WO2022218444A1 - 超高n含量高温合金的vim炉冶炼方法 - Google Patents
超高n含量高温合金的vim炉冶炼方法 Download PDFInfo
- Publication number
- WO2022218444A1 WO2022218444A1 PCT/CN2022/095043 CN2022095043W WO2022218444A1 WO 2022218444 A1 WO2022218444 A1 WO 2022218444A1 CN 2022095043 W CN2022095043 W CN 2022095043W WO 2022218444 A1 WO2022218444 A1 WO 2022218444A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- content
- nitrogen
- smelting
- vim furnace
- vim
- Prior art date
Links
- 238000003723 Smelting Methods 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 46
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 15
- 239000000956 alloy Substances 0.000 title claims abstract description 15
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000126 substance Substances 0.000 claims abstract description 18
- 239000002994 raw material Substances 0.000 claims abstract description 12
- 229910000604 Ferrochrome Inorganic materials 0.000 claims description 43
- 150000004767 nitrides Chemical class 0.000 claims description 43
- 229910000601 superalloy Inorganic materials 0.000 claims description 32
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 26
- 239000011651 chromium Substances 0.000 claims description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 16
- 229910052786 argon Inorganic materials 0.000 claims description 13
- 239000011572 manganese Substances 0.000 claims description 13
- 238000007670 refining Methods 0.000 claims description 13
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 10
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 9
- 239000011261 inert gas Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000007769 metal material Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 2
- RRZKHZBOZDIQJG-UHFFFAOYSA-N azane;manganese Chemical compound N.[Mn] RRZKHZBOZDIQJG-UHFFFAOYSA-N 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 51
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 26
- 238000005266 casting Methods 0.000 abstract description 12
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000007689 inspection Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010079 rubber tapping Methods 0.000 description 3
- 241001062472 Stokellia anisodon Species 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- SJKRCWUQJZIWQB-UHFFFAOYSA-N azane;chromium Chemical compound N.[Cr] SJKRCWUQJZIWQB-UHFFFAOYSA-N 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- -1 preferably Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/023—Alloys based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/058—Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
- C22C33/06—Making ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
Definitions
- the invention belongs to the field of vacuum smelting of superalloys in the metallurgical industry, and particularly relates to a VIM furnace smelting method for superalloys with ultra-high N content.
- Ultra-high N content superalloy is a commonly used material in power plants, and is mostly used to manufacture forgings, rings and other products. Affected by the use environment and the special requirements for the purity of the alloy, the smelting of the alloy should be produced in a VIM furnace. In the process of smelting super high N content superalloy in VIM furnace, in high vacuum state, nitrogen element is easy to volatilize with the vacuum system, and the ideal target value cannot be obtained. In the high vacuum environment of VIM, it is usually impossible to effectively control the ultra-high content of N elements, so that the yield obtained by the traditional smelting process is very low.
- one of the objects of the present invention is to provide a VIM furnace smelting method of a super high N content superalloy (also can be said to be: a kind of super high N content superalloy VIM furnace smelting process) Control method for precise control of N content).
- the process method can ensure the target content of nitrogen and greatly improve the yield of the product.
- a VIM furnace smelting method for a superalloy with an ultra-high N content includes a smelting step and a pouring step in a VIM furnace; in the later stage of the smelting, nitrogen-containing substances are added to the VIM furnace to adjust the N content.
- the VIM furnace is a vacuum induction melting furnace.
- the mass percentage of N in the superalloy with ultra-high N content is 1500-3000ppm, preferably 2000-3000ppm, more preferably 2700- 3000ppm; that is, after the casting step, the N content in the ultra-high N-content superalloy obtained is 1500-3000 ppm, preferably 2000-3000 ppm, more preferably 2700-3000 ppm.
