体413および正極活物質層414を有する。正極活物質層414は正極活物質411および固体電解質421を有する。正極活物質411には、先の実施の形態で説明した製造方法を用いて製造した正極活物質を用いる。また正極活物質層414は、導電助剤および結着剤を有していてもよい。
固体電解質層420は固体電解質421を有する。固体電解質層420は、正極410と負極430の間に位置し、正極活物質411および負極活物質431のいずれも有さない領域である。
負極430は負極集電体433および負極活物質層434を有する。負極活物質層434は負極活物質431および固体電解質421を有する。また負極活物質層434は、導電助剤および結着剤を有していてもよい。なお、負極430に金属リチウムを用いる場合は、図13Bのように、固体電解質421を有さない負極430とすることができる。負極430に金属リチウムを用いると、二次電池400のエネルギー密度を向上させることができ好ましい。
固体電解質層420が有する固体電解質421としては、たとえば硫化物系固体電解質、酸化物系固体電解質、ハロゲン化物系固体電解質等を用いることができる。
硫化物系固体電解質には、チオリシコン系(Li10GeP12、Li3.25Ge0.250.75等)、硫化物ガラス(70LiS・30P、30LiS・26B・44LiI、63LiS・36SiS・1LiPO、57LiS・38SiS・5LiSiO、50LiS・50GeS等)、硫化物結晶化ガラス(Li11、Li3.250.95等)が含まれる。硫化物系固体電解質は、高い伝導度を有する材料がある、低い温度で合成可能、また比較的やわらかいため充放電を経ても導電経路が保たれやすい等の利点がある。
酸化物系固体電解質には、ペロブスカイト型結晶構造を有する材料(La2/3−xLi3xTiO等)、NASICON型結晶構造を有する材料(Li1−XAlTi2−X(PO等)、ガーネット型結晶構造を有する材料(LiLaZr12等)、LISICON型結晶構造を有する材料(Li14ZnGe16等)、LLZO(LiLaZr12)、酸化物ガラス(LiPO−LiSiO、50LiSiO・50LiBO等)、酸化物結晶化ガラス(Li1.07Al0.69Ti1.46(PO、Li1.5Al0.5Ge1.5(PO等)が含まれる。酸化物系固体電解質は、大気中で安定であるといった利点がある。
ハロゲン化物系固体電解質には、LiAlCl、LiInBr、LiF、LiCl、LiBr、LiI等が含まれる。また、これらハロゲン化物系固体電解質を、ポーラス酸化アルミニウムおよび/またはポーラスシリカの細孔に充填したコンポジット材料も固体電解質として用いることができる。
また、異なる固体電解質を混合して用いてもよい。
中でも、NASICON型結晶構造を有するLi1+xAlTi2−x(PO(0〔x〔1)(以下、LATP)は、アルミニウムとチタンという、本発明の一態様の二次電池400に用いる正極活物質が有してもよい元素を含むため、サイクル特性の向上について相乗効果が期待でき好ましい。また、工程の削減による生産性の向上も期待できる。なお本明細書等において、NASICON型結晶構造とは、M(XO(M:遷移金属、X:S、P、As、Mo、W等)で表される化合物であり、MO八面体とXO四面体が頂点を共有して3次元的に配列した構造を有するものをいう。
本実施の形態は、他の実施の形態と組み合わせて用いることができる。
(実施の形態7)
本実施の形態では、二次電池の形状の例について説明する。
<コイン型のハーフセル:試験用電池>
コイン型のハーフセルはコイン型ハーフセルと記すことがある。コイン型ハーフセルの一例について説明する。図14Aはコイン型ハーフセルの外観図であり、図14Bは、その断面図である。
コイン型ハーフセル300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。
なお、コイン型ハーフセル300に用いる正極304および負極307において活物質層はそれぞれ集電体の片面のみに形成すればよい。
正極缶301、負極缶302には、電解液に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、またはこれらの合金および/またはこれらと他の金属との合金(たとえばステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルおよび/またはアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
これら負極307、正極304およびセパレータ310を電解液に含浸させ、図14Bに示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン型ハーフセル300を製造する。
正極304に、先の実施の形態で説明した正極活物質を用いることで、放電容量が高くサイクル特性に優れたコイン型ハーフセル300とすることができる。
≪充電方法≫
ある複合酸化物が、本発明の一態様の正極活物質100であるか否かを判断するために、上記コイン型ハーフセルを製造して充放電する方法がある。
たとえば図15のステップS80に示すように、正極活物質を得るために、二次電池から正極を取り出す。正極はコイン型ハーフセルにあうような形状に打ち抜いておく。
次に図16のステップS83にあるように、打ち抜いた正極の正極合剤の重量を測定する。正極の重量は、正極合剤と正極集電体との合計となる。そこで、回収した正極から正極集電体のみの領域も同じ形状に打ち抜いておき、その重量を測定する。正極から正極集電体の重量を引くことで、打ち抜いた形状の正極合剤の重量を求めることができる。
次に、図15のステップS85に示すようにセパレータ、および負極を有するコイン型ハーフセルを用意する。コイン型ハーフセルの負極は対極と記すことがあり、対極にはリチウム金属を用いることができる。このようなコイン型ハーフセルを試験用電池と記すことがある。なお対極にリチウム金属以外の材料を用いることができるが、二次電池の電位と正極の電位が異なることに注意する。
セパレータには厚さ25μmのポリプロピレン多孔質フィルムを用いることができる。
次に図15のステップS90に示すように用意されたコイン型ハーフセルに打ち抜いた正極主電体および正極合剤を封入する。
その後、図15のステップS91にあるように電解液を注入する。電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、ビニレンカーボネート(VC)が2wt%で混合されたものを用いることができる。
コイン型ハーフセルの正極缶および負極缶には、ステンレス(SUS)で形成されているものを用いることができる。
上記条件で製造したコイン型ハーフセルを、任意の電圧(たとえば4.5V以上)、0.5Cで定電流充電し、その後電流値が0.05Cとなるまで定電圧充電する。なお1Cは137mA/gまたは200mA/gとすることができる。
コイン型ハーフセルにおいて正極活物質の変化を観測するためには、小さい電流値で充電を行うことが望ましい。
コイン型ハーフセル等の測定温度は0℃以上60℃以下、好ましくは25℃以上45℃以下の範囲とする。当該温度は、コイン型ハーフセルを置く恒温槽の温度として管理できる。
