WO2023155511A1 - 一种镍系钢板表面质量的控制方法 - Google Patents

一种镍系钢板表面质量的控制方法 Download PDF

Info

Publication number
WO2023155511A1
WO2023155511A1 PCT/CN2022/132286 CN2022132286W WO2023155511A1 WO 2023155511 A1 WO2023155511 A1 WO 2023155511A1 CN 2022132286 W CN2022132286 W CN 2022132286W WO 2023155511 A1 WO2023155511 A1 WO 2023155511A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
surface quality
steel plate
controlling
based steel
Prior art date
Application number
PCT/CN2022/132286
Other languages
English (en)
French (fr)
Inventor
谯明亮
吴俊平
翟冬雨
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2023155511A1 publication Critical patent/WO2023155511A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of iron and steel production, in particular to a method for controlling the surface quality of a nickel-based steel plate.
  • Nickel-series steel is the current dominant variety. In the process of product manufacturing and development, a complete and independent manufacturing method has been formed. Nickel-series steel is also From the previous single 9-nickel to the current 0.5-nickel, 3-nickel, 5-nickel, 7-nickel and other full-variety coverage, but in the production process, the instability of the surface quality of the steel plate has always troubled the technicians.
  • the present invention aims at above-mentioned technical problem, overcomes the shortcoming of prior art, provides a kind of control method of nickel steel plate surface quality, comprises the following steps:
  • the molten iron can obtain clean molten steel with less inclusions and sufficient removal of harmful gases, and obtain qualified billets with low composition and low power after continuous casting;
  • the slab After passing the surface inspection, the slab is sent to the grinding machine for mechanical grinding.
  • the grinding is smooth, uniform in thickness, smooth and without steps;
  • the blank After passing the surface inspection, the blank is heated in a walking heating furnace.
  • the target heating temperature is 1110°C. After reaching the target temperature, it is kept for 10-30 minutes and rolled out of the furnace;
  • step S2 the grinding depth is 2mm.
  • the thickness of the sprayed layer is 0.2-0.5 mm.
  • the heating rate is 13-15°C/min from room temperature to 550°C, the heating rate is 4-6°C/min at 550-1000°C, and 4-6°C/min at 1000°C-
  • the heating rate at 1120°C is 1-2°C/min.
  • the above-mentioned method for controlling the surface quality of a nickel-based steel plate has the following chemical composition and mass percentage: C: 0.03% to 0.07%, Si: 0.10% to 0.30%, Mn: 0.60% to 0.90%, P ⁇ 0.005 %, S ⁇ 0.002%, Nb ⁇ 0.020%, V ⁇ 0.010%, Ti ⁇ 0.030%, Cr ⁇ 0.30%, Mo ⁇ 0.30%, Ni: 0.50% ⁇ 9.50%, Cu ⁇ 0.05%, Al: 0.020% ⁇ 0.050%, N ⁇ 0.0045%, H ⁇ 0.0002%, the balance is Fe and unavoidable impurities.
  • the above-mentioned method for controlling the surface quality of a nickel-based steel plate has the following chemical composition and mass percentage: C: 0.05% to 0.07%, Si: 0.10% to 0.20%, Mn: 0.70% to 0.90%, P ⁇ 0.005 %, S ⁇ 0.002%, Nb ⁇ 0.020%, V ⁇ 0.010%, Ti ⁇ 0.030%, Cr: 0.10% ⁇ 0.30%, Mo: 0.10% ⁇ 0.30%, Ni: 0.50% ⁇ 3.50%, Cu ⁇ 0.05% , Al: 0.030% to 0.050%, N ⁇ 0.0045%, H ⁇ 0.0002%, and the balance is Fe and unavoidable impurities.
