CN101372721A - 高真空感应炉冶炼含氮钢增氮方法 - Google Patents

高真空感应炉冶炼含氮钢增氮方法 Download PDF

Info

Publication number
CN101372721A
CN101372721A CNA2008100794284A CN200810079428A CN101372721A CN 101372721 A CN101372721 A CN 101372721A CN A2008100794284 A CNA2008100794284 A CN A2008100794284A CN 200810079428 A CN200810079428 A CN 200810079428A CN 101372721 A CN101372721 A CN 101372721A
Authority
CN
China
Prior art keywords
nitrogen
steel
induction furnace
high vacuum
vacuum induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008100794284A
Other languages
English (en)
Inventor
赵鸿燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Taigang Stainless Steel Co Ltd
Original Assignee
Shanxi Taigang Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Taigang Stainless Steel Co Ltd filed Critical Shanxi Taigang Stainless Steel Co Ltd
Priority to CNA2008100794284A priority Critical patent/CN101372721A/zh
Publication of CN101372721A publication Critical patent/CN101372721A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

一种高真空感应炉冶炼含氮钢增氮方法,适用于要求氮含量大于一定数值或控制范围的钢种冶炼,目的是钢水氧化程度极小、氮回收率高而且稳定,本发明方法是先把清洁干燥的废钢或纯铁、铁合金装入高真空感应炉;并按钢中氮含量要求计算出所需氮化合金量;再合炉抽真空,送电加热炉料;炉料熔化、精炼、向炉内充入氮气,在充氮气保护气氛下,调整氮成分之外的其它成分符合冶炼钢种要求后,按计算出的增氮合金量加入氮化铬铁、氮化锰铁或其它增氮合金,然后出钢浇注。