充電の後に、コイン型ハーフセルをアルゴン雰囲気のグローブボックス中で解体して正極を取り出せば、充電深度の高い状態の正極活物質を得られる。コイン型ハーフセルに対する初回の充電を初回充電と記すことがある。初回充電は外装体へ封入された状態での充電の一つであって、外装体に封入される前の充電とは別と考える。
この後に各種分析を行う。分析の際、外界成分との反応を抑制するため、アルゴン雰囲気で密封することが好ましい。たとえばXRDは、アルゴン雰囲気の密閉容器内に封入して行うことができる。
本実施の形態は、他の実施の形態と組み合わせて用いることができる。
(実施の形態8)
本実施の形態では、二次電池の形状の例について説明する。
<捲回型二次電池2>
上記実施の形態で説明した捲回型二次電池とは異なる部分を有する捲回型二次電池を説明する。
本発明の一態様において、図16に示すような捲回体950aを有する二次電池913としてもよい。図16Aに示す捲回体950aは、負極931と、正極932と、セパレータ933と、を有する。負極931は負極合剤層931aを有する。正極932は正極合剤層932aを有する。
本発明の正極活物質を正極932に用いることで、高容量、放電容量が高く、且つ、サイクル特性に優れた二次電池913とすることができる。
セパレータ933は、負極合剤層931aおよび正極合剤層932aよりも広い幅を有し、負極合剤層931aおよび正極合剤層932aと重畳するように捲回されている。また正極合剤層932aよりも負極合剤層931aの幅が広いことが安全性の点で好ましい。またこのような形状の捲回体950aは安全性および生産性が良く好ましい。
図16Aおよび図16Bに示すように、負極931はタブ951と電気的に接続される。タブ951は端子911aと電気的に接続される。また正極932はタブ952と電気的に接続される。タブ952は端子911bと電気的に接続される。
図16Cに示すように、外装体930により捲回体950aおよび電解液が収容され、二次電池913となる。外装体930には安全弁、過電流保護素子等を設けることが好ましい。安全弁は、電池破裂を防止するため、外装体930の内部が所定の圧力となった場合に開放する弁である。
<円筒型二次電池>
円筒型の二次電池の例について図17Aを参照して説明する。円筒型の二次電池616は、図17Aに示すように、上面に正極キャップ(電池蓋)601を有し、側面および底面に電池缶(外装缶)602を有している。これら正極キャップ601と電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
図17Bは、円筒型の二次電池の断面を模式的に示した図である。図17Bに示す円筒型の二次電池は、上面に正極キャップ(電池蓋)601を有し、側面および底面に電池缶(外装缶)602を有している。これら正極キャップと電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子は中心軸を中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、これらの合金、またはこれらと他の金属との合金(たとえば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルまたはアルミニウム等を電池缶602に被覆することが好ましい。電池缶602の内側において、正極、負極およびセパレータが捲回された電池素子は、対向する一対の絶縁板608、絶縁板609により挟まれている。また、電池素子が設けられた電池缶602の内部は、電解液(図示せず)が注入されている。
円筒型の蓄電池に用いる正極および負極は捲回するため、集電体の両面に活物質を形成することが好ましい。
正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603および負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構613に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構613は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構613は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等用いることができる。
図17Cは蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有する。それぞれの二次電池の正極は、絶縁体625で分離された導電体624に接触し、電気的に接続されている。導電体624は配線623を介して、制御回路620に電気的に接続されている。また、それぞれの二次電池の負極は、配線626を介して制御回路620に電気的に接続されている。制御回路620として、充放電などを行う充放電制御回路、または過充電および過放電を防止する保護回路を適用することができる。
図17Dは、蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有し、複数の二次電池616は、導電板628および導電板614の間に挟まれている。複数の二次電池616は、配線627により導電板628および導電板614と電気的に接続される。複数の二次電池616は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後さらに直列に接続されていてもよい。複数の二次電池616を有する蓄電システム615を構成することで、大きな電力を取り出すことができる。
複数の二次電池616が、並列に接続された後、さらに直列に接続されてもよい。
複数の二次電池616の間に温度制御装置を有していてもよい。二次電池616が過熱されたときは、温度制御装置により冷却し、二次電池616が冷えすぎているときは温度制御装置により加熱することができる。そのため蓄電システム615の性能が外気温に影響されにくくなる。
また、図17Dにおいて、蓄電システム615は制御回路620に配線621および配線622を介して電気的に接続されている。配線621は導電板628を介して複数の二次電池616の正極に、配線622は導電板614を介して複数の二次電池616の負極に、それぞれ電気的に接続される。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態9)
本実施の形態では、車両に本発明の一態様である二次電池を搭載する例を示す。
二次電池を車両に搭載すると、ハイブリッド車(HV)、電気自動車(EV)、またはプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車を実現できる。