  • the above-mentioned method for controlling the surface quality of a nickel-based steel plate has the following chemical composition and mass percentage: C: 0.04% to 0.06%, Si: 0.15% to 0.30%, Mn: 0.70% to 0.80%, P ⁇ 0.005 %, S ⁇ 0.002%, Nb ⁇ 0.020%, V ⁇ 0.010%, Ti ⁇ 0.030%, Cr ⁇ 0.30%, Mo ⁇ 0.30%, Ni: 5.0% ⁇ 7.50%, Cu ⁇ 0.05%, Al: 0.020% ⁇ 0.040%, N ⁇ 0.0040%, H ⁇ 0.0002%, the balance is Fe and unavoidable impurities.
  • the above-mentioned method for controlling the surface quality of a nickel-based steel plate has the following chemical composition and mass percentage: C: 0.03% to 0.05%, Si: 0.20% to 0.30%, Mn: 0.60% to 0.80%, P ⁇ 0.005 %, S ⁇ 0.002%, Nb ⁇ 0.020%, V ⁇ 0.010%, Ti ⁇ 0.030%, Cr ⁇ 0.30%, Mo ⁇ 0.30%, Ni: 7.0% ⁇ 9.50%, Cu ⁇ 0.05%, Al: 0.021% ⁇ 0.050%, N ⁇ 0.0045%, H ⁇ 0.0002%, and the balance is Fe and unavoidable impurities.
  • the present invention adopts vacuum treatment, and the oxygen, nitrogen, hydrogen and other gas contents of the slab are reduced, reducing the incidence of cracks;
  • the present invention adopts the method of mechanical grinding, and formulates detailed grinding requirements, effectively removes the surface defects of the slab, and removes the oxide scale on the surface of the slab, which is beneficial to improving the surface quality of the rolled steel plate;
  • the present invention uses a unique anti-oxidation coating for spraying, which avoids the secondary oxidation of the slab during the heating process, reduces the amount of oxide scale on the surface of the slab during the rolling process, and improves the surface quality of the rolled steel plate;
  • the phase transition temperature of the high-nickel steel in the present invention is 570°C, and the end temperature is 730°C. Heating by different heating rates reduces the linear expansion and thermal conductivity, and avoids the intergranular cracks caused by the phase transition stress during the heating process. occur;
  • Fig. 1 is the schematic diagram of embodiment product.
  • the method for controlling the surface quality of a nickel-based steel plate provided in this example has the following chemical composition and mass percentage: C: 0.06%, Si: 0.15%, Mn: 0.81%, P: 0.003%, S: 0.012%, Nb : 0.002%, V: 0.003%, Ti: 0.0030%, Cr: 0.22%, Mo: 0.21%, Ni: 3.1%, Cu: 0.02%, Al: 0.036%, N: 0.0028%, H: 0.00017%, Yu
  • the amount is Fe and unavoidable impurities.
  • the molten iron can obtain clean molten steel with less inclusions and sufficient removal of harmful gases, and obtain components and low-magnification qualified slabs after continuous casting;
  • the slab After passing the surface inspection, the slab is sent to the grinding machine for mechanical grinding.
  • the grinding depth is 2mm, and the grinding level is uniform in thickness, smooth and without steps;
  • the cast slab after grinding is sprayed with high-temperature anti-oxidation paint, the thickness of the sprayed layer is 0.4mm, and the sprayed layer must be intact before entering the furnace;
  • the billets pass the surface inspection and enter the walking heating furnace for heating.
  • the target heating temperature is 1110°C
  • the heating rate is 14°C/min from room temperature to 550°C