- the nitrogen-containing substance is a nitrogen-containing alloy with a nitrogen-containing mass percentage of 3% or more; at least one of manganese and aluminum nitride; preferably, the nitrogen-containing substance (such as ferrochromium nitride) is a nitrogen-containing substance after baking treatment; more preferably, the baking temperature is 750-1100 DEG C, the time is ⁇ 6 hours; compared with the usual non-baking of nitrogen-containing substances (such as ferrochromium nitride), the present invention innovatively performs the baking of nitrogen-containing substances (such as ferrochromium nitride) In order to remove the gas in the nitrogen-containing substances (mainly to remove H), reduce the temperature difference between the nitrogen-containing substances and the molten steel, and avoid causing a violent reaction to affect the yield of N.
- the device for performing the roasting and the VIM furnace are located in the same workshop. Among them, if the temperature is lower than 750 °C, the effect of removing H is not good, and if the temperature exceeds 1100 °C, a part of the dissolved N in the ferrochromium nitride will be decomposed. Eventually, the yield of N will be affected; and the baking time is preferably more than 6 hours, so as to have the effect of removing H.
- the inert gas is argon
- the pressure of the argon in the VIM furnace is ⁇ 10000pa; the pressure of the argon is set to be as large as If the pressure is too small, the N content of the product alloy will not meet the requirements, and the N yield will decrease after the addition of nitrogen-containing substances (such as ferrochromium nitride), because the vacuum system of the vacuum induction furnace is a dynamic balance process.
- Part of the N will be removed from the furnace with the vacuum system, so it needs to be supplemented by more nitrogen-containing substances (such as ferrochromium nitride), resulting in increased costs or unqualified final components. , it acts as a compressive stress on the molten steel surface, forcing the N brought into the molten steel by nitrogen-containing substances (such as ferrochromium nitride) into the molten steel to increase the resistance of the liquid surface, and the increased furnace pressure can also slow down the furnace.
- the dynamic balance of the system is carried out; preferably, the introduction of the inert gas continues until the end of the pouring.
- the smelting includes a melting stage and a refining stage, and the later stage of the smelting refers to the later stage of refining.
- the time from adding the nitrogen-containing substance (such as ferrochromium nitride) to the start of pouring is no more than 15 minutes ; If the time between the addition of the nitrogen-containing species (such as ferrochromium nitride) to the start of pouring is too long, the yield of N in the alloy will be reduced.
- the nitrogen-containing substance such as ferrochromium nitride
- the amount of metallic chromium added is all the metal 80-85% of the total mass of the chromium raw material; the remaining 15-20% of the metal chromium is added according to the required amount before the inert gas is introduced in the later stage of smelting to adjust the composition.
- the ultra-high N content superalloy of the present invention is a kind of metal material based on iron and nickel, which can work continuously at a high temperature above 600 ° C, preferably , a class of metal materials that work for a long time under stress.
- the composition of the superalloy with ultra-high N content is as follows in terms of mass percentage: C: 0.02-0.10%; Cr: 23.00-27.00 %; Ni: 35.00-39.00%; W: ⁇ 0.50%; Mo: ⁇ 1.00%; P: ⁇ 0.04%; S: ⁇ 0.03%; Mn: ⁇ 1.50%; Si: ⁇ 1.00%; B: ⁇ 0.01% ; Nb: 0.40-0.90%; Co: ⁇ 3.00%; N: 0.15-0.30%; Al: ⁇ 0.40%; Ti: ⁇ 0.20%; Cu: ⁇ 0.50%;
- An ultra-high N content superalloy is prepared by adopting the above-mentioned smelting method of the ultra-high N content superalloy in a VIM furnace.
- the technical principle of obtaining the ideal target N content by VIM smelting in the present invention is that the fixed nitrogen content in ferrochromium nitride is much larger than that of other alloy raw materials, so ferrochromium nitride is used as the band of N element in the superalloy. into the medium.
- VIM is smelted in a high vacuum state, N element will be excluded from the furnace in the form of free state with the vacuum system, and it is very difficult to effectively and accurately control the nitrogen content.