Description

高真空感应炉冶炼含氮钢增氮方法
技术领域
本发明涉及一种高真空感应炉冶炼含氮钢增氮方法,即高真空感应炉通过熔炼后期向炉内充入保护气后添加增氮合金冶炼含氮钢的方法。
背景技术
氮元素由于产生固溶强化作用,不仅可以提高钢材强度,提高耐磨性等,而且能改善其耐蚀性,所以不锈钢、取向硅钢、结构钢甚至一些新型工模具钢中也加入少量氮,以改善其性能。高真空感应炉由于真空度较高,氮分压非常低,冶炼含氮不锈钢和其它含氮钢种难度大。目前冶炼含氮钢的主要方法有气相渗氮和加入增氮合金两种方法。真空感应炉由于无顶吹、底吹系统,所以气相渗氮方法目前不适用。另一种方法是真空感应炉充氩气冶炼然后加入增氮合金,氮不能稳定回收,平均回收率在80%以下,且存在成分不易精确控制、加增氮合金后熔炼时间不宜过长等缺点。
发明内容
本发明目的是为克服上述现有技术的不足,提供一种钢水氧化程度小、氮回收率高而且稳定的高真空感应炉冶炼含氮钢增氮方法。
本发明在高真空感应炉冶炼含氮钢时根据钢中氮含量溶解原理,创造有利于增氮的工艺因素,在高真感应炉精炼后期充入氮气,提高钢中氮饱和溶解度高于氮控制含量上限值,控制合适的熔炼温度,加入氮化铬铁、氮化硅铁等增氮合金增氮,加增氮合金后的熔炼时间不受限制,使增氮合金充分熔化,氮完全溶解到钢中,不发生真空下氮溢出。在氮气氛下出钢浇铸,达到精确、低成本的增氮目的。
本发明方法是:
(1)装料:把清洁干燥的废钢或纯铁、铁合金装入高真空感应炉;并按钢中氮含量要求计算出所需增氮合金重量;
(2)合炉抽真空:合炉抽真空约15分钟后,当炉内压强<10Pa时,送电加热炉料;
(3)炉料熔化:熔化速度≤1/2炉最大容量/小时;
(4)精炼:真空度≤0.5Pa,在高真空下进行碳氧反应,充分脱除钢中氧;
(5)充气:向炉内充入氮气,充氮压力与一个大气压的比值PN2按下式计算:
lgPN2=2×(lg[%N]-lgKN+lgfN)
式中:KN为氮溶解反应平衡常数,fN为氮的活度系数,无量纲;[%N]为氮在钢中溶解度;KN、fN、[%N]根据冶炼钢种成分、温度等的不同,查相关文献得出;
(6)合金化:在充氮气保护气氛下,调整氮成分之外的其它成分符合冶炼钢种要求后,按计算出的增氮合金量加入氮化铬铁、氮化锰铁或其它增氮合金;
(7)出钢浇注:采用直接浇注方式。
本发明中的含氮钢指控制钢中氮含量大于一定数值或控制一定范围的钢铁材料。高真空感应炉所用氮气的纯度≥99%,氮气含氧量小于0.1%。增氮合金采用符合国家标准的氮化锰铁和氮化铬铁,或其它增氮合金。
炉料在熔化过程中由于真空的作用可以去除一部分气体、高蒸气压的微量有害元素和硫等。为使炉料在熔化过程中充分去气和熔化正常,不发生大喷溅,以保证炉内高的真空度,一般控制熔化速度≤1/2炉最大容量/小时。
在计算充氮压力与一个大气压的比值PN2时,钢液中氮的溶解过程可表示为1/2N2=[%N],取氮溶于钢液中浓度1%为标准态,可得[%N]=KN*PN2 1/2/fN,因此lg[%N]=lg KN-lgfN+1/2lg PN2
出钢浇注时为避免注温下降和氧化膜混入注流中,通常采用带电浇注。
根据不同钢种成分和氮含量要求,计算出氮在钢中活度系数和熔炼温度下氮的饱和溶解度,根据目标氮含量确定充氮气压力和增氮合金加入量,使氮饱和溶解度高于目标氮含量,则氮回收率可达96%以上。
本发明适用于要求氮含量大于一定数值或控制范围的钢种冶炼。本发明通过选择合适的充氮气压力,可提高氮的饱和溶解度,并采用合适的浇注温度,使增氮合金充分溶解进入钢中,氮回收率较高,成份控制精确。
具体实施方式
实施例一:设备采用200kg高真空感应炉,极限真空度为6.67×10-2Pa,电源功率为250KW,频率为2500HZ,装炉量130kg。钢种为双相不锈钢00Cr22Ni9Mo3N(非标准钢号)。冶炼一炉双相不锈钢00Cr24Ni9Mo3N需要的原料加入量见表1,双相不锈钢00Cr24Ni9Mo3N成分控制范围及冶炼控制目标见表2。
  表1、冶炼一炉双相不锈钢00Cr24Ni9Mo3N需要纯铁及合金重量
 
原料种类 金属铬 镍豆 钼铁 硅铁 金属锰 氮化铬 纯铁
加入量(kg) 29.5 12.45 7.6 0.7 2.4 3.2 74
    表2、双相不锈钢00Cr24Ni9Mo3N成分控制范围及控制目标(%)
 
C Si Mn Cr Ni Mo N
控制范围 ≤0.02 0.4/0.6 1.6/1.8 22.7/23.5 9.2/9.5 3.1/3.4 0.14/0.18
控制目标 0.005 0.51 1.80 23.4 9.35 3.28 0.16
按公式lg PN2=2(lg[%N]-lgKN+lgfN)计算得出,温度1873K时,要使氮的饱和溶解度大于0.16%,充氮气压力应大于0.2个大气压。其中氮化铬铁含氮量7.33%。
具体步骤如下:
(1)将纯铁、金属铬、镍豆、钼铁装入炉内。硅铁、金属锰、氮化铬放入料仓。
(2)合炉抽真空。抽真空16分钟后,炉内真空度9Pa,送电,功率40KW。逐步送入高功率120KW。
(3)熔化速度≤65公斤/小时,炉最大容量130公斤。
(4)炉料化清,真空度逐步降低。
(5)开启高真空泵,进入精炼期,真空度0.2Pa。
(6)加入硅铁,向炉内充氮气0.3个大气压,加入金属锰、氮化铬铁。
(7)出钢浇注。
    表3、成品钢的化学成分(%)
 