  • the heating rate is 5°C/min from 550°C to 1000°C
  • the heating rate is 1000°C to 1120°C.
  • the heating rate is 1.6°C/min, and after reaching the target temperature, the holding time is 23 minutes and rolled out of the furnace;
  • the difference between the surface quality control method of a nickel-based steel plate provided in this example and Example 1 is that its chemical composition and mass percentage are as follows: C: 0.046%, Si: 0.19%, Mn: 0.78%, P: 0.003 %, S: 0.013%, Nb: 0.002%, V: 0.003%, Ti: 0.0030%, Cr: 0.03%, Mo: 0.0030%, Ni: 7.2%, Cu: 0.02%, Al: 0.033%, N: 0.0029 %, H: 0.00011%, the balance is Fe and unavoidable impurities.
  • the billets pass the surface inspection and enter the walking heating furnace for heating.
  • the target heating temperature is 1110°C
  • the heating rate is 14°C/min from room temperature to 550°C
  • the heating rate is 5°C/min from 550°C to 1000°C
  • the heating rate is 1000°C to 1120°C.
  • the temperature is 1.5°C/min, and after reaching the target temperature, the heat preservation time is 19 minutes and rolled out of the furnace.
  • the difference between the surface quality control method of a nickel-based steel plate provided in this example and Example 1 is that its chemical composition and mass percentage are as follows: C: 0.033%, Si: 0.29%, Mn: 0.68%, P: 0.004 %, S: 0.018%, Nb: 0.002%, V: 0.003%, Ti: 0.0020%, Cr: 0.03%, Mo: 0.0040%, Ni: 9.3%, Cu: 0.01%, Al: 0.035%, N: 0.0041 %, H: 0.00019%, the balance is Fe and unavoidable impurities.
  • the billets pass the surface inspection and enter the walking heating furnace for heating.
  • the target heating temperature is 1110°C
  • the heating rate is 14°C/min from room temperature to 550°C
  • the heating rate is 5°C/min from 550°C to 1000°C
  • the heating rate is 1000°C to 1120°C.
  • the temperature is 1.3°C/min, and after reaching the target temperature, the heat preservation time is 22 minutes, and it is rolled out of the furnace.
  • the present invention finds that in addition to the influence of harmful gases on the surface quality of the slab, the improper heating process of the heating furnace will also cause intergranular oxidation cracks on the surface of the steel plate. Under the action of the restraining force, it continues to extend to the inside of the steel plate. During the quenching process, the crack will continue to oxidize and widen, resulting in the deterioration of the surface quality, thereby affecting the use of the product. By reasonably improving the heating mechanism of the heating furnace, the surface quality of the product is improved. .
  • the invention has the advantages of simple operation, stable execution of the production process, remarkable effect, and obvious economic benefit and safety benefit.
  • the present invention can also have other implementations. All technical solutions formed by equivalent replacement or equivalent transformation fall within the scope of protection required by the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种镍系钢板表面质量的控制方法,其化学成分及质量百分比如下:C:0.03%~0.07%,Si:0.10%~0.30%,Mn:0.60%~0.90%,P≤0.005%,S≤0.002%,Nb≤0.020%,V≤0.010%,Ti≤0.030%,Cr≤0.30%,Mo≤0.30%,Ni:0.50%~9.50%,Cu≤0.05%,Al:0.020%~0.050%,N≤0.0045%,H≤0.0002%,余量为Fe和不可避免的杂质。通过优化冶炼工艺、铸坯的表面处理、加热炉工艺细化,提升钢板表面质量。