- the present invention controls the addition timing of ferrochromium nitride (adding in the later stage of refining); controls the addition conditions (rushes into high-pressure inert gas before adding ferrochromium nitride to improve the yield of N element); controls the addition of ferrochromium nitride time to pour. In the case of ensuring the yield of N element, it is poured into an ingot. High-temperature alloy products with ideal target values are obtained.
- the present invention has the following positive effects:
- the method of the present invention is simple, easy and effective, and does not need to add special equipment and tooling.
- the present invention improves the yield of N element in the smelting process of the VIM furnace by comprehensively improving the raw materials and the smelting process, and realizes the precise control of the N element content of the superalloy , so that the target content of nitrogen can be guaranteed and the ideal product can be obtained.
- the present invention effectively solves the problem of the yield of N element in a high vacuum state, improves the yield of products such as rings, and reduces the production cost of manufacturing enterprises.
- the present invention can ensure the yield of nitrogen elements by reasonably baking the ferrochromium nitride, and at the same time reduce the water in the ferrochromium nitride to bring H into the molten steel.
- the present invention changes from the original high vacuum state to a high pressure state by filling the Ar gas of more than 10000Pa, so that the molten steel surface is in a dense compressive stress, which can enhance the solubility of the molten steel to N, thereby improving the yield.
- the ferrochromium nitride of the present invention can be any brand of ferrochromium nitride with a nitrogen content of more than 3 wt%.
- the ferrochromium nitride with the brand of FeNCr3-A is used as an example for illustration.
- Embodiment 1 of the present invention utilizes a VIM furnace with a nominal capacity of 6 tons to smelt this ultra-high nitrogen content superalloy, comprising the following steps:
- Step 1 Ferrochromium Nitride Baking: Ferrochromium nitride is baked in a high temperature annealing furnace in the workshop.
- N content (the mass percentage of N in ferrochromium nitride) is 5.1%; baking (heating) temperature: 930° C.; baking time: 8.5 hours.
- Step 2 Charging before smelting: Ni, Fe, Nb, Cr and other raw materials are successively loaded into the VIM furnace; 100% of ferrochromium nitride is reserved without adding; 20% of metal chromium is reserved without adding.
- Step 3 smelting process: smelting the raw materials (including the melting period and the refining period, the mark of the completion of the melting period is that the monitoring full melting temperature is 1530°C, the temperature in the refining period is 1510°C, and the time is 130 minutes), and the refining period is added.
- the required amount of metal chromium is used to adjust the composition.
- the furnace is filled with argon gas to make the furnace pressure 10000pa argon gas, and then ferrochromium nitride is added to adjust the N content.
- Step 4 pouring process: pour the molten steel obtained in the smelting process, wherein the time from the addition of ferrochromium nitride to the start of pouring (tapping) is 14 minutes.
- Step 5 Inspection: inspect the casting composition content (wt%) according to the standard requirements, C: 0.061%; Cr: 25.40%; Ni: 37.03%; P: 0.006%; S: 0.002%; Mn: 0.74%; Si: 0.470 %; B: ⁇ 0.01%; Nb: 0.63%; N: 0.2857%; Al: 0.230%; Ti: 0.05%; Cu: 0.01%; H: 0.0001%.
- the nitrogen yield ie nitrogen yield: the ratio of the nitrogen content in the obtained product to the content of nitrogen substituted in the raw materials used
- the yield were 76.92% and 100%, respectively.
- Embodiment 1 of the present invention utilizes a VIM furnace with a nominal capacity of 6 tons to smelt the superalloy with ultra-high nitrogen content. Include the following steps:
- Step 1 Ferrochromium Nitride Baking: Ferrochromium nitride is baked in a high temperature annealing furnace in the workshop.
- the parameters of the ferrochromium nitride baking are: the N content is 5.1%, the baking (heating) temperature: 930° C.; the baking time: 8.0 hours.
- Step 2 Charging before smelting: Ni, Fe, Nb, Cr and other raw materials are successively loaded into the VIM furnace; 100% of ferrochromium nitride is reserved without adding; 20% of metal chromium is reserved without adding.