C Si Mn Cr Ni N
0.016 0.52 1.65 22.9 9.36 0.163
氮回收率达到100%。
实施例二:设备采用200kg高真空感应炉,极限真空度为6.67×10-2Pa,电源功率为250KW,频率为2500HZ,装炉量130kg。钢种为奥氏体不锈钢310HNbN(美国ASTM标准中UNS代号为S31042的钢号)。冶炼一炉奥氏体不锈钢310HNbN需要的原料加入量见表4,310HNbN成分控制范围及冶炼控制目标见表5。
    表4、冶炼一炉奥氏体不锈钢310HNbN需要的纯铁及合金重量
 
原料种类 微碳铬铁 高碳铬铁 镍豆 硅铁 金属锰 氮化铬 铌铁 纯铁
加入量(kg) 44.0 0.53 24.5 0.4 1.5 3.8 0.95 48
         表5、310HNbN成分控制范围及控制目标(%)
 
C Si Mn Cr Ni Nb N
控制范围 0.05/0.08 0.3/0.6 0.8/1.5 24.6/25.5 19.0/20.0 3.1/3.4 0.18/0.22
控制目标 0.065 0.51 1.2 25.2 19.74 0.50 0.20
按公式lg PN2=2×(lg[%N]-lgKN+lgfN)计算得出,温度为1873K时,要使氮的饱和溶解度大于0.20%,充氮气压力应大于0.4个大气压。
具体步骤如下:
(1)将纯铁、微碳铬铁、镍豆、铌铁装入炉内。硅铁、金属锰、氮化铬放入料仓。
(2)合炉抽真空至炉内真空度8Pa,送电,功率40KW。逐步送入高功率120KW。
(3)熔化速度≤65公斤/小时,炉最大容量130公斤。
(4)炉料化清,真空度逐步降低。
(5)开启高真空泵,进入精炼期,真空度0.3Pa。
(6)加入硅铁,并向炉内充氮气至0.4个大气压,加入金属锰、氮化铬铁。
(7)出钢浇注。
    表6、成品钢的化学成分(%)
 
C Si Mn Cr Ni Nb N
0.063 0.46 1.22 23.93 19.54 0.48 0.195
氮的回收率达到97.5%。
实施例三:设备采用200kg高真空感应炉:极限真空度为6.67×10-2Pa,电源功率为250KW,频率为2500HZ,装炉量130kg。钢种为热作模具钢。冶炼一炉热作模具钢需要的原料加入量见表7,热作模具钢成分控制范围及冶炼控制目标见表8。
      表7、冶炼一炉热作模具钢需要的纯铁及合金重量
 
原料种类 高碳铬铁 钼铁 钒铁 硅铁 金属锰 氮化铬 纯铁
加入量(kg) 6.1 3.4 2.33 0.7 0.84 0.6 116
其中,氮化铬铁的氮含量为6.82%。
         表8、热作模具钢成分控制范围及控制目标(%)
 
C Si Mn Cr V Mo N
控制范围 0.36/0.42 0.40/0.65 0.55/0.85 2.75/3.25 0.8/1.0 1.3/1.8 0.02/0.05
控制目标 0.39 0.51 0.68 3.06 0.92 1.60 0.031
按公式lg PN2=2(lg[%N]-lgKN+lgfN)计算得出,温度为1873K时,要使氮的饱和溶解度大于0.03%,充氮气压力应大于0.2个大气压。
具体步骤如下:
(1)将纯铁、微碳铬铁、钼铁、钒铁装入炉内。硅铁、金属锰、氮化铬放入料仓。
(2)合炉抽真空,抽至炉内真空度7Pa,送电,功率40KW。逐步送入高功率120KW。
(3)熔化速度≤65公斤/小时,炉最大容量130公斤。
(4)炉料化清。
(5)开启高真空泵,进入精炼期,真空度0.3Pa。
(6)加入硅铁,并向炉内充氮气0.3个大气压,加入金属锰、氮化铬铁。
(7)出钢浇注。
    表9、成品钢的化学成分(%)
 