Description

一种镍系钢板表面质量的控制方法 技术领域
本发明涉及钢铁生产技术领域,特别是涉及一种镍系钢板表面质量的控制方法。
背景技术
随着我国钢铁冶金技术的不断发展,钢铁企业品牌竞争优势越来越明显,镍系钢是目前的优势品种,在产品制造及开发过程,形成了一套完善自主的制造方法,镍系钢也由以前单一的9镍发展到现在0.5镍、3镍、5镍、7镍等全品种覆盖,但生产过程中,钢板表面质量的不稳定性一直困扰着技术人员。
发明内容
本发明针对上述技术问题,克服现有技术的缺点,提供一种镍系钢板表面质量的控制方法,包括以下步骤:
S1、铁水经脱硫、吹氧炉冶炼、LF/RH精炼处理后,获得夹杂物少、有害气体充分去除的洁净钢水,通过连铸浇铸后获得成分、低倍合格的铸坯;
S2、铸坯表检合格后送至修磨床进行机械修磨,修磨平整、厚度均匀,平滑无台阶;
S3、修磨后的铸坯采用高温防氧化涂料进行喷涂,喷涂层入炉前必须完好无损;
S4、坯料表检合格后进入步进式加热炉加热,目标加热温度1110℃,达到目标温度后保温10~30min出炉轧制;
S5、轧制后钢板经矫直、剪切、热处理后取样检测;
S6、钢板通过性能检测合格后根据客户要求进行标识、入库、发货。
本发明进一步限定的技术方案是:
前所述的一种镍系钢板表面质量的控制方法,步骤S2中,修磨深度为2mm。
前所述的一种镍系钢板表面质量的控制方法,步骤S3中,喷涂层厚度0.2~0.5mm。
前所述的一种镍系钢板表面质量的控制方法,步骤S4中,常温至550℃加热速度为13~15℃/min,550~1000℃加热速度为4~6℃/min,1000℃~1120℃加热速度为1~2℃/min。
前所述的一种镍系钢板表面质量的控制方法,其化学成分及质量百分比如下:C:0.03%~0.07%,Si:0.10%~0.30%,Mn:0.60%~0.90%,P≤0.005%,S≤0.002%,Nb≤0.020%,V≤0.010%,Ti≤0.030%,Cr≤0.30%,Mo≤0.30%,Ni:0.50%~9.50%,Cu≤0.05%,Al:0.020%~0.050%,N≤0.0045%,H≤0.0002%,余量为Fe和不可避免的杂质。
前所述的一种镍系钢板表面质量的控制方法,其化学成分及质量百分比如下:C:0.05%~0.07%,Si:0.10%~0.20%,Mn:0.70%~0.90%,P≤0.005%,S≤0.002%,Nb≤0.020%,V≤0.010%,Ti≤0.030%,Cr:0.10%~0.30%,Mo:0.10%~0.30%,Ni:0.50%~3.50%,Cu≤0.05%,Al:0.030%~0.050%,N≤0.0045%,H≤0.0002%,余量为Fe和不可避免的杂质。
前所述的一种镍系钢板表面质量的控制方法,其化学成分及质量百分比如下:C:0.04%~0.06%,Si:0.15%~0.30%,Mn:0.70%~0.80%,P≤0.005%,S≤0.002%,Nb≤0.020%,V≤0.010%,Ti≤0.030%,Cr≤0.30%,Mo≤0.30%,Ni:5.0%~7.50%,Cu≤0.05%,Al:0.020%~0.040%,N≤0.0040%,H≤0.0002%,余量为Fe和不可避免的杂质。
前所述的一种镍系钢板表面质量的控制方法,其化学成分及质量百分比如下:C:0.03%~0.05%,Si:0.20%~0.30%,Mn:0.60%~0.80%,P≤0.005%,S≤0.002%,Nb≤0.020%,V≤0.010%,Ti≤0.030%,Cr≤0.30%,Mo≤0.30%,Ni:7.0%~9.50%,Cu≤0.05%,Al:0.021%~0.050%,N≤0.0045%,H≤0.0002%, 余量为Fe和不可避免的杂质。
本发明的有益效果是:
(1)本发明采用真空处理,铸坯的氧、氮、氢等气体含量降低,减少了裂纹的发生率;
(2)本发明采用机械修磨的方法,并制定详细的修磨要求,有效去除了铸坯表面缺陷,并清除了铸坯表面的氧化铁皮,有利于提升轧制钢板表面质量;