図18において、本発明の一態様である二次電池を用いた車両を例示する。図18Aに示す自動車8400は、走行のための動力源として電気モーターを用いる電気自動車である。または、走行のための動力源として電気モーターとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。本発明の一態様を用いることで、航続距離の長い車両を実現することができる。また、自動車8400は二次電池を有する。二次電池は、車内の床部分に対して、図17Cおよび図17Dに示した二次電池のモジュールを並べて使用すればよい。二次電池は電気モーター8406を駆動するだけでなく、ヘッドライト8401およびルームライト(図示せず)などの発光装置に電力を供給することができる。
また、二次電池は、自動車8400が有するスピードメーター、タコメーターなどの表示装置に電力を供給することができる。また、二次電池は、自動車8400が有するナビゲーションシステムなどの半導体装置に電力を供給することができる。
図18Bに示す自動車8500は、自動車8500が有する二次電池にプラグイン方式および/または非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。図18Bに、地上設置型の充電装置8021から自動車8500に搭載された二次電池8024に、ケーブル8022を介して充電を行っている状態を示す。充電に際しては、充電方法およびコネクタの規格等はCHAdeMO(登録商標)またはコンボ等の所定の方式で適宜行えばよい。充電装置8021は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。たとえば、プラグイン技術によって、外部からの電力供給により自動車8500に搭載された二次電池8024を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路および/または外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、車両どうしで電力の送受信を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時および/または走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式および/または磁界共鳴方式を用いることができる。
また、図18Cは、本発明の一態様の二次電池を用いた二輪車の一例である。図18Cに示すスクータ8600は、二次電池8602、サイドミラー8601、方向指示灯8603を備える。二次電池8602は、方向指示灯8603に電気を供給することができる。
また、図18Cに示すスクータ8600は、座席下収納8604に、二次電池8602を収納することができる。二次電池8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。二次電池8602は、取り外し可能となっており、充電時には二次電池8602を屋内に持って運び、充電し、走行する前に収納すればよい。
本発明の一態様によれば、二次電池のサイクル特性が良好となり、二次電池の放電容量を大きくすることができる。よって、二次電池自体を小型軽量化することができる。二次電池自体を小型軽量化できれば、車両の軽量化に寄与するため、航続距離を向上させることができる。また、車両に搭載した二次電池を車両以外の電力供給源として用いることもできる。この場合、たとえば電力需要のピーク時に商用電源を用いることを回避することができる。電力需要のピーク時に商用電源を用いることを回避できれば、省エネルギー、および二酸化炭素の排出の削減に寄与することができる。また、サイクル特性が良好であれば二次電池を長期に渡って使用できるため、コバルトをはじめとする希少金属の使用量を減らすことができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態10)
本実施の形態では、電子機器等に本発明の一態様である二次電池を搭載する例を示す。
図19Aは、掃除ロボットの一例を示している。掃除ロボット6300は、筐体6301上面に配置された表示部6302、側面に配置された複数のカメラ6303、ブラシ6304、操作ボタン6305、二次電池6306、各種センサなどを有する。図示されていないが、掃除ロボット6300には、タイヤ、吸い込み口等が備えられている。掃除ロボット6300は自走し、ゴミ6310を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
たとえば、掃除ロボット6300は、カメラ6303が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ6304に絡まりそうな物体を検知した場合は、ブラシ6304の回転を止めることができる。掃除ロボット6300は、その内部に本発明の一態様に係る二次電池6306と、半導体装置または電子部品を備える。本発明の一態様に係る二次電池6306を掃除ロボット6300に用いることで、掃除ロボット6300を稼働時間が長く信頼性の高い電子機器とすることができる。
図19Bは、ロボットの一例を示している。図19Bに示すロボット6400は、二次電池6409、照度センサ6401、マイクロフォン6402、上部カメラ6403、スピーカ6404、表示部6405、下部カメラ6406および障害物センサ6407、移動機構6408、演算装置等を備える。
マイクロフォン6402は、使用者の話し声および環境音等を検知する機能を有する。また、スピーカ6404は、音声を発する機能を有する。ロボット6400は、マイクロフォン6402およびスピーカ6404を用いて、使用者とコミュニケーションをとることが可能である。
表示部6405は、種々の情報の表示を行う機能を有する。ロボット6400は、使用者の望みの情報を表示部6405に表示することが可能である。表示部6405は、タッチパネルを搭載していてもよい。また、表示部6405は取り外しのできる情報端末であっても良く、ロボット6400の定位置に設置することで、充電およびデータの受け渡しを可能とする。
上部カメラ6403および下部カメラ6406は、ロボット6400の周囲を撮像する機能を有する。また、障害物センサ6407は、移動機構6408を用いてロボット6400が前進する際の進行方向における障害物の有無を察知することができる。ロボット6400は、上部カメラ6403、下部カメラ6406および障害物センサ6407を用いて、周囲の環境を認識し、安全に移動することが可能である。
ロボット6400は、その内部に本発明の一態様に係る二次電池6409と、半導体装置または電子部品を備える。本発明の一態様に係る二次電池をロボット6400に用いることで、ロボット6400を稼働時間が長く信頼性の高い電子機器とすることができる。
図19Cは、飛行体の一例を示している。図19Cに示す飛行体6500は、プロペラ6501、カメラ6502、および二次電池6503などを有し、自律して飛行する機能を有する。
たとえば、カメラ6502で撮影した画像データは、電子部品6504に記憶される。電子部品6504は、画像データを解析し、移動する際の障害物の有無などを察知することができる。また、電子部品6504によって二次電池6503の蓄電容量の変化から、バッテリ残量を推定することができる。飛行体6500は、その内部に本発明の一態様に係る二次電池6503を備える。本発明の一態様に係る二次電池を飛行体6500に用いることで、飛行体6500を稼働時間が長く信頼性の高い電子機器とすることができる。