C Si Mn Cr Ni N
0.39 0.53 0.68 3.00 1.66 0.031
氮回收率达到100%。

Claims (4)

1.一种高真空感应炉冶炼含氮钢增氮方法,其特征是:
(1)装料:把清洁干燥的废钢或纯铁、铁合金装入高真空感应炉;并按钢中氮含量要求计算出所需增氮合金重量;
(2)合炉抽真空:合炉抽真空约15分钟后,当炉内压强<10Pa时,送电加热炉料;
(3)炉料熔化:熔化速度≤1/2炉最大容量/小时;
(4)精炼:真空度≤0.5Pa,在高真空下进行碳氧反应,充分脱除钢中氧;
(5)充气:向炉内充入氮气,充氮压力与一个大气压的比值PN2按下式计算:
lgPN2=2(lg[%N]-lgKN+lgfN)
式中:KN为氮溶解反应平衡常数,fN为氮的活度系数,无量纲;[%N]为氮在钢中溶解度;所用氮气的纯度≥99%;
(6)合金化:在充氮气保护气氛下,调整氮成分之外的其它成分符合冶炼钢种要求后,按计算出的增氮合金量加入氮化铬铁、氮化锰铁或其它增氮合金;
(7)出钢浇注:采用直接浇注方式。
2.如权利要求1所述的高真空感应炉冶炼含氮钢增氮方法,其特征是根据不同钢种成分和氮含量要求,计算出氮在钢中活度系数和熔炼温度下氮的饱和溶解度,根据目标氮含量确定充氮气压力和增氮合金加入量,使氮饱和溶解度高于氮控制含量上限值。
3.如权利要求1所述的高真空感应炉冶炼含氮钢增氮方法,其特征是高真空感应炉所用氩气的纯度≥99%。
4.如权利要求1所述的高真空感应炉冶炼含氮钢增氮方法,其特征是出钢浇注采用带电浇注。
CNA2008100794284A 2008-09-19 2008-09-19 高真空感应炉冶炼含氮钢增氮方法 Pending CN101372721A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008100794284A CN101372721A (zh) 2008-09-19 2008-09-19 高真空感应炉冶炼含氮钢增氮方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008100794284A CN101372721A (zh) 2008-09-19 2008-09-19 高真空感应炉冶炼含氮钢增氮方法

Publications (1)

Publication Number Publication Date
CN101372721A true CN101372721A (zh) 2009-02-25

Family

ID=40447098

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100794284A Pending CN101372721A (zh) 2008-09-19 2008-09-19 高真空感应炉冶炼含氮钢增氮方法

Country Status (1)