- Step 3 smelting process: smelting the raw materials (including the melting period and the refining period, the completion of the melting period is marked as monitoring the full melting temperature of 1533 ° C, the temperature of the refining period is 1510 ° C, and the time is 120-130 minutes), wherein the melting process adds The required amount of metal chromium is used to adjust the composition.
- argon gas with a pressure of 10,000pa is filled, and then ferrochromium nitride is added to adjust the N content.
- Step 4 pouring process: pour the molten steel obtained in the smelting process, wherein the time from the addition of ferrochromium nitride to the start of pouring (tapping) is 15 minutes.
- Step 5 Inspection: According to the standard requirements, inspect the casting composition content (wt%), C: 0.060%; Cr: 25.60%; Ni: 37.00%; P: 0.005%; S: 0.001%; Mn: 0.76%; Si: 0.440 %; Nb: 0.63%; N: 0.2893%; Al: 0.250%; Ti: 0.04%; Cu: 0.01%. H: 0.0001%.
- the nitrogen yield and yield were 76.90% and 100%, respectively.
- Step 5 Inspection: According to the standard requirements, inspect the casting composition content (wt%), C: 0.061%; Cr: 25.30%; Ni: 37.05%; P: 0.005%; S: 0.002%; Mn: 0.75%; Si: 0.500 %; B: ⁇ 0.01%; Nb: 0.65%; N: 0.2937%; Al: 0.250%; Ti: 0.05%; Cu: 0.01%; H: 0.00015%.
- the nitrogen yield and yield were 76.70% and 100%, respectively.
- Step 5 Inspection: Inspect the casting composition content (wt%) according to the standard requirements, C: 0.059%; Cr: 25.33%; Ni: 37.00%; P: 0.004%; S: 0.001%; Mn: 0.70%; Si: 0.480 %; B: ⁇ 0.01%; Nb: 0.62%; N: 0.2900%; Al: 0.250%; Ti: 0.04%; Cu: 0.01%; H: 0.00015%
- the nitrogen yield and yield were 76.80% and 100%, respectively.
- Step 5 Inspection: According to the standard requirements, inspect the casting composition content (wt%), C: 0.061%; Cr: 25.35%; Ni: 37.01%; P: 0.005%; S: 0.001%; Mn: 0.72%; Si: 0.500 %; B: ⁇ 0.01%; Nb: 0.65%; N: 0.2955%; Al: 0.250%; Ti: 0.05%; Cu: 0.01%; If it is too high, the durability and fatigue life during the user's use will be affected).
- the nitrogen yield was 76.80%.
- Step 5 Inspection: According to the standard requirements, inspect the casting composition content (wt%), C: 0.060%; Cr: 25.30%; Ni: 37.05%; P: 0.005%; S: 0.001%; Mn: 0.72%; Si: 0.460 %; B: ⁇ 0.01%; Nb: 0.60%; N: 0.2890%; Al: 0.250%; Ti: 0.05%; Cu: 0.01%; H: 0.00009%.
- the nitrogen yield was 63.34%.
- Step 5 Inspection: According to the standard requirements, inspect the casting composition content (wt%), C: 0.059%; Cr: 25.33%; Ni: 37.10%; P: 0.005%; S: 0.001%; Mn: 0.70%; Si: 0.510 %; B: ⁇ 0.01%; Nb: 0.66%; N: 0.2910%; Al: 0.260%; Ti: 0.06%; Cu: 0.01%; H: 0.0001%.
- the nitrogen yield and yield were 74.38% and 100%, respectively.
- the nitrogen yield and yield were 75.80% and 100%, respectively.
- Example 1 the step (1) of Example 1, that is, the step of baking ferrochromium nitride, is omitted, and other steps are the same as those of Example 1.
- Unbaked chromium nitride mainly causes a large amount of H element to be brought into the alloy by chromium nitride, resulting in excessive H element content and becoming waste.
- the nitrogen yield and yield were 76.15% and 0.0%, respectively.