(3)本发明采用独特的抗氧化涂料进行喷涂,避免了加热过程中铸坯的二次氧化,减少了轧制过程中铸坯表面氧化铁皮的生成量,提升了轧制钢板的表面质量;
(4)本发明中高镍钢的相变温度570℃,结束温度是730℃,通过不同的升温速率进行加热,降低了线膨胀及导热系数,避免了加热过程相变应力导致的晶间裂纹的发生;
(5)本发明中加热出钢温度过高会导致铸坯表面的高温氧化裂纹,这种裂纹随着奥氏体的粗大会越发明显,低温出钢有效避免了铸坯表面高温晶间裂纹。
附图说明
图1为实施例产品示意图。
具体实施方式
实施例1
本实施例提供的一种镍系钢板表面质量的控制方法,其化学成分及质量百分比如下:C:0.06%,Si:0.15%,Mn:0.81%,P:0.003%,S:0.012%,Nb:0.002%,V:0.003%,Ti:0.0030%,Cr:0.22%,Mo:0.21%,Ni:3.1%,Cu:0.02%,Al:0.036%,N:0.0028%,H:0.00017%,余量为Fe和不可避免的杂质。
具体包括以下步骤:
S1、铁水经脱硫、吹氧炉冶炼、LF/RH精炼处理后,获得夹杂物少、有害气体充分去除的洁净钢水,通过连铸浇铸后获得成分、低倍合格铸坯;
S2、铸坯表检合格后送至修磨床进行机械修磨,修磨深度为2mm,修磨平整厚度均匀,平滑无台阶;
S3、修磨后的铸坯进行采用高温防氧化涂料进行喷涂,喷涂层厚度0.4mm,喷涂层入炉前必须完好无损;
S4、坯料表检合格进入步进式加热炉进行加热,目标加热温度1110℃,常温至550℃加热速度为14℃/min,550~1000℃加热速度为5℃/min,1000℃~1120℃加热速度为1.6℃/min,达到目标温度后保温时间23min出炉轧制;
S5、轧制后钢板经矫直、剪切、热处理后取样检测;
S6、钢板通过性能检测合格后根据客户要求进行标识、入库、发货。
实施例2
本实施例提供的一种镍系钢板表面质量的控制方法,与实施例1的区别在于,其化学成分及质量百分比如下:C:0.046%,Si:0.19%,Mn:0.78%,P:0.003%,S:0.013%,Nb:0.002%,V:0.003%,Ti:0.0030%,Cr:0.03%,Mo:0.0030%,Ni:7.2%,Cu:0.02%,Al:0.033%,N:0.0029%,H:0.00011%,余量为Fe和不可避免的杂质。
采用高温防氧化涂料进行喷涂,喷涂层厚度0.3mm;
坯料表检合格进入步进式加热炉进行加热,目标加热温度1110℃,常温至550℃加热速度为14℃/min,550~1000℃加热速度为5℃/min,1000℃~1120℃加热速度为1.5℃/min,达到目标温度后保温时间19min出炉轧制。
实施例3
本实施例提供的一种镍系钢板表面质量的控制方法,与实施例1的区别在 于,其化学成分及质量百分比如下:C:0.033%,Si:0.29%,Mn:0.68%,P:0.004%,S:0.018%,Nb:0.002%,V:0.003%,Ti:0.0020%,Cr:0.03%,Mo:0.0040%,Ni:9.3%,Cu:0.01%,Al:0.035%,N:0.0041%,H:0.00019%,余量为Fe和不可避免的杂质。
采用高温防氧化涂料进行喷涂,喷涂层厚度0.2mm;
坯料表检合格进入步进式加热炉进行加热,目标加热温度1110℃,常温至550℃加热速度为14℃/min,550~1000℃加热速度为5℃/min,1000℃~1120℃加热速度为1.3℃/min,达到目标温度后保温时间22min出炉轧制。
本发明通过对钢种机理深入研究,发现除有害气体对铸坯表面质量影响外,加热炉加热工艺的不当也会造成钢板的表面沿晶氧化裂纹,轧制过程中表面沿晶氧化裂纹在轧制力的作用下,继续向钢板内部延伸,在淬火过程裂纹会继续氧化而发生宽化,造成表面质量的恶化,从而影响产品的使用,通过合理改善加热炉加热机理,提高了产品的表面质量。本发明操作简单,生产工艺得以稳定执行,效果显著,能够取得明显的经济效益和安全效益。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (8)