図19Dには、人工衛星6800一例を示している。人工衛星6800は、機体6801と、ソーラーパネル6802と、アンテナ6803と、二次電池6805と、を有する。
ソーラーパネル6802に太陽光が照射されることにより、人工衛星6800が動作するために必要な電力が生成される。しかしながら、たとえばソーラーパネルに太陽光が照射されない状況、またはソーラーパネルに照射される太陽光の光量が少ない状況では、生成される電力が少なくなる。よって、人工衛星6800が動作するために必要な電力が生成されない可能性がある。生成される電力が少ない状況下であっても人工衛星6800を動作させるために、人工衛星6800に二次電池6805を設けるとよい。
人工衛星6800は、信号を生成することができる。当該信号は、アンテナ6803を介して送信され、たとえば地上に設けられた受信機、または他の人工衛星が受信することができる。人工衛星6800が送信した信号を受信することにより、たとえば当該信号を受信した受信機の位置を測定することができる。以上より、人工衛星6800は、たとえば衛星測位システムを構成することができる。
または、人工衛星6800は、センサを有する構成とすることができる。たとえば、可視光センサを有する構成とすることにより、人工衛星6800は、地上に設けられている物体に当たって反射された太陽光を検出する機能を有することができる。または、熱赤外センサを有する構成とすることにより、人工衛星6800は、地表から放出される熱赤外線を検出する機能を有することができる。以上より、人工衛星6800は、たとえば地球観測衛星としての機能を有することができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
本実施例では、本発明の一態様の正極活物質100を製造し、サイクル特性を取得した。
<正極活物質の製造>
図7乃至図9に示す製造方法を参照しながら本実施例で製造したサンプルについて説明する。
図7のステップS14のLiMOとして、遷移金属Mとしてコバルトを有し、添加元素が添加されていない市販のコバルト酸リチウム(日本化学工業株式会社製、セルシードC−10N)を用意した。ステップS15の加熱として、このコバルト酸リチウムをるつぼに入れ、蓋をし、850℃、2時間、マッフル炉にて加熱した。この加熱が初期加熱に相当する。マッフル炉内は酸素雰囲気とした後、フローしなかった(Oパージに相当する)。初期加熱後によりLCOから不純物が除去される可能性がある。
図9A、図9Bで示したステップS20aおよびステップS41に従って、添加元素としてMg源,F源,Ni源,Al源を用意し、Mg源およびF源と、Ni源およびAl源とに分けて添加した。ステップS20aに従い、F源としてLiFを用意し、Mg源としてMgFを用意した。LiF:MgFを1:3(モル比)となるように秤量した。次に脱水アセトン中にLiF、およびMgFを混合して、400rpmの回転速度で12時間攪拌して添加元素源を製造した。
次に、LiFおよびMgFのMgとFの合計がLCOのコバルトの1モル%となるように秤量して、乾式で混合した。このとき150rpmの回転速度で1時間攪拌した。これはLiFおよびMgFを混合した条件より緩やかな条件であり、初期加熱を経たLCOが崩れない条件が好ましい。このようにして混合物903として混合物Aを得た。
次に、混合物Aを加熱した。加熱条件は、900℃、20時間とした。加熱の際、混合物Aをいれたるつぼに蓋を配し、マッフル炉にて加熱した。マッフル炉内は酸素雰囲気とした後、フローしなかった(Oパージに相当する)。加熱によりMg,およびFを有するLCO(複合酸化物Aと記すことがある)を得た。
次に、複合酸化物Aに添加元素源を添加する。図9Cで示したステップS41に従って、Ni源としてニッケル水酸化物を用意し、Al源としてアルミニウム水酸化物を用意した。ニッケル水酸化物及びアルミニウム水酸化物は独立して400rpmの回転速度で12時間攪拌し、粉砕した。ニッケル水酸化物のニッケルがLCOのコバルトの0.5モル%となり、アルミニウム水酸化物のアルミニウムがLCOのコバルトの0.5モル%となるように秤量して、Ni源、Al源、及び複合酸化物Aを乾式で混合した。このとき150rpmの回転速度で1時間攪拌した。これはニッケル水酸化物及びアルミニウム水酸化物を混合した条件より緩やかな条件である。上記条件は得られた複合酸化物Aが崩れない条件が好ましい。このようにして混合物904に対応する混合物Bを得た。
次に、混合物Bを加熱した。加熱条件は、850℃、10時間とした。加熱の際、混合物Bをいれたるつぼに蓋を配し、マッフル炉にて加熱した。マッフル炉内は酸素雰囲気とした。さらに酸素は、マッフル炉にて出入りがないようにした(Oパージに相当する)。Oパージとすることでフッ素の蒸散を防止することができる。加熱によりMg、F、Ni、およびAlを有するLCO(複合酸化物Bと記すことがある)を得た。このようにして得たMg、F、Ni、およびAlを有するLCOを、正極活物質とした。
次いで、得られた正極活物質(LCO)と、導電助剤であるアセチレンブラック(AB)と、結着剤であるPVDFとを、LCO:AB:PVDF=95:3:2(wt%)の割合とし、1500rpmで混合してスラリーを製造した。当該混合には、自転公転ミキサー(あわとり練太郎、THINKY社製)を用いた。スラリーの溶媒はNMPを用いた。スラリーをアルミニウムの集電体に塗工した後に、溶媒を揮発させた。溶媒が揮発した後に、集電体上の合剤をプレスした。
上記プレスの圧力を異ならせたものをサンプル1−1乃至サンプル1−5として用意した。プレスの圧力を含めた製造条件をまとめて、下表に示す。
Figure JPOXMLDOC01-appb-T000002
サンプル1−1乃至サンプル1−5の正極活物質担持量は、いずれも約7mg/cmとした。
サンプル1−1乃至サンプル1−5の電極密度(密度と記すことがある)、電極充填率(充填率と記すことがある)および電極空隙率(空隙率と記すことがある)をそれぞれ、下表に示す。
Figure JPOXMLDOC01-appb-T000003
密度は、正極から集電体を除いた(正極合剤層の重量/当該正極合剤層の体積)×100から算出した。正極合剤層は正極活物質、導電助剤、および結着剤を有する。充填率は、(密度/正極活物質、導電助剤、および結着剤の真密度の和)×100から算出した。各真密度は、LiCoOが5.05g/cc、導電助剤に用いたABが1.95g/cc、結着剤に用いたPVDFが1.78g/ccとした。また空隙率は、(1−充填率)×100として算出した。
表3にあるように、サンプル1−1乃至サンプル1−5を比較すると、サンプル1−1からサンプル1−5へむかって順に密度が高くなり、充填率が高くなり、空隙率が低くなることが分かる。
<試験用電池の組み立て>
サンプル1−1乃至サンプル1−5を有する正極をそれぞれ用いて、5つの試験用電池を組み立てた。試験用電池にはコイン型ハーフセルを用い、対極つまり負極にはリチウム金属を用意した。