- the casting composition content (wt%): C: 0.059%; Cr: 25.34%; Ni: 37.15%; P: 0.005%; S: 0.001%; Mn: 0.71%; Si: 0.520%; B: ⁇ 0.01%; Nb: 0.65%; N: 0.1010%; Al: 0.270%; Ti: 0.06%; Cu: 0.01%; H: 0.0001%
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
Claims (10)
- 一种超高N含量高温合金的VIM炉冶炼方法,其特征在于,所述VIM炉冶炼方法包括在VIM炉中进行的熔炼步骤、和浇注步骤;在所述熔炼的后期,向所述VIM炉中加入含氮物质以调整N含量。
- 权利要求1所述的VIM炉冶炼方法,其特征在于,所述超高N含量高温合金中N的质量含量为1500-3000ppm,优选为2000-3000ppm,更优选为2700-3000ppm。
- 权利要求1所述的VIM炉冶炼方法,其特征在于,所述含氮物质为含氮质量百分比为3%以上的含氮合金;进一步优选为氮化铬铁、氮化锰和氮化铝中的至少一种;优选地,所述含氮物质为经过了烘烤处理之后的含氮物质;更优选地,所述烘烤的温度为750-1100℃,时间为≥6小时;更优选地,进行所述烘烤的装置和VIM炉位于同一车间。
- 权利要求1所述的VIM炉冶炼方法,其特征在于,在所述熔炼的后期,加入所述含氮物质之前,向所述VIM炉中通入惰性气体,优选地,所述惰性气体为氩气,所述VIM炉内氩气的压强≥10000pa;优选地,所述惰性气体的通入持续到所述浇注结束。
- 权利要求1所述的VIM炉冶炼方法,其特征在于,所述熔炼包括熔化期和精炼期,所述熔炼的后期是指精炼后期。
- 权利要求1所述的VIM炉冶炼方法,其特征在于,从加入所述含氮物质到浇注开始之间的时间为不超过15分钟。
- 权利要求1所述的VIM炉冶炼方法,其特征在于,在所述熔炼步骤中,在熔炼前向VIM炉中加入原料时,金属铬的加入量为全部金属铬原料总质量的80-85%;剩余的15-20%所述金属铬根据需要量在熔炼后期通入所述惰性 气体之前加入以调整成分。
- 权利要求1所述的VIM炉冶炼方法,其特征在于,所述超高N含量高温合金是以铁、镍为基,能在600℃以上的高温下持续工作的一类金属材料,优选地,在有应力作用下长期工作的一类金属材料。
- 权利要求1所述的VIM炉冶炼方法,其特征在于,按照质量百分比,所述超高N含量高温合金的成分组成如下:C:0.02-0.10%;Cr:23.00-27.00%;Ni:35.00-39.00%;W:≤0.50%;Mo:≤1.00%;P:≤0.04%;S:≤0.03%;Mn:≤1.50%;Si:≤1.00%;B:≤0.01%;Nb:0.40-0.90%;Co:≤3.00%;N:0.15-0.30%;Al:≤0.40%;Ti:≤0.20%;Cu:≤0.50%;Fe:余量。
- 一种超高N含量高温合金,其特征在于,所述超高N含量高温合金为采用权利要求1-9中任一项所述的VIM炉冶炼方法所制备得到的。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023572990A JP7573126B2 (ja) | 2021-05-24 | 2022-05-25 | 超高n含有量高温合金のvim炉製錬方法 |
US18/563,262 US20240271252A1 (en) | 2021-05-24 | 2022-05-25 | Method for smelting high-temperature alloy with ultrahigh n content in vim furnace |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110567765.3A CN113278834B (zh) | 2021-05-24 | 2021-05-24 | 超高n含量高温合金的vim炉冶炼方法 |
CN202110567765.3 | 2021-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022218444A1 true WO2022218444A1 (zh) | 2022-10-20 |
Family
ID=77281265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/095043 WO2022218444A1 (zh) | 2021-05-24 | 2022-05-25 | 超高n含量高温合金的vim炉冶炼方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240271252A1 (zh) |
JP (1) | JP7573126B2 (zh) |
CN (1) | CN113278834B (zh) |
WO (1) | WO2022218444A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113278834B (zh) * | 2021-05-24 | 2022-03-08 | 大冶特殊钢有限公司 | 超高n含量高温合金的vim炉冶炼方法 |