Country Link
CN (1) CN101372721A (zh)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845535A (zh) * 2010-05-19 2010-09-29 首钢总公司 一种提高氮化硅铁中氮收得率的方法
CN102002640A (zh) * 2010-09-09 2011-04-06 中国兵器工业第五二研究所 一种采用加压感应制备高氮钢的方法
CN102400030A (zh) * 2011-11-24 2012-04-04 中国船舶重工集团公司第七二五研究所 一种真空感应炉冶炼钢水添加氮元素的方法
CN102400029A (zh) * 2011-04-28 2012-04-04 江苏美特林科特殊合金有限公司 一种合金的真空冶炼方法
CN102409137A (zh) * 2011-10-25 2012-04-11 钢铁研究总院 取向硅钢中的氮含量的控制方法
CN102477474A (zh) * 2010-11-20 2012-05-30 山西太钢不锈钢股份有限公司 一种真空感应炉冶炼钢水的加硫方法
CN102477473A (zh) * 2010-11-20 2012-05-30 山西太钢不锈钢股份有限公司 一种真空感应炉冶炼含硼钢控制硼含量的方法
CN102477469A (zh) * 2010-11-29 2012-05-30 攀钢集团钢铁钒钛股份有限公司 一种真空感应炉炼钢的方法
CN102851451A (zh) * 2011-06-29 2013-01-02 鞍钢股份有限公司 一种出钢工序钢水增氮的方法
CN102428200B (zh) * 2009-07-13 2014-04-02 韩国机械研究院 含有碳-氮复合添加剂的高强度/抗腐蚀性奥氏体不锈钢及其制造方法
CN104419801A (zh) * 2013-08-23 2015-03-18 上海重型机器厂有限公司 真空感应炉冶炼fb2钢的氮含量控制方法
CN104451030A (zh) * 2014-12-03 2015-03-25 河北钢铁股份有限公司 真空感应炉冶炼含硼钢时硼含量的精确控制方法
CN104694708A (zh) * 2015-04-01 2015-06-10 山东瑞泰新材料科技有限公司 含氮奥氏体气阀钢的真空冶炼工艺
CN105779688A (zh) * 2016-05-04 2016-07-20 河北钢铁股份有限公司 一种真空感应炉冶炼含氮钢精确控制氮含量的方法
CN106591541A (zh) * 2016-12-23 2017-04-26 江苏沙钢集团淮钢特钢股份有限公司 一种rh真空处理过程中的脱氢增氮控制方法
CN106884073A (zh) * 2016-12-30 2017-06-23 中钢集团邢台机械轧辊有限公司 一种制备铸钢过程中高氮铬铁合金的加入方法
CN107447074A (zh) * 2017-07-29 2017-12-08 首钢集团有限公司 一种冶炼非调质钢的中间试验方法
WO2018107315A1 (zh) * 2016-12-12 2018-06-21 孙瑞涛 一种常压下两步冶炼高氮钢的方法
CN108441599A (zh) * 2018-03-15 2018-08-24 大冶特殊钢股份有限公司 真空感应炉冶炼含氮不锈钢的方法
CN109440011A (zh) * 2018-12-27 2019-03-08 攀钢集团江油长城特殊钢有限公司 一种真空感应炉冶炼低合金含氮焊丝钢及其冶炼方法
CN110106432A (zh) * 2019-05-24 2019-08-09 烟台台海玛努尔核电设备有限公司 一种高氮钢的制备方法
CN110257707A (zh) * 2019-07-03 2019-09-20 宁波万冠熔模铸造有限公司 一种高氮双相不锈钢及其制备方法
CN111411288A (zh) * 2020-03-19 2020-07-14 淮南普玖机械设备有限公司 一种高温合金冶炼方法
CN112126745A (zh) * 2020-09-27 2020-12-25 江油市长祥特殊钢制造有限公司 一种不锈钢的增氮方法
CN113278834A (zh) * 2021-05-24 2021-08-20 大冶特殊钢有限公司 超高n含量高温合金的vim炉冶炼方法
CN113388709A (zh) * 2021-06-11 2021-09-14 东北大学 一种精准控制高氮不锈钢中氮含量的方法
CN114318109A (zh) * 2021-12-08 2022-04-12 抚顺特殊钢股份有限公司 一种真空感应炉与加压电渣炉冶炼高氮模具钢的方法
CN115261712A (zh) * 2022-08-03 2022-11-01 山东钢铁股份有限公司 一种复合钒氮合金、制作工艺及其使用方法
CN115572790A (zh) * 2022-09-30 2023-01-06 河钢股份有限公司 一种真空感应炉冶炼低氮不锈钢精准控氮的方法