各サンプルの正極と、負極であるリチウム金属との間にセパレータを介在させて、電解液とともにコイン型の外装体へ収容した。セパレータにはポリプロピレンを用いた。電解液は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)をEC:DEC=3:7(体積比)で混合したものに、添加材としてビニレンカーボネート(VC)を2wt%加えたものを用いた。電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用いた。
このように試験用電池としてコイン型ハーフセルを組み立て、充放電測定器として東洋システム社製の充放電測定器(TOSCAT−3100)を用いてサイクル試験を実施した。コイン型ハーフセルによるサイクル試験、つまりサイクル特性の評価により各コイン型ハーフセルにおける正極単体(サンプル1−1乃至サンプル1−5単体)の性能を把握することができる。
<サイクル試験>
ここでサイクル試験の条件であるレートについて説明する。サイクル試験の放電時のレートを放電レートと呼ぶが、当該放電レートとは、電池容量に対する放電時の電流の相対的な比率であり、単位Cで表される。定格容量X(Ah)の電池において、1C相当の電流は、X(A)である。2X(A)の電流で放電させた場合は、2Cで放電させたといい、X/2(A)の電流で放電させた場合は、0.5Cで放電させたという。また、充電時のレートを充電レートと呼ぶが、2X(A)の電流で充電させた場合は、2Cで充電させたといい、X/2(A)の電流で充電させた場合は、0.5Cで充電させたという。充電レートおよび放電レートを合わせて、充放電レートと記すことがある。またサイクル試験結果から得られる電池特性をサイクル特性と記すことがあり、サイクル特性には充放電カーブまたは放電容量維持率(capacity retention)等が含まれる。
各サンプルを、25℃以上45℃以下の恒温槽に配置して、充放電レート0.5Cでサイクル試験を実施し、充放電カーブ、最大放電容量、および放電容量維持率を取得した。具体的には、各温度において4.60V(4.6Vと記す)、4.65Vまたは4.70V(4.7Vと記す)の3種の電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電したのち、さらに各電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電した。充電と放電との間には、5分以上15分以下の休止期間を設けてもよく、本実施例では10分の休止期間を設けた。充電と放電の繰り返しを1サイクルとして、サイクル数を50回繰り返した。
サイクル試験の充電及び放電の測定において、電池電圧、及び電池に流れる電流は、4端子法で測定することが好ましい。充電では正極端子から充放電測定器を通って負極端子に電子が流れるため、充電電流は負極端子から充放電測定器を通って正極端子に流れる。また放電では負極端子から充放電測定器を通って正極端子に電子が流れるため、放電電流は正極端子から充放電測定器を通って負極端子に流れる。充電電流及び放電電流は充放電測定器が有する電流計で測定され、1サイクルの充電及び1サイクルの放電において流れた電流の積算量が、それぞれ充電容量及び放電容量である。例えば1サイクル目の放電において流れた放電電流の積算量のことを1サイクル目の放電容量と呼ぶことができ、50サイクル目の放電において流れた放電電流の積算量のことを50サイクル目の放電容量と呼ぶことができる。
各サンプルを、25℃および45℃の環境下にて、充電電圧を4.6V、4.65Vおよび4.7Vとしたときの放電容量を求めた。最も大きな放電容量を最大放電容量(mAh/g)と記す。
各サンプルの最大放電容量を下表に示す。なお最大放電容量の範囲は下表から求められる。
Figure JPOXMLDOC01-appb-T000004
次に上記最大放電容量から各サンプルの放電容量維持率を求めた。たとえば50サイクル目の放電容量維持率(%)は、充電と放電の繰り返しを1サイクルとして、サイクル数を50回繰り返し、(50サイクル目の放電容量/50サイクル中の放電容量の最大値)×100で算出した値として求めた。50サイクル目の放電容量維持率は、充放電のサイクルを50回繰り返すサイクル試験を行い、サイクルごとに放電容量を測定した場合に、50サイクル目に測定された放電容量の値が、全50サイクル中の放電容量の最大値(最大放電容量に等しい)に対してどのくらいの割合かというものである。本明細書等では特段の断りがない限り、放電容量維持率は50サイクル目の放電容量維持率として求めた。
放電容量維持率が高いほど、充放電を繰り返した後の二次電池の容量低下が抑制されるため、二次電池特性として望ましい。
放電容量維持率を下表に示す。なお、放電容量維持率の範囲は下表から求められる。
Figure JPOXMLDOC01-appb-T000005
表5より、50サイクル後の放電容量維持率はいずれの条件でも35%以上100%未満の範囲を満たすことがわかる。表5より、50サイクル後の放電容量維持率は測定温度25℃において、何れの条件でも90%以上100%未満の範囲を満たすことがわかる。
図20A乃至図22Bには各サイクル数の放電容量維持率の結果をグラフに示す。各グラフのX軸はサイクル数(回)を示し、Y軸は放電容量維持率(%)を示す。たとえばX軸が50回のときのY軸の値が、上記表5の放電容量維持率の値に対応する。各グラフにおいて、45℃、4.65V充電、および45℃、4.7V充電の結果は、Y軸の範囲を30%以上として示し、それ以外はY軸の範囲を80%以上として示す。各グラフにおいて、サンプル1−1は破線(小)で示し、サンプル1−2は薄い実線で示し、サンプル1−3は破線(中)で示し、サンプル1−4は破線(大)で示し、サンプル1−5は濃い実線で示す。グラフの余白にはサンプル1−1乃至1−5に関する凡例を添えた。
図20A、図21A、及び図22Aより、25℃の結果はいずれの充電電圧においても放電容量維持率が良好であるとわかる。また図20B、図21B、及び図22Bより、45℃の結果は、4.6V充電では50サイクル目の放電容量維持率良好であると分かる。図20A乃至図22Bより、放電容量維持率には温度依存性があることが確認され、たとえば温度が高くなると、放電容量維持率が低下することが分かった。
上記温度依存性を確認するため、サンプル1−2を対象として、30℃、35℃および40℃でのサイクル試験を追加した。
図23A乃至図31にはサンプル1−2を対象にした充放電カーブを示す。各グラフは、サイクル数(回)に対する容量(mAh/g)を示すものであり、X軸はサイクル数(回)を示し、Y軸は充電容量と放電容量の2種を示すため容量と記す。なお充電容量は、充電時に求められる容量であって、各グラフでは黒丸で示し、放電容量は放電時に求められる容量であって、各グラフでは白丸で示す。充電容量と放電容量はほぼ同じ値を示すことがわかる。
図23A乃至図31より測定温度が高くなり、かつサイクル数が増加すると、容量が低下することがわかる。サイクル特性の一つである充電容量および放電容量の値には温度依存性があることが確認された。図23A乃至図31ではサンプル1−2の結果を示したが、この温度依存性は、サンプル1−1、サンプル1−3乃至サンプル1−5でも同様な傾向があると考えられる。