CN115584406A (zh) * | 2022-11-04 | 2023-01-10 | 江苏隆达超合金航材有限公司 | 双真空熔炼GH3230高温合金工艺中La元素控制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4421571A (en) * | 1981-07-03 | 1983-12-20 | Sumitomo Metal Industries, Ltd. | Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking |
CN103173692A (zh) * | 2013-04-10 | 2013-06-26 | 刘少光 | 高温合金、采用该合金制造的合金风帽及该风帽的制造工艺 |
CN103233174A (zh) * | 2013-04-26 | 2013-08-07 | 中国科学院金属研究所 | 一种血管支架用高氮奥氏体不锈钢及其应用 |
CN104593692A (zh) * | 2014-12-24 | 2015-05-06 | 北京科技大学 | 一种具有优异高温综合性能的耐热铸造奥氏体不锈钢 |
CN113278834A (zh) * | 2021-05-24 | 2021-08-20 | 大冶特殊钢有限公司 | 超高n含量高温合金的vim炉冶炼方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5077006A (en) * | 1990-07-23 | 1991-12-31 | Carondelet Foundry Company | Heat resistant alloys |
US6391479B1 (en) * | 2000-12-21 | 2002-05-21 | General Electric Company | Coating interlayer for improved compatibility between HR-120 and aluminum-containing oxidation resistant metallic coatings |
JP2003136202A (ja) * | 2001-11-06 | 2003-05-14 | Mitsubishi Materials Corp | 成分偏析が小さくかつ均一微細な結晶粒からなるNi基超合金インゴットの製造方法 |
CN1263879C (zh) * | 2004-03-18 | 2006-07-12 | 上海交通大学 | 高氮钢冶炼方法 |
CN100535154C (zh) * | 2006-12-21 | 2009-09-02 | 宝山钢铁股份有限公司 | 高温合金钢p91的冶炼方法 |
CN101372721A (zh) * | 2008-09-19 | 2009-02-25 | 山西太钢不锈钢股份有限公司 | 高真空感应炉冶炼含氮钢增氮方法 |
CN101928869B (zh) * | 2010-08-27 | 2011-12-21 | 洛阳奇新热力管件有限公司 | 镍铁铬钼合金 |
CN102747297A (zh) * | 2011-04-21 | 2012-10-24 | 江苏星火特钢有限公司 | 高强韧超低碳控氮奥氏体不锈钢的制造方法 |
CN102400030B (zh) * | 2011-11-24 | 2013-07-31 | 中国船舶重工集团公司第七二五研究所 | 一种真空感应炉冶炼钢水添加氮元素的方法 |
US10189120B2 (en) * | 2013-02-01 | 2019-01-29 | Aperam | Welding wire for Fe—36Ni alloy |
KR101516724B1 (ko) | 2013-10-30 | 2015-05-04 | 현대제철 주식회사 | 질소성분 보증이 가능한 비조질강 제조방법 |
CN103924031A (zh) * | 2014-04-22 | 2014-07-16 | 钢铁研究总院 | 一种真空感应正压炉冶炼高氮钢的方法 |
CN106756077A (zh) * | 2016-10-20 | 2017-05-31 | 深圳市万泽中南研究院有限公司 | 一种高温合金电渣重熔用渣系及其使用方法 |
KR102019785B1 (ko) * | 2017-04-11 | 2019-11-04 | 단국대학교 천안캠퍼스 산학협력단 | pH-온도 감응성 공중합체 및 이를 이용한 소장 표적 약물 전달체 |
CN108941537B (zh) * | 2018-09-03 | 2020-10-13 | 湖南伊澍智能制造有限公司 | 一种电子束3d打印特种高温合金的方法 |
CN110872653B (zh) * | 2018-09-04 | 2021-08-10 | 中国科学院金属研究所 | 一种控制Inconel690合金中氮含量的冶炼方法 |
-
2021
- 2021-05-24 CN CN202110567765.3A patent/CN113278834B/zh active Active
-
2022
- 2022-05-25 WO PCT/CN2022/095043 patent/WO2022218444A1/zh active Application Filing