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102428200B (zh) * 2009-07-13 2014-04-02 韩国机械研究院 含有碳-氮复合添加剂的高强度/抗腐蚀性奥氏体不锈钢及其制造方法
CN101845535A (zh) * 2010-05-19 2010-09-29 首钢总公司 一种提高氮化硅铁中氮收得率的方法
CN102002640B (zh) * 2010-09-09 2012-08-08 中国兵器工业第五二研究所 一种采用加压感应制备高氮钢的方法
CN102002640A (zh) * 2010-09-09 2011-04-06 中国兵器工业第五二研究所 一种采用加压感应制备高氮钢的方法
CN102477474B (zh) * 2010-11-20 2013-05-22 山西太钢不锈钢股份有限公司 一种真空感应炉冶炼钢水的加硫方法
CN102477473A (zh) * 2010-11-20 2012-05-30 山西太钢不锈钢股份有限公司 一种真空感应炉冶炼含硼钢控制硼含量的方法
CN102477474A (zh) * 2010-11-20 2012-05-30 山西太钢不锈钢股份有限公司 一种真空感应炉冶炼钢水的加硫方法
CN102477473B (zh) * 2010-11-20 2013-06-12 山西太钢不锈钢股份有限公司 一种真空感应炉冶炼含硼钢控制硼含量的方法
CN102477469A (zh) * 2010-11-29 2012-05-30 攀钢集团钢铁钒钛股份有限公司 一种真空感应炉炼钢的方法
CN102477469B (zh) * 2010-11-29 2014-07-09 攀钢集团钢铁钒钛股份有限公司 一种真空感应炉炼钢的方法
CN102400029A (zh) * 2011-04-28 2012-04-04 江苏美特林科特殊合金有限公司 一种合金的真空冶炼方法
CN102400029B (zh) * 2011-04-28 2014-04-02 江苏美特林科特殊合金有限公司 一种合金的真空冶炼方法
CN102851451A (zh) * 2011-06-29 2013-01-02 鞍钢股份有限公司 一种出钢工序钢水增氮的方法
CN102409137A (zh) * 2011-10-25 2012-04-11 钢铁研究总院 取向硅钢中的氮含量的控制方法
CN102400030A (zh) * 2011-11-24 2012-04-04 中国船舶重工集团公司第七二五研究所 一种真空感应炉冶炼钢水添加氮元素的方法
CN104419801A (zh) * 2013-08-23 2015-03-18 上海重型机器厂有限公司 真空感应炉冶炼fb2钢的氮含量控制方法
CN104451030A (zh) * 2014-12-03 2015-03-25 河北钢铁股份有限公司 真空感应炉冶炼含硼钢时硼含量的精确控制方法
CN104451030B (zh) * 2014-12-03 2016-03-30 河北钢铁股份有限公司 真空感应炉冶炼含硼钢时硼含量的精确控制方法
CN104694708A (zh) * 2015-04-01 2015-06-10 山东瑞泰新材料科技有限公司 含氮奥氏体气阀钢的真空冶炼工艺
CN105779688B (zh) * 2016-05-04 2017-12-01 河北钢铁股份有限公司 一种真空感应炉冶炼含氮钢精确控制氮含量的方法
CN105779688A (zh) * 2016-05-04 2016-07-20 河北钢铁股份有限公司 一种真空感应炉冶炼含氮钢精确控制氮含量的方法
WO2018107315A1 (zh) * 2016-12-12 2018-06-21 孙瑞涛 一种常压下两步冶炼高氮钢的方法
CN106591541A (zh) * 2016-12-23 2017-04-26 江苏沙钢集团淮钢特钢股份有限公司 一种rh真空处理过程中的脱氢增氮控制方法
CN106591541B (zh) * 2016-12-23 2018-08-28 江苏沙钢集团淮钢特钢股份有限公司 一种rh真空处理过程中的脱氢增氮控制方法
CN106884073A (zh) * 2016-12-30 2017-06-23 中钢集团邢台机械轧辊有限公司 一种制备铸钢过程中高氮铬铁合金的加入方法
CN107447074A (zh) * 2017-07-29 2017-12-08 首钢集团有限公司 一种冶炼非调质钢的中间试验方法
CN108441599A (zh) * 2018-03-15 2018-08-24 大冶特殊钢股份有限公司 真空感应炉冶炼含氮不锈钢的方法
CN108441599B (zh) * 2018-03-15 2019-12-06 大冶特殊钢股份有限公司 真空感应炉冶炼含氮不锈钢的方法
CN109440011A (zh) * 2018-12-27 2019-03-08 攀钢集团江油长城特殊钢有限公司 一种真空感应炉冶炼低合金含氮焊丝钢及其冶炼方法
CN110106432A (zh) * 2019-05-24 2019-08-09 烟台台海玛努尔核电设备有限公司 一种高氮钢的制备方法
CN110257707A (zh) * 2019-07-03 2019-09-20 宁波万冠熔模铸造有限公司 一种高氮双相不锈钢及其制备方法
CN111411288A (zh) * 2020-03-19 2020-07-14 淮南普玖机械设备有限公司 一种高温合金冶炼方法
CN111411288B (zh) * 2020-03-19 2021-08-20 靖江新舟合金材料有限公司 一种高温合金冶炼方法
CN112126745A (zh) * 2020-09-27 2020-12-25 江油市长祥特殊钢制造有限公司 一种不锈钢的增氮方法
CN113278834A (zh) * 2021-05-24 2021-08-20 大冶特殊钢有限公司 超高n含量高温合金的vim炉冶炼方法
CN113388709A (zh) * 2021-06-11 2021-09-14 东北大学 一种精准控制高氮不锈钢中氮含量的方法
CN114318109A (zh) * 2021-12-08 2022-04-12 抚顺特殊钢股份有限公司 一种真空感应炉与加压电渣炉冶炼高氮模具钢的方法
CN114318109B (zh) * 2021-12-08 2022-08-16 抚顺特殊钢股份有限公司 一种真空感应炉与加压电渣炉冶炼高氮模具钢的方法
CN115261712A (zh) * 2022-08-03 2022-11-01 山东钢铁股份有限公司 一种复合钒氮合金、制作工艺及其使用方法
CN115261712B (zh) * 2022-08-03 2023-12-22 山东钢铁股份有限公司 一种复合钒氮合金、制作工艺及其使用方法
CN115572790A (zh) * 2022-09-30 2023-01-06 河钢股份有限公司 一种真空感应炉冶炼低氮不锈钢精准控氮的方法
CN115572790B (zh) * 2022-09-30 2024-01-23 河钢股份有限公司 一种真空感应炉冶炼低氮不锈钢精准控氮的方法