図23A乃至図31の充放電カーブから、サンプル1−2における、各測定温度に対する放電容量維持率(%)を求め、図32にグラフを示す。グラフにおいて、4.6V充電は三角で示し、4.65V充電は四角で示し、4.7V充電は丸で示す。グラフより、温度が45℃に近づくにつれて、放電容量維持率が下がることが分かる。サイクル特性の一つである放電容量維持率には温度依存性があることが確認された。図32ではサンプル1−2の結果を示したが、この温度依存性は、サンプル1−1、サンプル1−3乃至サンプル1−5でも同様な傾向があると考えられる。
図23A乃至図31の充放電カーブから最大放電容量を求め、各測定温度における50サイクル後の放電容量維持率(%)を求め、下表には放電容量維持率を数値で示す。下表において25℃および45℃の結果は、表5に示された放電容量維持率の値と同じである。なお放電容量維持率の範囲は下表から求められる。
Figure JPOXMLDOC01-appb-T000006
表6より、50サイクル後の放電容量維持率はいずれの条件、具体的には25℃以上45℃以下の環境下等でも35%以上100%未満の範囲を満たすことがわかる。これは表5からわかる範囲と同様である。よって、測定温度の上限値および下限値に対してサイクル試験を実施することで、下限値以上上限値以下の範囲でのサイクル特性、たとえば放電容量維持率等を把握することができる。
さらに表6から、30℃以下では、いずれの充電電圧でも放電容量維持率は90%以上100%未満の範囲を満たすことがわかる。また35℃以下では、いずれの充電電圧でも放電容量維持率は75%以上100%未満の範囲を満たすことがわかる。また40℃以下では、いずれの充電電圧でも放電容量維持率は50%以上100%未満の範囲を満たすことがわかる。また45℃以下では、いずれの充電電圧でも放電容量維持率は35%以上100%未満の範囲を満たすことがわかる。このように測定温度を細かく設定することで、サイクル特性を把握することができる。
次に、サンプル1−2を対象にして各測定温度における充電深度を求め、図33にグラフで示し、下表には数値で示す。なお充電深度の範囲は下表から求められる。
Figure JPOXMLDOC01-appb-T000007
なお充電深度は、充電カーブ等から得られた充電容量の最大値である最大充電容量/理論容量×100から求められ、LCOの理論容量は274mAh/gとした。図33には充電深度80%に合わせて引かれた破線があるが、充電深度80%とは充電容量が220mAh/gに対応する。
放電容量維持率の結果等と合わせて検討すると、放電容量維持率が相対的に低い条件は、充電深度が80%以上となることがわかる。すなわち充電深度が80%未満であれば、いずれの条件であっても、放電容量維持率を高くすることができる。また充電深度80%とは容量が220mAh/gに対応し、十分な容量値である。図33ではサンプル1−2の結果を示したが、充電深度は、サンプル1−1、サンプル1−3乃至サンプル1−5でも同様な傾向があると考えられる。
<閉じたひび>
放電容量維持率が相対的に低かった、45℃、4.7V充電したサンプル1−2およびサンプル1−5を対象に断面観察を行った。サンプル1−2は、表2に示すようにプレス圧の下限で作製されたものであり、サンプル1−5はプレス圧の上限で作製されたものである。なお45℃、4.7V充電したサンプル1−2およびサンプル1−5は、充電深度が80%以上であり、多くのリチウムが正極活物質から脱離している。
図34Aには、45℃、4.7V充電したサンプル1−2の断面STEM像(TE像)を示し、図35Aには45℃、4.7V充電したサンプル1−5の断面STEM像を示す。両像において、実線の枠を付した領域の拡大像(ZC像)をそれぞれ図34B及び図35Bに示す。図34B及び図35Bにおいて破線の枠を付した領域に、欠陥である閉じたひびが確認された。さらに両像において、破線の枠を付した領域の拡大像(TE像)をそれぞれ図34C及び図35Cに示す。
図34C、及び図35CのTE像では結晶面に対応した格子縞の方向が確認されたため、格子縞方向として複数本の実線を添えた。閉じたひびは、格子縞方向に沿うように開口していることがわかる。格子縞方向に沿う開口は、リチウムの脱離に起因して閉じたひびが生じたと考えられる理由の一つである。
なお、サイクル試験条件が45℃、4.7V充電以外のサンプルでは、閉じたひびが確認されなかった。よって閉じたひびの有無が充電深度または放電容量維持率と相関を持つことがわかる。たとえば45℃、4.7V充電したサンプル1−2およびサンプル1−5は充電深度が80%を超えているため、多くのリチウムが正極から脱離し、当該脱離に起因して閉じたひびが生じたとも考えられる。
次に、閉じたひびの割合を、3D可視化解析ソフトウェアAmiraで解析した。断面STEM像にて閉じたひびが判別しやすくなるように、画像のコントラストを調整すると好ましい。コントラストを調整して閉じたひびのコントラストをより低くすることで、閉じたひびが強調される。この状態で、像のある輝度をしきい値として、閉じたひびの面積の割合を算出することができる。すなわち、Amiraにより、任意範囲の面積と、当該任意範囲に存在する閉じたひびの面積(閉じたひびが複数ある場合は、各閉じたひびの面積の総和)とを取得し、閉じたひびが活物質の断面に占める割合(閉じたひびの面積割合)を100分率として算出することができる。
上記は割合の算出であるため、断面STEM像の面積は任意の大きさでよい。本実施例では断面STEM像の面積を1.12(0.88×1.27)μmとした。面積は、断面STEM像の電子線と垂直な面を取得することが多いが、電子線をあえて斜めにして像を取得することもあるため電子線と概略垂直な面に対して任意の面積を取得することとなる。このようにして、Amiraにより閉じたひびの面積/画像の面積として、閉じたひびの面積割合を求めることができる。
閉じたひびの面積割合は、サンプル1−2にて0.35%であり、サンプル1−5にて0.79%であった。これらを比較すると、プレス圧が高くなるにつれて閉じたひびの面積割合が高くなることが分かる。
またサンプル1−2およびサンプル1−5に対応した充電深度または放電容量維持率を踏まえると、閉じたひびの面積割合が充電深度または放電容量維持率と相関を持つこともわかる。放電容量維持率を向上させるには、閉じたひびがない方がよく、閉じたひびの面積割合は0.9%以下が好ましい。
<ピット>
閉じたひびが観察されたサンプル1−2およびサンプル1−5に対して、ピットの観察を行った。これらを図36および図37に示し、ピットに矢印を添えた。
図36および図37ではそれぞれピットが複数観察されたが、サンプル1−2およびサンプル1−5においてピットの様子に差がみられなかった。またサンプル1−2およびサンプル1−5のいずれもピットの幅(図36および図37に添えた実線の間の距離)は25nm以上35nm以下であった。
54:ピット、55:結晶面、57:クラック、58:ピット、59:閉じたひび、100a:表層部、100b:内部、100:正極活物質、101:結晶粒界、102:埋め込み部、103:凸部