  1. 一种镍系钢板表面质量的控制方法,其特征在于:包括以下步骤:
    S1、铁水经脱硫、吹氧炉冶炼、LF/RH精炼处理后,获得夹杂物少、有害气体充分去除的洁净钢水,通过连铸浇铸后获得成分、低倍合格的铸坯;
    S2、铸坯表检合格后送至修磨床进行机械修磨,修磨平整、厚度均匀,平滑无台阶;
    S3、修磨后的铸坯采用高温防氧化涂料进行喷涂,喷涂层入炉前必须完好无损;
    S4、坯料表检合格后进入步进式加热炉加热,目标加热温度1110℃,达到目标温度后保温10~30min出炉轧制;
    S5、轧制后钢板经矫直、剪切、热处理后取样检测;
    S6、钢板通过性能检测合格后根据客户要求进行标识、入库、发货。
  2. 根据权利要求1所述的一种镍系钢板表面质量的控制方法,其特征在于:所述步骤S2中,修磨深度为2mm。
  3. 根据权利要求1所述的一种镍系钢板表面质量的控制方法,其特征在于:所述步骤S3中,喷涂层厚度0.2~0.5mm。
  4. 根据权利要求1所述的一种镍系钢板表面质量的控制方法,其特征在于:所述步骤S4中,常温至550℃加热速度为13~15℃/min,550~1000℃加热速度为4~6℃/min,1000℃~1120℃加热速度为1~2℃/min。
  5. 根据权利要求1所述的一种镍系钢板表面质量的控制方法,其特征在于:其化学成分及质量百分比如下:C:0.03%~0.07%,Si:0.10%~0.30%,Mn:0.60%~0.90%,P≤0.005%,S≤0.002%,Nb≤0.020%,V≤0.010%,Ti≤0.030%,Cr≤0.30%,Mo≤0.30%,Ni:0.50%~9.50%,Cu≤0.05%,Al:0.020%~0.050%,N≤0.0045%,H≤0.0002%,余量为Fe和不可避免的杂质。
  6. 根据权利要求5所述的一种镍系钢板表面质量的控制方法,其特征在于: 其化学成分及质量百分比如下:C:0.05%~0.07%,Si:0.10%~0.20%,Mn:0.70%~0.90%,P≤0.005%,S≤0.002%,Nb≤0.020%,V≤0.010%,Ti≤0.030%,Cr:0.10%~0.30%,Mo:0.10%~0.30%,Ni:0.50%~3.50%,Cu≤0.05%,Al:0.030%~0.050%,N≤0.0045%,H≤0.0002%,余量为Fe和不可避免的杂质。
  7. 根据权利要求5所述的一种镍系钢板表面质量的控制方法,其特征在于:其化学成分及质量百分比如下:C:0.04%~0.06%,Si:0.15%~0.30%,Mn:0.70%~0.80%,P≤0.005%,S≤0.002%,Nb≤0.020%,V≤0.010%,Ti≤0.030%,Cr≤0.30%,Mo≤0.30%,Ni:5.0%~7.50%,Cu≤0.05%,Al:0.020%~0.040%,N≤0.0040%,H≤0.0002%,余量为Fe和不可避免的杂质。
  8. 根据权利要求5所述的一种镍系钢板表面质量的控制方法,其特征在于:其化学成分及质量百分比如下:C:0.03%~0.05%,Si:0.20%~0.30%,Mn:0.60%~0.80%,P≤0.005%,S≤0.002%,Nb≤0.020%,V≤0.010%,Ti≤0.030%,Cr≤0.30%,Mo≤0.30%,Ni:7.0%~9.50%,Cu≤0.05%,Al:0.021%~0.050%,N≤0.0045%,H≤0.0002%,余量为Fe和不可避免的杂质。
PCT/CN2022/132286 2022-02-16 2022-11-16 一种镍系钢板表面质量的控制方法 WO2023155511A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210141997.7 2022-02-16
CN202210141997.7A CN114525389A (zh) 2022-02-16 2022-02-16 一种镍系钢板表面质量的控制方法