Similar Documents

Publication Publication Date Title
CN101372721A (zh) 高真空感应炉冶炼含氮钢增氮方法
CN102400030B (zh) 一种真空感应炉冶炼钢水添加氮元素的方法
CN113789472B (zh) 合金铸钢、其制作方法及应用
US3336132A (en) Stainless steel manufacturing process and equipment
CN106086710A (zh) 一种稀土耐热钢及其铸造工艺
CN106086598A (zh) 一种高纯净度奥氏体无磁护环钢的冶炼方法
CN102477473B (zh) 一种真空感应炉冶炼含硼钢控制硼含量的方法
CN105970074B (zh) 一种真空感应炉快速冶炼低氮不锈钢的方法
CN110819761B (zh) 下注钢锭或电极坯及其制备方法
CN102409133B (zh) 真空法生产23MnB钢的方法
CN101649410B (zh) 一种高真空感应炉冶炼钢水添加稀土的方法
CN102477474B (zh) 一种真空感应炉冶炼钢水的加硫方法
CN112662838B (zh) 一种ZG06Cr13Ni4Mo钢的冶炼方法以及ZG06Cr13Ni4Mo钢
CN112553406B (zh) 一种钢板及钢中b元素含量的控制方法
CN101372720B (zh) 高真空感应炉炼钢增碳方法
CN106929635A (zh) 钢锭及其制造方法
CN101736123B (zh) 一种硼收得率高的含硼合金的冶炼方法
CN116837175A (zh) 一种真空感应炉冶炼超低氧钢的方法
CN101948979B (zh) 一种生产工业纯铁的方法
CN102477475A (zh) 一种真空感应炉冶炼含锰钢控制锰含量的方法
CN109136467A (zh) 硅脱氧钢造酸性渣精炼过程中硼元素含量的控制方法
CN101671762A (zh) 一种中、低合金特殊钢的生产方法
CN102424883B (zh) 一种真空法生产25CrMnB钢的方法
CN101948980B (zh) 一种生产工业纯铁的方法
TWI680185B (zh) 不銹鋼的製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090225