Claims (13)

  1.  線圧が100kN/m以上3000kN/m以下の範囲でプレスされた正極と、負極とを備え、
     前記正極を、負極がリチウム金属で構成される試験用電池の正極として用い、前記試験用電池を25℃以上45℃以下の環境下において、4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返すサイクル試験を行い、サイクルごとに前記試験用電池の放電容量を測定した場合に、50サイクル目に測定された放電容量の値が、全50サイクル中の放電容量の最大値の35%以上100%未満の範囲を満たす、二次電池。
  2.  請求項1において、前記正極は、電極密度が2.5g/cc以上4.5g/cc以下の範囲を有する、二次電池。
  3.  電極密度が2.5g/cc以上4.5g/cc以下の範囲を有する正極と、負極とを備え、
     前記正極を、負極がリチウム金属で構成される試験用電池の正極として用い、前記試験用電池を25℃以上45℃以下の環境下において、4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返すサイクル試験を行い、サイクルごとに前記試験用電池の放電容量を測定した場合に、50サイクル目に測定された放電容量の値が、全50サイクル中の放電容量の最大値の35%以上100%未満の範囲を満たす、二次電池。
  4.  請求項3において、前記正極は、空隙率が8%以上35%以下の範囲を有する、二次電池。
  5.  空隙率が8%以上35%以下の範囲を有する正極と、負極とを備え、
     前記正極を、負極がリチウム金属で構成される試験用電池の正極として用い、前記試験用電池を25℃以上45℃以下の環境下において、4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返すサイクル試験を行い、サイクルごとに前記試験用電池の放電容量を測定した場合に、50サイクル目に測定された放電容量の値が、全50サイクル中の放電容量の最大値の35%以上100%未満の範囲を満たす、二次電池。
  6.  正極と、負極とを備え、
     前記正極を負極がリチウム金属で構成される試験用電池の正極として用い、前記試験用電池を25℃以上45℃以下の環境下において、4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返すサイクル試験を行った後の、前記正極が有する正極活物質一断面あたり、断面STEMで観察される閉じたひびの面積の割合は0.9%以下である、二次電池。
  7.  線圧が100kN/m以上3000kN/m以下の範囲でプレスされた正極と、負極とを備え、
     前記正極を負極がリチウム金属で構成される試験用電池の正極として用い、前記試験用電池を25℃以上45℃以下の環境下において、4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返すサイクル試験を行った後の、前記正極が有する正極活物質一断面あたり、断面STEMで観察される閉じたひびの面積の割合は0.9%以下である、二次電池。
  8.  請求項1乃至請求項7のいずれか一において、前記試験用電池は電解液を有する、二次電池。
  9.  請求項8において、前記試験用電池は、コイン型のハーフセルである、二次電池。
  10.  請求項1乃至請求項9のいずれか一において、前記正極は、層状岩塩型の正極活物質を有する、二次電池。
  11.  請求項10において、前記正極活物質は、コバルト酸リチウムを有する、二次電池。
  12.  請求項1乃至請求項11のいずれか一に記載された二次電池を搭載した電子機器。
  13.  請求項1乃至請求項11のいずれか一に記載された二次電池を搭載した車両。
PCT/IB2022/053134 2021-04-16 2022-04-05 二次電池、電子機器および車両 WO2022219456A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280028298.XA CN117178382A (zh) 2021-04-16 2022-04-05 二次电池、电子设备及车辆
KR1020237038234A KR20230171953A (ko) 2021-04-16 2022-04-05 이차 전지, 전자 기기, 및 차량
JP2023514175A JPWO2022219456A1 (ja) 2021-04-16 2022-04-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021069767 2021-04-16
JP2021-069767 2021-04-16