Publications (1)

Publication Number Publication Date
WO2023155511A1 true WO2023155511A1 (zh) 2023-08-24

Family

ID=81623531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132286 WO2023155511A1 (zh) 2022-02-16 2022-11-16 一种镍系钢板表面质量的控制方法

Country Status (2)

Country Link
CN (1) CN114525389A (zh)
WO (1) WO2023155511A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525389A (zh) * 2022-02-16 2022-05-24 南京钢铁股份有限公司 一种镍系钢板表面质量的控制方法
CN115341158A (zh) * 2022-07-27 2022-11-15 南京钢铁股份有限公司 一种含Ni高强度船用钢表面质量控制方法
CN116377343A (zh) * 2022-12-14 2023-07-04 鞍钢股份有限公司 一种极地海洋环境服役的海工钢板及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103602888A (zh) * 2013-12-02 2014-02-26 南京钢铁股份有限公司 一种低压缩比热轧9Ni钢厚板及其制造方法
CN105331890A (zh) * 2015-11-23 2016-02-17 南京钢铁股份有限公司 一种在线淬火生产高韧性5Ni钢中厚板的方法
CN105441798A (zh) * 2015-11-18 2016-03-30 南京钢铁股份有限公司 一种低温容器用Ni钢中厚板的制造方法
CN107921509A (zh) * 2015-07-29 2018-04-17 杰富意钢铁株式会社 热冲压部件的制造方法
CN109694987A (zh) * 2017-10-20 2019-04-30 鞍钢股份有限公司 一种超低温压力容器用高镍钢及其制造方法
CN110129676A (zh) * 2019-05-27 2019-08-16 南京钢铁股份有限公司 一种LNG储罐用7Ni钢板及生产工艺
CN111440990A (zh) * 2020-03-30 2020-07-24 江阴兴澄特种钢铁有限公司 一种低剩磁、表面质量优异的船用5Ni钢板的制造方法
CN114525389A (zh) * 2022-02-16 2022-05-24 南京钢铁股份有限公司 一种镍系钢板表面质量的控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103602888A (zh) * 2013-12-02 2014-02-26 南京钢铁股份有限公司 一种低压缩比热轧9Ni钢厚板及其制造方法
CN107921509A (zh) * 2015-07-29 2018-04-17 杰富意钢铁株式会社 热冲压部件的制造方法
CN105441798A (zh) * 2015-11-18 2016-03-30 南京钢铁股份有限公司 一种低温容器用Ni钢中厚板的制造方法
CN105331890A (zh) * 2015-11-23 2016-02-17 南京钢铁股份有限公司 一种在线淬火生产高韧性5Ni钢中厚板的方法
CN109694987A (zh) * 2017-10-20 2019-04-30 鞍钢股份有限公司 一种超低温压力容器用高镍钢及其制造方法
CN110129676A (zh) * 2019-05-27 2019-08-16 南京钢铁股份有限公司 一种LNG储罐用7Ni钢板及生产工艺
CN111440990A (zh) * 2020-03-30 2020-07-24 江阴兴澄特种钢铁有限公司 一种低剩磁、表面质量优异的船用5Ni钢板的制造方法
CN114525389A (zh) * 2022-02-16 2022-05-24 南京钢铁股份有限公司 一种镍系钢板表面质量的控制方法

Also Published As

Publication number Publication date
CN114525389A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2023155511A1 (zh) 一种镍系钢板表面质量的控制方法
CN105937010B (zh) 一种改进型09GrCuSb耐硫酸露点腐蚀用钢及其制造方法
CN103695619B (zh) 一种高磁感普通取向硅钢的制造方法
CN109266970B (zh) 高氮高铬塑料模具钢及其冶炼和热处理方法
US20230114417A1 (en) Steel for glass lining and production method therefor
WO2022067962A1 (zh) 低成本高性能Q370qE-HPS桥梁钢及生产方法
WO2023179059A1 (zh) 一种9Ni用钢及其生产方法
WO2023197571A1 (zh) 一种360hb-450hb级耐磨钢及其生产方法
CN105950979B (zh) 一种采用二次冷轧法制造的晶粒取向纯铁及方法
CN111545720A (zh) 一种降低渗碳齿轮钢带状组织的成型工艺
CN101824582B (zh) 采用多元抑制剂的取向电工钢板带及其生产方法
WO2022218444A1 (zh) 超高n含量高温合金的vim炉冶炼方法
WO2023179057A1 (zh) 一种09MnNiDR用钢及其生产方法
WO2023179058A1 (zh) 一种7Ni用钢及其生产方法
CN112387948B (zh) 一种减少200系不锈钢热轧卷边部山鳞的生产方法
CN109023008A (zh) 一种耐高温的电热合金的配方及其制备工艺
CN114908294A (zh) 汽车排气系统用耐高温奥氏体不锈钢冷轧板及其制造方法
CN114737111A (zh) 一种5Ni用钢及其生产方法
CN114737113A (zh) 一种3.5Ni用钢及其生产方法
CN113106319A (zh) 一种高强度长寿命齿轮钢的制造方法
CN116005062B (zh) 高强度高耐蚀奥氏体不锈钢冷轧卷板及其制备方法
RU2797390C1 (ru) Сверхтолстый лист стали для сосуда с хорошей ударной вязкостью при низких температурах в центре и способ производства
CN114959488B (zh) 一种工业纯铁中厚板及其生产方法
JP3554283B2 (ja) 表面性状に優れたFe−Ni系合金およびその製造方法
KR100515939B1 (ko) 내산화성이 향상되는 페라이트계 스테인레스 광휘소둔냉연강판의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926815

Country of ref document: EP

Kind code of ref document: A1