- 2022-05-25 JP JP2023572990A patent/JP7573126B2/ja active Active
- 2022-05-25 US US18/563,262 patent/US20240271252A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4421571A (en) * | 1981-07-03 | 1983-12-20 | Sumitomo Metal Industries, Ltd. | Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking |
CN103173692A (zh) * | 2013-04-10 | 2013-06-26 | 刘少光 | 高温合金、采用该合金制造的合金风帽及该风帽的制造工艺 |
CN103233174A (zh) * | 2013-04-26 | 2013-08-07 | 中国科学院金属研究所 | 一种血管支架用高氮奥氏体不锈钢及其应用 |
CN104593692A (zh) * | 2014-12-24 | 2015-05-06 | 北京科技大学 | 一种具有优异高温综合性能的耐热铸造奥氏体不锈钢 |
CN113278834A (zh) * | 2021-05-24 | 2021-08-20 | 大冶特殊钢有限公司 | 超高n含量高温合金的vim炉冶炼方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113278834A (zh) | 2021-08-20 |
US20240271252A1 (en) | 2024-08-15 |
JP7573126B2 (ja) | 2024-10-24 |
CN113278834B (zh) | 2022-03-08 |
JP2024522278A (ja) | 2024-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111876653B (zh) | 一种纯净奥氏体不锈钢的制备方法 | |
WO2022218444A1 (zh) | 超高n含量高温合金的vim炉冶炼方法 | |
CN109266970B (zh) | 高氮高铬塑料模具钢及其冶炼和热处理方法 | |
CN109112408A (zh) | 大规格p92耐热钢锻件的制造方法 | |
CN113106206B (zh) | 紧固件用1Cr11Ni2W2MoV耐热钢锻件的制造方法 | |
CN110306108A (zh) | 一种高韧性高抗裂性热作模具钢及其制造方法 | |
CN105349750A (zh) | 高温退火炉底板及其制造方法 | |
CN114032434B (zh) | 高耐蚀n08120材料冶炼及大口径无缝管生产工艺 | |
WO2023155511A1 (zh) | 一种镍系钢板表面质量的控制方法 | |
US2283299A (en) | Manufacture of steel | |
CN112159932A (zh) | 超高强度稀土4340钢的制造方法 | |
WO2024087788A1 (zh) | 一种挖机锻造斗齿用钢及其制备方法 | |
CN106917031A (zh) | Z3cn18-10控氮奥氏体不锈钢锻件的制造方法 | |
WO2019184294A1 (zh) | 一种铬铁合金的制备方法 | |
CN110669999B (zh) | 一种超大截面莱氏体型冷作模具钢棒材及其制备方法 | |
CN107338391A (zh) | 一种坯料及制作方法、钢材及制作方法 | |
CN115927950B (zh) | 一种含碳、氮高铬铁素体不锈钢及其制造方法 | |
LU505374B1 (en) | Production process of spacer block material for heating section of steel rolling heating furnace | |
JP5956205B2 (ja) | Ni基合金の製造方法 | |
CN112708822A (zh) | 一种高端焊接用奥氏体不锈钢线材的制造方法 | |
CN115323288B (zh) | 一种硫系易切削热作模具钢cx2344的制备方法 | |
CN116162865A (zh) | 一种飞机发动机用高温合金及其制造方法和应用 | |
CN105908058A (zh) | 一种基于镍基耐热合金的冶炼方法 | |
CN117089743A (zh) | 一种gh3536合金及其制备方法 | |
CN116949344A (zh) | 一种改善合金锻件力学性能均匀性的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22787666 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18563262 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023572990 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22787666 Country of ref document: EP Kind code of ref document: A1 |