Publications (1)

Publication Number Publication Date
WO2022219456A1 true WO2022219456A1 (ja) 2022-10-20

Family

ID=83640364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/053134 WO2022219456A1 (ja) 2021-04-16 2022-04-05 二次電池、電子機器および車両

Country Status (4)

Country Link
JP (1) JPWO2022219456A1 (ja)
KR (1) KR20230171953A (ja)
CN (1) CN117178382A (ja)
WO (1) WO2022219456A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11850969B1 (en) 2022-08-23 2023-12-26 Intercontinental Mobility Company Portable motorized vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272609A (ja) * 2002-03-13 2003-09-26 Mitsubishi Chemicals Corp リチウム二次電池
JP2018049836A (ja) * 2014-09-10 2018-03-29 株式会社東芝 負極
JP2019046560A (ja) * 2017-08-30 2019-03-22 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池用正極

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118335885A (zh) 2017-06-26 2024-07-12 株式会社半导体能源研究所 正极活性物质的制造方法及二次电池
KR20220080206A (ko) 2018-08-03 2022-06-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 및 양극 활물질의 제작 방법
KR20210100130A (ko) 2018-12-13 2021-08-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질의 제작 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272609A (ja) * 2002-03-13 2003-09-26 Mitsubishi Chemicals Corp リチウム二次電池
JP2018049836A (ja) * 2014-09-10 2018-03-29 株式会社東芝 負極
JP2019046560A (ja) * 2017-08-30 2019-03-22 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池用正極

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11850969B1 (en) 2022-08-23 2023-12-26 Intercontinental Mobility Company Portable motorized vehicles

Also Published As

Publication number Publication date
CN117178382A (zh) 2023-12-05
JPWO2022219456A1 (ja) 2022-10-20
KR20230171953A (ko) 2023-12-21

Similar Documents

Publication Publication Date Title
US20230387394A1 (en) Method for forming positive electrode active material, positive electrode, secondary battery, electronic device, power storage system, and vehicle
KR20230027121A (ko) 이차 전지 및 전자 기기
WO2019102319A1 (ja) 二次電池および二次電池の作製方法
US20240021862A1 (en) Secondary battery, power storage system, vehicle, and method for fabricating positive electrode
US20230052866A1 (en) Positive electrode active material, secondary battery, and electronic device
WO2022254284A1 (ja) 二次電池、電子機器及び飛行体
US20240030429A1 (en) Positive electrode active material, lithium-ion secondary battery, and vehicle
US20230343952A1 (en) Secondary battery, manufacturing method of secondary battery, electronic device, and vehicle
WO2022219456A1 (ja) 二次電池、電子機器および車両
WO2020261040A1 (ja) 正極活物質、正極、二次電池、およびこれらの作製方法
WO2022248968A1 (ja) 電池、電子機器、蓄電システムおよび移動体
WO2022200908A1 (ja) 電池、電子機器および車両
CN115312756A (zh) 正极活性物质、二次电池、电子设备及车辆
WO2024201260A1 (ja) 二次電池
US20240030413A1 (en) Positive electrode, method for forming positive electrode, secondary battery, electronic device, power storage system, and vehicle
WO2024028684A1 (ja) 二次電池
WO2024074938A1 (ja) 二次電池
WO2024170994A1 (ja) 正極活物質、リチウムイオン二次電池、電子機器、車両および複合酸化物の作製方法
WO2024052785A1 (ja) 電池、電子機器、及び車両
WO2023209475A1 (ja) 正極活物質、正極、二次電池、電子機器および車両
WO2022189889A1 (ja) 複合酸化物の作製方法、正極、リチウムイオン二次電池、電子機器、蓄電システム、及び移動体
WO2023209474A1 (ja) 正極活物質、リチウムイオン電池、電子機器、および車両
US20240234718A1 (en) Method for forming positive electrode active material, positive electrode, lithium-ion secondary battery, moving vehicle, power storage device, and electronic device
WO2022034414A1 (ja) 二次電池、電子機器、車両、及び正極活物質の作製方法
WO2024023625A1 (ja) 電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787713

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514175

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237038234

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237038234

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787713

Country of ref document: EP

Kind code of ref document: A1